Identifier Locator Addressing with IPv6

Network virtualization without encapsulation

draft-herbert-nvo3-ila-01

Tom Herbert <tom@herbertland.com>
Background: Why IPv6 in the DC

- Nominally, to scale number of hosts
- Limits of IPv4 addressing
 - Hierarchical address allocation can exhaust 10/8
 - Renumbering becomes a greater effort than transitioning to IPv6
Forward looking benefits

- Capability to address more than just physical hosts (e.g. ILA)
- Flow label for ECMP
 - HW no longer needs to parse L4 protocols
 - Allows us to deploy protocols other than just TCP and UDP (like IPIP, GRE/IP, MPLS/IP, etc.)
- Extension headers
 - Assuming reasonable HW support in switches...
Deployment @Facebook

- Migration for internal traffic >95% complete
- Most services access network through libraries simplified migration
- Issues encountered
 - SW: Java still has issues!
 - SW: Performance, routing code in Linux stack
 - HW: Old rack switches had problems with ND
 - HW: Performance, functional issues w/ NIC offloads
Motivations for ILA

● Address per task
 ○ Each task gets its own port number space
 ○ Greatly simplifies task scheduling, service lookup

● Network virtualization
 ○ Network virtualization without encapsulation
 ○ Container virtualization and task mobility
 ○ Alt. implementation of virtual networking for VMs
Solution

- Split IPv6 address into identifier (who) and locator (where) ala ILNP
- Each task gets its own unique identifier
- Mapping identifiers to locators
- If task migrates between hosts, its locator changes but its identifier does not
- When not migrating, data path is essentially same as before
Address split

<table>
<thead>
<tr>
<th>Locator</th>
<th>Type</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 bits identifier of physical hosts</td>
<td></td>
<td>64 bit logical endpoint address of virtual node</td>
</tr>
<tr>
<td>Routable</td>
<td></td>
<td>Routable to an translator (NVE)</td>
</tr>
<tr>
<td>Not used as connection endpoint</td>
<td></td>
<td>Used as connection endpoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typed to allow different modes</td>
</tr>
</tbody>
</table>

- **Locator**
 - 64 bits identifier of physical hosts
 - Routable
 - Not used as connection endpoint

- **Identifier**
 - 64 bit logical endpoint address of virtual node
 - Routable to an translator (NVE)
 - Used as connection endpoint
 - Typed to allow different modes
Network virtualization use cases

- Embed VNID in ILA address
 - Potentially eliminate need for encapsulation
 - No place to put security to authenticate VNID, so intra VN use might be limited
- Allows VM to common DC service, or Internet w/o stateful NAT or encapsulation
- Allow two VMs to communicate directly under policy w/o NAT
Details

● Need to map identifiers to locators
 ○ Same problem of mapping Vaddr to Paddr in NV
 ○ Use NVO3 control plane to distribute mappings

● User visible representation of ILA address (used to connect, in DNS, etc.)

● Generate identifier for each task, duplicate address detection
Architecture

- NVo3 architecture can be applied
 - NVEs in network can perform translation
 - Route packet to NVE which translates and forwards
 - “ILA redirect” can be sent back to host to eliminate triangular routing

- Translations
 - Unicast: Set destination to ILA address
 - Multicast: Need to modify source address
Flow example

3) ILA redirect 3333::1->2222:1::1

1) Destination: 3333::1
2) Destination: 2222:1::1

ILA router/NVE

Source

3333::1

Destination
Loc: 2222:1::1

Application send to 3333::1 (e.g. from DNS)

4) Send directly to destination 2222:1::1

Translate 2222:1::1 to 3333::1, app receives from 3333::1
Status

- I-D 01 posted
- Integrated into Linux stack
- Commencing canary testing
- Design for address per task assignment
- Designimplemenation of ILA router