

<u>Cooperating Layered Architecture for SDN</u> (CLAS)

<draft-contreras-sdnrg-layered-sdn-04> Luis M. Contreras Tolotónica

Telefónica

<u>Carlos J. Bernardos</u> Universidad Carlos III de Madrid (UC3M)

> Diego R. López *Telefónica*

Mohamed Boucadair France Télécom/Orange

> P. Iovanna *Ericsson*

Yokohama, SDNRG WG, November 2015

1

Rationale

- Existing proposals for SDN centralize control capabilities with very different objectives and purposes
- No separation between services and transport control
 - No clear responsibility for service provision and delivery
 - Complicated reutilization of components for delivering different services
 - Monolithic control architectures, driving to lock-in
 - Difficult interoperability, then difficult interchange of some modules by others

2

No clear business boundaries

^{94th IETF,} Complex service/network diagnosis and troubleshooting

Cooperating Layered Architecture for SDN Key concept: separation of the control functions associated to

- Key concept: separation of the control functions associated to services from those associated to transport
 - Service control becomes independent from transport control
- Functional Strata
 - <u>Service stratum</u>: functions related to the provision of services (including capabilities exposed to external applications)
 - <u>Transport stratum</u>: functions related to the transfer of data between communication end-points
- Plane separation
 - <u>Control plane</u>: control of resources in each strata
 - <u>Management plane</u>: management of resources and control plane in each strata
 - <u>Resource plane</u>: resources required for a given service (can be or not the termination points of a transport function)
- Despite differentiation, tight cooperation is needed for an efficient service provision

Cooperating Layered Architecture

Means to capture service requirements of services

- Means to expose transport capabilities to external services
- Means to notify service intelligence with underlying transport events
- Means to instruct the underlying transport capabilities to accommodate new requirements

Additional topics in-scope

- Multi-domain scenarios in Transport Stratum
 - Transport resources being part of different administrative, topological or technological domains
- Recursiveness
 - Transport Stratum is itself structured in Service and Transport Stratum
- Security and trust
 - Security in the communication between strata
- Event notification, OAM, diagnosis

Deployment Scenarios

- Full SDN environment
 - Multiple Service Strata associated to a single Transport Stratum
 - Single Service Stratum associated to a multiple
 Transport Strata
 - (And 1:1 and N:N cases, of course)
- Hybrid environments
 - SDN-based Service Stratum associated to a legacy Transport stratum
 - Legacy Service Stratum associated to a SDN-based Transport stratum

Potential use cases / scenarios – e.g., NFV (*)

(*) Telefónica, "Operational separation of SDN control for Service-oriented and Connectivity-oriented actions in the framework of NFV", NFVEVE(15)000066

7

History and Next Steps

- History
 - -00 presented in Toronto (90th IETF)
 - -02 presented in Dallas (92nd IETF)
- Changelog
 - Added initial considerations on multi-domain
 - Added section on required features
 - Added section on Communication between SDN Controllers
 - P. Iovanna (Ericsson) joined as a co-author
- Multiple feedback and support collected at the mailing list
- Next steps
 - Ask for adoption as RG document