

SDN as enabler for proactive network operation based on "network science"

SDN-WG meeting, IRTF/IETF 94 (Yokohama) November 2, 2015

Kohei Shiomoto (NTT)

SDN

Software-Defined Networking (SDN) allows carriers to implement their own management policy by separating the control-plane from the network elements.

Re-routing on failure and congestion, route optimization, etc.

SDN-controlled network

Functional requirements

- Traffic Measurement
- Flow classification
- Path computation
- Route enforcement
- QoE management
- Network status update

Performance requirements

Efficiency, Scalability, Stability, Predictability

Macroflow

- OD-flow
 - Too coarse for TE
- Microflow
 - Too many for TE
- Macroflow
 - In between OD-flow and Microflow
 - Scalability, Stability, Predictability

Network controller is "Brain"

- Collect data (traffic, QoE, config, error, ...)
- Decide actions based on data & policy
- Actuate the network based on the decision

Circumstance surrounding telecom carrier

Network Science

Inter-disciplinary approach by combining various research fields for innovation.

Technologies in different domains

Space-related Data mining theory Model predictive Information theory control

Sensitivity analysis

Network technologies

Queueing theorQuality assessment

Stochastic

Traffic theory

Graph theor@ptimization theory

Inter-disciplinary

Research topics Applications of network science

- (1) Network analytics
- (2) Robust traffic engineering
- (3) QoE-centric operation
- (4) Disaster-free networks

. . .

For more detail, see [1].

[1] K. Shiomoto, "Approach to Network Science—Solving Complex Network Problems thr ough an Interdisciplinary Approach," NTT Technical Review, Vol. 13 No. 9 Sept. 2015 https://www.ntt-review.jp/archive/ntttechnical.php?contents=ntr201509fa1.html

(1) Network analytics

Network analytics

Understand "network behavior" by analyzing d ata to decide actions

- Numerical data analytics (traffic, cpu, ...)
- Syslog analytics
- Trouble tickets analytics
- Workflow analytics
- Twitter analytics
- ...

Syslog analytics: What is Syslog?

- Logging messages generated by a device (incl. server, router, s witch, ...) to track software and hardware conditions.
 - Intended for debugging software and hardware problem of device.
- Free-form texts
 - Syntax and semantics are different among device vendors and operating systems.
- Huge amount data generated.

Syslog analytics: Issue1 Template identification

- Free-form texts is used for detailed information.
 - Syntax and semantics varies among device vendors and operating systems.
- Identify template without prior knowledge on syntax and semantics.
 - Words of message is classified into keyword and parameter.

Syslog analytics: Idea1 Template identification

- Scoring frequency of words among similar messages
 - parameter words appear infrequently compared to template words in each position
- Clustering score, and determine parameter words for each message
 - thresholds for score of parameter words differ depending on log messages
 - density-based clustering algorithm (DBSCAN)

Scoring:

If word appears in P-th position in log that contains L words:

Score(word, P, **1)** Pr(word | P, L)

<u>Clustering scores (DBSCAN)</u>:

Distance between each cluster is $> \delta$

Syslog analytics: Issue2 Event identification

- Capture signature of co-occurred syslog m sgs.
- Associate a group of syslog msgs with an event of network.

Associate network event (Exploit Co-occurrence)

```
2012-1-1T00:00:00 %TRACKING-5-STATE: 1 interface Fa0/0 line-protocol Up->Down
2012-1-1T00:00:00 %LINK-3-UPDOWN: Interface FastEthernet 0/9, changed state to down
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T01:11:00 msg [100]: STP: VLAN 1 Port 38 STP State -> DISABLED (PortDown)
2012-1-1T01:11:00 msg [101]: System: Interface ethernet 38, state down
2012-1-1T03:00:00 msg [200] : STP: VLAN 100 Port 22 STP State -> DISABLED (PortDown)
2012-1-1T03:00:00 msg [201] : System: Interface ethernet 22, state down
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T10:30:00 System: Interface ethernet 1, state down
2012-1-1T10:30:00 System: Interface ethernet 1, state up
2012-1-1T10:30:00 System: Interface ethernet 2, state down
2012-1-1T12:00:00 init: alarm-control (PID 111) terminate signal sent
2012-1-1T12:00:00 init: bslockd (PID 124 ) terminate signal sent
2012-1-1T12:00:00 init: ce-l2tp-service (PID 123 ) terminate signal sent
2012-1-1T12:00:00 init: chassis-control (PID 1111) terminate signal sent
2012-1-1T12:00:00 init: class-of-service (PID 11112) terminate signal sent
2012-1-1T12:00:00 init: craft-control (PID 111) terminate signal sent
2012-1-1T12:00:00 init: database-replication (PID 2718932) terminate signal sent
2012-1-1T12:00:00 init: diameter-service (PID 2993 ) terminate signal sent
2012-1-1T12:00:00 init: disk-monitoring (PID 7082 ) terminate signal sent
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T15:45:10 msg [200] : STP: VLAN 100 Port 22 STP State -> DISABLED (PortDown)
2012-1-1T15:45:10 msg [201] : System: Interface ethernet 22, state down
2012-1-1T16:12:40 System: Interface ethernet 1, state down
2012-1-1T16:12:40 System: Interface ethernet 1, state up
2012-1-1T16:12:40 System: Interface ethernet 2, state down
2012-1-1T20:30:00 init: alarm-control (PID 111) terminate signal sent
2012-1-1T20:30:00 init: bslockd (PID 124) terminate signal sent
2012-1-1T20:30:00 init: ce-l2tp-service (PID 123) terminate signal sent
2012-1-1T20:30:00 init: chassis-control (PID 1111) terminate signal sent
2012-1-1T20:30:00 init: class-of-service (PID 11112) terminate signal sent
```

```
: reboot
: linkup
: linkdown
: IF flap
```

```
2012-1-1T00:00:00 %TRACKING-5-STATE: 1 interface Fa0/0 line-protocol Up->Down
2012-1-1T00:00:00 %LINK-3-UPDOWN: Interface FastEthernet 0/9, changed state to down
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T10:30:00 System: Interface ethernet 1, state up
2012-1-1T12:00:00 init: bslockd (PID 124 ) terminate signal sent
2012-1-1T12:00:00 init: diameter-service (PID 2993 ) terminate signal sent
2012-1-1T12:00:00 init: disk-monitoring (PID 7082) terminate signal sent
2012-1-1T00:00:00 %SYS-5-CONFIG I: Configured from console by vty2 (10.11.11.11)
2012-1-1T16:12:40 System: Interface ethernet 1, state down
2012-1-1T16:12:40 System: Interface ethernet 1, state up
2012-1-1T16:12:40 System: Interface ethernet 2, state down
2012-1-1T20:30:00 init: alarm-control (PID 111) terminate signal sent
2012-1-1T20:30:00 init: bslockd (PID 124 ) terminate signal sent
2012-1-1T20:30:00 init: chassis-control (PID 1111) terminate signal sent
2012-1-1T20:30:00 init: class-of-service (PID 11112) terminate signal sent
```

Syslog analytics: Idea2 NMF and NTF

- Non-negative matrix/tensor factorization
 - Time-series data of syslog messages are expressed in matrix/te nsor form.
 - Matrix/tensor is factorized.
 - Time-series data is considered as a mixture of different network events occurred in the network.
 - Network event is extracted as a combination of templates.

Syslog analytics: visualization

- Visualize massive time-series syslog data for easy understanding.
- Apply frequency & periodic filters to remove unimportant messages.
- Group syslog messages into events.

(2) Robust traffic engineering

Robust traffic engineering

Actuate the network based on the decision

Robust to prediction error

Model Predictive Control (MPC)

- Predict the process output at future time instants (*horizon*).
- Calculate a control sequence in the horizon to optimize an objective function.
- Only the first step of the control sequence is applied in a receding strategy, where at each inst ant the horizon is displaced towards the future.

Application of MPC to TE

- Path routes are computed for several time epochs in the future (horizon).
- Objective is to reduce the excess bandwidth and the amount of r oute change.

Proof-of-concept

Internet2: packet capture data & topology

Thank you for your attention

