NVA Mapping Distribution Mechanism

draft-dunbar-nvo3-nva-mapping-distribution-02 Nov 2015

> Linda Dunbar Donald Eastlake Tom Herbert

Status

- Reviewed by two NVO3 Interim meetings
- Received a lot of comments with regard to how NVE expressing interested VNs.
- A new subTLV (Enabled-VN TLV) under the IS-IS Router Capability TLV [RFC4971] is specified here for NVE to indicate all its interested VNs in the IS-IS LSP message
- Comparing with OVSDB (Open vSwitch DB Management) mechanism
- removing the IS-IS portion out of the NVA-NVE mapping control plane,
- make the draft specifically focus on the actual data (TLV based data models) and handshakes to be exchanged between NVA and NVE

NVA-NVE Mapping distribution: Push Model

Requesting Push Service:

- Push NVAs use VN scoped messages to announce their availability to push mapping information.
- NVEs use VN scoped reliable messages to announce all the Virtual Networks in which they are participating
- Whenever, there are changes in the mapping entries, NVA only send the changed portion of the entries.
- **Policies:** When ingress edge can't find entries for the incoming data frame:
 - simply drop the data frame,
 - flood it to all other edges that are in the same VN, or
 - start the "pull" process to get information from Pull NVA

bitMap to express interested VNs subTLV

Figure 2. Enabled-VN TLV using bit map

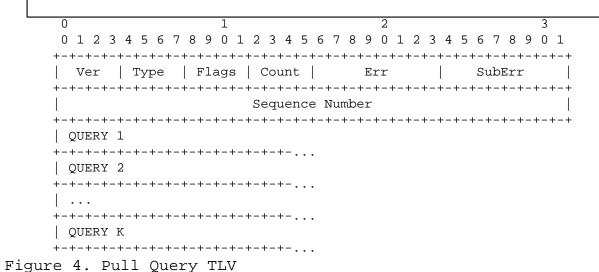
Range to express interested VNs

List to express interested VNs

```
+-+-+-+-+-+-+-+
   INT-VN-TYPE-3
                             (1 byte)
  +-+-+-+-+-+-+
     Length
                             (1 byte)
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              VN ID
                             (4 bytes)
  (4 bytes)
               VN ID
  (4 bytes)
               VN ID
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  +-+-+-+-+-+-+-+-+-+
Figure 4. Enabled-VN TLV using list
```

Incremental Push service

 A new TLV is needed for to carry NAMD timeout value and a flag for NVA to indicate it has completed all updates.


Reachable Interface Addresses (IA) TLV

- To advertise a set of addresses within a VN being attached to (or reachable by) a specific NVE
- These addresses can be in different address families. For example, it can be used to declare that a particular interface with specified IPv4, IPv6, and 48-bit MAC addresses in some particular VN is reachable from a particular NVE.

+-+-+-	
Type = TBD	(2 bytes)
+-+-+-+	
Length	(2 bytes)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++	-+-+-+
Addr Sets End	(2 bytes)
+-	-+-+-+
NVE Address subTLV	(variable)
+-+-+-+-	
Flags	(1 byte)
+-+-+-+-+-+	
Confidence	(1 byte)
+-+-+-+-+-+-+-	
Template	(variable)
+-	
Address Set 1 (size determined by Template)	
+-	
Address Set 2 (size determined by Template)	
+-	
+-	
Address Set N (size determined by Template)	
+-	
optional sub-sub-TLVs	
+-+-+-+-+-+-+-+	

Pull Query Format

- PULL NVA announce its supported VNs
- Pull Requests for the interested VNs or TSs are sent to one specific NVA instance that has the needed information
 - Triggered by:
 - An NVE receives an ingress data frame with a destination whose egress NVE is unknown, or
 - An NVE receives an ingress ARP/ND request for a target whose link address (MAC) or egress edge NVE is unknown.
- Pull Response with instruction on how long entries can be kept by NVE, actions to take if no match is found

PULL Responses

- When the mapping entry is available in the NVA
 - Valid Response
- When the mapping is not available:
 - "drop" or "native-forward" (i.e. flooding)
- cache timer

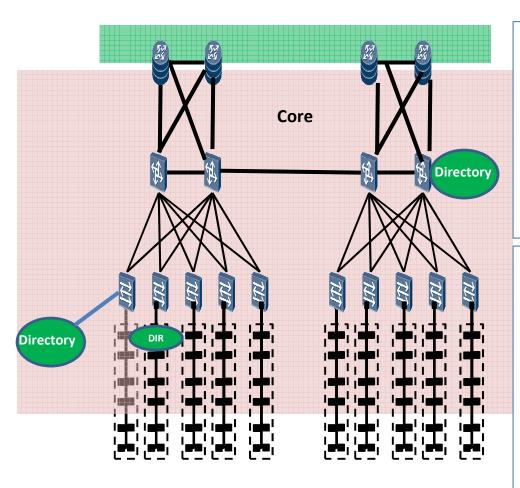
Slide 10

What if removing the sequence number?
L73504, 1/28/2015

Pull Response

Push-Pull Hybrid Model

- Push model are used for some VNs, and pull model are used for other VNs.
 - It can be operator's decision (i.e. by configuration) on which VNs' mapping entries are pushed down from NVA (e.g. frequently used) and which VNs' mapping entries are pulled (e.g. rarely used).
 - Useful for Gateway nodes where great number of VNs are enabled.
- Or, a portion of hosts in a VN is pushed, other portion has to be pulled.


Next Step

- NVO3 needs at least one NVA-NVE Control Plane solution:
 - NVO3 charter: Oct 2015 NVE NVA Control Plane
 Solution submitted for IESG review
 - NVO3 shouldn't wait

Suggest adopt the current draft to NVO3 WG

BACKGROUND INFORMAITON

Various ways of NVAs connected to NVEs

Locations:

- Embedded in routers/switches in the core, or as standalone servers attached to them.
- Standalone servers or VMs connected to Edges via the client side port

Contents:

- Centralized NVA
- Distributed NVA:
 - Each NVA has mapping for a subset of VNs
 - multiple NVAs have mapping entries for a VN