Micro-loop avoidance using SPRING

draft-hegde-rtgwg-microloop-avoidance-using-spring-00

> Shraddha Hegde (<u>shraddha@juniper.net</u>) Pushpasis Sarkar (<u>psarkar@juniper.net</u>)

AGENDA

- Problem Statement
- Solution using SPRING Tunnels
- Multiple events handling
- Partial deployment
- OSPF/ISIS Extensions

Problem Statement

- Transient loops due to unsynchronized FIB state across nodes
- Certain topologies are more prone to micro-loops Ex: Rings
- Micro-loop between nodes 6,1,2, 9 and 3 for destination 5 when link between 3 and 4 goes down

Solution (near-end tunnelling)

 Shortest path to PLR is unaffected by failure for nodes that need to tunnel for that failure and hence microloop-free.

Solution (near-end tunnelling)

D = MAX_CONVERGE_DELAY (networkwide)

On node/link event(T0)

- On attached PLRs
 - FRR and delayed convergence
- On other routers, where nexthop to destination changed
 - Delay convergence to new SPF nexthops
 - Instead use 2 segment segment-list to tunnel traffic till all routers converge.
 - To nearest PLR (first segment)
 - From nearest PLR to final destination (next segment)

Solution using SPRING

D = MAX_CONVERGE_DELAY (networkwide)

After time D (T1)

- On other routers, where nexthop to destination changed
 - Convergence to new SPF nexthops.

Solution using SPRING

D = MAX_CONVERGE_DELAY (networkwide)

After time 2xD (T2)

- On PLR
 - Convergence to new SPF nexthops.

FIB table at various time intervals

No de	Before T0	T0-T1	T1-T2	After T2
001	Push 1005, Fwd to 002 Push 1005, Fwd to 009	Push 1005,1003 (top),Fw d to 003 Push 1005,1003 (top),Fw d to 009	Push 1005 , Fwd to 006	Push 1005 , Fwd to 006
008	Push 1005, Fwd to 006	Push 1005, Fwd to 006	Push 1005 , Fwd to 006	Push 1005 , Fwd to 006
003	Push 1005,Fwd to 004 *push 1005 , fwd to 007	*push 1005 , fwd to 007	*push 1005 , fwd to 007	push 1005 , fwd to 002

- Each node has SRGB range 1000-2000
- Each node is configured with index identified by node number

Procedures for various network events

- Link-down
- Link-up
- Metric increase
- Metric decrease
- Node-UP
- Node- Down
- SRLG failures

Handling Multiple events

- Multiple network events which are not part of same SRLG are not handled and micro-loop prevention procedures are aborted
- Mechanisms to identify link-down/link-up events reported by both end points
- Mechanisms to identify node-down/node-up events reported by various neighbors of the node.

Partial Deployments

- All the nodes in the IGP flooding domain need to implement the micro-loop prevention procedures to work effectively
- Protocol extensions to advertise support of this feature.
- In some cases of partial deployment, traffic loss might increase if these procedures are followed by a few nodes and not followed by the PLR.

OSPF/ISIS Extensions

Micro-loop prevention TLV carried in RI-LSA in OSPF

Micro-loop prevention sub-TLV carried in RI- Capability TLV in ISIS

0	1	2	3	
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4	567890	1 2 3 4 5 6 7 8	901
+-+-+-+-+-+-+	-+	-+-+-+-+-+-	+-	_+_+_+
Туре	Length	MAX_CONVE	RGENCE_DELAY	1
+-+-+-+-+-+-+	-+	-+-+-+-+-+-	+-	_+_+_+

Next Steps

- Comments
- Suggestions

THANK YOU

Backup Slides

Micro-loop prevention procedures When microloop-prevention is enabled on a node,

- The node is configured with MAX_CONEVRGENCE_DELAY(D).
 - If not configured explicitly a good enough default value should be assumed.
- The node should then advertise the capability in its IGP linkstate advertisements along with the value of MAX_CONVERGENCE_DELAY (D).
- The actual value to be used on is always derived from the maximum value of MAX_CONVERGENCE_DELAYs learnt across the entire IGP domain (learnt from all the nodes).

Micro-loop prevention procedures

- At time T0,
 - PLRs,
 - Starts a timer T2 = 2 * MAX-CONEVRGENCE-DELAY.
 - Delays convergence and continues to use backup path.
 - Others, on receipt of the event, and finding change of next-hops for one or more destinations,
 - Starts a timer T1 = MAX-CONVERGENCE-DELAY.
 - Modifies the nexthop(s) for the affected destinations to tunnel the traffic to nearest
 PLR using 2 segment stack

Micro-loop prevention procedures

- On Expiry of T1,
 - All nodes other than PLR(s)
 - Downloads the new SPF path(s).
 - Replaces the two-segment nexthop(s)
- On Expiry of T2,
 - PLR(s) stops using backup path(s)
 - Downloads new SPF path(s)