Multiple Upstream Interface Support for IGMP/MLD Proxy

draft-asaeda-pim-multiif-igmpmlldproxy-01

Hitoshi Asaeda (NICT)
Eiichi Muramoto (Panasonic)
Luis M. Contreras (Telefonica)
Document History

- Multiple Upstream Interfaces Support for IGMP/MLD Proxy
 - draft-asaeda-pim-multiif-igmpmldproxy-00, Mar. 23, 2015
 - draft-asaeda-pim-multiif-igmpmldproxy-01, Jul. 6, 2015
Background

- There are many situations an IGMP/MLD proxy multiply attached to same or different networks (e.g., Internet and Intranet) or different interfaces (e.g., ethernet and wireless link), yet RFC4605 does not support such multihoming situations.
- Enable an IGMP/MLD proxy device to use multiple upstream interfaces and receive multicast packets through these interfaces.
Objective

• Support multiple upstream interfaces for an IGMP/MLD proxy device
 – An IGMP/MLD proxy device enables to receive multicast sessions/channels through the different upstream interfaces

• Follow the requirement draft recently published
Benefits

• Load balancing
 – Subscriber-based upstream selection: One or more upstream interface(s) is selected per subscriber/receiver
 – Channel-based upstream selection: One or more upstream interface(s) is selected per channel/session

• Robust data reception
 – More than one upstream interface used per channel/session when more than one upstream interface is enabled for the channel/session

• Upstream interface takeover
 – Switch inactive upstream IF to other active (backup) IF
Static Upstream Interface Configuration

• Parameters for candidate upstream interface configuration
 – Subscriber address prefix
 – Channel/session ID
 • Source address prefix and multicast address prefix
 – Priority value
 – Backup interface(s)

• Configuration syntax
 – \((R: \text{subscriber-addr-prefix}, S: \text{source-addr-prefix}, G: \text{multicast-addr-prefix}) (P: \text{value}) (B: \text{IF-name})\)
 – Default: \((\text{null, null, null}) (0) (\text{null})\)

• Decision order
 – Subscriber prefix > Channel ID > Priority > Lowest IP address

Called “address prefix record”
Default Interface

- The default of “address prefixes” is “(null, null, null)”
- The default of “priority” is (0)
- The default of “backup interface” is “null”

- When all values are default for all candidate upstream interfaces, the configured upstream interface having lowest IP address is selected as the upstream interface for all multicast channels
Automatic Configuration

• Bootstrapping using hash values
 – Given RFC2991: Multipath Issues in Unicast and Multicast Next-Hop Selection

• Open questions
 – How routers automatically select appropriate upstream interfaces for all channels?
 • Just a selection using hash value is sufficient?
 • BTW, what is “appropriate”?
 – How routers quickly detect inactive upstream interfaces?
 • Monitoring IGMP/MLD Query and/or PIM Hello does not give quick actions
 • Defining a new IGMP/MLD message costs
 – When (i.e., in what kinds of conditions) routers switch to the backup upstream interfaces?
Conclusion

• Multiple upstream interface support following the requirement draft
 – Load balancing and robust data reception
 – Upstream interface takeover
 – Configuration for each candidate upstream interface

• Open questions
 – How automatic upstream interface configuration should be detailed?
 • Just a selection using hash value is sufficient?