

RTP Field Considerations

draft-westerlund-perc-rtp-field-considerations-00

Magnus Westerlund

Outline

- Methodology
-) Usage Scenario
- Attackers
- > RTP Fields
 - -Field
 - -Attacks
 - -Recommendations
- Summary of Fields

Methodology

- > Have analyzed each RTP packet field
- Considered need for end-to-end RTCP
- > For each RTP packet field
 - –Can the MDD modify it?
 - Does the receiving endpoint need the original value?
 - Does the field need end-to-end authentication?
 - Does the field need end-to-end confidentiality?
 - Motivation for the above
 - Including explaining attacks
 - Hop-by-hop protection will be noted separately at the end
 - Not focus in this presentation

Usage Scenario

- Consider one or more source RTP stream sent from one endpoint (Sender1)
- Though cascaded MDDs
- Arriving at receiving endpoint (Receiver 1)
- Acknowledge that there will be multiple sending and receiving endpoints

Attackers

> Third Parties

 Modify, block or inject traffic between nodes

Malicious MDDs

- -Semi-trusted
- Have active role
- Prevent abuse of role
- Ensure confidentiality of media and sensitive meta data
- Malicious Endpoints
 - Trusted Entity

Third Party Attack

RTP Fields

0	1	2		3
0 1 2 3 4 5 6 7 8 9	0 1 2 3 4 5 6	7 8 9 0 1	2 3 4 5	6 7 8 9 0 1
+-+-+-+-+-+-+-+-	+-+-+-	+-+-+-+-	+-+-+-+	-+-+-+-+-+
V=2 P X CC M	PT	sequ	ence numbe	er
+-+-+-+-+-+-+-	+-+-+-		+-+-+-+	-+-+-+-+-+
timestamp				
+-+-+-+-+-+-+-+-	+-+-+-	+-+-+-+-	+-+-+-+	-+-+-+-+-+
synchronization source (SSRC) identifier				
+=				
contributing source (CSRC) identifiers				
+-				
RTP extension (OPTIONAL)				
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-	+-+-+-+	-+-+-+-+-+
payload				
	+			+
	I	RTP paddin	g RTP	pad count
+-+-+-+-+-+-+-+-	+-+-+-+-+-		+-+-+-+	-+-+-+-+-+

Version (V)

- Current RTP has value 2
- > Will only change if new RTP version is defined
 - Processing dependent of version
- Can the MDD modify it?
 - -No
- Does the receiving endpoint need the original value?
 - No, needs to be supportedRTP version

- Does the field need end-toend authentication?
 - No, implicitly protected, but could be included
- Does the field need end-toend confidentiality?
 - -No

Padding (P)

- Indicates the presence of padding in the end of the RTP payload field
- Assumption that padding may be added by originating endpoint
 - To improve privacy by hiding actual payload length end-toend
- Can the MDD modify it?
 - No

- Does the receiving endpoint need the original value?
 - -Yes
- Does the field need end-to-end authentication?
 - -Yes
 - Prevent padding processed by Payload format depacketizer
- Does the field need end-to-end confidentiality?
 - Desirable, but not necessary
 - Leaks info that padding is present

Extension Indicator bit (X)

- Indicates presence of header extensions
- Can the MDD modify it?
 - Needs to able
 - Adding or removing header extensions can result in value change
- Does the receiving endpoint need the original value?
 - -No

- Does the field need end-toend authentication?
 - -No
- Does the field need end-toend confidentiality?
 - -No

CSRC Count (CC)

- Indicates the number of Contributing Sources (CSRC) that are present
- See CSRC List for discussion of how and why the CSRC count may change
- Media Switching Mixer is one reason to add CSRC list

- Can the MDD modify it?
 - Media Switching Mixer needs to
- Does the receiving endpoint need the original value?
 - Maybe?
- Does the field need end-to-end authentication?
 - Depends
- Does the field need end-to-end confidentiality?
 - -No

Marker Bit (M)

- Semantics Payload Format Dependent
 - -Video: End of Frame marker
 - Audio: Start of talkspurt
 - -May be other semantics
- Leaking media related information to MDD
 - Audio: Talkspurt indication reveals media content
 - Useful for switch start
 - –Should be confidentiality protected?

- > Video:
- End of Frame not particular sensitive
- Frame marking draft also reveals end of frame
- Necessary for efficient switching on frame boundary
- To indicate to receiver a switch
- Audio's talkspurt indication could be beneficial for this
- Propose using other methods

Marker Bit (M)

- Can the MDD modify it?
 - -No
- Does the receiving endpoint need the original value?
 - -Yes

- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -Desirable?

Payload Type (PT)

- Indicates the format of the RTP Payload
- Values mapped to formats and parameters using signalling
 - Dependent on direction and pair of nodes
 - Example: H.264 can be:
 - > PT=97 on Sender to MDD1 leg
 - > PT=101 on MDD1 to MDD2 leg
 - > PT=98 on MDD2 to receiver leg

PT Modification Attack

- An attacker modifies the PT value
 - Points to different format than originating sender used
 - Decoded by wrong Payload
 Depacketizer and media
 decoder
- > Issues:
 - Not sufficiently robust decoders can crash or enable buffer overrun exploits

> Issues:

- Robust decoders can still produce garbage:
 - > Encoded video as PCM
- Can poison codec state and may trigger concealment actions
- Difficult to exploit buffer overruns in PERC setting
 - Difficult to control input
 - PCM into codec X most likely to succeed

Payload Type (PT)

- Can the MDD modify it?
 - Needs to cope with different assignment
- Does the receiving endpoint need the original value?
 - -Yes
 - Original PT to media type mapping also needed
 - Alt. Control signalling so common PT space across all legs

- Does the field need end-toend authentication?
 - –Yes, original value
- Does the field need end-toend confidentiality?
 - No, difference between media types will commonly be detectable even if E2E protected
 - Protecting it would create difficult signaling requirements

Sequence Number

- Originating Sequence number provides sending order and payload sequence
 - E2E sequence needed for decoding in correct order
 - Expected IV basis
- MDD will need to be able to rewrite the RTP sequence number
 - Stream on/off behavior

- Otherwise switching causes:
 - Loss of transport functionality
 - Loss Detection
 - Inconsistent RTCP reporting
- > Packet Sequence Attacks
 - -Replay Attack
 - Delay Attack

Replay Attack

- > The attacker saves packet sequences sent by source.
- At suitable time attacker replaces source's current packets with some sequence of old packets.
 - –Can turn a spoken Yes into a No!

- > Replay Protection needed!
- Authenticated original sequence number or equivalent needed
- Only accept newer packets or very near newest received to cope with reordering
- Handle sequence number wraps and rekeying events

Delay Attack

> Even with Replay Protection, the MDD can hold packets (Stream Switched off).

- When turning on, use any packet between latest sent to receiver and newest received by MDD.
 - Can be minutes of content

Stream: OFF

Stream: ON

Delay Attack

- End-to-End Sequence numbers don't solve Delay Attack
- > Receiver don't know:
 - How many packet source sent
 - May have paused at source
- Other Solution needed:
 - -Time based
 - > RTP Timestamp?
 - -End-to-End Reporting

Sequence Number

- Can the MDD modify it?
 - -Needs to
- Does the receiving endpoint need the original value?
 - -Yes

- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -No

Timestamp

- > Expresses Media Timeline
- Switching Media Mixer
 - Need to rewrite Timestamp as outgoing streams SSRC has its own timeline
 - Created by concatenating the different contributing stream's time lines
- Delay Attack Protection
 - Possible use Timestamp
 - Wall clock and Timestamp needs to progress consistently
 - Deal with Clock Skew

- Can the MDD modify it?
 - Needs to given Switching Mixer
- Does the receiving endpoint need the original value?
 - Yes
- Does the field need end-to-end authentication?
 - Yes, if end-to-end
- Does the field need end-to-end confidentiality?
 - -No
 - Leaks media time line, but linked to packet sequence for interactive

SSRC

- > Sender Source
- Identifies stream context
 - -Sequence number space
 - -Timestamp space
 - Likely Identifying crypto context
- Media Switching Mixer
 - -Has it's own SSRCs
 - Can use CSRC to indicate original SSRC

- > Proposed to be THE Source ID in the solution
- Splicing Attack

Splicing Attack

- A Malicious MDD replaces part of sender 1's stream with sender 2's stream
- Would be simpler if SSRC
 Collision can occur
 - MDD can generate collisions and force sources to switch
- > Protection
 - Authenticate original source
 - Ensure unique source IDs
 - Prevent media protection rekeying until source ID verified

SSRC

- Can the MDD modify it?
 - -No
 - May be copied into CSRC by switching mixer
- Does the receiving endpoint need the original value?
 - -Yes

- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -No

CSRC List

- > Switching Media Mixer
 - Can use CSRC field to indicate original SSRC value
 - Possible solution for knowing originating SSRC for the payload

- > Payload Originating Source
 - Indicate that it produces a mix of sources as indicated by CSRC list
 - Not compatible with Switching Media Mixer
 - Mixing PERC endpoints
 - Are they needed?

CSRC

- Can the MDD modify it?
 - –Yes, if switching mixer
 - Copy SSRC without modification
- Does the receiving endpoint need the original value?
 - -Yes

- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -No

- > Assumes RFC 5285
- Header Extension Id values have the same properties as PTs:
 - Dynamically assigned
 - Depending on signalling
 - Can vary between conference legs
 - Malicious change of IDs could have substantial impact on application

- Need for privacy and confidentiality depends on individual header extensions
- MDD can consume and generate some header extensions
 - Which can be authenticated end-to-end
 - Which needs confidentiality end-to-end

- > Transmission Time offsets
- Gives Transmission time
 - Used by for example congestion control
 - When using hop-by-hop adaptation
 - Rewrite when sending from MDD
 - Measure individual leg
- MDD Modify: Yes
- › Original value: No
- > End-to-End Auth: No
- > End-to-End Conf: No

- > SMPTE time-code mapping
 - Unlikely to use by interactive media source
 - Would reveal source information if not continuously increasing
 - However, should come from source if used
- MDD Modify: No
- › Original value: Yes
- > End-to-End Auth: Yes
- > End-to-End Conf: Probably

- Synchronisation metadata
 - Provides the equivalent of RTCP SR NTP to TS mapping
 - Needed by MDD, especially if Switching Media Mixer
- > MDD Modify: No
- › Original value: Yes
- > End-to-End Auth: Yes
- > End-to-End Conf: No

- Client to Mixer Audio Level
 - May be used by MDD to make stream forwarding decision
 - –At the same time privacy sensitive, may leak media content [RFC6562]
- MDD Modify: Yes, remove
- › Original value: Yes
- End-to-End Auth: Yes, but conditionally
- > End-to-End Conf: Desirable, but prevents its use

- Mixer-to-client audio level
 - Provided for streams with mixed media
 - Does not appear likely in PERC context
 - Not Relevant

- Coordination of video orientation (CVO)
 - Provides video streams orientation (Rotation)
 - -Reveals end user actions
 - How they rotate device
 - > Privacy sensitive
- MDD Modify: No
- › Original value: Yes
- > End-to-End Auth: Yes
- > End-to-End Conf: Yes

- > Region-of-interest (ROI)
 - Identifies the sub-selection of the video picture provided
 - Controlled by receiver
 - > Privacy sensitive
- MDD Modify: No
- › Original value: Yes
- > End-to-End Auth: Yes
- > End-to-End Conf: Yes

- SDES Information
 - Provides SDES items likeCNAME, MID and RID
 - -CNAME can be sensitive
 - > Can be made safe
- MDD Modify: No
- › Original value: Yes
- > End-to-End Auth: Yes
- > End-to-End Conf: No (Maybe)

- > Treatment depends on header extensions:
 - –MDD changeable
 - End-to-End Authenticated
 - End-to-End Confidentiality
- The whole header extension framework can be added and removed

 Notes that end-to-end authenticated header extension has an issue with ID of extensions

Payload

- Contains the media content that PERC shall confidentiality protect endto-end.
- Can the MDD modify it?
 - -No
- Does the receiving endpoint need the original value?
 - -Yes

- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -Yes

Padding

- The Padding consists of a Padding counter and up to 255 bytes of Null Padding
- Can be used to conceal the size of the encoded payload
- Can the MDD modify it?
 - -No

- Does the receiving endpoint need the original value?
 - -Yes
- Does the field need end-toend authentication?
 - -Yes
- Does the field need end-toend confidentiality?
 - -Yes

RTCP

- A lot of the RTCP information will be leg specific
 - -RTCP SR/RR
 - RTCP FB messages related to transport
- Some information is end-toend
- > RTCP SDES items
 - Some are privacy sensitive
 - Name, Location,...
 - Some needed by MDD
 - > CNAME, MID, RID

- -SDES: CNAME, MID
 - If changeable by MDD
 - Miss-associate streams
 - Miss-sync with wrong streams
 - Needs End-to-End authentication to prevent attacks

RTCP

> RTCP FB

- -ROI requests
 - > E2E
 - > Privacy sensitive
- –AFB Application LayerFeedback
 - Unknown
- > RTCP APP
 - Unknown content

- To me it appear that we will have to define both:
 - End-to-End authenticated
 - -End-to-End confidential
- Issue with End-to-End is that any source IDs (SSRC) needs to be common space
 - -No SSRC translation in MDD

Hop-by-hop protection

- No reason to not authenticate all data sent hop-by-hop
- Confidentiality can be discussed on field per field basis
 - -See draft
- SRTP is not the state of the art in preserving privacy