
TLS 1.3 Status

draft-10

Eric Rescorla

Mozilla

ekr@rtfm.com

IETF 94 TLS 1



Overview

• Changes since IETF 93 (Prague)

• Client authentication (PR#316)

• 0-RTT framing (#311, #295)

• HelloRetryRequest (Issues #104, #185)

• Re-key (#4, #125)

• Exporters (#282)

IETF 94 TLS 2



Changes Since IETF 93 (II)

• Always require digital signatures from the server with public-key

cipher suites

– ...even with 0-RTT

• Relaxed certificate selection rules *

• Deprecated a lot of algorithms *

• Encrypted content type *

• Built-in record padding *

• More context for key derivation *

• Improved CertificateRequest syntax *

IETF 94 TLS 3



Changes Since IETF 93 (II)

• Update key schedule

• Added MTI algorithms

• Reduced maximum record expansion

• Extensionsify ServerKeyShare

• AEAD now has no AAD

• Assorted editorial stuff

IETF 94 TLS 4



Relaxed Certificate Selection Rules

• TLS 1.2 requires that certificates appear in order

– Many servers don’t do this

∗ Not always possible

– Many clients try to construct the path anyway

– Updated draft to encourage but not require this

• TLS 1.2 required that server certificates conform to

SignatureAlgorithms

– But what if the only cert you have doesn’t match?

– Draft now allows you to send it in that case

∗ ...but only if you have to

IETF 94 TLS 5



Deprecated Algorithms

• Forbid MD5 (and SHA-224)

• Forbid SHA-1 in CertificateVerify

• Removed DSA

• Switched to PSS (more on this later)

• Removed a lot of old EC groups

IETF 94 TLS 6



Encrypted Content Type and Padding

struct {

ContentType opaque_type = application_data(23); /* see fragment.type */

ProtocolVersion record_version = { 3, 1 }; /* TLS v1.x */

uint16 length;

aead-ciphered struct {

opaque content[TLSPlaintext.length];

ContentType type;

uint8 zeros[length_of_padding];

} fragment;

} TLSCiphertext;

• This allows padding

• But doesn’t require it

• Receiver behaves the same either way

IETF 94 TLS 7



Context for Key Derivation

struct HkdfLabel {

uint16 length;

opaque hash_value<0..255>;

opaque label<9..255>;

};

• HSMs can look at the label value if they want

• Consensus was not to try to make something generic

• Presently traffic keys are one big block with slice-and-dice

– I intend to split them up to make interfaces easier

• Objections?

IETF 94 TLS 8



Improved CertificateRequest Syntax (Popov)

struct {

opaque certificate_extension_oid<1..2^8-1>;

opaque certificate_extension_values<0..2^16-1>;

} CertificateExtension;

struct {

SignatureAndHashAlgorithm

supported_signature_algorithms<2..2^16-2>;

DistinguishedName certificate_authorities<0..2^16-1>;

CertificateExtension certificate_extensions<0..2^16-1>;

} CertificateRequest;

• Extensions correspond to X.509v3 extensions in the EE certificate

• Each extension has its own matching rule

– KeyUsage and EKU defined in this document

• Client can ignore any unrecognized extensions

IETF 94 TLS 9



Client Authentication (PR#316)

• TLS 1.3 removed renegotiation

• But there’s still a need for servers to request certificates

post-handshake

– Especially in HTTP

• WG had consensus in Seattle to do something about this

• Formed ad hoc design team

– AGL, DKG, EKR, Beurdouche, Bhargavan, Krawczyk, Langley,

MT, Wee

IETF 94 TLS 10



Current Structure

ClientHello

+ ClientKeyShare -------->

ServerHello

ServerKeyShare*

{EncryptedExtensions}

{ServerConfiguration*}

{Certificate*} <-\

{CertificateRequest*} > Sign.

{CertificateVerify*} <-/

<-------- {Finished} <- MAC

Sign. /-> {Certificate*}

\-> {CertificateVerify*}

MAC -> {Finished} -------->

[Application Data] <-------> [Application Data]

• This is effectively SIGMA-I

• So what if we formalize it

IETF 94 TLS 11



TLS Authentication Block

• Consists of: Certificate, CertificateVerify, Finished

– Use this every time we want to authenticate

– Sometimes Cert/CertVerify are omitted

• Inputs are:

– A Session Context (usually the handshake transcript)

– A base key to compute the finished keys from

∗ Client and server use separate keys

• CertificateVerify = Sign(SC + Certificate)

• Finished = MAC(SC + Certificate + CertificateVerify)

– Note: this is like continuing the hashes

IETF 94 TLS 12



Authentication Inputs

Mode Handshake Context Base Key

---- ----------------- --------

0-RTT ClientHello + ServerConfiguration xSS

+ Server Certificate

+ CertificateRequest

1-RTT (Server) ClientHello ... ServerConfiguration master_secret

1-RTT (Client) ClientHello ... ServerFinished master_secret

Post-Handshake ClientHello ... ClientFinished + master_secret

CertificateRequest

IETF 94 TLS 13



Post-Handshake Client Auth

• Server can send CertificateRequest at any time

• Client responds with authentication block

– Possibly with empty cert

• Note: need to add correlator between CertificateRequest and

CertificateVerify

– Needs to include freshness from server

– Not in this PR yet

IETF 94 TLS 14



Key Schedule Changes

3. mSS = HKDF-Expand-Label(xSS, "expanded static secret",

handshake_hash, L)

4. mES = HKDF-Expand-Label(xES, "expanded ephemeral secret",

handshake_hash, L)

Where handshake_hash includes all messages up through the

server CertificateVerify message.

5. master_secret = HKDF-Extract(mSS, mES)

client_finished_key =

HKDF-Expand-Label(BaseKey, "client_finished", "", L)

server_finished_key =

HKDF-Expand-Label(BaseKey, "server_finished", "", L)

IETF 94 TLS 15



ClientHello

+ ClientKeyShare

^ + EarlyDataIndication

O-RTT | (Certificate*)

mode | (CertificateVerify*

v (Finished) // Note: new message.

(Application Data*) -------->

ServerHello

ServerKeyShare*

{EncryptedExtensions}

{CertificateRequest*}

{ServerConfiguration*}

{Certificate*} ^

{CertificateVerify*} | Server Auth.

<-------- {Finished} v

1-RTT ^ {Certificate*}

Client | {CertificateVerify*}

Auth | {Finished} -------->

v [Application Data] <-------> [Application Data]

<-------- [CertificateRequest] ^

[Certificate] | Post-HS

[CertificateVerify] | Auth.

[Finished] --------> v

IETF 94 TLS 16



Other Notes

• Added Finished to 0-RTT data

– It’s part of authentication block

– Adds consistency and a natural separator

• 0-RTT data isn’t hashed into transcript for 1-RTT

– Conceptually cleaner to separate these

– Not necessary for negotiation

• Possible to client authenticate both in 0-RTT and 1-RTT

– Conceptually simpler

– Server can keep requesting anyway

• We discussed merging Certificate and CertificateVerify

– I haven’t forgotten. Stay tuned.

IETF 94 TLS 17



Framing for 0-RTT(#311, #295)

• 0-RTT content types are funny

– Handshake uses “early data”

– Application uses “application data”

• Idea was to separate by content type

– Even without keys

• This doesn’t work with encrypted content types

• Proposed resolution

– 0-RTT content uses the expected content types

– Terminate 0-RTT application data with close notify

– Recovering from a failed 0-RTT requires trial decryption

IETF 94 TLS 18



HelloRetryRequest and Handshake Hash (#104,

#185

• Document is agnostic about handshake hash when HRR is used

• Option 1: Continue hash

– Much easier to analyze for handshake correctness

– But we want the HRR to be stateless

∗ Combine HRR with DTLS cookie exchange

• Option 2: Reset hash

– Easy to make stateless

– Much harder to analyze

• It turns out we can have both good properties

IETF 94 TLS 19



Stateless HelloRetryRequest

• Import cookie exchange from DTLS

– Server sends a cookie with HRR

– Client echoes back cookie with new Hello

• Retain existing rules for repeat ClientHello construction

– Append new ClientKeyShare (if needed)

– Add cookie

– No other changes

• Server can recover the handshake hash state

– Option 1: offload state into cookie (integrity protected)

– Option 2: reconstruct the ClientHello from the rules above

– Option 3: Or just keep state (makes sense in TLS)

• This is all invisible to the client

IETF 94 TLS 20



Other cookie construction issues

• Cookie should indicate why HRR was sent

– Needed for Option#2.

– Can still be opaque

• Want to allow use of cookie as “address token”

– Client can send it repeatedly

– Do we need structure in the cookie to indicate that?

IETF 94 TLS 21



Re-Keying

• AES-GCM and ChaCha20/Poly1305 can’t encrypt infinite

amounts of data

• Some debate about exactly where the boundaries are

• But potentially within plausible bounds for TLS

– Watson Ladd recommends 232 blocks for AES-GCM and 296

blocks for ChaCha/Poly1305

– David McGrew (offlist) recommends 232 records for AES-GCM

– For reference [draft-ietf-avtcore-srtp-aes-gcm] specifies 248

records

• Security bounds are different for TLS and DTLS because attacker

can query DTLS oracle more than once

– DTLS could have a hard limit on failures?

IETF 94 TLS 22



Seattle Discussion Consensus on Technical Approach

• Don’t set a hard limit

– This accomodates new results

• Have a one-way indicator that says “I am changing my key”

– Message type should be handshake (or alert?)

– Other side MAY (but not MUST) do the same thing

– With DTLS also update epoch in case message is lost

IETF 94 TLS 23



Proposed Way Forward

• Determine what we consider acceptable limits

– X number of records with a Y margin of safety

• Ask CFRG a targeted question about those limits with current

algorithms

– If we’re at all close, add a rekeying mechanism as above (PR

wanted)

• Discuss: what are X and Y ?

IETF 94 TLS 24



Exporters for TLS 1.3 (#282)

Obvious construct:

Exporter(Label, Context, L) =

HKDF-Expand-Label(exporter_secret, Label, Context, L)

• Important note: this doesn’t include client cert

– But does include the server cert

– So less context than TLS 1.2 with session hash

– Analysis needed

IETF 94 TLS 25



TLS-Unique

• Do we still need this?

– Applications (e.g., Tokbind) are moving to exporters

IETF 94 TLS 26



Other Issues?

IETF 94 TLS 27


