On Firewalls in Network Security
(draft-gont-opsawg-firewalls-analysis)

Fernando Gont
Fred Baker

IETF 94
Yokohama, Japan. November 1-6, 2015
Overview of this document

- It analyzes:
 - the role of firewalls in network security
 - a number of assumptions made around firewalls
 - a number of interoperability implications introduced by firewalls
- Hopefully helps improve the current state of affairs
- Initial version based on:
 - draft-ietf-opsawg-firewalls-00
 - draft-ietf-opsawg-firewalls-01
Role of Firewalls in Network Security

- Firewalls provide prophylactic perimeter security
 - analogous to the service provided by the human skin to the human body
- Firewalls do not prevent the need for the stronger solutions
 - they rather make their expensive invocation less needful and more focused.
Firewalls and the E2E Principle

• One common complaint about firewalls is that they violate the E2E Principle.

• However, the E2E Principle:
 – is a plea for simplicity
 – argues against behavior that from the pov of a higher layer introduces inconsistency, complexity, or coupling
 – does not forbid e.g. lower layer retransmissions, nor maintenance of state, nor consistent policies imposed for security reasons
Common Kinds of Firewalls

- **Context or Zone-based firewalls**
 - protect systems within a perimeter from systems outside it

- **Pervasive routing-based measures**
 - protect intermingled systems from each other by enforcing role-based policies

- **IPS systems**
 - analyze application behavior and trigger on events that are unusual, match a signature, or involve an untrusted peer
Firewalling Strategies

• Default-deny
 - traffic is blocked unless it is explicitly allowed
 - Fails on the “safe side”
 - Prevents deployment of new features and applications

• Default allow
 - traffic is allowed unless explicitly blocked
 - typically enforced at perimeters where a comprehensive security policy
Assumptions on addresses & ports

• IP addresses and transport protocol ports are typically assumed to be stable

• IP address stability
 – Assumption changes with IPv6 temporary addresses (RFC4941)

• Transport protocol port numbers
 – More of a short-cut than a design principle
 – Think about DNS SRV records or Portmap
 – Also consider apps such as FTP and SIP
Assumptions on addresses & ports

• Tendency to multiplex apps on usually-allowed ports
 – e.g., tunnel apps on port 80
State Associated with Filtering

- **Stateless filtering**
 - Decision solely based on the incoming packet
 - Scales well

- **Stateful filtering**
 - Decision based on incoming packet and existing (or lack of thereof) state
 - Allows for more powerful filtering
 - Does not scale well
 - Filtering device can become target of DoS attack
Enforcing Protocol Syntax at the FW

• Checking “reserved” bits
 – Some FWs check that e.g. reserved bits are set to 0
 – This prevents incremental deployment on new features and protocol extensions -- e.g., TCP ECN, DNSec

• Packet scrubbing
 – Other FWs may enforce that e.g. reserved bits are cleared or “harmful” features are disabled
 – This make break rather than disable such features -- e.g. TCP URG [RFC6093]
Moving Forward

• Adopt as WG document?