Guidelines for DiffServ to IEEE 802.11 Mapping

draft-szigeti-tsvwg-ieee-802-11-00 (Formerly: draft-szigeti-tsvwg-ieee-802-1<mark>1</mark>e-01)

Tim SzigetiFred Bakerszigeti@cisco.comfred@cisco.com

October 22, 2015

Problem Statement

- traffic is increasingly sourced-from and destined-to wireless endpoints
- Quality of Service is not aligned between these networks by default
 - two independent standards bodies provide QoS guidance on these networks
- the purpose of this draft is to reconcile QoS recommendations
 - so as to optimize IP DSCP and 802.11 UP interconnect QoS

Summary of Comments / Changes

Comments:

 Multiple objections to recommendation that Bulk Data SHOULD be mapped to UP 2 (AC_BK)

Action: Changed Section 4.2.6:

- Bulk Data MAY be mapped to UP 0 (AC_BE) or
- Bulk Data MAY be mapped to UP 2 (AC_BK)
- The mapping chosen will depends on businessrequirements and administrative preference

Sources: 7/15—C. Jennings 7/15—R. Geib 7/22—TSVWG93-6.4

Summary of Comments / Changes Part 2 of 8

Comment:

• Explicitly mention that devices should be able to override these new/default recommendations

Action: Added a new section (Section 3):

 "Having made the assumptions and recommendations above, it bears mentioning while the mappings presented in this document are RECOMMENDED to replace the current common default practices ... these mapping recommendations are not expected to fit every last deployment model, and as such may be overridden by network administrators, as needed." Source: 7/15—C. Jennings

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#page-8

Summary of Comments / Changes Part 3 of 8

Comment:

 Request to add details of new IEEE mechanism for exchanging DSCP←→UP mapping information between wireless access points and wireless endpoint devices

Action: Added a new section (Section 6.3):

- Introduced and overviewed IEEE 802.11u QoS Map Set function
- Also provided recommendations on how this function could be utilized in line with the recommendations made in Section 4.3 of this draft

Source: 7/22—TSVWG93-6.4

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#section-6.3

Summary of Comments / Changes Part 4 of 8

Comment:

 Request to research and add guidance on how gaming traffic is to be treated (assuming such is not considered Scavenger)

Action: Added guidance on gaming to Section 4.2.3

 "Specifically, the Real-Time Interactive traffic class is RECOMMENDED for applications that require low loss and jitter and very low delay for variable rate inelastic traffic sources. Such applications may include inelastic video-conferencing applications, but may also include gaming applications (as pointed out in [<u>REC4594</u>] Sections <u>2.1</u> through 2.3, and <u>Section 4.4</u>). "

Source: 7/22—TSVWG93-6.4

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#section-4.2.3

Summary of Comments / Changes Part 5 of 8

Comment:

Requests to move 802.11 overview to the back (as an appendix)

Sources: 7/15—C. Jennings 7/15—R. Geib 7/22—TSVWG93-6.4

Action: Moved 802.11 overview to the back as an Appendix (Section 6)

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#section-6

Summary of Comments / Changes Part 6 of 8

Comment:

Recommended changes in wording

Action: Made miscellaneous changes in wording throughout the draft, per suggestions and recommendations

Sources: 7/13—K. Carlberg 7/15—C. Jennings 7/15—R. Geib 10/11—Nits Tool

Summary of Comments

Part 7 of 8

Comment:

• Disputes on RFC 4594 recommendations

Action: Deferred to RFC 4594-bis discussions

- This draft does not seek to propose new QoS recommendations, but to reconcile existing IETF and IEEE QoS recommendations already made
- As such, it is dependent on RFC 4594 (as well as IEEE 802.11)
- Any changes that need to be made to RFC 4594 should be discussed as RFC 4594-bis proposals
 - And any changes implemented from such an initiative will have a 'trickle-down' effect to this draft, due to its dependency on RFC 4594

Sources: 7/15—C. Jennings 7/15—R. Geib 7/22—TSVWG93-6.4

Summary of Comments

Part 8 of 8

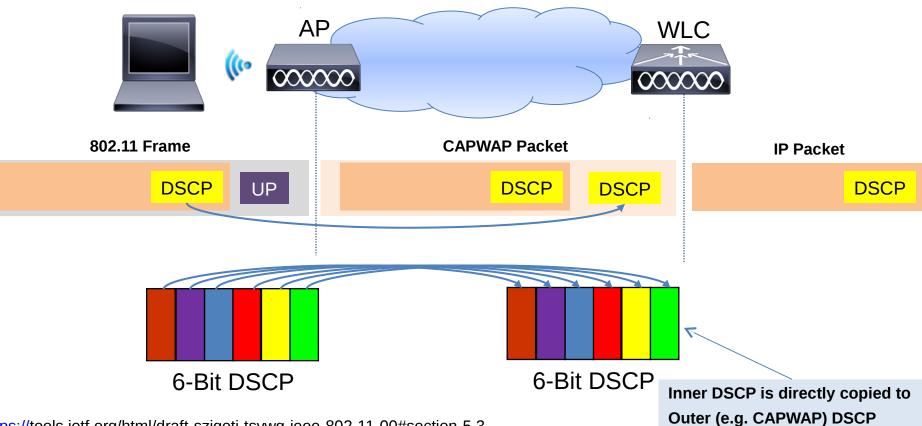
Comment:

Request to add a mapping of DSCP to 802.1p

Sources: 8/17—K. Carlberg

Action: Out-of-scope for this draft; perhaps a new draft is needed?

- This draft's scope is limited to DSCP and 802.11
- Possibly another draft would be better suited to address DSCPto-802.1p mapping?
 - QoS mechanisms are significantly different


Downstream DSCP-to-UP Mapping Model

Proposal

Basis	RFC 4594-Based Model	DSCP	Remark /	IEEE 802.11 Model
RFC 4594-Sec. 3.1 + 802.11 Table 9.1	Network Control	CS7	> Drop	UP 7 Voice
RFC 4594-Sec. 3.2 + 802.11 Table 9.1	Internetwork Control	CS6	if not in use	Access Category
RFC 4594, 5685 + 802.11 Table 9-1	Telephony + VOICE-ADMIT	EF + 44	 	UP 6 (AC_VO)
RFC 4594-Sec. 4.2 + RFC 5127 Sec. 4.1	Signaling	CS5		
RFC 4594-Sec. 4.3 + 802.11 Table 9-1	Multimedia Conferencing	AF4	┍╺┶╾>	UP 5 Video
RFC 4594-Sec. 4.4 + 802.11 Table 9-1	Real-Time Interactive	CS4	┝╍┥┟८╮	UP 4 (AC VI)
RFC 4594-Sec. 4.5 + 802.11 Table 9-1	Multimedia Streaming	AF3		UP 4 (AC_VI)
RFC 4594-Sec. 4.6 + 802.11 Table 9-1	Broadcast Video	CS3		UP 3 Best Effort
RFC 4594-Sec. 4.7	Low-Latency Data	AF2		Access Category
RFC 4594-Sec. 3.3	OAM	CS2		UP 0 (AC_BE)
RFC 4595-Sec. 4.8	High Throughput Data	AF1		Background
-C 4594-Sec. 4.10, 3662 + 802.11 Table 9	1 Scavenger	CS1		Access Category
R=C 4594-Sec. 4.9, 2474 + 802.11 Table 9	L Best Effort	DF	┝───┘┕>	UP1 (AC_BK)

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#section-4.3

Upstream Model: DSCP Trust

https://tools.ietf.org/html/draft-szigeti-tsvwg-ieee-802-11-00#section-5.3

Next Steps

- Request adoption of this as a Working Group draft
- Request to take that draft to Working Group Last Call

Appendix A: WLAN QoS Considerations and Implementation Models

Why Consider Wireless QoS?

- QoS is like a chain
 - It's only as strong as the weakest link
- the WLAN is one of the weakest links in enterprise QoS designs for three primary reasons:
 - 1) Typical downshift in speed
 - 2) Shift from full-duplex to half-duplex media
 - 3) Shift from a dedicated media to a shared media
 - WLAN QoS policies control both jitter and packet loss

Wireless QoS-Specific Limitations

- No EF PHB
- No AF PHB
- Non-deterministic media access
- Only 4 levels of service

WLAN QoS Improvements Quantified

Application	Original Metric	Improved Metric	Percentage Improvement
Voice	15 ms max jitter	5 ms max jitter	300%
	3.92 MOS (Cellular Quality)	4.2 MOS (Toll Quality)	
Video	9 fps	14 fps	55%
	Visual MOS: Good	Visual MOS: Excellent	
Transactional Data	14 ms latency	2 ms latency	700%

Reference: <u>http://www.cisco.com/en/US/prod/collateral/wireless/cisco_avc_application_improvement.pdf</u>

IEEE 802.11 User Priority (UP)

2	2	6	6	6	2	0 or 6	0 or 2	n	4
Frame control	Dur	A1	A2	Aз	Seq control	A4	QoS control	Body	FCS

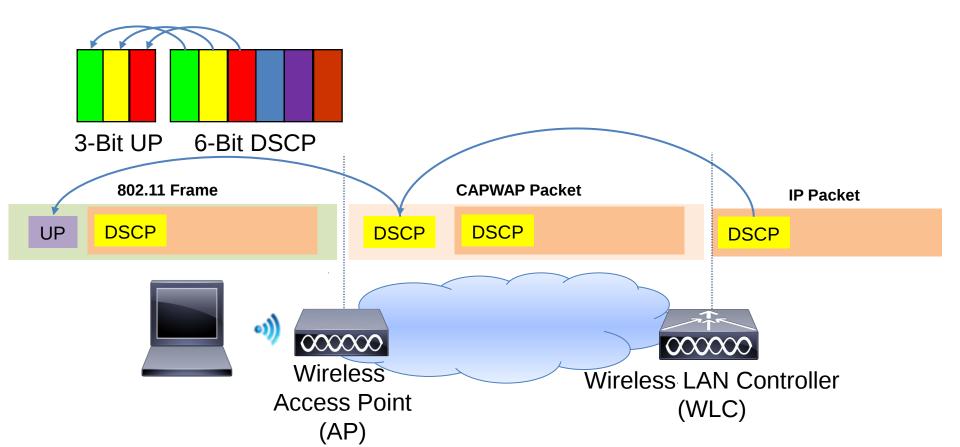
3 Bit Field allows for UP values 0-7

Reference: IEEE 802.11 Figure 8-1

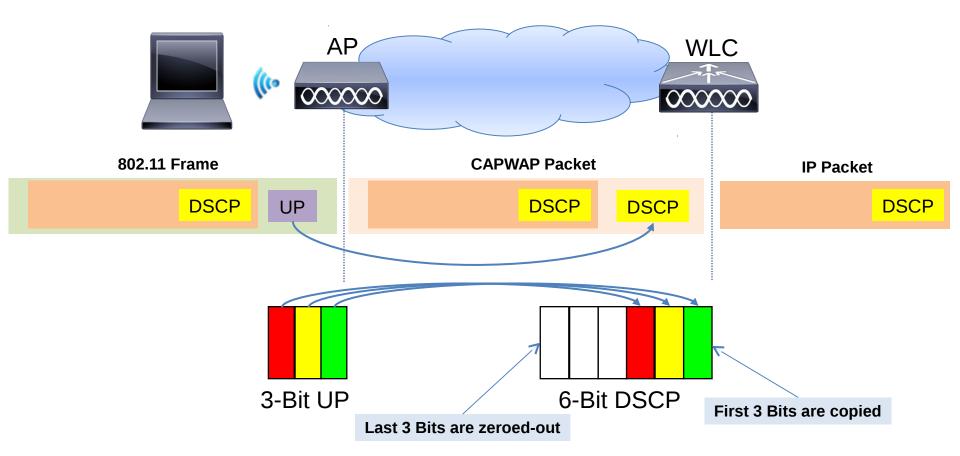
IEEE 802.11 UP Values and Access Categories (AC)

IEEE 802.11 UP Value	IEEE 802.11 Access Category	Wireless Multimedia (WMM) Designation		
7	AC_VO	Voice		
6				
5	AC_VI	Video		
4				
3	AC_BE	Best Effort		
0				
2	AC_BK	Background		
1				

Reference: IEEE 802.11 Table 9-1


IEEE 802.11 Arbitration Inter-Frame Space (AIFS) & Contention Windows (CW)

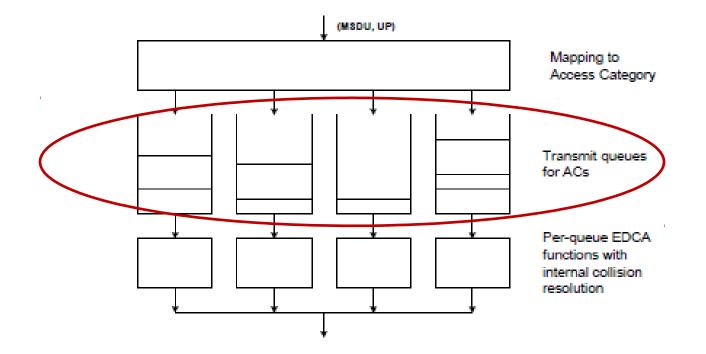
- due to the nature of wireless as a shared media, a Congestion Avoidance algorithm (CSMA/CA) must be utilized
- wireless senders have to wait a *fixed amount of time* (the AIFS)
- wireless senders also have to wait a *random amount of time* (bounded by the Contention Window)
- AIFS and Contention Window timers vary by Access Category


Category	(Slot Times)	Access Catego	ory (Slot Times	5) (Slo	ot Times)	
Voice	2	Voice	3		7	
Video	2	Video	7		15	
Best Effort	3	Best-Effort	15		1023	
Background	7	Background	15	1023		
				CWmin (0-3)	AIFS 2 V	'oice
					AIFS 2 Vide	
			AIFS 3 B	Bestl		
	CWmin (0-15)			AIFS 7	E	Back

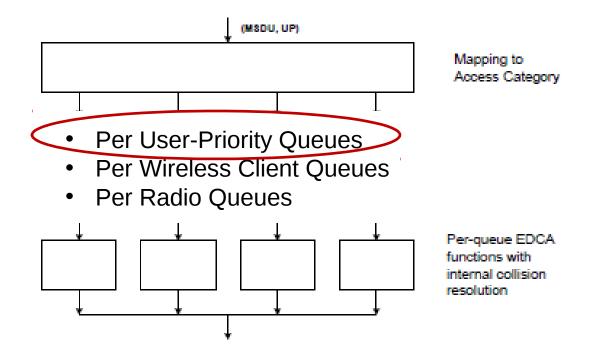
Reference: IEEE 802.11 Table 8-105

Downstream DSCP-to-UP **Default** Mapping

Upstream UP-to-DSCP **Default** Mapping



Default DSCP-to-UP Mapping Conflict Example


DSCP	802.11 User Priority	802.11 Access Category
56-63	7	
48-55	6	Voice (AC_VO)
40-47 46 –	>5 <u><</u>	
32-39	4	Video (AC_VI)
24-31	3	
0-7	0	Best Effort (AC_BE)
16-23	2	Declarge and (A.O. DI/)
8-15	1	Background (AC_BK)
	56-63 48-55 40-47 46 - 32-39 24-31 0-7 16-23	User Priority 56-63 7 48-55 6 40-47 46 5 32-39 4 24-31 3 0-7 0 16-23 2

ferences: RRC 4594, RFC 3246, & IEEE 802.11 Table 9-1

IEEE 802.11 <u>Reference</u> Implementation Model

802.11 Practical Implementation Models

Reference: (Modified) IEEE 802.11 Figure 9-19

Appendix B: Related Mapping Models

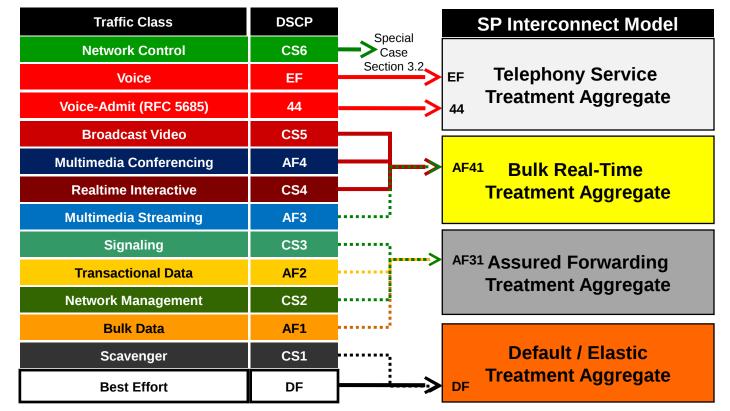
- These is an "example" mapping—not a "recommended" mapping per se
- Inconsistent interpretation of RFC 4594
- Inconsistent interpretation of 802.11
- Misleading to use 802.1d UP (vs. 802.11e UP)

eferences:	RFC	4594	&	IEEE	802.	11	Table	V-

	Application Class	Per-hop behavior (PHB)	IEEE 802.1d User Priority	Access Category	
	Network Control	CS6	7	AC_VO	
	Telephony	EF	6	AC_VO	
	RT Interactive	CS4	6	AC_VO	\wedge
	Multimedia Conference	AF4x	5	AC_VI	I.
	Signaling	CS5	5	AC_VI	
	Broadcast Video	CS3	4	AC_VI	
	Multimedia Stream	AF3x	4	AC_VI	
	Low Latency Data	AF2x	3	AC_BE	
	High Throughput Data	AF1x	2	> A	\wedge
	OAM	CS2	2	-> ACE	
	Standard	DF	0	AC_BE	I
~	Low Priority/Background	CS1	1	AC_BK	

IEEE 802.11 UP to DSCP Range Mapping Example

- These are examples; not recommendations
- Several examples inconsistent with RFC 4594-expressed intent


UP Range	DSCP I	JOW		D	SCP Higl	1	
UP 0 Range	0		DF		0		
UP 1 Range	1		CS1		9		
UP 2 Range	10	4	AF1-C	S2	16		
UP 3 Range	17		AF2		23		
UP 4 Range	24	C	S3-A	F3	31		
UP 5 Range	32	CS	4-AF4	I-CS	<mark>5</mark> 40		
UP 6 Range	41		EF		47		
UP 7 Range	48	(CS6-C	:S7	63		

Notable PHB Inclusions

eferences: RFC 4594 & IEEE 802.11 Table V-3

DiffServ Interconnection Classes & Practice

- Proposes a simplified model for interconnecting SPs
- "Draws heavily" on RFC 5127
- Is intended for MPLS, but "is applicable to other technologies"
- This approach "is not intended for use *within* the interconnected (or other) networks"
- DSCPs may be remarked at the interconnection

References: draft-ietf-tsvwg-diffserv-intercon-01 & RFC 5127

Includes Recommendations from RFC 5127 (shown as dotted lines)