Network Time Security

draft-ietf-ntp-network-time-security-11

draft-ietf-ntp-using-nts-for-ntp-02

draft-ietf-ntp-cms-for-nts-message-04

Dr. Dieter Sibold Kristof Teichel Stephen Röttger

IETF 94 (Yokohama, Japan) 1–6, 2015
Outline

History

Document’s Dependency Graph

Scope

Progress/Major Changes
 Implementation
 Implementation Status
 Major Changes

Open Issues

Next Steps
History

- **IETF 83:** Presentation of security issues of RFC 5906 (autokey)
- **IETF 84:** Presentation of plan for a new autokey standard
- **IETF 85–86:** I-D “draft-sibold-autokey-nn”
- **IETF 87–90:** I-D “draft-ietf-ntp-network-time-security-nn”
- **Since IETF 92:**
 - draft-ietf-ntp-network-time-security-NN
 - draft-ietf-ntp-cms-for-nts-message-NN
 - draft-ietf-ntp-using-nts-for-ntp-NN
New Structure: Overview
Scope

Network Time Security provides:

- Authenticity of time servers
- Ability to authenticate time clients to the server
- Ability to perform authorization checks for time clients and servers
- Integrity of synchronization data packets
- Conformity with TICTOC’s Security Requirements (RFC 7384)
- Support for NTP
- Ability for other time synchronization protocols, e.g. PTP
Implementation

Two independent implementations from:

- Network Time Foundation
- University of Applied Science Wolfenbüttel, Germany

Currently both implementations focus on the realization of NTS for NTP

- Implementation of the authentication framework and the secure cookie exchange
- Securing the time request and time response messages of the unicast associations
Implementation Status

Network Time Foundation

- Authentication framework (association, cookie exchange)
 - coded
 - testing in progress
- Unicast time message exchange
 - coding in progress
- Allocation of OID values
 - testing using *unofficial* values
 - NTF has applied for a Private Enterprise Number to host OID assignments
Implementation Status

University of Applied Science Wolfenbüettel

- Currently: trying out the necessary OpenSSL core functions
- Next item: encoding of ASN.1 and CMS structures
- After that: usage for NTS message exchanges
- Deadline: by April 2016
Major Changes in the drafts

Network Time Security draft

The authentication scheme described in Appendix B is enhanced by a message exchange similar to a Photuris cookie exchange, for protection against amplification DoS attacks (Appendix B.2)

Client (Initiator)

server seed

address of client

access_key

= HMAC(server seed; address of client)

access_key used to start the rest of the protocol

Server

client_access message

access_key

Client (Initiator)
Major Changes in the drafts

NTS for NTP draft

- An *extension field* instead of the *classical MAC field* contains the MAC.
- The extension fields’ *type flags* now signal the included content as being NTS-related (with NTS version number).

![NTP data diagram](image-url)

<table>
<thead>
<tr>
<th>Flags</th>
<th>Peer Clock Stratum</th>
<th>Peer Polling Interval</th>
<th>Peer Clock Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Root delay</td>
<td>Root dispersion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reference Clock ID</td>
<td>Reference timestamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Originate timestamp (64)</td>
<td>Receive timestamp (64)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmit timestamp (64)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension fields

<table>
<thead>
<tr>
<th>Key identifier</th>
</tr>
</thead>
</table>

Message Authentication Code (128)
Open Issues

NTP’s *Kiss-O’-Death-Packet*

KoD problematic revealed in a security analysis of NTP by Boston University
(http://www.cs.bu.edu/~goldbe/papers/NTPattack.pdf)

▶ An off-path adversary can persuade a server to send a KoD packet to a client which delays its next time query for day or even years

▶ NTS does not currently protect against this attack

▶ NTS will protect against this attack if the *time request* message is authenticated and an NTP server only sends KoD packets in case of NTS secured associations

▶ Authentication for NTS’ *time request* message is feasible (analogous to the *time response* message). This will impact
 ▶ NTS’ main draft
 ▶ NTS for NTP draft
Open Issues

Data Structure issues

- Discussion on usage of CMS `SignedData` type for transporting payload and certificate, but without an actual signature.
- Discussion on where to place OIDs for the NTS objects in the extension fields (additional ASN.1 layer?).

These issues are most likely addressed in the draft *CMS for NTS messages*
Next Steps

- Implementation
 - Finalization and testing of the unicast associations
 - Considerations regarding Broadcast/Multicast mode
- KoD problematic
 - Introduction of authenticated *time request* message (NTS draft)
 - Description of NTP’s server state machine (NTS for NTP draft)
- Last call for the NTS draft