
ANIMA L. Ciavaglia
Internet-Draft P. Peloso
Intended status: Standards Track Alcatel-Lucent
Expires: September 22, 2016 March 21, 2016

 Autonomic Functions Coordination
 draft-ciavaglia-anima-coordination-01.txt

Abstract

 This document describes a management solution capable of avoiding
 conflicts between autonomic functions. The objective of such a
 solution is to avoid network instabilities, by insuring that the
 autonomic functions pursuing different goals will cooperate instead
 of antagonize each other. This document provides both requirements
 and specifications for such a solution.

 Disclaimer: the version -01 of the draft has been issued to
 reactivate the document in order to allow discussion within the ANIMA
 WG about the coordination of autonomic functions.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Ciavaglia & Peloso Expires September 22, 2016 [Page 1]

Internet-Draft Autonomic Functions Coordination March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

 1. Introduction . 2
 2. Problem Statement . 4
 3. Guiding principles . 4
 4. Initial sketch of a Coordination Function 6
 4.1. Preliminary assumptions 6
 4.2. Algorithms for coordination 7
 4.3. Behavior of the coordination function 7
 4.3.1. Times of the identification of interactions between
 AF . 8
 4.3.2. Times of the coordination of AF 9
 4.4. Conclusions . 9
 5. External Requirements . 10
 5.1. Autonomic Function Descriptor (AFD) 10
 5.2. control/command interface of AF 10
 5.3. Interaction/Information Maps 11
 6. Specifications . 11
 7. Acknowledgements . 11
 8. IANA Considerations . 11
 9. Security Considerations 11
 10. References . 11
 10.1. Normative References 11
 10.2. Informative References 12
 Authors’ Addresses . 12

1. Introduction

 The document Autonomic Networking: Definitions and Design Goals
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space. The
 central concepts are Autonomic Nodes and Autonomic Functions.

Ciavaglia & Peloso Expires September 22, 2016 [Page 2]

Internet-Draft Autonomic Functions Coordination March 2016

 An Autonomic Function is characterized by its implementing a closed
 control-loop, which we can summarize as successively:

 1. Gathers metrics monitored by network equipments (that could be
 Autonomic Nodes, but not limited to)

 2. Determines/computes new actions out of these inputs plus possibly
 some of the additional elements: e.g. contextual inputs, provided
 intents and gathered experience,

 3. Set the computed parameters values (from the previous actions)
 inside the appropriate network equipments,

 4. These new parameters values influence the network behavior, such
 that the metrics gathered by the autonomic function will evolve,

 (Section 7.5 of [I-D.behringer-anima-reference-model] details more
 the control loops).

 The Autonomic Functions are normally designed to stabilize
 (converge), at least when the network conditions are themselves
 stable. However, conflicting interactions among Autonomic Functions
 can create instabilities even when the network conditions have not
 varied.

 The document A Reference Model for Autonomic Networking
 [I-D.behringer-anima-reference-model] describes the reference model
 of autonomic networks, by describing the architecture and enumerating
 fundamental blocks (either infrastructure pieces or enabling
 functionalities). One of these functionalities pertains to the
 concomitant execution of multiple autonomic functions in a safe way
 (i.e. avoiding conflicts between these different autonomic loops).
 Section 8 of [I-D.behringer-anima-reference-model] (Coordination
 between Autonomic Functions) provides a brief introduction to this
 functionality.

 This document tackles this topic by successively:

 1. Explaining why such a functionality is needed,

 2. Detailing which objectives such a functionality should reach,

 3. Sketching a simple behavior of this function,

 4. Providing requirements on autonomic functions (a tentative list
 in this document version),

Ciavaglia & Peloso Expires September 22, 2016 [Page 3]

Internet-Draft Autonomic Functions Coordination March 2016

 5. Providing some specifications items (in this preliminary version,
 while future versions would provide specifications),

2. Problem Statement

 The need to coordinate the joint behavior of autonomic functions
 arises from the need to cope with conflicting situations and to
 provide the operator with the ability to steer autonomic network
 performance to a given (intended) operational point.

 Several interaction types exist among autonomic functions such as
 cooperation, dependency, or conflict (and possibly others [TBD]).

 Cooperation happens when an autonomic function can improve the
 behavior or performance of another autonomic function, such as a
 traffic forecasting function used by a traffic allocation function.

 Dependency happens when an autonomic function cannot work without
 another one being present or accessible in the autonomic network.

 Conflicts among autonomic functions emerges from direct and indirect
 interactions. A metric value conflict is a conflict where one metric
 is influenced by parameters of different autonomic functions. A
 parameter value conflict is a conflict where one parameter is
 modified by different autonomic functions. A simple example of
 conflicting interaction between autonomic functions is the
 oscillations caused by an energy-saving function (which switches-off
 interfaces to reduce power consumption) and a load-balancing function
 (which switches-on interfaces to reduce link load).

 Solving the coordination problem beyond one-by-one cases can rapidly
 become intractable if one considers networks composed of tens,
 hundreds or thousands of simultaneously interacting functions.
 Specifying a common functional block on coordination is a first step
 to address the problem in a systemic way.

3. Guiding principles

 A coordination function appears as an essential component of the
 ANIMA reference model in order to achieve better control on the
 performance, stability and convergence of autonomic networks.

 As guiding principles, the ANIMA coordination function should:

 o Maximize the autonomic network utility, i.e. mitigate the
 (observed or inferred) detrimental effects of conflicting
 autonomic functions (Efficiency property).

Ciavaglia & Peloso Expires September 22, 2016 [Page 4]

Internet-Draft Autonomic Functions Coordination March 2016

 o Balance the autonomic network goal(s) and autonomic functions
 individual goal(s) (Congruence and Coherence properties).

 o Inform the autonomic network operator (being a human or a machine)
 with processed and aggregated "call(s) for governance" in case the
 goals are incompatible and no satisfactory solution can be found
 (i.e. compliant with the intent).

 o Deviate the least possible autonomic functions from their design
 objective(s) and individual goal(s) (Liberality property).

 o Impose minimal additional requirements on the external
 specifications of autonomic functions, such as the format and
 content of the autonomic function descriptor(s)/capabilities
 (Economy property).

 o Not impose any requirement on the internal specifications of
 autonomic functions (Independence property).

 o Support multiple coordination mechanism types (Plurality
 property).

 o Enable coordination mechanisms to be plugged in at deploy- and
 run-time (Modularity property).

 o Determine the most suitable coordination mechanism(s) to apply
 according to contexts (e.g. change in autonomic functions, change
 in intents/goals, change in coordination mechanisms available)
 (Dynamicity property).

 o Develop a long-term vision of the autonomic functions interactions
 and devise the most suitable plan to address the conflicting
 cases, based on available coordination mechanisms and mission(s)
 set by the intent (Adaptivity property).

 o Be able to fully or partially suspend/stop one or multiple
 autonomic functions, temporarily or an undetermined amount of time
 until the situation evolves (Authority property).

 o Be able to operate equally well in a distributed or centralized
 manner (Distributivity property).

 o Be able to cope with several thousands of simultaneous
 interactions (Performance and scalability property).

Ciavaglia & Peloso Expires September 22, 2016 [Page 5]

Internet-Draft Autonomic Functions Coordination March 2016

4. Initial sketch of a Coordination Function

 For the sake of the following sections, this section is providing a
 rough description of the functioning of a coordination function, and
 how it organizes itself along the network time.

4.1. Preliminary assumptions

 Autonomic functions do exist in different states corresponding to
 different steps in their life-cycle. The description of some of
 these steps is better understood by referring to the
 High level view of an Autonomic Network which is depicted in Figure 1
 of [I-D.behringer-anima-reference-model], which Figure is copied
 below:

 +- +
 : : Autonomic Function 1 : :
 : ASA 1 : ASA 1 : ASA 1 : ASA 1 :
 +- +
 : : :
 : +- - - - - - - - - - - - - - + :
 : : Autonomic Function 2 : :
 : : ASA 2 : ASA 2 : :
 : +- - - - - - - - - - - - - - + :
 : : :
 +- +
 : Autonomic Networking Infrastructure :
 +- +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 Undeployed - In this state, the Autonomic Function is a mere piece
 of software, which may not even be copied on any node, but which
 may well be the code of the Autonomic Service Agents (ASA)
 corresponding to this Autonomic Function.

 Instantiated/Deployed - In this state the Autonomic Function is
 deployed, which means the ASA are available in the Nodes and
 gathered together into an Autonomic Function. In this state the
 autonomic function is bind to a scope which is the part of the
 network on which the autonomic function is meant to perform its
 duties. As a first approximation, the scope matches the Nodes

Ciavaglia & Peloso Expires September 22, 2016 [Page 6]

Internet-Draft Autonomic Functions Coordination March 2016

 which receive instructions from one of the ASA gathered in the
 Autonomic Function.

 Running - In this state, the autonomic function is deployed and is
 executing its closed control loop, hence acting on network, by
 modifying Nodes parameters.

 The above list of states is not meant to be exhaustive, and would be
 better expanded in a document dedicated to Autonomic Functions,
 nevertheless the distinctions between the three above states are
 unavoidable.

4.2. Algorithms for coordination

 This sub-section does not intend to specify algorithms capable of
 achieving coordination between autonomic functions, but means to
 illustrate different ways of avoiding conflicts, we can briefly list
 the following families of algorithms:

 Random token - This algorithm is insuring that each autonomic
 function is executing its control-loop the one after the other,
 the sequence is following a random pattern.

 Time separation - This algorithm is insuring that each autonomic
 function is executing its control-loop at different rates, e.g.
 for 2 functions: one is running fast enough to have time to
 converge in between two iterations of the slower one (this
 algorithm requires proper settings with regards of the autonomic
 functions to coordinate).

 Efficiency bids - In this algorithm, each autonomic function
 predicts which improvement its executing of its control-loop would
 bring, hence the coordination algorithms, picks the autonomic
 function promising the "best" improvement, and grants it the right
 to execute.

4.3. Behavior of the coordination function

 This function is expected to steer the network towards a better
 "operating" point, by avoiding/mitigating detrimental interactions
 between Autonomic Functions.

 The first step of such a process is the identification of these
 interactions and their classification in order to determine which
 ones have to be handled (at least the problematic ones i.e.
 conflicting ones).

Ciavaglia & Peloso Expires September 22, 2016 [Page 7]

Internet-Draft Autonomic Functions Coordination March 2016

 The second step is the gathering of the identified interactions in
 groups that can be handled together while insuring the proper
 behavior of the network. This step intends to avoid handling all the
 interactions in one raw, but possibly to split the whole problem in
 smaller pieces, easier to handle.

 The third step is the instantiation of coordination mechanisms well
 suited to handle each groups of interactions previously identified.
 Hence these coordination mechanisms would control the autonomic
 functions in order to insure a network behavior matching the intents
 of the network operator.

4.3.1. Times of the identification of interactions between AF

 As the coordination function handles autonomic functions, its working
 is related to the different states of autonomic functions, namely,
 build-time, deploy-time and run-time. Hence the coordination
 function also present a life-cycle consisting in these 3 different
 states , in which the coordination function behaves according to the
 following descriptions:

 At build-time, a common description of the autonomic function
 attributes (metrics, parameters, actions, capabilities...) allows to
 construct a "static interaction map" from the a-priori knowledge that
 can be derived/inferred from the functions attributes relationship.
 The static interaction map can be used as a first element by the
 operator (or mechanism) to (pre-)define policies and priorities as
 coordination strategies to manage the a-priori conflicts identified.

 At deploy-time, autonomic functions are deployed on the network (i.e.
 installed, configured, instantiated...) but are not yet active/acting
 on the network. At this stage, for each instance of the autonomic
 functions and on a per resource basis, an inventory of the metrics
 monitored, of the actions performed and their relationships can be
 realized, resulting in a "dynamic interaction map". The dynamic
 interaction map provides the basis to identify conflicts that will
 happen at run-time, categorize them and plan for the appropriate
 coordination strategies/mechanisms.

 At run-time, conflicts happens and arbitration is driven by the
 coordination strategies and available mechanisms. This is also the
 stage where new dependencies can be observed and inferred, ultimately
 resulting in update of the dynamic interaction map and possible
 adaptation of the coordination strategies and mechanisms.

Ciavaglia & Peloso Expires September 22, 2016 [Page 8]

Internet-Draft Autonomic Functions Coordination March 2016

4.3.2. Times of the coordination of AF

 TBC

4.4. Conclusions

 Some of the previous elements impact directly the coordination
 function, some other imply capacities of external elements such as
 Autonomic Functions and the Autonomic Control Plane. This conclusion
 is briefly categorizing and summarizing those:

 Requirements onto the AF -

 a descriptor of metrics and parameters/actions: a generic way
 of describing the inputs and outputs of the closed control
 loop, in order to identify the interactions.

 a life-cycle: to match the process of the coordination (shortly
 stated, interaction identification and then conflict solving).

 a common command interface of the autonomic functions: for the
 coordination to control the pace at which an autonomic function
 executes its control loop.

 Requirements onto the ACP -

 a common representation of information and knowledge: a
 function used to build the interactions maps.

 Requirements onto the Coordination Function -

 interaction identification: a function in charge of identifying
 interactions

 interaction grouping: a function coping with grouping the
 previously identified interactions, in bundles that can be
 managed independently (for scalability concerns)

 supporting various coordination mechanisms: to have the freedom
 of picking the most appropriate one.

 interaction solving: a function capable of handling an
 independent bundle of interactions by controling the implied
 autonomic functions according to the picked algorithms.

Ciavaglia & Peloso Expires September 22, 2016 [Page 9]

Internet-Draft Autonomic Functions Coordination March 2016

5. External Requirements

 At this stage of the document, this section is merely providing a
 structure of its content.

 In order to achieve the aforementioned goals (detailed in section
 Section 3) a Coordination Functional Block should bring the following
 features:

 a common description of autonomic functions attributes and its
 life-cycle.

 a common command interface between the coordination "agent" and
 the autonomic functions.

 a common representation of information and knowledge (cf.
 interaction maps).

 Guidelines, recommendations or BCPs can also be provided for the
 aspects pertaining to the coordination strategies and mechanisms.

 The coordination function requires a certain set of elements to work
 properly such as the autonomic function descriptor and the
 interaction map(s).

5.1. Autonomic Function Descriptor (AFD)

 The Autonomic Function Descriptor (AFD) should contain the following
 elements:

 actions, metrics, parameters, controlled resources.

5.2. control/command interface of AF

 The Autonomic Function could be guided in its executing of its
 control-loop by the coordination mechanism. The guidance could range
 from preventing the executing of the control loop, to letting run on
 its own. In the middle of the range, coordination mechanism could
 restrain the actions, halt the control-loop at a given state of the
 execution (before enforcement).

 This section can be expanded in conjunction with Section 7.5 of
 [I-D.behringer-anima-reference-model] details more the control loops.

Ciavaglia & Peloso Expires September 22, 2016 [Page 10]

Internet-Draft Autonomic Functions Coordination March 2016

5.3. Interaction/Information Maps

 The Autonomic Control Plane(ACP) should be able to provide a view of
 the interactions between metrics in order to build the interaction
 maps. This functionality is needed to identify that metrics are
 coupled. E.g. the capacity of a link and its load ratio are
 intimately coupled, and to identify interactions between autonomic
 function, having this knowledge may prove instrumental.

6. Specifications

 The coordination function can be decomposed in the following sub-
 functions:

 interaction identification: in charge of identifying interactions

 interaction grouping: coping with assigning the interactions to
 instances of cooperation mechanisms

 interaction solving: coping with various algorithms

 TBC.

7. Acknowledgements

 This draft was written using the xml2rfc project.

 This draft content builds upon work achieved during UniverSelf FP7 EU
 project.

 The authors thank Dimitri Papadimitriou for his valuable comments.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 TBC

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Ciavaglia & Peloso Expires September 22, 2016 [Page 11]

Internet-Draft Autonomic Functions Coordination March 2016

10.2. Informative References

 [I-D.behringer-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Liu, B., Jeff, J., and J. Strassner, "A Reference Model
 for Autonomic Networking", draft-behringer-anima-
 reference-model-04 (work in progress), October 2015.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

Authors’ Addresses

 Laurent Ciavaglia
 Alcatel-Lucent
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@alcatel-lucent.com

 Peloso Pierre
 Alcatel-Lucent
 Villarceaux
 Nozay 91460
 FR

 Email: pierre.peloso@alcatel-lucent.com

Ciavaglia & Peloso Expires September 22, 2016 [Page 12]

ANIMA L. Ciavaglia
Internet-Draft P. Peloso
Intended status: Informational Nokia
Expires: September 22, 2016 March 21, 2016

 Knowledge Exchange in Autonomic Networks
 draft-ciavaglia-anima-knowledge-00.txt

Abstract

 This document describes a solution to manage the exchange and
 processing of information and knowledge between autonomic functions.
 The objective is to provide a unified interface to enable an
 interoperable management of information flows among autonomic
 functions by insuring the use common mechanisms. The protocol
 negotiate and automatically adapt to the communication and
 information capabilities, requirements and constraints of the
 participating entities.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ciavaglia & Peloso Expires September 22, 2016 [Page 1]

Internet-Draft Knowledge in Autonomics March 2016

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

 1. Introduction . 2
 2. Knowledge Exchange Interface 3
 2.1. Information Collection and Dissemination - ICD 4
 2.2. Information Storage and Indexing - ISI 5
 2.3. Information Processing and Knowledge Production - IPKP . 5
 2.4. Information Flow Establishment and Optimization - IFEO . 7
 3. Acknowledgments . 12
 4. IANA Considerations . 13
 5. Security Considerations 13
 6. References . 13
 6.1. Normative References 13
 6.2. Informative References 13
 Authors’ Addresses . 14

1. Introduction

 The ANIMA autonomic management framework addresses the growing
 management complexity of the highly decentralized and dynamic
 environment of service provider networks. The ANIMA autonomic
 management framework will help to produce the unification,
 governance, and "plug and play" for autonomic networking solutions
 within existing and future management ecosystems. Three main
 functional blocks namely the Governance, Coordination and Knowledge
 functionalities are essential to ensure a proper management and
 interworking of Autonomic Service Agents (ASAs). This document
 describes a solution to manage the exchange and processing of
 information and knowledge between autonomic functions. The objective
 is to provide a unified interface to enable an interoperable
 management of information flows among autonomic functions by insuring
 the use common mechanisms. The protocol negotiate and automatically
 adapt to the communication and information capabilities, requirements
 and constraints of the participating entities. The Knowledge
 functionality plays the role of information / knowledge collection,
 aggregation, storage/registry, knowledge production and distribution
 across all the ANIMA functional components (i.e. ANI and ASAs).

Ciavaglia & Peloso Expires September 22, 2016 [Page 2]

Internet-Draft Knowledge in Autonomics March 2016

 The Knowledge block is composed of the following functions:

 o Information Collection and Dissemination - ICD

 o Information Storage and Indexing - ISI

 o Information Processing and Knowledge Production - IPKP

 o Information Flow Establishment and Optimization - IFEO

 The Knowledge Block offers basic information/knowledge manipulation
 functionalities to the ANIMA entities through the Knowledge Exchange
 Interface. A second interface, the Knowledge Management Interface,
 handles information flow management that includes configuration
 actions towards the optimal handling of the information/knowledge in
 the management system.

2. Knowledge Exchange Interface

 An Autonomic Service Agent needs two different types of interfaces to
 deal with the exchange of knowledge.

 Knowledge Exchange Interface: Interfaces through which the
 information are actually exchanged.

 Knowledge Management Interface: Interfaces through which the
 information flows are negotiated, and information capacities are
 being discovered/advertised. This interface provides
 configuration actions towards the optimal handling of the
 information/knowledge in the ASA.

 The most important concept is the knowledge exchange flow, which is
 being set between two knowledge exchange interfaces. It is
 determined by the two endpoints of the flow and by the type of
 information that is being conveyed over the flow. Some additional
 parameters define the way the information are being exchanged (Push
 or Pull mode plus additional parameters to determine the frequency
 and conditions of the actual information exchange).

 The features of the knowledge exchange flow are being negotiated by
 Knowledge Management Interfaces and possibly a third party in charge
 of optimizing the information flows over the whole system. The
 objective of this negotiation is to determine the characteristics of
 the exchange flow, which will then be enforced between two/multiple
 knowledge exchange interfaces.

Ciavaglia & Peloso Expires September 22, 2016 [Page 3]

Internet-Draft Knowledge in Autonomics March 2016

2.1. Information Collection and Dissemination - ICD

 The Information Collection and Dissemination (ICD) function is
 responsible for information collection, sharing, retrieval and
 dissemination. The ASAs can act as sources or sinks of information.
 The sources subscribe to the Information Catalog by exposing the type
 of information they can produce. On the one hand, each information
 source should subscribe information availability and the equivalent
 collection constraints (e.g., the supported granularity of
 collection). On the other hand, each information sink should
 subscribe information retrieval requirements with a similar process.
 The subscription process takes place during the ASA bootstrapping.
 The matching of constraints with requirements takes place during an
 equivalent negotiation process.

 Information can be directly retrieved from or shared with a dedicated
 Knowledge Sharing system (a sort of ASA which roles is limited to be
 used as a store and sharing entity at the service of other ASAs). As
 an information collection process is triggered by a component
 requesting the information, a catalog of the available information
 has to be built and kept. This catalog indexes which ASA can produce
 which information. Then upon a bootstrapping ASA requesting a given
 information to work, the entity in charge of this catalog would then
 inform requesting ASA of the source ASA. This process could be
 supported by GRASP discovery mechanism.

 The information collection process may be optimized by the
 Information Flow Establishment and Optimization - IFEO or another
 utility ASA in charge of optimizing the flows. This ASA acts as the
 third party during the negotiation phase between an information
 source and an information sink. If many information sink need the
 same information, the negotiation entity, is liable to enforce the
 use of an intermediate Knowledge Sharing system that would collect
 the information from the source before flooding to sinks according to
 their requirements.

 The collected information may either be directed to the Information
 Processing and Knowledge Production function for a further processing
 (e.g., aggregation or knowledge production) and then optionally
 stored/indexed to the Information Storage and Indexing - ISI
 function. The storage option may be provided or demanded based on
 the nature of the information, ASA demands, optimization goals, etc.
 After this stage, the information or produced knowledge could be
 passed back to the ICD function for dissemination.

Ciavaglia & Peloso Expires September 22, 2016 [Page 4]

Internet-Draft Knowledge in Autonomics March 2016

2.2. Information Storage and Indexing - ISI

 The Information Storage and Indexing (ISI) function is a logical
 construct representing a distributed repository for registering ASAs,
 indexing (and optionally storing) information/knowledge. The ISI
 function stores information, such as ASA registration information and
 knowledge. The ISI functionality includes methods and functions for
 keeping track of information sources, including information
 registration and naming, constraints of information sources,
 information directory and indexing. An important storage aspect,
 which can assist the knowledge production handled by the Information
 Processing and Knowledge Production function, is the inherent support
 of historical capabilities. For example, an ASA could request
 information and/or knowledge that was stored in the past using an
 appropriate time stamp. It should be noted that knowledge production
 functionality is not part of the ISI function, but it supports the
 storing of knowledge derived due to some earlier calculations. The
 ISI optionally stores knowledge produced from the Information
 Processing and Knowledge Production function (for extended-scoped
 knowledge) or Knowledge Building ASAs (for locally-scoped knowledge).
 The different ANIMA entities either requesting or storing information
 to the Knowledge block, do not directly communicate with the ISI.
 The ICD function handles information collection or dissemination
 between the storage points and the ASAs. Furthermore, ISI supports:
 (i) publish/subscribe information dissemination capabilities, (ii)
 alternative storage structures (i.e., centralized versus distributed
 or hierarchical) and database technologies based on the context, and
 (iii) information and knowledge caching.

2.3. Information Processing and Knowledge Production - IPKP

 The Information Processing and Knowledge Production function (IPKP)
 is responsible for operations related to information processing
 (i.e., aggregation) and knowledge production. The IPKP provides to
 ASAs and the ANIMA management functions the necessary tool kit to
 produce different information abstractions, including processed
 information and extended-scoped knowledge. The Knowledge Production
 (KP) operation handles and produces knowledge that may be extended-
 scoped. The latter type of knowledge is being produced out of
 aggregated information or locally-scoped knowledge. Locally-scoped
 knowledge can be built from the Knowledge Building ASAs out of data/
 information directly collected from the managed entities, i.e., its
 scope is limited to those entities. In all cases of knowledge
 production, reasoning and inference mechanisms are required. These
 mechanisms are based on different techniques depending on the exact
 problem addressed, the type of inputs used and the type of output
 that needs to be acquired. Such techniques come from scientific
 areas like statistics, clustering, reasoning, Fuzzy or machine

Ciavaglia & Peloso Expires September 22, 2016 [Page 5]

Internet-Draft Knowledge in Autonomics March 2016

 learning (including supervised, unsupervised and reinforcement
 learning techniques). All the above information (e.g., problem
 addressed, type of inputs / outputs, inference/reasoning mechanisms
 etc) must be described in a proper ontology, ready to be looked up
 from the IPKP function when such a demand appears. An ASA or ANIMA
 management function that requires the IPKP functionalities requests
 to utilize either an Information Aggregation (IA) or a Knowledge
 Production (KP) operation. The ICD function handles the
 communication of the ANIMA management component with the internal
 IPKP functionalities and the IPKP controller is responsible to
 control the internal IPKP components. The two IPKP operations (i.e.,
 information aggregation and knowledge production) require a number of
 basic steps:

 Step 1: Determining the information aggregation or knowledge
 production parameters (e.g., information filtering configuration,
 the inference/reasoning algorithm to use, translation
 requirements, whether aggregation is required and/or information/
 knowledge post-processing requirements). This process is being
 handled from the IPKP controller, which matches the ANIMA
 component’s requirements and the type of problem to solve with the
 relevant information. The parameters are being communicated to
 all relevant internal IPKP components.

 Step 2: Collection of input information either from an ANIMA
 component that produces it or from the ISI function (i.e., the
 knowledge storage). A collection request is being passed back
 from the IPKP controller to the ICD function.

 Step 3: Pre-processing of the input information (e.g., applying
 information filtering) that may be required. The pre-processing
 requirements are being set from the IPKP controller.

 Step 4: The input information is being passed to the IA operation
 in case of information aggregation, where an aggregation process
 takes place according the requirements (e.g., aggregation function
 used) being set from the IPKP controller. In case of knowledge
 production, this step may be bypassed or not (i.e., the higher-
 level knowledge production processes may require aggregation
 before the inference/reasoning process).

 Step 5: In case of knowledge production, the input information may
 need to be translated in a convenient representation, e.g., to
 OWL. The translation configuration is being set from the IPKP
 controller to match the requirements of the inference/reasoning
 mechanism identified from the (TBD) ANIMA ontology.

Ciavaglia & Peloso Expires September 22, 2016 [Page 6]

Internet-Draft Knowledge in Autonomics March 2016

 Step 6: The actual inference/reasoning process takes place in this
 step. The input information (i.e., in an appropriate form) and
 the relevant knowledge production rules are being passed to the
 identified inference/reasoning mechanism. A rule description
 language that can be used is the Semantic Web Rule Language
 (SWRL). The output of this process is the produced Knowledge.
 This step may be bypassed, in case of a request for information
 aggregation without knowledge production.

 Step 7: The produced knowledge or aggregated information may need
 a post-processing (e.g., filtering). This step is optional.

 Step 8: At this stage, the result is being communicated to the ICD
 function, to find its way to the requesting ANIMA component. The
 produced knowledge or aggregated information can be optionally
 stored in the ISI function so as to be available for ANIMA
 management mechanisms or ASAs when requested/needed.

2.4. Information Flow Establishment and Optimization - IFEO

 The information flow negotiation and optimization aspects are crucial
 processes overseen from the Information Flow Establishment and
 Optimization (IFEO) function. The IFEO function, besides organizing
 internal optimization aspects (e.g., setting filtering or information
 accuracy objectives), also regulates the information flow based on
 the current state and the locations of the participating ANIMA
 components (e.g., the ASAs producing or requiring information). All
 relevant communication between the knowledge functions and the ANIMA
 components takes place through the Knowledge Management interface,
 unless it is otherwise stated.

 For clarity purposes, we define the specifications of the IFEO
 function along with a representative example. We assume the
 following two ASAs: (a) the Virtual Infrastructure Management (VIM)
 ASA that provides management and control facilities for virtual
 infrastructures, including support of traffic monitoring; and (b) the
 Placement Optimization (PO) ASA that optimizes the data flow over a
 virtual network through adapting the positioning of communicating
 nodes (e.g., data servers) in response to the dynamic network
 conditions. In this example, the VIM ASA provides traffic monitoring
 information from a particular virtual network to the PO ASA. The PO
 ASA takes optimization decisions for the network based on this
 information, i.e., repositions communicating nodes in order to
 optimize network communication. The information flow negotiation and
 optimization processes include a number of basic phases, elaborated
 below:

Ciavaglia & Peloso Expires September 22, 2016 [Page 7]

Internet-Draft Knowledge in Autonomics March 2016

 Phase 1 - Registration: In this phase the ASAs, as part of their
 registration process with the knowledge block (i.e., described in
 section 3.6.2), will communicate the following information to the
 knowledge:

 Information they can offer instantly or after an information
 collection process.

 Knowledge they can offer instantly or after a knowledge
 production process.

 Information/knowledge they would require (mandatory or
 optional).

 The above information is embedded in the description of the ASA
 instance description. In our example, the VIM ASA registers the
 information it can offer (e.g., the topology information and
 measurements on the link loads). This information can be offered
 instantly (i.e., does not require an information collection
 process to start, since it monitors the network continuously).
 The PO ASA registers the same information type as mandatory
 information required.

 Phase 2 - An ANIMA management function requesting knowledge: In
 this phase a process in an ANIMA management function (like a
 supervision process in management or a knowledge production
 mechanism or a coordination mechanism) demands to register to a
 given piece of information produced by a given ASA. This
 information is expressed as a information specification. In that
 case, the Knowledge Management Interface of the requesting entity
 is calling a TBD knowledge method named to request the registered
 information.

 Phase 3 - Information Flow Negotiation: In the third phase, the
 knowledge block through its IFEO function handles a flow
 negotiation process between entities (i.e., ASAs or management
 mechanisms) requiring information and those can provide it. The
 two entities exchange information flow related parameters with the
 knowledge block, in order to confirm that all information-related
 requirements can be satisfied under the given constraints. An
 information flow is either established between the two entities
 directly or between an entity and the knowledge block itself, in
 case the requested information is available in the knowledge
 storage. The negotiation process includes flow-level optimization
 aspects as well. This phase is composed of the following steps:

 Step 1 - Preselecting the information flow ends: Whenever a ASA
 registers it advertises requested information/knowledge (under

Ciavaglia & Peloso Expires September 22, 2016 [Page 8]

Internet-Draft Knowledge in Autonomics March 2016

 a specific format TBD), the knowledge block fetches in its
 indexing storage the appropriate entity (ASA or management
 mechanism) that can produce the requested information/
 knowledge. It may either select an entity by considering the
 type of information/knowledge required or, in case of
 alternative options, assign the first entity it finds and
 enlist the other potential choices in a queue. In case the
 required information is in the knowledge storage, an
 information flow is created with the knowledge. The same
 process happens when a ANIMA management entity requests some
 knowledge, depending on the form of the request (i.e., a
 fetching from the indexing storage may or may not be required):

 ASA information: already specifies which is the Instance ID
 of the ASA producing the information.

 ANIMA information: a fetching from the index table is
 required to pick the appropriate flow ends.

 Management information: then the fetching does not concern
 finding a flow end, but finding all the flow ends matching
 the pattern provided by the management information in order
 to establish as many flows as indexed ANIMA information
 objects inheriting from the management information (this
 corresponds to a supervision mechanism requesting to
 register to ASA utilities, hence a flow for each ASA capable
 of advertising its utility will be created). Reversely,
 knowledge may have postponed flow establishments of some
 requested information because at the time the request was
 received, no entity producing this information was
 registered. In that case, knowledge checks with every
 received instance description whether the advertised
 information matches previously unsolved requests. After
 that, the IFEO proceeds to Step 2. In the studied example,
 the knowledge block preselects the VIM ASA as information
 source for the PO ASA that acts as the information sink.
 This selection was based on the matching information URIs
 referenced in the registered ANIMA information data
 structures from the two ASAs.

 Step 2 -Communicating the negotiation parameters: in step 2, a
 negotiation process is initiated between the entity requiring
 information/knowledge (i.e., the information sink entity) and
 the selected information source entity. The negotiation begins
 with the two entities communicating additional negotiation
 parameters to the knowledge block. Specifically, the
 information sink entity communicates an augmented version of
 the ANIMA information with:

Ciavaglia & Peloso Expires September 22, 2016 [Page 9]

Internet-Draft Knowledge in Autonomics March 2016

 -QoS Requirements on the information/knowledge it requires.

 -Preferred information communication method (i.e., either
 push/pull or pub/sub).

 -List of Knowledge Exchange interfaces (addresses) on which
 the information can be received and possibly an internal
 metric regarding the internal costs to use this information
 from each of these interfaces.

 -REST callback functions that may be required at this end of
 communication (e.g., in case of an information subscribe
 method).

 In a similar way, the information source entity communicates
 the following to the knowledge block:

 -QoS Constraints on the information/knowledge it can offer.

 -Supported(and preferred) information communication method
 (i.e., either push/pull or pub/sub).

 -Whether for this requested information/knowledge an
 "information collection/knowledge production" process is
 already activated or needs to be initiated.

 -List of Knowledge Exchange interfaces (addresses) on which
 the information can be provided and possibly an internal
 metric regarding their internal cost to bring this
 information up to the interface.

 -REST Callback functions for the relevant capabilities
 (i.e., triggering functions for information collection or
 knowledge production - if relevant).

 Practically, the knowledge block initiates a new negotiation
 with the execution of the sink and source parameters
 negotiation methods of the Knowledge Management Interface.
 Both methods take as input the specifications of the
 information to be communicated from the established
 communication flow, represented as an ANIMA information data
 structure. In the reference scenario, the VIM ASA communicates
 to the knowledge: (i) the QoS constraints of the topology and
 link load information it can offer, e.g., monitors information
 once per 10 secs, and (ii) a number of available Knowledge
 Exchange interfaces that can provide the information. The PO
 ASA communicates to the knowledge: (i) the QoS requirements of
 the required information, e.g., once per 30 secs, and (ii) a

Ciavaglia & Peloso Expires September 22, 2016 [Page 10]

Internet-Draft Knowledge in Autonomics March 2016

 number of available Knowledge Exchange interfaces that can
 receive the information.

 Step 3 - Completing the negotiation: The knowledge block
 matches information flow requirements with constraints,
 determines the information flow parameters with flow
 optimization considerations and then issues a Knowledge
 Exchange Policy summarizing an information flow contract to
 both entities. knowledge also stores the Knowledge Exchange
 Policy through the Information Flow Configuration and
 Statistics operation of the IFEO function. In case of an
 unsuccessful negotiation (i.e., the requirements do not match
 the constraints), it may disengage or trigger a new
 negotiation:

 a) With the same information source entity but lower
 requirements.

 >b) With another information source entity that waits in the
 queue, until the queue is exhausted.

 The Information Exchange Policies for the corresponding flow
 are being produced from the Information Quality Controller
 operation of the IFEO knowledge block function and include:

 -Location/addresses of the participating Knowledge Exchange
 Interfaces in the information flow.

 -Internal knowledge optimization decisions that may impact
 the information flow (e.g., optimal knowledge aggregation/
 storage points), in case the knowledge block is the one end
 of the flow.

 -Addresses of triggering callback functions for knowledge
 production or information collection - if relevant.

 These policies are considering the requirements/constraints of the
 participating entities and the global performance objective coming
 from the operator (e.g. via the ANIMA Intent Policy). The knowledge
 establishes the information flow using a set flow method of the
 Knowledge Management Interface, that takes as an input the decided
 Information Flow Exchange Policies, represented as a flow data
 structure.

 The decided Information Exchange Policies are being applied to the
 network through the respective ASAs or communicated to the knowledge
 functions they are associated with. Since the appropriate context
 environment for the new information flow is prepared, a suitable path

Ciavaglia & Peloso Expires September 22, 2016 [Page 11]

Internet-Draft Knowledge in Autonomics March 2016

 between the participating nodes is established next. This process
 considers the locations of the entities producing and requiring
 information and the required knowledge nodes (e.g., aggregation
 points, storage points etc) as well as the potential traffic
 characteristics. After that, the Knowledge Exchange interface can be
 accessed anytime from the information sink entity to receive the
 needed information/knowledge. In our reference scenario, the
 knowledge block matches the information flow constraints (e.g.,
 supported monitoring rate) of the VIM ASA with the information flow
 requirements from the PO ASA. Then it selects the most appropriate
 Knowledge Exchange interfaces to communicate the information from the
 VIM to the PO ASA. A new information flow contract is established
 and communicated to the two ASAs and stored in the knowledge block.
 The information flow is established and the PO ASA can retrieve the
 required information from the VIM ASA via the appropriate Knowledge
 Exchange interface. The PO ASA can now begin taking network
 optimization decisions using that information.

 Knowledge-level Optimization: Furthermore, knowledge supports a
 global optimization process that is triggered periodically or when a
 global performance objective change is requested from the GOV. This
 process takes optimization decisions using the aggregated information
 from the configuration of all established information flows and is
 related with a restructuring of the knowledge functions themselves.
 In other words, global-optimization algorithms may discard or update
 Knowledge Exchange Policies enforced for established information
 flows. It takes as an input the global picture of all the
 established information flow contacts and provides as an output
 different contracts aligned better to the new updated demands (e.g.,
 a new received global objective). This process may initiate re-
 negotiations that include requesting again from the entities what
 their requirements and capabilities are. For example, the
 distributed knowledge nodes may be increased, decreased or
 repositioned in order to accommodate all established information
 flows and the global optimization goal better. The optimization
 process is triggered by the IFEO function and regulates the
 information flow based on the current state and the locations of the
 participating ANIMA components. In particular, the IFEO controls
 information collection handled from the ICD function, information
 aggregation, and aggregation node placement. Furthermore, it guides
 a filtering system for information collection and aggregation points
 that can significantly reduce the communication overhead.

3. Acknowledgments

 This draft was written using the xml2rfc project.

Ciavaglia & Peloso Expires September 22, 2016 [Page 12]

Internet-Draft Knowledge in Autonomics March 2016

 The content of this draft builds upon work achieved during the EU FP7
 UniverSelf project (www.univerself-project.eu).

4. IANA Considerations

 This memo includes no request to IANA.

5. Security Considerations

 TBD

6. References

6.1. Normative References

 [I-D.ciavaglia-anima-coordination]
 Ciavaglia, L. and P. Peloso, "Autonomic Functions
 Coordination", draft-ciavaglia-anima-coordination-00 (work
 in progress), July 2015.

 [I-D.peloso-anima-autonomic-function]
 Peloso, P. and L. Ciavaglia, "A Day in the Life of an
 Autonomic Function", draft-peloso-anima-autonomic-
 function-00 (work in progress), October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

6.2. Informative References

 [I-D.behringer-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Liu, B., Jeff, J., and J. Strassner, "A Reference Model
 for Autonomic Networking", draft-behringer-anima-
 reference-model-04 (work in progress), October 2015.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

Ciavaglia & Peloso Expires September 22, 2016 [Page 13]

Internet-Draft Knowledge in Autonomics March 2016

Authors’ Addresses

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

 Pierre Peloso
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: pierre.peloso@nokia.com

Ciavaglia & Peloso Expires September 22, 2016 [Page 14]

ANIMA WG Z. Du
Internet-Draft S. Jiang
Intended status: Informational Huawei Technologies Co., Ltd
Expires: August 18, 2017 J. Nobre
 Federal University of Rio Grande do Sul
 L. Ciavaglia
 Alcatel Lucent
 M. Behringer
 Cisco Systems
 February 14, 2017

 ANIMA Intent Policy and Format
 draft-du-anima-an-intent-05

Abstract

 One of the goals of autonomic networking is to simplify the
 management of networks by human operators. Intent Based Networking
 (IBN) is a possible approach to realize this goal. With IBN, the
 operator indicates to the network what to do (i.e. her intent) and
 not how to do it. In the field of Policy Based Management (PBM), the
 concept of intent is called a declarative policy. This document
 proposes a refinement of the intent concept initially defined in
 [RFC7575] for autonomic networks by providing a more complete
 definition, a life-cycle, some use cases and a tentative format of
 the ANIMA Intent Policy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 18, 2017.

Du, et al. Expires August 18, 2017 [Page 1]

Internet-Draft ANIMA Intent Policy February 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Language and Terminology 3
 3. Concept of ANIMA Intent Policy 4
 4. Intent Life Cycle . 4
 5. Use Cases for ANIMA Intent Policy 6
 6. Distribution of ANIMA Intent Policy 7
 7. Management of ANIMA Intent Policy 7
 8. Interpretation of ANIMA Intent Policy 7
 9. Uniform Format of the ANIMA Intent Policy 8
 10. Security Considerations 9
 11. IANA Considerations . 9
 12. Acknowledgements . 9
 13. Change log [RFC Editor: Please remove] 9
 14. References . 9
 Authors’ Addresses . 10

1. Introduction

 One of the goals of autonomic networking is to simplify the
 management of networks by human operators. Intent Based Networking
 (IBN) is a possible approach to realize this goal. With IBN, the
 operator indicates to the network what to do (i.e. her intent) and
 not how to do it. In the field of Policy Based Management (PBM), the
 concept of intent is called a declarative policy. This document
 proposes a refinement of the intent concept initially defined in
 [RFC7575] for autonomic networks by providing a more complete
 definition, a life-cycle, some use cases and a tentative format of
 the ANIMA Intent Policy.

 An Autonomic Network must be able to operate with minimum
 intervention from human operators. However, it still needs to

Du, et al. Expires August 18, 2017 [Page 2]

Internet-Draft ANIMA Intent Policy February 2017

 receive some form of guidance (e.g. ANIMA Intent Policies) in order
 to fulfill the operator requirements.

 In PBM, the Policy Continuum defines the levels at which the policies
 are defined (policy creation point), consumed (policy execution
 point) and translated (policy interpretation point). Using PBM, the
 operator can manage the network as a whole, and does not need to
 configure each individual devices in the network. The transformation
 of the high-level/abstract policies to the low-level device
 configurations is realized automatically by a set of functions
 usually regrouped inside a Policy Engine.

 The use of policies and in particular of declarative policies assumes
 that the entities in the Autonomic Network receiving the ANIMA Intent
 Policy are capable of processing (refining and/or executing) the
 policy with no ambiguity. For that, the format of the ANIMA Intent
 Policy and the hierarchy of policy levels must be specified.

 This document proposes a base format of the ANIMA Intent Policy.
 Application-specific extensions of the base format should be defined
 on a per need basis in dedicated documents.

2. Requirements Language and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. When these words are not in
 ALL CAPS (such as "should" or "Should"), they have their usual
 English meanings, and are not to be interpreted as [RFC2119] key
 words.

 Autonomic Function: A feature or function which requires no
 configuration, and can derive all required information either
 through self-knowledge, discovery or through Intent.

 Autonomic Node: A node which employs exclusively Autonomic
 Functions.

 Legacy Node: A non-autonomic node, i.e., a node which employs some
 non-autonomic functions.

 Autonomic Network: A network containing exclusively Autonomic Nodes.
 It may contain one or several Autonomic Domains.

 Autonomic Domain: A collection of autonomic nodes that instantiate
 the same Intent.

Du, et al. Expires August 18, 2017 [Page 3]

Internet-Draft ANIMA Intent Policy February 2017

 Autonomic Service Agent: An agent implemented on an Autonomic Node
 which implements an Autonomic Function.

 Intent: An abstract, high-level policy used to operate the network.

 ANIMA Intent Policy: A declarative type of policy used in Autonomic
 Networks.

 Configlet: Intent is interpreted on the Autonomic Node, and the
 results will be interpreted and stored in a local format on the
 Autonomic Node. This stored version is known as a "configlet".

 NOC: A network operations center is the location where network
 monitoring and control is exercised.

3. Concept of ANIMA Intent Policy

 In the scope of autonomic networking, the definition of intent can be
 found in [I-D.ietf-anima-reference-model], in which intent is
 described as "an abstract, declarative, high-level policy used to
 operate an autonomic domain, such as an enterprise network."

 An Autonomic Network will comprise multiple ANIMA Intent Policies.
 Different ANIMA Intent Policies will be "interpreted" by different
 entities in autonomic networks, and the "level" of understanding of
 the intent will impact how the intent will be presented to this
 entity. So there should be "intermediate" mechanisms/functions that
 cater for the intent translation continuum across the heterogeneity
 (in policy capabilities) of the network entities. Also, ANIMA Intent
 Policies will possibly overlap and this overlapping should be managed
 (e.g., avoid conflicts, resolve applicable policies in context).

4. Intent Life Cycle

 This section describes a top-down flow about how an ANIMA Intent
 Policy is derived through an autonomic network.

 1. Business goals: The network owner wants the network to follow
 some business goals. These goals are initially not formalised
 in a particular way. A Domain Specific Language (DSL) is used
 to format these goals in a form subsequent components can
 interpret and process.

 2. ANIMA Intent Policy (or Intent): Is the formalisation of
 business goals so that computer can deal with them. It is
 encoded as a file (or several files), and this file must be
 "given to the network".

Du, et al. Expires August 18, 2017 [Page 4]

Internet-Draft ANIMA Intent Policy February 2017

 3. Ingestion: The Intent file(s) get instantiated on an autonomic
 node. On a particular node, an intent file is "ingested".
 After that, it needs to be distributed.

 4. Intent Distribution: Intent is flooded to all nodes in a
 network. Every node has a copy of the original "Intent"
 file(s), without modification. Each node re-distributes the
 original Intent files, without modification. Therefore, Intent
 is optional and transitive in nature. The Intent files must now
 be interpreted by each node. Editor’s note: need to better
 defined meaning of "optional" and "transitive".

 5. Intent splitting (on each node): Intent is split into sections,
 one for the ANI itself, others for specific Autonomic Functions.
 ASAs are notified if there is new Intent for them. Some intent
 sections may not apply to a particular node. Now each component
 of a node (ANI, all ASAs) know their respective Intent.

 6. Intent Interpretation (on each node, by each function): The ANI
 as well as all ASAs on a node interpret their respective Intent
 section(s). It gets translated into a "target configuration",
 taking into account local state. For this translation, it may
 be necessary for ASAs to communicate with ASAs on other nodes,
 to pass on resources (IP addresses), to negotiate, etc. All
 such communications may be triggered by Intent, but the
 communications themselves are not Intent. (NB: This
 interpretation could also be done centrally, and the resulting
 configurations distributed; This is of course an option, but out
 the scope of ANIMA.) After interpreting Intent locally on each
 node, each node has target configlet to apply. Editor’s note:
 define new terms such as "configlet"

 7. Conflict Resolution with non-autonomic management (on each
 node): The target configlet resulting from Intent has the lowest
 priority; meanwhile, any other management method (CLI, NETCONF,
 etc.) overrides Intent.

 8. Conflict Resolution between autonomic components (on each node):
 Each autonomic function needs to register with a "conflict
 resolution function" which parameters it modifies; in case of
 conflict, the conflict resolution function takes a decision and
 feeds that back to the autonomic functions. This may modify the
 target configlet.

 9. Applying the target configlet.

 10. Feedback loops to NOC: The NOC needs to know about certain
 conditions, such as conflicts with non-autonomic management.

Du, et al. Expires August 18, 2017 [Page 5]

Internet-Draft ANIMA Intent Policy February 2017

 Not all conflicts can be resolved automatically, so they may
 require NOC actions. Undesirable states (deviations from
 expected default behaviour) may have to be communicated too. To
 some extent, Intent itself can specify which conditions should
 trigger feedback loops to the NOC. Feedback loops may happen at
 other phases as well (ex: 8).

5. Use Cases for ANIMA Intent Policy

 In this section, some use cases are introduced to clarify the concept
 of ANIMA Intent Policy. It should be noted that intent is defined
 per Autonomic Function, and can also be a general one related to
 multiple AFs.

 The first example is about "arranging VM guest distribution". The
 autonomic network is supposed to be able to monitor the CPU/power
 utilization on each host machine, and control the status of each host
 machine (e.g. turn on/off). The operator may have an intent "there
 should be enough hosts to keep CPU utilization less than 70%", and
 also another one "there are few enough hosts powered so that
 electricity isn’t wasted".

 These two intents can both influence the ASA responsible for
 controlling how many hosts are needed. The final decision is made
 according to multiple factors, including network environment and
 intents entered by the operators.

 In this case, the first intent should have a higher priority than the
 later one. The two intents should be analyzed and coordinated to
 ensure the ASA act rightly.

 Another example is about coordination of "load balancing" intent and
 "energy saving" intent. Autonomic Network of Operator A is composed
 of Autonomic Function Agents such as load balancing (LB_AFA) and
 energy saving (ES_AFA). Operator A wants to limit the proportion of
 links loaded over a certain threshold and thus defines an Intent to
 activate load balancing if the load is superior to 0.6 on more than
 30% of the links.

 Meanwhile, operator A wants different load balancing policies per
 (technology, administrative, topology) domain. Let’s consider a
 metropolitan network domain and a core network domain, or different
 LB policy for border routers than interior routers. For the
 metropolitan network domain, Operator A defines an Intent to minimize
 the link load variance. For the core network domain, Operator A
 applies the previously defined intent (activate load balancing if the
 load is superior to 0.6 on more than 30% of the links).

Du, et al. Expires August 18, 2017 [Page 6]

Internet-Draft ANIMA Intent Policy February 2017

 The intents will be distributed to the right network domain, and take
 effect after being interpreted and coordinated, and it is easy to
 change them without the need to configure every device manually.

6. Distribution of ANIMA Intent Policy

 The distribution of intent can be done by using GRASP
 [I-D.ietf-anima-grasp] and ACP
 [I-D.ietf-anima-autonomic-control-plane]. The operator can issue a
 new intent or modify an intent through any authorized nodes in the
 autonomic network. After that, the intent will be flooded to all the
 nodes in the autonomic network. Another scenario is that when a new
 node joins into an autonomic domain, it may receive an intent from
 its neighbor.

 For example, GRASP can be used to communicate version number of the
 intent, and meanwhile, a URL where to find it.

 {Editor Notes: other distribution methods are also possible. }

7. Management of ANIMA Intent Policy

 Every Autonomic Node in the Autonomic domain should own an intent
 with the same version. Any updating of intent will cause the change
 of the intent version number. To ensure all the nodes own the same
 intent, the nodes should be able to communicate with neighbors in the
 domain about the version of the intent. If its neighbor has a newer
 version of intent, it can request an intent update.

 If the operator issues a new intent or modify intents, it will
 trigger a domain level updating of intent. Nodes in the Autonomic
 Network should be aware which domain it belongs to, and accept intent
 for that domain.

 {Editor Notes: talk about the questions as follows. When/on which
 triggers are intents generated, updated? How the domain(s) are
 defined and recognized (if I am an AFA, how do I know I am part of
 domain x, y or z...?). }

8. Interpretation of ANIMA Intent Policy

 After receiving an intent, the Autonomic Node should confirm whether
 it is acceptable, according to the domain name information, intent
 version, signature, and so on. If it passes the validation, an
 intent interpretation module will be involved to decide which ASAs
 will be involved in. Coordination of intents may be needed before
 the execution of the policies interpreted from the intent.

Du, et al. Expires August 18, 2017 [Page 7]

Internet-Draft ANIMA Intent Policy February 2017

 {Editor Notes: talk about the questions as follows. How the AFAs
 receive, understand and react to an intent? }

 {Editor Notes: how the splitting (step 5 in the Life Cycle section)
 happens here can be explained more here. It would be better that an
 example can be introduced here.}

9. Uniform Format of the ANIMA Intent Policy

 {Editor Notes: Format of Intent is FFS. It is suggested to contain
 the following information.}

 This section proposes a uniform intent format. It uses the tag-based
 format.

 Autonomic intent: The root tag for the Autonomic Network Intent.

 Intent type: It indicates the intent type, which is associated with
 a specific Autonomic Function.

 Autonomic domain: It indicates the domain of the Autonomic Network.
 It is also the scope of the Autonomic Network Intent.

 Intent version: It indicates the version of the ANIMA Intent Policy.
 This is an important feature for synchronization.

 Model version: The version of the model used to define the intent.

 Name: The name of the intent which describes the intent for human
 operators.

 Signature: The signature is used as a security mechanism to provide
 authentication, integrity, and non-repudiation.

 Timestamp: The timestamp of the creation of the intent using the
 format supported by the IETF [TBC].

 Lifetime: The lifetime in which the intent may be observed. A
 special case of the lifetime is the definition of permanent
 intents.

 Content: It contains the main information of the intent. It may
 include objects, policies, goals and configuration data. The
 detailed contents and formats should be defined under their
 specific situations by documents that specifies the Autonomic
 Service Agent. Within the content, there may be sub_intents.

Du, et al. Expires August 18, 2017 [Page 8]

Internet-Draft ANIMA Intent Policy February 2017

10. Security Considerations

 Relevant security issues are discussed in [I-D.ietf-anima-grasp].
 The ANIMA Intent Policy requires strong security environment from the
 start, because it would be great risk if the ANIMA Intent Policy had
 been maliciously tampered. The Autonomic Intent should employ a
 signature scheme to provide authentication, integrity, and non-
 repudiation.

11. IANA Considerations

 This document defines one new format. The IANA is requested to
 establish a new assigned list for it.

12. Acknowledgements

 The authors of this draft would like to thank the following persons
 for their valuable feedback and comments: Bing Liu, Brian Carpenter,
 Michael Richardson, Joel Halpern, John Strassner, and Jason Coleman.

 This document was produced using the xml2rfc tool [RFC2629].

13. Change log [RFC Editor: Please remove]

 draft-du-anima-an-intent-00: original version, 2015-06-11.

 draft-du-anima-an-intent-01: add intent use case section, add some
 elements for the format section, and coauthor Jeferson Campos Nobre
 and Laurent Ciavaglia, 2015-07-06.

 draft-du-anima-an-intent-02: add the intent concept section, and some
 other sections, 2015-10-14.

 draft-du-anima-an-intent-03: modify the use case section, and add
 some other contents, 2016-03-17.

 draft-du-anima-an-intent-04: modify the use case section, add the
 procedure section, and reorganize contents, 2016-07-08.

 draft-du-anima-an-intent-05: modify the use case section, and delete
 some sections, 2017-02-15.

14. References

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane", draft-ietf-anima-autonomic-control-
 plane-05 (work in progress), January 2017.

Du, et al. Expires August 18, 2017 [Page 9]

Internet-Draft ANIMA Intent Policy February 2017

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-09 (work in progress), December 2016.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-02 (work in progress), July 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 DOI 10.17487/RFC2629, June 1999,
 <http://www.rfc-editor.org/info/rfc2629>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

Authors’ Addresses

 Zongpeng Du
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: duzongpeng@huawei.com

 Sheng Jiang
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

Du, et al. Expires August 18, 2017 [Page 10]

Internet-Draft ANIMA Intent Policy February 2017

 Jeferson Campos Nobre
 Federal University of Rio Grande do Sul
 Porto Alegre
 Brazil

 Email: jcnobre@inf.ufrgs.br

 Laurent Ciavaglia
 Alcatel Lucent
 Route de Villejust
 Nozay 91620
 France

 Email: laurent.ciavaglia@alcatel-lucent.com

 Michael Behringer
 Cisco Systems
 Building D, 45 Allee des Ormes
 Mougins 06250
 France

 Email: mbehring@cisco.com

Du, et al. Expires August 18, 2017 [Page 11]

ANIMA WG T. Eckert, Ed.
Internet-Draft Huawei
Intended status: Standards Track M. Behringer, Ed.
Expires: September 12, 2019
 S. Bjarnason
 Arbor Networks
 March 11, 2019

 An Autonomic Control Plane (ACP)
 draft-ietf-anima-autonomic-control-plane-19

Abstract

 Autonomic functions need a control plane to communicate, which
 depends on some addressing and routing. This Autonomic Management
 and Control Plane should ideally be self-managing, and as independent
 as possible of configuration. This document defines such a plane and
 calls it the "Autonomic Control Plane", with the primary use as a
 control plane for autonomic functions. It also serves as a "virtual
 out-of-band channel" for Operations Administration and Management
 (OAM) communications over a network that provides automatically
 configured hop-by-hop authenticated and encrypted communications via
 automatically configured IPv6 even when the network is not
 configured, or misconfigured.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Eckert, et al. Expires September 12, 2019 [Page 1]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction (Informative) 5
 1.1. Applicability and Scope 8
 2. Acronyms and Terminology (Informative) 9
 3. Use Cases for an Autonomic Control Plane (Informative) . . . 15
 3.1. An Infrastructure for Autonomic Functions 15
 3.2. Secure Bootstrap over a not configured Network 16
 3.3. Data-Plane Independent Permanent Reachability 16
 4. Requirements (Informative) 17
 5. Overview (Informative) 18
 6. Self-Creation of an Autonomic Control Plane (ACP) (Normative) 20
 6.1. ACP Domain, Certificate and Network 20
 6.1.1. Certificate ACP Domain Information Field 21
 6.1.2. ACP domain membership check 24
 6.1.3. Trust Points and Trust Anchors 26
 6.1.4. Certificate and Trust Point Maintenance 27
 6.1.4.1. GRASP objective for EST server 27
 6.1.4.2. Renewal . 29
 6.1.4.3. Certificate Revocation Lists (CRLs) 29
 6.1.4.4. Lifetimes . 30
 6.1.4.5. Re-enrollment 30
 6.1.4.6. Failing Certificates 31
 6.2. ACP Adjacency Table 32
 6.3. Neighbor Discovery with DULL GRASP 33
 6.4. Candidate ACP Neighbor Selection 36
 6.5. Channel Selection . 36
 6.6. Candidate ACP Neighbor verification 39
 6.7. Security Association protocols 39
 6.7.1. ACP via IKEv2 . 39
 6.7.1.1. Native IPsec 39
 6.7.1.2. IPsec with GRE encapsulation 40
 6.7.2. ACP via DTLS . 40
 6.7.3. ACP Secure Channel Requirements 41
 6.8. GRASP in the ACP . 42
 6.8.1. GRASP as a core service of the ACP 42
 6.8.2. ACP as the Security and Transport substrate for GRASP 42
 6.8.2.1. Discussion 45

Eckert, et al. Expires September 12, 2019 [Page 2]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 6.9. Context Separation 46
 6.10. Addressing inside the ACP 47
 6.10.1. Fundamental Concepts of Autonomic Addressing 47
 6.10.2. The ACP Addressing Base Scheme 48
 6.10.3. ACP Zone Addressing Sub-Scheme 50
 6.10.3.1. Usage of the Zone-ID Field 51
 6.10.4. ACP Manual Addressing Sub-Scheme 52
 6.10.5. ACP Vlong Addressing Sub-Scheme 53
 6.10.6. Other ACP Addressing Sub-Schemes 54
 6.10.7. ACP Registrars 55
 6.10.7.1. Use of BRSKI or other Mechanism/Protocols . . . 55
 6.10.7.2. Unique Address/Prefix allocation 56
 6.10.7.3. Addressing Sub-Scheme Policies 56
 6.10.7.4. Address/Prefix Persistence 57
 6.10.7.5. Further Details 58
 6.11. Routing in the ACP 58
 6.11.1. RPL Profile . 58
 6.11.1.1. Overview . 58
 6.11.1.2. RPL Instances 60
 6.11.1.3. Storing vs. Non-Storing Mode 60
 6.11.1.4. DAO Policy 60
 6.11.1.5. Path Metric 60
 6.11.1.6. Objective Function 61
 6.11.1.7. DODAG Repair 61
 6.11.1.8. Multicast 61
 6.11.1.9. Security . 61
 6.11.1.10. P2P communications 61
 6.11.1.11. IPv6 address configuration 61
 6.11.1.12. Administrative parameters 62
 6.11.1.13. RPL Data-Plane artifacts 62
 6.11.1.14. Unknown Destinations 62
 6.12. General ACP Considerations 62
 6.12.1. Performance . 63
 6.12.2. Addressing of Secure Channels 63
 6.12.3. MTU . 63
 6.12.4. Multiple links between nodes 64
 6.12.5. ACP interfaces 64
 7. ACP support on L2 switches/ports (Normative) 67
 7.1. Why (Benefits of ACP on L2 switches) 67
 7.2. How (per L2 port DULL GRASP) 68
 8. Support for Non-ACP Components (Normative) 70
 8.1. ACP Connect . 70
 8.1.1. Non-ACP Controller / NMS system 70
 8.1.2. Software Components 72
 8.1.3. Auto Configuration 73
 8.1.4. Combined ACP/Data-Plane Interface (VRF Select) . . . 74
 8.1.5. Use of GRASP . 75
 8.2. ACP through Non-ACP L3 Clouds (Remote ACP neighbors) . . 76

Eckert, et al. Expires September 12, 2019 [Page 3]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 8.2.1. Configured Remote ACP neighbor 76
 8.2.2. Tunneled Remote ACP Neighbor 77
 8.2.3. Summary . 78
 9. Benefits (Informative) 78
 9.1. Self-Healing Properties 78
 9.2. Self-Protection Properties 80
 9.2.1. From the outside 80
 9.2.2. From the inside 80
 9.3. The Administrator View 81
 10. ACP Operations (Informative) 82
 10.1. ACP (and BRSKI) Diagnostics 82
 10.2. ACP Registrars . 87
 10.2.1. Registrar interactions 87
 10.2.2. Registrar Parameter 88
 10.2.3. Certificate renewal and limitations 89
 10.2.4. ACP Registrars with sub-CA 90
 10.2.5. Centralized Policy Control 90
 10.3. Enabling and disabling ACP/ANI 91
 10.3.1. Filtering for non-ACP/ANI packets 91
 10.3.2. Admin Down State 92
 10.3.2.1. Security . 93
 10.3.2.2. Fast state propagation and Diagnostics 93
 10.3.2.3. Low Level Link Diagnostics 94
 10.3.2.4. Power Consumption Issues 94
 10.3.3. Interface level ACP/ANI enable 95
 10.3.4. Which interfaces to auto-enable? 95
 10.3.5. Node Level ACP/ANI enable 96
 10.3.5.1. Brownfield nodes 97
 10.3.5.2. Greenfield nodes 97
 10.3.6. Undoing ANI/ACP enable 98
 10.3.7. Summary . 98
 10.4. Configuration and the ACP (summary) 99
 11. Security Considerations 100
 12. IANA Considerations . 102
 13. Acknowledgements . 103
 14. Change log [RFC Editor: Please remove] 104
 14.1. Initial version . 104
 14.2. draft-behringer-anima-autonomic-control-plane-00 104
 14.3. draft-behringer-anima-autonomic-control-plane-01 104
 14.4. draft-behringer-anima-autonomic-control-plane-02 104
 14.5. draft-behringer-anima-autonomic-control-plane-03 104
 14.6. draft-ietf-anima-autonomic-control-plane-00 105
 14.7. draft-ietf-anima-autonomic-control-plane-01 105
 14.8. draft-ietf-anima-autonomic-control-plane-02 106
 14.9. draft-ietf-anima-autonomic-control-plane-03 106
 14.10. draft-ietf-anima-autonomic-control-plane-04 106
 14.11. draft-ietf-anima-autonomic-control-plane-05 107
 14.12. draft-ietf-anima-autonomic-control-plane-06 107

Eckert, et al. Expires September 12, 2019 [Page 4]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 14.13. draft-ietf-anima-autonomic-control-plane-07 108
 14.14. draft-ietf-anima-autonomic-control-plane-08 109
 14.15. draft-ietf-anima-autonomic-control-plane-09 111
 14.16. draft-ietf-anima-autonomic-control-plane-10 113
 14.17. draft-ietf-anima-autonomic-control-plane-11 115
 14.18. draft-ietf-anima-autonomic-control-plane-12 115
 14.19. draft-ietf-anima-autonomic-control-plane-13 116
 14.20. draft-ietf-anima-autonomic-control-plane-14 118
 14.21. draft-ietf-anima-autonomic-control-plane-15 122
 14.22. draft-ietf-anima-autonomic-control-plane-16 123
 14.23. draft-ietf-anima-autonomic-control-plane-17 123
 14.24. draft-ietf-anima-autonomic-control-plane-18 125
 14.25. draft-ietf-anima-autonomic-control-plane-19 125
 14.26. Open Issues in -19 128
 15. References . 128
 15.1. Normative References 128
 15.2. Informative References 130
 15.3. URIs . 137
 Appendix A. Background and Futures (Informative) 137
 A.1. ACP Address Space Schemes 137
 A.2. BRSKI Bootstrap (ANI) 138
 A.3. ACP Neighbor discovery protocol selection 139
 A.3.1. LLDP . 139
 A.3.2. mDNS and L2 support 139
 A.3.3. Why DULL GRASP 140
 A.4. Choice of routing protocol (RPL) 140
 A.5. ACP Information Distribution and multicast 142
 A.6. Extending ACP channel negotiation (via GRASP) 143
 A.7. CAs, domains and routing subdomains 144
 A.8. Intent for the ACP 145
 A.9. Adopting ACP concepts for other environments 146
 A.10. Further options / futures 148
 A.10.1. Auto-aggregation of routes 148
 A.10.2. More options for avoiding IPv6 Data-Plane dependency 149
 A.10.3. ACP APIs and operational models (YANG) 149
 A.10.4. RPL enhancements 149
 A.10.5. Role assignments 150
 A.10.6. Autonomic L3 transit 151
 A.10.7. Diagnostics . 151
 A.10.8. Avoiding and dealing with compromised ACP nodes . . 151
 Authors’ Addresses . 153

1. Introduction (Informative)

 Autonomic Networking is a concept of self-management: Autonomic
 functions self-configure, and negotiate parameters and settings
 across the network. [RFC7575] defines the fundamental ideas and
 design goals of Autonomic Networking. A gap analysis of Autonomic

Eckert, et al. Expires September 12, 2019 [Page 5]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Networking is given in [RFC7576]. The reference architecture for
 Autonomic Networking in the IETF is specified in the document
 [I-D.ietf-anima-reference-model].

 Autonomic functions need an autonomically built communications
 infrastructure. This infrastructure needs to be secure, resilient
 and re-usable by all autonomic functions. Section 5 of [RFC7575]
 introduces that infrastructure and calls it the Autonomic Control
 Plane (ACP). More descriptively it would be the "Autonomic
 communications infrastructure for Management and Control". For
 naming consistency with that prior document, this document continues
 to use the name ACP though.

 Today, the management and control plane of networks typically uses a
 routing and forwarding table which is dependent on correct
 configuration and routing. Misconfigurations or routing problems can
 disrupt management and control channels. Traditionally, an out-of-
 band network has been used to avoid or allow recovery from such
 problems, or personnel are sent on site to access devices through
 out-of-band management ports (also called craft ports, serial
 console, management ethernet port). However, both options are
 expensive.

 In increasingly automated networks either centralized management
 systems or distributed autonomic service agents in the network
 require a control plane which is independent of the configuration of
 the network they manage, to avoid impacting their own operations
 through the configuration actions they take.

 This document describes a modular design for a self-forming, self-
 managing and self-protecting Autonomic Control Plane (ACP), which is
 a virtual in-band network designed to be as independent as possible
 of configuration, addressing and routing problems. The details how
 this is achieved are described in Section 6. The ACP is designed to
 remain operational even in the presence of configuration errors,
 addressing or routing issues, or where policy could inadvertently
 affect connectivity of both data packets or control packets.

 This document uses the term "Data-Plane" to refer to anything in the
 network nodes that is not the ACP, and therefore considered to be
 dependent on (mis-)configuration. This Data-Plane includes both the
 traditional forwarding-plane, as well as any pre-existing control-
 plane, such as routing protocols that establish routing tables for
 the forwarding plane.

 The Autonomic Control Plane serves several purposes at the same time:

Eckert, et al. Expires September 12, 2019 [Page 6]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 1. Autonomic functions communicate over the ACP. The ACP therefore
 directly supports Autonomic Networking functions, as described in
 [I-D.ietf-anima-reference-model]. For example, Generic Autonomic
 Signaling Protocol (GRASP - [I-D.ietf-anima-grasp]) runs securely
 inside the ACP and depends on the ACP as its "security and
 transport substrate".

 2. A controller or network management system can use it to securely
 bootstrap network devices in remote locations, even if the (Data-
 Plane) network in between is not yet configured; no Data-Plane
 dependent bootstrap configuration is required. An example of
 such a secure bootstrap process is described in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 3. An operator can use it to log into remote devices, even if the
 network is misconfigured or not configured.

 This document describes these purposes as use cases for the ACP in
 Section 3, it defines the requirements in Section 4. Section 5 gives
 an overview how the ACP is constructed.

 The normative part of this document starts with Section 6, where the
 ACP is specified. Section 7 defines normative how to support ACP on
 L2 switches. Section 8 explains normative how non-ACP nodes and
 networks can be integrated.

 The remaining sections are non-normative: Section 9 reviews benefits
 of the ACP (after all the details have been defined), Section 10
 provides operational recommendations, Appendix A provides additional
 explanations and describes additional details or future standard or
 propriety extensions that were considered not to be appropriate for
 standardization in this document but were considered important to
 document. There are no dependencies against Appendix A to build a
 complete working and interoperable ACP according to this document.

 The ACP provides secure IPv6 connectivity, therefore it can be used
 not only as the secure connectivity for self-management as required
 for the ACP in [RFC7575], but it can also be used as the secure
 connectivity for traditional (centralized) management. The ACP can
 be implemented and operated without any other components of autonomic
 networks, except for the GRASP protocol. ACP relies on per-link DULL
 GRASP (see Section 6.3) to autodiscover ACP neighbors, and includes
 the ACP GRASP instance to provide service discovery for clients of
 the ACP (see Section 6.8) including for its own maintenance of ACP
 certificates.

 The document "Using Autonomic Control Plane for Stable Connectivity
 of Network OAM" [RFC8368] describes how the ACP alone can be used to

Eckert, et al. Expires September 12, 2019 [Page 7]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 provide secure and stable connectivity for autonomic and non-
 autonomic Operations Administration and Management (OAM)
 applications. That document also explains how existing management
 solutions can leverage the ACP in parallel with traditional
 management models, when to use the ACP and how to integrate with
 potentially IPv4 only OAM backends.

 Combining ACP with Bootstrapping Remote Secure Key Infrastructures
 (BRSKI), see [I-D.ietf-anima-bootstrapping-keyinfra]) results in the
 "Autonomic Network Infrastructure" as defined in
 [I-D.ietf-anima-reference-model], which provides autonomic
 connectivity (from ACP) with fully secure zero-touch (automated)
 bootstrap from BRSKI. The ANI itself does not constitute an
 Autonomic Network, but it allows the building of more or less
 autonomic networks on top of it - using either centralized, Software
 Defined Networking- (SDN-)style (see [RFC7426]) automation or
 distributed automation via Autonomic Service Agents (ASA) / Autonomic
 Functions (AF) - or a mixture of both. See
 [I-D.ietf-anima-reference-model] for more information.

1.1. Applicability and Scope

 Please see the following Terminology section (Section 2) for
 explanations of terms used in this section.

 The design of the ACP as defined in this document is considered to be
 applicable to all types of "professionally managed" networks: Service
 Provider, Local Area Network (LAN), Metro(politan networks), Wide
 Area Network (WAN), Enterprise Information Technology (IT) and
 ->"Operational Technology" () (OT) networks. The ACP can operate
 equally on layer 3 equipment and on layer 2 equipment such as bridges
 (see Section 7). The hop-by-hop authentication and confidentiality
 mechanism used by the ACP is defined to be negotiable, therefore it
 can be extended to environments with different protocol preferences.
 The minimum implementation requirements in this document attempt to
 achieve maximum interoperability by requiring support for multiple
 options depending on the type of device: IPsec, see [RFC4301], and
 datagram Transport Layer Security version 1.2 (DTLS), see [RFC6347]).

 The implementation footprint of the ACP consists of Public Key
 Infrastructure (PKI) code for the ACP certificate, the GRASP
 protocol, UDP, TCP and TLS (for security and reliability of GRASP),
 the ACP secure channel protocol used (such as IPsec or DTLS), and an
 instance of IPv6 packet forwarding and routing via the Routing
 Protocol for Low-power and Lossy Networks (RPL), see [RFC6550], that
 is separate from routing and forwarding for the Data-Plane (user
 traffic).

Eckert, et al. Expires September 12, 2019 [Page 8]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP uses only IPv6 to avoid complexity of dual-stack ACP
 operations (IPv6/IPv4). Nevertheless, it can without any changes be
 integrated into even otherwise IPv4-only network devices. The Data-
 Plane itself would not need to change, it could continue to be IPv4
 only. For such IPv4 only devices, the IPv6 protocol itself would be
 additional implementation footprint only used for the ACP.

 The protocol choices of the ACP are primarily based on wide use and
 support in networks and devices, well understood security properties
 and required scalability. The ACP design is an attempt to produce
 the lowest risk combination of existing technologies and protocols to
 build a widely applicable operational network management solution:

 RPL was chosen because it requires a smaller routing table footprint
 in large networks compared to other routing protocols with an
 autonomically configured single area. The deployment experience of
 large scale Internet of Things (IoT) networks serves as the basis for
 wide deployment experience with RPL. The profile chosen for RPL in
 the ACP does not leverage any RPL specific forwarding plane features
 (IPv6 extension headers), making its implementation a pure control
 plane software requirement.

 GRASP is the only completely novel protocol used in the ACP, and this
 choice was necessary because there is no existing suitable protocol
 to provide the necessary functions to the ACP, so GRASP was developed
 to fill that gap.

 The ACP design can be applicable to (cpu, memory) constrained devices
 and (bitrate, reliability) constrained networks, but this document
 does not attempt to define the most constrained type of devices or
 networks to which the ACP is applicable. RPL and DTLS for ACP secure
 channels are two protocol choices already making ACP more applicable
 to constrained environments. Support for constrained devices in this
 specification is opportunistic, but not complete, because the
 reliable transport for GRASP (see Section 6.8.2) only specifies TCP/
 TLS). See Appendix A.9 for discussions about how future standards or
 proprietary extensions/variations of the ACP could better meet
 different expectations from those on which the current design is
 based including supporting constrained devices better.

2. Acronyms and Terminology (Informative)

 [RFC Editor: WG/IETF/IESG review of the terms below asked for
 references between these terms when they refer to each other. The
 only option I could fin RFC/XML to point to a hanging text acronym
 definition that also displays the actual term is the format="title"
 version, which leads to references such as ’->"ACP domain
 certificate" ()’. I found no reasonable way to eliminate the

Eckert, et al. Expires September 12, 2019 [Page 9]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 trailing ’()’ generated by this type of cross references. Can you
 please take care of removing these artefacts during editing (after
 conversion to nroff ?). I also created a ticket to ask for an
 xml2rfc enhancement to avoid this in the future:
 https://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/347.

 [RFC Editor: Question: Is it possible to change the first occurrences
 of [RFCxxxx] references to "rfcxxx title" [RFCxxxx]? the XML2RFC
 format does not seem to offer such a format, but I did not want to
 duplicate 50 first references - one reference for title mentioning
 and one for RFC number.]

 In the rest of the document we will refer to systems using the ACP as
 "nodes". Typically such a node is a physical (network equipment)
 device, but it can equally be some virtualized system. Therefore, we
 do not refer to them as devices unless the context specifically calls
 for a physical system.

 This document introduces or uses the following terms (sorted
 alphabetically). Terms introduced are explained on first use, so
 this list is for reference only.

 ACP: "Autonomic Control Plane". The Autonomic Function as defined
 in this document. It provides secure zero-touch (automated)
 transitive (network wide) IPv6 connectivity for all nodes in the
 same ACP domain as well as a GRASP instance running across this
 ACP IPv6 connectivity. The ACP is primarily meant to be used as a
 component of the ANI to enable Autonomic Networks but it can
 equally be used in simple ANI networks (with no other Autonomic
 Functions) or completely by itself.

 ACP address: An IPv6 address assigned to the ACP node. It is stored
 in the domain information field of the ->"ACP domain certificate"
 ().

 ACP address range/set: The ACP address may imply a range or set of
 addresses that the node can assign for different purposes. This
 address range/set is derived by the node from the format of the
 ACP address called the "addressing sub-scheme".

 ACP connect interface: An interface on an ACP node providing access
 to the ACP for non ACP capable nodes without using an ACP secure
 channel. See Section 8.1.1.

 ACP domain: The ACP domain is the set of nodes with ->"ACP domain
 certificates" that allow them to authenticate each other as
 members of the ACP domain. See also Section 6.1.2.

Eckert, et al. Expires September 12, 2019 [Page 10]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 ACP (ANI/AN) Domain Certificate: A provisioned [RFC5280] certificate
 (LDevID) carrying the domain information field which is used by
 the ACP to learn its address in the ACP and to derive and
 cryptographically assert its membership in the ACP domain.

 domain information (field): An rfc822Name information element (e.g.,
 field) in the domain certificate in which the ACP relevant
 information is encoded: the domain name and the ACP address.

 ACP Loopback interface: The Loopback interface in the ACP Virtual
 Routing and Forwarding (VRF) that has the ACP address assigned to
 it.

 ACP network: The ACP network constitutes all the nodes that have
 access to the ACP. It is the set of active and transitively
 connected nodes of an ACP domain plus all nodes that get access to
 the ACP of that domain via ACP edge nodes.

 ACP (ULA) prefix(es): The /48 IPv6 address prefixes used across the
 ACP. In the normal/simple case, the ACP has one ULA prefix, see
 Section 6.10. The ACP routing table may include multiple ULA
 prefixes if the "rsub" option is used to create addresses from
 more than one ULA prefix. See Section 6.1.1. The ACP may also
 include non-ULA prefixes if those are configured on ACP connect
 interfaces. See Section 8.1.1.

 ACP secure channel: A cryptographically authenticated and encrypted
 data connection established between (normally) adjacent ACP nodes
 to carry traffic of the ACP VRF secure and isolated from Data-
 Plane traffic in-band over the same link/path as the Data-Plane.

 ACP secure channel protocol: The protocol used to build an ACP
 secure channel, e.g., Internet Key Exchange Protocol version 2
 (IKEv2) with IPsec or Datagram Transport Layer Security (DTLS).

 ACP virtual interface: An interface in the ACP VRF mapped to one or
 more ACP secure channels. See Section 6.12.5.

 AN "Autonomic Network": A network according to
 [I-D.ietf-anima-reference-model]. Its main components are ANI,
 Autonomic Functions and Intent.

 (AN) Domain Name: An FQDN (Fully Qualified Domain Name) in the
 domain information field of the Domain Certificate. See
 Section 6.1.1.

 ANI (nodes/network): "Autonomic Network Infrastructure". The ANI is
 the infrastructure to enable Autonomic Networks. It includes ACP,

Eckert, et al. Expires September 12, 2019 [Page 11]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 BRSKI and GRASP. Every Autonomic Network includes the ANI, but
 not every ANI network needs to include autonomic functions beyond
 the ANI (nor Intent). An ANI network without further autonomic
 functions can for example support secure zero-touch (automated)
 bootstrap and stable connectivity for SDN networks - see
 [RFC8368].

 ANIMA: "Autonomic Networking Integrated Model and Approach". ACP,
 BRSKI and GRASP are products of the IETF ANIMA working group.

 ASA: "Autonomic Service Agent". Autonomic software modules running
 on an ANI device. The components making up the ANI (BRSKI, ACP,
 GRASP) are also described as ASAs.

 Autonomic Function: A function/service in an Autonomic Network (AN)
 composed of one or more ASA across one or more ANI nodes.

 BRSKI: "Bootstrapping Remote Secure Key Infrastructures"
 ([I-D.ietf-anima-bootstrapping-keyinfra]. A protocol extending
 EST to enable secure zero-touch bootstrap in conjunction with ACP.
 ANI nodes use ACP, BRSKI and GRASP.

 Data-Plane: The counterpoint to the ACP VRF in an ACP node: all
 routing and forwarding in the node other than the ACP VRF. In a
 simple ACP or ANI node, the Data-Plane is typically provisioned by
 means other than autonomically, for example manually (including
 across the ACP) or via SDN controllers. In a fully Autonomic
 Network node, the Data-Plane is managed autonomically via
 Autonomic Functions and Intent. Note that other (non-ANIMA) RFCs
 use the Data-Plane to refer to what is better called the
 forwarding plane. This is not the way the term is used in this
 document!

 device: A physical system, or physical node.

 Enrollment: The process where a node presents identification (for
 example through keying material such as the private key of an
 IDevID) to a network and acquires a network specific identity and
 trust anchor such as an LDevID.

 EST: "Enrollment over Secure Transport" ([RFC7030]). IETF standard-
 track protocol for enrollment of a node with an LDevID. BRSKI is
 based on EST.

 GRASP: "Generic Autonomic Signaling Protocol". An extensible
 signaling protocol required by the ACP for ACP neighbor discovery.

Eckert, et al. Expires September 12, 2019 [Page 12]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP also provides the "security and transport substrate" for
 the "ACP instance of GRASP". This instance of GRASP runs across
 the ACP secure channels to support BRSKI and other NOC/OAM or
 Autonomic Functions. See [I-D.ietf-anima-grasp].

 IDevID: An "Initial Device IDentity" X.509 certificate installed by
 the vendor on new equipment. Contains information that
 establishes the identity of the node in the context of its vendor/
 manufacturer such as device model/type and serial number. See
 [AR8021]. IDevID cannot be used for the ACP because they are not
 provisioned by the owner of the network, so they can not directly
 indicate an ACP domain they belong to.

 in-band (management): The type of management used predominantly in
 IP based networks, not leveraging an ->"out-of-band network" ().
 In in-band management, access to the managed equipment depends on
 the configuration of this equipment itself: interface, addressing,
 forwarding, routing, policy, security, management. This
 dependency makes in-band management fragile because the
 configuration actions performed may break in-band management
 connectivity. Breakage can not only be unintentional, it can
 simply be an unavoidable side effect of being unable to create
 configuration schemes where in-band management connectivity
 configuration is unaffected by Data-Plane configuration. See also
 ->"(virtual) out-of-band network" ().

 Intent: Policy language of an autonomic network according to
 [I-D.ietf-anima-reference-model].

 Loopback interface: The conventional name for an internal IP
 interface to which addresses may be assigned, but which transmits
 no external traffic.

 LDevID: A "Local Device IDentity" is an X.509 certificate installed
 during "enrollment". The Domain Certificate used by the ACP is an
 LDevID. See [AR8021].

 MIC: "Manufacturer Installed Certificate". Another word not used in
 this document to describe an IDevID.

 native interface: Interfaces existing on a node without
 configuration of the already running node. On physical nodes
 these are usually physical interfaces. On virtual nodes their
 equivalent.

 node: A system, e.g., supporting the ACP according to this document.
 Can be virtual or physical. Physical nodes are called devices.

Eckert, et al. Expires September 12, 2019 [Page 13]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Node-ID: The identifier of an ACP node inside that ACP. It is the
 last 64 (see Section 6.10.3) or 78-bits (see Section 6.10.5) of
 the ACP address.

 Operational Technology (OT): "https://en.wikipedia.org/wiki/
 Operational_Technology" [1]: "The hardware and software dedicated
 to detecting or causing changes in physical processes through
 direct monitoring and/or control of physical devices such as
 valves, pumps, etc.". OT networks are today in most cases well
 separated from Information Technology (IT) networks.

 (virtual) out-of-band network: An out-of-band network is a secondary
 network used to manage a primary network. The equipment of the
 primary network is connected to the out-of-band network via
 dedicated management ports on the primary network equipment.
 Serial (console) management ports were historically most common,
 higher end network equipment now also has ethernet ports dedicated
 only for management. An out-of-band network provides management
 access to the primary network independent of the configuration
 state of the primary network. One of the goals of the ACP is to
 provide this benefit of out-of-band networks virtually on the
 primary network equipment. The ACP VRF acts as a virtual out of
 band network device providing configuration independent management
 access. The ACP secure channels are the virtual links of the ACP
 virtual out-of-band network, meant to be operating independent of
 the configuration of the primary network. See also ->"in-band
 (management)" ().

 RPL: "IPv6 Routing Protocol for Low-Power and Lossy Networks". The
 routing protocol used in the ACP. See [RFC6550].

 MASA (service): "Manufacturer Authorized Signing Authority". A
 vendor/manufacturer or delegated cloud service on the Internet
 used as part of the BRSKI protocol.

 (ACP/ANI/BRSKI) Registrar: An ACP registrar is an entity (software
 and/or person) that is orchestrating the enrollment of ACP nodes
 with the ACP domain certificate. ANI nodes use BRSKI, so ANI
 registrars are also called BRSKI registrars. For non-ANI ACP
 nodes, the registrar mechanisms are undefined by this document.
 See Section 6.10.7. Renewal and other maintenance (such as
 revocation) of ACP domain certificates may be performed by other
 entities than registrars. EST must be supported for ACP domain
 certificate renewal (see Section 6.1.4). BRSKI is an extension of
 EST, so ANI/BRSKI registrars can easily support ACP domain
 certificate renewal in addition to initial enrollment.

Eckert, et al. Expires September 12, 2019 [Page 14]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 sUDI: "secured Unique Device Identifier". Another term not used in
 this document to refer to an IDevID.

 UDI: "Unique Device Identifier". In the context of this document
 unsecured identity information of a node typically consisting of
 at least device model/type and serial number, often in a vendor
 specific format. See sUDI and LDevID.

 ULA: (Global ID prefix) A "Unique Local Address" (ULA) is an IPv6
 address in the block fc00::/7, defined in [RFC4193]. It is the
 approximate IPv6 counterpart of the IPv4 private address
 ([RFC1918]). The ULA Global ID prefix are the first 48-bits of a
 ULA address. In this document it is abbreviated as "ULA prefix".

 (ACP) VRF: The ACP is modeled in this document as a "Virtual Routing
 and Forwarding" instance (VRF). This means that it is based on a
 "virtual router" consisting of a separate IPv6 forwarding table to
 which the ACP virtual interfaces are attached and an associated
 IPv6 routing table separate from the Data-Plane. Unlike the VRFs
 on MPLS/VPN-PE ([RFC4364]) or LISP XTR ([RFC6830]), the ACP VRF
 does not have any special "core facing" functionality or routing/
 mapping protocols shared across multiple VRFs. In vendor products
 a VRF such as the ACP-VRF may also be referred to as a so called
 VRF-lite.

 (ACP) Zone: An ACP zone is a set of ACP nodes using the same zone
 field value in their ACP address according to Section 6.10.3.
 Zones are a mechanism to support structured addressing of ACP
 addresses within the same /48-bit ULA prefix.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119],[RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Use Cases for an Autonomic Control Plane (Informative)

3.1. An Infrastructure for Autonomic Functions

 Autonomic Functions need a stable infrastructure to run on, and all
 autonomic functions should use the same infrastructure to minimize
 the complexity of the network. In this way, there is only need for a
 single discovery mechanism, a single security mechanism, and single
 instances of other processes that distributed functions require.

Eckert, et al. Expires September 12, 2019 [Page 15]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

3.2. Secure Bootstrap over a not configured Network

 Today, bootstrapping a new node typically requires all nodes between
 a controlling node such as an SDN controller ("Software Defined
 Networking", see [RFC7426]) and the new node to be completely and
 correctly addressed, configured and secured. Bootstrapping and
 configuration of a network happens in rings around the controller -
 configuring each ring of devices before the next one can be
 bootstrapped. Without console access (for example through an out-of-
 band network) it is not possible today to make devices securely
 reachable before having configured the entire network leading up to
 them.

 With the ACP, secure bootstrap of new devices and whole new networks
 can happen without requiring any configuration of unconfigured
 devices along the path: As long as all devices along the path support
 ACP and a zero-touch bootstrap mechanism such as BRSKI, the ACP
 across a whole network of unconfigured devices can be brought up
 without operator/provisioning intervention. The ACP also provides
 additional security for any bootstrap mechanism, because it can
 provide encrypted discovery (via ACP GRASP) of registrars or other
 bootstrap servers by bootstrap proxies connecting to nodes that are
 to be bootstrapped and the ACP encryption hides the identities of the
 communicating entities (pledge and registrar), making it more
 difficult to learn which network node might be attackable. The ACP
 domain certificate can also be used to end-to-end encrypt the
 bootstrap communication between such proxies and server. Note that
 bootstrapping here includes not only the first step that can be
 provided by BRSKI (secure keys), but also later stages where
 configuration is bootstrapped.

3.3. Data-Plane Independent Permanent Reachability

 Today, most critical control plane protocols and network management
 protocols are using the Data-Plane of the network. This leads to
 often undesirable dependencies between control and management plane
 on one side and the Data-Plane on the other: Only if the forwarding
 and control plane of the Data-Plane are configured correctly, will
 the Data-Plane and the management plane work as expected.

 Data-Plane connectivity can be affected by errors and faults, for
 example misconfigurations that make AAA (Authentication,
 Authorization and Accounting) servers unreachable or can lock an
 administrator out of a device; routing or addressing issues can make
 a device unreachable; shutting down interfaces over which a current
 management session is running can lock an admin irreversibly out of
 the device. Traditionally only out-of-band access can help recover

Eckert, et al. Expires September 12, 2019 [Page 16]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 from such issues (such as serial console or ethernet management
 port).

 Data-Plane dependencies also affect applications in a Network
 Operations Center (NOC) such as SDN controller applications: Certain
 network changes are today hard to implement, because the change
 itself may affect reachability of the devices. Examples are address
 or mask changes, routing changes, or security policies. Today such
 changes require precise hop-by-hop planning.

 Note that specific control plane functions for the Data-Plane often
 want to depend on forwarding of their packets via the Data-Plane:
 Aliveness and routing protocol signaling packets across the Data-
 Plane to verify reachability across the Data-Plane, using IPv4
 signaling packets for IPv4 routing vs. IPv6 signaling packets for
 IPv6 routing.

 Assuming appropriate implementation (see Section 6.12.2 for more
 details), the ACP provides reachability that is independent of the
 Data-Plane. This allows the control plane and management plane to
 operate more robustly:

 o For management plane protocols, the ACP provides the functionality
 of a Virtual out-of-band (VooB) channel, by providing connectivity
 to all nodes regardless of their Data-Plane configuration, routing
 and forwarding tables.

 o For control plane protocols, the ACP allows their operation even
 when the Data-Plane is temporarily faulty, or during transitional
 events, such as routing changes, which may affect the control
 plane at least temporarily. This is specifically important for
 autonomic service agents, which could affect Data-Plane
 connectivity.

 The document "Using Autonomic Control Plane for Stable Connectivity
 of Network OAM" [RFC8368] explains this use case for the ACP in
 significantly more detail and explains how the ACP can be used in
 practical network operations.

4. Requirements (Informative)

 The following requirements were identified for the design of the ACP
 based on the above use-cases (Section 3). These requirements are
 informative. The ACP as specified in the normative parts of this
 document is meeting or exceeding these use-case requirements:

 ACP1: The ACP should provide robust connectivity: As far as
 possible, it should be independent of configured addressing,

Eckert, et al. Expires September 12, 2019 [Page 17]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 configuration and routing. Requirements 2 and 3 build on this
 requirement, but also have value on their own.

 ACP2: The ACP must have a separate address space from the Data-
 Plane. Reason: traceability, debug-ability, separation from
 Data-Plane, infrastructure security (filtering based on known
 address space).

 ACP3: The ACP must use autonomically managed address space. Reason:
 easy bootstrap and setup ("autonomic"); robustness (admin
 cannot break network easily). This document suggests using
 ULA addressing for this purpose ("Unique Local Address", see
 [RFC4193]).

 ACP4: The ACP must be generic, that is it must be usable by all the
 functions and protocols of the ANI. Clients of the ACP must
 not be tied to a particular application or transport protocol.

 ACP5: The ACP must provide security: Messages coming through the ACP
 must be authenticated to be from a trusted node, and should
 (very strong should) be encrypted.

 Explanation for ACP4: In a fully autonomic network (AN), newly
 written ASA could potentially all communicate exclusively via GRASP
 with each other, and if that was assumed to be the only requirement
 against the ACP, it would not need to provide IPv6 layer connectivity
 between nodes, but only GRASP connectivity. Nevertheless, because
 ACP also intends to support non-AN networks, it is crucial to support
 IPv6 layer connectivity across the ACP to support any transport and
 application layer protocols.

 The ACP operates hop-by-hop, because this interaction can be built on
 IPv6 link local addressing, which is autonomic, and has no dependency
 on configuration (requirement 1). It may be necessary to have ACP
 connectivity across non-ACP nodes, for example to link ACP nodes over
 the general Internet. This is possible, but introduces a dependency
 against stable/resilient routing over the non-ACP hops (see
 Section 8.2).

5. Overview (Informative)

 The Autonomic Control Plane is constructed in the following way (for
 details, see Section 6):

 1. An ACP node creates a Virtual Routing and Forwarding (VRF)
 instance, or a similar virtual context.

Eckert, et al. Expires September 12, 2019 [Page 18]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 2. It determines, following a policy, a candidate peer list. This
 is the list of nodes to which it should establish an Autonomic
 Control Plane. Default policy is: To all link-layer adjacent
 nodes supporting ACP.

 3. For each node in the candidate peer list, it authenticates that
 node (according to Section 6.1.2) and negotiates a mutually
 acceptable channel type.

 4. For each node in the candidate peer list, it then establishes a
 secure tunnel of the negotiated type. The resulting tunnels are
 then placed into the previously set up VRF. This creates an
 overlay network with hop-by-hop tunnels.

 5. Inside the ACP VRF, each node assigns its ULA IPv6 address to a
 Loopback interface assigned to the ACP VRF.

 6. Each node runs a lightweight routing protocol, to announce
 reachability of the virtual addresses inside the ACP (see
 Section 6.12.5).

 Note:

 o Non-autonomic NMS ("Network Management Systems") or SDN
 controllers have to be explicitly configured for connection into
 the ACP.

 o Connecting over non-ACP Layer-3 clouds requires explicit
 configuration. See Section 8.2.

 o None of the above operations (except explicit configured ones) are
 reflected in the configuration of the node.

 The following figure illustrates the ACP.

Eckert, et al. Expires September 12, 2019 [Page 19]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 ACP node 1 ACP node 2

 secure . . secure . . secure
 channel: +-----------+ : channel : +-----------+ : channel
 ..--------| ACP VRF |---------------------| ACP VRF |---------..
 : / \ / \ <--routing--> / \ / \ :
 : \ / \ / \ / \ / :
 ..--------| Loopback |---------------------| Loopback |---------..
 : | interface | : : | interface | :
 : +-----------+ : : +-----------+ :
 : : : :
 : Data-Plane :...............: Data-Plane :
 : : link : :
 :.................: :.................:

 Figure 1: ACP VRF and secure channels

 The resulting overlay network is normally based exclusively on hop-
 by-hop tunnels. This is because addressing used on links is IPv6
 link local addressing, which does not require any prior set-up. In
 this way the ACP can be built even if there is no configuration on
 the node, or if the Data-Plane has issues such as addressing or
 routing problems.

6. Self-Creation of an Autonomic Control Plane (ACP) (Normative)

 This section describes the components and steps to set up an
 Autonomic Control Plane (ACP), and highlights the key properties
 which make it "indestructible" against many inadvertent changes to
 the Data-Plane, for example caused by misconfigurations.

 An ACP node can be a router, switch, controller, NMS host, or any
 other IP capable node. Initially, it must have it’s ACP domain
 certificate, as well as an (empty) ACP Adjacency Table (described in
 Section 6.2). It then can start to discover ACP neighbors and build
 the ACP. This is described step by step in the following sections:

6.1. ACP Domain, Certificate and Network

 The ACP relies on group security. An ACP domain is a group of nodes
 that trust each other to participate in ACP operations. To establish
 trust, each ACP member requires keying material: An ACP node MUST
 have a certificate (LDevID) and a Trust Anchor (TA) consisting of a
 certificate (chain) used to sign the LDevID of all ACP domain
 members. The LDevID is used to cryptographically authenticate the
 membership of its owner node in the ACP domain to other ACP domain
 members, the TA is used to authenticate the ACP domain membership of
 other nodes (see Section 6.1.2).

Eckert, et al. Expires September 12, 2019 [Page 20]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The LDevID is called the ACP domain certificate, the TA is the
 Certificate Authority (CA) of the ACP domain.

 The ACP does not mandate specific mechanisms by which this keying
 material is provisioned into the ACP node, it only requires the
 Domain information field as specified in Section 6.1.1 in its domain
 certificate as well as those of candidate ACP peers. See
 Appendix A.2 for more information about enrollment or provisioning
 options.

 This document uses the term ACP in many places where the Autonomic
 Networking reference documents [RFC7575] and
 [I-D.ietf-anima-reference-model] use the word autonomic. This is
 done because those reference documents consider (only) fully
 autonomic networks and nodes, but support of ACP does not require
 support for other components of autonomic networks. Therefore the
 word autonomic might be misleading to operators interested in only
 the ACP.

 [RFC7575] defines the term "Autonomic Domain" as a collection of
 autonomic nodes. ACP nodes do not need to be fully autonomic, but
 when they are, then the ACP domain is an autonomic domain. Likewise,
 [I-D.ietf-anima-reference-model] defines the term "Domain
 Certificate" as the certificate used in an autonomic domain. The ACP
 domain certificate is that domain certificate when ACP nodes are
 (fully) autonomic nodes. Finally, this document uses the term ACP
 network to refer to the network created by active ACP nodes in an ACP
 domain. The ACP network itself can extend beyond ACP nodes through
 the mechanisms described in Section 8.1.

 The ACP domain certificate SHOULD be used for any authentication
 between nodes with ACP domain certificates (ACP nodes and NOC nodes)
 where the required condition is ACP domain membership, such as ACP
 node to NOC/OAM end-to-end security and ASA to ASA end-to-end
 security. Section 6.1.2 defines this "ACP domain membership check".
 The uses of this check that are standardized in this document are for
 the establishment of ACP secure channels (Section 6.6) and for ACP
 GRASP (Section 6.8.2).

6.1.1. Certificate ACP Domain Information Field

 Information about the domain MUST be encoded in the domain
 certificate in a subjectAltName / rfc822Name field according to the
 following ABNF definition ([RFC5234]):

 [RFC Editor: Please substitute SELF in all occurrences of rfcSELF in
 this document with the RFC number assigned to this document and
 remove this comment line]

Eckert, et al. Expires September 12, 2019 [Page 21]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 domain-information = local-part "@" acp-domain-name
 local-part = key ["." local-info]
 key = "rfcSELF"
 local-info = [acp-address] ["+" rsub extensions]
 acp-address = 32hex-dig | 0
 hex-dig = DIGIT / "a" / "b" / "c" / "d" / "e" / "f"
 rsub = [<subdomain>] ; <subdomain> as of RFC1034, section 3.5
 routing-subdomain = [rsub "."] acp-domain-name
 acp-domain-name = ; <domain> ; as of RFC 1034, section 3.5
 extensions = *("+" extension)
 extension = ; future standard definition.
 ; Must fit RFC5322 simple dot-atom format.

 Example:
 domain-information = rfcSELF+fd89b714f3db00000200000064000000
 +area51.research@acp.example.com
 acp-domain-name = acp.example.com
 routing-subdomain = area51.research.acp.example.com

 Figure 2: ACP Domain Information Field ABNF

 Nodes complying with this specification MUST be able to receive their
 ACP address through the domain certificate, in which case their own
 ACP domain certificate MUST have the 32hex-dig "acp-address" field.
 Nodes complying with this specification MUST also be able to
 authenticate nodes as ACP domain members / ACP secure channel peers
 when they have an empty or 0-value acp-address field. See
 Section 6.1.2.

 "acp-domain-name" is used to indicate the ACP Domain across which all
 ACP nodes trust each other and are willing to build ACP channels to
 each other. See Section 6.1.2. Acp-domain-name SHOULD be the FQDN
 of a DNS domain owned by the operator assigning the certificate.
 This is a simple method to ensure that the domain is globally unique
 and collision of ACP addresses would therefore only happen due to ULA
 hash collisions (see Section 6.10.2). If the operator does not own
 any FQDN, it should choose a string (in FQDN format) that it intends
 to be equally unique.

 "routing-subdomain" is the autonomic subdomain composed of "rsub" and
 "acp-domain-name". "rsub" is optional. When not present, "routing-
 subdomain" is the same as "acp-domain-name". "routing-subdomain"
 determines the /48 ULA prefix for ACP addresses. "rsub" therefore
 allows to use multiple /48 ULA prefixes in an ACP domain. See
 Appendix A.7 for example use-cases.

Eckert, et al. Expires September 12, 2019 [Page 22]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The optional "extensions" field is used for future standardized
 extensions to this specification. It MUST be ignored if present and
 not understood.

 Formatting notes:

 o "rsub" needs to be in the "local-part": If the format just had
 routing-subdomain as the domain part of the domain-information,
 rsub and acp-domain-name could not be separated from each other.
 It also makes acp-domain-name a valid e-mail target across all
 routing-subdomains.

 o "acp-address" cannot use standard IPv6 address formats because it
 must match the simple dot-atom format of [RFC5322]. The character
 ":" is not allowed in that format.

 o If "acp-address" is empty, and "rsub" is empty too, the "local-
 part" will have the format "rfcSELF++extension(s)". The two plus
 characters are necessary so the node can unambiguously parse that
 both "acp-address" and "rsub" are empty.

 o The maximum size of "domain-information" is 254 characters and the
 maximum size of node-info is 64 characters according to [RFC5280]
 that is referring to [RFC2821] (superseded by [RFC5321]).

 The subjectAltName / rfc822Name encoding of the ACP domain name and
 ACP address is used for the following reasons:

 o It should be possible to share the LDevID with other uses beside
 the ACP. Therefore, the information element required for the ACP
 should be encoded so that it minimizes the possibility of creating
 incompatibilities with such other uses.

 o The information for the ACP should not cause incompatibilities
 with any pre-existing ASN.1 software. This eliminates the
 introduction of a novel information element because that could
 require extensions to such pre-existing ASN.1 parsers.

 o subjectAltName / rfc822Name is a pre-existing element that must be
 supported by all existing ASN.1 parsers for LDevID.

 o The element required for the ACP should not be misinterpreted by
 any other uses of the LDevID. If the element used for the ACP is
 interpreted by other uses, the impact should be benign.

 o The element should not require additional ASN.1 en/decoding,
 because it is unclear if all, especially embedded devices

Eckert, et al. Expires September 12, 2019 [Page 23]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 certificate libraries would support extensible ASN.1
 functionality.

 o Using an IP address format encoding could result in non-benign
 misinterpretation of the domain information field; other uses
 unaware of the ACP could try to do something with the ACP address
 that would fail to work correctly. For example, the address could
 be interpreted to be an address of the node which does not belong
 to the ACP VRF.

 o At minimum, both the AN domain name and the non-domain name
 derived part of the ACP address need to be encoded in one or more
 appropriate fields of the certificate, so there are not many
 alternatives with pre-existing fields where the only possible
 conflicts would likely be beneficial.

 o rfc822Name encoding is very flexible. It allows to encode all the
 different fields of information required for the ACP.

 o The format of the rfc822Name is chosen so that an operator can set
 up a mailbox called rfcSELF@<domain> that would receive emails
 sent towards the rfc822Name of any node inside a domain. This is
 possible because in many modern mail systems, components behind a
 "+" character are considered part of a single mailbox. In other
 words, it is not necessary to set up a separate mailbox for every
 ACP node, but only one for the whole domain.

 o In result, if any unexpected use of the ACP addressing information
 in a certificate happens, it is benign and detectable: it would be
 mail to that mailbox.

 See section 4.2.1.6 of [RFC5280] for details on the subjectAltName
 field.

6.1.2. ACP domain membership check

 The following points constitute the ACP domain membership check of a
 candidate peer certificate, independent of the protocol used:

 1: The peer certificate is valid (lifetime).

 2: The peer has proved ownership of the private key associated with
 the certificate’s public key.

 3: The peer’s certificate passes certificate path validation as
 defined in [RFC5280] against one of the Trust Anchors associated
 with the ACP nodes ACP domain certificate (see Section 6.1.3
 below).

Eckert, et al. Expires September 12, 2019 [Page 24]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 4: If the node certificate indicates a Certificate Revocation List
 (CRL) Distribution Point (CDP) ([RFC5280], section 4.2.1.13) or
 Online Certificate Status Protocol (OCSP) responder ([RFC5280],
 section 4.2.2.1), then the peer’s certificate must be valid
 according to those criteria: An OCSP check for the peer’s
 certificate across the ACP must succeed or the peer certificate
 must not be listed in the CRL retrieved from the CDP. This rule
 has to be skipped for ACP secure channel peer authentication when
 the node has no ACP or non-ACP connectivity to retrieve current
 CRL or access an OCSP responder (see below).

 5: The peer’s certificate has a syntactically valid ACP domain
 information field (encoded as subjectAltName / rfc822Name) and the
 acp-domain-name in that peer’s domain information field is the
 same as in this ACP node’s certificate (lowercase normalized).

 When an ACP node learns later via OCSP/CRL that an ACP peers
 certificate for which rule 4 had to be skipped during ACP secure
 channel establishment is invalid, then the ACP secure channel to that
 peer SHOULD be closed even if this peer is the only connectivity to
 access CRL/OCSP. The ACP secure channel connection MUST be retried
 periodically to support the case that the neighbor aquires a new,
 valid certificate.

 Only when checking a candidate peer’s certificate for the purpose of
 establishing an ACP secure channel, one additional check is
 performed:

 6: The candidate peer certificate’s ACP domain information field
 has a non-empty acp-address field (either 32hex-dig or 0,
 according to Figure 2).

 Rule 6 for the establishment of ACP secure channels ensures that they
 will only be built between nodes which indicate through the acp-
 address in their ACP domain certificate the ability and permission by
 the Registrar to participate in ACP secure-channels.

 Nodes with an empty acp-address field can only use their ACP domain
 certificate for non-ACP-secure channel authentication purposes.

 The special value 0 in an ACP certificates acp-address field is used
 for nodes that can and should determine their ACP address through
 other mechanisms than learning it through the acp-address field in
 their ACP domain certificate. These ACP nodes are permitted to
 establish ACP secure channels. Mechanisms for those nodes to
 determine their ACP address are outside the scope of this
 specification.

Eckert, et al. Expires September 12, 2019 [Page 25]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Formally, the ACP domain membership check includes both the
 authentication of the peers certificate (steps 1...4) and a check
 authorizing this node and the peer to establish an ACP connection
 and/or any other secure connection across ACP or data-plane end to
 end. Step 5 authorizes to build any non-ACP secure connection
 between members of the same ACP domain, step 5 and 6 are required to
 build an ACP secure channel. For brevity, the remainder of this
 document refers to this process only as authentication instead of as
 authentication and authorization.

6.1.3. Trust Points and Trust Anchors

 ACP nodes need Trust Point (TP) certificates to perform certificate
 path validation as required by Section 6.1.2, rule 3. Trust Point(s)
 must be provisioned to an ACP node (together with its ACP domain
 certificate) by an ACP Registrar during initial enrolment of a
 candidate ACP node. ACP nodes MUST also support renewal of TPs via
 EST as described below in Section 6.1.4.

 Trust Point is the term used in this document for a certificate
 authority (CA) and its associated set of certificates. Multiple
 certificates are required for a CA to deal with CA certificate
 renewals as explained in Section 4.4 of CMP ([RFC4210]).

 A certificate path is a chain of certificates starting at a self-
 signed certificate of a so called root-CA or Trust Anchor, followed
 by zero or more intermediate Trust Point or sub-CA certificates and
 ending with an ACP certificate. Certificate path validation
 authenticates that the ACP certificate is signed by a Trust Anchor,
 directly or indirectly via one or more intermediate Trust Points.

 Note that different ACP nodes may have different Trust Points and
 even different Trust Anchors in their certificate path, as long as
 the set of Trust Points for all ACP node includes the same set of
 Trust Anchors (usually 1), and each ACP nodes set of Trust Anchors
 includes the intermediate Trust Points for its own ACP domain
 certificate. The protocols through which ACP domain membership check
 rules 1-4 are performed therefore need to support the exchange not
 only of the ACP nodes certificates, but also their intermediate Trust
 Points.

 ACP nodes MUST support for the ACP domain membership check the
 certificate path validation with 0 or 1 intermediate Trust Points.
 They SHOULD support 2 intermediate Trust Points and two Trust Anchors
 (to permit migration to different root-CAs).

 Trust Points for ACP domain certificates must be trusted to sign
 certificates with valid ACP domain information fields only for

Eckert, et al. Expires September 12, 2019 [Page 26]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 trusted ACP registrars of that domain. This can be achieved by using
 Trust Anchors private to the owner of the ACP domain or potentially
 through appropriate contractual agreements between the involved
 parties. Public CA without such obligations and guarantees can not
 be used.

 A single owner can operate multiple independent ACP domains from the
 same set of private trust anchors (CAs) when the ACP Registrars are
 trusted not to permit certificates with incorrect ACP information
 fields to be signed. Such as ACP information with a wrong acp-domain
 field. In this case, CAs can be completely unaware of ACP specifics,
 so that it should be possible to use any existing CA software. When
 ACP Registrars are not to be trusted, the correctness of the ACP
 domain information field for the candidate ACP node has to be
 verified by the CA signing the ACP domain certificate.

6.1.4. Certificate and Trust Point Maintenance

 ACP nodes MUST support renewal of their Certificate and Trust Points
 (TP) via EST ("Enrollment over Secure Transport", see [RFC7030]) and
 MAY support other mechanisms. An ACP network MUST have at least one
 ACP node supporting EST server functionality across the ACP so that
 EST renewal is useable.

 ACP nodes SHOULD be able to remember the EST server from which they
 last renewed their ACP domain certificate and SHOULD provide the
 ability for this remembered EST server to also be set by the ACP
 Registrar (see Section 6.10.7) that initially enrolled the ACP device
 with its ACP domain certificate. When BRSKI (see
 [I-D.ietf-anima-bootstrapping-keyinfra]) is used, the ACP address of
 the BRSKI registrar from the BRSKI TLS connection SHOULD be
 remembered and used for the next renewal via EST if that registrar
 also announces itself as an EST server via GRASP (see next section)
 on its ACP address.

6.1.4.1. GRASP objective for EST server

 ACP nodes that are EST servers MUST announce their service via GRASP
 in the ACP through M_FLOOD messages. See [I-D.ietf-anima-grasp],
 section 2.8.11 for the definition of this message type:

Eckert, et al. Expires September 12, 2019 [Page 27]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Example:

 [M_FLOOD, 12340815, h’fd89b714f3db0000200000064000001’, 210000,
 ["SRV.est", 4, 255],
 [O_IPv6_LOCATOR,
 h’fd89b714f3db0000200000064000001’, TCP, 80]
]

 Figure 3: GRASP SRV.est example

 The formal definition of the objective in Concise data definition
 language (CDDL) (see [I-D.ietf-cbor-cddl]) is as follows:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["SRV.est", objective-flags, loop-count,
 objective-value]

 objective-flags = sync-only ; as in GRASP spec
 sync-only = 4 ; M_FLOOD only requires synchronization
 loop-count = 255 ; recommended
 objective-value = any ; Not used (yet)

 Figure 4: GRASP SRV.est definition

 The objective name "SRV.est" indicates that the objective is an
 [RFC7030] compliant EST server because "est" is an [RFC6335]
 registered service name for [RFC7030]. Objective-value MUST be
 ignored if present. Backward compatible extensions to [RFC7030] MAY
 be indicated through objective-value. Non [RFC7030] compatible
 certificate renewal options MUST use a different objective-name.

 The M_FLOOD message MUST be sent periodically. The default SHOULD be
 60 seconds, the value SHOULD be operator configurable but SHOULD be
 not smaller than 60 seconds. The frequency of sending MUST be such
 that the aggregate amount of periodic M_FLOODs from all flooding
 sources cause only negligible traffic across the ACP. The time-to-
 live (ttl) parameter SHOULD be 3.5 times the period so that up to
 three consecutive messages can be dropped before considering an
 announcement expired. In the example above, the ttl is 210000 msec,
 3.5 times 60 seconds. When a service announcer using these
 parameters unexpectedly dies immediately after sending the M_FLOOD,
 receivers would consider it expired 210 seconds later. When a
 receiver tries to connect to this dead service before this timeout,
 it will experience a failing connection and use that as an indication

Eckert, et al. Expires September 12, 2019 [Page 28]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 that the service is dead and select another instance of the same
 service instead.

6.1.4.2. Renewal

 When performing renewal, the node SHOULD attempt to connect to the
 remembered EST server. If that fails, it SHOULD attempt to connect
 to an EST server learned via GRASP. The server with which
 certificate renewal succeeds SHOULD be remembered for the next
 renewal.

 Remembering the last renewal server and preferring it provides
 stickiness which can help diagnostics. It also provides some
 protection against off-path compromised ACP members announcing bogus
 information into GRASP.

 Renewal of certificates SHOULD start after less than 50% of the
 domain certificate lifetime so that network operations has ample time
 to investigate and resolve any problems that causes a node to not
 renew its domain certificate in time - and to allow prolonged periods
 of running parts of a network disconnected from any CA.

6.1.4.3. Certificate Revocation Lists (CRLs)

 The ACP node SHOULD support Certificate Revocation Lists (CRL) via
 HTTPs from one or more CRL Distribution Points (CDPs). The CDP(s)
 MUST be indicated in the Domain Certificate when used. If the CDP
 URL uses an IPv6 address (ULA address when using the addressing rules
 specified in this document), the ACP node will connect to the CDP via
 the ACP. If the CDP uses a domain name, the ACP node will connect to
 the CDP via the Data-Plane.

 It is common to use domain names for CDP(s), but there is no
 requirement for the ACP to support DNS. Any DNS lookup in the Data-
 Plane is not only a possible security issue, but it would also not
 indicate whether the resolved address is meant to be reachable across
 the ACP. Therefore, the use of an IPv6 address versus the use of a
 DNS name doubles as an indicator whether or not to reach the CDP via
 the ACP.

 A CDP can be reachable across the ACP either by running it on a node
 with ACP or by connecting its node via an ACP connect interface (see
 Section 8.1). The CDP SHOULD use an ACP domain certificate for its
 HTTPs connections. The connecting ACP node SHOULD verify that the
 CDP certificate used during the HTTPs connection has the same ACP
 address as indicated in the CDP URL of the nodes ACP domain
 certificate if the CDP URL uses an IPv6 address.

Eckert, et al. Expires September 12, 2019 [Page 29]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.1.4.4. Lifetimes

 Certificate lifetime may be set to shorter lifetimes than customary
 (1 year) because certificate renewal is fully automated via ACP and
 EST. The primary limiting factor for shorter certificate lifetimes
 is load on the EST server(s) and CA. It is therefore recommended
 that ACP domain certificates are managed via a CA chain where the
 assigning CA has enough performance to manage short lived
 certificates. See also Section 10.2.4 for discussion about an
 example setup achieving this. See also [I-D.ietf-acme-star].

 When certificate lifetimes are sufficiently short, such as few hours,
 certificate revocation may not be necessary, allowing to simplify the
 overall certificate maintenance infrastructure.

 See Appendix A.2 for further optimizations of certificate maintenance
 when BRSKI can be used ("Bootstrapping Remote Secure Key
 Infrastructures", see [I-D.ietf-anima-bootstrapping-keyinfra]).

6.1.4.5. Re-enrollment

 An ACP node may determine that its ACP domain certificate has
 expired, for example because the ACP node was powered down or
 disconnected longer than its certificate lifetime. In this case, the
 ACP node SHOULD convert to a role of a re-enrolling candidate ACP
 node.

 In this role, the node does maintain the trust anchor and certificate
 chain associated with its ACP domain certificate exclusively for the
 purpose of re-enrollment, and attempts (or waits) to get re-enrolled
 with a new ACP certificate. The details depend on the mechanisms/
 protocols used by the ACP registrars.

 Please refer to Section 6.10.7 and
 [I-D.ietf-anima-bootstrapping-keyinfra] for explanations about ACP
 registrars and vouchers as used in the following text. When ACP is
 intended to be used without BRSKI, the details about BRSKI and
 vouchers in the following text can be skipped.

 When BRSKI is used (i.e.: on ACP nodes that are ANI nodes), the re-
 enrolling candidate ACP node would attempt to enroll like a candidate
 ACP node (BRSKI pledge), but instead of using the ACP nodes IDevID,
 it SHOULD first attempt to use its ACP domain certificate in the
 BRSKI TLS authentication. The BRSKI registrar MAY honor this
 certificate beyond its expiration date purely for the purpose of re-
 enrollment. Using the ACP node’s domain certificate allows the BRSKI
 registrar to learn that nodes ACP domain information field, so that

Eckert, et al. Expires September 12, 2019 [Page 30]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 the BRSKI registrar can re-assign the same ACP address information to
 the ACP node in the new ACP domain certificate.

 If the BRSKI registrar denies the use of the old ACP domain
 certificate, the re-enrolling candidate ACP node MUST re-attempt re-
 enrollment using its IDevID as defined in BRSKI during the TLS
 connection setup.

 Both when the BRSKI connection is attempted with the old ACP domain
 certificate or the IDevID, the re-enrolling candidate ACP node SHOULD
 authenticate the BRSKI registrar during TLS connection setup based on
 its existing trust anchor/certificate chain information associated
 with its old ACP certificate. The re-enrolling candidate ACP node
 SHOULD only request a voucher from the BRSKI registrar when this
 authentication fails during TLS connection setup.

 When other mechanisms than BRSKI are used for ACP domain certificate
 enrollment, the principles of the re-enrolling candidate ACP node are
 the same. The re-enrolling candidate ACP node attempts to
 authenticate any ACP registrar peers during re-enrollment protocol/
 mechanisms via its existing certificate chain/trust anchor and
 provides its existing ACP domain certificate and other identification
 (such as the IDevID) as necessary to the registrar.

 Maintaining existing trust anchor information is especially important
 when enrollment mechanisms are used that unlike BRSKI do not leverage
 a voucher mechanism to authenticate the ACP registrar and where
 therefore the injection of certificate failures could otherwise make
 the ACP node easily attackable remotely.

 When using BRSKI or other protocol/mechanisms supporting vouchers,
 maintaining existing trust anchor information allows for re-
 enrollment of expired ACP certificates to be more lightweight,
 especially in environments where repeated acquisition of vouchers
 during the lifetime of ACP nodes may be operationally expensive or
 otherwise undesirable.

6.1.4.6. Failing Certificates

 An ACP domain certificate is called failing in this document, if/when
 the ACP node can determine that it was revoked (or explicitly not
 renewed), or in the absence of such explicit local diagnostics, when
 the ACP node fails to connect to other ACP nodes in the same ACP
 domain using its ACP certificate. For connection failures to
 determine the ACP domain certificate as the culprit, the peer should
 pass the domain membership check (Section 6.1.2) and other reasons
 for the connection failure can be excluded because of the connection
 error diagnostics.

Eckert, et al. Expires September 12, 2019 [Page 31]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 This type of failure can happen during setup/refresh of a secure ACP
 channel connections or any other use of the ACP domain certificate,
 such as for the TLS connection to an EST server for the renewal of
 the ACP domain certificate.

 Example reasons for failing certificates that the ACP node can only
 discover through connection failure are that the domain certificate
 or any of its signing certificates could have been revoked or may
 have expired, but the ACP node cannot self-diagnose this condition
 directly. Revocation information or clock synchronization may only
 be available across the ACP, but the ACP node cannot build ACP secure
 channels because ACP peers reject the ACP node’s domain certificate.

 ACP nodes SHOULD support the option to determines whether its ACP
 certificate is failing, and when it does, put itself into the role of
 a re-enrolling candidate ACP node as explained above
 (Section 6.1.4.5).

6.2. ACP Adjacency Table

 To know to which nodes to establish an ACP channel, every ACP node
 maintains an adjacency table. The adjacency table contains
 information about adjacent ACP nodes, at a minimum: Node-ID
 (identifier of the node inside the ACP, see Section 6.10.3 and
 Section 6.10.5), interface on which neighbor was discovered (by GRASP
 as explained below), link-local IPv6 address of neighbor on that
 interface, certificate (including domain information field). An ACP
 node MUST maintain this adjacency table. This table is used to
 determine to which neighbor an ACP connection is established.

 Where the next ACP node is not directly adjacent (i.e., not on a link
 connected to this node), the information in the adjacency table can
 be supplemented by configuration. For example, the Node-ID and IP
 address could be configured. See Section 8.2.

 The adjacency table MAY contain information about the validity and
 trust of the adjacent ACP node’s certificate. However, subsequent
 steps MUST always start with the ACP domain membership check against
 the peer (see Section 6.1.2).

 The adjacency table contains information about adjacent ACP nodes in
 general, independently of their domain and trust status. The next
 step determines to which of those ACP nodes an ACP connection should
 be established.

Eckert, et al. Expires September 12, 2019 [Page 32]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.3. Neighbor Discovery with DULL GRASP

 [RFC Editor: GRASP draft is in RFC editor queue, waiting for
 dependencies, including ACP. Please ensure that references to I-
 D.ietf-anima-grasp that include section number references (throughout
 this document) will be updated in case any last-minute changes in
 GRASP would make those section references change.

 Discovery Unsolicited Link-Local (DULL) GRASP is a limited subset of
 GRASP intended to operate across an insecure link-local scope. See
 section 2.5.2 of [I-D.ietf-anima-grasp] for its formal definition.
 The ACP uses one instance of DULL GRASP for every L2 interface of the
 ACP node to discover link level adjacent candidate ACP neighbors.
 Unless modified by policy as noted earlier (Section 5 bullet point
 2.), native interfaces (e.g., physical interfaces on physical nodes)
 SHOULD be initialized automatically to a state in which ACP discovery
 can be performed and any native interfaces with ACP neighbors can
 then be brought into the ACP even if the interface is otherwise not
 configured. Reception of packets on such otherwise not configured
 interfaces MUST be limited so that at first only IPv6 StateLess
 Address Auto Configuration (SLAAC - [RFC4862]) and DULL GRASP work
 and then only the following ACP secure channel setup packets - but
 not any other unnecessary traffic (e.g., no other link-local IPv6
 transport stack responders for example).

 Note that the use of the IPv6 link-local multicast address
 (ALL_GRASP_NEIGHBORS) implies the need to use Multicast Listener
 Discovery Version 2 (MLDv2, see [RFC3810]) to announce the desire to
 receive packets for that address. Otherwise DULL GRASP could fail to
 operate correctly in the presence of MLD snooping, non-ACP enabled L2
 switches - because those would stop forwarding DULL GRASP packets.
 Switches not supporting MLD snooping simply need to operate as pure
 L2 bridges for IPv6 multicast packets for DULL GRASP to work.

 ACP discovery SHOULD NOT be enabled by default on non-native
 interfaces. In particular, ACP discovery MUST NOT run inside the ACP
 across ACP virtual interfaces. See Section 10.3 for further, non-
 normative suggestions on how to enable/disable ACP at node and
 interface level. See Section 8.2.2 for more details about tunnels
 (typical non-native interfaces). See Section 7 for how ACP should be
 extended on devices operating (also) as L2 bridges.

 Note: If an ACP node also implements BRSKI to enroll its ACP domain
 certificate (see Appendix A.2 for a summary), then the above
 considerations also apply to GRASP discovery for BRSKI. Each DULL
 instance of GRASP set up for ACP is then also used for the discovery
 of a bootstrap proxy via BRSKI when the node does not have a domain
 certificate. Discovery of ACP neighbors happens only when the node

Eckert, et al. Expires September 12, 2019 [Page 33]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 does have the certificate. The node therefore never needs to
 discover both a bootstrap proxy and ACP neighbor at the same time.

 An ACP node announces itself to potential ACP peers by use of the
 "AN_ACP" objective. This is a synchronization objective intended to
 be flooded on a single link using the GRASP Flood Synchronization
 (M_FLOOD) message. In accordance with the design of the Flood
 message, a locator consisting of a specific link-local IP address, IP
 protocol number and port number will be distributed with the flooded
 objective. An example of the message is informally:

 [M_FLOOD, 12340815, h’fe80000000000000c0011001FEEF0000, 210000,
 ["AN_ACP", 4, 1, "IKEv2"],
 [O_IPv6_LOCATOR,
 h’fe80000000000000c0011001FEEF0000, UDP, 15000]
 ["AN_ACP", 4, 1, "DTLS"],
 [O_IPv6_LOCATOR,
 h’fe80000000000000c0011001FEEF0000, UDP, 17000]
]

 Figure 5: GRASP AN_ACP example

 The formal CDDL definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["AN_ACP", objective-flags, loop-count,
 objective-value]

 objective-flags = sync-only ; as in the GRASP specification
 sync-only = 4 ; M_FLOOD only requires synchronization
 loop-count = 1 ; limit to link-local operation
 objective-value = method
 method = "IKEv2" / "DTLS" ; or future standard methods

 Figure 6: GRASP AN_ACP definition

 The objective-flags field is set to indicate synchronization.

 The loop-count is fixed at 1 since this is a link-local operation.

 In the above example the RECOMMENDED period of sending of the
 objective is 60 seconds. The indicated ttl of 210000 msec means that
 the objective would be cached by ACP nodes even when two out of three
 messages are dropped in transit.

Eckert, et al. Expires September 12, 2019 [Page 34]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The session-id is a random number used for loop prevention
 (distinguishing a message from a prior instance of the same message).
 In DULL this field is irrelevant but must still be set according to
 the GRASP specification.

 The originator MUST be the IPv6 link local address of the originating
 ACP node on the sending interface.

 The ’objective-value’ parameter is a string indicating the secure
 channel protocol available at the specified or implied locator.

 The locator-option is optional and only required when the secure
 channel protocol is not offered at a well-defined port number, or if
 there is no well-defined port number.

 "IKEv2" is the abbreviation for "Internet Key Exchange protocol
 version 2". It is the main protocol used by the Internet IP security
 architecture (IPsec). We therefore use the term "IKEv2" and not
 "IPsec" in the GRASP definitions and example above. "IKEv2" has a
 well-defined port number 500, but in the above example, the candidate
 ACP neighbor is offering ACP secure channel negotiation via IKEv2 on
 port 15000 (for the sake of creating a non-standard example).

 "DTLS" indicates datagram Transport Layer Security version 1.2.
 There is no default UDP port, it must always be locally assigned by
 the node. See Section 6.7.2.

 If a locator is included, it MUST be an O_IPv6_LOCATOR, and the IPv6
 address MUST be the same as the initiator address (these are DULL
 requirements to minimize third party DoS attacks).

 The secure channel methods defined in this document use the
 objective-values of "IKEv2" and "DTLS". There is no distinction
 between IKEv2 native and GRE-IKEv2 because this is purely negotiated
 via IKEv2.

 A node that supports more than one secure channel protocol method
 needs to flood multiple versions of the "AN_ACP" objective so that
 each method can be accompanied by its own locator-option. This can
 use a single GRASP M_FLOOD message as shown in Figure 5.

 Note that a node serving both as an ACP node and BRSKI Join Proxy may
 choose to distribute the "AN_ACP" objective and the respective BRSKI
 in the same M_FLOOD message, since GRASP allows multiple objectives
 in one message. This may be impractical though if ACP and BRSKI
 operations are implemented via separate software modules / ASAs.

Eckert, et al. Expires September 12, 2019 [Page 35]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The result of the discovery is the IPv6 link-local address of the
 neighbor as well as its supported secure channel protocols (and non-
 standard port they are running on). It is stored in the ACP
 Adjacency Table (see Section 6.2), which then drives the further
 building of the ACP to that neighbor.

6.4. Candidate ACP Neighbor Selection

 An ACP node must determine to which other ACP nodes in the adjacency
 table it should build an ACP connection. This is based on the
 information in the ACP Adjacency table.

 The ACP is established exclusively between nodes in the same domain.
 This includes all routing subdomains. Appendix A.7 explains how ACP
 connections across multiple routing subdomains are special.

 The result of the candidate ACP neighbor selection process is a list
 of adjacent or configured autonomic neighbors to which an ACP channel
 should be established. The next step begins that channel
 establishment.

6.5. Channel Selection

 To avoid attacks, initial discovery of candidate ACP peers cannot
 include any non-protected negotiation. To avoid re-inventing and
 validating security association mechanisms, the next step after
 discovering the address of a candidate neighbor can only be to try
 first to establish a security association with that neighbor using a
 well-known security association method.

 At this time in the lifecycle of ACP nodes, it is unclear whether it
 is feasible to even decide on a single MTI (mandatory to implement)
 security association protocol across all ACP nodes.

 From the use-cases it seems clear that not all type of ACP nodes can
 or need to connect directly to each other or are able to support or
 prefer all possible mechanisms. For example, code space limited IoT
 devices may only support DTLS because that code exists already on
 them for end-to-end security, but low-end in-ceiling L2 switches may
 only want to support Media Access Control Security (MacSec, see
 802.1AE ([MACSEC]) because that is also supported in their chips.
 Only a flexible gateway device may need to support both of these
 mechanisms and potentially more. Note that MacSec is not required by
 any profiles of the ACP in this specification but just mentioned as a
 likely next interesting secure channel protocol.

 To support extensible secure channel protocol selection without a
 single common MTI protocol, ACP nodes must try all the ACP secure

Eckert, et al. Expires September 12, 2019 [Page 36]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 channel protocols it supports and that are feasible because the
 candidate ACP neighbor also announced them via its AN_ACP GRASP
 parameters (these are called the "feasible" ACP secure channel
 protocols).

 To ensure that the selection of the secure channel protocols always
 succeeds in a predictable fashion without blocking, the following
 rules apply:

 o An ACP node may choose to attempt to initiate the different
 feasible ACP secure channel protocols it supports according to its
 local policies sequentially or in parallel, but it MUST support
 acting as a responder to all of them in parallel.

 o Once the first secure channel protocol succeeds, the two peers
 know each other’s certificates because they must be used by all
 secure channel protocols for mutual authentication. The node with
 the lower Node-ID in the ACP address becomes Bob, the one with the
 higher Node-ID in the certificate Alice.

 o Bob becomes passive, he does not attempt to further initiate ACP
 secure channel protocols with Alice and does not consider it to be
 an error when Alice closes secure channels. Alice becomes the
 active party, continues to attempt setting up secure channel
 protocols with Bob until she arrives at the best one from her view
 that also works with Bob.

 For example, originally Bob could have been the initiator of one ACP
 secure channel protocol that Bob prefers and the security association
 succeeded. The roles of Bob and Alice are then assigned and the
 connection setup is completed. The protocol could for example be
 IPsec via IKEv2 ("IP security", see [RFC4301] and "Internet Key
 Exchange protocol version 2", see [RFC7296]. It is now up to Alice
 to decide how to proceed. Even if the IPsec connection from Bob
 succeeded, Alice might prefer another secure protocol over IPsec
 (e.g., FOOBAR), and try to set that up with Bob. If that preference
 of Alice succeeds, she would close the IPsec connection. If no
 better protocol attempt succeeds, she would keep the IPsec
 connection.

Eckert, et al. Expires September 12, 2019 [Page 37]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The following sequence of steps show this example in more detail:

 [1] Node 1 sends GRASP AN_ACP message to announce itself

 [2] Node 2 sends GRASP AN_ACP message to announce itself

 [3] Node 2 receives [1] from Node 1

 [4:C1] Because of [3], Node 2 starts as initiator on its
 preferred secure channel protocol towards Node 1.
 Connection C1.

 [5] Node 1 receives [2] from Node 2

 [6:C2] Because of [5], Node 1 starts as initiator on its
 preferred secure channel protocol towards Node 2.
 Connection C2.

 [7:C1] Node1 and Node2 have authenticated each others
 certificate on connection C1 as valid ACP peers.

 [8:C1] Node 1 certificate has lower ACP Node-ID than Node2,
 therefore Node 1 considers itself Bob and Node 2 Alice
 on connection C1. Connection setup C1 is completed.

 [9] Node 1 (Bob)) refrains from attempting any further secure
 channel connections to Node 2 (Alice) as learned from [2]
 because it knows from [8:C1] that it is Bob relative
 to Node 1.

 [10:C2] Node1 and Node2 have authenticated each others
 certificate on connection C2 (like [7:C1]).

 [11:C2] Node 2 certificate has lower ACP Node-ID than Node2,
 therefore Node 1 considers itself Bob and Node 2 Alice
 on connection C1, but they also identify that C2 is to the
 same mutual peer as their C1, so this has no further impact.

 [12:C2] Node 1 (Alice) closes C1. Because of [8:C1], Node 2 (Bob)
 expected this.

 [13] Node 1 (Alice) and Node 2 (Bob) start data transfer across
 C2, which makes it become a secure channel for the ACP.

 Figure 7: Secure Channel sequence of steps

 All this negotiation is in the context of an "L2 interface". Alice
 and Bob will build ACP connections to each other on every "L2

Eckert, et al. Expires September 12, 2019 [Page 38]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 interface" that they both connect to. An autonomic node must not
 assume that neighbors with the same L2 or link-local IPv6 addresses
 on different L2 interfaces are the same node. This can only be
 determined after examining the certificate after a successful
 security association attempt.

6.6. Candidate ACP Neighbor verification

 Independent of the security association protocol chosen, candidate
 ACP neighbors need to be authenticated based on their domain
 certificate. This implies that any secure channel protocol MUST
 support certificate based authentication that can support the ACP
 domain membership check as defined in Section 6.1.2. If it fails,
 the connection attempt is aborted and an error logged. Attempts to
 reconnect MUST be throttled. The RECOMMENDED default is exponential
 base 2 backoff with a minimum delay of 10 seconds and a maximum delay
 of 640 seconds.

6.7. Security Association protocols

 The following sections define the security association protocols that
 we consider to be important and feasible to specify in this document:

6.7.1. ACP via IKEv2

 An ACP node announces its ability to support IKEv2 as the ACP secure
 channel protocol in GRASP as "IKEv2".

6.7.1.1. Native IPsec

 To run ACP via IPsec natively, no further IANA assignments/
 definitions are required. An ACP node that is supporting native
 IPsec MUST use IPsec security setup via IKEv2, tunnel mode, local and
 peer link-local IPv6 addresses used for encapsulation. It MUST then
 support ESP with AES-256-GCM ([RFC4106]) for encryption and SHA256
 hash and MUST NOT permit weaker crypto options. Key establishment
 MUST support ECDHE with P-256.

 In terms of IKEv2, this means the initiator will offer to support
 IPsec tunnel mode with next protocol equal to 41 (IPv6).

 IPsec tunnel mode is required because the ACP will route/forward
 packets received from any other ACP node across the ACP secure
 channels, and not only its own generated ACP packets. With IPsec
 transport mode, it would only be possible to send packets originated
 by the ACP node itself.

Eckert, et al. Expires September 12, 2019 [Page 39]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 ESP is used because ACP mandates the use of encryption for ACP secure
 channels.

6.7.1.2. IPsec with GRE encapsulation

 In network devices it is often more common to implement high
 performance virtual interfaces on top of GRE encapsulation than on
 top of a "native" IPsec association (without any other encapsulation
 than those defined by IPsec). On those devices it may be beneficial
 to run the ACP secure channel on top of GRE protected by the IPsec
 association.

 To run ACP via GRE/IPsec, no further IANA assignments/definitions are
 required. An ACP node that is supporting ACP via GRE/IPsec MUST then
 support IPsec security setup via IKEv2, IPsec transport mode, local
 and peer link-local IPv6 addresses used for encapsulation, ESP with
 AES256 encryption and SHA256 hash.

 When GRE is used, transport mode is sufficient because the routed ACP
 packets are not "tunneled" by IPsec but rather by GRE: IPsec only has
 to deal with the GRE/IP packet which always uses the local and peer
 link-local IPv6 addresses and is therefore applicable to transport
 mode.

 ESP is used because ACP mandates the use of encryption for ACP secure
 channels.

 In terms of IKEv2 negotiation, this means the initiator must offer to
 support IPsec transport mode with next protocol equal to GRE (47)
 followed by the offer for native IPsec as described above (because
 that option is mandatory to support).

 If IKEv2 initiator and responder support GRE, it will be selected.
 The version of GRE to be used must be determined according to
 [RFC7676].

6.7.2. ACP via DTLS

 We define the use of ACP via DTLS in the assumption that it is likely
 the first transport encryption code basis supported in some classes
 of constrained devices.

 To run ACP via UDP and DTLS v1.2 [RFC6347] a locally assigned UDP
 port is used that is announced as a parameter in the GRASP AN_ACP
 objective to candidate neighbors.

 All ACP nodes supporting DTLS as a secure channel protocol MUST
 adhere to the DTLS implementation recommendations and security

Eckert, et al. Expires September 12, 2019 [Page 40]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 considerations of [RFC7525] except with respect to the DTLS version.
 ACP nodes supporting DTLS MUST implement only DTLS 1.2 or later. For
 example, implementing DTLS-1.3 ([I-D.ietf-tls-dtls13]) is also an
 option.

 There is no additional session setup or other security association
 besides this simple DTLS setup. As soon as the DTLS session is
 functional, the ACP peers will exchange ACP IPv6 packets as the
 payload of the DTLS transport connection. Any DTLS defined security
 association mechanisms such as re-keying are used as they would be
 for any transport application relying solely on DTLS.

6.7.3. ACP Secure Channel Requirements

 As explained in the beginning of Section 6.5, there is no single
 secure channel mechanism mandated for all ACP nodes. Instead, this
 section defines two ACP profiles (baseline and constrained) for ACP
 nodes that do introduce such requirements.

 A baseline ACP node MUST support IPsec natively and MAY support IPsec
 via GRE. A constrained ACP node that cannot support IPsec MUST
 support DTLS. An ACP node connecting an area of constrained ACP
 nodes with an area of baseline ACP nodes MUST therefore support IPsec
 and DTLS and supports therefore the baseline and constrained profile.

 Explanation: Not all type of ACP nodes can or need to connect
 directly to each other or are able to support or prefer all possible
 secure channel mechanisms. For example, code space limited IoT
 devices may only support DTLS because that code exists already on
 them for end-to-end security, but high-end core routers may not want
 to support DTLS because they can perform IPsec in accelerated
 hardware but would need to support DTLS in an underpowered CPU
 forwarding path shared with critical control plane operations. This
 is not a deployment issue for a single ACP across these type of nodes
 as long as there are also appropriate gateway ACP nodes that support
 sufficiently many secure channel mechanisms to allow interconnecting
 areas of ACP nodes with a more constrained set of secure channel
 protocols. On the edge between IoT areas and high-end core networks,
 general-purpose routers that act as those gateways and that can
 support a variety of secure channel protocols is the norm already.

 ACP nodes need to specify in documentation the set of secure ACP
 mechanisms they support and should declare which profile they support
 according to above requirements.

 An ACP secure channel MUST immediately be terminated when the
 lifetime of any certificate in the chain used to authenticate the
 neighbor expires or becomes revoked. Note that this is not standard

Eckert, et al. Expires September 12, 2019 [Page 41]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 behavior in secure channel protocols such as IPsec because the
 certificate authentication only influences the setup of the secure
 channel in these protocols.

6.8. GRASP in the ACP

6.8.1. GRASP as a core service of the ACP

 The ACP MUST run an instance of GRASP inside of it. It is a key part
 of the ACP services. The function in GRASP that makes it fundamental
 as a service of the ACP is the ability to provide ACP wide service
 discovery (using objectives in GRASP).

 ACP provides IP unicast routing via the RPL routing protocol (see
 Section 6.11).

 The ACP does not use IP multicast routing nor does it provide generic
 IP multicast services (the handling of GRASP link-local multicast
 messages is explained in Section 6.8.2). Instead, the ACP provides
 service discovery via the objective discovery/announcement and
 negotiation mechanisms of the ACP GRASP instance (services are a form
 of objectives). These mechanisms use hop-by-hop reliable flooding of
 GRASP messages for both service discovery (GRASP M_DISCOVERY
 messages) and service announcement (GRASP M_FLOOD messages).

 See Appendix A.5 for discussion about this design choice of the ACP.

6.8.2. ACP as the Security and Transport substrate for GRASP

 In the terminology of GRASP ([I-D.ietf-anima-grasp]), the ACP is the
 security and transport substrate for the GRASP instance run inside
 the ACP ("ACP GRASP").

 This means that the ACP is responsible for ensuring that this
 instance of GRASP is only sending messages across the ACP GRASP
 virtual interfaces. Whenever the ACP adds or deletes such an
 interface because of new ACP secure channels or loss thereof, the ACP
 needs to indicate this to the ACP instance of GRASP. The ACP exists
 also in the absence of any active ACP neighbors. It is created when
 the node has a domain certificate, and continues to exist even if all
 of its neighbors cease operation.

 In this case ASAs using GRASP running on the same node would still
 need to be able to discover each other’s objectives. When the ACP
 does not exist, ASAs leveraging the ACP instance of GRASP via APIs
 MUST still be able to operate, and MUST be able to understand that
 there is no ACP and that therefore the ACP instance of GRASP cannot
 operate.

Eckert, et al. Expires September 12, 2019 [Page 42]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The way ACP acts as the security and transport substrate for GRASP is
 visualized in the following picture:

Eckert, et al. Expires September 12, 2019 [Page 43]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 ACP..............................
 . .
 . /-GRASP-flooding-\ ACP GRASP instance .
 . / \ A
 . GRASP GRASP GRASP C
 . link-local unicast link-local P
 . multicast messages multicast .
 . messages | messages .
 . | | | .
 ...
 . v v v ACP security and transport .
 . | | | substrate for GRASP .
 . | | | .
 . | ACP GRASP | - ACP GRASP A
 . | Loopback | Loopback interface C
 . | interface | - ACP-cert auth P
 . | TLS | .
 . ACP GRASP | ACP GRASP - ACP GRASP virtual .
 . subnet1 | subnet2 virtual interfaces .
 . TCP | TCP .
 . | | | .
 ...
 . | | | ^^^ Users of ACP (GRASP/ASA) .
 . | | | ACP interfaces/addressing .
 . | | | .
 . | | | A
 . | ACP-Loopback Interf.| <- ACP Loopback interface C
 . | ACP-address | - address (global ULA) P
 . subnet1 | subnet2 <- ACP virtual interfaces .
 . link-local | link-local - link-local addresses .
 ...
 . | | | ACP VRF .
 . | RPL-routing | virtual routing and forwarding .
 . | /IP-Forwarding\ | A
 . | / \ | C
 . ACP IPv6 packets ACP IPv6 packets P
 . |/ \| .
 . IPsec/DTLS IPsec/DTLS - ACP-cert auth .
 ...
 | | Data-Plane
 | |
 | | - ACP secure channel
 link-local link-local - encapsulation addresses
 subnet1 subnet2 - Data-Plane interfaces
 | |
 ACP-Nbr1 ACP-Nbr2

 Figure 8: ACP as security and transport substrate for GRASP

Eckert, et al. Expires September 12, 2019 [Page 44]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 GRASP unicast messages inside the ACP always use the ACP address.
 Link-local addresses from the ACP VRF must not be used inside
 objectives. GRASP unicast messages inside the ACP are transported
 via TLS 1.2 ([RFC5246]) connections with AES256 encryption and
 SHA256. Mutual authentication uses the ACP domain membership check
 defined in (Section 6.1.2).

 GRASP link-local multicast messages are targeted for a specific ACP
 virtual interface (as defined Section 6.12.5) but are sent by the ACP
 into an ACP GRASP virtual interface that is constructed from the TCP
 connection(s) to the IPv6 link-local neighbor address(es) on the
 underlying ACP virtual interface. If the ACP GRASP virtual interface
 has two or more neighbors, the GRASP link-local multicast messages
 are replicated to all neighbor TCP connections.

 TCP and TLS connections for GRASP in the ACP use the IANA assigned
 TCP port for GRASP (7107). Effectively the transport stack is
 expected to be TLS for connections from/to the ACP address (e.g.,
 global scope address(es)) and TCP for connections from/to link-local
 addresses on the ACP virtual interfaces. The latter ones are only
 used for flooding of GRASP messages.

6.8.2.1. Discussion

 TCP encapsulation for GRASP M_DISCOVERY and M_FLOOD link local
 messages is used because these messages are flooded across
 potentially many hops to all ACP nodes and a single link with even
 temporary packet loss issues (e.g., WiFi/Powerline link) can reduce
 the probability for loss free transmission so much that applications
 would want to increase the frequency with which they send these
 messages. Such shorter periodic retransmission of datagrams would
 result in more traffic and processing overhead in the ACP than the
 hop-by-hop reliable retransmission mechanism by TCP and duplicate
 elimination by GRASP.

 TLS is mandated for GRASP non-link-local unicast because the ACP
 secure channel mandatory authentication and encryption protects only
 against attacks from the outside but not against attacks from the
 inside: Compromised ACP members that have (not yet) been detected and
 removed (e.g., via domain certificate revocation / expiry).

 If GRASP peer connections would just use TCP, compromised ACP members
 could simply eavesdrop passively on GRASP peer connections for whom
 they are on-path ("Man In The Middle" - MITM). Or intercept and
 modify them. With TLS, it is not possible to completely eliminate
 problems with compromised ACP members, but attacks are a lot more
 complex:

Eckert, et al. Expires September 12, 2019 [Page 45]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Eavesdropping/spoofing by a compromised ACP node is still possible
 because in the model of the ACP and GRASP, the provider and consumer
 of an objective have initially no unique information (such as an
 identity) about the other side which would allow them to distinguish
 a benevolent from a compromised peer. The compromised ACP node would
 simply announce the objective as well, potentially filter the
 original objective in GRASP when it is a MITM and act as an
 application level proxy. This of course requires that the
 compromised ACP node understand the semantics of the GRASP
 negotiation to an extent that allows it to proxy it without being
 detected, but in an ACP environment this is quite likely public
 knowledge or even standardized.

 The GRASP TLS connections are run the same as any other ACP traffic
 through the ACP secure channels. This leads to double
 authentication/encryption, which has the following benefits:

 o Secure channel methods such as IPsec may provide protection
 against additional attacks, for example reset-attacks.

 o The secure channel method may leverage hardware acceleration and
 there may be little or no gain in eliminating it.

 o There is no different security model for ACP GRASP from other ACP
 traffic. Instead, there is just another layer of protection
 against certain attacks from the inside which is important due to
 the role of GRASP in the ACP.

6.9. Context Separation

 The ACP is in a separate context from the normal Data-Plane of the
 node. This context includes the ACP channels’ IPv6 forwarding and
 routing as well as any required higher layer ACP functions.

 In classical network system, a dedicated so called Virtual routing
 and forwarding instance (VRF) is one logical implementation option
 for the ACP. If possible by the systems software architecture,
 separation options that minimize shared components are preferred,
 such as a logical container or virtual machine instance. The context
 for the ACP needs to be established automatically during bootstrap of
 a node. As much as possible it should be protected from being
 modified unintentionally by ("Data-Plane") configuration.

 Context separation improves security, because the ACP is not
 reachable from the Data-Plane routing or forwarding table(s). Also,
 configuration errors from the Data-Plane setup do not affect the ACP.

Eckert, et al. Expires September 12, 2019 [Page 46]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.10. Addressing inside the ACP

 The channels explained above typically only establish communication
 between two adjacent nodes. In order for communication to happen
 across multiple hops, the autonomic control plane requires ACP
 network wide valid addresses and routing. Each ACP node must create
 a Loopback interface with an ACP network wide unique address inside
 the ACP context (as explained in in Section 6.9). This address may
 be used also in other virtual contexts.

 With the algorithm introduced here, all ACP nodes in the same routing
 subdomain have the same /48 ULA prefix. Conversely, ULA global IDs
 from different domains are unlikely to clash, such that two ACP
 networks can be merged, as long as the policy allows that merge. See
 also Section 9.1 for a discussion on merging domains.

 Links inside the ACP only use link-local IPv6 addressing, such that
 each nodes ACP only requires one routable virtual address.

6.10.1. Fundamental Concepts of Autonomic Addressing

 o Usage: Autonomic addresses are exclusively used for self-
 management functions inside a trusted domain. They are not used
 for user traffic. Communications with entities outside the
 trusted domain use another address space, for example normally
 managed routable address space (called "Data-Plane" in this
 document).

 o Separation: Autonomic address space is used separately from user
 address space and other address realms. This supports the
 robustness requirement.

 o Loopback-only: Only ACP Loopback interfaces (and potentially those
 configured for "ACP connect", see Section 8.1) carry routable
 address(es); all other interfaces (called ACP virtual interfaces)
 only use IPv6 link local addresses. The usage of IPv6 link local
 addressing is discussed in [RFC7404].

 o Use-ULA: For Loopback interfaces of ACP nodes, we use Unique Local
 Addresses (ULA), as defined in [RFC4193] with L=1 (as defined in
 section 3.1 of [RFC4193]). Note that the random hash for ACP
 Loopback addresses uses the definition in Section 6.10.2 and not
 the one of [RFC4193] section 3.2.2.

 o No external connectivity: They do not provide access to the
 Internet. If a node requires further reaching connectivity, it
 should use another, traditionally managed address scheme in
 parallel.

Eckert, et al. Expires September 12, 2019 [Page 47]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Addresses in the ACP are permanent, and do not support temporary
 addresses as defined in [RFC4941].

 o Addresses in the ACP are not considered sensitive on privacy
 grounds because ACP nodes are not expected to be end-user host.
 All ACP nodes are in one (potentially federated) administrative
 domain. They are assumed to be to be candidate hosts of ACP
 traffic amongst each other or transit thereof. There are no
 transit nodes less privileged to know about the identity of other
 hosts in the ACP. Therefore, ACP addresses do not need to be
 pseudo-random as discussed in [RFC7721]. Because they are not
 propagated to untrusted (non ACP) nodes and stay within a domain
 (of trust), we also consider them not to be subject to scanning
 attacks.

 The ACP is based exclusively on IPv6 addressing, for a variety of
 reasons:

 o Simplicity, reliability and scale: If other network layer
 protocols were supported, each would have to have its own set of
 security associations, routing table and process, etc.

 o Autonomic functions do not require IPv4: Autonomic functions and
 autonomic service agents are new concepts. They can be
 exclusively built on IPv6 from day one. There is no need for
 backward compatibility.

 o OAM protocols do not require IPv4: The ACP may carry OAM
 protocols. All relevant protocols (SNMP, TFTP, SSH, SCP, Radius,
 Diameter, ...) are available in IPv6. See also [RFC8368] for how
 ACP could be made to interoperate with IPv4 only OAM.

6.10.2. The ACP Addressing Base Scheme

 The Base ULA addressing scheme for ACP nodes has the following
 format:

 8 40 2 78
 +--+-------------------------+------+------------------------------+
 |fd| hash(routing-subdomain) | Type | (sub-scheme) |
 +--+-------------------------+------+------------------------------+

 Figure 9: ACP Addressing Base Scheme

 The first 48-bits follow the ULA scheme, as defined in [RFC4193], to
 which a type field is added:

 o "fd" identifies a locally defined ULA address.

Eckert, et al. Expires September 12, 2019 [Page 48]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o The 40-bits ULA "global ID" (term from [RFC4193]) for ACP
 addresses carried in the domain information field of domain
 certificates are the first 40-bits of the SHA256 hash of the
 routing subdomain from the same domain information field. In the
 example of Section 6.1.1, the routing subdomain is
 "area51.research.acp.example.com" and the 40-bits ULA "global ID"
 89b714f3db.

 o When creating a new routing-subdomain for an existing autonomic
 network, it MUST be ensured, that rsub is selected so the
 resulting hash of the routing-subdomain does not collide with the
 hash of any pre-existing routing-subdomains of the autonomic
 network. This ensures that ACP addresses created by registrars
 for different routing subdomains do not collide with each others.

 o To allow for extensibility, the fact that the ULA "global ID" is a
 hash of the routing subdomain SHOULD NOT be assumed by any ACP
 node during normal operations. The hash function is only executed
 during the creation of the certificate. If BRSKI is used then the
 BRSKI registrar will create the domain information field in
 response to the EST Certificate Signing Request (CSR) Attribute
 Request message by the pledge.

 o Establishing connectivity between different ACP (different acp-
 domain-name) is outside the scope of this specification. If it is
 being done through future extensions, then the rsub of all
 routing-subdomains across those autonomic networks need to be
 selected so their hashes do not collide. For example a large
 cooperation with its own private Trust Anchor may want to create
 different autonomic networks that initially should not be able to
 connect but where the option to do so should be kept open. When
 taking this future possibility into account, it is easy to always
 select rsub so that no collisions happen.

 o Type: This field allows different address sub-schemes. This
 addresses the "upgradability" requirement. Assignment of types
 for this field will be maintained by IANA.

 The sub-scheme may imply a range or set of addresses assigned to the
 node, this is called the ACP address range/set and explained in each
 sub-scheme.

 Please refer to Section 6.10.7 and Appendix A.1 for further
 explanations why the following Sub-Addressing schemes are used and
 why multiple are necessary.

Eckert, et al. Expires September 12, 2019 [Page 49]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.10.3. ACP Zone Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 00b (zero)
 in the base scheme and 0 in the Z bit.

 64 64
 +-----------------+---+---------++-----------------------------+---+
 | (base scheme) | Z | Zone-ID || Node-ID |
 | | | || Registrar-ID | Node-Number| V |
 +-----------------+---+---------++--------------+--------------+---+
 50 1 13 48 15 1

 Figure 10: ACP Zone Addressing Sub-Scheme

 The fields are defined as follows:

 o Zone-ID: If set to all zero bits: The Node-ID bits are used as an
 identifier (as opposed to a locator). This results in a non-
 hierarchical, flat addressing scheme. Any other value indicates a
 zone. See Section 6.10.3.1 on how this field is used in detail.

 o Z: MUST be 0.

 o Node-ID: A unique value for each node.

 The 64-bit Node-ID is derived and composed as follows:

 o Registrar-ID (48-bit): A number unique inside the domain that
 identifies the ACP registrar which assigned the Node-ID to the
 node. A MAC address of the ACP registrar can be used for this
 purpose.

 o Node-Number: A number which is unique for a given ACP registrar,
 to identify the node. This can be a sequentially assigned number.

 o V (1-bit): Virtualization bit: 0: Indicates the ACP itself ("ACP
 node base system); 1: Indicates the optional "host" context on the
 ACP node (see below).

 In the ACP Zone Addressing Sub-Scheme, the ACP address in the
 certificate has Zone-ID and V fields as all zero bits. The ACP
 address set includes addresses with any Zone-ID value and any V
 value.

 The "Node-ID" itself is unique in a domain (i.e., the Zone-ID is not
 required for uniqueness). Therefore, a node can be addressed either

Eckert, et al. Expires September 12, 2019 [Page 50]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 as part of a flat hierarchy (Zone-ID = 0), or with an aggregation
 scheme (any other Zone-ID). An address with Zone-ID = 0 is an
 identifier, with a Zone-ID !=0 it is a locator. See Section 6.10.3.1
 for more details.

 The Virtual bit in this sub-scheme allows the easy addition of the
 ACP as a component to existing systems without causing problems in
 the port number space between the services in the ACP and the
 existing system. V:0 is the ACP router (autonomic node base system),
 V:1 is the host with pre-existing transport endpoints on it that
 could collide with the transport endpoints used by the ACP router.
 The ACP host could for example have a p2p virtual interface with the
 V:0 address as its router into the ACP. Depending on the software
 design of ASAs, which is outside the scope of this specification,
 they may use the V:0 or V:1 address.

 The location of the V bit(s) at the end of the address allows the
 announcement of a single prefix for each ACP node. For example, in a
 network with 20,000 ACP nodes, this avoid 20,000 additional routes in
 the routing table.

6.10.3.1. Usage of the Zone-ID Field

 The Zone-ID allows for the introduction of route prefixes in the
 addressing scheme.

 Zone-ID = 0 is the default addressing scheme in an ACP domain. Every
 ACP node with a Zone Addressing Sub-Scheme address MUST respond to
 its ACP address with Zone-ID = 0. Used on its own this leads to a
 non-hierarchical address scheme, which is suitable for networks up to
 a certain size. Zone-ID = 0 addresses act as identifiers for the
 nodes, and aggregation of these address in the ACP routing table is
 not possible.

 If aggregation is required, the 13-bit Zone-ID value allows for up to
 8191 zones. The allocation of Zone-ID’s may either happen
 automatically through a to-be-defined algorithm; or it could be
 configured and maintained explicitly.

 If a node learns (see Appendix A.10.1) that it is part of a zone, it
 MUST also respond to its ACP address with that Zone-ID. In this case
 the ACP Loopback is configured with two ACP addresses: One for Zone-
 ID = 0 and one for the assigned Zone-ID. This method allows for a
 smooth transition between a flat addressing scheme and a hierarchical
 one.

 A node knowing it is in a zone MUST use that Zone-ID != 0 address in
 GRASP locator fields. This eliminates the use of the identifier

Eckert, et al. Expires September 12, 2019 [Page 51]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 address (Zone-ID = 0) in forwarding and the need for network wide
 reachability of those non-aggregable identifier addresses. Zone-ID
 != 0 addresses are assumed to be aggregable in routing/forwarding
 based on how they are allocated in the ACP topology.

 Note: The Zone-ID is one method to introduce structure or hierarchy
 into the ACP. Another way is the use of the routing subdomain field
 in the ACP that leads to multiple /48 Global IDs within an ACP
 domain.

 Note: Zones and Zone-ID as defined here are not related to [RFC4007]
 zones or zone_id. ACP zone addresses are not scoped (reachable only
 from within an RFC4007 zone) but reachable across the whole ACP. An
 RFC4007 zone_id is a zone index that has only local significance on a
 node, whereas an ACP Zone-ID is an identifier for an ACP zone that is
 unique across that ACP.

6.10.4. ACP Manual Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 00b (zero)
 in the base scheme and 1 in the Z bit.

 64 64
 +---------------------+---+----------++-----------------------------+
 | (base scheme) | Z | Subnet-ID|| Interface Identifier |
 +---------------------+---+----------++-----------------------------+
 50 1 13

 Figure 11: ACP Manual Addressing Sub-Scheme

 The fields are defined as follows:

 o Subnet-ID: Configured subnet identifier.

 o Z: MUST be 1.

 o Interface Identifier.

 This sub-scheme is meant for "manual" allocation to subnets where the
 other addressing schemes cannot be used. The primary use case is for
 assignment to ACP connect subnets (see Section 8.1.1).

 "Manual" means that allocations of the Subnet-ID need to be done
 today with pre-existing, non-autonomic mechanisms. Every subnet that

Eckert, et al. Expires September 12, 2019 [Page 52]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 uses this addressing sub-scheme needs to use a unique Subnet-ID
 (unless some anycast setup is done).

 The Z bit field was added to distinguish Zone addressing and manual
 addressing sub-schemes without requiring one more bit in the base
 scheme and therefore allowing for the Vlong scheme (described below)
 to have one more bit available.

 Manual addressing sub-scheme addresses SHOULD NOT be used in ACP
 domain certificates. Any node capable to build ACP secure channels
 and permitted by Registrar policy to participate in building ACP
 secure channels SHOULD receive an ACP address (prefix) from one of
 the other ACP addressing sub-schemes. Nodes not capable (or
 permitted) to participate in ACP secure channels can connect to the
 ACP via ACP connect interfaces of ACP edge nodes (see Section 8.1),
 without setting up an ACP secure channel. Their ACP domain
 certificate MUST include an empty acp-address to indicate that their
 ACP domain certificate is only usable for non- ACP secure channel
 authentication, such as end-to-end transport connections across the
 ACP or Data-Plane.

 Address management of ACP connect subnets is done using traditional
 assignment methods and existing IPv6 protocols. See Section 8.1.3
 for details.

6.10.5. ACP Vlong Addressing Sub-Scheme

 The sub-scheme defined here is defined by the Type value 01b (one) in
 the base scheme.

 50 78
 +---------------------++-----------------------------+----------+
 | (base scheme) || Node-ID |
 | || Registrar-ID | Node-Number| V |
 +---------------------++--------------+--------------+----------+
 50 46 24/16 8/16

 Figure 12: ACP Vlong Addressing Sub-Scheme

 This addressing scheme foregoes the Zone-ID field to allow for
 larger, flatter routed networks (e.g., as in IoT) with 8421376 Node-
 Numbers (2^23+2^15). It also allows for up to 2^16 (i.e. 65536)
 different virtualized addresses within a node, which could be used to
 address individual software components in an ACP node.

 The fields are the same as in the Zone-ID sub-scheme with the
 following refinements:

Eckert, et al. Expires September 12, 2019 [Page 53]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o V: Virtualization field: 8 or 16 bit. Values 0 and 1 are assigned
 in the same way as in the Zone-ID sub-scheme, the other values are
 for further use by the node.

 o Registrar-ID: To maximize Node-Number and V, the Registrar-ID is
 reduced to 46-bits. This still permits the use of the MAC address
 of an ACP registrar by removing the V and U bits from the 48-bits
 of a MAC address (those two bits are never unique, so they cannot
 be used to distinguish MAC addresses).

 o If the first bit of the "Node-Number" is "1", then the Node-Number
 is 16-bit long and the V field is 16-bit long. Otherwise the
 Node-Number is 24-bit long and the V field is 8-bit long.

 "0" bit Node-Numbers are intended to be used for "general purpose"
 ACP nodes that would potentially have a limited number (< 256) of
 clients (ASA/Autonomic Functions or legacy services) of the ACP that
 require separate V(irtual) addresses. "1" bit Node-Numbers are
 intended for ACP nodes that are ACP edge nodes (see Section 8.1.1) or
 that have a large number of clients requiring separate V(irtual)
 addresses. For example large SDN controllers with container modular
 software architecture (see Section 8.1.2).

 In the Vlong addressing sub-scheme, the ACP address in the
 certificate has all V field bits as zero. The ACP address set for
 the node includes any V value.

6.10.6. Other ACP Addressing Sub-Schemes

 Before further addressing sub-schemes are defined, experience with
 the schemes defined here should be collected. The schemes defined in
 this document have been devised to allow hopefully sufficiently
 flexible setup of ACPs for a variety of situation. These reasons
 also lead to the fairly liberal use of address space: The Zone
 Addressing Sub-Scheme is intended to enable optimized routing in
 large networks by reserving bits for Zone-ID’s. The Vlong addressing
 sub-scheme enables the allocation of 8/16-bit of addresses inside
 individual ACP nodes. Both address spaces allow distributed,
 uncoordinated allocation of node addresses by reserving bits for the
 registrar-ID field in the address.

 IANA is asked need to assign a new "type" for each new addressing
 sub-scheme. With the current allocations, only 2 more schemes are
 possible, so the last addressing scheme MUST provide further
 extensions (e.g., by reserving bits from it for further extensions).

Eckert, et al. Expires September 12, 2019 [Page 54]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.10.7. ACP Registrars

 ACP registrars are responsible to enroll candidate ACP nodes with ACP
 domain certificates and associated trust point(s). They are also
 responsible that an ACP domain information field is included in the
 ACP domain certificate carrying the ACP domain name and the ACP nodes
 ACP address prefix. This address prefix is intended to persist
 unchanged through the lifetime of the ACP node.

 Because of the ACP addressing sub-schemes, an ACP domain can have
 multiple distributed ACP registrars that do not need to coordinate
 for address assignment. ACP registrars can also be sub-CAs, in which
 case they can also assign ACP domain certificates without
 dependencies against a (shared) root-CA (except during renewals of
 their own certificates).

 ACP registrars are PKI registration authorities (RA) enhanced with
 the handling of the ACP domain certificate specific fields. They
 request certificates for ACP nodes from a Certificate Authority
 through any appropriate mechanism (out of scope in this document, but
 required to be BRSKI for ANI registrars). Only nodes that are
 trusted to be compliant with the requirements against registrar
 described in this section must be given the necessary credentials to
 perform this RA function, such as credentials for the BRSKI
 connection to the CA for ANI registrars.

6.10.7.1. Use of BRSKI or other Mechanism/Protocols

 Any protocols or mechanisms may be used as ACP registrars, as long as
 the resulting ACP certificate and trust anchors allow to perform the
 ACP domain membership described in Section 6.1.2 with other ACP
 domain members, and meet the ACP addressing requirements for its ACP
 domain information field as described further below in this section.

 An ACP registrar could be a person deciding whether to enroll a
 candidate ACP node and then orchestrating the enrollment of the ACP
 certificate and associated trust anchor, using command line or web
 based commands on the candidate ACP node and trust anchor to generate
 and sign the ACP domain certificate and configure certificate and
 trust anchors onto the node.

 The only currently defined protocol for ACP registrars is BRSKI
 ([I-D.ietf-anima-bootstrapping-keyinfra]). When BRSKI is used, the
 ACP nodes are called ANI nodes, and the ACP registrars are called
 BRSKI or ANI registrars. The BRSKI specification does not define the
 handling of the ACP domain information field because the rules do not
 depend on BRSKI but apply equally to any protocols/mechanisms an ACP
 registrar may use.

Eckert, et al. Expires September 12, 2019 [Page 55]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.10.7.2. Unique Address/Prefix allocation

 ACP registrars MUST NOT allocate ACP address prefixes to ACP nodes
 via the ACP domain information field that would collide with the ACP
 address prefixes of other ACP nodes in the same ACP domain. This
 includes both prefixes allocated by the same ACP registrar to
 different ACP nodes as well as prefixes allocated by other ACP
 registrars for the same ACP domain.

 For this purpose, an ACP registrar MUST have one or more unique
 46-bit identifiers called Registrar-IDs used to allocate ACP address
 prefixes. The lower 46-bits of a EUI-48 MAC addresses are globally
 unique 46 bit identifiers, so ACP registrars with known unique EUI-48
 MAC addresses can use these as Registrar-IDs. Registrar-IDs do not
 need to be globally unique but only unique across the set of ACP
 registrars for an ACP domain, so other means to assign unique
 Registrar-IDs to ACP registrars can be used, such as configuration on
 the ACP registrars.

 When the candidate ACP device (called Pledge in BRSKI) is to be
 enrolled into an ACP domain, the ACP registrar needs to allocate a
 unique ACP address to the node and ensure that the ACP certificate
 gets a domain information field (Section 6.1.1) with the appropriate
 information - ACP domain-name, ACP-address, and so on. If the ACP
 registrar uses BRSKI, it signals the ACP domain information field to
 the Pledge via the EST /csraddrs command (see
 [I-D.ietf-anima-bootstrapping-keyinfra], section 5.8.2 - "EST CSR
 Attributes").

 [RFC Editor: please update reference to section 5.8.2 accordingly
 with latest BRSKI draft at time of publishing, or RFC]

6.10.7.3. Addressing Sub-Scheme Policies

 The ACP registrar selects for the candidate ACP node a unique address
 prefix from an appropriate ACP addressing sub-scheme, either a zone
 addressing sub-scheme prefix (see Section 6.10.3), or a Vlong
 addressing sub-scheme prefix (see Section 6.10.5). The assigned ACP
 address prefix encoded in the domain information field of the ACP
 domain certificate indicates to the ACP node its ACP address
 information. The sub-addressing scheme indicates the prefix length:
 /127 for zone address sub-scheme, /120 or /112 for Vlong address sub-
 scheme. The first address of the prefix is the ACP address, all
 other addresses in the prefix are for other uses by the ACP node as
 described in the zone and Vlong addressing sub scheme sections. The
 ACP address prefix itself is then signaled by the ACP node into the
 ACP routing protocol (see Section 6.11) to establish IPv6
 reachability across the ACP.

Eckert, et al. Expires September 12, 2019 [Page 56]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The choice of addressing sub-scheme and prefix-length in the Vlong
 address sub-scheme is subject to ACP registrar policy. It could be
 an ACP domain wide policy, or a per ACP node or per ACP node type
 policy. For example, in BRSKI, the ACP registrar is aware of the
 IDevID of the candidate ACP node, which contains a serialNnumber that
 is typically indicating the nodes vendor and device type and can be
 used to drive a policy selecting an appropriate addressing sub-scheme
 for the (class of) node(s).

 ACP registrars SHOULD default to allocate ACP zone sub-address scheme
 addresses with Subnet-ID 0. Allocation and use of zone sub-addresses
 with Subnet-ID != 0 is outside the scope of this specification
 because it would need to go along with rules for extending ACP
 routing to multiple zones, which is outside the scope of this
 specification.

 ACP registrars that can use the IDevID of a candidate ACP device
 SHOULD be able to choose the zone vs. Vlong sub-address scheme for
 ACP nodes based on the serialNumber of the IDevID, for example by the
 PID (Product Identifier) part which identifies the product type, or
 the complete serialNumber.

 In a simple allocation scheme, an ACP registrar remembers
 persistently across reboots its currently used Registrar-ID and for
 each addressing scheme (zone with Subnet-ID 0, Vlong with /112, Vlong
 with /120), the next Node-Number available for allocation and
 increases it during successful enrollment to an ACP node. In this
 simple allocation scheme, the ACP registrar would not recycle ACP
 address prefixes from no longer used ACP nodes.

6.10.7.4. Address/Prefix Persistence

 When an ACP domain certificate is renewed or rekeyed via EST or other
 mechanisms, the ACP address/prefix in the ACP domain information
 field MUST be maintained unless security issues or violations of the
 unique address assignment requirements exist or are suspected by the
 ACP registrar.

 ACP address information SHOULD be maintained even when the renewing/
 rekeying ACP registrar is not the same as the one that enrolled the
 prior ACP certificate. See Section 10.2.4 for an example.

 ACP address information SHOULD also be maintained even after an ACP
 certificate did expire or failed. See Section 6.1.4.5 and
 Section 6.1.4.6.

Eckert, et al. Expires September 12, 2019 [Page 57]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.10.7.5. Further Details

 Section 10.2 discusses further informative details of ACP registrars:
 What interactions registrars need, what parameters they require,
 certificate renewal and limitations, use of sub-CAs on registrars and
 centralized policy control.

6.11. Routing in the ACP

 Once ULA address are set up all autonomic entities should run a
 routing protocol within the autonomic control plane context. This
 routing protocol distributes the ULA created in the previous section
 for reachability. The use of the autonomic control plane specific
 context eliminates the probable clash with Data-Plane routing tables
 and also secures the ACP from interference from the configuration
 mismatch or incorrect routing updates.

 The establishment of the routing plane and its parameters are
 automatic and strictly within the confines of the autonomic control
 plane. Therefore, no explicit configuration is required.

 All routing updates are automatically secured in transit as the
 channels of the ACP are encrypted, and this routing runs only inside
 the ACP.

 The routing protocol inside the ACP is RPL ([RFC6550]). See
 Appendix A.4 for more details on the choice of RPL.

 RPL adjacencies are set up across all ACP channels in the same domain
 including all its routing subdomains. See Appendix A.7 for more
 details.

6.11.1. RPL Profile

 The following is a description of the RPL profile that ACP nodes need
 to support by default. The format of this section is derived from
 draft-ietf-roll-applicability-template.

6.11.1.1. Overview

 The choosen RPL profile is one that expects a fairly reliable network
 with reasonably fast links so that RPL convergence will be triggered
 immediately upon recognition of link failure/recovery.

 The profile is also designed to not require any RPL Data-Plane
 artifacts (such as defined in [RFC6553]). This is largely driven by
 the desire to avoid introducing the required Hop-by-Hop headers into
 the ACP forwarding plane, especially to support devices with silicon

Eckert, et al. Expires September 12, 2019 [Page 58]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 forwarding planes that cannot support insertion/removal of these
 headers in silicon or hop-by-hop forwarding based on them. Note:
 Insertion/removal of headers by a (potentially silicon based) ACP
 node would be be necessary when senders/receivers of ACP packets are
 legacy NOC devices connected via ACP connect (see Section 8.1.1 to
 the ACP. Their connectivity can be handled in RPL as non-RPL-aware
 leafs (or "Internet") according to the Data-Plane architecture
 explained in [I-D.ietf-roll-useofrplinfo].

 To avoid Data-Plane artefacts, the profile uses a simple destination
 prefix based routing/forwarding table. To achieve this, the profiles
 uses only one RPL instanceID. This single instanceID can contain
 only one Destination Oriented Directed Acyclic Graph (DODAG), and the
 routing/forwarding table can therefore only calculate a single class
 of service ("best effort towards the primary NOC/root") and cannot
 create optimized routing paths to accomplish latency or energy goals
 between any two nodes.

 Consider a network that has multiple NOCs in different locations.
 Only one NOC will become the DODAG root. Traffic to and from other
 NOCs has to be sent through the DODAG (shortest path tree) rooted in
 the primary NOC. Depending on topology, this can be an annoyance
 from a latency point of view or from minimizing network path
 resources, but this is deemed to be acceptable given how ACP traffic
 is "only" network management/control traffic.

 Using a single instanceID/DODAG does not introduce a single point of
 failure, as the DODAG will reconfigure itself when it detects data-
 plane forwarding failures including choosing a different root when
 the primary one fails. See Appendix A.10.4 for more details.

 The benefit of this profile, especially compared to other IGPs is
 that it does not calculate routes for node reachable through the same
 interface as the DODAG root. This RPL profile can therefore scale to
 much larger number of ACP nodes in the same amount of compute and
 memory than other routing protocols. Especially on nodes that are
 leafs of the topology or those close to those leafs.

 The lack of RPL Packet Information (RPI, the IPv6 header for RPL
 defined by [RFC6553]), means that the Data-Plane will have no rank
 value that can be used to detect loops. As a result, traffic may
 loop until the time-to-live (TTL) of the packet reaches zero. This
 is the same behavior as that of other IGPs that do not have the Data-
 Plane options of RPL.

 Since links in the ACP are assumed to be mostly reliable (or have
 link layer protection against loss) and because there is no stretch

Eckert, et al. Expires September 12, 2019 [Page 59]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 according to Section 6.11.1.7, loops caused by RPL routing packet
 loss should be exceedingly rare.

 There are a variety of mechanisms possible in RPL to further avoid
 temporary loops: DODAG Information Objects (DIOs) SHOULD be sent
 2...3 times to inform children when losing the last parent. The
 technique in [RFC6550] section 8.2.2.6. (Detaching) SHOULD be
 favored over that in section 8.2.2.5., (Poisoning) because it allows
 local connectivity. Nodes SHOULD select more than one parent, at
 least 3 if possible, and send Destination Advertisement Objects
 (DAO)s to all of them in parallel.

 Additionally, failed ACP tunnels can be quickly discovered the secure
 channel protocol mechanisms such as IKEv2 Dead Peer Detection. This
 can function as a replacement for a Low-power and Lossy Networks’
 (LLN’s) Expected Transmission Count (ETX) feature that is not used in
 this profile. A failure of an ACP tunnel should imediately signal
 the RPL control plane to pick a different parent.

6.11.1.2. RPL Instances

 Single RPL instance. Default RPLInstanceID = 0.

6.11.1.3. Storing vs. Non-Storing Mode

 RPL Mode of Operations (MOP): MUST support mode 2 - "Storing Mode of
 Operations with no multicast support". Implementations MAY support
 mode 3 ("... with multicast support" as that is a superset of mode
 2). Note: Root indicates mode in DIO flow.

6.11.1.4. DAO Policy

 Proactive, aggressive DAO state maintenance:

 o Use K-flag in unsolicited DAO indicating change from previous
 information (to require DAO-ACK).

 o Retry such DAO DAO-RETRIES(3) times with DAO- ACK_TIME_OUT(256ms)
 in between.

6.11.1.5. Path Metric

 Hopcount.

Eckert, et al. Expires September 12, 2019 [Page 60]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.11.1.6. Objective Function

 Objective Function (OF): Use OF0 [RFC6552]. No use of metric
 containers.

 rank_factor: Derived from link speed: <= 100Mbps:
 LOW_SPEED_FACTOR(5), else HIGH_SPEED_FACTOR(1)

6.11.1.7. DODAG Repair

 Global Repair: we assume stable links and ranks (metrics), so no need
 to periodically rebuild DODAG. DODAG version only incremented under
 catastrophic events (e.g., administrative action).

 Local Repair: As soon as link breakage is detected, send No-Path DAO
 for all the targets that were reachable only via this link. As soon
 as link repair is detected, validate if this link provides you a
 better parent. If so, compute your new rank, and send new DIO that
 advertises your new rank. Then send a DAO with a new path sequence
 about yourself.

 stretch_rank: none provided ("not stretched").

 Data Path Validation: Not used.

 Trickle: Not used.

6.11.1.8. Multicast

 Not used yet but possible because of the selected mode of operations.

6.11.1.9. Security

 [RFC6550] security not used, substituted by ACP security.

 Because the ACP links already include provisions for confidentiality
 and integrity protection, their usage at the RPL layer would be
 redundant, and so RPL security is not used.

6.11.1.10. P2P communications

 Not used.

6.11.1.11. IPv6 address configuration

 Every ACP node (RPL node) announces an IPv6 prefix covering the
 address(es) used in the ACP node. The prefix length depends on the
 chosen addressing sub-scheme of the ACP address provisioned into the

Eckert, et al. Expires September 12, 2019 [Page 61]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 certificate of the ACP node, e.g., /127 for Zone Addressing Sub-
 Scheme or /112 or /120 for Vlong addressing sub-scheme. See
 Section 6.10 for more details.

 Every ACP node MUST install a black hole (aka null) route for
 whatever ACP address space that it advertises (i.e.: the /96 or
 /127). This is avoid routing loops for addresses that an ACP node
 has not (yet) used.

6.11.1.12. Administrative parameters

 Administrative Preference ([RFC6550], 3.2.6 - to become root):
 Indicated in DODAGPreference field of DIO message.

 o Explicit configured "root": 0b100

 o ACP registrar (Default): 0b011

 o ACP-connect (non-registrar): 0b010

 o Default: 0b001.

6.11.1.13. RPL Data-Plane artifacts

 RPI (RPL Packet Information [RFC6553]): Not used as there is only a
 single instance, and data path validation is not being used.

 SRH (RPL Source Routing - RFC6552): Not used. Storing mode is being
 used.

6.11.1.14. Unknown Destinations

 Because RPL minimizes the size of the routing and forwarding table,
 prefixes reachable through the same interface as the RPL root are not
 known on every ACP node. Therefore traffic to unknown destination
 addresses can only be discovered at the RPL root. The RPL root
 SHOULD have attach safe mechanisms to operationally discover and log
 such packets.

6.12. General ACP Considerations

 Since channels are by default established between adjacent neighbors,
 the resulting overlay network does hop-by-hop encryption. Each node
 decrypts incoming traffic from the ACP, and encrypts outgoing traffic
 to its neighbors in the ACP. Routing is discussed in Section 6.11.

Eckert, et al. Expires September 12, 2019 [Page 62]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

6.12.1. Performance

 There are no performance requirements against ACP implementations
 defined in this document because the performance requirements depend
 on the intended use case. It is expected that full autonomic node
 with a wide range of ASA can require high forwarding plane
 performance in the ACP, for example for telemetry. Implementations
 of ACP to solely support traditional/SDN style use cases can benefit
 from ACP at lower performance, especially if the ACP is used only for
 critical operations, e.g., when the Data-Plane is not available. The
 design of the ACP as specified in this document is intended to
 support a wide range of performance options: It is intended to allow
 software-only implementations at potentially low performance, but can
 also support high performance options. See [RFC8368] for more
 details.

6.12.2. Addressing of Secure Channels

 In order to be independent of the Data-Plane (routing and addressing)
 the GRASP discovered (autonomic) ACP secure channels use IPv6 link
 local addresses between adjacent neighbors. Note: Section 8.2
 specifies extensions in which secure channels are configured tunnels
 operating over the Data-Plane, so those secure channels cannot be
 independent of the Data-Plane.

 To avoid that Data-Plane configuration can impact the operations of
 the IPv6 (link-local) interface/address used for ACP channels,
 appropriate implementation considerations are required. If the IPv6
 interface/link-local address is shared with the Data-Plane it needs
 to be impossible to unconfigure/disable it through configuration.
 Instead of sharing the IPv6 interface/link-local address, a separate
 (virtual) interface with a separate IPv6 link-local address can be
 used. For example, the ACP interface could be run over a separate
 MAC address of an underlying L2 (Ethernet) interface. For more
 details and options, see Appendix A.10.2.

 Note that other (non-ideal) implementation choices may introduce
 additional undesired dependencies against the Data-Plane. For
 example shared code and configuration of the secure channel protocols
 (IPsec / DTLS).

6.12.3. MTU

 The MTU for ACP secure channels must be derived locally from the
 underlying link MTU minus the secure channel encapsulation overhead.

 ACP secure Channel protocols do not need to perform MTU discovery
 because they are built across L2 adjacencies - the MTU on both sides

Eckert, et al. Expires September 12, 2019 [Page 63]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 connecting to the L2 connection are assumed to be consistent.
 Extensions to ACP where the ACP is for example tunneled need to
 consider how to guarantee MTU consistency. This is an issue of
 tunnels, not an issue of running the ACP across a tunnel. Transport
 stacks running across ACP can perform normal PMTUD (Path MTU
 Discovery). Because the ACP is meant to be prioritize reliability
 over performance, they MAY opt to only expect IPv6 minimum MTU (1280)
 to avoid running into PMTUD implementation bugs or underlying link
 MTU mismatch problems.

6.12.4. Multiple links between nodes

 If two nodes are connected via several links, the ACP SHOULD be
 established across every link, but it is possible to establish the
 ACP only on a sub-set of links. Having an ACP channel on every link
 has a number of advantages, for example it allows for a faster
 failover in case of link failure, and it reflects the physical
 topology more closely. Using a subset of links (for example, a
 single link), reduces resource consumption on the node, because state
 needs to be kept per ACP channel. The negotiation scheme explained
 in Section 6.5 allows Alice (the node with the higher ACP address) to
 drop all but the desired ACP channels to Bob - and Bob will not re-
 try to build these secure channels from his side unless Alice shows
 up with a previously unknown GRASP announcement (e.g., on a different
 link or with a different address announced in GRASP).

6.12.5. ACP interfaces

 The ACP VRF has conceptually two type of interfaces: The "ACP
 Loopback interface(s)" to which the ACP ULA address(es) are assigned
 and the "ACP virtual interfaces" that are mapped to the ACP secure
 channels.

 The term "Loopback interface" was introduced initially to refer to an
 internal interface on a node that would allow IP traffic between
 transport endpoints on the node in the absence or failure of any or
 all external interfaces, see [RFC4291] section 2.5.3.

 Even though Loopback interfaces were originally designed to hold only
 Loopback addresses not reachable from outside the node, these
 interfaces are also commonly used today to hold addresses reachable
 from the outside. They are meant to be reachable independent of any
 external interface being operational, and therefore to be more
 resilient. These addresses on Loopback interfaces can be thought of
 as "node addresses" instead of "interface addresses", and that is
 what ACP address(es) are. This construct makes it therefore possible
 to address ACP nodes with a well-defined set of addresses independent
 of the number of external interfaces.

Eckert, et al. Expires September 12, 2019 [Page 64]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 For these reason, the ACP (ULA) address(es) are assigned to Loopback
 interface(s).

 Any type of ACP secure channels to another ACP node can be mapped to
 ACP virtual interfaces in following ways. This is independent of the
 chosen secure channel protocol (IPsec, DTLS or other future protocol
 - standards or non-standards):

 ACP point-to-point virtual interface:

 Each ACP secure channel is mapped into a separate point-to-point ACP
 virtual interface. If a physical subnet has more than two ACP
 capable nodes (in the same domain), this implementation approach will
 lead to a full mesh of ACP virtual interfaces between them.

 ACP multi-access virtual interface:

 In a more advanced implementation approach, the ACP will construct a
 single multi-access ACP virtual interface for all ACP secure channels
 to ACP capable nodes reachable across the same underlying (physical)
 subnet. IPv6 link-local multicast packets sent into an ACP multi-
 access virtual interface are replicated to every ACP secure channel
 mapped into the ACP multicast-access virtual interface. IPv6 unicast
 packets sent into an ACP multi-access virtual interface are sent to
 the ACP secure channel that belongs to the ACP neighbor that is the
 next-hop in the ACP forwarding table entry used to reach the packets
 destination address.

 There is no requirement for all ACP nodes on the same multi-access
 subnet to use the same type of ACP virtual interface. This is purely
 a node local decision.

 ACP nodes MUST perform standard IPv6 operations across ACP virtual
 interfaces including SLAAC (Stateless Address Auto-Configuration) -
 [RFC4862]) to assign their IPv6 link local address on the ACP virtual
 interface and ND (Neighbor Discovery - [RFC4861]) to discover which
 IPv6 link-local neighbor address belongs to which ACP secure channel
 mapped to the ACP virtual interface. This is independent of whether
 the ACP virtual interface is point-to-point or multi-access.

 "Optimistic Duplicate Address Detection (DAD)" according to [RFC4429]
 is RECOMMENDED because the likelihood for duplicates between ACP
 nodes is highly improbable as long as the address can be formed from
 a globally unique local assigned identifier (e.g., EUI-48/EUI-64, see
 below).

 ACP nodes MAY reduce the amount of link-local IPv6 multicast packets
 from ND by learning the IPv6 link-local neighbor address to ACP

Eckert, et al. Expires September 12, 2019 [Page 65]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 secure channel mapping from other messages such as the source address
 of IPv6 link-local multicast RPL messages - and therefore forego the
 need to send Neighbor Solicitation messages.

 The ACP virtual interface IPv6 link local address can be derived from
 any appropriate local mechanism such as node local EUI-48 or EUI-64
 ("EUI" stands for "Extended Unique Identifier"). It MUST NOT depend
 on something that is attackable from the Data-Plane such as the IPv6
 link-local address of the underlying physical interface, which can be
 attacked by SLAAC, or parameters of the secure channel encapsulation
 header that may not be protected by the secure channel mechanism.

 The link-layer address of an ACP virtual interface is the address
 used for the underlying interface across which the secure tunnels are
 built, typically Ethernet addresses. Because unicast IPv6 packets
 sent to an ACP virtual interface are not sent to a link-layer
 destination address but rather an ACP secure channel, the link-layer
 address fields SHOULD be ignored on reception and instead the ACP
 secure channel from which the message was received should be
 remembered.

 Multi-access ACP virtual interfaces are preferable implementations
 when the underlying interface is a (broadcast) multi-access subnet
 because they do reflect the presence of the underlying multi-access
 subnet into the virtual interfaces of the ACP. This makes it for
 example simpler to build services with topology awareness inside the
 ACP VRF in the same way as they could have been built running
 natively on the multi-access interfaces.

 Consider also the impact of point-to-point vs. multi-access virtual
 interface on the efficiency of flooding via link local multicasted
 messages:

 Assume a LAN with three ACP neighbors, Alice, Bob and Carol. Alice’s
 ACP GRASP wants to send a link-local GRASP multicast message to Bob
 and Carol. If Alice’s ACP emulates the LAN as one point-to-point
 virtual interface to Bob and one to Carol, The sending applications
 itself will send two copies, if Alice’s ACP emulates a LAN, GRASP
 will send one packet and the ACP will replicate it. The result is
 the same. The difference happens when Bob and Carol receive their
 packet. If they use ACP point-to-point virtual interfaces, their
 GRASP instance would forward the packet from Alice to each other as
 part of the GRASP flooding procedure. These packets are unnecessary
 and would be discarded by GRASP on receipt as duplicates (by use of
 the GRASP Session ID). If Bob and Carol’s ACP would emulate a multi-
 access virtual interface, then this would not happen, because GRASPs
 flooding procedure does not replicate back packets to the interface
 that they were received from.

Eckert, et al. Expires September 12, 2019 [Page 66]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Note that link-local GRASP multicast messages are not sent directly
 as IPv6 link-local multicast UDP messages into ACP virtual
 interfaces, but instead into ACP GRASP virtual interfaces, that are
 layered on top of ACP virtual interfaces to add TCP reliability to
 link-local multicast GRASP messages. Nevertheless, these ACP GRASP
 virtual interfaces perform the same replication of message and,
 therefore, result in the same impact on flooding. See Section 6.8.2
 for more details.

 RPL does support operations and correct routing table construction
 across non-broadcast multi-access (NBMA) subnets. This is common
 when using many radio technologies. When such NBMA subnets are used,
 they MUST NOT be represented as ACP multi-access virtual interfaces
 because the replication of IPv6 link-local multicast messages will
 not reach all NBMA subnet neighbors. In result, GRASP message
 flooding would fail. Instead, each ACP secure channel across such an
 interface MUST be represented as a ACP point-to-point virtual
 interface. See also Appendix A.10.4.

 Care must also be taken when creating multi-access ACP virtual
 interfaces across ACP secure channels between ACP nodes in different
 domains or routing subdomains. The policies to be negotiated may be
 described as peer-to-peer policies in which case it is easier to
 create ACP point-to-point virtual interfaces for these secure
 channels.

7. ACP support on L2 switches/ports (Normative)

7.1. Why (Benefits of ACP on L2 switches)

 ANrtr1 ------ ANswitch1 --- ANswitch2 ------- ANrtr2
 .../ \ \ ...
 ANrtrM ------ \ ------- ANrtrN
 ANswitchM ...

 Figure 13: Topology with L2 ACP switches

 Consider a large L2 LAN with ANrtr1...ANrtrN connected via some
 topology of L2 switches. Examples include large enterprise campus
 networks with an L2 core, IoT networks or broadband aggregation
 networks which often have even a multi-level L2 switched topology.

 If the discovery protocol used for the ACP is operating at the subnet
 level, every ACP router will see all other ACP routers on the LAN as
 neighbors and a full mesh of ACP channels will be built. If some or
 all of the AN switches are autonomic with the same discovery
 protocol, then the full mesh would include those switches as well.

Eckert, et al. Expires September 12, 2019 [Page 67]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 A full mesh of ACP connections can create fundamental scale
 challenges. The number of security associations of the secure
 channel protocols will likely not scale arbitrarily, especially when
 they leverage platform accelerated encryption/decryption. Likewise,
 any other ACP operations (such as routing) needs to scale to the
 number of direct ACP neighbors. An ACP router with just 4 physical
 interfaces might be deployed into a LAN with hundreds of neighbors
 connected via switches. Introducing such a new unpredictable scaling
 factor requirement makes it harder to support the ACP on arbitrary
 platforms and in arbitrary deployments.

 Predictable scaling requirements for ACP neighbors can most easily be
 achieved if in topologies such as these, ACP capable L2 switches can
 ensure that discovery messages terminate on them so that neighboring
 ACP routers and switches will only find the physically connected ACP
 L2 switches as their candidate ACP neighbors. With such a discovery
 mechanism in place, the ACP and its security associations will only
 need to scale to the number of physical interfaces instead of a
 potentially much larger number of "LAN-connected" neighbors. And the
 ACP topology will follow directly the physical topology, something
 which can then also be leveraged in management operations or by ASAs.

 In the example above, consider ANswitch1 and ANswitchM are ACP
 capable, and ANswitch2 is not ACP capable. The desired ACP topology
 is that ANrtr1 and ANrtrM only have an ACP connection to ANswitch1,
 and that ANswitch1, ANrtr2, ANrtrN have a full mesh of ACP connection
 amongst each other. ANswitch1 also has an ACP connection with
 ANswitchM and ANswitchM has ACP connections to anything else behind
 it.

7.2. How (per L2 port DULL GRASP)

 To support ACP on L2 switches or L2 switched ports of an L3 device,
 it is necessary to make those L2 ports look like L3 interfaces for
 the ACP implementation. This primarily involves the creation of a
 separate DULL GRASP instance/domain on every such L2 port. Because
 GRASP has a dedicated link-local IPv6 multicast address
 (ALL_GRASP_NEIGHBORS), it is sufficient that all packets for this
 address are being extracted at the port level and passed to that DULL
 GRASP instance. Likewise the IPv6 link-local multicast packets sent
 by that DULL GRASP instance need to be sent only towards the L2 port
 for this DULL GRASP instance.

 If the device with L2 ports is supporting per L2 port ACP DULL GRASP
 as well as MLD snooping ([RFC4541]), then MLD snooping must be
 changed to never forward packets for ALL_GRASP_NEIGHBORS because that
 would cause the problem that per L2 port ACP DULL GRASP is meant to
 overcome (forwarding DULL GRASP packets across L2 ports).

Eckert, et al. Expires September 12, 2019 [Page 68]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The rest of ACP operations can operate in the same way as in L3
 devices: Assume for example that the device is an L3/L2 hybrid device
 where L3 interfaces are assigned to VLANs and each VLAN has
 potentially multiple ports. DULL GRASP is run as described
 individually on each L2 port. When it discovers a candidate ACP
 neighbor, it passes its IPv6 link-local address and supported secure
 channel protocols to the ACP secure channel negotiation that can be
 bound to the L3 (VLAN) interface. It will simply use link-local IPv6
 multicast packets to the candidate ACP neighbor. Once a secure
 channel is established to such a neighbor, the virtual interface to
 which this secure channel is mapped should then actually be the L2
 port and not the L3 interface to best map the actual physical
 topology into the ACP virtual interfaces. See Section 6.12.5 for
 more details about how to map secure channels into ACP virtual
 interfaces. Note that a single L2 port can still have multiple ACP
 neighbors if it connect for example to multiple ACP neighbors via a
 non-ACP enabled switch. The per L2 port ACP virtual interface can
 therefore still be a multi-access virtual LAN.

 For example, in the above picture, ANswitch1 would run separate DULL
 GRASP instances on its ports to ANrtr1, ANswitch2 and ANswitchI, even
 though all those three ports may be in the data plane in the same
 (V)LAN and perform L2 switching between these ports, ANswitch1 would
 perform ACP L3 routing between them.

 The description in the previous paragraph was specifically meant to
 illustrate that on hybrid L3/L2 devices that are common in
 enterprise, IoT and broadband aggregation, there is only the GRASP
 packet extraction (by Ethernet address) and GRASP link-local
 multicast per L2-port packet injection that has to consider L2 ports
 at the hardware forwarding level. The remaining operations are
 purely ACP control plane and setup of secure channels across the L3
 interface. This hopefully makes support for per-L2 port ACP on those
 hybrid devices easy.

 This L2/L3 optimized approach is subject to "address stealing", e.g.,
 where a device on one port uses addresses of a device on another
 port. This is a generic issue in L2 LANs and switches often already
 have some form of "port security" to prohibit this. They rely on NDP
 or DHCP learning of which port/MAC-address and IPv6 address belong
 together and block duplicates. This type of function needs to be
 enabled to prohibit DoS attacks. Likewise the GRASP DULL instance
 needs to ensure that the IPv6 address in the locator-option matches
 the source IPv6 address of the DULL GRASP packet.

 In devices without such a mix of L2 port/interfaces and L3 interfaces
 (to terminate any transport layer connections), implementation
 details will differ. Logically most simply every L2 port is

Eckert, et al. Expires September 12, 2019 [Page 69]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 considered and used as a separate L3 subnet for all ACP operations.
 The fact that the ACP only requires IPv6 link-local unicast and
 multicast should make support for it on any type of L2 devices as
 simple as possible.

 A generic issue with ACP in L2 switched networks is the interaction
 with the Spanning Tree Protocol. Without further L2 enhancements,
 the ACP would run only across the active STP topology and the ACP
 would be interrupted and re-converge with STP changes. Ideally, ACP
 peering should be built also across ports that are blocked in STP so
 that the ACP does not depend on STP and can continue to run
 unaffected across STP topology changes, where re-convergence can be
 quite slow. The above described simple implementation options are
 not sufficient to achieve this.

8. Support for Non-ACP Components (Normative)

8.1. ACP Connect

8.1.1. Non-ACP Controller / NMS system

 The Autonomic Control Plane can be used by management systems, such
 as controllers or network management system (NMS) hosts (henceforth
 called simply "NMS hosts"), to connect to devices (or other type of
 nodes) through it. For this, an NMS host must have access to the
 ACP. The ACP is a self-protecting overlay network, which allows by
 default access only to trusted, autonomic systems. Therefore, a
 traditional, non-ACP NMS system does not have access to the ACP by
 default, such as any other external node.

 If the NMS host is not autonomic, i.e., it does not support autonomic
 negotiation of the ACP, then it can be brought into the ACP by
 explicit configuration. To support connections to adjacent non-ACP
 nodes, an ACP node must support "ACP connect" (sometimes also called
 "autonomic connect"):

 "ACP connect" is an interface level configured workaround for
 connection of trusted non-ACP nodes to the ACP. The ACP node on
 which ACP connect is configured is called an "ACP edge node". With
 ACP connect, the ACP is accessible from those non-ACP nodes (such as
 NOC systems) on such an interface without those non-ACP nodes having
 to support any ACP discovery or ACP channel setup. This is also
 called "native" access to the ACP because to those (NOC) systems the
 interface looks like a normal network interface (without any
 encryption/novel-signaling).

Eckert, et al. Expires September 12, 2019 [Page 70]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Data-Plane "native" (no ACP)
 .
 +--------+ +----------------+ . +-------------+
 | ACP | |ACP Edge Node | . | |
 | Node | | | v | |
 | |-------|...[ACP VRF]....+-----------------| |+
	^	.		NOC Device	
	.	.[Data-Plane]..+-----------------	"NMS hosts"		
	.	[]	. ^		
 +--------+ . +----------------+ . . +-------------+|
 . . . +-------------+
 . . .
 Data-Plane "native" . ACP "native" (unencrypted)
 + ACP auto-negotiated . "ACP connect subnet"
 and encrypted .
 ACP connect interface
 e.g., "VRF ACP native" (config)

 Figure 14: ACP connect

 ACP connect has security consequences: All systems and processes
 connected via ACP connect have access to all ACP nodes on the entire
 ACP, without further authentication. Thus, the ACP connect interface
 and (NOC) systems connected to it must be physically controlled/
 secured. For this reason the mechanisms described here do explicitly
 not include options to allow for a non-ACP router to be connected
 across an ACP connect interface and addresses behind such a router
 routed inside the ACP.

 An ACP connect interface provides exclusively access to only the ACP.
 This is likely insufficient for many NMS hosts. Instead, they would
 require a second "Data-Plane" interface outside the ACP for
 connections between the NMS host and administrators, or Internet
 based services, or for direct access to the Data-Plane. The document
 "Using Autonomic Control Plane for Stable Connectivity of Network
 OAM" [RFC8368] explains in more detail how the ACP can be integrated
 in a mixed NOC environment.

 An ACP connect interface SHOULD use an IPv6 address/prefix from the
 ACP Manual Addressing Sub-Scheme (Section 6.10.4), letting the
 operator configure for example only the Subnet-ID and having the node
 automatically assign the remaining part of the prefix/address. It
 SHOULD NOT use a prefix that is also routed outside the ACP so that
 the addresses clearly indicate whether it is used inside the ACP or
 not.

Eckert, et al. Expires September 12, 2019 [Page 71]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The prefix of ACP connect subnets MUST be distributed by the ACP edge
 node into the ACP routing protocol (RPL). The NMS hosts MUST connect
 to prefixes in the ACP routing table via its ACP connect interface.
 In the simple case where the ACP uses only one ULA prefix and all ACP
 connect subnets have prefixes covered by that ULA prefix, NMS hosts
 can rely on [RFC6724] to determine longest match prefix routes
 towards its different interfaces, ACP and data-plane. With RFC6724,
 The NMS host will select the ACP connect interface for all addresses
 in the ACP because any ACP destination address is longest matched by
 the address on the ACP connect interface. If the NMS hosts ACP
 connect interface uses another prefix or if the ACP uses multiple ULA
 prefixes, then the NMS hosts require (static) routes towards the ACP
 interface for these prefixes.

 When an ACP Edge node receives a packet from an ACP connect
 interface, it MUST only forward it intot he ACP if it has an IPv6
 source address from that interface. This is sometimes called "RPF
 filtering". This MAY be changed through administrative measures.

 To limit the security impact of ACP connect, nodes supporting it
 SHOULD implement a security mechanism to allow configuration/use of
 ACP connect interfaces only on nodes explicitly targeted to be
 deployed with it (those in physically secure locations such as a
 NOC). For example, the registrar could disable the ability to enable
 ACP connect on devices during enrollment and that property could only
 be changed through re-enrollment. See also Appendix A.10.5.

8.1.2. Software Components

 The ACP connect mechanism be only be used to connect physically
 external systems (NMS hosts) to the ACP but also other applications,
 containers or virtual machines. In fact, one possible way to
 eliminate the security issue of the external ACP connect interface is
 to collocate an ACP edge node and an NMS host by making one a virtual
 machine or container inside the other; and therefore converting the
 unprotected external ACP subnet into an internal virtual subnet in a
 single device. This would ultimately result in a fully ACP enabled
 NMS host with minimum impact to the NMS hosts software architecture.
 This approach is not limited to NMS hosts but could equally be
 applied to devices consisting of one or more VNF (virtual network
 functions): An internal virtual subnet connecting out-of-band
 management interfaces of the VNFs to an ACP edge router VNF.

 The core requirement is that the software components need to have a
 network stack that permits access to the ACP and optionally also the
 Data-Plane. Like in the physical setup for NMS hosts this can be
 realized via two internal virtual subnets. One that is connecting to

Eckert, et al. Expires September 12, 2019 [Page 72]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 the ACP (which could be a container or virtual machine by itself),
 and one (or more) connecting into the Data-Plane.

 This "internal" use of ACP connect approach should not considered to
 be a "workaround" because in this case it is possible to build a
 correct security model: It is not necessary to rely on unprovable
 external physical security mechanisms as in the case of external NMS
 hosts. Instead, the orchestration of the ACP, the virtual subnets
 and the software components can be done by trusted software that
 could be considered to be part of the ANI (or even an extended ACP).
 This software component is responsible for ensuring that only trusted
 software components will get access to that virtual subnet and that
 only even more trusted software components will get access to both
 the ACP virtual subnet and the Data-Plane (because those ACP users
 could leak traffic between ACP and Data-Plane). This trust could be
 established for example through cryptographic means such as signed
 software packages.

8.1.3. Auto Configuration

 ACP edge nodes, NMS hosts and software components that as described
 in the previous section are meant to be composed via virtual
 interfaces SHOULD support on the ACP connect subnet StateLess Address
 Autoconfiguration (SLAAC - [RFC4862]) and route auto configuration
 according to [RFC4191].

 The ACP edge node acts as the router on the ACP connect subnet,
 providing the (auto-)configured prefix for the ACP connect subnet to
 NMS hosts and/or software components. The ACP edge node uses route
 prefix option of RFC4191 to announce the default route (::/) with a
 lifetime of 0 and aggregated prefixes for routes in the ACP routing
 table with normal lifetimes. This will ensure that the ACP edge node
 does not become a default router, but that the NMS hosts and software
 components will route the prefixes used in the ACP to the ACP edge
 node.

 Aggregated prefix means that the ACP edge node needs to only announce
 the /48 ULA prefixes used in the ACP but none of the actual /64
 (Manual Addressing Sub-Scheme), /127 (ACP Zone Addressing Sub-
 Scheme), /112 or /120 (Vlong Addressing Sub-Scheme) routes of actual
 ACP nodes. If ACP interfaces are configured with non ULA prefixes,
 then those prefixes cannot be aggregated without further configured
 policy on the ACP edge node. This explains the above recommendation
 to use ACP ULA prefix covered prefixes for ACP connect interfaces:
 They allow for a shorter list of prefixes to be signaled via RFC4191
 to NMS hosts and software components.

Eckert, et al. Expires September 12, 2019 [Page 73]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP edge nodes that have a Vlong ACP address MAY allocate a
 subset of their /112 or /120 address prefix to ACP connect
 interface(s) to eliminate the need to non-autonomically configure/
 provision the address prefixes for such ACP connect interfaces.

8.1.4. Combined ACP/Data-Plane Interface (VRF Select)

 Combined ACP and Data-Plane interface
 .
 +--------+ +--------------------+ . +--------------+
 | ACP | |ACP Edge No | . | NMS Host(s) |
 | Node | | | . | / Software |
 | | | [ACP]. | . | |+
 | | | .[VRF] .[VRF] | v | "ACP address"||
 | +-------+. .[Select].+--------+ "Date Plane ||
 | | ^ | .[Data]. | | Address(es)"||
 | | . | [Plane] | | ||
 | | . | [] | +--------------+|
 +--------+ . +--------------------+ +--------------+
 .
 Data-Plane "native" and + ACP auto-negotiated/encrypted

 Figure 15: VRF select

 Using two physical and/or virtual subnets (and therefore interfaces)
 into NMS Hosts (as per Section 8.1.1) or Software (as per
 Section 8.1.2) may be seen as additional complexity, for example with
 legacy NMS Hosts that support only one IP interface.

 To provide a single subnet into both ACP and Data-Plane, the ACP Edge
 node needs to de-multiplex packets from NMS hosts into ACP VRF and
 Data-Plane. This is sometimes called "VRF select". If the ACP VRF
 has no overlapping IPv6 addresses with the Data-Plane (it should have
 no overlapping addresses), then this function can use the IPv6
 Destination address. The problem is Source Address Selection on the
 NMS Host(s) according to RFC6724.

 Consider the simple case: The ACP uses only one ULA prefix, the ACP
 IPv6 prefix for the Combined ACP and Data-Plane interface is covered
 by that ULA prefix. The ACP edge node announces both the ACP IPv6
 prefix and one (or more) prefixes for the Data-Plane. Without
 further policy configurations on the NMS Host(s), it may select its
 ACP address as a source address for Data-Plane ULA destinations
 because of Rule 8 of RFC6724. The ACP edge node can pass on the
 packet to the Data-Plane, but the ACP source address should not be
 used for Data-Plane traffic, and return traffic may fail.

Eckert, et al. Expires September 12, 2019 [Page 74]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 If the ACP carries multiple ULA prefixes or non-ULA ACP connect
 prefixes, then the correct source address selection becomes even more
 problematic.

 With separate ACP connect and Data-Plane subnets and RFC4191 prefix
 announcements that are to be routed across the ACP connect interface,
 RFC6724 source address selection Rule 5 (use address of outgoing
 interface) will be used, so that above problems do not occur, even in
 more complex cases of multiple ULA and non-ULA prefixes in the ACP
 routing table.

 To achieve the same behavior with a Combined ACP and Data-Plane
 interface, the ACP Edge Node needs to behave as two separate routers
 on the interface: One link-local IPv6 address/router for its ACP
 reachability, and one link-local IPv6 address/router for its Data-
 Plane reachability. The Router Advertisements for both are as
 described above (Section 8.1.3): For the ACP, the ACP prefix is
 announced together with RFC4191 option for the prefixes routed across
 the ACP and lifetime=0 to disqualify this next-hop as a default
 router. For the Data-Plane, the Data-Plane prefix(es) are announced
 together with whatever dafault router parameters are used for the
 Data-Plane.

 In result, RFC6724 source address selection Rule 5.5 may result in
 the same correct source address selection behavior of NMS hosts
 without further configuration on it as the separate ACP connect and
 Data-Plane interfaces. As described in the text for Rule 5.5, this
 is only a MAY, because IPv6 hosts are not required to track next-hop
 information. If an NMS Host does not do this, then separate ACP
 connect and Data-Plane interfaces are the preferable method of
 attachment. Hosts implementing [RFC8028] should (instead of may)
 implement [RFC6724] Rule 5.5, so it is preferred for hosts to support
 [RFC8028].

 ACP edge nodes MAY support the Combined ACP and Data-Plane interface.

8.1.5. Use of GRASP

 GRASP can and should be possible to use across ACP connect
 interfaces, especially in the architectural correct solution when it
 is used as a mechanism to connect Software (e.g., ASA or legacy NMS
 applications) to the ACP. Given how the ACP is the security and
 transport substrate for GRASP, the trustworthiness of nodes/software
 allowed to participate in the ACP GRASP domain is one of the main
 reasons why the ACP section describes no solution with non-ACP
 routers participating in the ACP routing table.

Eckert, et al. Expires September 12, 2019 [Page 75]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 ACP connect interfaces can be dealt with in the GRASP ACP domain the
 same as any other ACP interface assuming that any physical ACP
 connect interface is physically protected from attacks and that the
 connected Software or NMS Hosts are equally trusted as that on other
 ACP nodes. ACP edge nodes SHOULD have options to filter GRASP
 messages in and out of ACP connect interfaces (permit/deny) and MAY
 have more fine-grained filtering (e.g., based on IPv6 address of
 originator or objective).

 When using "Combined ACP and Data-Plane Interfaces", care must be
 taken that only GRASP messages intended for the ACP GRASP domain
 received from Software or NMS Hosts are forwarded by ACP edge nodes.
 Currently there is no definition for a GRASP security and transport
 substrate beside the ACP, so there is no definition how such
 Software/NMS Host could participate in two separate GRASP Domains
 across the same subnet (ACP and Data-Plane domains). At current it
 is assumed that all GRASP packets on a Combined ACP and Data-Plane
 interface belong to the GRASP ACP Domain. They must all use the ACP
 IPv6 addresses of the Software/NMS Hosts. The link-local IPv6
 addresses of Software/NMS Hosts (used for GRASP M_DISCOVERY and
 M_FLOOD messages) are also assumed to belong to the ACP address
 space.

8.2. ACP through Non-ACP L3 Clouds (Remote ACP neighbors)

 Not all nodes in a network may support the ACP. If non-ACP Layer-2
 devices are between ACP nodes, the ACP will work across it since it
 is IP based. However, the autonomic discovery of ACP neighbors via
 DULL GRASP is only intended to work across L2 connections, so it is
 not sufficient to autonomically create ACP connections across non-ACP
 Layer-3 devices.

8.2.1. Configured Remote ACP neighbor

 On the ACP node, remote ACP neighbors are configured explicitly. The
 parameters of such a "connection" are described in the following
 ABNF.

 connection = [method , local-addr, remote-addr, ?pmtu]
 method = ["IKEv2" , ?port]
 method //= ["DTLS", port]
 local-addr = [address , ?vrf]
 remote-addr = [address]
 address = ("any" | ipv4-address | ipv6-address)
 vrf = tstr ; Name of a VRF on this node with local-address

 Figure 16: Parameters for remote ACP neighbors

Eckert, et al. Expires September 12, 2019 [Page 76]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Explicit configuration of a remote-peer according to this ABNF
 provides all the information to build a secure channel without
 requiring a tunnel to that peer and running DULL GRASP inside of it.

 The configuration includes the parameters otherwise signaled via DULL
 GRASP: local address, remote (peer) locator and method. The
 differences over DULL GRASP local neighbor discovery and secure
 channel creation are as follows:

 o The local and remote address can be IPv4 or IPv6 and are typically
 global scope addresses.

 o The VRF across which the connection is built (and in which local-
 addr exists) can to be specified. If vrf is not specified, it is
 the default VRF on the node. In DULL GRASP the VRF is implied by
 the interface across which DULL GRASP operates.

 o If local address is "any", the local address used when initiating
 a secure channel connection is decided by source address selection
 ([RFC6724] for IPv6). As a responder, the connection listens on
 all addresses of the node in the selected VRF.

 o Configuration of port is only required for methods where no
 defaults exist (e.g., "DTLS").

 o If remote address is "any", the connection is only a responder.
 It is a "hub" that can be used by multiple remote peers to connect
 simultaneously - without having to know or configure their
 addresses. Example: Hub site for remote "spoke" sites reachable
 over the Internet.

 o Pmtu should be configurable to overcome issues/limitations of Path
 MTU Discovery (PMTUD).

 o IKEv2/IPsec to remote peers should support the optional NAT
 Traversal (NAT-T) procedures.

8.2.2. Tunneled Remote ACP Neighbor

 An IPinIP, GRE or other form of pre-existing tunnel is configured
 between two remote ACP peers and the virtual interfaces representing
 the tunnel are configured for "ACP enable". This will enable IPv6
 link local addresses and DULL on this tunnel. In result, the tunnel
 is used for normal "L2 adjacent" candidate ACP neighbor discovery
 with DULL and secure channel setup procedures described in this
 document.

Eckert, et al. Expires September 12, 2019 [Page 77]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Tunneled Remote ACP Neighbor requires two encapsulations: the
 configured tunnel and the secure channel inside of that tunnel. This
 makes it in general less desirable than Configured Remote ACP
 Neighbor. Benefits of tunnels are that it may be easier to implement
 because there is no change to the ACP functionality - just running it
 over a virtual (tunnel) interface instead of only native interfaces.
 The tunnel itself may also provide PMTUD while the secure channel
 method may not. Or the tunnel mechanism is permitted/possible
 through some firewall while the secure channel method may not.

8.2.3. Summary

 Configured/Tunneled Remote ACP neighbors are less "indestructible"
 than L2 adjacent ACP neighbors based on link local addressing, since
 they depend on more correct Data-Plane operations, such as routing
 and global addressing.

 Nevertheless, these options may be crucial to incrementally deploy
 the ACP, especially if it is meant to connect islands across the
 Internet. Implementations SHOULD support at least Tunneled Remote
 ACP Neighbors via GRE tunnels - which is likely the most common
 router-to-router tunneling protocol in use today.

9. Benefits (Informative)

9.1. Self-Healing Properties

 The ACP is self-healing:

 o New neighbors will automatically join the ACP after successful
 validation and will become reachable using their unique ULA
 address across the ACP.

 o When any changes happen in the topology, the routing protocol used
 in the ACP will automatically adapt to the changes and will
 continue to provide reachability to all nodes.

 o The ACP tracks the validity of peer certificates and tears down
 ACP secure channels when a peer certificate has expired. When
 short-lived certificates with lifetimes in the order of OCSP/CRL
 refresh times are used, then this allows for removal of invalid
 peers (whose certificate was not renewed) at similar speeds as
 when using OCSP/CRL. The same benefit can be achieved when using
 CRL/OCSP, periodically refreshing the revocation information and
 also tearing down ACP secure channels when the peers (long-lived)
 certificate is revoked. There is no requirement against ACP
 implementations to require this enhancement though to keep the
 mandatory implementations simpler.

Eckert, et al. Expires September 12, 2019 [Page 78]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP can also sustain network partitions and mergers. Practically
 all ACP operations are link local, where a network partition has no
 impact. Nodes authenticate each other using the domain certificates
 to establish the ACP locally. Addressing inside the ACP remains
 unchanged, and the routing protocol inside both parts of the ACP will
 lead to two working (although partitioned) ACPs.

 There are few central dependencies: A certificate revocation list
 (CRL) may not be available during a network partition; a suitable
 policy to not immediately disconnect neighbors when no CRL is
 available can address this issue. Also, an ACP registrar or
 Certificate Authority might not be available during a partition.
 This may delay renewal of certificates that are to expire in the
 future, and it may prevent the enrollment of new nodes during the
 partition.

 Highly resilient ACP designs can be built by using ACP registrars
 with embedded sub-CA, as outlined in Section 10.2.4. As long as a
 partition is left with one or more of such ACP registrars, it can
 continue to enroll new candidate ACP nodes as long as the ACP
 registrars sub-CA certificate does not expire. Because the ACP
 addressing relies on unique Registrar-IDs, a later re-merge of
 partitions will also not cause problems with ACP addresses assigned
 during partitioning.

 After a network partition, a re-merge will just establish the
 previous status, certificates can be renewed, the CRL is available,
 and new nodes can be enrolled everywhere. Since all nodes use the
 same trust anchor(s), a re-merge will be smooth.

 Merging two networks with different trust anchors requires the ACP
 nodes to trust the union of Trust Anchors. As long as the routing-
 subdomain hashes are different, the addressing will not overlap,
 except for the low probability of a 40-bit hash collision in SHA256
 (see Section 6.10). Note that the complete mechanisms to merge
 networks is out of scope of this specification.

 It is also highly desirable for implementation of the ACP to be able
 to run it over interfaces that are administratively down. If this is
 not feasible, then it might instead be possible to request explicit
 operator override upon administrative actions that would
 administratively bring down an interface across which the ACP is
 running. Especially if bringing down the ACP is known to disconnect
 the operator from the node. For example any such down administrative
 action could perform a dependency check to see if the transport
 connection across which this action is performed is affected by the
 down action (with default RPL routing used, packet forwarding will be
 symmetric, so this is actually possible to check).

Eckert, et al. Expires September 12, 2019 [Page 79]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

9.2. Self-Protection Properties

9.2.1. From the outside

 As explained in Section 6, the ACP is based on secure channels built
 between nodes that have mutually authenticated each other with their
 domain certificates. The channels themselves are protected using
 standard encryption technologies such as DTLS or IPsec which provide
 additional authentication during channel establishment, data
 integrity and data confidentiality protection of data inside the ACP
 and in addition, provide replay protection.

 An attacker will not be able to join the ACP unless having a valid
 domain certificate, also packet injection and sniffing traffic will
 not be possible due to the security provided by the encryption
 protocol.

 The ACP also serves as protection (through authentication and
 encryption) for protocols relevant to OAM that may not have secured
 protocol stack options or where implementation or deployment of those
 options fail on some vendor/product/customer limitations. This
 includes protocols such as SNMP ([RFC3411]), NTP ([RFC5905]), PTP
 ([IEEE-1588-2008]), DNS ([RFC1886]), DHCPv6 ([RFC3315]), syslog
 ([RFC3164]), Radius ([RFC2865]), Diameter ([RFC6733]), TACACS
 ([RFC1492]), IPFIX ([RFC7011]), Netflow ([RFC3954]) - just to name a
 few. Protection via the ACP secure hop-by-hop channels for these
 protocols is meant to be only a stopgap though: The ultimate goal is
 for these and other protocols to use end-to-end encryption utilizing
 the domain certificate and rely on the ACP secure channels primarily
 for zero-touch reliable connectivity, but not primarily for security.

 The remaining attack vector would be to attack the underlying ACP
 protocols themselves, either via directed attacks or by denial-of-
 service attacks. However, as the ACP is built using link-local IPv6
 addresses, remote attacks from the data-plane are impossible as long
 as the data-plane has no facilities to remotely sent IPv6 link-local
 packets. The only exception are ACP connected interfaces which
 require higher physical protection. The ULA addresses are only
 reachable inside the ACP context, therefore, unreachable from the
 Data-Plane. Also, the ACP protocols should be implemented to be
 attack resistant and not consume unnecessary resources even while
 under attack.

9.2.2. From the inside

 The security model of the ACP is based on trusting all members of the
 group of nodes that receive an ACP domain certificate for the same

Eckert, et al. Expires September 12, 2019 [Page 80]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 domain. Attacks from the inside by a compromised group member are
 therefore the biggest challenge.

 Group members must be protected against attackers so that there is no
 easy way to compromise them, or use them as a proxy for attacking
 other devices across the ACP. For example, management plane
 functions (transport ports) should only be reachable from the ACP but
 not the Data-Plane. Especially for those management plane functions
 that have no good protection by themselves because they do not have
 secure end-to-end transport and to whom ACP does not only provides
 automatic reliable connectivity but also protection against attacks.
 Protection across all potential attack vectors is typically easier to
 do in devices whose software is designed from the ground up with
 security in mind than with legacy software based systems where the
 ACP is added on as another feature.

 As explained above, traffic across the ACP SHOULD still be end-to-end
 encrypted whenever possible. This includes traffic such as GRASP,
 EST and BRSKI inside the ACP. This minimizes man in the middle
 attacks by compromised ACP group members. Such attackers cannot
 eavesdrop or modify communications, they can just filter them (which
 is unavoidable by any means).

 See Appendix A.10.8 for further considerations how to avoid and deal
 with compromised nodes.

9.3. The Administrator View

 An ACP is self-forming, self-managing and self-protecting, therefore
 has minimal dependencies on the administrator of the network.
 Specifically, since it is (intended to be) independent of
 configuration, there is no scope for configuration errors on the ACP
 itself. The administrator may have the option to enable or disable
 the entire approach, but detailed configuration is not possible.
 This means that the ACP must not be reflected in the running
 configuration of nodes, except a possible on/off switch (and even
 that is undesirable).

 While configuration is not possible, an administrator must have full
 visibility of the ACP and all its parameters, to be able to do
 trouble-shooting. Therefore, an ACP must support all show and debug
 options, as for any other network function. Specifically, a network
 management system or controller must be able to discover the ACP, and
 monitor its health. This visibility of ACP operations must clearly
 be separated from visibility of Data-Plane so automated systems will
 never have to deal with ACP aspect unless they explicitly desire to
 do so.

Eckert, et al. Expires September 12, 2019 [Page 81]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Since an ACP is self-protecting, a node not supporting the ACP, or
 without a valid domain certificate cannot connect to it. This means
 that by default a traditional controller or network management system
 cannot connect to an ACP. See Section 8.1.1 for more details on how
 to connect an NMS host into the ACP.

10. ACP Operations (Informative)

 The following sections document important operational aspects of the
 ACP. They are not normative because they do not impact the
 interoperability between components of the ACP, but they include
 recommendations/requirements for the internal operational model
 beneficial or necessary to achieve the desired use-case benefits of
 the ACP (see Section 3).

 o Section 10.1 describes recommended operator diagnostics
 capabilities of ACP nodes. The have been derived from diagnostic
 of a commercially available ACP implementation.

 o Section 10.2 describes high level how an ACP registrar needs to
 work, what its configuration parameters are and specific issues
 impacting the choices of deployment design due to renewal and
 revocation issues. It describes a model where ACP Registrars have
 their own sub-CA to provide the most distributed deployment option
 for ACP Registrars, and it describes considerations for
 centralized policy control of ACP Registrar operations.

 o Section 10.3 describes suggested ACP node behavior and operational
 interfaces (configuration options) to manage the ACP in so-called
 greenfield devices (previously unconfigured) and brownfield
 devices (preconfigured).

 The recommendations and suggestions of this chapter were derived from
 operational experience gained with a commercially available pre-
 standard ACP implementation.

10.1. ACP (and BRSKI) Diagnostics

 Even though ACP and ANI in general are taking out many manual
 configuration mistakes through their automation, it is important to
 provide good diagnostics for them.

 The basic diagnostics is support of (yang) data models representing
 the complete (auto-)configuration and operational state of all
 components: BRSKI, GRASP, ACP and the infrastructure used by them:
 TLS/DTLS, IPsec, certificates, trust anchors, time, VRF and so on.
 While necessary, this is not sufficient:

Eckert, et al. Expires September 12, 2019 [Page 82]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Simply representing the state of components does not allow operators
 to quickly take action - unless they do understand how to interpret
 the data, and that can mean a requirement for deep understanding of
 all components and how they interact in the ACP/ANI.

 Diagnostic supports should help to quickly answer the questions
 operators are expected to ask, such as "is the ACP working
 correctly?", or "why is there no ACP connection to a known
 neighboring node?"

 In current network management approaches, the logic to answer these
 questions is most often built as centralized diagnostics software
 that leverages the above mentioned data models. While this approach
 is feasible for components utilizing the ANI, it is not sufficient to
 diagnose the ANI itself:

 o Developing the logic to identify common issues requires
 operational experience with the components of the ANI. Letting
 each management system define its own analysis is inefficient.

 o When the ANI is not operating correctly, it may not be possible to
 run diagnostics from remote because of missing connectivity. The
 ANI should therefore have diagnostic capabilities available
 locally on the nodes themselves.

 o Certain operations are difficult or impossible to monitor in real-
 time, such as initial bootstrap issues in a network location where
 no capabilities exist to attach local diagnostics. Therefore it
 is important to also define means of capturing (logging)
 diagnostics locally for later retrieval. Ideally, these captures
 are also non-volatile so that they can survive extended power-off
 conditions - for example when a device that fails to be brought up
 zero-touch is being sent back for diagnostics at a more
 appropriate location.

 The most simple form of diagnostics answering questions such as the
 above is to represent the relevant information sequentially in
 dependency order, so that the first non-expected/non-operational item
 is the most likely root cause. Or just log/highlight that item. For
 example:

 Q: Is ACP operational to accept neighbor connections:

 o Check if any potentially necessary configuration to make ACP/ANI
 operational are correct (see Section 10.3 for a discussion of such
 commands).

Eckert, et al. Expires September 12, 2019 [Page 83]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Does the system time look reasonable, or could it be the default
 system time after clock chip battery failure (certificate checks
 depend on reasonable notion of time).

 o Does the node have keying material - domain certificate, trust
 anchors.

 o If no keying material and ANI is supported/enabled, check the
 state of BRSKI (not detailed in this example).

 o Check the validity of the domain certificate:

 * Does the certificate authenticate against the trust anchor?

 * Has it been revoked?

 * Was the last scheduled attempt to retrieve a CRL successful
 (e.g., do we know that our CRL information is up to date).

 * Is the certificate valid: validity start time in the past,
 expiration time in the future?

 * Does the certificate have a correctly formatted ACP domain
 information field?

 o Was the ACP VRF successfully created?

 o Is ACP enabled on one or more interfaces that are up and running?

 If all this looks good, the ACP should be running locally "fine" -
 but we did not check any ACP neighbor relationships.

 Question: why does the node not create a working ACP connection to a
 neighbor on an interface?

 o Is the interface physically up? Does it have an IPv6 link-local
 address?

 o Is it enabled for ACP?

 o Do we successfully send DULL GRASP messages to the interface (link
 layer errors)?

 o Do we receive DULL GRASP messages on the interface? If not, some
 intervening L2 equipment performing bad MLD snooping could have
 caused problems. Provide e.g., diagnostics of the MLD querier
 IPv6 and MAC address.

Eckert, et al. Expires September 12, 2019 [Page 84]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Do we see the ACP objective in any DULL GRASP message from that
 interface? Diagnose the supported secure channel methods.

 o Do we know the MAC address of the neighbor with the ACP objective?
 If not, diagnose SLAAC/ND state.

 o When did we last attempt to build an ACP secure channel to the
 neighbor?

 o If it failed, why:

 * Did the neighbor close the connection on us or did we close the
 connection on it because the domain certificate membership
 failed?

 * If the neighbor closed the connection on us, provide any error
 diagnostics from the secure channel protocol.

 * If we failed the attempt, display our local reason:

 + There was no common secure channel protocol supported by the
 two neighbors (this could not happen on nodes supporting
 this specification because it mandates common support for
 IPsec).

 + The ACP domain certificate membership check (Section 6.1.2)
 fails:

 - The neighbors certificate does not have the required
 trust anchor. Provide diagnostics which trust anchor it
 has (can identify whom the device belongs to).

 - The neighbors certificate does not have the same domain
 (or no domain at all). Diagnose domain-name and
 potentially other cert info.

 - The neighbors certificate has been revoked or could not
 be authenticated by OCSP.

 - The neighbors certificate has expired - or is not yet
 valid.

 * Any other connection issues in e.g., IKEv2 / IPsec, DTLS?.

 Question: Is the ACP operating correctly across its secure channels?

 o Are there one or more active ACP neighbors with secure channels?

Eckert, et al. Expires September 12, 2019 [Page 85]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Is the RPL routing protocol for the ACP running?

 o Is there a default route to the root in the ACP routing table?

 o Is there for each direct ACP neighbor not reachable over the ACP
 virtual interface to the root a route in the ACP routing table?

 o Is ACP GRASP running?

 o Is at least one SRV.est objective cached (to support certificate
 renewal)?

 o Is there at least one BRSKI registrar objective cached (in case
 BRSKI is supported)

 o Is BRSKI proxy operating normally on all interfaces where ACP is
 operating?

 o ...

 These lists are not necessarily complete, but illustrate the
 principle and show that there are variety of issues ranging from
 normal operational causes (a neighbor in another ACP domain) over
 problems in the credentials management (certificate lifetimes),
 explicit security actions (revocation) or unexpected connectivity
 issues (intervening L2 equipment).

 The items so far are illustrating how the ANI operations can be
 diagnosed with passive observation of the operational state of its
 components including historic/cached/counted events. This is not
 necessary sufficient to provide good enough diagnostics overall:

 The components of ACP and BRSKI are designed with security in mind
 but they do not attempt to provide diagnostics for building the
 network itself. Consider two examples:

 1. BRSKI does not allow for a neighboring device to identify the
 pledges certificate (IDevID). Only the selected BRSKI registrar
 can do this, but it may be difficult to disseminate information
 about undesired pledges from those BRSKI registrars to locations/
 nodes where information about those pledges is desired.

 2. The Link Layer Discovery Protocol (LLDP, [LLDP]) disseminates
 information about nodes to their immediate neighbors, such as
 node model/type/software and interface name/number of the
 connection. This information is often helpful or even necessary
 in network diagnostics. It can equally considered to be too

Eckert, et al. Expires September 12, 2019 [Page 86]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 insecure to make this information available unprotected to all
 possible neighbors.

 An "interested adjacent party" can always determine the IDevID of a
 BRSKI pledge by behaving like a BRSKI proxy/registrar. Therefore the
 IDevID of a BRSKI pledge is not meant to be protected - it just has
 to be queried and is not signaled unsolicited (as it would be in
 LLDP) so that other observers on the same subnet can determine who is
 an "interested adjacent party".

10.2. ACP Registrars

 As described in Section 6.10.7, the ACP addressing mechanism is
 designed to enable lightweight, distributed and uncoordinated ACP
 registrars that are providing ACP address prefixes to candidate ACP
 nodes by enrolling them with an ACP domain certificate into an ACP
 domain via any appropriate mechanism/protocol, automated or not.

 This section discusses informatively more details and options for ACP
 registrars.

10.2.1. Registrar interactions

 This section summarizes and discusses the interactions with other
 entities required by an ACP registrar.

 In a simple instance of an ACP network, no central NOC component
 beside a trust anchor (root CA) is required. One or more
 uncoordinated acting ACP registrar can be set up, performing the
 following interactions:

 To orchestrate enrolling a candidate ACP node autonomically, the ACP
 registrar can rely on the ACP and use Proxies to reach the candidate
 ACP node, therefore allowing minimum pre-existing (auto-)configured
 network services on the candidate ACP node. BRSKI defines the BRSKI
 proxy, a design that can be adopted for various protocols that
 Pledges/candidate ACP nodes could want to use, for example BRSKI over
 CoAP (Constrained Application Protocol), or proxying of Netconf.

 To reach a trust anchor unaware of the ACP, the ACP registrar would
 use the Data-Plane. ACP and Data-Plane in an ACP registrar could
 (and by default should be) completely isolated from each other at the
 network level. Only applications such as the ACP registrar would
 need the ability for their transport stacks to access both.

 In non-autonomic enrollment options, the Data-Plane between a ACP
 registrar and the candidate ACP node needs to be configured first.
 This includes the ACP registrar and the candidate ACP node. Then any

Eckert, et al. Expires September 12, 2019 [Page 87]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 appropriate set of protocols can be used between ACP registrar and
 candidate ACP node to discover the other side, and then connect and
 enroll (configure) the candidate ACP node with an ACP domain
 certificate. Netconf ZeroTouch ([I-D.ietf-netconf-zerotouch]) is an
 example protocol that could be used for this. BRSKI using optional
 discovery mechanisms is equally a possibility for candidate ACP nodes
 attempting to be enrolled across non-ACP networks, such as the
 Internet.

 When candidate ACP nodes have secure bootstrap, such as BRSKI
 Pledges, they will not trust to be configured/enrolled across the
 network, unless being presented with a voucher (see [RFC8366])
 authorizing the network to take possession of the node. An ACP
 registrar will then need a method to retrieve such a voucher, either
 offline, or online from a MASA (Manufacturer Authorized Signing
 Authority). BRSKI and Netconf ZeroTouch are two protocols that
 include capabilities to present the voucher to the candidate ACP
 node.

 An ACP registrar could operate EST for ACP certificate renewal and/or
 act as a CRL Distribution point. A node performing these services
 does not need to support performing (initial) enrollment, but it does
 require the same above described connectivity as an ACP registrar:
 via the ACP to ACP nodes and via the Data-Plane to the trust anchor
 and other sources of CRL information.

10.2.2. Registrar Parameter

 The interactions of an ACP registrar outlined Section 6.10.7 and
 Section 10.2.1 above depend on the following parameters:

 A URL to the trust anchor (root CA) and credentials so that the
 ACP registrar can let the trust anchor sign candidate ACP member
 certificates.

 The ACP domain-name.

 The Registrar-ID to use. This could default to a MAC address of
 the ACP registrar.

 For recovery, the next-useable Node-IDs for zone (Zone-ID=0) sub-
 addressing scheme, for Vlong /112 and for Vlong /1120 sub-
 addressing scheme. These IDs would only need to be provisioned
 after recovering from a crash. Some other mechanism would be
 required to remember these IDs in a backup location or to recover
 them from the set of currently known ACP nodes.

Eckert, et al. Expires September 12, 2019 [Page 88]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Policies if candidate ACP nodes should receive a domain
 certificate or not, for example based on the devices LDevID as in
 BRSKI. The ACP registrar may have a whitelist or blacklist of
 devices serialNumbers from their LDevID.

 Policies what type of address prefix to assign to a candidate ACP
 devices, based on likely the same information.

 For BRSKI or other mechanisms using vouchers: Parameters to
 determine how to retrieve vouchers for specific type of secure
 bootstrap candidate ACP nodes (such as MASA URLs), unless this
 information is automatically learned such as from the IDevID of
 candidate ACP nodes (as defined in BRSKI).

10.2.3. Certificate renewal and limitations

 When an ACP node renews/rekeys its certificate, it may end up doing
 so via a different registrar (e.g., EST server) than the one it
 originally received its ACP domain certificate from, for example
 because that original ACP registrar is gone. The ACP registrar
 through which the renewal/rekeying is performed would by default
 trust the ACP domain information from the ACP nodes current ACP
 domain certificate and maintain this information so that the ACP node
 maintains its ACP address prefix. In EST renewal/rekeying, the ACP
 nodes current ACP domain certificate is signaled during the TLS
 handshake.

 This simple scenario has two limitations:

 1. The ACP registrars cannot directly assign certificates to nodes
 and therefore needs an "online" connection to the trust anchor
 (root CA).

 2. Recovery from a compromised ACP registrar is difficult. When an
 ACP registrar is compromised, it can insert for example
 conflicting ACP domain information and create thereby an attack
 against other ACP nodes through the ACP routing protocol.

 Even when such a malicious ACP registrar is detected, resolving the
 problem may be difficult because it would require identifying all the
 wrong ACP domain certificates assigned via the ACP registrar after it
 was compromised. And without additional centralized tracking of
 assigned certificates there is no way to do this.

Eckert, et al. Expires September 12, 2019 [Page 89]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

10.2.4. ACP Registrars with sub-CA

 In situations, where either of the above two limitations are an
 issue, ACP registrars could also be sub-CAs. This removes the need
 for connectivity to a root-CA whenever an ACP node is enrolled, and
 reduces the need for connectivity of such an ACP registrar to a root-
 CA to only those times when it needs to renew its own certificate.
 The ACP registrar would also now use its own (sub-CA) certificate to
 enroll and sign the ACP nodes certificates, and therefore it is only
 necessary to revoke a compromised ACP registrars sub-CA certificate.
 Alternatively one can let it expire and not renew it, when the
 certificate of the sub-CA is appropriately short-lived.

 As the ACP domain membership check verifies a peer ACP node’s ACP
 domain certificate trust chain, it will also verify the signing
 certificate which is the compromised/revoked sub-CA certificate.
 Therefore ACP domain membership for an ACP node enrolled from a
 compromised and discovered ACP registrar will fail.

 ACP nodes enrolled by a compromised ACP registrar would automatically
 fail to establish ACP channels and ACP domain certificate renewal via
 EST and therefore revert to their role as a candidate ACP members and
 attempt to get a new ACP domain certificate from an ACP registrar -
 for example, via BRSKI. In result, ACP registrars that have an
 associated sub-CA makes isolating and resolving issues with
 compromised registrars easier.

 Note that ACP registrars with sub-CA functionality also can control
 the lifetime of ACP domain certificates easier and therefore also be
 used as a tool to introduce short lived certificates and not rely on
 CRL, whereas the certificates for the sub-CAs themselves could be
 longer lived and subject to CRL.

10.2.5. Centralized Policy Control

 When using multiple, uncoordinated ACP registrars, several advanced
 operations are potentially more complex than with a single, resilient
 policy control backend, for example including but not limited to:

 Which candidate ACP node is permitted or not permitted into an ACP
 domain. This may not be a decision to be taken upfront, so that a
 per-serialNumber policy can be loaded into ever ACP registrar.
 Instead, it may better be decided in real-time including
 potentially a human decision in a NOC.

 Tracking of all enrolled ACP nodes and their certificate
 information. For example in support of revoking individual ACP
 nodes certificates.

Eckert, et al. Expires September 12, 2019 [Page 90]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 More flexible policies what type of address prefix or even what
 specific address prefix to assign to a candidate ACP node.

 These and other operations could be introduced more easily by
 introducing a centralized Policy Management System (PMS) and
 modifying ACP registrar behavior so that it queries the PMS for any
 policy decision occurring during the candidate ACP node enrollment
 process and/or the ACP node certificate renewal process. For
 example, which ACP address prefix to assign. Likewise the ACP
 registrar would report any relevant state change information to the
 PMS as well, for example when a certificate was successfully enrolled
 onto a candidate ACP node.

10.3. Enabling and disabling ACP/ANI

 Both ACP and BRSKI require interfaces to be operational enough to
 support sending/receiving their packets. In node types where
 interfaces are by default (e.g., without operator configuration)
 enabled, such as most L2 switches, this would be less of a change in
 behavior than in most L3 devices (e.g.: routers), where interfaces
 are by default disabled. In almost all network devices it is common
 though for configuration to change interfaces to a physically
 disabled state and that would break the ACP.

 In this section, we discuss a suggested operational model to enable/
 disable interfaces and nodes for ACP/ANI in a way that minimizes the
 risk of operator action to break the ACP in this way, and that also
 minimizes operator surprise when ACP/ANI becomes supported in node
 software.

10.3.1. Filtering for non-ACP/ANI packets

 Whenever this document refers to enabling an interface for ACP (or
 BRSKI), it only requires to permit the interface to send/receive
 packets necessary to operate ACP (or BRSKI) - but not any other Data-
 Plane packets. Unless the Data-Plane is explicitly configured/
 enabled, all packets not required for ACP/BRSKI should be filtered on
 input and output:

 Both BRSKI and ACP require link-local only IPv6 operations on
 interfaces and DULL GRASP. IPv6 link-local operations means the
 minimum signaling to auto-assign an IPv6 link-local address and talk
 to neighbors via their link-local address: SLAAC (Stateless Address
 Auto-Configuration - [RFC4862]) and ND (Neighbor Discovery -
 [RFC4861]). When the device is a BRSKI pledge, it may also require
 TCP/TLS connections to BRSKI proxies on the interface. When the
 device has keying material, and the ACP is running, it requires DULL
 GRASP packets and packets necessary for the secure-channel mechanism

Eckert, et al. Expires September 12, 2019 [Page 91]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 it supports, e.g., IKEv2 and IPsec ESP packets or DTLS packets to the
 IPv6 link-local address of an ACP neighbor on the interface. It also
 requires TCP/TLS packets for its BRSKI proxy functionality, if it
 does support BRSKI.

10.3.2. Admin Down State

 Interfaces on most network equipment have at least two states: "up"
 and "down". These may have product specific names. "down" for
 example could be called "shutdown" and "up" could be called "no
 shutdown". The "down" state disables all interface operations down
 to the physical level. The "up" state enables the interface enough
 for all possible L2/L3 services to operate on top of it and it may
 also auto-enable some subset of them. More commonly, the operations
 of various L2/L3 services is controlled via additional node-wide or
 interface level options, but they all become only active when the
 interface is not "down". Therefore an easy way to ensure that all
 L2/L3 operations on an interface are inactive is to put the interface
 into "down" state. The fact that this also physically shuts down the
 interface is in many cases just a side effect, but it may be
 important in other cases (see below, Section 10.3.2.2).

 To provide ACP/ANI resilience against operators configuring
 interfaces to "down" state, this document recommends to separate the
 "down" state of interfaces into an "admin down" state where the
 physical layer is kept running and ACP/ANI can use the interface and
 a "physical down" state. Any existing "down" configurations would
 map to "admin down". In "admin down", any existing L2/L3 services of
 the Data-Plane should see no difference to "physical down" state. To
 ensure that no Data-Plane packets could be sent/received, packet
 filtering could be established automatically as described above in
 Section 10.3.1.

 As necessary (see discussion below) new configuration options could
 be introduced to issue "physical down". The options should be
 provided with additional checks to minimize the risk of issuing them
 in a way that breaks the ACP without automatic restoration. For
 example they could be denied to be issued from a control connection
 (netconf/ssh) that goes across the interface itself ("do not
 disconnect yourself"). Or they could be performed only temporary and
 only be made permanent with additional later reconfirmation.

 In the following sub-sections important aspects to the introduction
 of "admin down" state are discussed.

Eckert, et al. Expires September 12, 2019 [Page 92]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

10.3.2.1. Security

 Interfaces are physically brought down (or left in default down
 state) as a form of security. "Admin down" state as described above
 provides also a high level of security because it only permits ACP/
 ANI operations which are both well secured. Ultimately, it is
 subject to security review for the deployment whether "admin down" is
 a feasible replacement for "physical down".

 The need to trust the security of ACP/ANI operations needs to be
 weighed against the operational benefits of permitting this: Consider
 the typical example of a CPE (customer premises equipment) with no
 on-site network expert. User ports are in physical down state unless
 explicitly configured not to be. In a misconfiguration situation,
 the uplink connection is incorrectly plugged into such as user port.
 The device is disconnected from the network and therefore no
 diagnostics from the network side is possible anymore.
 Alternatively, all ports default to "admin down". The ACP (but not
 the Data-Plane) would still automatically form. Diagnostics from the
 network side is possible and operator reaction could include to
 either make this port the operational uplink port or to instruct re-
 cabling. Security wise, only ACP/ANI could be attacked, all other
 functions are filtered on interfaces in "admin down" state.

10.3.2.2. Fast state propagation and Diagnostics

 "Physical down" state propagates on many interface types (e.g.,
 Ethernet) to the other side. This can trigger fast L2/L3 protocol
 reaction on the other side and "admin down" would not have the same
 (fast) result.

 Bringing interfaces to "physical down" state is to the best of our
 knowledge always a result of operator action, but today, never the
 result of (autonomic) L2/L3 services running on the nodes. Therefore
 one option is to change the operator action to not rely on link-state
 propagation anymore. This may not be possible when both sides are
 under different operator control, but in that case it is unlikely
 that the ACP is running across the link and actually putting the
 interface into "physical down" state may still be a good option.

 Ideally, fast physical state propagation is replaced by fast software
 driven state propagation. For example a DULL GRASP "admin-state"
 objective could be used to auto configure a Bidirectional Forwarding
 Protocol (BFD, [RFC5880]) session between the two sides of the link
 that would be used to propagate the "up" vs. admin down state.

 Triggering physical down state may also be used as a mean of
 diagnosing cabling in the absence of easier methods. It is more

Eckert, et al. Expires September 12, 2019 [Page 93]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 complex than automated neighbor diagnostics because it requires
 coordinated remote access to both (likely) sides of a link to
 determine whether up/down toggling will cause the same reaction on
 the remote side.

 See Section 10.1 for a discussion about how LLDP and/or diagnostics
 via GRASP could be used to provide neighbor diagnostics, and
 therefore hopefully eliminating the need for "physical down" for
 neighbor diagnostics - as long as both neighbors support ACP/ANI.

10.3.2.3. Low Level Link Diagnostics

 "Physical down" is performed to diagnose low-level interface behavior
 when higher layer services (e.g., IPv6) are not working. Especially
 Ethernet links are subject to a wide variety of possible wrong
 configuration/cablings if they do not support automatic selection of
 variable parameters such as speed (10/100/1000 Mbps), crossover
 (Auto-MDIX) and connector (fiber, copper - when interfaces have
 multiple but can only enable one at a time). The need for low level
 link diagnostic can therefore be minimized by using fully auto
 configuring links.

 In addition to "Physical down", low level diagnostics of Ethernet or
 other interfaces also involve the creation of other states on
 interfaces, such as physical Loopback (internal and/or external) or
 bringing down all packet transmissions for reflection/cable-length
 measurements. Any of these options would disrupt ACP as well.

 In cases where such low-level diagnostics of an operational link is
 desired but where the link could be a single point of failure for the
 ACP, ASA on both nodes of the link could perform a negotiated
 diagnostics that automatically terminates in a predetermined manner
 without dependence on external input ensuring the link will become
 operational again.

10.3.2.4. Power Consumption Issues

 Power consumption of "physical down" interfaces, may be significantly
 lower than those in "admin down" state, for example on long-range
 fiber interfaces. Bringing up interfaces, for example to probe
 reachability, may also consume additional power. This can make these
 type of interfaces inappropriate to operate purely for the ACP when
 they are not currently needed for the Data-Plane.

Eckert, et al. Expires September 12, 2019 [Page 94]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

10.3.3. Interface level ACP/ANI enable

 The interface level configuration option "ACP enable" enables ACP
 operations on an interface, starting with ACP neighbor discovery via
 DULL GRAP. The interface level configuration option "ANI enable" on
 nodes supporting BRSKI and ACP starts with BRSKI pledge operations
 when there is no domain certificate on the node. On ACP/BRSKI nodes,
 "ACP enable" may not need to be supported, but only "ANI enable".
 Unless overridden by global configuration options (see later), "ACP/
 ANI enable" will result in "down" state on an interface to behave as
 "admin down".

10.3.4. Which interfaces to auto-enable?

 (Section 6.3) requires that "ACP enable" is automatically set on
 native interfaces, but not on non-native interfaces (reminder: a
 native interface is one that exists without operator configuration
 action such as physical interfaces in physical devices).

 Ideally, ACP enable is set automatically on all interfaces that
 provide access to additional connectivity that allows to reach more
 nodes of the ACP domain. The best set of interfaces necessary to
 achieve this is not possible to determine automatically. Native
 interfaces are the best automatic approximation.

 Consider an ACP domain of ACP nodes transitively connected via native
 interfaces. A Data-Plane tunnel between two of these nodes that are
 non-adjacent is created and "ACP enable" is set for that tunnel. ACP
 RPL sees this tunnel as just as a single hop. Routes in the ACP
 would use this hop as an attractive path element to connect regions
 adjacent to the tunnel nodes. In result, the actual hop-by-hop paths
 used by traffic in the ACP can become worse. In addition, correct
 forwarding in the ACP now depends on correct Data-Plane forwarding
 config including QoS, filtering and other security on the Data-Plane
 path across which this tunnel runs. This is the main issue why "ACP/
 ANI enable" should not be set automatically on non-native interfaces.

 If the tunnel would connect two previously disjoint ACP regions, then
 it likely would be useful for the ACP. A Data-Plane tunnel could
 also run across nodes without ACP and provide additional connectivity
 for an already connected ACP network. The benefit of this additional
 ACP redundancy has to be weighed against the problems of relying on
 the Data-Plane. If a tunnel connects two separate ACP regions: how
 many tunnels should be created to connect these ACP regions reliably
 enough? Between which nodes? These are all standard tunneled
 network design questions not specific to the ACP, and there are no
 generic fully automated answers.

Eckert, et al. Expires September 12, 2019 [Page 95]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Instead of automatically setting "ACP enable" on these type of
 interfaces, the decision needs to be based on the use purpose of the
 non-native interface and "ACP enable" needs to be set in conjunction
 with the mechanism through which the non-native interface is created/
 configured.

 In addition to explicit setting of "ACP/ANI enable", non-native
 interfaces also need to support configuration of the ACP RPL cost of
 the link - to avoid the problems of attracting too much traffic to
 the link as described above.

 Even native interfaces may not be able to automatically perform BRSKI
 or ACP because they may require additional operator input to become
 operational. Example include DSL interfaces requiring PPPoE
 credentials or mobile interfaces requiring credentials from a SIM
 card. Whatever mechanism is used to provide the necessary config to
 the device to enable the interface can also be expanded to decide on
 whether or not to set "ACP/ANI enable".

 The goal of automatically setting "ACP/ANI enable" on interfaces
 (native or not) is to eliminate unnecessary "touches" to the node to
 make its operation as much as possible "zero-touch" with respect to
 ACP/ANI. If there are "unavoidable touches" such a creating/
 configuring a non-native interface or provisioning credentials for a
 native interface, then "ACP/ANI enable" should be added as an option
 to that "touch". If a wrong "touch" is easily fixed (not creating
 another high-cost touch), then the default should be not to enable
 ANI/ACP, and if it is potentially expensive or slow to fix (e.g.,
 parameters on SIM card shipped to remote location), then the default
 should be to enable ACP/ANI.

10.3.5. Node Level ACP/ANI enable

 A node level command "ACP/ANI enable [up-if-only]" enables ACP or ANI
 on the node (ANI = ACP + BRSKI). Without this command set, any
 interface level "ACP/ANI enable" is ignored. Once set, ACP/ANI will
 operate interface where "ACP/ANI enable" is set. Setting of
 interface level "ACP/ANI enable" is either automatic (default) or
 explicit through operator action as described in the previous
 section.

 If the option "up-if-only" is selected, the behavior of "down"
 interfaces is unchanged, and ACP/ANI will only operate on interfaces
 where "ACP/ANI enable" is set and that are "up". When it is not set,
 then "down" state of interfaces with "ACP/ANI enable" is modified to
 behave as "admin down".

Eckert, et al. Expires September 12, 2019 [Page 96]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

10.3.5.1. Brownfield nodes

 A "brownfield" node is one that already has a configured Data-Plane.

 Executing global "ACP/ANI enable [up-if-only]" on each node is the
 only command necessary to create an ACP across a network of
 brownfield nodes once all the nodes have a domain certificate. When
 BRSKI is used ("ANI enable"), provisioning of the certificates only
 requires set-up of a single BRSKI registrar node which could also
 implement a CA for the network. This is the most simple way to
 introduce ACP/ANI into existing (== brownfield) networks.

 The need to explicitly enable ACP/ANI is especially important in
 brownfield nodes because otherwise software updates may introduce
 support for ACP/ANI: Automatic enablement of ACP/ANI in networks
 where the operator does not only not want ACP/ANI but where the
 operator likely never even heard of it could be quite irritating to
 the operator. Especially when "down" behavior is changed to "admin
 down".

 Automatically setting "ANI enable" on brownfield nodes where the
 operator is unaware of it could also be a critical security issue
 depending on the vouchers used by BRKSI on these nodes. An attacker
 could claim to be the owner of these devices and create an ACP that
 the attacker has access/control over. In networks where the operator
 explicitly wants to enable the ANI this could not happen, because he
 would create a BRSKI registrar that would discover attack attempts.
 Nodes requiring "ownership vouchers" would not be subject to that
 attack. See [I-D.ietf-anima-bootstrapping-keyinfra] for more
 details. Note that a global "ACP enable" alone is not subject to
 these type of attacks, because it always depends on some other
 mechanism first to provision domain certificates into the device.

10.3.5.2. Greenfield nodes

 A "greenfield" node is one that did not have any prior configuration.

 For greenfield nodes, only "ANI enable" is relevant. If another
 mechanism than BRSKI is used to (zero-touch) bootstrap a node, then
 it is up to that mechanism to provision domain certificates and to
 set global "ACP enable" as desired.

 Nodes supporting full ANI functionality set "ANI enable"
 automatically when they decide that they are greenfield, e.g., that
 they are powering on from factory condition. They will then put all
 native interfaces into "admin down" state and start to perform BRSKI
 pledge functionality - and once a domain certificate is enrolled they
 automatically enable ACP.

Eckert, et al. Expires September 12, 2019 [Page 97]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Attempts for BRSKI pledge operations in greenfield state should
 terminate automatically when another method of configuring the node
 is used. Methods that indicate some form of physical possession of
 the device such as configuration via the serial console port could
 lead to immediate termination of BRSKI, while other parallel auto
 configuration methods subject to remote attacks might lead to BRSKI
 termination only after they were successful. Details of this may
 vary widely over different type of nodes. When BRSKI pledge
 operation terminates, this will automatically unset "ANI enable" and
 should terminate any temporarily needed state on the device to
 perform BRSKI - DULL GRASP, BRSKI pledge and any IPv6 configuration
 on interfaces.

10.3.6. Undoing ANI/ACP enable

 Disabling ANI/ACP by undoing "ACP/ANI enable" is a risk for the
 reliable operations of the ACP if it can be executed by mistake or
 unauthorized. This behavior could be influenced through some
 additional property in the certificate (e.g., in the domain
 information extension field) subject to future work: In an ANI
 deployment intended for convenience, disabling it could be allowed
 without further constraints. In an ANI deployment considered to be
 critical more checks would be required. One very controlled option
 would be to not permit these commands unless the domain certificate
 has been revoked or is denied renewal. Configuring this option would
 be a parameter on the BRSKI registrar(s). As long as the node did
 not receive a domain certificate, undoing "ANI/ACP enable" should not
 have any additional constraints.

10.3.7. Summary

 Node-wide "ACP/ANI enable [up-if-only]" commands enable the operation
 of ACP/ANI. This is only auto-enabled on ANI greenfield devices,
 otherwise it must be configured explicitly.

 If the option "up-if-only" is not selected, interfaces enabled for
 ACP/ANI interpret "down" state as "admin down" and not "physical
 down". In "admin-down" all non-ACP/ANI packets are filtered, but the
 physical layer is kept running to permit ACP/ANI to operate.

 (New) commands that result in physical interruption ("physical down",
 "loopback") of ACP/ANI enabled interfaces should be built to protect
 continuance or reestablishment of ACP as much as possible.

 Interface level "ACP/ANI enable" control per-interface operations.
 It is enabled by default on native interfaces and has to be
 configured explicitly on other interfaces.

Eckert, et al. Expires September 12, 2019 [Page 98]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Disabling "ACP/ANI enable" global and per-interface should have
 additional checks to minimize undesired breakage of ACP. The degree
 of control could be a domain wide parameter in the domain
 certificates.

10.4. Configuration and the ACP (summary)

 There is no desirable configuration for the ACP. Instead, all
 parameters that need to be configured in support of the ACP are
 limitations of the solution, but they are only needed in cases where
 not all components are made autonomic. Whereever this is necessary,
 it will rely on pre-existing mechanisms for configuration such as CLI
 or YANG ([RFC7950]) data models.

 The most important examples of such configuration include:

 o When ACP nodes do not support an autonomic way to receive an ACP
 domain certificate, for example BRSKI, then such certificate needs
 to be configured via some pre-existing mechanisms outside the
 scope of this specification. Today, router have typically a
 variety of mechanisms to do this.

 o Certificate maintenance requires PKI functions. Discovery of
 these functions across the ACP is automated (see Section 6.1.4),
 but their configuration is is not.

 o When non-ACP capable nodes need to be connected to the ACP, the
 connecting ACP node needs to be configuration to support this
 according to Section 8.1.

 o When devices are not autonomically bootstrapped, explicit
 configuration to enable the ACP needs to be applied. See
 Section 10.3.

 o When the ACP needs to be extended across interfacess other than
 L2, the ACP as defined in this document can not autodiscover
 candidate neighbors automatically. Remove neighbors need to be
 configured, see Section 8.2.

 Once the ACP is operating, any further configuration for the data-
 lane can be configured more reliably across the ACP itself because
 the ACP provides addressing and connectivity (routing) independent of
 the data-plane itself. For this, the configuration methods simply
 need to also allow to operate across the ACP VRF - netconf, ssh or
 any other method.

 The ACP also provides additional security through its hop-by-hop
 encryption for any such configuration operations: Some legacy

Eckert, et al. Expires September 12, 2019 [Page 99]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 configuration methods (SNMP, TFTP, HTTP) may not use end-to-end
 encryption, and most of the end-to-end secured configuration methods
 still allow for easy passive observation along the path about
 configuration taking place (transport flows, port numbers, IP
 addresses).

 The ACP can and should equally be used as the transport to configure
 any of the aforemention non-automic components of the ACP, but in
 that case, the same caution needs to be exercised as with data-plane
 configuration without ACP: Misconfiguration may cause the configuring
 entity to be disconnected from the node it configures - for example
 when incorrectly unconfiguring a remote ACP neighbor through which
 the configured ACP node is reached.

11. Security Considerations

 After seeding an ACP by configuring at least one ACP registrar with
 routing-subdomain and a CA, an ACP is self-protecting and there is no
 need to apply configuration to make it secure (typically the ACP
 Registrar doubles as EST server for certificate renewal). Its
 security therefore does not depend on configuration. This does not
 include workarounds for non-autonomic components as explained in
 Section 8. See Section 9.2 for details of how the ACP protects
 itself against attacks from the outside and to a more limited degree
 from the inside as well.

 However, the security of the ACP depends on a number of other
 factors:

 o The usage of domain certificates depends on a valid supporting PKI
 infrastructure. If the chain of trust of this PKI infrastructure
 is compromised, the security of the ACP is also compromised. This
 is typically under the control of the network administrator.

 o Every ACP registrar is criticial infrastructure that needs to be
 hardened against attacks similar to a CA. A malicious registrar
 can enroll enemy plegdes to an ACP network or break ACP routing by
 duplicate ACP address assignment to pledges via their ACP domain
 certificates.

 o Security can be compromised by implementation errors (bugs), as in
 all products.

 There is no prevention of source-address spoofing inside the ACP.
 This implies that if an attacker gains access to the ACP, it can
 spoof all addresses inside the ACP and fake messages from any other
 node.

Eckert, et al. Expires September 12, 2019 [Page 100]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP It is designed to enable automation of current network
 management and future autonomic peer-to-peer/distributed network
 automation. Any ACP member can send ACP IPv6 packet to other ACP
 members and announce via ACP GRASP services to all ACP members
 without depenency against centralized components.

 The ACP relies on peer-to-peer authentication and authorization using
 ACP certificates. This security model is necessary to enable the
 autonomic ad-hoc any-to-any connectivity between ACP nodes. It
 provides infrastructure protection through hop by hop authentication
 and encryption - without relying on third parties. For any services
 where this complete autonomic peer-to-peer group security model is
 appropriate, the ACP domain certificate can also be used unchanged.
 For example for any type of data-plane routing protocol security.

 This ACP security model is designed primarily to protect against
 attack from the outside, but not against attacks from the inside. To
 protect against spoofing attacks from compromised on-path ACP nodes,
 end-to-end encryption inside the ACP is used by new ACP signaling:
 GRASP across the ACP using TLS. The same is expected from any non-
 legacy services/protocols using the ACP. Because no group-keys are
 used, there is no risk for impacted nodes to access end-to-end
 encrypted traffic from other ACP nodes.

 Attacks from impacted ACP nodes against the ACP are more difficult
 than against the data-plane because of the autoconfiguration of the
 ACP and the absence of configuration options that could be abused
 that allow to change/break ACP behavior. This is excluding
 configuration for workaround in support of non-autonomic components.

 Mitigation against compromised ACP members is possible through
 standard automated certificate management mechanisms including
 revocation and non-renewal of short-lived cdrtificates. In this
 version of the specification, there are no further optimization of
 these mechanisms defined for the ACP (but see Appendix A.10.8).

 Higher layer service built using ACP domain certificates should not
 solely rely on undifferentiated group security when another model is
 more appropriate/more secure. For example central network
 configuration relies on a security model where only few especially
 trusted nodes are allowed to configure the data-plane of network
 nodes (CLIL, Netconf). This can be done through ACP domain
 certificates by differentiating them and introduce roles. See
 Appendix A.10.5.

 Fundamentally, security depends on avoiding operator and network
 operations automation mistakes, implementation and architecture.
 Autonomic approaches such as the ACP largely eliminate operator

Eckert, et al. Expires September 12, 2019 [Page 101]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 mistakes and make it easier to recover from network operations
 mistakes. Implementation and architectural mistakes are still
 possible, as in all networking technologies.

 Many details of ACP are designed with security in mind and discussed
 elsewhere in the document:

 IPv6 addresses used by nodes in the ACP are covered as part of the
 node’s domain certificate as described in Section 6.1.1. This allows
 even verification of ownership of a peers IPv6 address when using a
 connection authenticated with the domain certificate.

 The ACP acts as a security (and transport) substrate for GRASP inside
 the ACP such that GRASP is not only protected by attacks from the
 outside, but also by attacks from compromised inside attackers - by
 relying not only on hop-by-hop security of ACP secure channels, but
 adding end-to-end security for those GRASP messages. See
 Section 6.8.2.

 ACP provides for secure, resilient zero-touch discovery of EST
 servers for certificate renewal. See Section 6.1.4.

 ACP provides extensible, auto-configuring hop-by-hop protection of
 the ACP infrastructure via the negotiation of hop-by-hop secure
 channel protocols. See Section 6.5 and Appendix A.6.

 The ACP is designed to minimize attacks from the outside by
 minimizing its dependency against any non-ACP (Data-Plane)
 operations/configuration on a node. See also Section 6.12.2.

 In combination with BRSKI, ACP enables a resilient, fully zero-touch
 network solution for short-lived certificates that can be renewed or
 re-enrolled even after unintentional expiry (e.g., because of
 interrupted connectivity). See Appendix A.2.

 Because ACP secure channels can be long lived, but certificates used
 may be short lived, secure channels, for example built via IPsec need
 to be terminated when peer certificates expire. See Section 6.7.3.

 The ACP is designed to minimize attacks from the outside by
 minimizing its dependency against any non-ACP (Data-Plane)
 operations/configuration on a node. See also Section 6.12.2.

12. IANA Considerations

 This document defines the "Autonomic Control Plane".

Eckert, et al. Expires September 12, 2019 [Page 102]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The IANA is requested to register the value "AN_ACP" (without quotes)
 to the GRASP Objectives Names Table in the GRASP Parameter Registry.
 The specification for this value is this document, Section 6.3.

 The IANA is requested to register the value "SRV.est" (without
 quotes) to the GRASP Objectives Names Table in the GRASP Parameter
 Registry. The specification for this value is this document,
 Section 6.1.4.

 Explanation: This document chooses the initially strange looking
 format "SRV.<service-name>" because these objective names would be in
 line with potential future simplification of the GRASP objective
 registry. Today, every name in the GRASP objective registry needs to
 be explicitly allocated with IANA. In the future, this type of
 objective names could considered to be automatically registered in
 that registry for the same service for which <service-name> is
 registered according to [RFC6335]. This explanation is solely
 informational and has no impact on the requested registration.

 The IANA is requested to create an ACP Parameter Registry with
 currently one registry table - the "ACP Address Type" table.

 "ACP Address Type" Table. The value in this table are numeric values
 0...3 paired with a name (string). Future values MUST be assigned
 using the Standards Action policy defined by [RFC8126]. The
 following initial values are assigned by this document:

 0: ACP Zone Addressing Sub-Scheme (ACP RFC Figure 10) / ACP Manual
 Addressing Sub-Scheme (ACP RFC Section 6.10.4)
 1: ACP Vlong Addressing Sub-Scheme (ACP RFC Section 6.10.5)

13. Acknowledgements

 This work originated from an Autonomic Networking project at Cisco
 Systems, which started in early 2010. Many people contributed to
 this project and the idea of the Autonomic Control Plane, amongst
 which (in alphabetical order): Ignas Bagdonas, Parag Bhide, Balaji
 BL, Alex Clemm, Yves Hertoghs, Bruno Klauser, Max Pritikin, Michael
 Richardson, Ravi Kumar Vadapalli.

 Special thanks to Brian Carpenter, Elwyn Davies, Joel Halpern and
 Sheng Jiang for their thorough reviews and to Pascal Thubert and
 Michael Richardson to provide the details for the recommendations of
 the use of RPL in the ACP.

 Further input, review or suggestions were received from: Rene Struik,
 Brian Carpenter, Benoit Claise, William Atwood and Yongkang Zhang.

Eckert, et al. Expires September 12, 2019 [Page 103]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14. Change log [RFC Editor: Please remove]

14.1. Initial version

 First version of this document: draft-behringer-autonomic-control-
 plane

14.2. draft-behringer-anima-autonomic-control-plane-00

 Initial version of the anima document; only minor edits.

14.3. draft-behringer-anima-autonomic-control-plane-01

 o Clarified that the ACP should be based on, and support only IPv6.

 o Clarified in intro that ACP is for both, between devices, as well
 as for access from a central entity, such as an NMS.

 o Added a section on how to connect an NMS system.

 o Clarified the hop-by-hop crypto nature of the ACP.

 o Added several references to GDNP as a candidate protocol.

 o Added a discussion on network split and merge. Although, this
 should probably go into the certificate management story longer
 term.

14.4. draft-behringer-anima-autonomic-control-plane-02

 Addresses (numerous) comments from Brian Carpenter. See mailing list
 for details. The most important changes are:

 o Introduced a new section "overview", to ease the understanding of
 the approach.

 o Merged the previous "problem statement" and "use case" sections
 into a mostly re-written "use cases" section, since they were
 overlapping.

 o Clarified the relationship with draft-ietf-anima-stable-
 connectivity

14.5. draft-behringer-anima-autonomic-control-plane-03

 o Took out requirement for IPv6 --> that’s in the reference doc.

 o Added requirement section.

Eckert, et al. Expires September 12, 2019 [Page 104]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Changed focus: more focus on autonomic functions, not only virtual
 out-of-band. This goes a bit throughout the document, starting
 with a changed abstract and intro.

14.6. draft-ietf-anima-autonomic-control-plane-00

 No changes; re-submitted as WG document.

14.7. draft-ietf-anima-autonomic-control-plane-01

 o Added some paragraphs in addressing section on "why IPv6 only", to
 reflect the discussion on the list.

 o Moved the Data-Plane ACP out of the main document, into an
 appendix. The focus is now the virtually separated ACP, since it
 has significant advantages, and isn’t much harder to do.

 o Changed the self-creation algorithm: Part of the initial steps go
 into the reference document. This document now assumes an
 adjacency table, and domain certificate. How those get onto the
 device is outside scope for this document.

 o Created a new section 6 "workarounds for non-autonomic nodes", and
 put the previous controller section (5.9) into this new section.
 Now, section 5 is "autonomic only", and section 6 explains what to
 do with non-autonomic stuff. Much cleaner now.

 o Added an appendix explaining the choice of RPL as a routing
 protocol.

 o Formalized the creation process a bit more. Now, we create a
 "candidate peer list" from the adjacency table, and form the ACP
 with those candidates. Also it explains now better that policy
 (Intent) can influence the peer selection. (section 4 and 5)

 o Introduce a section for the capability negotiation protocol
 (section 7). This needs to be worked out in more detail. This
 will likely be based on GRASP.

 o Introduce a new parameter: ACP tunnel type. And defines it in the
 IANA considerations section. Suggest GRE protected with IPSec
 transport mode as the default tunnel type.

 o Updated links, lots of small edits.

Eckert, et al. Expires September 12, 2019 [Page 105]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14.8. draft-ietf-anima-autonomic-control-plane-02

 o Added explicitly text for the ACP channel negotiation.

 o Merged draft-behringer-anima-autonomic-addressing-02 into this
 document, as suggested by WG chairs.

14.9. draft-ietf-anima-autonomic-control-plane-03

 o Changed Neighbor discovery protocol from GRASP to mDNS. Bootstrap
 protocol team decided to go with mDNS to discover bootstrap proxy,
 and ACP should be consistent with this. Reasons to go with mDNS
 in bootstrap were a) Bootstrap should be reuseable also outside of
 full anima solutions and introduce as few as possible new
 elements. mDNS was considered well-known and very-likely even pre-
 existing in low-end devices (IoT). b) Using GRASP both for the
 insecure neighbor discovery and secure ACP operatations raises the
 risk of introducing security issues through implementation issues/
 non-isolation between those two instances of GRASP.

 o Shortened the section on GRASP instances, because with mDNS being
 used for discovery, there is no insecure GRASP session any longer,
 simplifying the GRASP considerations.

 o Added certificate requirements for ANIMA in section 5.1.1,
 specifically how the ANIMA information is encoded in
 subjectAltName.

 o Deleted the appendix on "ACP without separation", as originally
 planned, and the paragraph in the main text referring to it.

 o Deleted one sub-addressing scheme, focusing on a single scheme
 now.

 o Included information on how ANIMA information must be encoded in
 the domain certificate in section "preconditions".

 o Editorial changes, updated draft references, etc.

14.10. draft-ietf-anima-autonomic-control-plane-04

 Changed discovery of ACP neighbor back from mDNS to GRASP after
 revisiting the L2 problem. Described problem in discovery section
 itself to justify. Added text to explain how ACP discovery relates
 to BRSKY (bootstrap) discovery and pointed to Michael Richardsons
 draft detailing it. Removed appendix section that contained the
 original explanations why GRASP would be useful (current text is
 meant to be better).

Eckert, et al. Expires September 12, 2019 [Page 106]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14.11. draft-ietf-anima-autonomic-control-plane-05

 o Section 5.3 (candidate ACP neighbor selection): Add that Intent
 can override only AFTER an initial default ACP establishment.

 o Section 6.10.1 (addressing): State that addresses in the ACP are
 permanent, and do not support temporary addresses as defined in
 RFC4941.

 o Modified Section 6.3 to point to the GRASP objective defined in
 draft-carpenter-anima-ani-objectives. (and added that reference)

 o Section 6.10.2: changed from MD5 for calculating the first 40-bits
 to SHA256; reason is MD5 should not be used any more.

 o Added address sub-scheme to the IANA section.

 o Made the routing section more prescriptive.

 o Clarified in Section 8.1.1 the ACP Connect port, and defined that
 term "ACP Connect".

 o Section 8.2: Added some thoughts (from mcr) on how traversing a L3
 cloud could be automated.

 o Added a CRL check in Section 6.7.

 o Added a note on the possibility of source-address spoofing into
 the security considerations section.

 o Other editoral changes, including those proposed by Michael
 Richardson on 30 Nov 2016 (see ANIMA list).

14.12. draft-ietf-anima-autonomic-control-plane-06

 o Added proposed RPL profile.

 o detailed DTLS profile - DTLS with any additional negotiation/
 signaling channel.

 o Fixed up text for ACP/GRE encap. Removed text claiming its
 incompatible with non-GRE IPsec and detailed it.

 o Added text to suggest admin down interfaces should still run ACP.

Eckert, et al. Expires September 12, 2019 [Page 107]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14.13. draft-ietf-anima-autonomic-control-plane-07

 o Changed author association.

 o Improved ACP connect setion (after confusion about term came up in
 the stable connectivity draft review). Added picture, defined
 complete terminology.

 o Moved ACP channel negotiation from normative section to appendix
 because it can in the timeline of this document not be fully
 specified to be implementable. Aka: work for future document.
 That work would also need to include analysing IKEv2 and describin
 the difference of a proposed GRASP/TLS solution to it.

 o Removed IANA request to allocate registry for GRASP/TLS. This
 would come with future draft (see above).

 o Gave the name "ACP domain information field" to the field in the
 certificate carrying the ACP address and domain name.

 o Changed the rules for mutual authentication of certificates to
 rely on the domain in the ACP information field of the certificate
 instead of the OU in the certificate. Also renewed the text
 pointing out that the ACP information field in the certificate is
 meant to be in a form that it does not disturb other uses of the
 certificate. As long as the ACP expected to rely on a common OU
 across all certificates in a domain, this was not really true:
 Other uses of the certificates might require different OUs for
 different areas/type of devices. With the rules in this draft
 version, the ACP authentication does not rely on any other fields
 in the certificate.

 o Added an extension field to the ACP information field so that in
 the future additional fields like a subdomain could be inserted.
 An example using such a subdomain field was added to the pre-
 existing text suggesting sub-domains. This approach is necessary
 so that there can be a single (main) domain in the ACP information
 field, because that is used for mutual authentication of the
 certificate. Also clarified that only the register(s) SHOULD/MUST
 use that the ACP address was generated from the domain name - so
 that we can easier extend change this in extensions.

 o Took the text for the GRASP discovery of ACP neighbors from Brians
 grasp-ani-objectives draft. Alas, that draft was behind the
 latest GRASP draft, so i had to overhaul. The mayor change is to
 describe in the ACP draft the whole format of the M_FLOOD message
 (and not only the actual objective). This should make it a lot
 easier to read (without having to go back and forth to the GRASP

Eckert, et al. Expires September 12, 2019 [Page 108]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 RFC/draft). It was also necessary because the locator in the
 M_FLOOD messages has an important role and its not coded inside
 the objective. The specification of how to format the M_FLOOD
 message shuold now be complete, the text may be some duplicate
 with the DULL specificateion in GRASP, but no contradiction.

 o One of the main outcomes of reworking the GRASP section was the
 notion that GRASP announces both the candidate peers IPv6 link
 local address but also the support ACP security protocol including
 the port it is running on. In the past we shied away from using
 this information because it is not secured, but i think the
 additional attack vectors possible by using this information are
 negligible: If an attacker on an L2 subnet can fake another
 devices GRASP message then it can already provide a similar amount
 of attack by purely faking the link-local address.

 o Removed the section on discovery and BRSKI. This can be revived
 in the BRSKI document, but it seems mood given how we did remove
 mDNS from the latest BRSKI document (aka: this section discussed
 discrepancies between GRASP and mDNS discovery which should not
 exist anymore with latest BRSKI.

 o Tried to resolve the EDNOTE about CRL vs. OCSP by pointing out we
 do not specify which one is to be used but that the ACP should be
 used to reach the URL included in the certificate to get to the
 CRL storage or OCSP server.

 o Changed ACP via IPsec to ACP via IKEv2 and restructured the
 sections to make IPsec native and IPsec via GRE subsections.

 o No need for any assigned DTLS port if ACP is run across DTLS
 because it is signaled via GRASP.

14.14. draft-ietf-anima-autonomic-control-plane-08

 Modified mentioning of BRSKI to make it consistent with current
 (07/2017) target for BRSKI: MASA and IDevID are mandatory. Devices
 with only insecure UDI would need a security reduced variant of
 BRSKI. Also added mentioning of Netconf Zero-Touch. Made BRSKI non-
 normative for ACP because wrt. ACP it is just one option how the
 domain certificate can be provisioned. Instead, BRSKI is mandatory
 when a device implements ANI which is ACP+BRSKI.

 Enhanced text for ACP across tunnels to describe two options: one
 across configured tunnels (GRE, IPinIP etc) a more efficient one via
 directed DULL.

Eckert, et al. Expires September 12, 2019 [Page 109]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Moved decription of BRSKI to appendix to emphasize that BRSKI is not
 a (normative) dependency of GRASP, enhanced text to indicate other
 options how Domain Certificates can be provisioned.

 Added terminology section.

 Separated references into normative and non-normative.

 Enhanced section about ACP via "tunnels". Defined an option to run
 ACP secure channel without an outer tunnel, discussed PMTU, benefits
 of tunneling, potential of using this with BRSKI, made ACP via GREP a
 SHOULD requirement.

 Moved appendix sections up before IANA section because there where
 concerns about appendices to be too far on the bottom to be read.
 Added (Informative) / (Normative) to section titles to clarify which
 sections are informative and which are normative

 Moved explanation of ACP with L2 from precondition to separate
 section before workarounds, made it instructive enough to explain how
 to implement ACP on L2 ports for L3/L2 switches and made this part of
 normative requirement (L2/L3 switches SHOULD support this).

 Rewrote section "GRASP in the ACP" to define GRASP in ACP as
 mandatory (and why), and define the ACP as security and transport
 substrate to GRASP in ACP. And how it works.

 Enhanced "self-protection" properties section: protect legacy
 management protocols. Security in ACP is for protection from outside
 and those legacy protocols. Otherwise need end-to-end encryption
 also inside ACP, e.g., with domain certificate.

 Enhanced initial domain certificate section to include requirements
 for maintenance (renewal/revocation) of certificates. Added
 explanation to BRSKI informative section how to handle very short
 lived certificates (renewal via BRSKI with expired cert).

 Modified the encoding of the ACP address to better fit RFC822 simple
 local-parts (":" as required by RFC5952 are not permitted in simple
 dot-atoms according to RFC5322. Removed reference to RFC5952 as its
 now not needed anymore.

 Introduced a sub-domain field in the ACP information in the
 certificate to allow defining such subdomains with depending on
 future Intent definitions. It also makes it clear what the "main
 domain" is. Scheme is called "routing subdomain" to have a unique
 name.

Eckert, et al. Expires September 12, 2019 [Page 110]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Added V8 (now called Vlong) addressing sub-scheme according to
 suggestion from mcr in his mail from 30 Nov 2016
 (https://mailarchive.ietf.org/arch/msg/anima/
 nZpEphrTqDCBdzsKMpaIn2gsIzI). Also modified the explanation of the
 single V bit in the first sub-scheme now renamed to Zone sub-scheme
 to distinguish it.

14.15. draft-ietf-anima-autonomic-control-plane-09

 Added reference to RFC4191 and explained how it should be used on ACP
 edge routers to allow auto configuration of routing by NMS hosts.
 This came after review of stable connectivity draft where ACP connect
 is being referred to.

 V8 addressing Sub-Scheme was modified to allow not only /8 device-
 local address space but also /16. This was in response to the
 possible need to have maybe as much as 2^12 local addresses for
 future encaps in BRSKI like IPinIP. It also would allow fully
 autonomic address assignment for ACP connect interfaces from this
 local address space (on an ACP edge device), subject to approval of
 the implied update to rfc4291/rfc4193 (IID length). Changed name to
 Vlong addressing sub-scheme.

 Added text in response to Brian Carpenters review of draft-ietf-
 anima-stable-connectivity-04.

 o The stable connectivity draft was vaguely describing ACP connect
 behavior that is better standardized in this ACP draft.

 o Added new ACP "Manual" addressing sub-scheme with /64 subnets for
 use with ACP connect interfaces. Being covered by the ACP ULA
 prefix, these subnets do not require additional routing entries
 for NMS hosts. They also are fully 64-bit IID length compliant
 and therefore not subject to 4191bis considerations. And they
 avoid that operators manually assign prefixes from the ACP ULA
 prefixes that might later be assigned autonomically.

 o ACP connect auto-configuration: Defined that ACP edge devices, NMS
 hosts should use RFC4191 to automatically learn ACP prefixes.
 This is especially necessary when the ACP uses multiple ULA
 prefixes (via e.g., the rsub domain certificate option), or if ACP
 connect sub-interfaces use manually configured prefixes NOT
 covered by the ACP ULA prefixes.

 o Explained how rfc6724 is (only) sufficient when the NMS host has a
 separate ACP connect and Data-Plane interface. But not when there
 is a single interface.

Eckert, et al. Expires September 12, 2019 [Page 111]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Added a separate subsection to talk about "software" instead of
 "NMS hosts" connecting to the ACP via the "ACP connect" method.
 The reason is to point out that the "ACP connect" method is not
 only a workaround (for NMS hosts), but an actual desirable long
 term architectural component to modularly build software (e.g.,
 ASA or OAM for VNF) into ACP devices.

 o Added a section to define how to run ACP connect across the same
 interface as the Data-Plane. This turns out to be quite
 challenging because we only want to rely on existing standards for
 the network stack in the NMS host/software and only define what
 features the ACP edge device needs.

 o Added section about use of GRASP over ACP connect.

 o Added text to indicate packet processing/filtering for security:
 filter incorrect packets arriving on ACP connect interfaces,
 diagnose on RPL root packets to incorrect destination address (not
 in ACP connect section, but because of it).

 o Reaffirm security goal of ACP: Do not permit non-ACP routers into
 ACP routing domain.

 Made this ACP document be an update to RFC4291 and RFC4193. At the
 core, some of the ACP addressing sub-schemes do effectively not use
 64-bit IIDs as required by RFC4191 and debated in rfc4191bis. During
 6man in Prague, it was suggested that all documents that do not do
 this should be classified as such updates. Add a rather long section
 that summarizes the relevant parts of ACP addressing and usage and.
 Aka: This section is meant to be the primary review section for
 readers interested in these changes (e.g., 6man WG.).

 Added changes from Michael Richardsons review https://github.com/
 anima-wg/autonomic-control-plane/pull/3/commits, textual and:

 o ACP discovery inside ACP is bad *doh*!.

 o Better CA trust and revocation sentences.

 o More details about RPL behavior in ACP.

 o black hole route to avoid loops in RPL.

 Added requirement to terminate ACP channels upon cert expiry/
 revocation.

 Added fixes from 08-mcr-review-reply.txt (on github):

Eckert, et al. Expires September 12, 2019 [Page 112]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o AN Domain Names are FQDNs.

 o Fixed bit length of schemes, numerical writing of bits (00b/01b).

 o Lets use US american english.

14.16. draft-ietf-anima-autonomic-control-plane-10

 Used the term routing subdomain more consistently where previously
 only subdomain was used. Clarified use of routing subdomain in
 creation of ULA "global ID" addressing prefix.

 6.7.1.* Changed native IPsec encapsulation to tunnel mode
 (necessary), explained why. Added notion that ESP is used, added
 explanations why tunnel/transport mode in native vs. GRE cases.

 6.10.3/6.10.5 Added term "ACP address range/set" to be able to better
 explain how the address in the ACP certificate is actually the base
 address (lowest address) of a range/set that is available to the
 device.

 6.10.4 Added note that manual address sub-scheme addresses must not
 be used within domain certificates (only for explicit configuration).

 6.12.5 Refined explanation of how ACP virtual interfaces work (p2p
 and multipoint). Did seek for pre-existing RFCs that explain how to
 build a multi-access interface on top of a full mesh of p2p
 connections (6man WG, anima WG mailing lists), but could not find any
 prior work that had a succinct explanation. So wrote up an
 explanation here. Added hopefully all necessary and sufficient
 details how to map ACP unicast packets to ACP secure channel, how to
 deal with ND packet details. Added verbiage for ACP not to assign
 the virtual interface link-local address from the underlying
 interface. Added note that GRAP link-local messages are treated
 specially but logically the same. Added paragraph about NBMA
 interfaces.

 remaining changes from Brian Carpenters review. See Github file
 draft-ietf-anima-autonomic-control-plane/08-carpenter-review-reply.tx
 for more details:

 Added multiple new RFC references for terms/technologies used.

 Fixed verbage in several places.

 2. (terminology) Added 802.1AR as reference.

 2. Fixed up definition of ULA.

Eckert, et al. Expires September 12, 2019 [Page 113]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 6.1.1 Changed definition of ACP information in cert into ABNF format.
 Added warning about maximum size of ACP address field due to domain-
 name limitations.

 6.2 Mentioned API requirement between ACP and clients leveraging
 adjacency table.

 6.3 Fixed TTL in GRASP example: msec, not hop-count!.

 6.8.2 MAYOR: expanded security/transport substrate text:

 Introduced term ACP GRASP virtual interface to explain how GRASP
 link-local multicast messages are encapsulated and replicated to
 neighbors. Explain how ACP knows when to use TLS vs. TCP (TCP only
 for link-local address (sockets). Introduced "ladder" picture to
 visualize stack.

 6.8.2.1 Expanded discussion/explanation of security model. TLS for
 GRASP unicast connections across ACP is double encryption (plus
 underlying ACP secure channel), but highly necessary to avoid very
 simple man-in-the-middle attacks by compromised ACP members on-path.
 Ultimately, this is done to ensure that any apps using GRASP can get
 full end-to-end secrecy for information sent across GRASP. But for
 publically known ASA services, even this will not provide 100%
 security (this is discussed). Also why double encryption is the
 better/easier solution than trying to optimize this.

 6.10.1 Added discussion about pseudo-random addressing, scanning-
 attacks (not an issue for ACP).

 6.12.2 New performance requirements section added.

 6.10.1 Added notion to first experiment with existing addressing
 schemes before defining new ones - we should be flexible enough.

 6.3/7.2 clarified the interactions between MLD and DULL GRASP and
 specified what needs to be done (e.g., in 2 switches doing ACP per L2
 port).

 12. Added explanations and cross-references to various security
 aspects of ACP discussed elsewhere in the document.

 13. Added IANA requirements.

 Added RFC2119 boilerplate.

Eckert, et al. Expires September 12, 2019 [Page 114]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14.17. draft-ietf-anima-autonomic-control-plane-11

 Same text as -10 Unfortunately when uploading -10 .xml/.txt to
 datatracker, a wrong version of .txt got uploaded, only the .xml was
 correct. This impacts the -10 html version on datatracker and the
 PDF versions as well. Because rfcdiff also compares the .txt
 version, this -11 version was created so that one can compare changes
 from -09 and changes to the next version (-12).

14.18. draft-ietf-anima-autonomic-control-plane-12

 Sheng Jiangs extensive review. Thanks! See Github file draft-ietf-
 anima-autonomic-control-plane/09-sheng-review-reply.txt for more
 details. Many of the larger changes listed below where inspired by
 the review.

 Removed the claim that the document is updating RFC4291,RFC4193 and
 the section detailing it. Done on suggestion of Michael Richardson -
 just try to describe use of addressing in a way that would not
 suggest a need claim update to architecture.

 Terminology cleanup:

 o Replaced "device" with "node" in text. Kept "device" only when
 referring to "physical node". Added definitions for those words.
 Includes changes of derived terms, especially in addressing:
 "Node-ID" and "Node-Number" in the addressing details.

 o Replaced term "autonomic FOOBAR" with "acp FOOBAR" as wherever
 appropriate: "autonomic" would imply that the node would need to
 support more than the ACP, but that is not correct in most of the
 cases. Wanted to make sure that implementers know they only need
 to support/implement ACP - unless stated otherwise. Includes
 "AN->ACP node", "AN->ACP adjacency table" and so on.

 1 Added explanation in the introduction about relationship between
 ACP, BRSKI, ANI and Autonomic Networks.

 6.1.1 Improved terminology and features of the certificate
 information field. Now called domain information field instead of
 ACP information field. The acp-address field in the domain
 information field is now optional, enabling easier introduction of
 various future options.

 6.1.2 Moved ACP domain membership check from section 6.6 to (ACP
 secure channels setup) here because it is not only used for ACP
 secure channel setup.

Eckert, et al. Expires September 12, 2019 [Page 115]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 6.1.3 Fix text about certificate renewal after discussion with Max
 Pritikin/Michael Richardson/Brian Carpenter:

 o Version 10 erroneously assumed that the certificate itself could
 store a URL for renewal, but that is only possible for CRL URLs.
 Text now only refers to "remembered EST server" without implying
 that this is stored in the certificate.

 o Objective for RFC7030/EST domain certificate renewal was changed
 to "SRV.est" See also IANA section for explanation.

 o Removed detail of distance based service selection. This can be
 better done in future work because it would require a lot more
 detail for a good DNS-SD compatible approach.

 o Removed detail about trying to create more security by using ACP
 address from certificate of peer. After rethinking, this does not
 seem to buy additional security.

 6.10 Added reference to 6.12.5 in initial use of "loopback interface"
 in section 6.10 in result of email discussion michaelR/michaelB.

 10.2 Introduced informational section (diagnostics) because of
 operational experience - ACP/ANI undeployable without at least
 diagnostics like this.

 10.3 Introduced informational section (enabling/disabling) ACP.
 Important to discuss this for security reasons (e.g., why to never
 auto-enable ANI on brownfield devices), for implementers and to
 answer ongoing questions during WG meetings about how to deal with
 shutdown interface.

 10.8 Added informational section discussing possible future
 variations of the ACP for potential adopters that cannot directly use
 the complete solution described in this document unmodified.

14.19. draft-ietf-anima-autonomic-control-plane-13

 Swap author list (with permission).

 6.1.1. Eliminate blank lines in definition by making it a picture
 (reformatting only).

 6.10.3.1 New paragraph: Explained how nodes using Zone-ID != 0 need
 to use Zone-ID != 0 in GRASP so that we can avoid routing/forwarding
 of Zone-ID = 0 prefixes.

Eckert, et al. Expires September 12, 2019 [Page 116]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Rest of feedback from review of -12, see
 https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/master/draft-ietf-anima-autonomic-control-plane/12-feedback-
 reply.txt

 Review from Brian Carpenter:

 various: Autonomous -> autonomic(ally) in all remaining occurrences.

 various: changed "manual (configured)" to "explicitly (configured)"
 to not exclude the option of (SDN controller) automatic configuration
 (no humans involved).

 1. Fixed reference to section 9.

 2. Added definition of loopback interface == internal interface.
 After discus on WG mailing lists, including 6man.

 6.1.2 Defined CDP/OCSP and pointed to RFC5280 for them.

 6.1.3 Removed "EST-TLS", no objective value needed or beneficial,
 added explanation paragraph why.

 6.2 Added to adjacency table the interface that a neighbor is
 discovered on.

 6.3 Simplified CDDL syntax: Only one method per AN_ACP objective
 (because of locators). Example with two objectives in GRASP message.

 6.8.1 Added note about link-local GRASP multicast message to avoid
 confusion.

 8.1.4 Added RFC8028 as recommended on hosts to better support VRF-
 select with ACP.

 8.2.1 Rewrote and Simplified CDDL for configured remote peer and
 explanations. Removed pattern option for remote peer. Not important
 enough to be mandated.

 Review thread started by William Atwood:

 2. Refined definition of VRF (vs. MPLS/VPN, LISP, VRF-LITE).

 2. Refined definition of ACP (ACP includes ACP GRASP instance).

 2. Added explanation for "zones" to terminology section and into
 Zone Addressing Sub Scheme section, relating it to RFC4007 zones
 (from Brian Carpenter).

Eckert, et al. Expires September 12, 2019 [Page 117]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 4. Fixed text for ACP4 requirement (Clients of the ACP must not be
 tied to specific protocol.).

 5. Fixed step 4. with proposed text.

 6.1.1 Included suggested explanation for rsub semantics.

 6.1.3 must->MUST for at least one EST server in ACP network to
 autonomically renew certs.

 6.7.2 normative: AND MUST NOT (permit weaker crypto options.

 6.7.1.1 also included text denying weaker IPsec profile options.

 6.8.2 Fixed description how to build ACP GRASP virtual interfaces.
 Added text that ACP continues to exist in absence of ACP neighbors.

 various: Make sure all "zone" words are used consistently.

 6.10.2/various: fixed 40-bit RFC4193 ULA prefix in all examples to
 89b714f3db (thanks MichaelR).

 6.10.1 Removed comment about assigned ULA addressing. Decision not
 to use it now ancient history of WG decision making process, not
 worth nothing anymore in the RFC.

 Review from Yongkang Zhang:

 6.10.5 Fixed length of Node-Numbers in ACP Vlong Addressing Sub-
 Scheme.

14.20. draft-ietf-anima-autonomic-control-plane-14

 Disclaimer: All new text introduced by this revision provides only
 additional explanations/ details based on received reviews and
 analysis by the authors. No changes to behavior already specified in
 prior revisions.

 Joel Halpern, review part 3:

 Define/explain "ACP registrar" in reply to Joel Halpern review part
 3, resolving primarily 2 documentation issues::

 1. Unclear how much ACP depends on BRSKI. ACP document was
 referring unqualified to registrars and Registrar-ID in the
 addressing section without explaining what a registrar is,
 leading to the assumption it must be a BRSKI Registrar.

Eckert, et al. Expires September 12, 2019 [Page 118]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 2. Unclear how the ACP addresses in ACP domain certificates are
 assigned because the BRSKI document does not defines this, but
 refers to this ACP document.

 Wrt. 1: ACP does NOT depend on BRSKI registrars, instead ANY
 appropriate automated or manual mechanism can be used to enroll ACP
 nodes with ACP domain certificates. This revision calls defines such
 mechanisms the "ACP registrar" and defines requirements. this is
 non-normative, because it does not define specific mechanisms that
 need to be support. In ANI devices, ACP Registrars are BRSKI
 Registrars. In non-ANI ACP networks, the registrar may simply be a
 person using CLI/web-interfaces to provision domain certificates and
 set the ACP address correctly in the ACP domain certificate.

 Wrt. 2.: The BRSKI document does rightfully not define how the ACP
 address assignment and creation of the ACP domain information field
 has to work because this is independent of BRSKI and needs to follow
 the same rules whatever protocol/mechanisms are used to implement an
 ACP Registrar. Another set of protocols that could be used instead
 of BRSKI is Netconf/Netconf-Call-Home, but such an alternative ACP
 Registrar solution would need to be specified in its own document.

 Additional text/sections had to be added to detail important
 conditions so that automatic certificate maintenance for ACP nodes
 (with BRSKI or other mechanisms) can be done in a way that as good as
 possible maintains ACP address information of ACP nodes across the
 nodes lifetime because that ACP address is intended as an identifier
 of the ACP node.

 Summary of sections added:

 o 6.1.3.5/6.1.3.6 (normative): re-enrollment of ACP nodes after
 certificate expiry/failure in a way that allows to maintain as
 much as possible ACP address information.

 o 6.10.7 (normative): defines "ACP Registrar" including requirements
 and how it can perform ACP address assignment.

 o 10.3 (informative): details / examples about registrars to help
 implementers and operators understand easier how they operate, and
 provide suggestion of models that a likely very useful (sub-CA
 and/or centralized policy management).

 o 10.4 (informative): Explains the need for the multiple address
 sub-spaces defined in response to discuss with Joel.

 Other changes:

Eckert, et al. Expires September 12, 2019 [Page 119]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Updated references (RFC8366, RFC8368).

 Introduced sub-section headings for 6.1.3 (certificate maintenance)
 because section became too long with newly added sub-sections. Also
 some small text fixups/remove of duplicate text.

 Gen-ART review, Elwyn Davies:

 [RFC Editor: how can i raise the issue of problematic cross
 references of terms in the terminology section - rendering is
 problematic.].

 4. added explanation for ACP4 (finally).

 6.1.1 Simplified text in bullet list explaining rfc822 encoding.

 6.1.3 refined second paragraph defining remembering of previous EST
 server and explaining how to do this with BRSKI.

 9.1 Added paragraph outlining the benefit of the sub-CA Registrar
 option for supporting partitioned networks.

 Roughly 100 more nits/minor fixes throughout the document. See:
 https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/master/draft-ietf-anima-autonomic-control-plane/13-elwynd-
 reply.txt

 Joel Halpern, review part 2:

 6.1.1: added note about "+ +" format in address field when acp-
 address and rsub are empty.

 6.5.10 - clarified text about V bit in Vlong addressing scheme.

 6.10.3/6.10.4 - moved the Z bit field up front (directly after base
 scheme) and indicated more explicitly Z is part of selecting of the
 sub-addressing scheme.

 Refined text about reaching CRL Distribution Point, explain why
 address as indicator to use ACP.

 Note from Brian Carpenter: RFC Editor note for section reference into
 GRASP.

 IOT directorate review from Pascal Thubert:

 Various Nits/typos.

Eckert, et al. Expires September 12, 2019 [Page 120]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 TBD: Punted wish for mentioning RFC reference titles to RFC editor
 for now.

 1. Added section 1.1 - applicability, discussing protocol choices
 re. applicability to constrained devices (or not). Added notion of
 TCP/TLS via CoAP/DTLS to section 10.4 in support of this.

 2. Added in-band / out-of-band into terminology.

 5. Referenced section 8.2 for remote ACP channel configuration.

 6.3 made M_FLOOD periods RECOMMENDED (less guesswork)

 6.7.x Clarified conditional nature of MUST for the profile details of
 IPsec parameters (aka: only 6.7.3 defines actual MUST for nodes,
 prior notions only define the requirements for IPsec profiles IF
 IPsec is supported.

 6.8.1 Moved discussion about IP multicast, IGP, RPL for GRASP into a
 new subsection in the informative part (section 10) to tighten up
 text in normative part.

 6.10.1 added another reference to stable-connectivity for interop
 with IPv4 management.

 6.10.1 removed mentioning of ULA-Random, term was used in email
 discus of ULA with L=1, but term actually not defined in rfc4193, so
 mentioning it is just confusing/redundant. Also added note about the
 random hash being defined in this document, not using SHA1 from
 rfc4193.

 6.11.1.1 added suggested text about mechanisms to further reduce
 opportunities for loop during reconvergence (active signaling options
 from RFC6550).

 6.11.1.3 made mode 2 MUST and mode 2 MAY (RPL MOP - mode of
 operations). Removes ambiguity.

 6.12.5 Added recommendation for RFC4429 (optimistic DAD).

 Nits from Benjamin Kaduk: dTLS -> DTLS:

 Review from Joel Halpern:

 1. swapped order of "purposes" for ACP to match order in section 3.

 1. Added notion about manageability of ACP gong beyond RFC7575
 (before discussion of stable connectivity).

Eckert, et al. Expires September 12, 2019 [Page 121]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 2. Changed definition of Intent to be same as reference model
 (policy language instead of API).

 6.1.1 changed BNF specification so that a local-part without acp-
 address (for future extensions) would not be rfcSELF.+rsub but
 simpler rfcSELF+rsub. Added explanation why rsub is in local-part.

 Tried to eliminate unnecessary references to VRF to minimize
 assumption how system is designed.

 6.1.3 Explained how to make CDP reachable via ACP.

 6.7.2 Made it clearer that constrained devices MUST support DTLS if
 they cannot support IPsec.

 6.8.2.1 clarified first paragraph (TCP retransmissions lightweight).

 6.11.1 fixed up RPL profile text - to remove "VRF". Text was also
 buggy. mentioned control plane, but it’s a forwarding/silicon issue
 to have these header.

 6.12.5 Clarified how link-local ACP channel address can be derived,
 and how not.

 8.2.1 Fixed up text to distinguish between configuration and model
 describing parameters of the configuration (spec only provides
 parameter model).

 Various Nits.

14.21. draft-ietf-anima-autonomic-control-plane-15

 Only reshuffling and formatting changes, but wanted to allow
 reviewers later to easily compare -13 with -14, and these changes in
 -15 mess that up too much.

 increased TOC depth to 4.

 Separated and reordered section 10 into an operational and a
 background and futures section. The background and futures could
 also become appendices if the layout of appendices in RFC format
 wasn’t so horrible that you really only want to avoid using them (all
 the way after a lot of text like references that stop most readers
 from proceeding any further).

Eckert, et al. Expires September 12, 2019 [Page 122]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

14.22. draft-ietf-anima-autonomic-control-plane-16

 Mirja Kuehlewind:

 Tightened requirements for ACP related GRASP objective timers.

 Better text to introduce/explains baseline and constrained ACP
 profiles.

 IANA guideline: MUST only accept extensible last allocation for
 address sub-scheme.

 Moved section 11 into appendix.

 Warren Kumari:

 Removed "global routing table", replaced with "Data-Plane routing
 (and forwarding) tables.

 added text to indicate how routing protocols do like to have data-
 plane dependencies.

 Changed power consumption section re. admin-down state. Power needed
 to bring up such interfaces make t inappropriate to probe. Need to
 think more about best suggests -> beyond scope.

 Replaced "console" with out-of-band... (console/management ethernet).

 Various nits.

 Joel Halpern:

 Fixed up domain information field ABNF to eliminate confusion that
 rsub is not an FQDN but only a prefix to routing-subdomain.

 Corrected certcheck to separate out cert verification into lifetime
 validity and proof of ownership of private key.

 Fixed pagination for "ACP as security and transport substrate for
 GRASP" picture.

14.23. draft-ietf-anima-autonomic-control-plane-17

 Review Alissa Cooper:

 Main discuss point fixed by untangling two specific node type cases:

Eckert, et al. Expires September 12, 2019 [Page 123]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 NOC nodes have ACP domain cert without acp-address field. Are ACP
 domain members, but cannot build ACP secure channels (just end-to-end
 or nay other authentications.

 ACP nodes may have other methods to assign ACP address than getting
 it through the cert. This is indicated through new value 0 for acp-
 address in certificate.

 Accordingly modified texts in ABNF/explanation and Cert-Check
 section.

 Other:

 Better separation of normative text and considerations for "future"
 work:

 - Marked missing chapters as Informative. Reworded requirements
 section to indicate its informative nature, changed requirements to
 MUST/_SHOULD_ to indicate these are not RFC2119 requirements but
 that this requirements section is really just in place of a separate
 solutions requirements document (that ANIMA was not allowed to
 produce).

 - removed ca. 20 instances of "futures" in normative part of
 document.

 - moved important instances of "futures" into new section A.10 (last
 section of appendix). These serve as reminder of work discussed
 during WG but not able to finish specifying it.

 Eliminated perception that "rsub" (routing subdomain) is only
 beneficial with future work. Example in A.7.

 Added RFC-editor note re formatting of references to terms defined in
 terminology section.

 Using now correct RFC 8174 boilerplate.

 Clarified semantic and use of manual ACP sub-scheme. Not used in
 certificates, only assigned via traditional methods. Use for ACP-
 connect subnets or the like.

 Corrected text about Data-Plane dependencies of ACP. Appropriate
 implementations can be fully data-plane independent (without more
 spec work) if not sharing link-local address with Data-Plane. 6.12.2
 text updated to discuss those (MAC address), A.10.2 discusses options
 that would require new standards work.

Eckert, et al. Expires September 12, 2019 [Page 124]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Moved all text about Intent into A.8 to clearly mark it as futures.

 Changed suggestion of future insecure ACP option to future "end-to-
 end-security-only" option.

 Various textual fixes.

 Gen-ART review by Elwyn Davies:

 Some fixes also mentioned by Alissa.

 Added reference for OT.

 Fixed notion that secure channel is not only a security association.

 >20 good textual fixes. Thanks!

 Other:

 Added picture requested by Pascal Thubert about Dual-NOC (A.10.4).

 Moved RFC-editor request for better first RFC reference closer to the
 top of the document.

 Fixed typo /126 -> 127 for prefix length with zone address scheme.

 Overlooked early SecDir review from frank.xialiang@huawei.com:

 most issues fixed through other review in -16. Added reference to
 self-protection section 9.2 into security considerations section.

14.24. draft-ietf-anima-autonomic-control-plane-18

 Too many word/grammar mistakes in -17.

14.25. draft-ietf-anima-autonomic-control-plane-19

 Review Eric Rescola:

 6.1.2 - clarified that we do certificate path validation against
 potentially multiple trust anchors.

 6.1.3 - Added more comprehensive explanation of Trust Points via new
 section 6.1.3.

 6.5 - added figure with sequential steps of ACP channel establishment
 and Alice and Bob finding their role in the setup.

Eckert, et al. Expires September 12, 2019 [Page 125]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 6.7.x - detailled crypto profiles: AES-256-GCM, ECDHE.

 6.7.2 - Referring to RFC7525 as the required crypto profile for DTLS
 (taking text from RFC8310 as previously discussed with Eric).

 6.7.3 - Added explanation that ACP needs no single MTI secure channel
 protocol with example.

 6.10.2 - Added requirement that rsub must be choosen so that they
 don’t create SHA256 collisions. Added explanation how the same could
 be done for different ACP networks with same trust anchors but that
 this outside the scope of this specification.

 6.7.10 - Explains security expectations against ACP registrars: Must
 be trusted and then given credentials to act as PKI RA to help
 pledges to enroll with an ACP certificate.

 9.1 - Added explanations about merging ACP domains requiring both
 domains to trust union of Trust Anchors and need to avod ULA hash
 collisions.

 11 - Added that ACP registrars are critical infrastructure requiring
 hardening like CA, mentioning attack impact examples.

 11 - Mentioning that ACP requires initial setup of CA and registrar.

 11 - long rewrite/extension of group security model and its
 implication shared with review from Ben (below).

 Many nits fixed.

 Review Benjamin Kaduk:

 Fixed various nits.

 Changed style of MUST/SHOULD in Requirements section to all lower
 case to avoid any RFC2119 confusion.

 1. clarified support for constrained devices/DTLS: Opportunistic.

 1. Clarified ACPs use of two variants of GRASP DULL for neighbor
 discovery and ACP grasp for service discovery/clients.

 3.2 - amended text explaining what additional security ACP provides
 for bootstrap protocols.

 6.1.1 - Added note about ASN.1 encoding in the justification for use
 of rfc822address.

Eckert, et al. Expires September 12, 2019 [Page 126]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 6.1.2 - Added details how to handle ACP connection when node via
 which OCSP/CRL-server is reached fails certificate verification.

 12. Rewrote explanation why objective names requested for ACP use
 SRV.name.

 10.4 - added summary section about ACP and configuration.

 Review Eric Rescorla:

 6.1.2 - changed peer certificate verification to be certificate path
 verification, added lowercase normalizaion comparison to domain name
 check.

 6.1.2 - explained how domain membership check is authentication and
 authorization.

 6.1.4.1 - Fixed "objective value" to "objective name".

 6.1.4.3 - check IPv6 address of CDP against CDP ACP certificate IPv6
 address only if URL uses IPv6 address.

 6.10.1 - added more justification why there is no need for privacy
 protection of ACP addresses.

 6.11.1.1 - thorough fixup of sentences/structure of this RPL overview
 section to make it more logical and easier to digest. Also added a
 paragraph about the second key benefit of this profile (scalability).

 6.11.1.9 - Added explanation about not using RPL security from
 Benjamin.

 8.1.1 - Fixed up text for address assignment of ACP connect
 interfaces. Only recommending manual addressing scheme.

 9.1 - changed self-healing benefit text to describe immediate channel
 reset for short-lived certificates and describing how the same with
 CRL/OCSP is optional.

 11. - added note about immediate termination of secure channels after
 certificate expiry as this is uncommon today.

 11. - rewrote section of security model, attacks and mitigation of
 compromised ACP members.

 A.24 - clarified the process in which expired certificates are used
 for certificate renewal to avvoid higher overhead of -re-enrolment.

Eckert, et al. Expires September 12, 2019 [Page 127]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 A.4 - removed mentioning of RPL trickle because not used by ACP RPL
 profile.

 A.10.8 - added section discussing how to minimize risk of compromised
 nodes, recovering them or kicking them out.

14.26. Open Issues in -19

 Need to find good reference for TLS profile for ACP GRASP TLS
 connections.

 TBD: Add DTLS choice to GRASP secure channel.

15. References

15.1. Normative References

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-07 (work in progress), February 2019.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC3810] Vida, R., Ed. and L. Costa, Ed., "Multicast Listener
 Discovery Version 2 (MLDv2) for IPv6", RFC 3810,
 DOI 10.17487/RFC3810, June 2004,
 <https://www.rfc-editor.org/info/rfc3810>.

 [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <https://www.rfc-editor.org/info/rfc4106>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

Eckert, et al. Expires September 12, 2019 [Page 128]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <https://www.rfc-editor.org/info/rfc4861>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

Eckert, et al. Expires September 12, 2019 [Page 129]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J.,
 Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur,
 JP., and R. Alexander, "RPL: IPv6 Routing Protocol for
 Low-Power and Lossy Networks", RFC 6550,
 DOI 10.17487/RFC6550, March 2012,
 <https://www.rfc-editor.org/info/rfc6550>.

 [RFC6552] Thubert, P., Ed., "Objective Function Zero for the Routing
 Protocol for Low-Power and Lossy Networks (RPL)",
 RFC 6552, DOI 10.17487/RFC6552, March 2012,
 <https://www.rfc-editor.org/info/rfc6552>.

 [RFC6553] Hui, J. and JP. Vasseur, "The Routing Protocol for Low-
 Power and Lossy Networks (RPL) Option for Carrying RPL
 Information in Data-Plane Datagrams", RFC 6553,
 DOI 10.17487/RFC6553, March 2012,
 <https://www.rfc-editor.org/info/rfc6553>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <https://www.rfc-editor.org/info/rfc7525>.

 [RFC7676] Pignataro, C., Bonica, R., and S. Krishnan, "IPv6 Support
 for Generic Routing Encapsulation (GRE)", RFC 7676,
 DOI 10.17487/RFC7676, October 2015,
 <https://www.rfc-editor.org/info/rfc7676>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

15.2. Informative References

Eckert, et al. Expires September 12, 2019 [Page 130]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [AR8021] Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [I-D.eckert-anima-noc-autoconfig]
 Eckert, T., "Autoconfiguration of NOC services in ACP
 networks via GRASP", draft-eckert-anima-noc-autoconfig-00
 (work in progress), July 2018.

 [I-D.ietf-acme-star]
 Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
 Fossati, "Support for Short-Term, Automatically-Renewed
 (STAR) Certificates in Automated Certificate Management
 Environment (ACME)", draft-ietf-acme-star-05 (work in
 progress), March 2019.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-18 (work in progress), January 2019.

 [I-D.ietf-anima-prefix-management]
 Jiang, S., Du, Z., Carpenter, B., and Q. Sun, "Autonomic
 IPv6 Edge Prefix Management in Large-scale Networks",
 draft-ietf-anima-prefix-management-07 (work in progress),
 December 2017.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-netconf-zerotouch]
 Watsen, K., Abrahamsson, M., and I. Farrer, "Secure Zero
 Touch Provisioning (SZTP)", draft-ietf-netconf-
 zerotouch-29 (work in progress), January 2019.

 [I-D.ietf-roll-applicability-template]
 Richardson, M., "ROLL Applicability Statement Template",
 draft-ietf-roll-applicability-template-09 (work in
 progress), May 2016.

Eckert, et al. Expires September 12, 2019 [Page 131]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [I-D.ietf-roll-useofrplinfo]
 Robles, I., Richardson, M., and P. Thubert, "Using RPL
 Option Type, Routing Header for Source Routes and IPv6-in-
 IPv6 encapsulation in the RPL Data Plane", draft-ietf-
 roll-useofrplinfo-24 (work in progress), January 2019.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-30 (work in progress),
 November 2018.

 [IEEE-1588-2008]
 IEEE, "IEEE Standard for a Precision Clock Synchronization
 Protocol for Networked Measurement and Control Systems",
 December 2008, <http://standards.ieee.org/findstds/
 standard/1588-2008.html>.

 [IEEE-802.1X]
 Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Port-Based Network Access
 Control", February 2010,
 <http://standards.ieee.org/findstds/
 standard/802.1X-2010.html>.

 [LLDP] Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Station and Media Access
 Control Connectivity Discovery", June 2016,
 <https://standards.ieee.org/findstds/
 standard/802.1AB-2016.html>.

 [MACSEC] Group, W. -. H. L. L. P. W., "IEEE Standard for Local and
 Metropolitan Area Networks: Media Access Control (MAC)
 Security", June 2006,
 <https://standards.ieee.org/findstds/
 standard/802.1AE-2006.html>.

 [RFC1112] Deering, S., "Host extensions for IP multicasting", STD 5,
 RFC 1112, DOI 10.17487/RFC1112, August 1989,
 <https://www.rfc-editor.org/info/rfc1112>.

 [RFC1492] Finseth, C., "An Access Control Protocol, Sometimes Called
 TACACS", RFC 1492, DOI 10.17487/RFC1492, July 1993,
 <https://www.rfc-editor.org/info/rfc1492>.

 [RFC1886] Thomson, S. and C. Huitema, "DNS Extensions to support IP
 version 6", RFC 1886, DOI 10.17487/RFC1886, December 1995,
 <https://www.rfc-editor.org/info/rfc1886>.

Eckert, et al. Expires September 12, 2019 [Page 132]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
 Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998,
 <https://www.rfc-editor.org/info/rfc2315>.

 [RFC2821] Klensin, J., Ed., "Simple Mail Transfer Protocol",
 RFC 2821, DOI 10.17487/RFC2821, April 2001,
 <https://www.rfc-editor.org/info/rfc2821>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC3164] Lonvick, C., "The BSD Syslog Protocol", RFC 3164,
 DOI 10.17487/RFC3164, August 2001,
 <https://www.rfc-editor.org/info/rfc3164>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 DOI 10.17487/RFC3411, December 2002,
 <https://www.rfc-editor.org/info/rfc3411>.

 [RFC3954] Claise, B., Ed., "Cisco Systems NetFlow Services Export
 Version 9", RFC 3954, DOI 10.17487/RFC3954, October 2004,
 <https://www.rfc-editor.org/info/rfc3954>.

 [RFC4007] Deering, S., Haberman, B., Jinmei, T., Nordmark, E., and
 B. Zill, "IPv6 Scoped Address Architecture", RFC 4007,
 DOI 10.17487/RFC4007, March 2005,
 <https://www.rfc-editor.org/info/rfc4007>.

 [RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210,
 DOI 10.17487/RFC4210, September 2005,
 <https://www.rfc-editor.org/info/rfc4210>.

Eckert, et al. Expires September 12, 2019 [Page 133]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC4364] Rosen, E. and Y. Rekhter, "BGP/MPLS IP Virtual Private
 Networks (VPNs)", RFC 4364, DOI 10.17487/RFC4364, February
 2006, <https://www.rfc-editor.org/info/rfc4364>.

 [RFC4429] Moore, N., "Optimistic Duplicate Address Detection (DAD)
 for IPv6", RFC 4429, DOI 10.17487/RFC4429, April 2006,
 <https://www.rfc-editor.org/info/rfc4429>.

 [RFC4541] Christensen, M., Kimball, K., and F. Solensky,
 "Considerations for Internet Group Management Protocol
 (IGMP) and Multicast Listener Discovery (MLD) Snooping
 Switches", RFC 4541, DOI 10.17487/RFC4541, May 2006,
 <https://www.rfc-editor.org/info/rfc4541>.

 [RFC4604] Holbrook, H., Cain, B., and B. Haberman, "Using Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Protocol Version 2 (MLDv2) for Source-
 Specific Multicast", RFC 4604, DOI 10.17487/RFC4604,
 August 2006, <https://www.rfc-editor.org/info/rfc4604>.

 [RFC4607] Holbrook, H. and B. Cain, "Source-Specific Multicast for
 IP", RFC 4607, DOI 10.17487/RFC4607, August 2006,
 <https://www.rfc-editor.org/info/rfc4607>.

 [RFC4610] Farinacci, D. and Y. Cai, "Anycast-RP Using Protocol
 Independent Multicast (PIM)", RFC 4610,
 DOI 10.17487/RFC4610, August 2006,
 <https://www.rfc-editor.org/info/rfc4610>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,
 DOI 10.17487/RFC5321, October 2008,
 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5790] Liu, H., Cao, W., and H. Asaeda, "Lightweight Internet
 Group Management Protocol Version 3 (IGMPv3) and Multicast
 Listener Discovery Version 2 (MLDv2) Protocols", RFC 5790,
 DOI 10.17487/RFC5790, February 2010,
 <https://www.rfc-editor.org/info/rfc5790>.

 [RFC5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection
 (BFD)", RFC 5880, DOI 10.17487/RFC5880, June 2010,
 <https://www.rfc-editor.org/info/rfc5880>.

Eckert, et al. Expires September 12, 2019 [Page 134]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <https://www.rfc-editor.org/info/rfc6733>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830,
 DOI 10.17487/RFC6830, January 2013,
 <https://www.rfc-editor.org/info/rfc6830>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

Eckert, et al. Expires September 12, 2019 [Page 135]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC7404] Behringer, M. and E. Vyncke, "Using Only Link-Local
 Addressing inside an IPv6 Network", RFC 7404,
 DOI 10.17487/RFC7404, November 2014,
 <https://www.rfc-editor.org/info/rfc7404>.

 [RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
 Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
 Defined Networking (SDN): Layers and Architecture
 Terminology", RFC 7426, DOI 10.17487/RFC7426, January
 2015, <https://www.rfc-editor.org/info/rfc7426>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <https://www.rfc-editor.org/info/rfc7576>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC7761] Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.,
 Parekh, R., Zhang, Z., and L. Zheng, "Protocol Independent
 Multicast - Sparse Mode (PIM-SM): Protocol Specification
 (Revised)", STD 83, RFC 7761, DOI 10.17487/RFC7761, March
 2016, <https://www.rfc-editor.org/info/rfc7761>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8028] Baker, F. and B. Carpenter, "First-Hop Router Selection by
 Hosts in a Multi-Prefix Network", RFC 8028,
 DOI 10.17487/RFC8028, November 2016,
 <https://www.rfc-editor.org/info/rfc8028>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

Eckert, et al. Expires September 12, 2019 [Page 136]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8368] Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

15.3. URIs

 [1] https://en.wikipedia.org/wiki/Operational_Technology

 [2] https://en.wikipedia.org/wiki/Single-root_input/
 output_virtualization

Appendix A. Background and Futures (Informative)

 The following sections discuss additional background information
 about aspects of the normative parts of this document or associated
 mechanisms such as BRSKI (such as why specific choices were made by
 the ACP) and they provide discussion about possible future variations
 of the ACP.

A.1. ACP Address Space Schemes

 This document defines the Zone, Vlong and Manual sub address schemes
 primarily to support address prefix assignment via distributed,
 potentially uncoordinated ACP registrars as defined in
 Section 6.10.7. This costs 48/46-bit identifier so that these ACP
 registrar can assign non-conflicting address prefixes. This design
 does not leave enough bits to simultaneously support a large number
 of nodes (Node-ID) plus a large prefix of local addresses for every
 node plus a large enough set of bits to identify a routing Zone. In
 result, Zone, Vlong 8/16 attempt to support all features, but in via
 separate prefixes.

 In networks that always expect to rely on a centralized PMS as
 described above (Section 10.2.5), the 48/46-bits for the Registrar-ID
 could be saved. Such variations of the ACP addressing mechanisms
 could be introduced through future work in different ways. If the
 prefix rfcSELF in the ACP information field was changed, incompatible
 ACP variations could be created where every design aspect of the ACP
 could be changed. Including all addressing choices. If instead a
 new addressing sub-type would be defined, it could be a backward
 compatible extension of this ACP specification. Information such as

Eckert, et al. Expires September 12, 2019 [Page 137]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 the size of a zone-prefix and the length of the prefix assigned to
 the ACP node itself could be encoded via the extension field of the
 ACP domain information.

 Note that an explicitly defined "Manual" addressing sub-scheme is
 always beneficial to provide an easy way for ACP nodes to prohibit
 incorrect manual configuration of any non-"Manual" ACP address spaces
 and therefore ensure that "Manual" operations will never impact
 correct routing for any non-"Manual" ACP addresses assigned via ACP
 domain certificates.

A.2. BRSKI Bootstrap (ANI)

 [I-D.ietf-anima-bootstrapping-keyinfra] (BRSKI) describes how nodes
 with an IDevID certificate can securely and zero-touch enroll with a
 domain certificate (LDevID) to support the ACP. BRSKI also leverages
 the ACP to enable zero-touch bootstrap of new nodes across networks
 without any configuration requirements across the transit nodes
 (e.g., no DHCP/DNS forwarding/server setup). This includes otherwise
 not configured networks as described in Section 3.2. Therefore BRSKI
 in conjunction with ACP provides for a secure and zero-touch
 management solution for complete networks. Nodes supporting such an
 infrastructure (BRSKI and ACP) are called ANI nodes (Autonomic
 Networking Infrastructure), see [I-D.ietf-anima-reference-model].
 Nodes that do not support an IDevID but only an (insecure) vendor
 specific Unique Device Identifier (UDI) or nodes whose manufacturer
 does not support a MASA could use some future security reduced
 version of BRSKI.

 When BRSKI is used to provision a domain certificate (which is called
 enrollment), the BRSKI registrar (acting as an enhanced EST server)
 must include the subjectAltName / rfc822Name encoded ACP address and
 domain name to the enrolling node (called pledge) via its response to
 the pledges EST CSR Attribute request that is mandatory in BRSKI.

 The Certificate Authority in an ACP network must not change the
 subjectAltName / rfc822Name in the certificate. The ACP nodes can
 therefore find their ACP address and domain using this field in the
 domain certificate, both for themselves, as well as for other nodes.

 The use of BRSKI in conjunction with the ACP can also help to further
 simplify maintenance and renewal of domain certificates. Instead of
 relying on CRL, the lifetime of certificates can be made extremely
 small, for example in the order of hours. When a node fails to
 connect to the ACP within its certificate lifetime, it cannot connect
 to the ACP to renew its certificate across it (using just EST), but
 it can still renew its certificate as an "enrolled/expired pledge"
 via the BRSKI bootstrap proxy. This requires only that the BRSKI

Eckert, et al. Expires September 12, 2019 [Page 138]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 registrar honors expired domain certificates and that the pledge
 attempts to perform TLS authentication for BRSKI bootstrap using its
 expired domain certificate before falling back to attempting to use
 its IDevID for BRSKI. This mechanism could also render CRLs
 unnecessary because the BRSKI registrar in conjunction with the CA
 would not renew revoked certificates - only a "Do-not-renew" list
 would be necessary on BRSKI registrars/CA.

 In the absence of BRSKI or less secure variants thereof, provisioning
 of certificates may involve one or more touches or non-standardized
 automation. Node vendors usually support provisioning of
 certificates into nodes via PKCS#7 (see [RFC2315]) and may support
 this provisioning through vendor specific models via Netconf
 ([RFC6241]). If such nodes also support Netconf Zero-Touch
 ([I-D.ietf-netconf-zerotouch]) then this can be combined to zero-
 touch provisioning of domain certificates into nodes. Unless there
 are equivalent integration of Netconf connections across the ACP as
 there is in BRSKI, this combination would not support zero-touch
 bootstrap across a not configured network though.

A.3. ACP Neighbor discovery protocol selection

 This section discusses why GRASP DULL was chosen as the discovery
 protocol for L2 adjacent candidate ACP neighbors. The contenders
 considered where GRASP, mDNS or LLDP.

A.3.1. LLDP

 LLDP and Cisco’s earlier Cisco Discovery Protocol (CDP) are example
 of L2 discovery protocols that terminate their messages on L2 ports.
 If those protocols would be chosen for ACP neighbor discovery, ACP
 neighbor discovery would therefore also terminate on L2 ports. This
 would prevent ACP construction over non-ACP capable but LLDP or CDP
 enabled L2 switches. LLDP has extensions using different MAC
 addresses and this could have been an option for ACP discovery as
 well, but the additional required IEEE standardization and definition
 of a profile for such a modified instance of LLDP seemed to be more
 work than the benefit of "reusing the existing protocol" LLDP for
 this very simple purpose.

A.3.2. mDNS and L2 support

 Multicast DNNS (mDNS) [RFC6762] with DNS Service Discovery (DNS-SD)
 Resource Records (RRs) as defined in [RFC6763] is a key contender as
 an ACP discovery protocol. because it relies on link-local IP
 multicast, it does operates at the subnet level, and is also found in
 L2 switches. The authors of this document are not aware of mDNS
 implementation that terminate their mDNS messages on L2 ports instead

Eckert, et al. Expires September 12, 2019 [Page 139]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 of the subnet level. If mDNS was used as the ACP discovery mechanism
 on an ACP capable (L3)/L2 switch as outlined in Section 7, then this
 would be necessary to implement. It is likely that termination of
 mDNS messages could only be applied to all mDNS messages from such a
 port, which would then make it necessary to software forward any non-
 ACP related mDNS messages to maintain prior non-ACP mDNS
 functionality. Adding support for ACP into such L2 switches with
 mDNS could therefore create regression problems for prior mDNS
 functionality on those nodes. With low performance of software
 forwarding in many L2 switches, this could also make the ACP risky to
 support on such L2 switches.

A.3.3. Why DULL GRASP

 LLDP was not considered because of the above mentioned issues. mDNS
 was not selected because of the above L2 mDNS considerations and
 because of the following additional points:

 If mDNS was not already existing in a node, it would be more work to
 implement than DULL GRASP, and if an existing implementation of mDNS
 was used, it would likely be more code space than a separate
 implementation of DULL GRASP or a shared implementation of DULL GRASP
 and GRASP in the ACP.

A.4. Choice of routing protocol (RPL)

 This section motivates why RPL - "IPv6 Routing Protocol for Low-Power
 and Lossy Networks ([RFC6550] was chosen as the default (and in this
 specification only) routing protocol for the ACP. The choice and
 above explained profile was derived from a pre-standard
 implementation of ACP that was successfully deployed in operational
 networks.

 Requirements for routing in the ACP are:

 o Self-management: The ACP must build automatically, without human
 intervention. Therefore routing protocol must also work
 completely automatically. RPL is a simple, self-managing
 protocol, which does not require zones or areas; it is also self-
 configuring, since configuration is carried as part of the
 protocol (see Section 6.7.6 of [RFC6550]).

 o Scale: The ACP builds over an entire domain, which could be a
 large enterprise or service provider network. The routing
 protocol must therefore support domains of 100,000 nodes or more,
 ideally without the need for zoning or separation into areas. RPL
 has this scale property. This is based on extensive use of
 default routing.

Eckert, et al. Expires September 12, 2019 [Page 140]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 o Low resource consumption: The ACP supports traditional network
 infrastructure, thus runs in addition to traditional protocols.
 The ACP, and specifically the routing protocol must have low
 resource consumption both in terms of memory and CPU requirements.
 Specifically, at edge nodes, where memory and CPU are scarce,
 consumption should be minimal. RPL builds a destination-oriented
 directed acyclic graph (DODAG), where the main resource
 consumption is at the root of the DODAG. The closer to the edge
 of the network, the less state needs to be maintained. This
 adapts nicely to the typical network design. Also, all changes
 below a common parent node are kept below that parent node.

 o Support for unstructured address space: In the Autonomic
 Networking Infrastructure, node addresses are identifiers, and may
 not be assigned in a topological way. Also, nodes may move
 topologically, without changing their address. Therefore, the
 routing protocol must support completely unstructured address
 space. RPL is specifically made for mobile ad-hoc networks, with
 no assumptions on topologically aligned addressing.

 o Modularity: To keep the initial implementation small, yet allow
 later for more complex methods, it is highly desirable that the
 routing protocol has a simple base functionality, but can import
 new functional modules if needed. RPL has this property with the
 concept of "objective function", which is a plugin to modify
 routing behavior.

 o Extensibility: Since the Autonomic Networking Infrastructure is a
 new concept, it is likely that changes in the way of operation
 will happen over time. RPL allows for new objective functions to
 be introduced later, which allow changes to the way the routing
 protocol creates the DAGs.

 o Multi-topology support: It may become necessary in the future to
 support more than one DODAG for different purposes, using
 different objective functions. RPL allow for the creation of
 several parallel DODAGs, should this be required. This could be
 used to create different topologies to reach different roots.

 o No need for path optimization: RPL does not necessarily compute
 the optimal path between any two nodes. However, the ACP does not
 require this today, since it carries mainly non-delay-sensitive
 feedback loops. It is possible that different optimization
 schemes become necessary in the future, but RPL can be expanded
 (see point "Extensibility" above).

Eckert, et al. Expires September 12, 2019 [Page 141]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

A.5. ACP Information Distribution and multicast

 IP multicast is not used by the ACP because the ANI (Autonomic
 Networking Infrastructure) itself does not require IP multicast but
 only service announcement/discovery. Using IP multicast for that
 would have made it necessary to develop a zero-touch auto configuring
 solution for ASM (Any Source Multicast - the original form of IP
 multicast defined in [RFC1112]), which would be quite complex and
 difficult to justify. One aspect of complexity where no attempt at a
 solution has been described in IETF documents is the automatic-
 selection of routers that should be PIM Sparse Mode (PIM-SM)
 Rendezvous Points (RPs) (see [RFC7761]). The other aspects of
 complexity are the implementation of MLD ([RFC4604]), PIM-SM and
 Anycast-RP (see [RFC4610]). If those implementations already exist
 in a product, then they would be very likely tied to accelerated
 forwarding which consumes hardware resources, and that in return is
 difficult to justify as a cost of performing only service discovery.

 Some future ASA may need high performance in-network data
 replication. That is the case when the use of IP multicast is
 justified. Such an ASA can then use service discovery from ACP
 GRASP, and then they do not need ASM but only SSM (Source Specific
 Multicast, see [RFC4607]) for the IP multicast replication. SSM
 itself can simply be enabled in the Data-Plane (or even in an update
 to the ACP) without any other configuration than just enabling it on
 all nodes and only requires a simpler version of MLD (see [RFC5790]).

 LSP (Link State Protocol) based IGP routing protocols typically have
 a mechanism to flood information, and such a mechanism could be used
 to flood GRASP objectives by defining them to be information of that
 IGP. This would be a possible optimization in future variations of
 the ACP that do use an LSP routing protocol. Note though that such a
 mechanism would not work easily for GRASP M_DISCOVERY messages which
 are intelligently (constrained) flooded not across the whole ACP, but
 only up to a node where a responder is found. We do expect that many
 future services in ASA will have only few consuming ASA, and for
 those cases, M_DISCOVERY is the more efficient method than flooding
 across the whole domain.

 Because the ACP uses RPL, one desirable future extension is to use
 RPLs existing notion of loop-free distribution trees (DODAG) to make
 GRASPs flooding more efficient both for M_FLOOD and M_DISCOVERY) See
 Section 6.12.5 how this will be specifically beneficial when using
 NBMA interfaces. This is not currently specified in this document
 because it is not quite clear yet what exactly the implications are
 to make GRASP flooding depend on RPL DODAG convergence and how
 difficult it would be to let GRASP flooding access the DODAG
 information.

Eckert, et al. Expires September 12, 2019 [Page 142]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

A.6. Extending ACP channel negotiation (via GRASP)

 The mechanism described in the normative part of this document to
 support multiple different ACP secure channel protocols without a
 single network wide MTI protocol is important to allow extending
 secure ACP channel protocols beyond what is specified in this
 document, but it will run into problem if it would be used for
 multiple protocols:

 The need to potentially have multiple of these security associations
 even temporarily run in parallel to determine which of them works
 best does not support the most lightweight implementation options.

 The simple policy of letting one side (Alice) decide what is best may
 not lead to the mutual best result.

 The two limitations can easier be solved if the solution was more
 modular and as few as possible initial secure channel negotiation
 protocols would be used, and these protocols would then take on the
 responsibility to support more flexible objectives to negotiate the
 mutually preferred ACP security channel protocol.

 IKEv2 is the IETF standard protocol to negotiate network security
 associations. It is meant to be extensible, but it is unclear
 whether it would be feasible to extend IKEv2 to support possible
 future requirements for ACP secure channel negotiation:

 Consider the simple case where the use of native IPsec vs. IPsec via
 GRE is to be negotiated and the objective is the maximum throughput.
 Both sides would indicate some agreed upon performance metric and the
 preferred encapsulation is the one with the higher performance of the
 slower side. IKEv2 does not support negotiation with this objective.

 Consider DTLS and some form of MacSec are to be added as negotiation
 options - and the performance objective should work across all IPsec,
 DTLS and MacSec options. In the case of MacSEC, the negotiation
 would also need to determine a key for the peering. It is unclear if
 it would be even appropriate to consider extending the scope of
 negotiation in IKEv2 to those cases. Even if feasible to define, it
 is unclear if implementations of IKEv2 would be eager to adopt those
 type of extension given the long cycles of security testing that
 necessarily goes along with core security protocols such as IKEv2
 implementations.

 A more modular alternative to extending IKEv2 could be to layer a
 modular negotiation mechanism on top of the multitude of existing or
 possible future secure channel protocols. For this, GRASP over TLS
 could be considered as a first ACP secure channel negotiation

Eckert, et al. Expires September 12, 2019 [Page 143]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 protocol. The following are initial considerations for such an
 approach. A full specification is subject to a separate document:

 To explicitly allow negotiation of the ACP channel protocol, GRASP
 over a TLS connection using the GRASP_LISTEN_PORT and the nodes and
 peers link-local IPv6 address is used. When Alice and Bob support
 GRASP negotiation, they do prefer it over any other non-explicitly
 negotiated security association protocol and should wait trying any
 non-negotiated ACP channel protocol until after it is clear that
 GRASP/TLS will not work to the peer.

 When Alice and Bob successfully establish the GRASP/TSL session, they
 will negotiate the channel mechanism to use using objectives such as
 performance and perceived quality of the security. After agreeing on
 a channel mechanism, Alice and Bob start the selected Channel
 protocol. Once the secure channel protocol is successfully running,
 the GRASP/TLS connection can be kept alive or timed out as long as
 the selected channel protocol has a secure association between Alice
 and Bob. When it terminates, it needs to be re-negotiated via GRASP/
 TLS.

 Notes:

 o Negotiation of a channel type may require IANA assignments of code
 points.

 o TLS is subject to reset attacks, which IKEv2 is not. Normally,
 ACP connections (as specified in this document) will be over link-
 local addresses so the attack surface for this one issue in TCP
 should be reduced (note that this may not be true when ACP is
 tunneled as described in Section 8.2.2.

 o GRASP packets received inside a TLS connection established for
 GRASP/TLS ACP negotiation are assigned to a separate GRASP domain
 unique to that TLS connection.

A.7. CAs, domains and routing subdomains

 There is a wide range of setting up different ACP solution by
 appropriately using CAs and the domain and rsub elements in the
 domain information field of the domain certificate. We summarize
 these options here as they have been explained in different parts of
 the document in before and discuss possible and desirable extensions:

 An ACP domain is the set of all ACP nodes using certificates from the
 same CA using the same domain field. GRASP inside the ACP is run
 across all transitively connected ACP nodes in a domain.

Eckert, et al. Expires September 12, 2019 [Page 144]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The rsub element in the domain information field permits the use of
 addresses from different ULA prefixes. One use case is to create
 multiple physical networks that initially may be separated with one
 ACP domain but different routing subdomains, so that all nodes can
 mutual trust their ACP domain certificates (not depending on rsub)
 and so that they could connect later together into a contiguous ACP
 network.

 One instance of such a use case is an ACP for regions interconnected
 via a non-ACP enabled core, for example due to the absence of product
 support for ACP on the core nodes. ACP connect configurations as
 defined in this document can be used to extend and interconnect those
 ACP islands to the NOC and merge them into a single ACP when later
 that product support gap is closed.

 Note that RPL scales very well. It is not necessary to use multiple
 routing subdomains to scale ACP domains in a way it would be possible
 if other routing protocols where used. They exist only as options
 for the above mentioned reasons.

 If different ACP domains are to be created that should not allow to
 connect to each other by default, these ACP domains simply need to
 have different domain elements in the domain information field.
 These domain elements can be arbitrary, including subdomains of one
 another: Domains "example.com" and "research.example.com" are
 separate domains if both are domain elements in the domain
 information element of certificates.

 It is not necessary to have a separate CA for different ACP domains:
 an operator can use a single CA to sign certificates for multiple ACP
 domains that are not allowed to connect to each other because the
 checks for ACP adjacencies includes comparison of the domain part.

 If multiple independent networks choose the same domain name but had
 their own CA, these would not form a single ACP domain because of CA
 mismatch. Therefore there is no problem in choosing domain names
 that are potentially also used by others. Nevertheless it is highly
 recommended to use domain names that one can have high probability to
 be unique. It is recommended to use domain names that start with a
 DNS domain names owned by the assigning organization and unique
 within it. For example "acp.example.com" if you own "example.com".

A.8. Intent for the ACP

 Intent is the architecture component of autonomic networks according
 to [I-D.ietf-anima-reference-model] that allows operators to issue
 policies to the network. In a simple instance, Intent could simply

Eckert, et al. Expires September 12, 2019 [Page 145]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 be policies flooded across ACP GRASP and interpreted on every ACP
 node.

 One concern for future definitions of Intent solutions is the problem
 of circular dependencies when expressing Intent policies about the
 ACP itself.

 For example, Intent could indicate the desire to build an ACP across
 all domains that have a common parent domain (without relying on the
 rsub/routing-subdomain solution defined in this document). For
 example ACP nodes with domain "example.com", "access.example.com",
 "core.example.com" and "city.core.example.com" should all establish
 one single ACP.

 If each domain has its own source of Intent, then the Intent would
 simply have to allow adding the peer domains trust anchors (CA) and
 domain names to the ACP domain membership check (Section 6.1.2) so
 that nodes from those other domains are accepted as ACP peers.

 If this Intent was to be originated only from one domain, it could
 likely not be made to work because the other domains will not build
 any ACP connection amongst each other, whether they use the same or
 different CA due to the ACP domain membership check.

 If the domains use the same CA one could change the ACP setup to
 permit for the ACP to be established between two ACP nodes with
 different acp-domain-names, but only for the purpose of disseminating
 limited information, such as Intent, but not to set up full ACP
 connectivity, specifically not RPL routing and passing of arbitrary
 GRASP information. Unless the Intent policies permit this to happen
 across domain boundaries.

 This type of approach where the ACP first allows Intent to operate
 and only then sets up the rest of ACP connectivity based on Intent
 policy could also be used to enable Intent policies that would limit
 functionality across the ACP inside a domain, as long as no policy
 would disturb the distribution of Intent. For example to limit
 reachability across the ACP to certain type of nodes or locations of
 nodes.

A.9. Adopting ACP concepts for other environments

 The ACP as specified in this document is very explicit about the
 choice of options to allow interoperable implementations. The
 choices made may not be the best for all environments, but the
 concepts used by the ACP can be used to build derived solutions:

Eckert, et al. Expires September 12, 2019 [Page 146]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 The ACP specifies the use of ULA and deriving its prefix from the
 domain name so that no address allocation is required to deploy the
 ACP. The ACP will equally work not using ULA but any other /48 IPv6
 prefix. This prefix could simply be a configuration of the ACP
 registrars (for example when using BRSKI) to enroll the domain
 certificates - instead of the ACP registrar deriving the /48 ULA
 prefix from the AN domain name.

 Some solutions may already have an auto-addressing scheme, for
 example derived from existing unique device identifiers (e.g., MAC
 addresses). In those cases it may not be desirable to assign
 addresses to devices via the ACP address information field in the way
 described in this document. The certificate may simply serve to
 identify the ACP domain, and the address field could be empty/unused.
 The only fix required in the remaining way the ACP operate is to
 define another element in the domain certificate for the two peers to
 decide who is Alice and who is Bob during secure channel building.
 Note though that future work may leverage the acp address to
 authenticate "ownership" of the address by the device. If the
 address used by a device is derived from some pre-existing permanent
 local ID (such as MAC address), then it would be useful to store that
 address in the certificate using the format of the access address
 information field or in a similar way.

 The ACP is defined as a separate VRF because it intends to support
 well managed networks with a wide variety of configurations.
 Therefore, reliable, configuration-indestructible connectivity cannot
 be achieved from the Data-Plane itself. In solutions where all
 transit connectivity impacting functions are fully automated
 (including security), indestructible and resilient, it would be
 possible to eliminate the need for the ACP to be a separate VRF.
 Consider the most simple example system in which there is no separate
 Data-Plane, but the ACP is the Data-Plane. Add BRSKI, and it becomes
 a fully autonomic network - except that it does not support automatic
 addressing for user equipment. This gap can then be closed for
 example by adding a solution derived from
 [I-D.ietf-anima-prefix-management].

 TCP/TLS as the protocols to provide reliability and security to GRASP
 in the ACP may not be the preferred choice in constrained networks.
 For example, CoAP/DTLS (Constrained Application Protocol) may be
 preferred where they are already used, allowing to reduce the
 additional code space footprint for the ACP on those devices. Hop-
 by-hop reliability for ACP GRASP messages could be made to support
 protocols like DTLS by adding the same type of negotiation as defined
 in this document for ACP secure channel protocol negotiation. End-
 to-end GRASP connections can be made to select their transport
 protocol in future extensions of the ACP meant to better support

Eckert, et al. Expires September 12, 2019 [Page 147]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 constrained devices by indicating the supported transport protocols
 (e.g.: TLS/DTLS) via GRASP parameters of the GRASP objective through
 which the transport endpoint is discovered.

 The routing protocol chosen by the ACP design (RPL) does explicitly
 not optimize for shortest paths and fastest convergence. Variations
 of the ACP may want to use a different routing protocol or introduce
 more advanced RPL profiles.

 Variations such as what routing protocol to use, or whether to
 instantiate an ACP in a VRF or (as suggested above) as the actual
 Data-Plane, can be automatically chosen in implementations built to
 support multiple options by deriving them from future parameters in
 the certificate. Parameters in certificates should be limited to
 those that would not need to be changed more often than certificates
 would need to be updated anyhow; Or by ensuring that these parameters
 can be provisioned before the variation of an ACP is activated in a
 node. Using BRSKI, this could be done for example as additional
 follow-up signaling directly after the certificate enrollment, still
 leveraging the BRSKI TLS connection and therefore not introducing any
 additional connectivity requirements.

 Last but not least, secure channel protocols including their
 encapsulations are easily added to ACP solutions. ACP hop-by-hop
 network layer secure channels could also be replaced by end-to-end
 security plus other means for infrastructure protection. Any future
 network OAM should always use end-to-end security anyhow and can
 leverage the domain certificates and is therefore not dependent on
 security to be provided for by ACP secure channels.

A.10. Further options / futures

A.10.1. Auto-aggregation of routes

 Routing in the ACP according to this specification only leverages the
 standard RPL mechanism of route optimization, e.g. keeping only
 routes that are not towards the RPL root. This is known to scale to
 networks with 20,000 or more nodes. There is no auto-aggregation of
 routes for /48 ULA prefixes (when using rsub in the domain
 information field) and/or Zone-ID based prefixes.

 Automatic assignment of Zone-ID and auto-aggregation of routes could
 be achieved for example by configuring zone-boundaries, announcing
 via GRASP into the zones the zone parameters (zone-ID and /48 ULA
 prefix) and auto-aggegating routes on the zone-boundaries. Nodes
 would assign their Zone-ID and potentially even /48 prefix based on
 the GRASP announcements.

Eckert, et al. Expires September 12, 2019 [Page 148]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

A.10.2. More options for avoiding IPv6 Data-Plane dependency

 As described in Section 6.12.2, the ACP depends on the Data-Plane to
 establish IPv6 link-local addressing on interfaces. Using a separate
 MAC address for the ACP allows to fully isolate the ACP from the
 data-plane in a way that is compatible with this specification. It
 is also an ideal option when using Single-root input/output
 virtualization (SR-IOV - see https://en.wikipedia.org/wiki/Single-
 root_input/output_virtualization [2]) in an implementation to isolate
 the ACP because different SR-IOV interfaces use different MAC
 addresses.

 When additional MAC address(es) are not available, separation of the
 ACP could be done at different demux points. The same subnet
 interface could have a separate IPv6 interface for the ACP and Data-
 Plane and therefore separate link-local addresses for both, where the
 ACP interface is non-configurable on the Data-Plane. This too would
 be compatible with this specification and not impact
 interoperability.

 An option that would require additional specification is to use a
 different Ethertype from 0x86DD (IPv6) to encapsulate IPv6 packets
 for the ACP. This would be a similar approach as used for IP
 authentication packets in [IEEE-802.1X] which use the Extensible
 Authentication Protocol over Local Area Network (EAPoL) ethertype
 (0x88A2).

 Note that in the case of ANI nodes, all the above considerations
 equally apply to the encapsulation of BRSKI packets including GRASP
 used for BRSKI.

A.10.3. ACP APIs and operational models (YANG)

 Future work should define YANG ([RFC7950]) data model and/or node
 internal APIs to monitor and manage the ACP.

 Support for the ACP Adjacency Table (Section 6.2) and ACP GRASP need
 to be included into such model/API.

A.10.4. RPL enhancements

Eckert, et al. Expires September 12, 2019 [Page 149]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 USA Europe

 NOC1 NOC2
 | |
 | metric 100 |
 ACP1 --------------------------- ACP2 .
 | | . WAN
 | metric 10 metric 20 | . Core
 | | .
 ACP3 --------------------------- ACP4 .
 | metric 100 |
 | | .
 | | . Sites
 ACP10 ACP11 .

 Figure 17: Dual NOC

 The profile for RPL specified in this document builds only one
 spanning-tree path set to a root (NOC). In the presence of multiple
 NOCs, routing toward the non-root NOCs may be suboptimal. Figure 17
 shows an extreme example. Assuming that node ACP1 becomes the RPL
 root, traffic between ACP11 and NOC2 will pass through
 ACP4-ACP3-ACP1-ACP2 instead of ACP4-ACP2 because the RPL calculated
 DODAG/routes are shortest paths towards the RPL root.

 To overcome these limitations, extensions/modifications to the RPL
 profile can provide optimality for multiple NOCs. This requires
 utilizing Data-Plane artifact including IPinIP encap/decap on ACP
 routers and processing of IPv6 RPI headers. Alternatively, (Src,Dst)
 routing table entries could be used.

 Flooding of ACP GRASP messages can be further constrained and
 therefore optimized by flooding only via links that are part of the
 RPL DODAG.

A.10.5. Role assignments

 ACP connect is an explicit mechanism to "leak" ACP traffic explicitly
 (for example in a NOC). It is therefore also a possible security gap
 when it is easy to enable ACP connect on arbitrary compromised ACP
 nodes.

 One simple solution is to define an extension in the ACP certificates
 ACP information field indicating the permission for ACP connect to be
 configured on that ACP node. This could similarly be done to decide
 whether a node is permitted to be a registrar or not.

Eckert, et al. Expires September 12, 2019 [Page 150]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 Tying the permitted "roles" of an ACP node to the ACP domain
 certificate provides fairly strong protection against
 misconfiguration, but is still subject to code modifications.

 Another interesting role to assign to certificates is that of a NOC
 node. This would allow to limit certain type of connections such as
 OAM TLS connections to only NOC initiator or responders.

A.10.6. Autonomic L3 transit

 In this specification, the ACP can only establish autonomic
 connectivity across L2 hops and only explicitly configured options to
 tunnel across L3. Future work should specify mechanisms to
 automatically tunnel ACP across L3 networks. A hub&spoke option
 would allow to tunnel across the Internet to a cloud or central
 instance of the ACP, a peer-to-peer tunneling mechanism could tunnel
 ACP islands across an L3VPN infrastructure.

A.10.7. Diagnostics

 Section 10.1 describes diagnostics options that can be done without
 changing the external, interoperability affecting characteristics of
 ACP implementations.

 Even better diagnostics of ACP operations is possible with additional
 signaling extensions, such as:

 1. Consider if LLDP should be a recommended functionality for ANI
 devices to improve diagnostics, and if so, which information
 elements it should signal (insecure). Includes potentially new
 information elements.

 2. In alternative to LLDP, A DULL GRASP diagnostics objective could
 be defined to carry these information elements.

 3. The IDevID of BRSKI pledges should be included in the selected
 insecure diagnostics option.

 4. A richer set of diagnostics information should be made available
 via the secured ACP channels, using either single-hop GRASP or
 network wide "topology discovery" mechanisms.

A.10.8. Avoiding and dealing with compromised ACP nodes

 Compromised ACP nodes pose the biggest risk to the operations of the
 network. The most common type of compromise is leakage of
 credentials to manage/configure the device and the application of
 malicious configuration including the change of access credentials,

Eckert, et al. Expires September 12, 2019 [Page 151]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 but not the change of software. Most of todays networking equipment
 should have secure boot/software infrastructure anyhow, so attacks
 that introduce malicious software should be a lot harder.

 The most important aspect of security design against these type of
 attacks is to eliminate password based configuration access methods
 and instead rely on certificate based credentials handed out only to
 nodes where it is clear that the private keys can not leak. This
 limits unexpected propagation of credentials.

 If password based credentials to configure devices still need to be
 supported, they must not be locally configurable, but only be
 remotely provisioned or verified (through protocols like Radius or
 Diameter), and there must be no local configuration permitting to
 change these authentication mechanisms, but ideally they should be
 autoconfiguring across the ACP. See
 [I-D.eckert-anima-noc-autoconfig].

 Without physcial access to the compromised device, attackers with
 access to configuration should not be able to break the ACP
 connectivity, even when they can break or otherwise manipulate
 (spoof) the data-plane connectivity through configuration. To
 achieve this, it is necessary to avoid providing configuration
 options for the ACP, such as enabling/disabling it on interfaces.
 For example there could be an ACP configuration that locks down the
 current ACP config unless factory reseet is done.

 With such means, the valid administration has the best chances to
 maintain access to ACP nodes, discover malicious configuration though
 ongoing configuration tracking from central locations for example,
 and to react accordingly.

 The primary reaction is withdrawal/change of credentials, terminate
 malicious existing management sessions and fixing the configuration.
 Ensuring that manaement sessions using invalidated credentials are
 terminated automatically without recourse will likely require new
 work.

 Only when these steps are not feasible would it be necessary to
 revoke or expire the ACP domain certificate credentials and consider
 the node kicked off the network - until the situation can be further
 rectified, likely requiring direct physical access to the node.

 Without extensions, compromised ACP nodes can only be removed from
 the ACP at the speed of CRL/OCSP information refresh or expiry (and
 non-removal) of short lived certificates. Future extensions to the
 ACP could for example use GRASP flooding distribution of triggered

Eckert, et al. Expires September 12, 2019 [Page 152]

Internet-Draft An Autonomic Control Plane (ACP) March 2019

 updates of CRL/OCSP or explicit removal indication of the compromised
 nodes domain certificate.

Authors’ Addresses

 Toerless Eckert (editor)
 Huawei USA - Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte+ietf@cs.fau.de

 Michael H. Behringer (editor)

 Email: michael.h.behringer@gmail.com

 Steinthor Bjarnason
 Arbor Networks
 2727 South State Street, Suite 200
 Ann Arbor MI 48104
 United States

 Email: sbjarnason@arbor.net

Eckert, et al. Expires September 12, 2019 [Page 153]

ANIMA WG M. Pritikin
Internet-Draft Cisco
Intended status: Standards Track M. Richardson
Expires: December 19, 2019 Sandelman
 M. Behringer

 S. Bjarnason
 Arbor Networks
 K. Watsen
 Watsen Networks
 June 17, 2019

 Bootstrapping Remote Secure Key Infrastructures (BRSKI)
 draft-ietf-anima-bootstrapping-keyinfra-22

Abstract

 This document specifies automated bootstrapping of an Autonomic
 Control Plane. To do this a remote secure key infrastructure (BRSKI)
 is created using manufacturer installed X.509 certificate, in
 combination with a manufacturer’s authorizing service, both online
 and offline. Bootstrapping a new device can occur using a routable
 address and a cloud service, or using only link-local connectivity,
 or on limited/disconnected networks. Support for lower security
 models, including devices with minimal identity, is described for
 legacy reasons but not encouraged. Bootstrapping is complete when
 the cryptographic identity of the new key infrastructure is
 successfully deployed to the device but the established secure
 connection can be used to deploy a locally issued certificate to the
 device as well.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 19, 2019.

Pritikin, et al. Expires December 19, 2019 [Page 1]

Internet-Draft BRSKI June 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Prior Bootstrapping Approaches 6
 1.2. Terminology . 7
 1.3. Scope of solution . 10
 1.3.1. Support environment 10
 1.3.2. Constrained environments 10
 1.3.3. Network Access Controls 11
 1.3.4. Bootstrapping is not Booting 11
 1.4. Leveraging the new key infrastructure / next steps . . . 11
 1.5. Requirements for Autonomic Network Infrastructure (ANI)
 devices . 12
 2. Architectural Overview 12
 2.1. Behavior of a Pledge 14
 2.2. Secure Imprinting using Vouchers 15
 2.3. Initial Device Identifier 16
 2.3.1. Identification of the Pledge 16
 2.3.2. MASA URI extension 17
 2.4. Protocol Flow . 19
 2.5. Architectural Components 21
 2.5.1. Pledge . 21
 2.5.2. Join Proxy . 21
 2.5.3. Domain Registrar 21
 2.5.4. Manufacturer Service 21
 2.5.5. Public Key Infrastructure (PKI) 21
 2.6. Certificate Time Validation 22
 2.6.1. Lack of realtime clock 22
 2.6.2. Infinite Lifetime of IDevID 22
 2.7. Cloud Registrar . 22
 2.8. Determining the MASA to contact 23
 3. Voucher-Request artifact 23
 3.1. Nonceless Voucher Requests 24

Pritikin, et al. Expires December 19, 2019 [Page 2]

Internet-Draft BRSKI June 2019

 3.2. Tree Diagram . 24
 3.3. Examples . 25
 3.4. YANG Module . 26
 4. Proxying details (Pledge - Proxy - Registrar) 29
 4.1. Pledge discovery of Proxy 30
 4.1.1. Proxy GRASP announcements 32
 4.2. CoAP connection to Registrar 33
 4.3. Proxy discovery and communication of Registrar 33
 5. Protocol Details (Pledge - Registrar - MASA) 34
 5.1. BRSKI-EST TLS establishment details 36
 5.2. Pledge Requests Voucher from the Registrar 36
 5.3. Registrar Authorization of
 Pledge . 37
 5.4. BRSKI-MASA TLS establishment details 38
 5.5. Registrar Requests Voucher from MASA 39
 5.5.1. MASA renewal of expired vouchers 40
 5.5.2. MASA verification of voucher-request signature
 consistency . 41
 5.5.3. MASA authentication of registrar (certificate) . . . 41
 5.5.4. MASA revocation checking of registrar (certificate) . 41
 5.5.5. MASA verification of pledge prior-signed-voucher-
 request . 41
 5.5.6. MASA pinning of registrar 42
 5.5.7. MASA nonce handling 42
 5.6. MASA and Registrar Voucher Response 42
 5.6.1. Pledge voucher verification 45
 5.6.2. Pledge authentication of provisional TLS connection . 45
 5.7. Pledge BRSKI Status Telemetry 46
 5.8. Registrar audit log request 47
 5.8.1. MASA audit log response 48
 5.8.2. Registrar audit log verification 49
 5.9. EST Integration for PKI bootstrapping 50
 5.9.1. EST Distribution of CA Certificates 51
 5.9.2. EST CSR Attributes 51
 5.9.3. EST Client Certificate Request 52
 5.9.4. Enrollment Status Telemetry 52
 5.9.5. Multiple certificates 53
 5.9.6. EST over CoAP . 53
 6. Clarification of transfer-encoding 54
 7. Reduced security operational modes 54
 7.1. Trust Model . 54
 7.2. Pledge security reductions 55
 7.3. Registrar security reductions 56
 7.4. MASA security reductions 57
 8. IANA Considerations . 57
 8.1. Well-known EST registration 58
 8.2. PKIX Registry . 58
 8.3. Pledge BRSKI Status Telemetry 58

Pritikin, et al. Expires December 19, 2019 [Page 3]

Internet-Draft BRSKI June 2019

 8.4. DNS Service Names . 58
 8.5. MUD File Extension for the MASA 59
 9. Applicability to the Autonomic
 Control Plane . 59
 10. Privacy Considerations 60
 10.1. MASA audit log . 60
 10.2. What BRSKI-MASA reveals to the manufacturer 61
 10.3. Manufacturers and Used or Stolen Equipment 62
 10.4. Manufacturers and Grey market equipment 63
 10.5. Some mitigations for meddling by manufacturers 64
 11. Security Considerations 65
 11.1. DoS against MASA . 66
 11.2. Freshness in Voucher-Requests 67
 11.3. Trusting manufacturers 68
 11.4. Manufacturer Maintainance of trust anchors 69
 12. Acknowledgements . 70
 13. References . 70
 13.1. Normative References 70
 13.2. Informative References 73
 Appendix A. IPv4 and non-ANI operations 76
 A.1. IPv4 Link Local addresses 76
 A.2. Use of DHCPv4 . 76
 Appendix B. mDNS / DNSSD proxy discovery options 77
 Appendix C. MUD Extension 77
 Appendix D. Example Vouchers 80
 D.1. Keys involved . 80
 D.1.1. MASA key pair for voucher signatures 80
 D.1.2. Manufacturer key pair for IDevID signatures 80
 D.1.3. Registrar key pair 81
 D.1.4. Pledge key pair 83
 D.2. Example process . 84
 D.2.1. Pledge to Registrar 84
 D.2.2. Registrar to MASA 88
 D.2.3. MASA to Registrar 93
 Authors’ Addresses . 97

1. Introduction

 BRSKI provides a solution for secure zero-touch (automated) bootstrap
 of new (unconfigured) devices that are called pledges in this
 document.

 This document primarily provides for the needs of the ISP and
 Enterprise focused ANIMA Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane]. Other users of the BRSKI
 protocol will need to provide separate applicability statements that
 include privacy and security considerations appropriate to that

Pritikin, et al. Expires December 19, 2019 [Page 4]

Internet-Draft BRSKI June 2019

 deployment. Section Section 9 explains the details applicability for
 this the ACP usage.

 This document describes how pledges discover (or be discovered by) an
 element of the network domain to which the pledge belongs to perform
 the bootstrap. This element (device) is called the registrar.
 Before any other operation, pledge and registrar need to establish
 mutual trust:

 1. Registrar authenticating the pledge: "Who is this device? What
 is its identity?"

 2. Registrar authorizing the pledge: "Is it mine? Do I want it?
 What are the chances it has been compromised?"

 3. Pledge authenticating the registrar: "What is this registrar’s
 identity?"

 4. Pledge authorizing the registrar: "Should I join it?"

 This document details protocols and messages to answer the above
 questions. It uses a TLS connection and an PKIX (X.509v3)
 certificate (an IEEE 802.1AR [IDevID] LDevID) of the pledge to answer
 points 1 and 2. It uses a new artifact called a "voucher" that the
 registrar receives from a "Manufacturer Authorized Signing Authority"
 and passes to the pledge to answer points 3 and 4.

 A proxy provides very limited connectivity between the pledge and the
 registrar.

 The syntactic details of vouchers are described in detail in
 [RFC8366]. This document details automated protocol mechanisms to
 obtain vouchers, including the definition of a ’voucher-request’
 message that is a minor extension to the voucher format (see
 Section 3) defined by [RFC8366].

 BRSKI results in the pledge storing an X.509 root certificate
 sufficient for verifying the registrar identity. In the process a
 TLS connection is established that can be directly used for
 Enrollment over Secure Transport (EST). In effect BRSKI provides an
 automated mechanism for the "Bootstrap Distribution of CA
 Certificates" described in [RFC7030] Section 4.1.1 wherein the pledge
 "MUST [...] engage a human user to authorize the CA certificate using
 out-of-band" information". With BRSKI the pledge now can automate
 this process using the voucher. Integration with a complete EST
 enrollment is optional but trivial.

Pritikin, et al. Expires December 19, 2019 [Page 5]

Internet-Draft BRSKI June 2019

 BRSKI is agile enough to support bootstrapping alternative key
 infrastructures, such as a symmetric key solutions, but no such
 system is described in this document.

1.1. Prior Bootstrapping Approaches

 To literally "pull yourself up by the bootstraps" is an impossible
 action. Similarly the secure establishment of a key infrastructure
 without external help is also an impossibility. Today it is commonly
 accepted that the initial connections between nodes are insecure,
 until key distribution is complete, or that domain-specific keying
 material (often pre-shared keys, including mechanisms like SIM cards)
 is pre-provisioned on each new device in a costly and non-scalable
 manner. Existing automated mechanisms are known as non-secured
 ’Trust on First Use’ (TOFU) [RFC7435], ’resurrecting duckling’
 [Stajano99theresurrecting] or ’pre-staging’.

 Another prior approach has been to try and minimize user actions
 during bootstrapping, but not eliminate all user-actions. The
 original EST protocol [RFC7030] does reduce user actions during
 bootstrap but does not provide solutions for how the following
 protocol steps can be made autonomic (not involving user actions):

 o using the Implicit Trust Anchor [RFC7030] database to authenticate
 an owner specific service (not an autonomic solution because the
 URL must be securely distributed),

 o engaging a human user to authorize the CA certificate using out-
 of-band data (not an autonomic solution because the human user is
 involved),

 o using a configured Explicit TA database (not an autonomic solution
 because the distribution of an explicit TA database is not
 autonomic),

 o and using a Certificate-Less TLS mutual authentication method (not
 an autonomic solution because the distribution of symmetric key
 material is not autonomic).

 These "touch" methods do not meet the requirements for zero-touch.

 There are "call home" technologies where the pledge first establishes
 a connection to a well known manufacturer service using a common
 client-server authentication model. After mutual authentication,
 appropriate credentials to authenticate the target domain are
 transfered to the pledge. This creates serveral problems and
 limitations:

Pritikin, et al. Expires December 19, 2019 [Page 6]

Internet-Draft BRSKI June 2019

 o the pledge requires realtime connectivity to the manufacturer
 service,

 o the domain identity is exposed to the manufacturer service (this
 is a privacy concern),

 o the manufacturer is responsible for making the authorization
 decisions (this is a liability concern),

 BRSKI addresses these issues by defining extensions to the EST
 protocol for the automated distribution of vouchers.

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The following terms are defined for clarity:

 domainID: The domain IDentity is the 160-bit SHA-1 hash of the BIT
 STRING of the subjectPublicKey of the pinned-domain-cert leaf,
 i.e. the Registrars’ certificate. This is consistent with the
 subject key identifier (Section 4.2.1.2 [RFC5280]).

 drop ship: The physical distribution of equipment containing the
 "factory default" configuration to a final destination. In zero-
 touch scenarios there is no staging or pre-configuration during
 drop-ship.

 imprint: The process where a device obtains the cryptographic key
 material to identify and trust future interactions with a network.
 This term is taken from Konrad Lorenz’s work in biology with new
 ducklings: during a critical period, the duckling would assume
 that anything that looks like a mother duck is in fact their
 mother. An equivalent for a device is to obtain the fingerprint
 of the network’s root certification authority certificate. A
 device that imprints on an attacker suffers a similar fate to a
 duckling that imprints on a hungry wolf. Securely imprinting is a
 primary focus of this document [imprinting]. The analogy to
 Lorenz’s work was first noted in [Stajano99theresurrecting].

 enrollment: The process where a device presents key material to a
 network and acquires a network specific identity. For example
 when a certificate signing request is presented to a certification
 authority and a certificate is obtained in response.

Pritikin, et al. Expires December 19, 2019 [Page 7]

Internet-Draft BRSKI June 2019

 Pledge: The prospective device, which has an identity installed at
 the factory.

 Voucher: A signed artifact from the MASA that indicates to a pledge
 the cryptographic identity of the registrar it should trust.
 There are different types of vouchers depending on how that trust
 is asserted. Multiple voucher types are defined in [RFC8366]

 Domain: The set of entities that share a common local trust anchor.
 This includes the proxy, registrar, Domain Certificate Authority,
 Management components and any existing entity that is already a
 member of the domain.

 Domain CA: The domain Certification Authority (CA) provides
 certification functionalities to the domain. At a minimum it
 provides certification functionalities to a registrar and manages
 the private key that defines the domain. Optionally, it certifies
 all elements.

 Join Registrar (and Coordinator): A representative of the domain
 that is configured, perhaps autonomically, to decide whether a new
 device is allowed to join the domain. The administrator of the
 domain interfaces with a "join registrar (and coordinator)" to
 control this process. Typically a join registrar is "inside" its
 domain. For simplicity this document often refers to this as just
 "registrar". Within [I-D.ietf-anima-reference-model] this is
 refered to as the "join registrar autonomic service agent". Other
 communities use the abbreviation "JRC".

 (Public) Key Infrastructure: The collection of systems and processes
 that sustain the activities of a public key system. The registrar
 acts as an [RFC5280] and [RFC5272] (see section 7) "Registration
 Authority".

 Join Proxy: A domain entity that helps the pledge join the domain.
 A join proxy facilitates communication for devices that find
 themselves in an environment where they are not provided
 connectivity until after they are validated as members of the
 domain. For simplicity this document sometimes uses the term of
 ’proxy’ to indicate the join proxy. The pledge is unaware that
 they are communicating with a proxy rather than directly with a
 registrar.

 Circuit Proxy: A stateful implementation of the join proxy. This is
 the assumed type of proxy.

 IPIP Proxy: A stateless proxy alternative.

Pritikin, et al. Expires December 19, 2019 [Page 8]

Internet-Draft BRSKI June 2019

 MASA Service: A third-party Manufacturer Authorized Signing
 Authority (MASA) service on the global Internet. The MASA signs
 vouchers. It also provides a repository for audit log information
 of privacy protected bootstrapping events. It does not track
 ownership.

 Ownership Tracker: An Ownership Tracker service on the global
 internet. The Ownership Tracker uses business processes to
 accurately track ownership of all devices shipped against domains
 that have purchased them. Although optional, this component
 allows vendors to provide additional value in cases where their
 sales and distribution channels allow for accurately tracking of
 such ownership. Ownership tracking information is indicated in
 vouchers as described in [RFC8366]

 IDevID: An Initial Device Identity X.509 certificate installed by
 the vendor on new equipment.

 TOFU: Trust on First Use. Used similarly to [RFC7435]. This is
 where a pledge device makes no security decisions but rather
 simply trusts the first registrar it is contacted by. This is
 also known as the "resurrecting duckling" model.

 nonced: a voucher (or request) that contains a nonce (the normal
 case).

 nonceless: a voucher (or request) that does not contain a nonce,
 relying upon accurate clocks for expiration, or which does not
 expire.

 manufacturer: the term manufacturer is used throughout this document
 to be the entity that created the device. This is typically the
 "original equipment manufacturer" or OEM, but in more complex
 situations it could be a "value added retailer" (VAR), or possibly
 even a systems integrator. In general, it a goal of BRSKI to
 eliminate small distinctions between different sales channels.
 The reason for this is that it permits a single device, with a
 uniform firmware load, to be shipped directly to all customers.
 This eliminates costs for the manufacturer. This also reduces the
 number of products supported in the field increasing the chance
 that firmware will be more up to date.

 ANI: The Autonomic Network Infrastructure as defined by
 [I-D.ietf-anima-reference-model]. This document details specific
 requirements for pledges, proxies and registrars when they are
 part of an ANI.

Pritikin, et al. Expires December 19, 2019 [Page 9]

Internet-Draft BRSKI June 2019

 offline: When an architectural component cannot perform realtime
 communications with a peer, either due to network connectivity or
 because the peer is turned off, the operation is said to be
 occurring offline.

1.3. Scope of solution

1.3.1. Support environment

 This solution (BRSKI) can support large router platforms with multi-
 gigabit inter-connections, mounted in controlled access data centers.
 But this solution is not exclusive to large equipment: it is intended
 to scale to thousands of devices located in hostile environments,
 such as ISP provided CPE devices which are drop-shipped to the end
 user. The situation where an order is fulfilled from distributed
 warehouse from a common stock and shipped directly to the target
 location at the request of a domain owner is explicitly supported.
 That stock ("SKU") could be provided to a number of potential domain
 owners, and the eventual domain owner will not know a-priori which
 device will go to which location.

 The bootstrapping process can take minutes to complete depending on
 the network infrastructure and device processing speed. The network
 communication itself is not optimized for speed; for privacy reasons,
 the discovery process allows for the pledge to avoid announcing its
 presence through broadcasting.

 Nomadic or mobile devices often need to aquire credentials to access
 the network at the new location. An example of this is mobile phone
 roaming among network operators, or even between cell towers. This
 is usually called handoff. BRSKI does not provide a low-latency
 handoff which is usually a requirement in such situations. For these
 solutions BRSKI can be used to create a relationship (an LDevID) with
 the "home" domain owner. The resulting credentials are then used to
 provide credentials more appropriate for a low-latency handoff.

1.3.2. Constrained environments

 Questions have been posed as to whether this solution is suitable in
 general for Internet of Things (IoT) networks. This depends on the
 capabilities of the devices in question. The terminology of
 [RFC7228] is best used to describe the boundaries.

 The solution described in this document is aimed in general at non-
 constrained (i.e., class 2+) devices operating on a non-Challenged
 network. The entire solution as described here is not intended to be
 useable as-is by constrained devices operating on challenged networks
 (such as 802.15.4 LLNs).

Pritikin, et al. Expires December 19, 2019 [Page 10]

Internet-Draft BRSKI June 2019

 Specifically, there are protocol aspects described here that might
 result in congestion collapse or energy-exhaustion of intermediate
 battery powered routers in an LLN. Those types of networks SHOULD
 NOT use this solution. These limitations are predominately related
 to the large credential and key sizes required for device
 authentication. Defining symmetric key techniques that meet the
 operational requirements is out-of-scope but the underlying protocol
 operations (TLS handshake and signing structures) have sufficient
 algorithm agility to support such techniques when defined.

 The imprint protocol described here could, however, be used by non-
 energy constrained devices joining a non-constrained network (for
 instance, smart light bulbs are usually mains powered, and speak
 802.11). It could also be used by non-constrained devices across a
 non-energy constrained, but challenged network (such as 802.15.4).
 The certificate contents, and the process by which the four questions
 above are resolved do apply to constrained devices. It is simply the
 actual on-the-wire imprint protocol that could be inappropriate.

1.3.3. Network Access Controls

 This document presumes that network access control has either already
 occurred, is not required, or is integrated by the proxy and
 registrar in such a way that the device itself does not need to be
 aware of the details. Although the use of an X.509 Initial Device
 Identity is consistant with IEEE 802.1AR [IDevID], and allows for
 alignment with 802.1X network access control methods, its use here is
 for pledge authentication rather than network access control.
 Integrating this protocol with network access control, perhaps as an
 Extensible Authentication Protocol (EAP) method (see [RFC3748]), is
 out-of-scope.

1.3.4. Bootstrapping is not Booting

 This document describes "bootstrapping" as the protocol used to
 obtain a local trust anchor. It is expected that this trust anchor,
 along with any additional configuration information subsequently
 installed, is persisted on the device across system restarts
 ("booting"). Bootstrapping occurs only infrequently such as when a
 device is transfered to a new owner or has been reset to factory
 default settings.

1.4. Leveraging the new key infrastructure / next steps

 As a result of the protocol described herein, the bootstrapped
 devices have the Domain CA trust anchor in common. An end entity
 certificate has optionally been issued from the Domain CA. This

Pritikin, et al. Expires December 19, 2019 [Page 11]

Internet-Draft BRSKI June 2019

 makes it possible to securely deploy functionalities across the
 domain, e.g:

 o Device management.

 o Routing authentication.

 o Service discovery.

 The major beneficiary is that it possible to use the credentials
 deployed by this protocol to secure the Autonomic Control Plane (ACP)
 ([I-D.ietf-anima-autonomic-control-plane]).

1.5. Requirements for Autonomic Network Infrastructure (ANI) devices

 The BRSKI protocol can be used in a number of environments. Some of
 the options in this document is the result of requirements that are
 out of the ANI scope. This section defines the base requirements for
 ANI devices.

 For devices that intend to become part of an Autonomic Network
 Infrastructure (ANI) ([I-D.ietf-anima-reference-model]) that includes
 an Autonomic Control Plane
 ([I-D.ietf-anima-autonomic-control-plane]), the BRSKI protocol MUST
 be implemented.

 The pledge must perform discovery of the proxy as described in
 Section 4.1 using GRASP M_FLOOD announcements.

 Upon successfully validating a voucher artiface, a status telemetry
 MUST be returned. See Section 5.7.

 An ANIMA ANI pledge MUST implement the EST automation extensions
 described in Section 5.9. They supplement the [RFC7030] EST to
 better support automated devices that do not have an end user.

 The ANI Join Registrar ASA MUST support all the BRSKI and above
 listed EST operations.

 All ANI devices SHOULD support the BRSKI proxy function, using
 circuit proxies over the ACP. (See Section 4.3)

2. Architectural Overview

 The logical elements of the bootstrapping framework are described in
 this section. Figure 1 provides a simplified overview of the
 components.

Pritikin, et al. Expires December 19, 2019 [Page 12]

Internet-Draft BRSKI June 2019

 +------------------------+
 +--------------Drop Ship--------------->| Vendor Service |
 | +------------------------+
 | | M anufacturer| |
 | | A uthorized |Ownership|
 | | S igning |Tracker |
 | | A uthority | |
 | +--------------+---------+
 | ^
 | | BRSKI-
 V | MASA
 +-------+ ..|...
 | | . | .
 | | . +------------+ +-----------+ | .
 | | . | | | | | .
 |Pledge | . | Join | | Domain <-------+ .
 | | . | Proxy | | Registrar | .
 | <-------->............<-------> (PKI RA) | .
 | | | BRSKI-EST | | .
 | | . | | +-----+-----+ .
 |IDevID | . +------------+ | e.g. RFC7030 .
 | | . +-----------------+----------+ .
 | | . | Key Infrastructure | .
 | | . | (e.g., PKI Certificate | .
 +-------+ . | Authority) | .
 . +----------------------------+ .
 . .
 ..
 "Domain" components

 Figure 1

 We assume a multi-vendor network. In such an environment there could
 be a Manufacturer Service for each manufacturer that supports devices
 following this document’s specification, or an integrator could
 provide a generic service authorized by multiple manufacturers. It
 is unlikely that an integrator could provide Ownership Tracking
 services for multiple manufacturers due to the required sales channel
 integrations necessary to track ownership.

 The domain is the managed network infrastructure with a Key
 Infrastructure the pledge is joining. The domain provides initial
 device connectivity sufficient for bootstrapping through a proxy.
 The domain registrar authenticates the pledge, makes authorization
 decisions, and distributes vouchers obtained from the Manufacturer
 Service. Optionally the registrar also acts as a PKI Registration
 Authority.

Pritikin, et al. Expires December 19, 2019 [Page 13]

Internet-Draft BRSKI June 2019

2.1. Behavior of a Pledge

 The pledge goes through a series of steps, which are outlined here at
 a high level.

 / Factory \
 \ default /
 -----+------
 |
 +------v-------+
 | (1) Discover |
 +------------> |
 | +------+-------+
 | |
 | +------v-------+
 | | (2) Identity |
 ^------------+ |
 | rejected +------+-------+
 | |
 | +------v-------+
 | | (3) Request |
 | | Join |
 | +------+-------+
 | |
 | +------v-------+
 | | (4) Imprint |
 ^------------+ |
 | Bad MASA +------+-------+
 | response | send Voucher Status Telemetry
 | +------v-------+
 | | (5) Enroll |<---+ (non-error HTTP codes)
 ^------------+ |___/ (e.g. 201 ’Retry-After’)
 | Enroll +------+-------+
 | Failure |
 | -----v------
 | / Enrolled \
 ^------------+ |
 Factory \------------/
 reset

 Figure 2: pledge state diagram

 State descriptions for the pledge are as follows:

 1. Discover a communication channel to a registrar.

Pritikin, et al. Expires December 19, 2019 [Page 14]

Internet-Draft BRSKI June 2019

 2. Identify itself. This is done by presenting an X.509 IDevID
 credential to the discovered registrar (via the proxy) in a TLS
 handshake. (The registrar credentials are only provisionally
 accepted at this time).

 3. Request to join the discovered registrar. A unique nonce is
 included ensuring that any responses can be associated with this
 particular bootstrapping attempt.

 4. Imprint on the registrar. This requires verification of the
 manufacturer service provided voucher. A voucher contains
 sufficient information for the pledge to complete authentication
 of a registrar. This document details this step in depth.

 5. Enroll. After imprint an authenticated TLS (HTTPS) connection
 exists between pledge and registrar. Enrollment over Secure
 Transport (EST) [RFC7030] is then used to obtain a domain
 certificate from a registrar.

 The pledge is now a member of, and can be managed by, the domain and
 will only repeat the discovery aspects of bootstrapping if it is
 returned to factory default settings.

 This specification details integration with EST enrollment so that
 pledges can optionally obtain a locally issued certificate, although
 any REST interface could be integrated in future work.

2.2. Secure Imprinting using Vouchers

 A voucher is a cryptographically protected artifact (a digital
 signature) to the pledge device authorizing a zero-touch imprint on
 the registrar domain.

 The format and cryptographic mechanism of vouchers is described in
 detail in [RFC8366].

 Vouchers provide a flexible mechanism to secure imprinting: the
 pledge device only imprints when a voucher can be validated. At the
 lowest security levels the MASA can indiscriminately issue vouchers
 and log claims of ownership by domains. At the highest security
 levels issuance of vouchers can be integrated with complex sales
 channel integrations that are beyond the scope of this document. The
 sales channel integration would verify actual (legal) ownership of
 the pledge by the domain. This provides the flexibility for a number
 of use cases via a single common protocol mechanism on the pledge and
 registrar devices that are to be widely deployed in the field. The
 MASA services have the flexibility to leverage either the currently

Pritikin, et al. Expires December 19, 2019 [Page 15]

Internet-Draft BRSKI June 2019

 defined claim mechanisms or to experiment with higher or lower
 security levels.

 Vouchers provide a signed but non-encrypted communication channel
 among the pledge, the MASA, and the registrar. The registrar
 maintains control over the transport and policy decisions allowing
 the local security policy of the domain network to be enforced.

2.3. Initial Device Identifier

 Pledge authentication and pledge voucher-request signing is via a
 PKIX certificate installed during the manufacturing process. This is
 the 802.1AR Initial Device Identifier (IDevID), and it provides a
 basis for authenticating the pledge during the protocol exchanges
 described here. There is no requirement for a common root PKI
 hierarchy. Each device manufacturer can generate its own root
 certificate. Specifically, the IDevID enables:

 1. Uniquely identifying the pledge by the Distinguished Name (DN)
 and subjectAltName (SAN) parameters in the IDevID. The unique
 identification of a pledge in the voucher objects are derived
 from those parameters as described below.

 2. Provides a cryptographic authentication of the pledge to the
 Registrar (see Section 5.3).

 3. Secure auto-discovery of the pledge’s MASA by the registrar (see
 Section 2.8).

 4. Signing of voucher-request by the pledge’s IDevID (see
 Section 3).

 5. Provides a cryptographic authentication of the pledge to the MASA
 (see Section 5.5.5).

 Section 7.2.13 of [IDevID] discusses keyUsage and extendedKeyUsage
 extensions in the IDevID certificate. Any restrictions included
 reduce the utility of the IDevID and so this specification RECOMMENDS
 that no key usage restrictions be included. Additionally, [RFC5280]
 section 4.2.1.3 does not require key usage restrictions for end
 entity certificates.

2.3.1. Identification of the Pledge

 In the context of BRSKI, pledges are uniquely identified by a
 "serial-number". This serial-number is used both in the "serial-
 number" field of voucher or voucher-requests (see Section 3) and in
 local policies on registrar or MASA (see Section 5).

Pritikin, et al. Expires December 19, 2019 [Page 16]

Internet-Draft BRSKI June 2019

 The following fields are defined in [IDevID] and [RFC5280]:

 o The subject field’s DN encoding MUST include the "serialNumber"
 attribute with the device’s unique serial number. (from [IDevID]
 section 7.2.8, and [RFC5280] section 4.1.2.4’s list of standard
 attributes)

 o The subject-alt field’s encoding MAY include a non-critical
 version of the RFC4108 defined HardwareModuleName. (from [IDevID]
 section 7.2.9) If the IDevID is stored in a Trusted Platform
 Module (TPM), then this field MAY contain the TPM identification
 rather than the device’s serial number. If both fields are
 present, then the subject field takes precedence.

 and they are used as follows by the pledge to build the "serial-
 number" that is placed in the voucher-request. In order to build it,
 the fields need to be converted into a serial-number of "type
 string". The following methods are used depending on the first
 available IDevID certificate field (attempted in this order):

 1. [RFC4519] section 2.31 provides an example ("WI-3005") of the
 Distinguished Name "serialNumber" attribute. [RFC4514] indicates
 this is a printable string so no encoding is necessary.

 2. The HardwareModuleName hwSerialNum OCTET STRING. This value is
 base64 encoded to convert it to a printable string format.

 The above process to locate the serial-number MUST be performed by
 the pledge when filling out the voucher-request. Signed voucher-
 requests are always passed up to the MASA.

 As explained in Section 5.5 the Registrar MUST extract the serial-
 number again itself from the pledge’s TLS certificate. It can
 consult the serial-number in the pledge-request if there are any
 possible confusion about the source of the serial-number (hwSerialNum
 vs serialNumber).

2.3.2. MASA URI extension

 This docucment defines a new PKIX non-critical certificate extension
 to carry the MASA URI. This extension is intended to be used in the
 IDevID certificate. The URI is represented as described in
 Section 7.4 of [RFC5280].

 Any Internationalized Resource Identifiers (IRIs) MUST be mapped to
 URIs as specified in Section 3.1 of [RFC3987] before they are placed
 in the certificate extension. The IRI provides the authority

Pritikin, et al. Expires December 19, 2019 [Page 17]

Internet-Draft BRSKI June 2019

 information. The BRSKI "/.well-known" tree ([RFC5785]) is described
 in Section 5.

 As explained in [RFC5280] section 7.4, a complete IRI SHOULD be in
 this extension, including the scheme, iauthority, and ipath. As a
 consideration to constrained systems, this MAY be reduced to only the
 iauthority, in which case a scheme of "https://" and ipath of
 "/.well-known/est" is to be assumed, as explained in section
 Section 5.

 The registrary can assume that only the iauthority is present in the
 extension, if there are no slash ("/") characters in the extension.

 Section 7.4 of [RFC5280] calls out various schemes that MUST be
 supported, including ldap, http and ftp. However, the registrar MUST
 use https for the BRSKI-MASA connection.

 The new extension is identified as follows:

Pritikin, et al. Expires December 19, 2019 [Page 18]

Internet-Draft BRSKI June 2019

 <CODE BEGINS>

 MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-mod-MASAURLExtn2016(TBD) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 -- EXPORTS ALL --

 IMPORTS
 EXTENSION
 FROM PKIX-CommonTypes-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) }

 id-pe
 FROM PKIX1Explicit-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51) } ;
 MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
 ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
 IDENTIFIED BY id-pe-masa-url }

 id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe TBD }

 MASAURLSyntax ::= IA5String

 END

 <CODE ENDS>

 The choice of id-pe is based on guidance found in Section 4.2.2 of
 [RFC5280], "These extensions may be used to direct applications to
 on-line information about the issuer or the subject". The MASA URL
 is precisely that: online information about the particular subject.

2.4. Protocol Flow

 A representative flow is shown in Figure 3:

Pritikin, et al. Expires December 19, 2019 [Page 19]

Internet-Draft BRSKI June 2019

 +--------+ +---------+ +------------+ +------------+
Pledge		Circuit		Domain		Vendor
		Join		Registrar		Service
		Proxy		(JRC)		(MASA)
 +--------+ +---------+ +------------+ +------------+
 | | | Internet |
 [discover] | | |
 |<-RFC4862 IPv6 addr | | |
 |<-RFC3927 IPv4 addr | Appendix A | Legend |
 |-------------------->| | C - circuit |
 | optional: mDNS query| Appendix B | join proxy |
 | RFC6763/RFC6762 | | P - provisional |
 |<--------------------| | TLS connection |
 | GRASP M_FLOOD | | |
 | periodic broadcast| | |
 [identity] | | |
 |<------------------->C<----------------->| |
 | TLS via the Join Proxy | |
 |<--Registrar TLS server authentication---| |
 [PROVISIONAL accept of server cert] | |
 P---X.509 client authentication---------->| |
 [request join] | |
 P---Voucher Request(w/nonce for voucher)->| |
 P /------------------- | |
 P | [accept device?] |
 P | [contact Vendor] |
 P | |--Pledge ID-------->|
 P | |--Domain ID-------->|
 P | |--optional:nonce--->|
 P optional: | [extract DomainID]
 P can occur in advance | [update audit log]
 P if nonceleess | |
 P | |<- voucher ---------|
 P \------------------- | w/nonce if provided|
 P<------voucher---------------------------| |
 [imprint] | |
 |-------voucher status telemetry--------->| |
 | |<-device audit log--|
 | [verify audit log and voucher] |
 |<--------------------------------------->| |
 [enroll] | |
 | Continue with RFC7030 enrollment | |
 | using now bidirectionally authenticated | |
 | TLS session. | |
 [enrolled] | |

 Figure 3

Pritikin, et al. Expires December 19, 2019 [Page 20]

Internet-Draft BRSKI June 2019

2.5. Architectural Components

2.5.1. Pledge

 The pledge is the device that is attempting to join. Until the
 pledge completes the enrollment process, it has link-local network
 connectivity only to the proxy.

2.5.2. Join Proxy

 The join proxy provides HTTPS connectivity between the pledge and the
 registrar. A circuit proxy mechanism is described in Section 4.
 Additional mechanisms, including a CoAP mechanism and a stateless
 IPIP mechanism are the subject of future work.

2.5.3. Domain Registrar

 The domain’s registrar operates as the BRSKI-MASA client when
 requesting vouchers from the MASA (see Section 5.4). The registrar
 operates as the BRSKI-EST server when pledges request vouchers (see
 Section 5.1). The registrar operates as the BRSKI-EST server
 "Registration Authority" if the pledge requests an end entity
 certificate over the BRSKI-EST connection (see Section 5.9).

 The registrar uses an Implicit Trust Anchor database for
 authenticating the BRSKI-MASA TLS connection MASA certificate. The
 registrar uses a different Implicit Trust Anchor database for
 authenticating the BRSKI-EST TLS connection pledge client
 certificate. Configuration or distribution of these trust anchor
 databases is out-of-scope of this specification.

2.5.4. Manufacturer Service

 The Manufacturer Service provides two logically seperate functions:
 the Manufacturer Authorized Signing Authority (MASA) described in
 Section 5.5 and Section 5.6, and an ownership tracking/auditing
 function described in Section 5.7 and Section 5.8.

2.5.5. Public Key Infrastructure (PKI)

 The Public Key Infrastructure (PKI) administers certificates for the
 domain of concerns, providing the trust anchor(s) for it and allowing
 enrollment of pledges with domain certificates.

 The voucher provides a method for the distribution of a single PKI
 trust anchor (as the "pinned-domain-cert"). A distribution of the
 full set of current trust anchors is possible using the optional EST
 integration.

Pritikin, et al. Expires December 19, 2019 [Page 21]

Internet-Draft BRSKI June 2019

 The domain’s registrar acts as an [RFC5272] Registration Authority,
 requesting certificates for pledges from the Key Infrastructure.

 The expectations of the PKI are unchanged from EST [[RFC7030]]. This
 document does not place any additional architectural requirements on
 the Public Key Infrastructure.

2.6. Certificate Time Validation

2.6.1. Lack of realtime clock

 Many devices when bootstrapping do not have knowledge of the current
 time. Mechanisms such as Network Time Protocols cannot be secured
 until bootstrapping is complete. Therefore bootstrapping is defined
 in a method that does not require knowledge of the current time. A
 pledge MAY ignore all time stamps in the voucher and in the
 certificate validity periods if it does not know the current time.

 The pledge is exposed to dates in the following five places:
 registrar certificate notBefore, registrar certificiate notAfter,
 voucher created-on, and voucher expires-on. Additionally, CMS
 signatures contain a signingTime.

 If the voucher contains a nonce then the pledge MUST confirm the
 nonce matches the original pledge voucher-request. This ensures the
 voucher is fresh. See Section 5.2.

2.6.2. Infinite Lifetime of IDevID

 [RFC5280] explains that long lived pledge certificates "SHOULD be
 assigned the GeneralizedTime value of 99991231235959Z". Registrars
 MUST support such lifetimes and SHOULD support ignoring pledge
 lifetimes if they did not follow the RFC5280 recommendations.

 For example, IDevID may have incorrect lifetime of N <= 3 years,
 rendering replacement pledges from storage useless after N years
 unless registrars support ignoring such a lifetime.

2.7. Cloud Registrar

 There exist operationally open network wherein devices gain
 unauthenticated access to the internet at large. In these use cases
 the management domain for the device needs to be discovered within
 the larger internet. These are less likely within the anima scope
 but may be more important in the future.

 There are additionally some greenfield situations involving an
 entirely new installation where a device may have some kind of

Pritikin, et al. Expires December 19, 2019 [Page 22]

Internet-Draft BRSKI June 2019

 management uplink that it can use (such as via 3G network for
 instance). In such a future situation, the device might use this
 management interface to learn that it should configure itself to
 become the local registrar.

 In order to support these scenarios, the pledge MAY contact a well
 known URI of a cloud registrar if a local registrar cannot be
 discovered or if the pledge’s target use cases do not include a local
 registrar.

 If the pledge uses a well known URI for contacting a cloud registrar
 an Implicit Trust Anchor database (see [RFC7030]) MUST be used to
 authenticate service as described in [RFC6125]. This is consistent
 with the human user configuration of an EST server URI in [RFC7030]
 which also depends on RFC6125.

2.8. Determining the MASA to contact

 The registrar needs to be able to contact a MASA that is trusted by
 the pledge in order to obtain vouchers. There are three mechanisms
 described:

 The device’s Initial Device Identifier (IDevID) will normally contain
 the MASA URL as detailed in Section 2.3. This is the RECOMMENDED
 mechanism.

 If the registrar is integrated with [I-D.ietf-opsawg-mud] and the
 pledge IDevID contains the id-pe-mud-url then the registrar MAY
 attempt to obtain the MASA URL from the MUD file. The MUD file
 extension for the MASA URL is defined in Appendix C.

 It can be operationally difficult to ensure the necessary X.509
 extensions are in the pledge’s IDevID due to the difficulty of
 aligning current pledge manufacturing with software releases and
 development. As a final fallback the registrar MAY be manually
 configured or distributed with a MASA URL for each manufacturer.
 Note that the registrar can only select the configured MASA URL based
 on the trust anchor -- so manufacturers can only leverage this
 approach if they ensure a single MASA URL works for all pledge’s
 associated with each trust anchor.

3. Voucher-Request artifact

 Voucher-requests are how vouchers are requested. The semantics of
 the vouchers are described below, in the YANG model.

 A pledge forms the "pledge voucher-request" and submits it to the
 registrar.

Pritikin, et al. Expires December 19, 2019 [Page 23]

Internet-Draft BRSKI June 2019

 The registrar in turn forms the "registrar voucher-request", and
 submits it to the MASA.

 The "proximity-registrar-cert" leaf is used in the pledge voucher-
 requests. This provides a method for the pledge to assert the
 registrar’s proximity.

 The "prior-signed-voucher-request" leaf is used in registrar voucher-
 requests. If present, it is the signed pledge voucher-request. This
 provides a method for the registrar to forward the pledge’s signed
 request to the MASA. This completes transmission of the signed
 "proximity-registrar-cert" leaf.

 Unless otherwise signaled (outside the voucher-request artifact), the
 signing structure is as defined for vouchers, see [RFC8366].

3.1. Nonceless Voucher Requests

 A registrar MAY also retrieve nonceless vouchers by sending nonceless
 voucher-requests to the MASA in order to obtain vouchers for use when
 the registrar does not have connectivity to the MASA. No "prior-
 signed-voucher-request" leaf would be included. The registrar will
 also need to know the serial number of the pledge. This document
 does not provide a mechanism for the registrar to learn that in an
 automated fashion. Typically this will be done via scanning of bar-
 code or QR-code on packaging, or via some sales channel integration.

3.2. Tree Diagram

 The following tree diagram illustrates a high-level view of a
 voucher-request document. The voucher-request builds upon the
 voucher artifact described in [RFC8366]. The tree diagram is
 described in [RFC8340]. Each node in the diagram is fully described
 by the YANG module in Section 3.4. Please review the YANG module for
 a detailed description of the voucher-request format.

Pritikin, et al. Expires December 19, 2019 [Page 24]

Internet-Draft BRSKI June 2019

 module: ietf-voucher-request

 grouping voucher-request-grouping
 +-- voucher
 +-- created-on? yang:date-and-time
 +-- expires-on? yang:date-and-time
 +-- assertion? enumeration
 +-- serial-number string
 +-- idevid-issuer? binary
 +-- pinned-domain-cert? binary
 +-- domain-cert-revocation-checks? boolean
 +-- nonce? binary
 +-- last-renewal-date? yang:date-and-time
 +-- prior-signed-voucher-request? binary
 +-- proximity-registrar-cert? binary

3.3. Examples

 This section provides voucher-request examples for illustration
 purposes. For detailed examples, see Appendix D.2. These examples
 conform to the encoding rules defined in [RFC7951].

 Example (1) The following example illustrates a pledge voucher-
 request. The assertion leaf is indicated as ’proximity’
 and the registrar’s TLS server certificate is included
 in the ’proximity-registrar-cert’ leaf. See
 Section 5.2.

 {
 "ietf-voucher-request:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created-on": "2017-01-01T00:00:00.000Z",
 "proximity-registrar-cert": "base64encodedvalue=="
 }
 }

 Example (2) The following example illustrates a registrar voucher-
 request. The ’prior-signed-voucher-request’ leaf is
 populated with the pledge’s voucher-request (such as the
 prior example). The pledge’s voucher-request is a
 binary object. In the JSON encoding used here it must
 be base64 encoded. The nonce, created-on and assertion
 is carried forward. The serial-number is extracted from
 the pledge’s Client Certificate from the TLS connection.
 See Section 5.5.

Pritikin, et al. Expires December 19, 2019 [Page 25]

Internet-Draft BRSKI June 2019

 {
 "ietf-voucher-request:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "created-on": "2017-01-01T00:00:02.000Z",
 "idevid-issuer": "base64encodedvalue=="
 "serial-number": "JADA123456789"
 "prior-signed-voucher-request": "base64encodedvalue=="
 }
 }

 Example (3) The following example illustrates a registrar voucher-
 request. The ’prior-signed-voucher-request’ leaf is not
 populated with the pledge’s voucher-request nor is the
 nonce leaf. This form might be used by a registrar
 requesting a voucher when the pledge can not communicate
 with the registrar (such as when it is powered down, or
 still in packaging), and therefore could not submit a
 nonce. This scenario is most useful when the registrar
 is aware that it will not be able to reach the MASA
 during deployment. See Section 5.5.

 {
 "ietf-voucher-request:voucher": {
 "created-on": "2017-01-01T00:00:02.000Z",
 "idevid-issuer": "base64encodedvalue=="
 "serial-number": "JADA123456789"
 }
 }

3.4. YANG Module

 Following is a YANG [RFC7950] module formally extending the [RFC8366]
 voucher into a voucher-request.

<CODE BEGINS> file "ietf-voucher-request@2018-02-14.yang"
module ietf-voucher-request {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
 prefix "vch";

 import ietf-restconf {
 prefix rc;
 description "This import statement is only present to access
 the yang-data extension defined in RFC 8040.";
 reference "RFC 8040: RESTCONF Protocol";
 }

Pritikin, et al. Expires December 19, 2019 [Page 26]

Internet-Draft BRSKI June 2019

 import ietf-voucher {
 prefix v;
 description "This module defines the format for a voucher,
 which is produced by a pledge’s manufacturer or
 delegate (MASA) to securely assign a pledge to
 an ’owner’, so that the pledge may establish a secure
 conn ection to the owner’s network infrastructure";

 reference "RFC YYYY: Voucher Profile for Bootstrapping Protocols";
 }

 organization
 "IETF ANIMA Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/anima/>
 WG List: <mailto:anima@ietf.org>
 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>
 Author: Max Pritikin
 <mailto:pritikin@cisco.com>
 Author: Michael Richardson
 <mailto:mcr+ietf@sandelman.ca>
 Author: Toerless Eckert
 <mailto:tte+ietf@cs.fau.de>";

 description
 "This module defines the format for a voucher request.
 It is a superset of the voucher itself.
 It provides content to the MASA for consideration
 during a voucher request.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
 ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in
 the module text are to be interpreted as described in RFC 2119.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

Pritikin, et al. Expires December 19, 2019 [Page 27]

Internet-Draft BRSKI June 2019

 revision "2018-02-14" {
 description
 "Initial version";
 reference
 "RFC XXXX: Voucher Profile for Bootstrapping Protocols";
 }

 // Top-level statement
 rc:yang-data voucher-request-artifact {
 uses voucher-request-grouping;
 }

 // Grouping defined for future usage
 grouping voucher-request-grouping {
 description
 "Grouping to allow reuse/extensions in future work.";

 uses v:voucher-artifact-grouping {
 refine "voucher/created-on" {
 mandatory false;
 }

 refine "voucher/pinned-domain-cert" {
 mandatory false;
 }

 refine "voucher/domain-cert-revocation-checks" {
 description "The domain-cert-revocation-checks field
 is not valid in a voucher request, and
 any occurance MUST be ignored";
 }

 refine "voucher/assertion" {
 mandatory false;
 description "Any assertion included in voucher
 requests SHOULD be ignored by the MASA.";
 }

 augment "voucher" {
 description
 "Adds leaf nodes appropriate for requesting vouchers.";

 leaf prior-signed-voucher-request {
 type binary;
 description
 "If it is necessary to change a voucher, or re-sign and
 forward a voucher that was previously provided along a
 protocol path, then the previously signed voucher SHOULD be

Pritikin, et al. Expires December 19, 2019 [Page 28]

Internet-Draft BRSKI June 2019

 included in this field.

 For example, a pledge might sign a voucher request
 with a proximity-registrar-cert, and the registrar
 then includes it in the prior-signed-voucher-request field.
 This is a simple mechanism for a chain of trusted
 parties to change a voucher request, while
 maintaining the prior signature information.

 The Registrar and MASA MAY examine the prior signed
 voucher information for the
 purposes of policy decisions. For example this information
 could be useful to a MASA to determine that both pledge and
 registrar agree on proximity assertions. The MASA SHOULD
 remove all prior-signed-voucher-request information when
 signing a voucher for imprinting so as to minimize the
 final voucher size.";
 }

 leaf proximity-registrar-cert {
 type binary;
 description
 "An X.509 v3 certificate structure as specified by RFC 5280,
 Section 4 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU-T X.690.

 The first certificate in the Registrar TLS server
 certificate_list sequence (see [RFC5246]) presented by
 the Registrar to the Pledge. This MUST be populated in a
 Pledge’s voucher request if a proximity assertion is
 requested.";
 }
 }
 }
 }

}

<CODE ENDS>

4. Proxying details (Pledge - Proxy - Registrar)

 The role of the proxy is to facilitate communications. The proxy
 forwards packets between the pledge and a registrar that has been
 provisioned to the proxy via GRASP discovery.

 This section defines a stateful proxy mechanism which is refered to
 as a "circuit" proxy.

Pritikin, et al. Expires December 19, 2019 [Page 29]

Internet-Draft BRSKI June 2019

 The proxy does not terminate the TLS handshake: it passes streams of
 bytes onward without examination. A proxy MUST NOT assume any
 specific TLS version.

 A Registrar can directly provide the proxy announcements described
 below, in which case the announced port can point directly to the
 Registrar itself. In this scenario the pledge is unaware that there
 is no proxing occuring. This is useful for Registrars servicing
 pledges on directly connected networks.

 As a result of the proxy Discovery process in Section 4.1.1, the port
 number exposed by the proxy does not need to be well known, or
 require an IANA allocation.

 During the discovery of the Registrar by the Join Proxy, the Join
 Proxy will also learn which kinds of proxy mechanisms are available.
 This will allow the Join Proxy to use the lowest impact mechanism
 which the Join Proxy and Registrar have in common.

 In order to permit the proxy functionality to be implemented on the
 maximum variety of devices the chosen mechanism SHOULD use the
 minimum amount of state on the proxy device. While many devices in
 the ANIMA target space will be rather large routers, the proxy
 function is likely to be implemented in the control plane CPU of such
 a device, with available capabilities for the proxy function similar
 to many class 2 IoT devices.

 The document [I-D.richardson-anima-state-for-joinrouter] provides a
 more extensive analysis and background of the alternative proxy
 methods.

4.1. Pledge discovery of Proxy

 The result of discovery is a logical communication with a registrar,
 through a proxy. The proxy is transparent to the pledge. The
 communication between the pledge is over IPv6 Link-Local addresses.

 To discover the proxy the pledge performs the following actions:

 1. MUST: Obtains a local address using IPv6 methods as described in
 [RFC4862] IPv6 Stateless Address AutoConfiguration. Use of
 [RFC4941] temporary addresses is encouraged. To limit pervasive
 monitoring ([RFC7258]), a new temporary address MAY use a short
 lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short).
 Pledges will generally prefer use of IPv6 Link-Local addresses,
 and discovery of proxy will be by Link-Local mechanisms. IPv4
 methods are described in Appendix A

Pritikin, et al. Expires December 19, 2019 [Page 30]

Internet-Draft BRSKI June 2019

 2. MUST: Listen for GRASP M_FLOOD ([I-D.ietf-anima-grasp])
 announcements of the objective: "AN_Proxy". See section
 Section 4.1.1 for the details of the objective. The pledge MAY
 listen concurrently for other sources of information, see
 Appendix B.

 Once a proxy is discovered the pledge communicates with a registrar
 through the proxy using the bootstrapping protocol defined in
 Section 5.

 While the GRASP M_FLOOD mechanism is passive for the pledge, the
 optional other methods (mDNS, and IPv4 methods) are active. The
 pledge SHOULD run those methods in parallel with listening to for the
 M_FLOOD. The active methods SHOULD exponentially back-off to a
 maximum of one hour to avoid overloading the network with discovery
 attempts. Detection of change of physical link status (ethernet
 carrier for instance) SHOULD reset the exponential back off.

 The pledge could discover more than one proxy on a given physical
 interface. The pledge can have a multitude of physical interfaces as
 well: a layer-2/3 ethernet switch may have hundreds of physical
 ports.

 Each possible proxy offer SHOULD be attempted up to the point where a
 voucher is received: while there are many ways in which the attempt
 may fail, it does not succeed until the voucher has been validated.

 The connection attempts via a single proxy SHOULD exponentially back-
 off to a maximum of one hour to avoid overloading the network
 infrastructure. The back-off timer for each MUST be independent of
 other connection attempts.

 Connection attempts SHOULD be run in parallel to avoid head of queue
 problems wherein an attacker running a fake proxy or registrar could
 perform protocol actions intentionally slowly. The pledge SHOULD
 continue to listen to for additional GRASP M_FLOOD messages during
 the connection attempts.

 Once a connection to a registrar is established (e.g. establishment
 of a TLS session key) there are expectations of more timely
 responses, see Section 5.2.

 Once all discovered services are attempted (assuming that none
 succeeded) the device MUST return to listening for GRASP M_FLOOD. It
 SHOULD periodically retry the manufacturer specific mechanisms. The
 pledge MAY prioritize selection order as appropriate for the
 anticipated environment.

Pritikin, et al. Expires December 19, 2019 [Page 31]

Internet-Draft BRSKI June 2019

4.1.1. Proxy GRASP announcements

 A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.
 This announcement can be within the same message as the ACP
 announcement detailed in [I-D.ietf-anima-autonomic-control-plane].
 The M_FLOOD is formatted as follows:

 [M_FLOOD, 12340815, h’fe800000000000000000000000000001’, 180000,
 ["AN_Proxy", 4, 1, ""],
 [O_IPv6_LOCATOR,
 h’fe800000000000000000000000000001’, IPPROTO_TCP, 4443]]

 Figure 6b: Proxy Discovery

 The formal CDDL [I-D.ietf-cbor-cddl] definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["AN_Proxy", objective-flags, loop-count,
 objective-value]

 ttl = 180000 ; 180,000 ms (3 minutes)
 initiator = ACP address to contact Registrar
 objective-flags = sync-only ; as in GRASP spec
 sync-only = 4 ; M_FLOOD only requires synchronization
 loop-count = 1 ; one hop only
 objective-value = any ; none

 locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = the v6 LL of the Proxy
 $transport-proto /= IPPROTO_TCP ; note this can be any value from the
 ; IANA protocol registry, as per
 ; [GRASP] section 2.9.5.1, note 3.
 port-number = selected by Proxy

 Figure 6c: AN_Proxy CDDL

 On a small network the Registrar MAY include the GRASP M_FLOOD
 announcements to locally connected networks.

 The $transport-proto above indicates the method that the pledge-
 proxy-registrar will use. The TCP method described here is
 mandatory, and other proxy methods, such as CoAP methods not defined
 in this document are optional. Other methods MUST NOT be enabled
 unless the Join Registrar ASA indicates support for them in it’s own
 announcement.

Pritikin, et al. Expires December 19, 2019 [Page 32]

Internet-Draft BRSKI June 2019

4.2. CoAP connection to Registrar

 The use of CoAP to connect from pledge to registrar is out of scope
 for this document, and is described in future work. See
 [I-D.ietf-anima-constrained-voucher].

4.3. Proxy discovery and communication of Registrar

 The registrar SHOULD announce itself so that proxies can find it and
 determine what kind of connections can be terminated.

 The registrar announces itself using ACP instance of GRASP using
 M_FLOOD messages. ANI proxies MUST support GRASP discovery of
 registrars.

 The M_FLOOD is formatted as follows:

 [M_FLOOD, 12340815, h’fda379a6f6ee00000200000064000001’, 180000,
 ["AN_join_registrar", 4, 255, "EST-TLS"],
 [O_IPv6_LOCATOR,
 h’fda379a6f6ee00000200000064000001’, IPPROTO_TCP, 80]]

 Figure 7a: Registrar Discovery

 The formal CDDL definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 objective = ["AN_join_registrar", objective-flags, loop-count,
 objective-value]

 initiator = ACP address to contact Registrar
 objective-flags = sync-only ; as in GRASP spec
 sync-only = 4 ; M_FLOOD only requires synchronization
 loop-count = 255 ; mandatory maximum
 objective-value = text ; name of the (list of) of supported
 ; protocols: "EST-TLS" for RFC7030.

 Figure 7: AN_join_registrar CDDL

 The M_FLOOD message MUST be sent periodically. The period is subject
 to network administrator policy (EST server configuration). It must
 be sufficiently low that the aggregate amount of periodic M_FLOODs
 from all EST servers causes negligible traffic across the ACP.

Pritikin, et al. Expires December 19, 2019 [Page 33]

Internet-Draft BRSKI June 2019

 Here are some examples of locators for illustrative purposes. Only
 the first one ($transport-protocol = 6, TCP) is defined in this
 document and is mandatory to implement.

 locator1 = [O_IPv6_LOCATOR, fd45:1345::6789, 6, 443]
 locator2 = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
 locator3 = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

 A protocol of 6 indicates that TCP proxying on the indicated port is
 desired.

 Registrars MUST announce the set of protocols that they support.
 They MUST support TCP traffic.

 Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

 Registrars MUST support ANI TLS circuit proxy and therefore BRSKI
 across HTTPS/TLS native across the ACP.

 In the ANI, the Autonomic Control Plane (ACP) secured instance of
 GRASP ([I-D.ietf-anima-grasp]) MUST be used for discovery of ANI
 registrar ACP addresses and ports by ANI proxies. The TCP leg of the
 proxy connection between ANI proxy and ANI registrar therefore also
 runs across the ACP.

5. Protocol Details (Pledge - Registrar - MASA)

 The pledge MUST initiate BRSKI after boot if it is unconfigured. The
 pledge MUST NOT automatically initiate BRSKI if it has been
 configured or is in the process of being configured.

 BRSKI is described as extensions to EST [RFC7030]. The goal of these
 extensions is to reduce the number of TLS connections and crypto
 operations required on the pledge. The registrar implements the
 BRSKI REST interface within the same "/.well-known" URI tree as the
 existing EST URIs as described in EST [RFC7030] section 3.2.2. The
 communication channel between the pledge and the registrar is
 referred to as "BRSKI-EST" (see Figure 1).

 The communication channel between the registrar and MASA is similarly
 described as extensions to EST within the same "/.well-known" tree.
 For clarity this channel is referred to as "BRSKI-MASA". (See
 Figure 1).

 MASA URI is "https://" iauthority "/.well-known/est".

Pritikin, et al. Expires December 19, 2019 [Page 34]

Internet-Draft BRSKI June 2019

 BRSKI uses existing CMS message formats for existing EST operations.
 BRSKI uses JSON [RFC7159] for all new operations defined here, and
 voucher formats.

 While EST section 3.2 does not insist upon use of HTTP 1.1 persistent
 connections, BRSKI-EST connections SHOULD use persistent connections.
 The intention of this guidance is to ensure the provisional TLS state
 occurs only once, and that the subsequent resolution of the provision
 state is not subject to a MITM attack during a critical phase.

 Summarized automation extensions for the BRSKI-EST flow are:

 o The pledge either attempts concurrent connections via each
 discovered proxy, or it times out quickly and tries connections in
 series, as explained at the end of Section 5.1.

 o The pledge provisionally accepts the registrar certificate during
 the TLS handshake as detailed in Section 5.1.

 o The pledge requests and validates a voucher using the new REST
 calls described below.

 o The pledge completes authentication of the server certificate as
 detailed in Section 5.6.1. This moves the BRSKI-EST TLS
 connection out of the provisional state.

 o Mandatory boostrap steps conclude with voucher status telemetry
 (see Section 5.7).

 The BRSKI-EST TLS connection can now be used for EST enrollment.

 The extensions for a registrar (equivalent to EST server) are:

 o Client authentication is automated using Initial Device Identity
 (IDevID) as per the EST certificate based client authentication.
 The subject field’s DN encoding MUST include the "serialNumber"
 attribute with the device’s unique serial number.

 o In the language of [RFC6125] this provides for a SERIALNUM-ID
 category of identifier that can be included in a certificate and
 therefore that can also be used for matching purposes. The
 SERIALNUM-ID whitelist is collated according to manufacturer trust
 anchor since serial numbers are not globally unique.

 o The registrar requests and validates the voucher from the MASA.

 o The registrar forwards the voucher to the pledge when requested.

Pritikin, et al. Expires December 19, 2019 [Page 35]

Internet-Draft BRSKI June 2019

 o The registrar performs log verifications in addition to local
 authorization checks before accepting optional pledge device
 enrollment requests.

5.1. BRSKI-EST TLS establishment details

 The pledge establishes the TLS connection with the registrar through
 the circuit proxy (see Section 4) but the TLS handshake is with the
 registrar. The BRSKI-EST pledge is the TLS client and the BRSKI-EST
 registrar is the TLS server. All security associations established
 are between the pledge and the registrar regardless of proxy
 operations.

 Establishment of the BRSKI-EST TLS connection is as specified in EST
 [RFC7030] section 4.1.1 "Bootstrap Distribution of CA Certificates"
 [RFC7030] wherein the client is authenticated with the IDevID
 certificate, and the EST server (the registrar) is provisionally
 authenticated with an unverified server certificate.

 The pledge maintains a security paranoia concerning the provisional
 state, and all data received, until a voucher is received and
 verified as specified in Section 5.6.1

 A Pledge that can connect to multiple registries concurrently, SHOULD
 do so. Some devices may be unable to do so for lack of threading, or
 resource issues. Concurrent connections defeat atttempts by a
 malicious proxy from causing a TCP Slowloris-like attack (see
 [slowloris]).

 A pledge that can not maintain as many connections as there are
 eligible proxies. If no connection is making process after 5 seconds
 then the pledge SHOULD drop the oldest connection and go on to a
 different proxy: the proxy that has been communicated with least
 recently. If there were no other proxies discovered, the pledge MAY
 continue to wait, as long as it is concurrently listening for new
 proxy announcements.

5.2. Pledge Requests Voucher from the Registrar

 When the pledge bootstraps it makes a request for a voucher from a
 registrar.

 This is done with an HTTPS POST using the operation path value of
 "/.well-known/est/requestvoucher".

 The pledge voucher-request Content-Type is:

Pritikin, et al. Expires December 19, 2019 [Page 36]

Internet-Draft BRSKI June 2019

 application/voucher-cms+json The request is a "YANG-defined JSON
 document that has been signed using a CMS structure" as described
 in Section 3 using the JSON encoding described in [RFC7951]. This
 voucher media type is defined in [RFC8366] and is also used for
 the pledge voucher-request. The pledge SHOULD sign the request
 using the Section 2.3 credential.

 Registrar impementations SHOULD anticipate future media types but of
 course will simply fail the request if those types are not yet known.

 The pledge SHOULD include an [RFC7231] section 5.3.2 "Accept" header
 indicating the acceptable media type for the voucher response. The
 "application/voucher-cms+json" media type is defined in [RFC8366] but
 constrained voucher formats are expected in the future. Registrar’s
 and MASA’s are expected to be flexible in what they accept.

 The pledge populates the voucher-request fields as follows:

 created-on: Pledges that have a realtime clock are RECOMMENDED to
 populate this field. This provides additional information to the
 MASA.

 nonce: The pledge voucher-request MUST contain a cryptographically
 strong random or pseudo-random number nonce. (see [RFC4086]) Doing
 so ensures Section 2.6.1 functionality. The nonce MUST NOT be
 reused for multiple bootstrapping attempts. (The registrar
 voucher-request MAY omit the nonce as per Section 3.1)

 proximity-registrar-cert: In a pledge voucher-request this is the
 first certificate in the TLS server ’certificate_list’ sequence
 (see [RFC5246]) presented by the registrar to the pledge. This
 MUST be populated in a pledge voucher-request if the "proximity"
 assertion is populated.

 All other fields MAY be omitted in the pledge voucher-request.

 An example JSON payload of a pledge voucher-request is in Section 3.3
 Example 1.

 The registrar validates the client identity as described in EST
 [RFC7030] section 3.3.2. The registrar confirms that the ’proximity’
 assertion and associated ’proximity-registrar-cert’ are correct.

5.3. Registrar Authorization of Pledge

 In a fully automated network all devices must be securely identified
 and authorized to join the domain.

Pritikin, et al. Expires December 19, 2019 [Page 37]

Internet-Draft BRSKI June 2019

 A Registrar accepts or declines a request to join the domain, based
 on the authenticated identity presented. Automated acceptance
 criteria include:

 o allow any device of a specific type (as determined by the X.509
 IDevID),

 o allow any device from a specific vendor (as determined by the
 X.509 IDevID),

 o allow a specific device from a vendor (as determined by the X.509
 IDevID) against a domain white list. (The mechanism for checking
 a shared white list potentially used by multiple Registrars is out
 of scope).

 If these validations fail the registrar SHOULD respond with an
 appropriate HTTP error code.

 If authorization is successful the registrar obtains a voucher from
 the MASA service (see Section 5.5) and returns that MASA signed
 voucher to the pledge as described in Section 5.6.

5.4. BRSKI-MASA TLS establishment details

 The BRSKI-MASA TLS connection is a ’normal’ TLS connection
 appropriate for HTTPS REST interfaces. The registrar initiates the
 connection and uses the MASA URL obtained as described in Section 2.8
 for [RFC6125] authentication of the MASA.

 The primary method of registrar "authentication" by the MASA is
 detailed in Section 5.5. As detailed in Section 11 the MASA might
 find it necessary to request additional registrar authentication.

 The MASA and the registrars SHOULD be prepared to support TLS client
 certificate authentication and/or HTTP Basic or Digest authentication
 as described in [RFC7030] for EST clients. This connection MAY also
 have no client authentication at all (Section 7.4)

 The authentication of the BRSKI-MASA connection does not affect the
 voucher-request process, as voucher-requests are already signed by
 the registrar. Instead, this authentication provides access control
 to the audit log.

 Implementors are advised that contacting the MASA is to establish a
 secured REST connection with a web service and that there are a
 number of authentication models being explored within the industry.
 Registrars are RECOMMENDED to fail gracefully and generate useful

Pritikin, et al. Expires December 19, 2019 [Page 38]

Internet-Draft BRSKI June 2019

 administrative notifications or logs in the advent of unexpected HTTP
 401 (Unauthorized) responses from the MASA.

5.5. Registrar Requests Voucher from MASA

 When a registrar receives a pledge voucher-request it in turn submits
 a registrar voucher-request to the MASA service via an HTTPS RESTful
 interface ([RFC7231]).

 This is done with an HTTP POST using the operation path value of
 "/.well-known/est/requestvoucher".

 The voucher media type "application/voucher-cms+json" is defined in
 [RFC8366] and is also used for the registrar voucher-request. It is
 a JSON document that has been signed using a CMS structure. The
 registrar MUST sign the registrar voucher-request. The entire
 registrar certificate chain, up to and including the Domain CA, MUST
 be included in the CMS structure.

 MASA impementations SHOULD anticipate future media types but of
 course will simply fail the request if those types are not yet known.

 The Registrar SHOULD include an [RFC7231] section 5.3.2 "Accept"
 header indicating the response media types that are acceptable. This
 list SHOULD be the entire list presented to the Registrar in the
 Pledge’s original request (see Section 5.2) but MAY be a subset.
 MASA’s are expected to be flexible in what they accept.

 The registrar populates the voucher-request fields as follows:

 created-on: Registrars are RECOMMENDED to populate this field. This
 provides additional information to the MASA.

 nonce: This is the value from the pledge voucher-request. The
 registrar voucher-request MAY omit the nonce as per Section 3.1)

 serial-number: The serial number of the pledge the registrar would
 like a voucher for. The registrar determines this value by
 parsing the authenticated pledge IDevID certificate. See
 Section 2.3. The registrar MUST verify that the serial number
 field it parsed matches the serial number field the pledge
 provided in its voucher-request. This provides a sanity check
 useful for detecting error conditions and logging. The registrar
 MUST NOT simply copy the serial number field from a pledge voucher
 request as that field is claimed but not certified.

 idevid-issuer: The idevid-issuer value from the pledge certificate
 is included to ensure a statistically unique identity.

Pritikin, et al. Expires December 19, 2019 [Page 39]

Internet-Draft BRSKI June 2019

 prior-signed-voucher-request: The signed pledge voucher-request
 SHOULD be included in the registrar voucher-request. (NOTE: what
 is included is the complete pledge voucher-request, inclusive of
 the ’assertion’, ’proximity-registrar-cert’, etc wrapped by the
 pledge’s original signature). If a signed voucher-request was not
 recieved from the pledge then this leaf is omitted from the
 registrar voucher request.

 A nonceless registrar voucher-request MAY be submitted to the MASA.
 Doing so allows the registrar to request a voucher when the pledge is
 offline, or when the registrar anticipates not being able to connect
 to the MASA while the pledge is being deployed. Some use cases
 require the registrar to learn the appropriate IDevID SerialNumber
 field and appropriate ’Accept header’ field values from the physical
 device labeling or from the sales channel (out-of-scope for this
 document).

 All other fields MAY be omitted in the registrar voucher-request.

 Example JSON payloads of registrar voucher-requests are in
 Section 3.3 Examples 2 through 4.

 The MASA verifies that the registrar voucher-request is internally
 consistent but does not necessarily authenticate the registrar
 certificate since the registrar is not known to the MASA in advance.
 The MASA performs the actions and validation checks described in the
 following sub-sections before issuing a voucher.

5.5.1. MASA renewal of expired vouchers

 As described in [RFC8366] vouchers are normally short lived to avoid
 revocation issues. If the request is for a previous (expired)
 voucher using the same registrar then the request for a renewed
 voucher SHOULD be automatically authorized. The MASA has sufficient
 information to determine this by examining the request, the registrar
 authentication, and the existing audit log. The issuance of a
 renewed voucher is logged as detailed in Section 5.6.

 To inform the MASA that existing vouchers are not to be renewed one
 can update or revoke the registrar credentials used to authorize the
 request (see Section 5.5.3 and Section 5.5.4). More flexible methods
 will likely involve sales channel integration and authorizations
 (details are out-of-scope of this document).

Pritikin, et al. Expires December 19, 2019 [Page 40]

Internet-Draft BRSKI June 2019

5.5.2. MASA verification of voucher-request signature consistency

 The MASA MUST verify that the registrar voucher-request is signed by
 a registrar. This is confirmed by verifying that the id-kp-cmcRA
 extended key usage extension field (as detailed in EST RFC7030
 section 3.6.1) exists in the certificate of the entity that signed
 the registrar voucher-request. This verification is only a
 consistency check that the unauthenticated domain CA intended the
 voucher-request signer to be a registrar. Performing this check
 provides value to the domain PKI by assuring the domain administrator
 that the MASA service will only respect claims from authorized
 Registration Authorities of the domain.

 The MASA verifies that the domain CA certificate is included in the
 CMS structure as detailed in Section 5.5.

5.5.3. MASA authentication of registrar (certificate)

 If a nonceless voucher-request is submitted the MASA MUST
 authenticate the registrar as described in either EST [RFC7030]
 section 3.2, section 3.3, or by validating the registrar’s
 certificate used to sign the registrar voucher-request. Any of these
 methods reduce the risk of DDoS attacks and provide an authenticated
 identity as an input to sales channel integration and authorizations
 (details are out-of-scope of this document).

 In the nonced case, validation of the registrar MAY be omitted if the
 device policy is to accept audit-only vouchers.

5.5.4. MASA revocation checking of registrar (certificate)

 As noted in Section 5.5.3 the MASA performs registrar authentication
 in a subset of situations (e.g. nonceless voucher requests). Normal
 PKIX revocation checking is assumed during either EST client
 authentication or voucher-request signature validation. Similarly,
 as noted in Section 5.5.2, the MASA performs normal PKIX revocation
 checking during signature consistency checks (a signature by a
 registrar certificate that has been revoked is an inconsistency).

5.5.5. MASA verification of pledge prior-signed-voucher-request

 The MASA MAY verify that the registrar voucher-request includes the
 ’prior-signed-voucher-request’ field. If so the prior-signed-
 voucher-request MUST include a ’proximity-registrar-cert’ that is
 consistent with the certificate used to sign the registrar voucher-
 request. Additionally the voucher-request serial-number leaf MUST
 match the pledge serial-number that the MASA extracts from the
 signing certificate of the prior-signed-voucher-request. The MASA is

Pritikin, et al. Expires December 19, 2019 [Page 41]

Internet-Draft BRSKI June 2019

 aware of which pledges support signing of their voucher requests and
 can use this information to confirm proximity of the pledge with the
 registrar, thus ensuring that the BRSKI-EST TLS connection has no
 man-in-the-middle.

 If these checks succeed the MASA updates the voucher and audit log
 assertion leafs with the "proximity" assertion.

5.5.6. MASA pinning of registrar

 The registrar’s certificate chain is extracted from the signature
 method. The chain includes the domain CA certificate as specified in
 Section 5.5. This certificate is used to populate the "pinned-
 domain-cert" of the voucher being issued. The domainID (e.g., hash
 of the root public key) is determined from the pinned-domain-cert and
 is used to update the audit log.

5.5.7. MASA nonce handling

 The MASA does not verify the nonce itself. If the registrar voucher-
 request contains a nonce, and the prior-signed-voucher-request is
 exist, then the MASA MUST verify that the nonce is consistent.
 (Recall from above that the voucher-request might not contain a
 nonce, see Section 5.5 and Section 5.5.3).

 The MASA MUST use the nonce from the registrar voucher-request for
 the resulting voucher and audit log. The prior-signed-voucher-
 request nonce is ignored during this operation.

5.6. MASA and Registrar Voucher Response

 The MASA voucher response to the registrar is forwarded without
 changes to the pledge; therefore this section applies to both the
 MASA and the registrar. The HTTP signaling described applies to both
 the MASA and registrar responses. A registrar either caches prior
 MASA responses or dynamically requests a new voucher based on local
 policy (it does not generate or sign a voucher). Registrar
 evaluation of the voucher itself is purely for transparency and audit
 purposes to further inform log verification (see Section 5.8.2) and
 therefore a registrar could accept future voucher formats that are
 opaque to the registrar.

 If the voucher-request is successful, the server (MASA responding to
 registrar or registrar responding to pledge) response MUST contain an
 HTTP 200 response code. The server MUST answer with a suitable 4xx
 or 5xx HTTP [RFC2616] error code when a problem occurs. In this
 case, the response data from the MASA MUST be a plaintext human-

Pritikin, et al. Expires December 19, 2019 [Page 42]

Internet-Draft BRSKI June 2019

 readable (ASCII, English) error message containing explanatory
 information describing why the request was rejected.

 The registrar MAY respond with an HTTP 202 ("the request has been
 accepted for processing, but the processing has not been completed")
 as described in EST [RFC7030] section 4.2.3 wherein the client "MUST
 wait at least the specified ’Retry-After’ time before repeating the
 same request". (see [RFC7231] section 6.6.4) The pledge is
 RECOMMENDED to provide local feedback (blinked LED etc) during this
 wait cycle if mechanisms for this are available. To prevent an
 attacker registrar from significantly delaying bootstrapping the
 pledge MUST limit the ’Retry-After’ time to 60 seconds. Ideally the
 pledge would keep track of the appropriate Retry-After header values
 for any number of outstanding registrars but this would involve a
 state table on the pledge. Instead the pledge MAY ignore the exact
 Retry-After value in favor of a single hard coded value (a registrar
 that is unable to complete the transaction after the first 60 seconds
 has another chance a minute later). A pledge SHOULD only maintain a
 202 retry-state for up to 4 days, which is longer than a long
 weekend, after which time the enrollment attempt fails and the pledge
 returns to discovery state.

 In order to avoid infinite redirect loops, which a malicious
 registrar might do in order to keep the pledge from discovering the
 correct registrar, the pledge MUST NOT follow more than one
 redirection (3xx code) to another web origins. EST supports
 redirection but requires user input; this change allows the pledge to
 follow a single redirection without a user interaction.

 A 403 (Forbidden) response is appropriate if the voucher-request is
 not signed correctly, stale, or if the pledge has another outstanding
 voucher that cannot be overridden.

 A 404 (Not Found) response is appropriate when the request is for a
 device that is not known to the MASA.

 A 406 (Not Acceptable) response is appropriate if a voucher of the
 desired type or using the desired algorithms (as indicated by the
 Accept: headers, and algorithms used in the signature) cannot be
 issued such as because the MASA knows the pledge cannot process that
 type. The registrar SHOULD use this response if it determines the
 pledge is unacceptable due to inventory control, MASA audit logs, or
 any other reason.

 A 415 (Unsupported Media Type) response is approriate for a request
 that has a voucher-request or accept encoding that is not understood.

Pritikin, et al. Expires December 19, 2019 [Page 43]

Internet-Draft BRSKI June 2019

 The voucher response format is as indicated in the submitted accept
 header or based on the MASA’s prior understanding of proper format
 for this Pledge. Only the [RFC8366] "application/voucher-cms+json"
 media type is defined at this time. The syntactic details of
 vouchers are described in detail in [RFC8366]. For example, the
 voucher consists of:

 {
 "ietf-voucher:voucher": {
 "nonce": "62a2e7693d82fcda2624de58fb6722e5",
 "assertion": "logging"
 "pinned-domain-cert": "base64encodedvalue=="
 "serial-number": "JADA123456789"
 }
 }

 The MASA populates the voucher fields as follows:

 nonce: The nonce from the pledge if available. See Section 5.5.7.

 assertion: The method used to verify assertion. See Section 5.5.5.

 pinned-domain-cert: The domain CA cert. See Section 5.5.6. This
 figure is illustrative, for an example, see Appendix D.2

 serial-number: The serial-number as provided in the voucher-request.
 Also see Section 5.5.5.

 domain-cert-revocation-checks: Set as appropriate for the pledge’s
 capabilities and as documented in [RFC8366]. The MASA MAY set
 this field to ’false’ since setting it to ’true’ would require
 that revocation information be available to the pledge and this
 document does not make normative requirements for [RFC6961] or
 equivalent integrations.

 expires-on: This is set for nonceless vouchers. The MASA ensures
 the voucher lifetime is consistent with any revocation or pinned-
 domain-cert consistency checks the pledge might perform. See
 section Section 2.6.1. There are three times to consider: (a) a
 configured voucher lifetime in the MASA, (b) the expiry time for
 the registrar’s certificate, (c) any certificate revocation
 information (CRL) lifetime. The expires-on field SHOULD be before
 the earliest of these three values. Typically (b) will be some
 significant time in the future, but (c) will typically be short
 (on the order of a week or less). The RECOMMENDED period for (a)
 is on the order of 20 minutes, so it will typically determine the
 lifespan of the resulting voucher. 20 minutes is sufficent time
 to reach the post-provisional state in the pledge, at which point

Pritikin, et al. Expires December 19, 2019 [Page 44]

Internet-Draft BRSKI June 2019

 there is an established trust relationship between pledge and
 registrar. The subsequent operations can take as long as required
 from that point onwards. The lifetime of the voucher has no
 impact on the lifespan of the ownership relationship.

 Whenever a voucher is issued the MASA MUST update the audit log
 appropriately. The internal state requirements to maintain the audit
 log are out-of-scope. See Section 5.8.1 for a discussion of
 reporting the log to a registrar.

5.6.1. Pledge voucher verification

 The pledge MUST verify the voucher signature using the manufacturer
 installed trust anchor(s) associated with the manufacturer’s MASA
 (this is likely included in the pledge’s firmware). Management of
 the manufacter installed trust anchor(s) is out-of-scope of this
 document; this protocol does not update these trust anchor(s).

 The pledge MUST verify the serial-number field of the signed voucher
 matches the pledge’s own serial-number.

 The pledge MUST verify that the voucher nonce field is accurate and
 matches the nonce the pledge submitted to this registrar, or that the
 voucher is nonceless (see Section 7.2).

 The pledge MUST be prepared to parse and fail gracefully from a
 voucher response that does not contain a ’pinned-domain-cert’ field.
 The pledge MUST be prepared to ignore additional fields that it does
 not recognize.

5.6.2. Pledge authentication of provisional TLS connection

 The ’pinned-domain-cert’ element of the voucher contains the domain
 CA’s public key. The pledge MUST use the ’pinned-domain-cert’ trust
 anchor to immediately complete authentication of the provisional TLS
 connection.

 If a registrar’s credentials cannot be verified using the pinned-
 domain-cert trust anchor from the voucher then the TLS connection is
 immediately discarded and the pledge abandons attempts to bootstrap
 with this discovered registrar. The pledge SHOULD send voucher
 status telemetry (described below) before closing the TLS connection.
 The pledge MUST attempt to enroll using any other proxies it has
 found. It SHOULD return to the same proxy again after attempting
 with other proxies. Attempts should be attempted in the exponential
 backoff described earlier. Attempts SHOULD be repeated as failure
 may be the result of a temporary inconsistently (an inconsistently
 rolled registrar key, or some other mis-configuration). The

Pritikin, et al. Expires December 19, 2019 [Page 45]

Internet-Draft BRSKI June 2019

 inconsistently could also be the result an active MITM attack on the
 EST connection.

 The registrar MUST use a certificate that chains to the pinned-
 domain-cert as its TLS server certificate.

 The pledge’s PKIX path validation of a registrar certificate’s
 validity period information is as described in Section 2.6.1. Once
 the PKIX path validation is successful the TLS connection is no
 longer provisional.

 The pinned-domain-cert MAY be installed as an trust anchor for future
 operations such as enrollment (e.g. [RFC7030] as recommended) or
 trust anchor management or raw protocols that do not need full PKI
 based key management. It can be used to authenticate any dynamically
 discovered EST server that contain the id-kp-cmcRA extended key usage
 extension as detailed in EST RFC7030 section 3.6.1; but to reduce
 system complexity the pledge SHOULD avoid additional discovery
 operations. Instead the pledge SHOULD communicate directly with the
 registrar as the EST server. The ’pinned-domain-cert’ is not a
 complete distribution of the [RFC7030] section 4.1.3 CA Certificate
 Response, which is an additional justification for the recommendation
 to proceed with EST key management operations. Once a full CA
 Certificate Response is obtained it is more authoritative for the
 domain than the limited ’pinned-domain-cert’ response.

5.7. Pledge BRSKI Status Telemetry

 The domain is expected to provide indications to the system
 administrators concerning device lifecycle status. To facilitate
 this it needs telemetry information concerning the device’s status.

 To indicate pledge status regarding the voucher, the pledge MUST post
 a status message.

 The posted data media type: application/json

 The client HTTP POSTs the following to the server at the EST well
 known URI "/voucher_status". The Status field indicates if the
 voucher was acceptable. If it was not acceptable the Reason string
 indicates why. In the failure case this message may be sent to an
 unauthenticated, potentially malicious registrar and therefore the
 Reason string SHOULD NOT provide information beneficial to an
 attacker. The operational benefit of this telemetry information is
 balanced against the operational costs of not recording that an
 voucher was ignored by a client the registrar expected to continue
 joining the domain.

Pritikin, et al. Expires December 19, 2019 [Page 46]

Internet-Draft BRSKI June 2019

 {
 "version":"1",
 "Status":FALSE /* TRUE=Success, FALSE=Fail"
 "Reason":"Informative human readable message"
 "reason-context": { additional JSON }
 }

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error. The client ignores any response. Within the
 server logs the server SHOULD capture this telemetry information.

 The reason-context attribute is an arbitrary JSON object (literal
 value or hash of values) which provides additional information
 specific to this pledge. The contents of this field are not subject
 to standardization.

 Additional standard JSON fields in this POST MAY be added, see
 Section 8.3.

5.8. Registrar audit log request

 After receiving the pledge status telemetry Section 5.7, the
 registrar SHOULD request the MASA audit log from the MASA service.

 This is done with an HTTP GET using the operation path value of
 "/.well-known/est/requestauditlog".

 The registrar SHOULD HTTP POST the same registrar voucher-request as
 it did when requesting a voucher (using the same Content-Type). It
 is posted to the /requestauditlog URI instead. The "idevid-issuer"
 and "serial-number" informs the MASA which log is requested so the
 appropriate log can be prepared for the response. Using the same
 media type and message minimizes cryptographic and message operations
 although it results in additional network traffic. The relying MASA
 implementation MAY leverage internal state to associate this request
 with the original, and by now already validated, voucher-request so
 as to avoid an extra crypto validation.

 A registrar MAY request logs at future times. If the registrar
 generates a new request then the MASA is forced to perform the
 additional cryptographic operations to verify the new request.

 A MASA that receives a request for a device that does not exist, or
 for which the requesting owner was never an owner returns an HTTP 404
 ("Not found") code.

 Rather than returning the audit log as a response to the POST (with a
 return code 200), the MASA MAY instead return a 201 ("Created")

Pritikin, et al. Expires December 19, 2019 [Page 47]

Internet-Draft BRSKI June 2019

 RESTful response ([RFC7231] section 7.1) containing a URL to the
 prepared (and easily cachable) audit response.

 In order to avoid enumeration of device audit logs, MASA that return
 URLs SHOULD take care to make the returned URL unguessable. For
 instance, rather than returning URLs containing a database number
 such as https://example.com/auditlog/1234 or the EUI of the device
 such https://example.com/auditlog/10-00-00-11-22-33, the MASA SHOULD
 return a randomly generated value (a "slug" in web parlance). The
 value is used to find the relevant database entry.

 A MASA that returns a code 200 MAY also include a Location: header
 for future reference by the registrar.

5.8.1. MASA audit log response

 A log data file is returned consisting of all log entries associated
 with the the device selected by the IDevID presented in the request.
 The audit log may be truncated of old or repeated values as explained
 below. The returned data is in JSON format ([RFC7951]), and the
 Content-Type SHOULD be "application/json". For example:

 {
 "version":"1",
 "events":[
 {
 "date":"<date/time of the entry>",
 "domainID":"<domainID extracted from voucher-request>",
 "nonce":"<any nonce if supplied (or the exact string ’NULL’)>"
 "assertion":"<the value from the voucher assertion leaf>"
 "truncated":"<the number of domainID entries truncated>"
 },
 {
 "date":"<date/time of the entry>",
 "domainID":"<anotherDomainID extracted from voucher-request>",
 "nonce":"<any nonce if supplied (or the exact string ’NULL’)>"
 "assertion":"<the value from the voucher assertion leaf>"
 }
],
 "truncation": {
 "nonced duplicates": "<total number of entries truncated>",
 "nonceless duplicates": "<total number of entries truncated>",
 "arbitrary": "<number of domainID entries removed entirely>"
 }
 }

 Distribution of a large log is less than ideal. This structure can
 be optimized as follows: Nonced or Nonceless entries for the same

Pritikin, et al. Expires December 19, 2019 [Page 48]

Internet-Draft BRSKI June 2019

 domainID MAY be truncated from the log leaving only the single most
 recent nonced or nonceless entry for that domainID. In the case of
 truncation the ’event’ truncation value SHOULD contain a count of the
 number of events for this domainID that were truncated. The log
 SHOULD NOT be further reduced but there could exist operational
 situation where maintaining the full log is not possible. In such
 situations the log MAY be arbitrarily truncated for length, with the
 number of removed entries indicated as ’arbitrary’.

 If the truncation count exceeds 1024 then the MASA MAY use this value
 without further incrementing it.

 A log where duplicate entries for the same domain have been truncated
 ("nonced duplicates" and/or "nonceless duplicates) could still be
 acceptable for informed decisions. A log that has had "arbitrary"
 truncations is less acceptable but manufacturer transparency is
 better than hidden truncations.

 This document specifies a simple log format as provided by the MASA
 service to the registrar. This format could be improved by
 distributed consensus technologies that integrate vouchers with
 technologies such as block-chain or hash trees or optimized logging
 approaches. Doing so is out of the scope of this document but is an
 anticipated improvement for future work. As such, the registrar
 client SHOULD anticipate new kinds of responses, and SHOULD provide
 operator controls to indicate how to process unknown responses.

5.8.2. Registrar audit log verification

 Each time the Manufacturer Authorized Signing Authority (MASA) issues
 a voucher, it places it into the audit log for that device. The
 details are described in Section 5.8. The contents of the audit log
 can express a variety of trust levels, and this section explains what
 kind of trust a registrar can derive from the entries.

 While the audit log provides a list of vouchers that were issued by
 the MASA, the vouchers are issued in response to voucher-requests,
 and it is the contents of the voucher-requests which determines how
 meaningful the audit log entries are.

 A registrar SHOULD use the log information to make an informed
 decision regarding the continued bootstrapping of the pledge. The
 exact policy is out of scope of this document as it depends on the
 security requirements within the registrar domain. Equipment that is
 purchased pre-owned can be expected to have an extensive history.
 The following dicussion is provided to help explain the value of each
 log element:

Pritikin, et al. Expires December 19, 2019 [Page 49]

Internet-Draft BRSKI June 2019

 date: The date field provides the registrar an opportunity to divide
 the log around known events such as the purchase date. Depending
 on context known to the registrar or administrator evens before/
 after certain dates can have different levels of importance. For
 example for equipment that is expected to be new, and thus have no
 history, it would be a surprise to find prior entries.

 domainID: If the log includes an unexpected domainID then the pledge
 could have imprinted on an unexpected domain. The registrar can
 be expected to use a variety of techniques to define "unexpected"
 ranging from white lists of prior domains to anomoly detection
 (e.g. "this device was previously bound to a different domain than
 any other device deployed"). Log entries can also be compared
 against local history logs in search of discrepancies (e.g. "this
 device was re-deployed some number of times internally but the
 external audit log shows additional re-deployments our internal
 logs are unaware of").

 nonce: Nonceless entries mean the logged domainID could
 theoretically trigger a reset of the pledge and then take over
 management by using the existing nonceless voucher.

 assertion: The assertion leaf in the voucher and audit log indicates
 why the MASA issued the voucher. A "verified" entry means that
 the MASA issued the associated voucher as a result of positive
 verification of ownership but this can still be problematic for
 registrar’s that expected only new (not pre-owned) pledges. A
 "logged" assertion informs the registrar that the prior vouchers
 were issued with minimal verification. A "proximity" assertion
 assures the registrar that the pledge was truly communicating with
 the prior domain and thus provides assurance that the prior domain
 really has deployed the pledge.

 A relatively simple policy is to white list known (internal or
 external) domainIDs and to require all vouchers to have a nonce and/
 or require that all nonceless vouchers be from a subset (e.g. only
 internal) domainIDs. A simple action is to revoke any locally issued
 credentials for the pledge in question or to refuse to forward the
 voucher. A registrar MAY be configured to ignore the history of the
 device but it is RECOMMENDED that this only be configured if hardware
 assisted NEA [RFC5209] is supported.

5.9. EST Integration for PKI bootstrapping

 The pledge SHOULD follow the BRSKI operations with EST enrollment
 operations including "CA Certificates Request", "CSR Attributes" and
 "Client Certificate Request" or "Server-Side Key Generation", etc.
 This is a relatively seamless integration since BRSKI REST calls

Pritikin, et al. Expires December 19, 2019 [Page 50]

Internet-Draft BRSKI June 2019

 provide an automated alternative to the manual bootstrapping method
 described in [RFC7030]. As noted above, use of HTTP 1.1 persistent
 connections simplifies the pledge state machine.

 Although EST allows clients to obtain multiple certificates by
 sending multiple CSR requests BRSKI mandates use of the CSR
 Attributes request and mandates that the registrar validate the CSR
 against the expected attributes. This implies that client requests
 will "look the same" and therefore result in a single logical
 certificate being issued even if the client were to make multiple
 requests. Registrars MAY contain more complex logic but doing so is
 out-of-scope of this specification. BRSKI does not signal any
 enhancement or restriction to this capability.

5.9.1. EST Distribution of CA Certificates

 The pledge SHOULD request the full EST Distribution of CA
 Certificates message. See RFC7030, section 4.1.

 This ensures that the pledge has the complete set of current CA
 certificates beyond the pinned-domain-cert (see Section 5.6.1 for a
 discussion of the limitations inherent in having a single certificate
 instead of a full CA Certificates response.) Although these
 limitations are acceptable during initial bootstrapping, they are not
 appropriate for ongoing PKIX end entity certificate validation.

5.9.2. EST CSR Attributes

 Automated bootstrapping occurs without local administrative
 configuration of the pledge. In some deployments it is plausible
 that the pledge generates a certificate request containing only
 identity information known to the pledge (essentially the X.509
 IDevID information) and ultimately receives a certificate containing
 domain specific identity information. Conceptually the CA has
 complete control over all fields issued in the end entity
 certificate. Realistically this is operationally difficult with the
 current status of PKI certificate authority deployments, where the
 CSR is submitted to the CA via a number of non-standard protocols.
 Even with all standardized protocols used, it could operationally be
 problematic to expect that service specific certificate fields can be
 created by a CA that is likely operated by a group that has no
 insight into different network services/protocols used. For example,
 the CA could even be outsourced.

 To alleviate these operational difficulties, the pledge MUST request
 the EST "CSR Attributes" from the EST server and the EST server needs
 to be able to reply with the attributes necessary for use of the
 certificate in its intended protocols/services. This approach allows

Pritikin, et al. Expires December 19, 2019 [Page 51]

Internet-Draft BRSKI June 2019

 for minimal CA integrations and instead the local infrastructure (EST
 server) informs the pledge of the proper fields to include in the
 generated CSR. This approach is beneficial to automated boostrapping
 in the widest number of environments.

 If the hardwareModuleName in the X.509 IDevID is populated then it
 SHOULD by default be propagated to the LDevID along with the
 hwSerialNum. The EST server SHOULD support local policy concerning
 this functionality.

 In networks using the BRSKI enrolled certificate to authenticate the
 ACP (Autonomic Control Plane), the EST attributes MUST include the
 "ACP information" field. See
 [I-D.ietf-anima-autonomic-control-plane] for more details.

 The registrar MUST also confirm that the resulting CSR is formatted
 as indicated before forwarding the request to a CA. If the registrar
 is communicating with the CA using a protocol such as full CMC, which
 provides mechanisms to override the CSR attributes, then these
 mechanisms MAY be used even if the client ignores CSR Attribute
 guidance.

5.9.3. EST Client Certificate Request

 The pledge MUST request a new client certificate. See RFC7030,
 section 4.2.

5.9.4. Enrollment Status Telemetry

 For automated bootstrapping of devices, the adminstrative elements
 providing bootstrapping also provide indications to the system
 administrators concerning device lifecycle status. This might
 include information concerning attempted bootstrapping messages seen
 by the client, MASA provides logs and status of credential
 enrollment. [RFC7030] assumes an end user and therefore does not
 include a final success indication back to the server. This is
 insufficient for automated use cases.

 To indicate successful enrollment the client SHOULD re-negotiate the
 EST TLS session using the newly obtained credentials. This occurs by
 the client initiating a new TLS ClientHello message on the existing
 TLS connection. The client MAY simply close the old TLS session and
 start a new one. The server MUST support either model.

 In the case of a FAIL, the Reason string indicates why the most
 recent enrollment failed. The SubjectKeyIdentifier field MUST be
 included if the enrollment attempt was for a keypair that is locally

Pritikin, et al. Expires December 19, 2019 [Page 52]

Internet-Draft BRSKI June 2019

 known to the client. If EST /serverkeygen was used and failed then
 the field is omitted from the status telemetry.

 In the case of a SUCCESS the Reason string is omitted. The
 SubjectKeyIdentifier is included so that the server can record the
 successful certificate distribution.

 Status media type: application/json

 The client HTTP POSTs the following to the server at the new EST well
 known URI /enrollstatus.

 {
 "version":"1",
 "Status":TRUE /* TRUE=Success, FALSE=Fail"
 "Reason":"Informative human readable message"
 "reason-context": "Additional information"
 }

 The server SHOULD respond with an HTTP 200 but MAY simply fail with
 an HTTP 404 error.

 Within the server logs the server MUST capture if this message was
 received over an TLS session with a matching client certificate.
 This allows for clients that wish to minimize their crypto operations
 to simply POST this response without renegotiating the TLS session -
 at the cost of the server not being able to accurately verify that
 enrollment was truly successful.

5.9.5. Multiple certificates

 Pledges that require multiple certificates could establish direct EST
 connections to the registrar.

5.9.6. EST over CoAP

 This document describes extensions to EST for the purposes of
 bootstrapping of remote key infrastructures. Bootstrapping is
 relevant for CoAP enrollment discussions as well. The defintion of
 EST and BRSKI over CoAP is not discussed within this document beyond
 ensuring proxy support for CoAP operations. Instead it is
 anticipated that a definition of CoAP mappings will occur in
 subsequent documents such as [I-D.ietf-ace-coap-est] and that CoAP
 mappings for BRSKI will be discussed either there or in future work.

Pritikin, et al. Expires December 19, 2019 [Page 53]

Internet-Draft BRSKI June 2019

6. Clarification of transfer-encoding

 [RFC7030] defines it’s endpoints to include a "Content-Transfer-
 Encoding" heading, and the payloads to be [RFC4648] Base64 encoded
 DER.

 When used within BRSKI, the original RFC7030 EST endpoints remain
 Base64 encoded, but the new BRSKI end points which send and receive
 binary artifacts (specifically, ../voucherrequest) are binary. That
 is, no encoding is used.

 In the BRSKI context, the EST "Content-Transfer-Encoding" header if
 present, SHOULD be ignored. This header does not need to included.

7. Reduced security operational modes

 A common requirement of bootstrapping is to support less secure
 operational modes for support specific use cases. The following
 sections detail specific ways that the pledge, registrar and MASA can
 be configured to run in a less secure mode for the indicated reasons.

 This section is considered non-normative: use suggested methods MUST
 be detailed in specific profiles of BRSKI. This is the subject for
 future work.

7.1. Trust Model

 This section explains the trust relationships detailed in
 Section 2.4:

 +--------+ +---------+ +------------+ +------------+
Pledge		Join		Domain		Manufacturer
		Proxy		Registrar		Service
						(Internet)
 +--------+ +---------+ +------------+ +------------+

 Figure 10

 Pledge: The pledge could be compromised and providing an attack
 vector for malware. The entity is trusted to only imprint using
 secure methods described in this document. Additional endpoint
 assessment techniques are RECOMMENDED but are out-of-scope of this
 document.

 Join Proxy: Provides proxy functionalities but is not involved in
 security considerations.

Pritikin, et al. Expires December 19, 2019 [Page 54]

Internet-Draft BRSKI June 2019

 Registrar: When interacting with a MASA a registrar makes all
 decisions. For Ownership Audit Vouchers (see [RFC8366]) the
 registrar is provided an opportunity to accept MASA decisions.

 Vendor Service, MASA: This form of manufacturer service is trusted
 to accurately log all claim attempts and to provide authoritative
 log information to registrars. The MASA does not know which
 devices are associated with which domains. These claims could be
 strengthened by using cryptographic log techniques to provide
 append only, cryptographic assured, publicly auditable logs.
 Current text provides only for a trusted manufacturer.

 Vendor Service, Ownership Validation: This form of manufacturer
 service is trusted to accurately know which device is owned by
 which domain.

7.2. Pledge security reductions

 The pledge can choose to accept vouchers using less secure methods.
 These methods enable offline and emergency (touch based) deployment
 use cases:

 1. The pledge MUST accept nonceless vouchers. This allows for a use
 case where the registrar can not connect to the MASA at the
 deployment time. Logging and validity periods address the
 security considerations of supporting these use cases.

 2. Many devices already support "trust on first use" for physical
 interfaces such as console ports. This document does not change
 that reality. Devices supporting this protocol MUST NOT support
 "trust on first use" on network interfaces. This is because
 "trust on first use" over network interfaces would undermine the
 logging based security protections provided by this
 specification.

 3. The pledge MAY have an operational mode where it skips voucher
 validation one time. For example if a physical button is
 depressed during the bootstrapping operation. This can be useful
 if the manufacturer service is unavailable. This behavior SHOULD
 be available via local configuration or physical presence methods
 (such as use of a serial/craft console) to ensure new entities
 can always be deployed even when autonomic methods fail. This
 allows for unsecured imprint.

 It is RECOMMENDED that "trust on first use" or any method of skipping
 voucher validation (including use of craft serial console) only be
 available if hardware assisted Network Endpoint Assessment [RFC5209]
 is supported. This recommendation ensures that domain network

Pritikin, et al. Expires December 19, 2019 [Page 55]

Internet-Draft BRSKI June 2019

 monitoring can detect innappropriate use of offline or emergency
 deployment procedures when voucher-based bootstrapping is not used.

7.3. Registrar security reductions

 A registrar can choose to accept devices using less secure methods.
 These methods are acceptable when low security models are needed, as
 the security decisions are being made by the local administrator, but
 they MUST NOT be the default behavior:

 1. A registrar MAY choose to accept all devices, or all devices of a
 particular type, at the administrator’s discretion. This could
 occur when informing all registrars of unique identifiers of new
 entities might be operationally difficult.

 2. A registrar MAY choose to accept devices that claim a unique
 identity without the benefit of authenticating that claimed
 identity. This could occur when the pledge does not include an
 X.509 IDevID factory installed credential. New Entities without
 an X.509 IDevID credential MAY form the Section 5.2 request using
 the Section 5.5 format to ensure the pledge’s serial number
 information is provided to the registrar (this includes the
 IDevID AuthorityKeyIdentifier value, which would be statically
 configured on the pledge.) The pledge MAY refuse to provide a
 TLS client certificate (as one is not available.) The pledge
 SHOULD support HTTP-based or certificate-less TLS authentication
 as described in EST RFC7030 section 3.3.2. A registrar MUST NOT
 accept unauthenticated New Entities unless it has been configured
 to do so by an administrator that has verified that only expected
 new entities can communicate with a registrar (presumably via a
 physically secured perimeter.)

 3. A registrar MAY submit a nonceless voucher-requests to the MASA
 service (by not including a nonce in the voucher-request.) The
 resulting vouchers can then be stored by the registrar until they
 are needed during bootstrapping operations. This is for use
 cases where the target network is protected by an air gap and
 therefore cannot contact the MASA service during pledge
 deployment.

 4. A registrar MAY ignore unrecognized nonceless log entries. This
 could occur when used equipment is purchased with a valid history
 being deployed in air gap networks that required permanent
 vouchers.

 5. A registrar MAY accept voucher formats of future types that can
 not be parsed by the Registrar. This reduces the Registrar’s

Pritikin, et al. Expires December 19, 2019 [Page 56]

Internet-Draft BRSKI June 2019

 visibility into the exact voucher contents but does not change
 the protocol operations.

7.4. MASA security reductions

 Lower security modes chosen by the MASA service affect all device
 deployments unless bound to the specific device identities. In which
 case these modes can be provided as additional features for specific
 customers. The MASA service can choose to run in less secure modes
 by:

 1. Not enforcing that a nonce is in the voucher. This results in
 distribution of a voucher that never expires and in effect makes
 the Domain an always trusted entity to the pledge during any
 subsequent bootstrapping attempts. That this occurred is
 captured in the log information so that the registrar can make
 appropriate security decisions when a pledge joins the Domain.
 This is useful to support use cases where registrars might not be
 online during actual device deployment. Because this results in
 a long lived voucher and does not require the proof that the
 device is online, this is only accepted when the registrar is
 authenticated by the MASA and authorized to provide this
 functionality. The MASA is RECOMMENDED to use this functionality
 only in concert with an enhanced level of ownership tracking
 (out-of-scope.) If the pledge device is known to have a real-
 time-clock that is set from the factory, use of a voucher
 validity period is RECOMMENDED.

 2. Not verifying ownership before responding with a voucher. This
 is expected to be a common operational model because doing so
 relieves the manufacturer providing MASA services from having to
 track ownership during shipping and supply chain and allows for a
 very low overhead MASA service. A registrar uses the audit log
 information as a defense in depth strategy to ensure that this
 does not occur unexpectedly (for example when purchasing new
 equipment the registrar would throw an error if any audit log
 information is reported.) The MASA SHOULD verify the ’prior-
 signed-voucher-request’ information for pledges that support that
 functionality. This provides a proof-of-proximity check that
 reduces the need for ownership verification.

8. IANA Considerations

 This document requires the following IANA actions:

Pritikin, et al. Expires December 19, 2019 [Page 57]

Internet-Draft BRSKI June 2019

8.1. Well-known EST registration

 This document extends the definitions of "est" (so far defined via
 RFC7030) in the "https://www.iana.org/assignments/well-known-uris/
 well-known-uris.xhtml" registry as follows:

 o add /.well-known/est/requestvoucher (see Section 5.5)

 o add /.well-known/est/requestauditlog (see Section 5.7)

8.2. PKIX Registry

 IANA is requested to register the following:

 This document requests a number for id-mod-MASAURLExtn2016(TBD) from
 the pkix(7) id-mod(0) Registry.

 This document has received an early allocation from the id-pe
 registry (SMI Security for PKIX Certificate Extension) for id-pe-
 masa-url with the value 32, resulting in an OID of
 1.3.6.1.5.5.7.1.32.

8.3. Pledge BRSKI Status Telemetry

 IANA is requested to create a new Registry entitled: "BRSKI
 Parameters", and within that Registry to create a table called:
 "Pledge BRSKI Status Telemetry Attributes". New items can be added
 using the Specification Required. The following items are to be in
 the initial registration, with this document (Section 5.7) as the
 reference:

 o version

 o Status

 o Reason

 o reason-context

8.4. DNS Service Names

 IANA is requested to register the following Service Names:

Pritikin, et al. Expires December 19, 2019 [Page 58]

Internet-Draft BRSKI June 2019

 Service Name: _brski-proxy
 Transport Protocol(s): tcp
 Assignee: IESG <iesg@ietf.org>.
 Contact: IESG <iesg@ietf.org>
 Description: The Bootstrapping Remote Secure Key
 Infrastructures Proxy
 Reference: [This document]

 Service Name: _brski-registrar
 Transport Protocol(s): tcp
 Assignee: IESG <iesg@ietf.org>.
 Contact: IESG <iesg@ietf.org>
 Description: The Bootstrapping Remote Secure Key
 Infrastructures Registrar
 Reference: [This document]

8.5. MUD File Extension for the MASA

 The IANA is requested to list the name "masa" in the MUD extensions
 registry defined in [I-D.ietf-opsawg-mud]. Its use is documented in
 Appendix C.

9. Applicability to the Autonomic Control Plane

 This document provides a solution to the requirements for secure
 bootstrap set out in Using an Autonomic Control Plane for Stable
 Connectivity of Network Operations, Administration, and Maintenance
 [RFC8368], A Reference Model for Autonomic Networking
 [I-D.ietf-anima-reference-model] and specifically the An Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane], section
 3.2 (Secure Bootstrap), and section 6.1 (ACP Domain, Certificate and
 Network).

 The protocol described in this document has appeal in a number of
 other non-ANIMA use cases. Such uses of the protocol will be
 deploying into other environments with different tradeoffs of
 privacy, security, reliability and autonomy from manufacturers. As
 such those use cases will need to provide their own applicability
 statements, and will need to address unique privacy and security
 considerations for the environments in which they are used.

 The autonomic control plane that this document provides bootstrap for
 is typically a medium to large Internet Service Provider
 organization, or an equivalent Enterprise that has signficant layer-3
 router connectivity. (A network consistenting of primarily layer-2
 is not excluded, but the adjacencies that the ACP will create and
 maintain will not reflect the topology until all devices participate
 in the ACP).

Pritikin, et al. Expires December 19, 2019 [Page 59]

Internet-Draft BRSKI June 2019

 As specified in the ANIMA charter, this work "..focuses on
 professionally-managed networks." Such a network has an operator and
 can do things like like install, configure and operate the Registrar
 function. The operator makes purchasing decisions and is aware of
 what manufacturers it expects to see on it’s network.

 Such an operator also is capable of performing the traditional (craft
 serial-console) based bootstrap of devices. The zero-touch mechanism
 presented in this and the ACP document represents a signficiant
 efficiency: in particular it reduces the need to put senior experts
 on airplanes to configure devices in person. There is a recognition
 as the technology evolves that not every situation may work out, and
 occasionally a human still still have to visit.

 The BRSKI protocol is going into environments where there have
 already been quite a number of vendor proprietary management systems.
 Those are not expected to go away quickly, but rather to leverage the
 secure credentials that are provisioned by BRSKI. The connectivity
 requirements of said management systems are provided by the ACP.

10. Privacy Considerations

10.1. MASA audit log

 The MASA audit log includes a hash of the domainID for each Registrar
 a voucher has been issued to. This information is closely related to
 the actual domain identity, especially when paired with the anti-DDoS
 authentication information the MASA might collect. This could
 provide sufficient information for the MASA service to build a
 detailed understanding the devices that have been provisioned within
 a domain.

 There are a number of design choices that mitigate this risk. The
 domain can maintain some privacy since it has not necessarily been
 authenticated and is not authoritatively bound to the supply chain.

 Additionally the domainID captures only the unauthenticated subject
 key identifier of the domain. A privacy sensitive domain could
 theoretically generate a new domainID for each device being deployed.
 Similarly a privacy sensitive domain would likely purchase devices
 that support proximity assertions from a manufacturer that does not
 require sales channel integrations. This would result in a
 significant level of privacy while maintaining the security
 characteristics provided by Registrar based audit log inspection.

Pritikin, et al. Expires December 19, 2019 [Page 60]

Internet-Draft BRSKI June 2019

10.2. What BRSKI-MASA reveals to the manufacturer

 The so-called "call-home" mechanism that occurs as part of the BRSKI-
 MASA connection standardizes what has been deemed by some as a
 sinister mechanism for corporate oversight of individuals.
 ([livingwithIoT] and [IoTstrangeThings] for a small sample).

 As the Autonomic Control Plane (ACP) usage of BRSKI is not targetted
 at individual usage of IoT devices, but rather at the Enterprise and
 ISP creation of networks in a zero-touch fashion, the "call-home"
 represents a different kind of concern.

 It needs to be re-iterated that the BRSKI-MASA mechanism only occurs
 once during the comissioning of the device. It is well defined, and
 although encrypted with TLS, it could in theory be made auditable as
 the contents are well defined. This connection does not occur when
 the device powers on or is restarted for normal routines. It is
 conceivable that a device could be forced to go through a full
 factory reset during an exceptional firmware update situation, after
 which enrollment would have be repeated.

 The BRSKI call-home mechanism is mediated via the owner’s Registrar,
 and the information that is transmitted is directly auditable by the
 device owner. This is in stark constrast to many "call-home"
 protocols where the device autonomously calls home and uses an
 undocumented protocol.

 While the contents of the signed part of the pledge voucher request
 can not be changed, they are not encrypted at the registrar. The
 ability to audit the messages by the owner of the network prevents
 exfiltration of data by a nefarious pledge. The contents of an
 unsigned voucher request are, however, completely changeable by the
 Registrar. Both are, to re-iterate, encrypted by TLS while in
 transit.

 The BRSKI-MASA exchange reveals the following information to the
 manufacturer:

 o the identity of the device being enrolled (down to the serial-
 number!).

 o an identity of the domain owner in the form of the domain trust
 anchor. However, this is not a global PKI anchored name within
 the WebPKI, so this identity could be pseudonymous. If there is
 sales channel integration, then the MASA will have authenticated
 the domain owner, either via pinned certificate, or perhaps
 another HTTP authentication method, as per Section 5.5.3.

Pritikin, et al. Expires December 19, 2019 [Page 61]

Internet-Draft BRSKI June 2019

 o the time the device is activated,

 o the IP address of the domain Owner’s Registrar. For ISPs and
 Enterprises, the IP address provides very clear geolocation of the
 owner. No amount of IP address privacy extensions ([RFC4941]) can
 do anything about this, as a simple whois lookup likely identifies
 the ISP or Enterprise from the upper bits anyway. A passive
 attacker who observes the connection definitely may conclude that
 the given enterprise/ISP is a customer of the particular equipment
 vendor. The precise model that is being enrolled will remain
 private.

 The above situation is to be distinguished from a residential/
 individual person who registers a device from a manufacturer: that an
 enterprise/ISP purchases routing products is hardly worth mentioning.
 Deviations would, however, be notable.

 The situation is not improved by the enterprise/ISP using
 anonymization services such as ToR [Dingledine2004], as a TLS 1.2
 connection will reveal the ClientCertificate used, clearly
 identifying the enterprise/ISP involved. TLS 1.3 is better in this
 regard, but an active attacker can still discover the parties
 involved by performing a Man-In-The-Middle-Attack on the first
 attempt (breaking/killing it with a TCP RST), and then letting
 subsequent connection pass through.

 A manufacturer could attempt to mix the BRSKI-MASA traffic in with
 general traffic their site by hosting the MASA behind the same (set)
 of load balancers that the companies normal marketing site is hosted
 behind. This makes lots of sense from a straight capacity planning
 point of view as the same set of services (and the same set of
 Distributed Denial of Service mitigations) may be used.
 Unfortunately, as the BRSKI-MASA connections include TLS
 ClientCertificate exchanges, this may easily be observed in TLS 1.2,
 and a traffic analysis may reveal it even in TLS 1.3. This does not
 make such a plan irrelevant. There may be other organizational
 reasons to keep the marketing site (which is often subject to
 frequent redesigs, outsourcing, etc.) seperate from the MASA, which
 may need to operate reliably for decades.

10.3. Manufacturers and Used or Stolen Equipment

 As explained above, the manufacturer receives information each time
 that a device which is in factory-default mode does a zero-touch
 bootstrap, and attempts to enroll into a domain owner’s registrar.

Pritikin, et al. Expires December 19, 2019 [Page 62]

Internet-Draft BRSKI June 2019

 The manufacturer is therefore in a position to decline to issue a
 voucher if it detects that the new owner is not the same as the
 previous owner.

 1. This can be seen as a feature if the equipment is believed to
 have been stolen. If the legitimate owner notifies the
 manufacturer of the theft, then when the new owner brings the
 device up, if they use the zero-touch mechanism, the new
 (illegitimate) owner reveals their location and identity.

 2. In the case of Used equipment, the initial owner could inform the
 manufacturer of the sale, or the manufacturer may just permit
 resales unless told otherwise. In which case, the transfer of
 ownership simply occurs.

 3. A manufacturer could however decide not to issue a new voucher in
 response to a transfer of ownership. This is essentially the
 same as the stolen case, with the manufacturer having decided
 that the sale was not legitimate.

 4. There is a fourth case, if the manufacturer is providing
 protection against stolen devices. The manufacturer then has a
 responsability to protect the legitimate owner against fraudulent
 claims that the the equipment was stolen. Such a claim would
 cause the manufacturer to refuse to issue a new voucher. Should
 the device go through a deep factory reset (for instance,
 replacement of a damaged main board component, the device would
 not bootstrap.

 5. Finally, there is a fifth case: the manufacturer has decided to
 end-of-line the device, or the owner has not paid a yearly
 support amount, and the manufacturer refuses to issue new
 vouchers at that point. This last case is not new to the
 industry: many license systems are already deployed that have
 significantly worse effect.

 This section has outlined five situations in which a manufacturer
 could use the voucher system to enforce what are clearly license
 terms. A manufacturer that attempted to enforce license terms via
 vouchers would find it rather ineffective as the terms would only be
 enforced when the device is enrolled, and this is not (to repeat), a
 daily or even monthly occurrance.

10.4. Manufacturers and Grey market equipment

 Manufacturers of devices often sell different products into different
 regional markets. Which product is available in which market can be
 driven by price differentials, support issues (some markets may

Pritikin, et al. Expires December 19, 2019 [Page 63]

Internet-Draft BRSKI June 2019

 require manuals and tech-support to be done in the local language),
 government export regulation (such as whether strong crypto is
 permitted to be exported, or permitted to be used in a particular
 market). When an domain owner obtains a device from a different
 market (they can be new) and transfers it to a different location,
 this is called a Grey Market.

 A manufacturer could decide not to issue a voucher to an enterprise/
 ISP based upon their location. There are a number of ways which this
 could be determined: from the geolocation of the registrar, from
 sales channel knowledge about the customer, and what products are
 (un-)available in that market. If the device has a GPS the
 coordinates of the device could even be placed into an extension of
 the voucher.

 The above actions are not illegal, and not new. Many manufacturers
 have shipped crypto-weak (exportable) versions of firmware as the
 default on equipment for decades. The first task of an enterprise/
 ISP has always been to login to a manufacturer system, show one’s
 "entitlement" (country informatin, proof that support payments have
 been made), and receive either a new updated firmware, or a license
 key that will activate the correct firmware.

 BRSKI permits the above process to automated (in an autonomic
 fashion), and therefore perhaps encourages this kind of
 differentiation by reducing the cost of doing it.

 An issue that manufacturers will need to deal with in the above
 automated process is when a device is shipped to one country with one
 set of rules (or laws or entitlements), but the domain registry is in
 another one. Which rules apply is something will have to be worked
 out: the manufacturer could come to believe they are dealing with
 Grey market equipment, when it is simply dealing with a global
 enterprise.

10.5. Some mitigations for meddling by manufacturers

 The most obvious mitigation is not to buy the product. Pick
 manufacturers that are up-front about their policies, who do not
 change them gratutiously.

 A manufacturer could provide a mechanism to manage the trust anchors
 and built-in certificates (IDevID) as an extension. This is a
 substantial amount of work, and may be an area for future
 standardization work.

 Replacement of the voucher validation anchors (usually pointing to
 the original manufacturer’s MASA) with those of the new owner permits

Pritikin, et al. Expires December 19, 2019 [Page 64]

Internet-Draft BRSKI June 2019

 the new owner to issue vouchers to subsequent owners. This would be
 done by having the selling (old) owner to run a MASA.

 In order to automatically find the new MASA, the mechanism describe
 in this document is to look for the MASA URL extension in the IDevID.
 A new owner could override this in their Registrar, or the
 manufacturer could provide a mechanism to update or replace the
 IDevID prior to sale.

 Once the voucher trust anchor and the IDevID is replaced, then the
 device will no longer trust the manufacturer in any way. When a new
 owner performs a bootstrap, the device will point to a MASA that has
 been chosen, and will validate vouchers from this new entity.

 The BRSKI protocol depends upon a trust anchor on the device and an
 identity on the device. Management of these these entities
 facilitiates a few new operatonal modes without making any changes to
 the BRSKI protocol. Those modes include: offline modes where the
 domain owner operates an internal MASA for all devices, resell modes
 where the first domain owner becomes the MASA for the next (resold-
 to) domain owner, and services where an aggregator acquires a large
 variety of devices, and then acts as a pseudonymized MASA for a
 variety of devices from a variety of manufacturers.

 Some manufacturers may wish to consider replacement of the IDevID as
 an indication that the device’s warantee is terminated. For others,
 the privacy requiments of some deployments might consider this a
 standard operating practice.

 As discussed at the end of Section 5.8.1, new work could be done to
 use a distributed consensus technology for the audit log. This would
 permit the audit log to continue to be useful, even when there is a
 chain of MASA due to changes of ownership.

11. Security Considerations

 This document details a protocol for bootstrapping that balances
 operational concerns against security concerns. As detailed in the
 introduction, and touched on again in Section 7, the protocol allows
 for reduced security modes. These attempt to deliver additional
 control to the local administrator and owner in cases where less
 security provides operational benefits. This section goes into more
 detail about a variety of specific considerations.

 To facilitate logging and administrative oversight, in addition to
 triggering Registration verification of MASA logs, the pledge reports
 on voucher parsing status to the registrar. In the case of a
 failure, this information is informative to a potentially malicious

Pritikin, et al. Expires December 19, 2019 [Page 65]

Internet-Draft BRSKI June 2019

 registrar. This is mandated anyway because of the operational
 benefits of an informed administrator in cases where the failure is
 indicative of a problem. The registrar is RECOMMENDED to verify MASA
 logs if voucher status telemetry is not received.

 To facilitate truely limited clients EST RFC7030 section 3.3.2
 requirements that the client MUST support a client authentication
 model have been reduced in Section 7 to a statement that the
 registrar "MAY" choose to accept devices that fail cryptographic
 authentication. This reflects current (poor) practices in shipping
 devices without a cryptographic identity that are NOT RECOMMENDED.

 During the provisional period of the connection the pledge MUST treat
 all HTTP header and content data as untrusted data. HTTP libraries
 are regularly exposed to non-secured HTTP traffic: mature libraries
 should not have any problems.

 Pledges might chose to engage in protocol operations with multiple
 discovered registrars in parallel. As noted above they will only do
 so with distinct nonce values, but the end result could be multiple
 vouchers issued from the MASA if all registrars attempt to claim the
 device. This is not a failure and the pledge choses whichever
 voucher to accept based on internal logic. The registrars verifying
 log information will see multiple entries and take this into account
 for their analytics purposes.

11.1. DoS against MASA

 There are uses cases where the MASA could be unavailable or
 uncooperative to the Registrar. They include active DoS attacks,
 planned and unplanned network partitions, changes to MASA policy, or
 other instances where MASA policy rejects a claim. These introduce
 an operational risk to the Registrar owner in that MASA behavior
 might limit the ability to bootstrap a pledge device. For example
 this might be an issue during disaster recovery. This risk can be
 mitigated by Registrars that request and maintain long term copies of
 "nonceless" vouchers. In that way they are guaranteed to be able to
 bootstrap their devices.

 The issuance of nonceless vouchers themselves creates a security
 concern. If the Registrar of a previous domain can intercept
 protocol communications then it can use a previously issued nonceless
 voucher to establish management control of a pledge device even after
 having sold it. This risk is mitigated by recording the issuance of
 such vouchers in the MASA audit log that is verified by the
 subsequent Registrar and by Pledges only bootstrapping when in a
 factory default state. This reflects a balance between enabling MASA
 independence during future bootstrapping and the security of

Pritikin, et al. Expires December 19, 2019 [Page 66]

Internet-Draft BRSKI June 2019

 bootstrapping itself. Registrar control over requesting and auditing
 nonceless vouchers allows device owners to choose an appropriate
 balance.

 The MASA is exposed to DoS attacks wherein attackers claim an
 unbounded number of devices. Ensuring a registrar is representative
 of a valid manufacturer customer, even without validating ownership
 of specific pledge devices, helps to mitigate this. Pledge
 signatures on the pledge voucher-request, as forwarded by the
 registrar in the prior-signed-voucher-request field of the registrar
 voucher-request, significantly reduce this risk by ensuring the MASA
 can confirm proximity between the pledge and the registrar making the
 request. This mechanism is optional to allow for constrained
 devices. Supply chain integration ("know your customer") is an
 additional step that MASA providers and device vendors can explore.

11.2. Freshness in Voucher-Requests

 A concern has been raised that the pledge voucher-request should
 contain some content (a nonce) provided by the registrar and/or MASA
 in order for those actors to verify that the pledge voucher-request
 is fresh.

 There are a number of operational problems with getting a nonce from
 the MASA to the pledge. It is somewhat easier to collect a random
 value from the registrar, but as the registrar is not yet vouched
 for, such a registrar nonce has little value. There are privacy and
 logistical challenges to addressing these operational issues, so if
 such a thing were to be considered, it would have to provide some
 clear value. This section examines the impacts of not having a fresh
 pledge voucher-request.

 Because the registrar authenticates the pledge, a full Man-in-the-
 Middle attack is not possible, despite the provisional TLS
 authentication by the pledge (see Section 5.) Instead we examine the
 case of a fake registrar (Rm) that communicates with the pledge in
 parallel or in close time proximity with the intended registrar.
 (This scenario is intentionally supported as described in
 Section 4.1.)

 The fake registrar (Rm) can obtain a voucher signed by the MASA
 either directly or through arbitrary intermediaries. Assuming that
 the MASA accepts the registrar voucher-request (either because Rm is
 collaborating with a legitimate registrar according to supply chain
 information, or because the MASA is in audit-log only mode), then a
 voucher linking the pledge to the registrar Rm is issued.

Pritikin, et al. Expires December 19, 2019 [Page 67]

Internet-Draft BRSKI June 2019

 Such a voucher, when passed back to the pledge, would link the pledge
 to registrar Rm, and would permit the pledge to end the provisional
 state. It now trusts Rm and, if it has any security vulnerabilities
 leveragable by an Rm with full administrative control, can be assumed
 to be a threat against the intended registrar.

 This flow is mitigated by the intended registrar verifying the audit
 logs available from the MASA as described in Section 5.8. Rm might
 chose to collect a voucher-request but wait until after the intended
 registrar completes the authorization process before submitting it.
 This pledge voucher-request would be ’stale’ in that it has a nonce
 that no longer matches the internal state of the pledge. In order to
 successfully use any resulting voucher the Rm would need to remove
 the stale nonce or anticipate the pledge’s future nonce state.
 Reducing the possibility of this is why the pledge is mandated to
 generate a strong random or pseudo-random number nonce.

 Additionally, in order to successfully use the resulting voucher the
 Rm would have to attack the pledge and return it to a bootstrapping
 enabled state. This would require wiping the pledge of current
 configuration and triggering a re-bootstrapping of the pledge. This
 is no more likely than simply taking control of the pledge directly
 but if this is a consideration the target network is RECOMMENDED to
 take the following steps:

 o Ongoing network monitoring for unexpected bootstrapping attempts
 by pledges.

 o Retreival and examination of MASA log information upon the
 occurance of any such unexpected events. Rm will be listed in the
 logs along with nonce information for analysis.

11.3. Trusting manufacturers

 The BRSKI extensions to EST permit a new pledge to be completely
 configured with domain specific trust anchors. The link from built-
 in manufacturer-provided trust anchors to domain-specific trust
 anchors is mediated by the signed voucher artifact.

 If the manufacturer’s IDevID signing key is not properly validated,
 then there is a risk that the network will accept a pledge that
 should not be a member of the network. As the address of the
 manufacturer’s MASA is provided in the IDevID using the extension
 from Section 2.3, the malicious pledge will have no problem
 collaborating with it’s MASA to produce a completely valid voucher.

 BRSKI does not, however, fundamentally change the trust model from
 domain owner to manufacturer. Assuming that the pledge used its

Pritikin, et al. Expires December 19, 2019 [Page 68]

Internet-Draft BRSKI June 2019

 IDevID with RFC7030 EST and BRSKI, the domain (registrar) still needs
 to trust the manufacturer.

 Establishing this trust between domain and manufacturer is outside
 the scope of BRSKI. There are a number of mechanisms that can
 adopted including:

 o Manually configuring each manufacturer’s trust anchor.

 o A Trust-On-First-Use (TOFU) mechanism. A human would be queried
 upon seeing a manufacturer’s trust anchor for the first time, and
 then the trust anchor would be installed to the trusted store.
 There are risks with this; even if the key to name is validated
 using something like the WebPKI, there remains the possibility
 that the name is a look alike: e.g, dem0.example. vs demO.example.

 o scanning the trust anchor from a QR code that came with the
 packaging (this is really a manual TOFU mechanism)

 o some sales integration process where trust anchors are provided as
 part of the sales process, probably included in a digital packing
 "slip", or a sales invoice.

 o consortium membership, where all manufacturers of a particular
 device category (e.g, a light bulb, or a cable-modem) are signed
 by an certificate authority specifically for this. This is done
 by CableLabs today. It is used for authentication and
 authorization as part of TR-79: [docsisroot] and [TR069].

 The existing WebPKI provides a reasonable anchor between manufacturer
 name and public key. It authenticates the key. It does not provide
 a reasonable authorization for the manufacturer, so it is not
 directly useable on it’s own.

11.4. Manufacturer Maintainance of trust anchors

 BRSKI depends upon the manufacturer building in trust anchors to the
 pledge device. The voucher artifact which is signed by the MASA will
 be validated by the pledge using that anchor. This implies that the
 manufacturer needs to maintain access to a signing key that the
 pledge can validate.

 The manufacturer will need to maintain the ability to make signatures
 that can be validated for the lifetime that the device could be
 onboarded. Whether this onboarding lifetime is less than the device
 lifetime depends upon how the device is used. An inventory of
 devices kept in a warehouse as spares might not be onboarded for many
 decades.

Pritikin, et al. Expires December 19, 2019 [Page 69]

Internet-Draft BRSKI June 2019

 There are good cryptographic hygiene reasons why a manufacturer would
 not want to maintain access to a private key for many decades. A
 manufacturer in that situation can leverage a long-term certificate
 authority anchor, built-in to the pledge, and then a certificate
 chain may be incorporated using the normal CMS certificate set. This
 may increase the size of the voucher artifacts, but that is not a
 significant issues in non-constrained environements.

 There are a few other operational variations that manufacturers could
 consider. For instance, there is no reason that every device need
 have the same set of trust anchors pre-installed. Devices built in
 different factories, or on different days, or any other consideration
 could have different trust anchors built in, and the record of which
 batch the device is in would be recorded in the asset database. The
 manufacturer would then know which anchor to sign an artifact
 against.

 Aside from the concern about long-term access to private keys, a
 major limiting factor for the shelf-life of many devices will be the
 age of the cryptographic algorithms included. A device produced in
 2019 will have hardware and software capable of validating algorithms
 common in 2019, and will have no defense against attacks (both
 quantum and von-neuman brute force attacks) which have not yet been
 invented. This concern is orthogonal to the concern about access to
 private keys, but this concern likely dominates and limits the
 lifespan of a device in a warehouse. If any update to firmware to
 support new cryptographic mechanism were possible (while the device
 was in a warehouse), updates to trust anchors would also be done at
 the same time.

12. Acknowledgements

 We would like to thank the various reviewers for their input, in
 particular William Atwood, Brian Carpenter, Toerless Eckert, Fuyu
 Eleven, Eliot Lear, Sergey Kasatkin, Anoop Kumar, Markus Stenberg,
 Peter van der Stok, and Thomas Werner

 Significant reviews were done by Jari Arko, Christian Huitema and
 Russ Housley.

13. References

13.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-19 (work in progress), March 2019.

Pritikin, et al. Expires December 19, 2019 [Page 70]

Internet-Draft BRSKI June 2019

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [IDevID] "IEEE 802.1AR Secure Device Identifier", December 2009,
 <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, Ed., "Extensible Authentication Protocol
 (EAP)", RFC 3748, DOI 10.17487/RFC3748, June 2004,
 <https://www.rfc-editor.org/info/rfc3748>.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 DOI 10.17487/RFC3927, May 2005,
 <https://www.rfc-editor.org/info/rfc3927>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519,
 DOI 10.17487/RFC4519, June 2006,
 <https://www.rfc-editor.org/info/rfc4519>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862,
 DOI 10.17487/RFC4862, September 2007,
 <https://www.rfc-editor.org/info/rfc4862>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

Pritikin, et al. Expires December 19, 2019 [Page 71]

Internet-Draft BRSKI June 2019

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, DOI 10.17487/RFC5272, June 2008,
 <https://www.rfc-editor.org/info/rfc5272>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5386] Williams, N. and M. Richardson, "Better-Than-Nothing
 Security: An Unauthenticated Mode of IPsec", RFC 5386,
 DOI 10.17487/RFC5386, November 2008,
 <https://www.rfc-editor.org/info/rfc5386>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5660] Williams, N., "IPsec Channels: Connection Latching",
 RFC 5660, DOI 10.17487/RFC5660, October 2009,
 <https://www.rfc-editor.org/info/rfc5660>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/info/rfc7030>.

Pritikin, et al. Expires December 19, 2019 [Page 72]

Internet-Draft BRSKI June 2019

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/info/rfc8366>.

 [RFC8368] Eckert, T., Ed. and M. Behringer, "Using an Autonomic
 Control Plane for Stable Connectivity of Network
 Operations, Administration, and Maintenance (OAM)",
 RFC 8368, DOI 10.17487/RFC8368, May 2018,
 <https://www.rfc-editor.org/info/rfc8368>.

13.2. Informative References

 [Dingledine2004]
 Dingledine, R., Mathewson, N., and P. Syverson, "Tor: the
 second-generation onion router", 2004,
 <https://spec.torproject.org/tor-spec>.

 [docsisroot]
 "CableLabs Digital Certificate Issuance Service", February
 2018, <https://www.cablelabs.com/resources/
 digital-certificate-issuance-service/>.

 [I-D.ietf-ace-coap-est]
 Stok, P., Kampanakis, P., Richardson, M., and S. Raza,
 "EST over secure CoAP (EST-coaps)", draft-ietf-ace-coap-
 est-12 (work in progress), June 2019.

 [I-D.ietf-anima-constrained-voucher]
 Richardson, M., Stok, P., and P. Kampanakis, "Constrained
 Voucher Artifacts for Bootstrapping Protocols", draft-
 ietf-anima-constrained-voucher-03 (work in progress),
 March 2019.

Pritikin, et al. Expires December 19, 2019 [Page 73]

Internet-Draft BRSKI June 2019

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 and J. Nobre, "A Reference Model for Autonomic
 Networking", draft-ietf-anima-reference-model-10 (work in
 progress), November 2018.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-
 cddl-08 (work in progress), March 2019.

 [I-D.ietf-netconf-zerotouch]
 Watsen, K., Abrahamsson, M., and I. Farrer, "Secure Zero
 Touch Provisioning (SZTP)", draft-ietf-netconf-
 zerotouch-29 (work in progress), January 2019.

 [I-D.ietf-opsawg-mud]
 Lear, E., Droms, R., and D. Romascanu, "Manufacturer Usage
 Description Specification", draft-ietf-opsawg-mud-25 (work
 in progress), June 2018.

 [I-D.richardson-anima-state-for-joinrouter]
 Richardson, M., "Considerations for stateful vs stateless
 join router in ANIMA bootstrap", draft-richardson-anima-
 state-for-joinrouter-02 (work in progress), January 2018.

 [imprinting]
 "Wikipedia article: Imprinting", July 2015,
 <https://en.wikipedia.org/wiki/Imprinting_(psychology)>.

 [IoTstrangeThings]
 "IoT of toys stranger than fiction: Cybersecurity and data
 privacy update (accessed 2018-12-02)", March 2017,
 <https://www.welivesecurity.com/2017/03/03/
 internet-of-things-security-privacy-iot-update/>.

 [livingwithIoT]
 "What is it actually like to live in a house filled with
 IoT devices? (accessed 2018-12-02)", February 2018,
 <https://www.siliconrepublic.com/machines/
 iot-smart-devices-reality>.

Pritikin, et al. Expires December 19, 2019 [Page 74]

Internet-Draft BRSKI June 2019

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <https://www.rfc-editor.org/info/rfc2473>.

 [RFC2663] Srisuresh, P. and M. Holdrege, "IP Network Address
 Translator (NAT) Terminology and Considerations",
 RFC 2663, DOI 10.17487/RFC2663, August 1999,
 <https://www.rfc-editor.org/info/rfc2663>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6960] Santesson, S., Myers, M., Ankney, R., Malpani, A.,
 Galperin, S., and C. Adams, "X.509 Internet Public Key
 Infrastructure Online Certificate Status Protocol - OCSP",
 RFC 6960, DOI 10.17487/RFC6960, June 2013,
 <https://www.rfc-editor.org/info/rfc6960>.

 [RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
 Multiple Certificate Status Request Extension", RFC 6961,
 DOI 10.17487/RFC6961, June 2013,
 <https://www.rfc-editor.org/info/rfc6961>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <https://www.rfc-editor.org/info/rfc7217>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Pritikin, et al. Expires December 19, 2019 [Page 75]

Internet-Draft BRSKI June 2019

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [slowloris]
 "Slowloris (computer security)", February 2019,
 <https://en.wikipedia.org/wiki/
 Slowloris_(computer_security)/>.

 [Stajano99theresurrecting]
 Stajano, F. and R. Anderson, "The resurrecting duckling:
 security issues for ad-hoc wireless networks", 1999,
 <https://www.cl.cam.ac.uk/˜fms27/
 papers/1999-StajanoAnd-duckling.pdf>.

 [TR069] "TR-69: CPE WAN Management Protocol", February 2018,
 <https://www.broadband-forum.org/standards-and-software/
 technical-specifications/tr-069-files-tools>.

Appendix A. IPv4 and non-ANI operations

 The secification of BRSKI in Section 4 intentionally only covers the
 mechanisms for an IPv6 pledge using Link-Local addresses. This
 section describes non-normative extensions that can be used in other
 environments.

A.1. IPv4 Link Local addresses

 Instead of an IPv6 link-local address, an IPv4 address may be
 generated using [RFC3927] Dynamic Configuration of IPv4 Link-Local
 Addresses.

 In the case that an IPv4 Link-Local address is formed, then the
 bootstrap process would continue as in the IPv6 case by looking for a
 (circuit) proxy.

A.2. Use of DHCPv4

 The Plege MAY obtain an IP address via DHCP [RFC2131]. The DHCP
 provided parameters for the Domain Name System can be used to perform
 DNS operations if all local discovery attempts fail.

Pritikin, et al. Expires December 19, 2019 [Page 76]

Internet-Draft BRSKI June 2019

Appendix B. mDNS / DNSSD proxy discovery options

 Pledge discovery of the proxy (Section 4.1) MAY be performed with
 DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762] to
 discover the proxy at "_brski-proxy._tcp.local.".

 Proxy discovery of the registrar (Section 4.3) MAY be performed with
 DNS-based Service Discovery over Multicast DNS to discover registrars
 by searching for the service "_brski-registrar._tcp.local.".

 To prevent unaccceptable levels of network traffic, when using mDNS,
 the congestion avoidance mechanisms specified in [RFC6762] section 7
 MUST be followed. The pledge SHOULD listen for an unsolicited
 broadcast response as described in [RFC6762]. This allows devices to
 avoid announcing their presence via mDNS broadcasts and instead
 silently join a network by watching for periodic unsolicited
 broadcast responses.

 Discovery of registrar MAY also be performed with DNS-based service
 discovery by searching for the service "_brski-
 registrar._tcp.example.com". In this case the domain "example.com"
 is discovered as described in [RFC6763] section 11 (Appendix A.2
 suggests the use of DHCP parameters).

 If no local proxy or registrar service is located using the GRASP
 mechanisms or the above mentioned DNS-based Service Discovery methods
 the pledge MAY contact a well known manufacturer provided
 bootstrapping server by performing a DNS lookup using a well known
 URI such as "brski-registrar.manufacturer.example.com". The details
 of the URI are manufacturer specific. Manufacturers that leverage
 this method on the pledge are responsible for providing the registrar
 service. Also see Section 2.7.

 The current DNS services returned during each query are maintained
 until bootstrapping is completed. If bootstrapping fails and the
 pledge returns to the Discovery state, it picks up where it left off
 and continues attempting bootstrapping. For example, if the first
 Multicast DNS _bootstrapks._tcp.local response doesn’t work then the
 second and third responses are tried. If these fail the pledge moves
 on to normal DNS-based Service Discovery.

Appendix C. MUD Extension

 The following extension augments the MUD model to include a single
 node, as described in [I-D.ietf-opsawg-mud] section 3.6, using the
 following sample module that has the following tree structure:

Pritikin, et al. Expires December 19, 2019 [Page 77]

Internet-Draft BRSKI June 2019

 module: ietf-mud-brski-masa
 augment /ietf-mud:mud:
 +--rw masa-server? inet:uri

 The model is defined as follows:

Pritikin, et al. Expires December 19, 2019 [Page 78]

Internet-Draft BRSKI June 2019

 <CODE BEGINS> file "ietf-mud-extension@2018-02-14.yang"
 module ietf-mud-brski-masa {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-mud-brski-masa";
 prefix ietf-mud-brski-masa;
 import ietf-mud {
 prefix ietf-mud;
 }
 import ietf-inet-types {
 prefix inet;
 }

 organization
 "IETF ANIMA (Autonomic Networking Integrated Model and
 Approach) Working Group";
 contact
 "WG Web: http://tools.ietf.org/wg/anima/
 WG List: anima@ietf.org
 ";
 description
 "BRSKI extension to a MUD file to indicate the
 MASA URL.";

 revision 2018-02-14 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Manufacturer Usage Description
 Specification";
 }

 augment "/ietf-mud:mud" {
 description
 "BRSKI extension to a MUD file to indicate the
 MASA URL.";
 leaf masa-server {
 type inet:uri;
 description
 "This value is the URI of the MASA server";
 }
 }
 }
 <CODE ENDS>

 The MUD extensions string "masa" is defined, and MUST be included in
 the extensions array of the mud container of a MUD file when this
 extension is used.

Pritikin, et al. Expires December 19, 2019 [Page 79]

Internet-Draft BRSKI June 2019

Appendix D. Example Vouchers

 Three entities are involved in a voucher: the MASA issues (signs) it,
 the registrar’s public key is mentioned in the voucher, and the
 pledge validates it. In order to provide reproduceable examples the
 public and private keys for an example MASA and registrar are first
 listed.

D.1. Keys involved

 The Manufacturer has a Certificate Authority that signs the pledge’s
 IDevID. In addition the Manufacturer’s signing authority (the MASA)
 signs the vouchers, and that certificate must distributed to the
 devices at manufacturing time so that vouchers can be validated.

D.1.1. MASA key pair for voucher signatures

 This private key signs vouchers:

 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
 r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
 zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
 Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
 -----END EC PRIVATE KEY-----

 This public key validates vouchers:

 -----BEGIN CERTIFICATE-----
 MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
 Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
 IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
 EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
 BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
 b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
 w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
 MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
 DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
 MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
 -----END CERTIFICATE-----

D.1.2. Manufacturer key pair for IDevID signatures

 This private key signs IDevID certificates:

Pritikin, et al. Expires December 19, 2019 [Page 80]

Internet-Draft BRSKI June 2019

 -----BEGIN EC PRIVATE KEY-----
 MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
 r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
 zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
 Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
 -----END EC PRIVATE KEY-----

 This public key validates IDevID certificates:

 -----BEGIN CERTIFICATE-----
 MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
 Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
 IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
 EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
 BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
 b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
 w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
 MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
 DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
 MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
 -----END CERTIFICATE-----

D.1.3. Registrar key pair

 The registrar key (or chain) is the representative of the domain
 owner. This key signs registrar voucher-requests:

 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIF+obiToYYYeMifPsZvrjWJ0yFsCJwIFhpokmT/TULmXoAoGCCqGSM49
 AwEHoUQDQgAENWQOzcNMUjP0NrtfeBc0DJLWfeMGgCFdIv6FUz4DifM1ujMBec/g
 6W/P6boTmyTGdFOh/8HwKUerL5bpneK8sg==
 -----END EC PRIVATE KEY-----

 The public key is indicated in a pledge voucher-request to show
 proximity.

 -----BEGIN CERTIFICATE-----
 MIIBrjCCATOgAwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQBGRYC
 Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVuc3RydW5n
 IEZvdW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAxMTI0NVowQzES
 MBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRIw
 EAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQ1ZA7N
 w0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6MwF5z+Dpb8/puhObJMZ0U6H/
 wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAAMAoGCCqGSM49BAMDA2kAMGYCMQC3
 /iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY2jkDx062nuNifVKtyaara3F30AIkKSEC
 MQDi29efbTLbdtDk3tecY/rD7V77XaJ6nYCmdDCR54TrSFNLgxvt1lyFM+0fYpYR
 c3o=
 -----END CERTIFICATE-----

Pritikin, et al. Expires December 19, 2019 [Page 81]

Internet-Draft BRSKI June 2019

 The registrar public certificate as decoded by openssl’s x509
 utility. Note that the registrar certificate is marked with the
 cmcRA extension.

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: ecdsa-with-SHA384
 Issuer: DC = ca, DC = sandelman, CN = Unstrung Fount
 ain CA
 Validity
 Not Before: Sep 5 01:12:45 2017 GMT
 Not After : Sep 5 01:12:45 2019 GMT
 Subject: DC = ca, DC = sandelman, CN = localhost
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:35:64:0e:cd:c3:4c:52:33:f4:36:bb:5f:7
 8:17:
 34:0c:92:d6:7d:e3:06:80:21:5d:22:fe:85:5
 3:3e:
 03:89:f3:35:ba:33:01:79:cf:e0:e9:6f:cf:e
 9:ba:
 13:9b:24:c6:74:53:a1:ff:c1:f0:29:47:ab:2
 f:96:
 e9:9d:e2:bc:b2
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Signature Algorithm: ecdsa-with-SHA384
 30:66:02:31:00:b7:fe:24:d0:27:77:af:61:87:20:6d:78:
 5b:
 9b:3a:e9:eb:8b:77:40:2e:aa:8c:87:98:da:39:03:c7:4e:
 b6:
 9e:e3:62:7d:52:ad:c9:a6:ab:6b:71:77:d0:02:24:29:21:
 02:
 31:00:e2:db:d7:9f:6d:32:db:76:d0:e4:de:d7:9c:63:fa:
 c3:
 ed:5e:fb:5d:a2:7a:9d:80:a6:74:30:91:e7:84:eb:48:53:
 4b:
 83:1b:ed:d6:5c:85:33:ed:1f:62:96:11:73:7a

Pritikin, et al. Expires December 19, 2019 [Page 82]

Internet-Draft BRSKI June 2019

D.1.4. Pledge key pair

 The pledge has an IDevID key pair built in at manufacturing time:

 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIBgR6SV+uEvWfl5zCQWZxWjYbMhXPyNqdHJ3KPh11mm4oAoGCCqGSM49
 AwEHoUQDQgAEWi/jqPpRJ0JgWghZRgeZlLKutbXVjmnHb+1AYaEF/YQjE2g5FZV8
 KjiR/bkEl+l8M4onIC7KHaXKKkuag9S6Tw==
 -----END EC PRIVATE KEY-----

 The public key is used by the registrar to find the MASA. The MASA
 URL is in an extension described in Section 2.3.

 -----BEGIN CERTIFICATE-----
 MIICBDCCAYugAwIBAgIECe20qTAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQB
 GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3Ry
 dW5nIEhpZ2h3YXkgQ0EwIBcNMTkwNDI0MDIxNjU4WhgPMjk5OTEyMzEwMDAwMDBa
 MBwxGjAYBgNVBAUMETAwLWQwLWU1LTAyLTAwLTJkMFkwEwYHKoZIzj0CAQYIKoZI
 zj0DAQcDQgAEWi/jqPpRJ0JgWghZRgeZlLKutbXVjmnHb+1AYaEF/YQjE2g5FZV8
 KjiR/bkEl+l8M4onIC7KHaXKKkuag9S6T6OBhzCBhDAdBgNVHQ4EFgQUj8KYdUoE
 OvJ0kcOIbjEWwgWdDYkwCQYDVR0TBAIwADArBgNVHREEJDAioCAGCSsGAQQBgu5S
 AaATDBEwMC1EMC1FNS0wMi0wMC0yRDArBgkrBgEEAYLuUgIEHgwcbWFzYS5ob25l
 eWR1a2VzLnNhbmRlbG1hbi5jYTAKBggqhkjOPQQDAgNnADBkAjAmvMjmNgjypDhc
 fynMV3kMuIpSKrYzRWr4g3PtTwXDsAe0oitTTj4QtU1bajhOfTkCMGMNbsW2Q41F
 z9t6PDVdtOKabBbAP1RVoFTlDQuO9nmLzb5kU+cUqCtPRFZBUXP3kg==
 -----END CERTIFICATE-----

 The pledge public certificate as decoded by openssl’s x509 utility so
 that the extensions can be seen. There is a second Custom Extension
 is included to provided to contain the EUI48/EUI64 that the pledge
 will configure as it’s layer-2 address (this is non-normative).

Pritikin, et al. Expires December 19, 2019 [Page 83]

Internet-Draft BRSKI June 2019

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 166573225 (0x9edb4a9)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: DC = ca, DC = sandelman, CN = Unstrung Highway CA
 Validity
 Not Before: Apr 24 02:16:58 2019 GMT
 Not After : Dec 31 00:00:00 2999 GMT
 Subject: serialNumber = 00-d0-e5-02-00-2d
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:5a:2f:e3:a8:fa:51:27:42:60:5a:08:59:46:07:
 99:94:b2:ae:b5:b5:d5:8e:69:c7:6f:ed:40:61:a1:
 05:fd:84:23:13:68:39:15:95:7c:2a:38:91:fd:b9:
 04:97:e9:7c:33:8a:27:20:2e:ca:1d:a5:ca:2a:4b:
 9a:83:d4:ba:4f
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 8F:C2:98:75:4A:04:3A:F2:74:91:C3:88:6E:31:16:C2:05:9D:0D:89
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Alternative Name:
 othername:<unsupported>
 1.3.6.1.4.1.46930.2:
 ..masa.honeydukes.sandelman.ca
 Signature Algorithm: ecdsa-with-SHA256
 30:64:02:30:26:bc:c8:e6:36:08:f2:a4:38:5c:7f:29:cc:57:
 79:0c:b8:8a:52:2a:b6:33:45:6a:f8:83:73:ed:4f:05:c3:b0:
 07:b4:a2:2b:53:4e:3e:10:b5:4d:5b:6a:38:4e:7d:39:02:30:
 63:0d:6e:c5:b6:43:8d:45:cf:db:7a:3c:35:5d:b4:e2:9a:6c:
 16:c0:3f:54:55:a0:54:e5:0d:0b:8e:f6:79:8b:cd:be:64:53:
 e7:14:a8:2b:4f:44:56:41:51:73:f7:92

D.2. Example process

 RFC-EDITOR: these examples will need to be replaced with CMS versions
 once IANA has assigned the eContentType in [RFC8366].

D.2.1. Pledge to Registrar

 As described in Section 5.2, the pledge will sign a pledge voucher-
 request containing the registrar’s public key in the proximity-

Pritikin, et al. Expires December 19, 2019 [Page 84]

Internet-Draft BRSKI June 2019

 registrar-cert field. The base64 has been wrapped at 60 characters
 for presentation reasons.

 -----BEGIN CMS-----
 MIIGtQYJKoZIhvcNAQcCoIIGpjCCBqICAQExDTALBglghkgBZQMEAgEwggNRBgkq
 hkiG9w0BBwGgggNCBIIDPnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6
 eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAxOS0wNS0x
 NVQxNzoyNTo1NS42NDQtMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtZDAtZTUt
 MDItMDAtMmQiLCJub25jZSI6IlZPVUZULVd3ckV2ME51QVFFSG9WN1EiLCJwcm94
 aW1pdHktcmVnaXN0cmFyLWNlcnQiOiJNSUlCMFRDQ0FWYWdBd0lCQWdJQkFqQUtC
 Z2dxaGtqT1BRUURBekJ4TVJJd0VBWUtDWkltaVpQeUxHUUJHUllDWTJFeEdUQVhC
 Z29Ka2lhSmsvSXNaQUVaRmdsellXNWtaV3h0WVc0eFFEQStCZ05WQkFNTU55TThV
 M2x6ZEdWdFZtRnlhV0ZpYkdVNk1IZ3dNREF3TURBd05HWTVNVEZoTUQ0Z1ZXNXpk
 SEoxYm1jZ1JtOTFiblJoYVc0Z1EwRXdIaGNOTVRjeE1UQTNNak0wTlRJNFdoY05N
 VGt4TVRBM01qTTBOVEk0V2pCRE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhH
 VEFYQmdvSmtpYUprL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhFakFRQmdOVkJBTU1D
 V3h2WTJGc2FHOXpkREJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFC
 SlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1haQ3RqQUkwQ0QxZkpm
 SlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFqRFRBTE1Ba0dB
 MVVkRXdRQ01BQXdDZ1lJS29aSXpqMEVBd01EYVFBd1pnSXhBTFFNTnVyZjh0djUw
 bFJPRDVEUVhIRU9KSk5XM1FWMmc5UUVkRFNrMk1ZK0FvU3JCU21HU05qaDRvbEVP
 aEV1TGdJeEFKNG5XZk53K0JqYlptS2lJaVVFY1R3SE1oR1ZYYU1IWS9GN24zOXd3
 S2NCQlNPbmROUHFDcE9FTGw2YnEzQ1pxUT09In19oIICCDCCAgQwggGLoAMCAQIC
 BAnttKkwCgYIKoZIzj0EAwIwTTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZIm
 iZPyLGQBGRYJc2FuZGVsbWFuMRwwGgYDVQQDDBNVbnN0cnVuZyBIaWdod2F5IENB
 MCAXDTE5MDQyNDAyMTY1OFoYDzI5OTkxMjMxMDAwMDAwWjAcMRowGAYDVQQFDBEw
 MC1kMC1lNS0wMi0wMC0yZDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABFov46j6
 USdCYFoIWUYHmZSyrrW11Y5px2/tQGGhBf2EIxNoORWVfCo4kf25BJfpfDOKJyAu
 yh2lyipLmoPUuk+jgYcwgYQwHQYDVR0OBBYEFI/CmHVKBDrydJHDiG4xFsIFnQ2J
 MAkGA1UdEwQCMAAwKwYDVR0RBCQwIqAgBgkrBgEEAYLuUgGgEwwRMDAtRDAtRTUt
 MDItMDAtMkQwKwYJKwYBBAGC7lICBB4MHG1hc2EuaG9uZXlkdWtlcy5zYW5kZWxt
 YW4uY2EwCgYIKoZIzj0EAwIDZwAwZAIwJrzI5jYI8qQ4XH8pzFd5DLiKUiq2M0Vq
 +INz7U8Fw7AHtKIrU04+ELVNW2o4Tn05AjBjDW7FtkONRc/bejw1XbTimmwWwD9U
 VaBU5Q0LjvZ5i82+ZFPnFKgrT0RWQVFz95IxggErMIIBJwIBATBVME0xEjAQBgoJ
 kiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEcMBoGA1UE
 AwwTVW5zdHJ1bmcgSGlnaHdheSBDQQIECe20qTALBglghkgBZQMEAgGgaTAYBgkq
 hkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0xOTA1MTUyMTI1
 NTVaMC8GCSqGSIb3DQEJBDEiBCAQN2lP7aqwyhmj9qUHt6Qk/SbOTOPXFOwn1wv2
 5YGYgDAKBggqhkjOPQQDAgRHMEUCIEYQhHToU0rrhPyQv2fR0TwWePTx2Z1DEhR4
 tTl/Dr/ZAiEA47u9+bIz/p6nFJ+wctKHER+ycUzYQF56h9odMo+Ilkc=
 -----END CMS-----

 file: examples/vr_00-D0-E5-02-00-2D.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=1717 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData

Pritikin, et al. Expires December 19, 2019 [Page 85]

Internet-Draft BRSKI June 2019

 15:d=1 hl=4 l=1702 cons: cont [0]
 19:d=2 hl=4 l=1698 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=3 hl=4 l= 849 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l= 834 cons: cont [0]
 60:d=5 hl=4 l= 830 prim: OCTET STRING :{"ietf-voucher-request:v
 894:d=3 hl=4 l= 520 cons: cont [0]
 898:d=4 hl=4 l= 516 cons: SEQUENCE
 902:d=5 hl=4 l= 395 cons: SEQUENCE
 906:d=6 hl=2 l= 3 cons: cont [0]
 908:d=7 hl=2 l= 1 prim: INTEGER :02
 911:d=6 hl=2 l= 4 prim: INTEGER :09EDB4A9
 917:d=6 hl=2 l= 10 cons: SEQUENCE
 919:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 929:d=6 hl=2 l= 77 cons: SEQUENCE
 931:d=7 hl=2 l= 18 cons: SET
 933:d=8 hl=2 l= 16 cons: SEQUENCE
 935:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 947:d=9 hl=2 l= 2 prim: IA5STRING :ca
 951:d=7 hl=2 l= 25 cons: SET
 953:d=8 hl=2 l= 23 cons: SEQUENCE
 955:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 967:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 978:d=7 hl=2 l= 28 cons: SET
 980:d=8 hl=2 l= 26 cons: SEQUENCE
 982:d=9 hl=2 l= 3 prim: OBJECT :commonName
 987:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Highway CA
 1008:d=6 hl=2 l= 32 cons: SEQUENCE
 1010:d=7 hl=2 l= 13 prim: UTCTIME :190424021658Z
 1025:d=7 hl=2 l= 15 prim: GENERALIZEDTIME :29991231000000Z
 1042:d=6 hl=2 l= 28 cons: SEQUENCE
 1044:d=7 hl=2 l= 26 cons: SET
 1046:d=8 hl=2 l= 24 cons: SEQUENCE
 1048:d=9 hl=2 l= 3 prim: OBJECT :serialNumber
 1053:d=9 hl=2 l= 17 prim: UTF8STRING :00-d0-e5-02-00-2d
 1072:d=6 hl=2 l= 89 cons: SEQUENCE
 1074:d=7 hl=2 l= 19 cons: SEQUENCE
 1076:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 1085:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 1095:d=7 hl=2 l= 66 prim: BIT STRING
 1163:d=6 hl=3 l= 135 cons: cont [3]
 1166:d=7 hl=3 l= 132 cons: SEQUENCE
 1169:d=8 hl=2 l= 29 cons: SEQUENCE
 1171:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident

Pritikin, et al. Expires December 19, 2019 [Page 86]

Internet-Draft BRSKI June 2019

 1176:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:04148FC298754A
 1200:d=8 hl=2 l= 9 cons: SEQUENCE
 1202:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 1207:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000
 1211:d=8 hl=2 l= 43 cons: SEQUENCE
 1213:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Alternati
 1218:d=9 hl=2 l= 36 prim: OCTET STRING [HEX DUMP]:3022A02006092B
 1256:d=8 hl=2 l= 43 cons: SEQUENCE
 1258:d=9 hl=2 l= 9 prim: OBJECT :1.3.6.1.4.1.46930.2
 1269:d=9 hl=2 l= 30 prim: OCTET STRING [HEX DUMP]:0C1C6D6173612E
 1301:d=5 hl=2 l= 10 cons: SEQUENCE
 1303:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1313:d=5 hl=2 l= 103 prim: BIT STRING
 1418:d=3 hl=4 l= 299 cons: SET
 1422:d=4 hl=4 l= 295 cons: SEQUENCE
 1426:d=5 hl=2 l= 1 prim: INTEGER :01
 1429:d=5 hl=2 l= 85 cons: SEQUENCE
 1431:d=6 hl=2 l= 77 cons: SEQUENCE
 1433:d=7 hl=2 l= 18 cons: SET
 1435:d=8 hl=2 l= 16 cons: SEQUENCE
 1437:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 1449:d=9 hl=2 l= 2 prim: IA5STRING :ca
 1453:d=7 hl=2 l= 25 cons: SET
 1455:d=8 hl=2 l= 23 cons: SEQUENCE
 1457:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 1469:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1480:d=7 hl=2 l= 28 cons: SET
 1482:d=8 hl=2 l= 26 cons: SEQUENCE
 1484:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1489:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Highway CA
 1510:d=6 hl=2 l= 4 prim: INTEGER :09EDB4A9
 1516:d=5 hl=2 l= 11 cons: SEQUENCE
 1518:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1529:d=5 hl=2 l= 105 cons: cont [0]
 1531:d=6 hl=2 l= 24 cons: SEQUENCE
 1533:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1544:d=7 hl=2 l= 11 cons: SET
 1546:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 1557:d=6 hl=2 l= 28 cons: SEQUENCE
 1559:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1570:d=7 hl=2 l= 15 cons: SET
 1572:d=8 hl=2 l= 13 prim: UTCTIME :190515212555Z
 1587:d=6 hl=2 l= 47 cons: SEQUENCE
 1589:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 1600:d=7 hl=2 l= 34 cons: SET
 1602:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:1037694FEDAAB0
 1636:d=5 hl=2 l= 10 cons: SEQUENCE
 1638:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256

Pritikin, et al. Expires December 19, 2019 [Page 87]

Internet-Draft BRSKI June 2019

 1648:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:30450220461084

 The JSON contained in the voucher request:

{"ietf-voucher-request:voucher":{"assertion":"proximity","created-on":"2019-05-1
5T17:25:55.644-04:00","serial-number":"00-d0-e5-02-00-2d","nonce":"VOUFT-WwrEv0N
uAQEHoV7Q","proximity-registrar-cert":"MIIB0TCCAVagAwIBAgIBAjAKBggqhkjOPQQDAzBxM
RIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xQDA+BgNVBAMMNyM8U
3lzdGVtVmFyaWFibGU6MHgwMDAwMDAwNGY5MTFhMD4gVW5zdHJ1bmcgRm91bnRhaW4gQ0EwHhcNMTcxM
TA3MjM0NTI4WhcNMTkxMTA3MjM0NTI4WjBDMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZ
AEZFglzYW5kZWxtYW4xEjAQBgNVBAMMCWxvY2FsaG9zdDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IAB
JZlUHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p
0zTizqjDTALMAkGA1UdEwQCMAAwCgYIKoZIzj0EAwMDaQAwZgIxALQMNurf8tv50lROD5DQXHEOJJNW3
QV2g9QEdDSk2MY+AoSrBSmGSNjh4olEOhEuLgIxAJ4nWfNw+BjbZmKiIiUEcTwHMhGVXaMHY/F7n39ww
KcBBSOndNPqCpOELl6bq3CZqQ=="}}

D.2.2. Registrar to MASA

 As described in Section 5.5 the registrar will sign a registrar
 voucher-request, and will include pledge’s voucher request in the
 prior-signed-voucher-request.

 -----BEGIN CMS-----
 MIIPkwYJKoZIhvcNAQcCoIIPhDCCD4ACAQExDTALBglghkgBZQMEAgEwggnUBgkq
 hkiG9w0BBwGgggnFBIIJwXsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6
 eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAxOS0wNS0x
 NVQyMToyNTo1NS43NThaIiwic2VyaWFsLW51bWJlciI6IjAwLWQwLWU1LTAyLTAw
 LTJkIiwibm9uY2UiOiJWT1VGVC1Xd3JFdjBOdUFRRUhvVjdRIiwicHJpb3Itc2ln
 bmVkLXZvdWNoZXItcmVxdWVzdCI6Ik1JSUd0UVlKS29aSWh2Y05BUWNDb0lJR3Bq
 Q0NCcUlDQVFFeERUQUxCZ2xnaGtnQlpRTUVBZ0V3Z2dOUkJna3Foa2lHOXcwQkJ3
 R2dnZ05DQklJRFBuc2lhV1YwWmkxMmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVky
 aGxjaUk2ZXlKaGMzTmxjblJwYjI0aU9pSndjbTk0YVcxcGRIa2lMQ0pqY21WaGRH
 VmtMVzl1SWpvaU1qQXhPUzB3TlMweE5WUXhOem95TlRvMU5TNDJORFF0TURRNk1E
 QWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0WkRBdFpUVXRNREl0TURBdE1t
 UWlMQ0p1YjI1alpTSTZJbFpQVlVaVUxWZDNja1YyTUU1MVFWRkZTRzlXTjFFaUxD
 SndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9pSk5TVWxDTUZSRFEw
 RldZV2RCZDBsQ1FXZEpRa0ZxUVV0Q1oyZHhhR3RxVDFCUlVVUkJla0o0VFZKSmQw
 VkJXVXREV2tsdGFWcFFlVXhIVVVKSFVsbERXVEpGZUVkVVFWaENaMjlLYTJsaFNt
 c3ZTWE5hUVVWYVJtZHNlbGxYTld0YVYzaDBXVmMwZUZGRVFTdENaMDVXUWtGTlRV
 NTVUVGhWTTJ4NlpFZFdkRlp0Um5saFYwWnBZa2RWTmsxSVozZE5SRUYzVFVSQmQw
 NUhXVFZOVkVab1RVUTBaMVpYTlhwa1NFb3hZbTFqWjFKdE9URmlibEpvWVZjMFox
 RXdSWGRJYUdOT1RWUmplRTFVUVROTmFrMHdUbFJKTkZkb1kwNU5WR3Q0VFZSQk0w
 MXFUVEJPVkVrMFYycENSRTFTU1hkRlFWbExRMXBKYldsYVVIbE1SMUZDUjFKWlEx
 a3lSWGhIVkVGWVFtZHZTbXRwWVVwckwwbHpXa0ZGV2tabmJIcFpWelZyV2xkNGRG
 bFhOSGhGYWtGUlFtZE9Wa0pCVFUxRFYzaDJXVEpHYzJGSE9YcGtSRUphVFVKTlIw
 SjVjVWRUVFRRNVFXZEZSME5EY1VkVFRUUTVRWGRGU0VFd1NVRkNTbHBzVlVoSk1I
 VndMMnd6WlZwbU9YWkRRbUlyYkVsdWIwVk5SV2RqTjFKdksxaGFRM1JxUVVrd1Ew
 UXhaa3BtU2xJdmFFbDVlVVJ0U0ZkNVdXbE9SbUpTUTBnNVpubGhjbVpyZW1kWU5I
 QXdlbFJwZW5GcVJGUkJURTFCYTBkQk1WVmtSWGRSUTAxQlFYZERaMWxKUzI5YVNY
 cHFNRVZCZDAxRVlWRkJkMXBuU1hoQlRGRk5UblZ5WmpoMGRqVXdiRkpQUkRWRVVW
 aElSVTlLU2s1WE0xRldNbWM1VVVWa1JGTnJNazFaSzBGdlUzSkNVMjFIVTA1cWFE
 UnZiRVZQYUVWMVRHZEplRUZLTkc1WFprNTNLMEpxWWxwdFMybEphVlZGWTFSM1NF
 MW9SMVpZWVUxSVdTOUdOMjR6T1hkM1MyTkNRbE5QYm1ST1VIRkRjRTlGVEd3Mllu
 RXpRMXB4VVQwOUluMTlvSUlDQ0RDQ0FnUXdnZ0dMb0FNQ0FRSUNCQW50dEtrd0Nn
 WUlLb1pJemowRUF3SXdUVEVTTUJBR0NnbVNKb21UOGl4a0FSa1dBbU5oTVJrd0Z3
 WUtDWkltaVpQeUxHUUJHUllKYzJGdVpHVnNiV0Z1TVJ3d0dnWURWUVFEREJOVmJu
 TjBjblZ1WnlCSWFXZG9kMkY1SUVOQk1DQVhEVEU1TURReU5EQXlNVFkxT0ZvWUR6
 STVPVGt4TWpNeE1EQXdNREF3V2pBY01Sb3dHQVlEVlFRRkRCRXdNQzFrTUMxbE5T

Pritikin, et al. Expires December 19, 2019 [Page 88]

Internet-Draft BRSKI June 2019

 MHdNaTB3TUMweVpEQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJG
 b3Y0Nmo2VVNkQ1lGb0lXVVlIbVpTeXJyVzExWTVweDIvdFFHR2hCZjJFSXhOb09S
 V1ZmQ280a2YyNUJKZnBmRE9LSnlBdXloMmx5aXBMbW9QVXVrK2pnWWN3Z1lRd0hR
 WURWUjBPQkJZRUZJL0NtSFZLQkRyeWRKSERpRzR4RnNJRm5RMkpNQWtHQTFVZEV3
 UUNNQUF3S3dZRFZSMFJCQ1F3SXFBZ0Jna3JCZ0VFQVlMdVVnR2dFd3dSTURBdFJE
 QXRSVFV0TURJdE1EQXRNa1F3S3dZSkt3WUJCQUdDN2xJQ0JCNE1IRzFoYzJFdWFH
 OXVaWGxrZFd0bGN5NXpZVzVrWld4dFlXNHVZMkV3Q2dZSUtvWkl6ajBFQXdJRFp3
 QXdaQUl3SnJ6STVqWUk4cVE0WEg4cHpGZDVETGlLVWlxMk0wVnErSU56N1U4Rnc3
 QUh0S0lyVTA0K0VMVk5XMm80VG4wNUFqQmpEVzdGdGtPTlJjL2JlancxWGJUaW1t
 d1d3RDlVVmFCVTVRMExqdlo1aTgyK1pGUG5GS2dyVDBSV1FWRno5NUl4Z2dFck1J
 SUJKd0lCQVRCVk1FMHhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVaTUJjR0Nn
 bVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVjTUJvR0ExVUVBd3dUVlc1emRI
 SjFibWNnU0dsbmFIZGhlU0JEUVFJRUNlMjBxVEFMQmdsZ2hrZ0JaUU1FQWdHZ2FU
 QVlCZ2txaGtpRzl3MEJDUU14Q3dZSktvWklodmNOQVFjQk1Cd0dDU3FHU0liM0RR
 RUpCVEVQRncweE9UQTFNVFV5TVRJMU5UVmFNQzhHQ1NxR1NJYjNEUUVKQkRFaUJD
 QVFOMmxQN2Fxd3lobWo5cVVIdDZRay9TYk9UT1BYRk93bjF3djI1WUdZZ0RBS0Jn
 Z3Foa2pPUFFRREFnUkhNRVVDSUVZUWhIVG9VMHJyaFB5UXYyZlIwVHdXZVBUeDJa
 MURFaFI0dFRsL0RyL1pBaUVBNDd1OStiSXovcDZuRkord2N0S0hFUit5Y1V6WVFG
 NTZoOW9kTW8rSWxrYz0ifX2gggRCMIIB0TCCAVagAwIBAgIBAjAKBggqhkjOPQQD
 AzBxMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxt
 YW4xQDA+BgNVBAMMNyM8U3lzdGVtVmFyaWFibGU6MHgwMDAwMDAwNGY5MTFhMD4g
 VW5zdHJ1bmcgRm91bnRhaW4gQ0EwHhcNMTcxMTA3MjM0NTI4WhcNMTkxMTA3MjM0
 NTI4WjBDMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5k
 ZWxtYW4xEjAQBgNVBAMMCWxvY2FsaG9zdDBZMBMGByqGSM49AgEGCCqGSM49AwEH
 A0IABJZlUHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHW
 yYiNFbRCH9fyarfkzgX4p0zTizqjDTALMAkGA1UdEwQCMAAwCgYIKoZIzj0EAwMD
 aQAwZgIxALQMNurf8tv50lROD5DQXHEOJJNW3QV2g9QEdDSk2MY+AoSrBSmGSNjh
 4olEOhEuLgIxAJ4nWfNw+BjbZmKiIiUEcTwHMhGVXaMHY/F7n39wwKcBBSOndNPq
 CpOELl6bq3CZqTCCAmkwggHvoAMCAQICAQMwCgYIKoZIzj0EAwIwbTESMBAGCgmS
 JomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMTwwOgYDVQQD
 DDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tIFVuc3RydW5nIEZvdW50YWluIFJv
 b3QgQ0EwHhcNMTkwMTEzMjI1NDQ0WhcNMjEwMTEyMjI1NDQ0WjBtMRIwEAYKCZIm
 iZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMM
 M2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9v
 dCBDQTB2MBAGByqGSM49AgEGBSuBBAAiA2IABBt/WboXwxq8Zo2MbODD+jFxD2X2
 IpG9t1aAB9vfuHqlRU15ikaXGVmWMbGPaX0yvjzIPltjtUb2qNVvm/nA89O5FD9y
 R1Gkdt3S8L/1yo8wAX/4wl/T9SADRIuL8gdstKNjMGEwDwYDVR0TAQH/BAUwAwEB
 /zAOBgNVHQ8BAf8EBAMCAQYwHQYDVR0OBBYEFLml9ssR4QekSSynCMZ8ELyHs3Qm
 MB8GA1UdIwQYMBaAFLml9ssR4QekSSynCMZ8ELyHs3QmMAoGCCqGSM49BAMCA2gA
 MGUCMAviLdbfd6AZdsOxNgf7D15WFmGC1JkHeEbT/0w4UXz6q/48S71/IMbSXRWH
 aNxiJwIxAOCRjtlN+VSmCLTvWwMTxnSpIuqMr/O1y2Z8rl459VRFphWPdbf4i0qE
 cwu0u4JzpDGCAUwwggFIAgEBMHYwcTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYK
 CZImiZPyLGQBGRYJc2FuZGVsbWFuMUAwPgYDVQQDDDcjPFN5c3RlbVZhcmlhYmxl
 OjB4MDAwMDAwMDRmOTExYTA+IFVuc3RydW5nIEZvdW50YWluIENBAgECMAsGCWCG
 SAFlAwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkF
 MQ8XDTE5MDUxNTIxMjU1NVowLwYJKoZIhvcNAQkEMSIEIFBQjMmWzZOEkRHXrVAS
 snJwgQ26goyvOAtUFYs3MstMMAoGCCqGSM49BAMCBEcwRQIgBthbhEmgbqZbYDkD
 zxHXLzJ5eusWplzHKqZyxNpzaR8CIQC3UtMu0QsXoUpYL016iTsbd7Eedi8IfnwQ

Pritikin, et al. Expires December 19, 2019 [Page 89]

Internet-Draft BRSKI June 2019

 akExfhh0ew==
 -----END CMS-----

 file: examples/parboiled_vr_00_D0-E5-02-00-2D.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=3987 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
 15:d=1 hl=4 l=3972 cons: cont [0]
 19:d=2 hl=4 l=3968 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01
 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=3 hl=4 l=2516 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l=2501 cons: cont [0]
 60:d=5 hl=4 l=2497 prim: OCTET STRING :{"ietf-voucher-request:v
 2561:d=3 hl=4 l=1090 cons: cont [0]
 2565:d=4 hl=4 l= 465 cons: SEQUENCE
 2569:d=5 hl=4 l= 342 cons: SEQUENCE
 2573:d=6 hl=2 l= 3 cons: cont [0]
 2575:d=7 hl=2 l= 1 prim: INTEGER :02
 2578:d=6 hl=2 l= 1 prim: INTEGER :02
 2581:d=6 hl=2 l= 10 cons: SEQUENCE
 2583:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA384
 2593:d=6 hl=2 l= 113 cons: SEQUENCE
 2595:d=7 hl=2 l= 18 cons: SET
 2597:d=8 hl=2 l= 16 cons: SEQUENCE
 2599:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2611:d=9 hl=2 l= 2 prim: IA5STRING :ca
 2615:d=7 hl=2 l= 25 cons: SET
 2617:d=8 hl=2 l= 23 cons: SEQUENCE
 2619:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2631:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2642:d=7 hl=2 l= 64 cons: SET
 2644:d=8 hl=2 l= 62 cons: SEQUENCE
 2646:d=9 hl=2 l= 3 prim: OBJECT :commonName
 2651:d=9 hl=2 l= 55 prim: UTF8STRING :#<SystemVariable:0x00000
 2708:d=6 hl=2 l= 30 cons: SEQUENCE
 2710:d=7 hl=2 l= 13 prim: UTCTIME :171107234528Z
 2725:d=7 hl=2 l= 13 prim: UTCTIME :191107234528Z
 2740:d=6 hl=2 l= 67 cons: SEQUENCE
 2742:d=7 hl=2 l= 18 cons: SET
 2744:d=8 hl=2 l= 16 cons: SEQUENCE
 2746:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2758:d=9 hl=2 l= 2 prim: IA5STRING :ca

Pritikin, et al. Expires December 19, 2019 [Page 90]

Internet-Draft BRSKI June 2019

 2762:d=7 hl=2 l= 25 cons: SET
 2764:d=8 hl=2 l= 23 cons: SEQUENCE
 2766:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 2778:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 2789:d=7 hl=2 l= 18 cons: SET
 2791:d=8 hl=2 l= 16 cons: SEQUENCE
 2793:d=9 hl=2 l= 3 prim: OBJECT :commonName
 2798:d=9 hl=2 l= 9 prim: UTF8STRING :localhost
 2809:d=6 hl=2 l= 89 cons: SEQUENCE
 2811:d=7 hl=2 l= 19 cons: SEQUENCE
 2813:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 2822:d=8 hl=2 l= 8 prim: OBJECT :prime256v1
 2832:d=7 hl=2 l= 66 prim: BIT STRING
 2900:d=6 hl=2 l= 13 cons: cont [3]
 2902:d=7 hl=2 l= 11 cons: SEQUENCE
 2904:d=8 hl=2 l= 9 cons: SEQUENCE
 2906:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 2911:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000
 2915:d=5 hl=2 l= 10 cons: SEQUENCE
 2917:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA384
 2927:d=5 hl=2 l= 105 prim: BIT STRING
 3034:d=4 hl=4 l= 617 cons: SEQUENCE
 3038:d=5 hl=4 l= 495 cons: SEQUENCE
 3042:d=6 hl=2 l= 3 cons: cont [0]
 3044:d=7 hl=2 l= 1 prim: INTEGER :02
 3047:d=6 hl=2 l= 1 prim: INTEGER :03
 3050:d=6 hl=2 l= 10 cons: SEQUENCE
 3052:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3062:d=6 hl=2 l= 109 cons: SEQUENCE
 3064:d=7 hl=2 l= 18 cons: SET
 3066:d=8 hl=2 l= 16 cons: SEQUENCE
 3068:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3080:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3084:d=7 hl=2 l= 25 cons: SET
 3086:d=8 hl=2 l= 23 cons: SEQUENCE
 3088:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3100:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3111:d=7 hl=2 l= 60 cons: SET
 3113:d=8 hl=2 l= 58 cons: SEQUENCE
 3115:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3120:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 3173:d=6 hl=2 l= 30 cons: SEQUENCE
 3175:d=7 hl=2 l= 13 prim: UTCTIME :190113225444Z
 3190:d=7 hl=2 l= 13 prim: UTCTIME :210112225444Z
 3205:d=6 hl=2 l= 109 cons: SEQUENCE
 3207:d=7 hl=2 l= 18 cons: SET
 3209:d=8 hl=2 l= 16 cons: SEQUENCE
 3211:d=9 hl=2 l= 10 prim: OBJECT :domainComponent

Pritikin, et al. Expires December 19, 2019 [Page 91]

Internet-Draft BRSKI June 2019

 3223:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3227:d=7 hl=2 l= 25 cons: SET
 3229:d=8 hl=2 l= 23 cons: SEQUENCE
 3231:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3243:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3254:d=7 hl=2 l= 60 cons: SET
 3256:d=8 hl=2 l= 58 cons: SEQUENCE
 3258:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3263:d=9 hl=2 l= 51 prim: UTF8STRING :fountain-test.example.co
 3316:d=6 hl=2 l= 118 cons: SEQUENCE
 3318:d=7 hl=2 l= 16 cons: SEQUENCE
 3320:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 3329:d=8 hl=2 l= 5 prim: OBJECT :secp384r1
 3336:d=7 hl=2 l= 98 prim: BIT STRING
 3436:d=6 hl=2 l= 99 cons: cont [3]
 3438:d=7 hl=2 l= 97 cons: SEQUENCE
 3440:d=8 hl=2 l= 15 cons: SEQUENCE
 3442:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 3447:d=9 hl=2 l= 1 prim: BOOLEAN :255
 3450:d=9 hl=2 l= 5 prim: OCTET STRING [HEX DUMP]:30030101FF
 3457:d=8 hl=2 l= 14 cons: SEQUENCE
 3459:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Key Usage
 3464:d=9 hl=2 l= 1 prim: BOOLEAN :255
 3467:d=9 hl=2 l= 4 prim: OCTET STRING [HEX DUMP]:03020106
 3473:d=8 hl=2 l= 29 cons: SEQUENCE
 3475:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Ident
 3480:d=9 hl=2 l= 22 prim: OCTET STRING [HEX DUMP]:0414B9A5F6CB11
 3504:d=8 hl=2 l= 31 cons: SEQUENCE
 3506:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Ide
 3511:d=9 hl=2 l= 24 prim: OCTET STRING [HEX DUMP]:30168014B9A5F6
 3537:d=5 hl=2 l= 10 cons: SEQUENCE
 3539:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3549:d=5 hl=2 l= 104 prim: BIT STRING
 3655:d=3 hl=4 l= 332 cons: SET
 3659:d=4 hl=4 l= 328 cons: SEQUENCE
 3663:d=5 hl=2 l= 1 prim: INTEGER :01
 3666:d=5 hl=2 l= 118 cons: SEQUENCE
 3668:d=6 hl=2 l= 113 cons: SEQUENCE
 3670:d=7 hl=2 l= 18 cons: SET
 3672:d=8 hl=2 l= 16 cons: SEQUENCE
 3674:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3686:d=9 hl=2 l= 2 prim: IA5STRING :ca
 3690:d=7 hl=2 l= 25 cons: SET
 3692:d=8 hl=2 l= 23 cons: SEQUENCE
 3694:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 3706:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 3717:d=7 hl=2 l= 64 cons: SET
 3719:d=8 hl=2 l= 62 cons: SEQUENCE

Pritikin, et al. Expires December 19, 2019 [Page 92]

Internet-Draft BRSKI June 2019

 3721:d=9 hl=2 l= 3 prim: OBJECT :commonName
 3726:d=9 hl=2 l= 55 prim: UTF8STRING :#<SystemVariable:0x00000
 3783:d=6 hl=2 l= 1 prim: INTEGER :02
 3786:d=5 hl=2 l= 11 cons: SEQUENCE
 3788:d=6 hl=2 l= 9 prim: OBJECT :sha256
 3799:d=5 hl=2 l= 105 cons: cont [0]
 3801:d=6 hl=2 l= 24 cons: SEQUENCE
 3803:d=7 hl=2 l= 9 prim: OBJECT :contentType
 3814:d=7 hl=2 l= 11 cons: SET
 3816:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 3827:d=6 hl=2 l= 28 cons: SEQUENCE
 3829:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 3840:d=7 hl=2 l= 15 cons: SET
 3842:d=8 hl=2 l= 13 prim: UTCTIME :190515212555Z
 3857:d=6 hl=2 l= 47 cons: SEQUENCE
 3859:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 3870:d=7 hl=2 l= 34 cons: SET
 3872:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:50508CC996CD93
 3906:d=5 hl=2 l= 10 cons: SEQUENCE
 3908:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 3918:d=5 hl=2 l= 71 prim: OCTET STRING [HEX DUMP]:3045022006D85B

D.2.3. MASA to Registrar

 The MASA will return a voucher to the registrar, to be relayed to the
 pledge.

Pritikin, et al. Expires December 19, 2019 [Page 93]

Internet-Draft BRSKI June 2019

 -----BEGIN CMS-----
 MIIGsgYJKoZIhvcNAQcCoIIGozCCBp8CAQExDTALBglghkgBZQMEAgEwggNABgkq
 hkiG9w0BBwGgggMxBIIDLXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0
 aW9uIjoibG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMTktMDUtMTZUMDI6NTE6NDIu
 Njk3KzAwOjAwIiwic2VyaWFsLW51bWJlciI6IjAwLWQwLWU1LTAyLTAwLTJkIiwi
 bm9uY2UiOiJHWmUtT2pvZXJwS0VNNFNNN1N6UzlnIiwicGlubmVkLWRvbWFpbi1j
 ZXJ0IjoiTUlJQjBUQ0NBVmFnQXdJQkFnSUJBakFLQmdncWhrak9QUVFEQXpCeE1S
 SXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZn
 bHpZVzVrWld4dFlXNHhRREErQmdOVkJBTU1OeU04VTNsemRHVnRWbUZ5YVdGaWJH
 VTZNSGd3TURBd01EQXdOR1k1TVRGaE1ENGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFX
 NGdRMEV3SGhjTk1UY3hNVEEzTWpNME5USTRXaGNOTVRreE1UQTNNak0wTlRJNFdq
 QkRNUkl3RUFZS0NaSW1pWlB5TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pB
 RVpGZ2x6WVc1a1pXeHRZVzR4RWpBUUJnTlZCQU1NQ1d4dlkyRnNhRzl6ZERCWk1C
 TUdCeXFHU000OUFnRUdDQ3FHU000OUF3RUhBMElBQkpabFVISTB1cC9sM2VaZjl2
 Q0JiK2xJbm9FTUVnYzdSbytYWkN0akFJMENEMWZKZkpSL2hJeXlEbUhXeVlpTkZi
 UkNIOWZ5YXJma3pnWDRwMHpUaXpxakRUQUxNQWtHQTFVZEV3UUNNQUF3Q2dZSUtv
 Wkl6ajBFQXdNRGFRQXdaZ0l4QUxRTU51cmY4dHY1MGxST0Q1RFFYSEVPSkpOVzNR
 VjJnOVFFZERTazJNWStBb1NyQlNtR1NOamg0b2xFT2hFdUxnSXhBSjRuV2ZOdytC
 amJabUtpSWlVRWNUd0hNaEdWWGFNSFkvRjduMzl3d0tjQkJTT25kTlBxQ3BPRUxs
 NmJxM0NacVE9PSJ9faCCAfUwggHxMIIBeKADAgECAgQjzIkTMAoGCCqGSM49BAMC
 ME0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1h
 bjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQTAeFw0xOTA0MjMyMzIxMDda
 Fw0xOTA1MjQwOTIxMDdaMGYxDzANBgNVBAYTBkNhbmFkYTESMBAGA1UECgwJU2Fu
 ZGVsbWFuMRMwEQYDVQQLDApob25leWR1a2VzMSowKAYDVQQDDCFtYXNhLmhvbmV5
 ZHVrZXMuc2FuZGVsbWFuLmNhIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAAQ1
 /2UdVp8zVmgADoBNql7LcPlJsEaaVAogYEqABikNOkoTO3oPjIQfNBxtGfRFzBXx
 gihzkTH58r8SW1L/Mej8AFqhB4SZyyjmWURdzD71Ju0M+tRritWf7T+QGaE+fcWj
 EDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwOMlNOMNYEZo4yLW4
 iRltDL8uirmjMdtVmmVYzqYHSindjP0a3pXQkQZ5LLARoSRWAjBTxsnv6ya5HpZI
 IWcspDPZGlOSDPm7nuRJSDkgWqevxLI4+9nmIhsfMBsDvz1DJhAxggFMMIIBSAIB
 ATBVME0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRl
 bG1hbjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQQIEI8yJEzALBglghkgB
 ZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEP
 Fw0xOTA1MTYwMjUxNDJaMC8GCSqGSIb3DQEJBDEiBCCYRh4i21QjEjEk8leRLSVA
 x/EVY5g1bM40QM21oR4c2DAKBggqhkjOPQQDAgRoMGYCMQCYYOiSbIlED4nAN0iL
 e4S8ixWAZ9SXpGv77bB/G4fTTVTN35mnAeYBfeNfhC6/kOECMQDqlkCmwQJQDdEL
 asj1ISinJ/FnZjjgOMz9MXOmGNGIfw9v2VBb9mVyhsOSMcqlVig=
 -----END CMS-----

 file: examples/voucher_00-D0-E5-02-00-2D.pkcs

 The ASN1 decoding of the artifact:

 0:d=0 hl=4 l=1714 cons: SEQUENCE
 4:d=1 hl=2 l= 9 prim: OBJECT :pkcs7-signedData
 15:d=1 hl=4 l=1699 cons: cont [0]
 19:d=2 hl=4 l=1695 cons: SEQUENCE
 23:d=3 hl=2 l= 1 prim: INTEGER :01

Pritikin, et al. Expires December 19, 2019 [Page 94]

Internet-Draft BRSKI June 2019

 26:d=3 hl=2 l= 13 cons: SET
 28:d=4 hl=2 l= 11 cons: SEQUENCE
 30:d=5 hl=2 l= 9 prim: OBJECT :sha256
 41:d=3 hl=4 l= 832 cons: SEQUENCE
 45:d=4 hl=2 l= 9 prim: OBJECT :pkcs7-data
 56:d=4 hl=4 l= 817 cons: cont [0]
 60:d=5 hl=4 l= 813 prim: OCTET STRING :{"ietf-voucher:voucher":
 877:d=3 hl=4 l= 501 cons: cont [0]
 881:d=4 hl=4 l= 497 cons: SEQUENCE
 885:d=5 hl=4 l= 376 cons: SEQUENCE
 889:d=6 hl=2 l= 3 cons: cont [0]
 891:d=7 hl=2 l= 1 prim: INTEGER :02
 894:d=6 hl=2 l= 4 prim: INTEGER :23CC8913
 900:d=6 hl=2 l= 10 cons: SEQUENCE
 902:d=7 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 912:d=6 hl=2 l= 77 cons: SEQUENCE
 914:d=7 hl=2 l= 18 cons: SET
 916:d=8 hl=2 l= 16 cons: SEQUENCE
 918:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 930:d=9 hl=2 l= 2 prim: IA5STRING :ca
 934:d=7 hl=2 l= 25 cons: SET
 936:d=8 hl=2 l= 23 cons: SEQUENCE
 938:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 950:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 961:d=7 hl=2 l= 28 cons: SET
 963:d=8 hl=2 l= 26 cons: SEQUENCE
 965:d=9 hl=2 l= 3 prim: OBJECT :commonName
 970:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Highway CA
 991:d=6 hl=2 l= 30 cons: SEQUENCE
 993:d=7 hl=2 l= 13 prim: UTCTIME :190423232107Z
 1008:d=7 hl=2 l= 13 prim: UTCTIME :190524092107Z
 1023:d=6 hl=2 l= 102 cons: SEQUENCE
 1025:d=7 hl=2 l= 15 cons: SET
 1027:d=8 hl=2 l= 13 cons: SEQUENCE
 1029:d=9 hl=2 l= 3 prim: OBJECT :countryName
 1034:d=9 hl=2 l= 6 prim: PRINTABLESTRING :Canada
 1042:d=7 hl=2 l= 18 cons: SET
 1044:d=8 hl=2 l= 16 cons: SEQUENCE
 1046:d=9 hl=2 l= 3 prim: OBJECT :organizationName
 1051:d=9 hl=2 l= 9 prim: UTF8STRING :Sandelman
 1062:d=7 hl=2 l= 19 cons: SET
 1064:d=8 hl=2 l= 17 cons: SEQUENCE
 1066:d=9 hl=2 l= 3 prim: OBJECT :organizationalUnitName
 1071:d=9 hl=2 l= 10 prim: UTF8STRING :honeydukes
 1083:d=7 hl=2 l= 42 cons: SET
 1085:d=8 hl=2 l= 40 cons: SEQUENCE
 1087:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1092:d=9 hl=2 l= 33 prim: UTF8STRING :masa.honeydukes.sandelma

Pritikin, et al. Expires December 19, 2019 [Page 95]

Internet-Draft BRSKI June 2019

 1127:d=6 hl=2 l= 118 cons: SEQUENCE
 1129:d=7 hl=2 l= 16 cons: SEQUENCE
 1131:d=8 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
 1140:d=8 hl=2 l= 5 prim: OBJECT :secp384r1
 1147:d=7 hl=2 l= 98 prim: BIT STRING
 1247:d=6 hl=2 l= 16 cons: cont [3]
 1249:d=7 hl=2 l= 14 cons: SEQUENCE
 1251:d=8 hl=2 l= 12 cons: SEQUENCE
 1253:d=9 hl=2 l= 3 prim: OBJECT :X509v3 Basic Constraints
 1258:d=9 hl=2 l= 1 prim: BOOLEAN :255
 1261:d=9 hl=2 l= 2 prim: OCTET STRING [HEX DUMP]:3000
 1265:d=5 hl=2 l= 10 cons: SEQUENCE
 1267:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1277:d=5 hl=2 l= 103 prim: BIT STRING
 1382:d=3 hl=4 l= 332 cons: SET
 1386:d=4 hl=4 l= 328 cons: SEQUENCE
 1390:d=5 hl=2 l= 1 prim: INTEGER :01
 1393:d=5 hl=2 l= 85 cons: SEQUENCE
 1395:d=6 hl=2 l= 77 cons: SEQUENCE
 1397:d=7 hl=2 l= 18 cons: SET
 1399:d=8 hl=2 l= 16 cons: SEQUENCE
 1401:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 1413:d=9 hl=2 l= 2 prim: IA5STRING :ca
 1417:d=7 hl=2 l= 25 cons: SET
 1419:d=8 hl=2 l= 23 cons: SEQUENCE
 1421:d=9 hl=2 l= 10 prim: OBJECT :domainComponent
 1433:d=9 hl=2 l= 9 prim: IA5STRING :sandelman
 1444:d=7 hl=2 l= 28 cons: SET
 1446:d=8 hl=2 l= 26 cons: SEQUENCE
 1448:d=9 hl=2 l= 3 prim: OBJECT :commonName
 1453:d=9 hl=2 l= 19 prim: UTF8STRING :Unstrung Highway CA
 1474:d=6 hl=2 l= 4 prim: INTEGER :23CC8913
 1480:d=5 hl=2 l= 11 cons: SEQUENCE
 1482:d=6 hl=2 l= 9 prim: OBJECT :sha256
 1493:d=5 hl=2 l= 105 cons: cont [0]
 1495:d=6 hl=2 l= 24 cons: SEQUENCE
 1497:d=7 hl=2 l= 9 prim: OBJECT :contentType
 1508:d=7 hl=2 l= 11 cons: SET
 1510:d=8 hl=2 l= 9 prim: OBJECT :pkcs7-data
 1521:d=6 hl=2 l= 28 cons: SEQUENCE
 1523:d=7 hl=2 l= 9 prim: OBJECT :signingTime
 1534:d=7 hl=2 l= 15 cons: SET
 1536:d=8 hl=2 l= 13 prim: UTCTIME :190516025142Z
 1551:d=6 hl=2 l= 47 cons: SEQUENCE
 1553:d=7 hl=2 l= 9 prim: OBJECT :messageDigest
 1564:d=7 hl=2 l= 34 cons: SET
 1566:d=8 hl=2 l= 32 prim: OCTET STRING [HEX DUMP]:98461E22DB5423
 1600:d=5 hl=2 l= 10 cons: SEQUENCE

Pritikin, et al. Expires December 19, 2019 [Page 96]

Internet-Draft BRSKI June 2019

 1602:d=6 hl=2 l= 8 prim: OBJECT :ecdsa-with-SHA256
 1612:d=5 hl=2 l= 104 prim: OCTET STRING [HEX DUMP]:30660231009860

Authors’ Addresses

 Max Pritikin
 Cisco

 Email: pritikin@cisco.com

 Michael C. Richardson
 Sandelman Software Works

 Email: mcr+ietf@sandelman.ca
 URI: http://www.sandelman.ca/

 Michael H. Behringer

 Email: Michael.H.Behringer@gmail.com

 Steinthor Bjarnason
 Arbor Networks

 Email: sbjarnason@arbor.net

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

Pritikin, et al. Expires December 19, 2019 [Page 97]

Network Working Group C. Bormann
Internet-Draft Universitaet Bremen TZI
Intended status: Standards Track B. Carpenter, Ed.
Expires: January 8, 2018 Univ. of Auckland
 B. Liu, Ed.
 Huawei Technologies Co., Ltd
 July 7, 2017

 A Generic Autonomic Signaling Protocol (GRASP)
 draft-ietf-anima-grasp-15

Abstract

 This document specifies the GeneRic Autonomic Signaling Protocol
 (GRASP), which enables autonomic nodes and autonomic service agents
 to dynamically discover peers, to synchronize state with each other,
 and to negotiate parameter settings with each other. GRASP depends
 on an external security environment that is described elsewhere. The
 technical objectives and parameters for specific application
 scenarios are to be described in separate documents. Appendices
 briefly discuss requirements for the protocol and existing protocols
 with comparable features.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 8, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Bormann, et al. Expires January 8, 2018 [Page 1]

Internet-Draft GRASP July 2017

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. GRASP Protocol Overview 5
 2.1. Terminology . 5
 2.2. High Level Deployment Model 7
 2.3. High Level Design . 8
 2.4. Quick Operating Overview 11
 2.5. GRASP Protocol Basic Properties and Mechanisms 12
 2.5.1. Required External Security Mechanism 12
 2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP 13
 2.5.3. Transport Layer Usage 14
 2.5.4. Discovery Mechanism and Procedures 15
 2.5.5. Negotiation Procedures 19
 2.5.6. Synchronization and Flooding Procedures 21
 2.6. GRASP Constants . 23
 2.7. Session Identifier (Session ID) 24
 2.8. GRASP Messages . 25
 2.8.1. Message Overview 25
 2.8.2. GRASP Message Format 25
 2.8.3. Message Size . 26
 2.8.4. Discovery Message 26
 2.8.5. Discovery Response Message 28
 2.8.6. Request Messages 29
 2.8.7. Negotiation Message 30
 2.8.8. Negotiation End Message 30
 2.8.9. Confirm Waiting Message 30
 2.8.10. Synchronization Message 31
 2.8.11. Flood Synchronization Message 31
 2.8.12. Invalid Message 32
 2.8.13. No Operation Message 33
 2.9. GRASP Options . 33
 2.9.1. Format of GRASP Options 33
 2.9.2. Divert Option . 33
 2.9.3. Accept Option . 34
 2.9.4. Decline Option 34
 2.9.5. Locator Options 34
 2.10. Objective Options . 36
 2.10.1. Format of Objective Options 36
 2.10.2. Objective flags 38

Bormann, et al. Expires January 8, 2018 [Page 2]

Internet-Draft GRASP July 2017

 2.10.3. General Considerations for Objective Options 38
 2.10.4. Organizing of Objective Options 39
 2.10.5. Experimental and Example Objective Options 41
 3. Implementation Status [RFC Editor: please remove] 41
 3.1. BUPT C++ Implementation 41
 3.2. Python Implementation 42
 4. Security Considerations 42
 5. CDDL Specification of GRASP 45
 6. IANA Considerations . 47
 7. Acknowledgements . 49
 8. References . 49
 8.1. Normative References 49
 8.2. Informative References 50
 Appendix A. Open Issues [RFC Editor: This section should be
 empty. Please remove] 54
 Appendix B. Closed Issues [RFC Editor: Please remove] 54
 Appendix C. Change log [RFC Editor: Please remove] 62
 Appendix D. Example Message Formats 70
 D.1. Discovery Example . 71
 D.2. Flood Example . 71
 D.3. Synchronization Example 71
 D.4. Simple Negotiation Example 72
 D.5. Complete Negotiation Example 72
 Appendix E. Requirement Analysis of Discovery, Synchronization
 and Negotiation 73
 E.1. Requirements for Discovery 73
 E.2. Requirements for Synchronization and Negotiation
 Capability . 75
 E.3. Specific Technical Requirements 77
 Appendix F. Capability Analysis of Current Protocols 78
 Authors’ Addresses . 81

1. Introduction

 The success of the Internet has made IP-based networks bigger and
 more complicated. Large-scale ISP and enterprise networks have
 become more and more problematic for human based management. Also,
 operational costs are growing quickly. Consequently, there are
 increased requirements for autonomic behavior in the networks.
 General aspects of autonomic networks are discussed in [RFC7575] and
 [RFC7576].

 One approach is to largely decentralize the logic of network
 management by migrating it into network elements. A reference model
 for autonomic networking on this basis is given in
 [I-D.ietf-anima-reference-model]. The reader should consult this
 document to understand how various autonomic components fit together.
 In order to fulfill autonomy, devices that embody Autonomic Service

Bormann, et al. Expires January 8, 2018 [Page 3]

Internet-Draft GRASP July 2017

 Agents (ASAs, [RFC7575]) have specific signaling requirements. In
 particular they need to discover each other, to synchronize state
 with each other, and to negotiate parameters and resources directly
 with each other. There is no limitation on the types of parameters
 and resources concerned, which can include very basic information
 needed for addressing and routing, as well as anything else that
 might be configured in a conventional non-autonomic network. The
 atomic unit of discovery, synchronization or negotiation is referred
 to as a technical objective, i.e, a configurable parameter or set of
 parameters (defined more precisely in Section 2.1).

 Negotiation is an iterative process, requiring multiple message
 exchanges forming a closed loop between the negotiating entities. In
 fact, these entities are ASAs, normally but not necessarily in
 different network devices. State synchronization, when needed, can
 be regarded as a special case of negotiation, without iteration.
 Both negotiation and synchronization must logically follow discovery.
 More details of the requirements are found in Appendix E.
 Section 2.3 describes a behavior model for a protocol intended to
 support discovery, synchronization and negotiation. The design of
 GeneRic Autonomic Signaling Protocol (GRASP) in Section 2 of this
 document is based on this behavior model. The relevant capabilities
 of various existing protocols are reviewed in Appendix F.

 The proposed discovery mechanism is oriented towards synchronization
 and negotiation objectives. It is based on a neighbor discovery
 process on the local link, but also supports diversion to peers on
 other links. There is no assumption of any particular form of
 network topology. When a device starts up with no pre-configuration,
 it has no knowledge of the topology. The protocol itself is capable
 of being used in a small and/or flat network structure such as a
 small office or home network as well as in a large professionally
 managed network. Therefore, the discovery mechanism needs to be able
 to allow a device to bootstrap itself without making any prior
 assumptions about network structure.

 Because GRASP can be used as part of a decision process among
 distributed devices or between networks, it must run in a secure and
 strongly authenticated environment.

 In realistic deployments, not all devices will support GRASP.
 Therefore, some autonomic service agents will directly manage a group
 of non-autonomic nodes, and other non-autonomic nodes will be managed
 traditionally. Such mixed scenarios are not discussed in this
 specification.

Bormann, et al. Expires January 8, 2018 [Page 4]

Internet-Draft GRASP July 2017

2. GRASP Protocol Overview

2.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119] when they appear in ALL CAPS. When these words are not in
 ALL CAPS (such as "should" or "Should"), they have their usual
 English meanings, and are not to be interpreted as [RFC2119] key
 words.

 This document uses terminology defined in [RFC7575].

 The following additional terms are used throughout this document:

 o Discovery: a process by which an ASA discovers peers according to
 a specific discovery objective. The discovery results may be
 different according to the different discovery objectives. The
 discovered peers may later be used as negotiation counterparts or
 as sources of synchronization data.

 o Negotiation: a process by which two ASAs interact iteratively to
 agree on parameter settings that best satisfy the objectives of
 both ASAs.

 o State Synchronization: a process by which ASAs interact to receive
 the current state of parameter values stored in other ASAs. This
 is a special case of negotiation in which information is sent but
 the ASAs do not request their peers to change parameter settings.
 All other definitions apply to both negotiation and
 synchronization.

 o Technical Objective (usually abbreviated as Objective): A
 technical objective is a data structure, whose main contents are a
 name and a value. The value consists of a single configurable
 parameter or a set of parameters of some kind. The exact format
 of an objective is defined in Section 2.10.1. An objective occurs
 in three contexts: Discovery, Negotiation and Synchronization.
 Normally, a given objective will not occur in negotiation and
 synchronization contexts simultaneously.

 * One ASA may support multiple independent objectives.

 * The parameter(s) in the value of a given objective apply to a
 specific service or function or action. They may in principle
 be anything that can be set to a specific logical, numerical or
 string value, or a more complex data structure, by a network

Bormann, et al. Expires January 8, 2018 [Page 5]

Internet-Draft GRASP July 2017

 node. Each node is expected to contain one or more ASAs which
 may each manage subsidiary non-autonomic nodes.

 * Discovery Objective: an objective in the process of discovery.
 Its value may be undefined.

 * Synchronization Objective: an objective whose specific
 technical content needs to be synchronized among two or more
 ASAs. Thus, each ASA will maintain its own copy of the
 objective.

 * Negotiation Objective: an objective whose specific technical
 content needs to be decided in coordination with another ASA.
 Again, each ASA will maintain its own copy of the objective.

 A detailed discussion of objectives, including their format, is
 found in Section 2.10.

 o Discovery Initiator: an ASA that starts discovery by sending a
 discovery message referring to a specific discovery objective.

 o Discovery Responder: a peer that either contains an ASA supporting
 the discovery objective indicated by the discovery initiator, or
 caches the locator(s) of the ASA(s) supporting the objective. It
 sends a Discovery Response, as described later.

 o Synchronization Initiator: an ASA that starts synchronization by
 sending a request message referring to a specific synchronization
 objective.

 o Synchronization Responder: a peer ASA which responds with the
 value of a synchronization objective.

 o Negotiation Initiator: an ASA that starts negotiation by sending a
 request message referring to a specific negotiation objective.

 o Negotiation Counterpart: a peer with which the Negotiation
 Initiator negotiates a specific negotiation objective.

 o GRASP Instance: This refers to an instantiation of a GRASP
 protocol engine, likely including multiple threads or processes as
 well as dynamic data structures such as a discovery cache, running
 in a given security environment on a single device.

 o GRASP Core: This refers to the code and shared data structures of
 a GRASP instance, which will communicate with individual ASAs via
 a suitable Application Programming Interface (API).

Bormann, et al. Expires January 8, 2018 [Page 6]

Internet-Draft GRASP July 2017

 o Interface or GRASP Interface: Unless otherwise stated, these refer
 to a network interface - which might be physical or virtual - that
 a specific instance of GRASP is currently using. A device might
 have other interfaces that are not used by GRASP and which are
 outside the scope of the autonomic network.

2.2. High Level Deployment Model

 A GRASP implementation will be part of the Autonomic Networking
 Infrastructure (ANI) in an autonomic node, which must also provide an
 appropriate security environment. In accordance with
 [I-D.ietf-anima-reference-model], this SHOULD be the Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane]. As a
 result, all autonomic nodes in the ACP are able to trust each other.
 It is expected that GRASP will access the ACP by using a typical
 socket programming interface and the ACP will make available only
 network interfaces within the autonomic network. If there is no ACP,
 the considerations described in Section 2.5.1 apply.

 There will also be one or more Autonomic Service Agents (ASAs). In
 the minimal case of a single-purpose device, these components might
 be fully integrated with GRASP and the ACP. A more common model is
 expected to be a multi-purpose device capable of containing several
 ASAs, such as a router or large switch. In this case it is expected
 that the ACP, GRASP and the ASAs will be implemented as separate
 processes, which are able to support asynchronous and simultaneous
 operations, for example by multi-threading.

 In some scenarios, a limited negotiation model might be deployed
 based on a limited trust relationship such as that between two
 administrative domains. ASAs might then exchange limited information
 and negotiate some particular configurations.

 GRASP is explicitly designed to operate within a single addressing
 realm. Its discovery and flooding mechanisms do not support
 autonomic operations that cross any form of address translator or
 upper layer proxy.

 A suitable Application Programming Interface (API) will be needed
 between GRASP and the ASAs. In some implementations, ASAs would run
 in user space with a GRASP library providing the API, and this
 library would in turn communicate via system calls with core GRASP
 functions. Details of the API are out of scope for the present
 document. For further details of possible deployment models, see
 [I-D.ietf-anima-reference-model].

 An instance of GRASP must be aware of the network interfaces it will
 use, and of the appropriate global-scope and link-local addresses.

Bormann, et al. Expires January 8, 2018 [Page 7]

Internet-Draft GRASP July 2017

 In the presence of the ACP, such information will be available from
 the adjacency table discussed in [I-D.ietf-anima-reference-model].
 In other cases, GRASP must determine such information for itself.
 Details depend on the device and operating system. In the rest of
 this document, the terms ’interfaces’ or ’GRASP interfaces’ refers
 only to the set of network interfaces that a specific instance of
 GRASP is currently using.

 Because GRASP needs to work with very high reliability, especially
 during bootstrapping and during fault conditions, it is essential
 that every implementation continues to operate in adverse conditions.
 For example, discovery failures, or any kind of socket exception at
 any time, must not cause irrecoverable failures in GRASP itself, and
 must return suitable error codes through the API so that ASAs can
 also recover.

 GRASP must not depend upon non-volatile data storage. All run time
 error conditions, and events such as address renumbering, network
 interface failures, and CPU sleep/wake cycles, must be handled in
 such a way that GRASP will still operate correctly and securely
 (Section 2.5.1) afterwards.

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. Possible exceptions are mentioned below.

2.3. High Level Design

 This section describes the behavior model and general design of
 GRASP, supporting discovery, synchronization and negotiation, to act
 as a platform for different technical objectives.

 o A generic platform:

 The protocol design is generic and independent of the
 synchronization or negotiation contents. The technical contents
 will vary according to the various technical objectives and the
 different pairs of counterparts.

 o Normally, a single main instance of the GRASP protocol engine will
 exist in an autonomic node, and each ASA will run as an
 independent asynchronous process. However, scenarios where
 multiple instances of GRASP run in a single node, perhaps with
 different security properties, are possible (Section 2.5.2). In
 this case, each instance MUST listen independently for GRASP link-
 local multicasts, and all instances MUST be woken by each such
 multicast, in order for discovery and flooding to work correctly.

Bormann, et al. Expires January 8, 2018 [Page 8]

Internet-Draft GRASP July 2017

 o Security infrastructure:

 As noted above, the protocol itself has no built-in security
 functionality, and relies on a separate secure infrastructure.

 o Discovery, synchronization and negotiation are designed together:

 The discovery method and the synchronization and negotiation
 methods are designed in the same way and can be combined when this
 is useful, allowing a rapid mode of operation described in
 Section 2.5.4. These processes can also be performed
 independently when appropriate.

 * Thus, for some objectives, especially those concerned with
 application layer services, another discovery mechanism such as
 the future DNS Service Discovery [RFC7558] MAY be used. The
 choice is left to the designers of individual ASAs.

 o A uniform pattern for technical objectives:

 The synchronization and negotiation objectives are defined
 according to a uniform pattern. The values that they contain
 could be carried either in a simple binary format or in a complex
 object format. The basic protocol design uses the Concise Binary
 Object Representation (CBOR) [RFC7049], which is readily
 extensible for unknown future requirements.

 o A flexible model for synchronization:

 GRASP supports synchronization between two nodes, which could be
 used repeatedly to perform synchronization among a small number of
 nodes. It also supports an unsolicited flooding mode when large
 groups of nodes, possibly including all autonomic nodes, need data
 for the same technical objective.

 * There may be some network parameters for which a more
 traditional flooding mechanism such as DNCP [RFC7787] is
 considered more appropriate. GRASP can coexist with DNCP.

 o A simple initiator/responder model for negotiation:

 Multi-party negotiations are very complicated to model and cannot
 readily be guaranteed to converge. GRASP uses a simple bilateral
 model and can support multi-party negotiations by indirect steps.

Bormann, et al. Expires January 8, 2018 [Page 9]

Internet-Draft GRASP July 2017

 o Organizing of synchronization or negotiation content:

 The technical content transmitted by GRASP will be organized
 according to the relevant function or service. The objectives for
 different functions or services are kept separate, because they
 may be negotiated or synchronized with different counterparts or
 have different response times. Thus a normal arrangement would be
 a single ASA managing a small set of closely related objectives,
 with a version of that ASA in each relevant autonomic node.
 Further discussion of this aspect is out of scope for the current
 document.

 o Requests and responses in negotiation procedures:

 The initiator can negotiate a specific negotiation objective with
 relevant counterpart ASAs. It can request relevant information
 from a counterpart so that it can coordinate its local
 configuration. It can request the counterpart to make a matching
 configuration. It can request simulation or forecast results by
 sending some dry run conditions.

 Beyond the traditional yes/no answer, the responder can reply with
 a suggested alternative value for the objective concerned. This
 would start a bi-directional negotiation ending in a compromise
 between the two ASAs.

 o Convergence of negotiation procedures:

 To enable convergence, when a responder suggests a new value or
 condition in a negotiation step reply, it should be as close as
 possible to the original request or previous suggestion. The
 suggested value of later negotiation steps should be chosen
 between the suggested values from the previous two steps. GRASP
 provides mechanisms to guarantee convergence (or failure) in a
 small number of steps, namely a timeout and a maximum number of
 iterations.

 o Extensibility:

 GRASP intentionally does not have a version number, and can be
 extended by adding new message types and options. The Invalid
 Message (M_INVALID) will be used to signal that an implementation
 does not recognize a message or option sent by another

Bormann, et al. Expires January 8, 2018 [Page 10]

Internet-Draft GRASP July 2017

 implementation. In normal use, new semantics will be added by
 defining new synchronization or negotiation objectives.

2.4. Quick Operating Overview

 An instance of GRASP is expected to run as a separate core module,
 providing an API (such as [I-D.liu-anima-grasp-api]) to interface to
 various ASAs. These ASAs may operate without special privilege,
 unless they need it for other reasons (such as configuring IP
 addresses or manipulating routing tables).

 The GRASP mechanisms used by the ASA are built around GRASP
 objectives defined as data structures containing administrative
 information such as the objective’s unique name, and its current
 value. The format and size of the value is not restricted by the
 protocol, except that it must be possible to serialize it for
 transmission in CBOR, which is no restriction at all in practice.

 GRASP provides the following mechanisms:

 o A discovery mechanism (M_DISCOVERY, M_RESPONSE), by which an ASA
 can discover other ASAs supporting a given objective.

 o A negotiation request mechanism (M_REQ_NEG), by which an ASA can
 start negotiation of an objective with a counterpart ASA. Once a
 negotiation has started, the process is symmetrical, and there is
 a negotiation step message (M_NEGOTIATE) for each ASA to use in
 turn. Two other functions support negotiating steps (M_WAIT,
 M_END).

 o A synchronization mechanism (M_REQ_SYN), by which an ASA can
 request the current value of an objective from a counterpart ASA.
 With this, there is a corresponding response function (M_SYNCH)
 for an ASA that wishes to respond to synchronization requests.

 o A flood mechanism (M_FLOOD), by which an ASA can cause the current
 value of an objective to be flooded throughout the autonomic
 network so that any ASA can receive it. One application of this
 is to act as an announcement, avoiding the need for discovery of a
 widely applicable objective.

 Some example messages and simple message flows are provided in
 Appendix D.

Bormann, et al. Expires January 8, 2018 [Page 11]

Internet-Draft GRASP July 2017

2.5. GRASP Protocol Basic Properties and Mechanisms

2.5.1. Required External Security Mechanism

 GRASP does not specify transport security because it is meant to be
 adapted to different environments. Every solution adopting GRASP
 MUST specify a security and transport substrate used by GRASP in that
 solution.

 The substrate MUST enforce sending and receiving GRASP messages only
 between members of a mutually trusted group running GRASP. Each
 group member is an instance of GRASP. The group members are nodes of
 a connected graph. The group and graph is created by the security
 and transport substrate and called the GRASP domain. The substrate
 must support unicast messages between any group members and (link-
 local) multicast messages between adjacent group members. It must
 deny messages between group members and non group members. With this
 model, security is provided by enforcing group membership, but any
 member of the trusted group can attack the entire network until
 revoked.

 Substrates MUST use cryptographic member authentication and message
 integrity for GRASP messages. This can be end-to-end or hop-by-hop
 across the domain. The security and transport substrate MUST provide
 mechanisms to remove untrusted members from the group.

 If the substrate does not mandate and enforce GRASP message
 encryption then any service using GRASP in such a solution MUST
 provide protection and encryption for message elements whose exposure
 could constitute an attack vector.

 The security and transport substrate for GRASP in the ANI is the ACP.
 Unless otherwise noted, we assume this security and transport
 substrate in the remainder of this document. The ACP does mandate
 the use of encryption; therefore GRASP in the ANI can rely on GRASP
 message being encrypted. The GRASP domain is the ACP: all nodes in
 an autonomic domain connected by encrypted virtual links formed by
 the ACP. The ACP uses hop-by-hop security (authentication/
 encryption) of messages. Removal of nodes relies on standard PKI
 certificate revocation or expiry of sufficiently short lived
 certificates. Refer to [I-D.ietf-anima-autonomic-control-plane] for
 more details.

 As mentioned in Section 2.3, some GRASP operations might be performed
 across an administrative domain boundary by mutual agreement, without
 the benefit of an ACP. Such operations MUST be confined to a
 separate instance of GRASP with its own copy of all GRASP data
 structures running across a separate GRASP domain with a security and

Bormann, et al. Expires January 8, 2018 [Page 12]

Internet-Draft GRASP July 2017

 transport substrate. In the most simple case, each point-to-point
 interdomain GRASP peering could be a separate domain and the security
 and transport substrate could be built using transport or network
 layer security protocols. This is subject to future specifications.

 An exception to the requirements for the security and transport
 substrate exists for highly constrained subsets of GRASP meant to
 support the establishment of a security and transport substrate,
 described in the following section.

2.5.2. Discovery Unsolicited Link-Local (DULL) GRASP

 Some services may need to use insecure GRASP discovery, response and
 flood messages without being able to use pre-existing security
 associations, for example as part of discovery for establishing
 security associations such as a security substrate for GRASP.

 Such operations being intrinsically insecure, they need to be
 confined to link-local use to minimize the risk of malicious actions.
 Possible examples include discovery of candidate ACP neighbors
 [I-D.ietf-anima-autonomic-control-plane], discovery of bootstrap
 proxies [I-D.ietf-anima-bootstrapping-keyinfra] or perhaps
 initialization services in networks using GRASP without being fully
 autonomic (e.g., no ACP). Such usage MUST be limited to link-local
 operations on a single interface and MUST be confined to a separate
 insecure instance of GRASP with its own copy of all GRASP data
 structures. This instance is nicknamed DULL - Discovery Unsolicited
 Link-Local.

 The detailed rules for the DULL instance of GRASP are as follows:

 o An initiator MAY send Discovery or Flood Synchronization link-
 local multicast messages which MUST have a loop count of 1, to
 prevent off-link operations. Other unsolicited GRASP message
 types MUST NOT be sent.

 o A responder MUST silently discard any message whose loop count is
 not 1.

 o A responder MUST silently discard any message referring to a GRASP
 Objective that is not directly part of a service that requires
 this insecure mode.

 o A responder MUST NOT relay any multicast messages.

 o A Discovery Response MUST indicate a link-local address.

 o A Discovery Response MUST NOT include a Divert option.

Bormann, et al. Expires January 8, 2018 [Page 13]

Internet-Draft GRASP July 2017

 o A node MUST silently discard any message whose source address is
 not link-local.

 To minimize traffic possibly observed by third parties, GRASP traffic
 SHOULD be minimized by using only Flood Synchronization to announce
 objectives and their associated locators, rather than by using
 Discovery and Response. Further details are out of scope for this
 document

2.5.3. Transport Layer Usage

 All GRASP messages, after they are serialized as a CBOR byte string,
 are transmitted as such directly over the transport protocol in use.
 The transport protocol(s) for a GRASP domain are specified by the
 security and transport substrate as introduced in Section 2.5.1.

 GRASP discovery and flooding messages are designed for GRASP domain
 wide flooding through hop-by-hop link-local multicast forwarding
 between adjacent GRASP nodes. The GRASP security and transport
 substrate needs to specify how these link local multicasts are
 transported. This can be unreliable transport (UDP) but it SHOULD be
 reliable transport (e.g., TCP).

 If the substrate specifies an unreliable transport such as UDP for
 discovery and flooding messages, then it MUST NOT use IP
 fragmentation because of its loss characteristic, especially in
 multi-hop flooding. GRASP MUST then enforce at the user API level a
 limit to the size of discovery and flooding messages, so that no
 fragmentation can occur. For IPv6 transport this means that those
 messages must be at most 1280 bytes sized IPv6 packets (unless there
 is a known larger minimum link MTU across the whole GRASP domain).

 All other GRASP messages are unicast beteween group members of the
 GRASP domain. These MUST use a reliable transport protocol because
 GRASP itself does not provide for error detection, retransmission or
 flow control. Unless otherwise specified by the security and
 transport substrate, TCP MUST be used.

 The security and transport substrate for GRASP in the ANI is the ACP.
 Unless otherwise noted, we assume this security and transport
 substrate in the remainder of this document when describing GRASPs
 message transport. In the ACP, TCP is used for GRASP unicast
 messages. GRASP discovery and flooding messages also use TCP: These
 link-local messages are forwarded by replicating them to all adjacent
 GRASP nodes on the link via TCP connections to those adjacent GRASP
 nodes. Because of this, GRASP in the ANI has no limitations on the
 size of discovery and flooding messages with respect to fragmentation

Bormann, et al. Expires January 8, 2018 [Page 14]

Internet-Draft GRASP July 2017

 issues. UDP is used in the ANI with GRASP only with DULL when the
 ACP is built to discover ACP/GRASP neighbors on links.

 For link-local UDP multicast, the GRASP protocol listens to the well-
 known GRASP Listen Port (Section 2.6). Transport connections for
 Discovery and Flooding on relay nodes must terminate in GRASP
 instances (eg: GRASP ASAs) so that link-local multicast, hop-by-hop
 flooding of M_DISCOVERY and M_FLOOD and hop-by-hop forwarding of
 M_RESPONSE and caching of those responses along the path work
 correctly.

 Unicast transport connections used for synchronization and
 negotiation can terminate directly in ASAs that implement objectives
 and therefore this traffic does not need to pass through GRASP
 instances. For this, the ASA listens on its own dynamically assigned
 ports, which are communicated to its peers during discovery.
 Alternatively, the GRASP instance can also terminate the unicast
 transport connections and pass the traffic from/to the ASA if that is
 preferrable in some implementation (eg: to better decouple ASAs from
 network connections).

2.5.4. Discovery Mechanism and Procedures

2.5.4.1. Separated discovery and negotiation mechanisms

 Although discovery and negotiation or synchronization are defined
 together in GRASP, they are separate mechanisms. The discovery
 process could run independently from the negotiation or
 synchronization process. Upon receiving a Discovery (Section 2.8.4)
 message, the recipient node should return a response message in which
 it either indicates itself as a discovery responder or diverts the
 initiator towards another more suitable ASA. However, this response
 may be delayed if the recipient needs to relay the discovery onwards,
 as described below.

 The discovery action (M_DISCOVERY) will normally be followed by a
 negotiation (M_REQ_NEG) or synchronization (M_REQ_SYN) action. The
 discovery results could be utilized by the negotiation protocol to
 decide which ASA the initiator will negotiate with.

 The initiator of a discovery action for a given objective need not be
 capable of responding to that objective as a Negotiation Counterpart,
 as a Synchronization Responder or as source for flooding. For
 example, an ASA might perform discovery even if it only wishes to act
 a Synchronization Initiator or Negotiation Initiator. Such an ASA
 does not itself need to respond to discovery messages.

Bormann, et al. Expires January 8, 2018 [Page 15]

Internet-Draft GRASP July 2017

 It is also entirely possible to use GRASP discovery without any
 subsequent negotiation or synchronization action. In this case, the
 discovered objective is simply used as a name during the discovery
 process and any subsequent operations between the peers are outside
 the scope of GRASP.

2.5.4.2. Discovery Overview

 A complete discovery process will start with a multicast (of
 M_DISCOVERY) on the local link. On-link neighbors supporting the
 discovery objective will respond directly (with M_RESPONSE). A
 neighbor with multiple interfaces may respond with a cached discovery
 response. If it has no cached response, it will relay the discovery
 on its other GRASP interfaces. If a node receiving the relayed
 discovery supports the discovery objective, it will respond to the
 relayed discovery. If it has a cached response, it will respond with
 that. If not, it will repeat the discovery process, which thereby
 becomes iterative. The loop count and timeout will ensure that the
 process ends. Further details are given below.

 A Discovery message MAY be sent unicast to a peer node, which SHOULD
 then proceed exactly as if the message had been multicast, except
 that when TCP is used, the response will be on the same socket as the
 query. However, this mode does not guarantee successful discovery in
 the general case.

2.5.4.3. Discovery Procedures

 Discovery starts as an on-link operation. The Divert option can tell
 the discovery initiator to contact an off-link ASA for that discovery
 objective. If the security and transport substrate of the GRASP
 domain (see Section 2.5.3) uses UDP link-local multicast then the
 discovery initiator sends these to the ALL_GRASP_NEIGHBORS link-local
 multicast address (Section 2.6) and and all GRASP nodes need to
 listen to this address to act as discovery responder. Because this
 port is unique in a device, this is a function of the GRASP instance
 and not of an individual ASA. As a result, each ASA will need to
 register the objectives that it supports with the local GRASP
 instance.

 If an ASA in a neighbor device supports the requested discovery
 objective, the device SHOULD respond to the link-local multicast with
 a unicast Discovery Response message (Section 2.8.5) with locator
 option(s), unless it is temporarily unavailable. Otherwise, if the
 neighbor has cached information about an ASA that supports the
 requested discovery objective (usually because it discovered the same
 objective before), it SHOULD respond with a Discovery Response
 message with a Divert option pointing to the appropriate Discovery

Bormann, et al. Expires January 8, 2018 [Page 16]

Internet-Draft GRASP July 2017

 Responder. However, it SHOULD NOT respond with a cached response on
 an interface if it learnt that information from the same interface,
 because the peer in question will answer directly if still
 operational.

 If a device has no information about the requested discovery
 objective, and is not acting as a discovery relay (see below) it MUST
 silently discard the Discovery message.

 The discovery initiator MUST set a reasonable timeout on the
 discovery process. A suggested value is 100 milliseconds multiplied
 by the loop count embedded in the objective.

 If no discovery response is received within the timeout, the
 Discovery message MAY be repeated, with a newly generated Session ID
 (Section 2.7). An exponential backoff SHOULD be used for subsequent
 repetitions, to limit the load during busy periods. The details of
 the backoff algorithm will depend on the use case for the objective
 concerned but MUST be consistent with the recommendations in
 [RFC8085] for low data-volume multicast. Frequent repetition might
 be symptomatic of a denial of service attack.

 After a GRASP device successfully discovers a locator for a Discovery
 Responder supporting a specific objective, it SHOULD cache this
 information, including the interface index [RFC3493] via which it was
 discovered. This cache record MAY be used for future negotiation or
 synchronization, and the locator SHOULD be passed on when appropriate
 as a Divert option to another Discovery Initiator.

 The cache mechanism MUST include a lifetime for each entry. The
 lifetime is derived from a time-to-live (ttl) parameter in each
 Discovery Response message. Cached entries MUST be ignored or
 deleted after their lifetime expires. In some environments,
 unplanned address renumbering might occur. In such cases, the
 lifetime SHOULD be short compared to the typical address lifetime.
 The discovery mechanism needs to track the node’s current address to
 ensure that Discovery Responses always indicate the correct address.

 If multiple Discovery Responders are found for the same objective,
 they SHOULD all be cached, unless this creates a resource shortage.
 The method of choosing between multiple responders is an
 implementation choice. This choice MUST be available to each ASA but
 the GRASP implementation SHOULD provide a default choice.

 Because Discovery Responders will be cached in a finite cache, they
 might be deleted at any time. In this case, discovery will need to
 be repeated. If an ASA exits for any reason, its locator might still

Bormann, et al. Expires January 8, 2018 [Page 17]

Internet-Draft GRASP July 2017

 be cached for some time, and attempts to connect to it will fail.
 ASAs need to be robust in these circumstances.

2.5.4.4. Discovery Relaying

 A GRASP instance with multiple link-layer interfaces (typically
 running in a router) MUST support discovery on all GRASP interfaces.
 We refer to this as a ’relaying instance’.

 DULL Instances (Section 2.5.2) are always single-interface instances
 and therefore MUST NOT perform discovery relaying.

 If a relaying instance receives a Discovery message on a given
 interface for a specific objective that it does not support and for
 which it has not previously cached a Discovery Responder, it MUST
 relay the query by re-issuing a new Discovery message as a link-local
 multicast on its other GRASP interfaces.

 The relayed discovery message MUST have the same Session ID and
 Initiator field as the incoming (see Section 2.8.4). The Initiator
 IP address field is only used to allow for disambiguation of the
 Session ID and is never used to address Response packets. Response
 packets are sent back to the relaying instance, not the original
 initiator.

 The M_DISCOVERY message does not encode the transport address of the
 originator or relay. Response packets must therefore be sent to the
 transport layer address of the connection on which the M_DISCOVERY
 message was received. If the M_DISCOVERY was relayed via a reliable
 hop-by-hop transport connection, the response is simply sent back via
 the same connection.

 If the M_DISCOVERY was relayed via link-local (eg: UDP) multicast,
 the response is sent back via a reliable hop-by-hop transport
 connection with the same port number as the source port of the link-
 local multicast. Therefore, if link-local multicast is used and
 M_RESPONSE messages are required (which is the case in almost all
 GRASP instances except for the limited use of DULL instances in the
 ANI), GRASP needs to be able to bind to one port number on UDP from
 which to originate the link-local multicast M_DISCOVERY messages and
 the same port number on the reliable hop-by-hop transport (eg: TCP by
 default) to be able to respond to transport connections from
 responders that want to send M_RESPONSE messages back. Note that
 this port does not need to be the GRASP_LISTEN_PORT.

 The relaying instance MUST decrement the loop count within the
 objective, and MUST NOT relay the Discovery message if the result is
 zero. Also, it MUST limit the total rate at which it relays

Bormann, et al. Expires January 8, 2018 [Page 18]

Internet-Draft GRASP July 2017

 discovery messages to a reasonable value, in order to mitigate
 possible denial of service attacks. For example, the rate limit
 could be set to a small multiple of the observed rate of discovery
 messages during normal operation. The relaying instance MUST cache
 the Session ID value and initiator address of each relayed Discovery
 message until any Discovery Responses have arrived or the discovery
 process has timed out. To prevent loops, it MUST NOT relay a
 Discovery message which carries a given cached Session ID and
 initiator address more than once. These precautions avoid discovery
 loops and mitigate potential overload.

 Since the relay device is unaware of the timeout set by the original
 initiator it SHOULD set a suitable timeout for the relayed discovery.
 A suggested value is 100 milliseconds multiplied by the remaining
 loop count.

 The discovery results received by the relaying instance MUST in turn
 be sent as a Discovery Response message to the Discovery message that
 caused the relay action.

2.5.4.5. Rapid Mode (Discovery with Negotiation or Synchronization)

 A Discovery message MAY include an Objective option. This allows a
 rapid mode of negotiation (Section 2.5.5.1) or synchronization
 (Section 2.5.6.3). Rapid mode is currently limited to a single
 objective for simplicity of design and implementation. A possible
 future extension is to allow multiple objectives in rapid mode for
 greater efficiency.

2.5.5. Negotiation Procedures

 A negotiation initiator opens a transport connection to a counterpart
 ASA using the address, protocol and port obtained during discovery.
 It then sends a negotiation request (using M_REQ_NEG) to the
 counterpart, including a specific negotiation objective. It may
 request the negotiation counterpart to make a specific configuration.
 Alternatively, it may request a certain simulation or forecast result
 by sending a dry run configuration. The details, including the
 distinction between a dry run and a live configuration change, will
 be defined separately for each type of negotiation objective. Any
 state associated with a dry run operation, such as temporarily
 reserving a resource for subsequent use in a live run, is entirely a
 matter for the designer of the ASA concerned.

 Each negotiation session as a whole is subject to a timeout (default
 GRASP_DEF_TIMEOUT milliseconds, Section 2.6), initialised when the
 request is sent (see Section 2.8.6). If no reply message of any kind
 is received within the timeout, the negotiation request MAY be

Bormann, et al. Expires January 8, 2018 [Page 19]

Internet-Draft GRASP July 2017

 repeated, with a newly generated Session ID (Section 2.7). An
 exponential backoff SHOULD be used for subsequent repetitions. The
 details of the backoff algorithm will depend on the use case for the
 objective concerned.

 If the counterpart can immediately apply the requested configuration,
 it will give an immediate positive (O_ACCEPT) answer (using M_END).
 This will end the negotiation phase immediately. Otherwise, it will
 negotiate (using M_NEGOTIATE). It will reply with a proposed
 alternative configuration that it can apply (typically, a
 configuration that uses fewer resources than requested by the
 negotiation initiator). This will start a bi-directional negotiation
 (using M_NEGOTIATE) to reach a compromise between the two ASAs.

 The negotiation procedure is ended when one of the negotiation peers
 sends a Negotiation Ending (M_END) message, which contains an accept
 (O_ACCEPT) or decline (O_DECLINE) option and does not need a response
 from the negotiation peer. Negotiation may also end in failure
 (equivalent to a decline) if a timeout is exceeded or a loop count is
 exceeded. When the procedure ends for whatever reason, the transport
 connection SHOULD be closed. A transport session failure is treated
 as a negotiation failure.

 A negotiation procedure concerns one objective and one counterpart.
 Both the initiator and the counterpart may take part in simultaneous
 negotiations with various other ASAs, or in simultaneous negotiations
 about different objectives. Thus, GRASP is expected to be used in a
 multi-threaded mode or its logical equivalent. Certain negotiation
 objectives may have restrictions on multi-threading, for example to
 avoid over-allocating resources.

 Some configuration actions, for example wavelength switching in
 optical networks, might take considerable time to execute. The ASA
 concerned needs to allow for this by design, but GRASP does allow for
 a peer to insert latency in a negotiation process if necessary
 (Section 2.8.9, M_WAIT).

2.5.5.1. Rapid Mode (Discovery/Negotiation Linkage)

 A Discovery message MAY include a Negotiation Objective option. In
 this case it is as if the initiator sent the sequence M_DISCOVERY,
 immediately followed by M_REQ_NEG. This has implications for the
 construction of the GRASP core, as it must carefully pass the
 contents of the Negotiation Objective option to the ASA so that it
 may evaluate the objective directly. When a Negotiation Objective
 option is present the ASA replies with an M_NEGOTIATE message (or
 M_END with O_ACCEPT if it is immediately satisfied with the

Bormann, et al. Expires January 8, 2018 [Page 20]

Internet-Draft GRASP July 2017

 proposal), rather than with an M_RESPONSE. However, if the recipient
 node does not support rapid mode, discovery will continue normally.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Negotiation message
 arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid negotiation
 function SHOULD be disabled by default.

2.5.6. Synchronization and Flooding Procedures

2.5.6.1. Unicast Synchronization

 A synchronization initiator opens a transport connection to a
 counterpart ASA using the address, protocol and port obtained during
 discovery. It then sends a synchronization request (using M_REQ_SYN)
 to the counterpart, including a specific synchronization objective.
 The counterpart responds with a Synchronization message (M_SYNCH,
 Section 2.8.10) containing the current value of the requested
 synchronization objective. No further messages are needed and the
 transport connection SHOULD be closed. A transport session failure
 is treated as a synchronization failure.

 If no reply message of any kind is received within a given timeout
 (default GRASP_DEF_TIMEOUT milliseconds, Section 2.6), the
 synchronization request MAY be repeated, with a newly generated
 Session ID (Section 2.7). An exponential backoff SHOULD be used for
 subsequent repetitions. The details of the backoff algorithm will
 depend on the use case for the objective concerned.

2.5.6.2. Flooding

 In the case just described, the message exchange is unicast and
 concerns only one synchronization objective. For large groups of
 nodes requiring the same data, synchronization flooding is available.
 For this, a flooding initiator MAY send an unsolicited Flood
 Synchronization message containing one or more Synchronization
 Objective option(s), if and only if the specification of those
 objectives permits it. This is sent as a multicast message to the
 ALL_GRASP_NEIGHBORS multicast address (Section 2.6).

 Receiving flood multicasts is a function of the GRASP core, as in the
 case of discovery multicasts (Section 2.5.4.3).

Bormann, et al. Expires January 8, 2018 [Page 21]

Internet-Draft GRASP July 2017

 To ensure that flooding does not result in a loop, the originator of
 the Flood Synchronization message MUST set the loop count in the
 objectives to a suitable value (the default is GRASP_DEF_LOOPCT).
 Also, a suitable mechanism is needed to avoid excessive multicast
 traffic. This mechanism MUST be defined as part of the specification
 of the synchronization objective(s) concerned. It might be a simple
 rate limit or a more complex mechanism such as the Trickle algorithm
 [RFC6206].

 A GRASP device with multiple link-layer interfaces (typically a
 router) MUST support synchronization flooding on all GRASP
 interfaces. If it receives a multicast Flood Synchronization message
 on a given interface, it MUST relay it by re-issuing a Flood
 Synchronization message as a link-local multicast on its other GRASP
 interfaces. The relayed message MUST have the same Session ID as the
 incoming message and MUST be tagged with the IP address of its
 original initiator.

 Link-layer Flooding is supported by GRASP by setting the loop count
 to 1, and sending with a link-local source address. Floods with
 link-local source addresses and a loop count other than 1 are
 invalid, and such messages MUST be discarded.

 The relaying device MUST decrement the loop count within the first
 objective, and MUST NOT relay the Flood Synchronization message if
 the result is zero. Also, it MUST limit the total rate at which it
 relays Flood Synchronization messages to a reasonable value, in order
 to mitigate possible denial of service attacks. For example, the
 rate limit could be set to a small multiple of the observed rate of
 flood messages during normal operation. The relaying device MUST
 cache the Session ID value and initiator address of each relayed
 Flood Synchronization message for a time not less than twice
 GRASP_DEF_TIMEOUT milliseconds. To prevent loops, it MUST NOT relay
 a Flood Synchronization message which carries a given cached Session
 ID and initiator address more than once. These precautions avoid
 synchronization loops and mitigate potential overload.

 Note that this mechanism is unreliable in the case of sleeping nodes,
 or new nodes that join the network, or nodes that rejoin the network
 after a fault. An ASA that initiates a flood SHOULD repeat the flood
 at a suitable frequency, which MUST be consistent with the
 recommendations in [RFC8085] for low data-volume multicast. The ASA
 SHOULD also act as a synchronization responder for the objective(s)
 concerned. Thus nodes that require an objective subject to flooding
 can either wait for the next flood or request unicast synchronization
 for that objective.

Bormann, et al. Expires January 8, 2018 [Page 22]

Internet-Draft GRASP July 2017

 The multicast messages for synchronization flooding are subject to
 the security rules in Section 2.5.1. In practice this means that
 they MUST NOT be transmitted and MUST be ignored on receipt unless
 there is an operational ACP or equivalent strong security in place.
 However, because of the security weakness of link-local multicast
 (Section 4), synchronization objectives that are flooded SHOULD NOT
 contain unencrypted private information and SHOULD be validated by
 the recipient ASA.

2.5.6.3. Rapid Mode (Discovery/Synchronization Linkage)

 A Discovery message MAY include a Synchronization Objective option.
 In this case the Discovery message also acts as a Request
 Synchronization message to indicate to the Discovery Responder that
 it could directly reply to the Discovery Initiator with a
 Synchronization message Section 2.8.10 with synchronization data for
 rapid processing, if the discovery target supports the corresponding
 synchronization objective. The design implications are similar to
 those discussed in Section 2.5.5.1.

 It is possible that a Discovery Response will arrive from a responder
 that does not support rapid mode, before such a Synchronization
 message arrives. In this case, rapid mode will not occur.

 This rapid mode could reduce the interactions between nodes so that a
 higher efficiency could be achieved. However, a network in which
 some nodes support rapid mode and others do not will have complex
 timing-dependent behaviors. Therefore, the rapid synchronization
 function SHOULD be configured off by default and MAY be configured on
 or off by Intent.

2.6. GRASP Constants

 o ALL_GRASP_NEIGHBORS

 A link-local scope multicast address used by a GRASP-enabled
 device to discover GRASP-enabled neighbor (i.e., on-link) devices.
 All devices that support GRASP are members of this multicast
 group.

 * IPv6 multicast address: TBD1

 * IPv4 multicast address: TBD2

 o GRASP_LISTEN_PORT (TBD3)

 A well-known UDP user port that every GRASP-enabled network device
 MUST listen to for link-local multicasts when UDP is used for

Bormann, et al. Expires January 8, 2018 [Page 23]

Internet-Draft GRASP July 2017

 M_DISCOVERY or M_FLOOD messages in the GRASP instance This user
 port MAY also be used to listen for TCP or UDP unicast messages in
 a simple implementation of GRASP (Section 2.5.3).

 o GRASP_DEF_TIMEOUT (60000 milliseconds)

 The default timeout used to determine that an operation has failed
 to complete.

 o GRASP_DEF_LOOPCT (6)

 The default loop count used to determine that a negotiation has
 failed to complete, and to avoid looping messages.

 o GRASP_DEF_MAX_SIZE (2048)

 The default maximum message size in bytes.

2.7. Session Identifier (Session ID)

 This is an up to 32-bit opaque value used to distinguish multiple
 sessions between the same two devices. A new Session ID MUST be
 generated by the initiator for every new Discovery, Flood
 Synchronization or Request message. All responses and follow-up
 messages in the same discovery, synchronization or negotiation
 procedure MUST carry the same Session ID.

 The Session ID SHOULD have a very low collision rate locally. It
 MUST be generated by a pseudo-random number generator (PRNG) using a
 locally generated seed which is unlikely to be used by any other
 device in the same network. The PRNG SHOULD be cryptographically
 strong [RFC4086]. When allocating a new Session ID, GRASP MUST check
 that the value is not already in use and SHOULD check that it has not
 been used recently, by consulting a cache of current and recent
 sessions. In the unlikely event of a clash, GRASP MUST generate a
 new value.

 However, there is a finite probability that two nodes might generate
 the same Session ID value. For that reason, when a Session ID is
 communicated via GRASP, the receiving node MUST tag it with the
 initiator’s IP address to allow disambiguation. In the highly
 unlikely event of two peers opening sessions with the same Session ID
 value, this tag will allow the two sessions to be distinguished.
 Multicast GRASP messages and their responses, which may be relayed
 between links, therefore include a field that carries the initiator’s
 global IP address.

Bormann, et al. Expires January 8, 2018 [Page 24]

Internet-Draft GRASP July 2017

 There is a highly unlikely race condition in which two peers start
 simultaneous negotiation sessions with each other using the same
 Session ID value. Depending on various implementation choices, this
 might lead to the two sessions being confused. See Section 2.8.6 for
 details of how to avoid this.

2.8. GRASP Messages

2.8.1. Message Overview

 This section defines the GRASP message format and message types.
 Message types not listed here are reserved for future use.

 The messages currently defined are:

 Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).

 Request Negotiation, Negotiation, Confirm Waiting and Negotiation
 End (M_REQ_NEG, M_NEGOTIATE, M_WAIT, M_END).

 Request Synchronization, Synchronization, and Flood
 Synchronization (M_REQ_SYN, M_SYNCH, M_FLOOD.

 No Operation and Invalid (M_NOOP, M_INVALID).

2.8.2. GRASP Message Format

 GRASP messages share an identical header format and a variable format
 area for options. GRASP message headers and options are transmitted
 in Concise Binary Object Representation (CBOR) [RFC7049]. In this
 specification, they are described using CBOR data definition language
 (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl]. Fragmentary CDDL is
 used to describe each item in this section. A complete and normative
 CDDL specification of GRASP is given in Section 5, including
 constants such as message types.

 Every GRASP message, except the No Operation message, carries a
 Session ID (Section 2.7). Options are then presented serially in the
 options field.

 In fragmentary CDDL, every GRASP message follows the pattern:

Bormann, et al. Expires January 8, 2018 [Page 25]

Internet-Draft GRASP July 2017

 grasp-message = (message .within message-structure) / noop-message

 message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

 MESSAGE_TYPE = 1..255
 session-id = 0..4294967295 ;up to 32 bits
 grasp-option = any

 The MESSAGE_TYPE indicates the type of the message and thus defines
 the expected options. Any options received that are not consistent
 with the MESSAGE_TYPE SHOULD be silently discarded.

 The No Operation (noop) message is described in Section 2.8.13.

 The various MESSAGE_TYPE values are defined in Section 5.

 All other message elements are described below and formally defined
 in Section 5.

 If an unrecognized MESSAGE_TYPE is received in a unicast message, an
 Invalid message (Section 2.8.12) MAY be returned. Otherwise the
 message MAY be logged and MUST be discarded. If an unrecognized
 MESSAGE_TYPE is received in a multicast message, it MAY be logged and
 MUST be silently discarded.

2.8.3. Message Size

 GRASP nodes MUST be able to receive unicast messages of at least
 GRASP_DEF_MAX_SIZE bytes. GRASP nodes MUST NOT send unicast messages
 longer than GRASP_DEF_MAX_SIZE bytes unless a longer size is
 explicitly allowed for the objective concerned. For example, GRASP
 negotiation itself could be used to agree on a longer message size.

 The message parser used by GRASP should be configured to know about
 the GRASP_DEF_MAX_SIZE, or any larger negotiated message size, so
 that it may defend against overly long messages.

 The maximum size of multicast messages (M_DISCOVERY and M_FLOOD)
 depends on the link layer technology or link adaptation layer in use.

2.8.4. Discovery Message

 In fragmentary CDDL, a Discovery message follows the pattern:

 discovery-message = [M_DISCOVERY, session-id, initiator, objective]

Bormann, et al. Expires January 8, 2018 [Page 26]

Internet-Draft GRASP July 2017

 A discovery initiator sends a Discovery message to initiate a
 discovery process for a particular objective option.

 The discovery initiator sends all Discovery messages via UDP to port
 GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS multicast
 address on each link-layer interface in use by GRASP. It then
 listens for unicast TCP responses on a given port, and stores the
 discovery results (including responding discovery objectives and
 corresponding unicast locators).

 The listening port used for TCP MUST be the same port as used for
 sending the Discovery UDP multicast, on a given interface. In an
 implementation with a single GRASP instance in a node this MAY be
 GRASP_LISTEN_PORT. To support multiple instances in the same node,
 the GRASP discovery mechanism in each instance needs to find, for
 each interface, a dynamic port that it can bind to for both sending
 UDP link-local multicast and listening for TCP, before initiating any
 discovery.

 The ’initiator’ field in the message is a globally unique IP address
 of the initiator, for the sole purpose of disambiguating the Session
 ID in other nodes. If for some reason the initiator does not have a
 globally unique IP address, it MUST use a link-local address for this
 purpose that is highly likely to be unique, for example using
 [RFC7217]. Determination of a node’s globally unique IP address is
 implementation-dependent.

 A Discovery message MUST include exactly one of the following:

 o a discovery objective option (Section 2.10.1). Its loop count
 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT). If the discovery initiator
 requires only on-link responses, the loop count MUST be set to 1.

 o a negotiation objective option (Section 2.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiatior with
 a Negotiation message for rapid processing, if it could act as the
 corresponding negotiation counterpart. The sender of such a
 Discovery message MUST initialize a negotiation timer and loop
 count in the same way as a Request Negotiation message
 (Section 2.8.6).

 o a synchronization objective option (Section 2.10.1). This is used
 both for the purpose of discovery and to indicate to the discovery
 target that it MAY directly reply to the discovery initiator with
 a Synchronization message for rapid processing, if it could act as
 the corresponding synchronization counterpart. Its loop count

Bormann, et al. Expires January 8, 2018 [Page 27]

Internet-Draft GRASP July 2017

 MUST be set to a suitable value to prevent discovery loops
 (default value is GRASP_DEF_LOOPCT).

 As mentioned in Section 2.5.4.2, a Discovery message MAY be sent
 unicast to a peer node, which SHOULD then proceed exactly as if the
 message had been multicast.

2.8.5. Discovery Response Message

 In fragmentary CDDL, a Discovery Response message follows the
 pattern:

 response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective)]

 ttl = 0..4294967295 ; in milliseconds

 A node which receives a Discovery message SHOULD send a Discovery
 Response message if and only if it can respond to the discovery.

 It MUST contain the same Session ID and initiator as the Discovery
 message.

 It MUST contain a time-to-live (ttl) for the validity of the
 response, given as a positive integer value in milliseconds. Zero
 implies a value significantly greater than GRASP_DEF_TIMEOUT
 milliseconds (Section 2.6). A suggested value is ten times that
 amount.

 It MAY include a copy of the discovery objective from the
 Discovery message.

 It is sent to the sender of the Discovery message via TCP at the port
 used to send the Discovery message (as explained in Section 2.8.4).
 In the case of a relayed Discovery message, the Discovery Response is
 thus sent to the relay, not the original initiator.

 In all cases, the transport session SHOULD be closed after sending
 the Discovery Response. A transport session failure is treated as no
 response.

 If the responding node supports the discovery objective of the
 discovery, it MUST include at least one kind of locator option
 (Section 2.9.5) to indicate its own location. A sequence of multiple
 kinds of locator options (e.g. IP address option and FQDN option) is
 also valid.

Bormann, et al. Expires January 8, 2018 [Page 28]

Internet-Draft GRASP July 2017

 If the responding node itself does not support the discovery
 objective, but it knows the locator of the discovery objective, then
 it SHOULD respond to the discovery message with a divert option
 (Section 2.9.2) embedding a locator option or a combination of
 multiple kinds of locator options which indicate the locator(s) of
 the discovery objective.

 More details on the processing of Discovery Responses are given in
 Section 2.5.4.

2.8.6. Request Messages

 In fragmentary CDDL, Request Negotiation and Request Synchronization
 messages follow the patterns:

 request-negotiation-message = [M_REQ_NEG, session-id, objective]

 request-synchronization-message = [M_REQ_SYN, session-id, objective]

 A negotiation or synchronization requesting node sends the
 appropriate Request message to the unicast address of the negotiation
 or synchronization counterpart, using the appropriate protocol and
 port numbers (selected from the discovery result). If the discovery
 result is an FQDN, it will be resolved first.

 A Request message MUST include the relevant objective option. In the
 case of Request Negotiation, the objective option MUST include the
 requested value.

 When an initiator sends a Request Negotiation message, it MUST
 initialize a negotiation timer for the new negotiation thread. The
 default is GRASP_DEF_TIMEOUT milliseconds. Unless this timeout is
 modified by a Confirm Waiting message (Section 2.8.9), the initiator
 will consider that the negotiation has failed when the timer expires.

 Similarly, when an initiator sends a Request Synchronization, it
 SHOULD initialize a synchronization timer. The default is
 GRASP_DEF_TIMEOUT milliseconds. The initiator will consider that
 synchronization has failed if there is no response before the timer
 expires.

 When an initiator sends a Request message, it MUST initialize the
 loop count of the objective option with a value defined in the
 specification of the option or, if no such value is specified, with
 GRASP_DEF_LOOPCT.

Bormann, et al. Expires January 8, 2018 [Page 29]

Internet-Draft GRASP July 2017

 If a node receives a Request message for an objective for which no
 ASA is currently listening, it MUST immediately close the relevant
 socket to indicate this to the initiator. This is to avoid
 unnecessary timeouts if, for example, an ASA exits prematurely but
 the GRASP core is listening on its behalf.

 To avoid the highly unlikely race condition in which two nodes
 simultaneously request sessions with each other using the same
 Session ID (Section 2.7), when a node receives a Request message, it
 MUST verify that the received Session ID is not already locally
 active. In case of a clash, it MUST discard the Request message, in
 which case the initiator will detect a timeout.

2.8.7. Negotiation Message

 In fragmentary CDDL, a Negotiation message follows the pattern:

 negotiate-message = [M_NEGOTIATE, session-id, objective]

 A negotiation counterpart sends a Negotiation message in response to
 a Request Negotiation message, a Negotiation message, or a Discovery
 message in Rapid Mode. A negotiation process MAY include multiple
 steps.

 The Negotiation message MUST include the relevant Negotiation
 Objective option, with its value updated according to progress in the
 negotiation. The sender MUST decrement the loop count by 1. If the
 loop count becomes zero the message MUST NOT be sent. In this case
 the negotiation session has failed and will time out.

2.8.8. Negotiation End Message

 In fragmentary CDDL, a Negotiation End message follows the pattern:

 end-message = [M_END, session-id, accept-option / decline-option]

 A negotiation counterpart sends an Negotiation End message to close
 the negotiation. It MUST contain either an accept or a decline
 option, defined in Section 2.9.3 and Section 2.9.4. It could be sent
 either by the requesting node or the responding node.

2.8.9. Confirm Waiting Message

 In fragmentary CDDL, a Confirm Waiting message follows the pattern:

 wait-message = [M_WAIT, session-id, waiting-time]
 waiting-time = 0..4294967295 ; in milliseconds

Bormann, et al. Expires January 8, 2018 [Page 30]

Internet-Draft GRASP July 2017

 A responding node sends a Confirm Waiting message to ask the
 requesting node to wait for a further negotiation response. It might
 be that the local process needs more time or that the negotiation
 depends on another triggered negotiation. This message MUST NOT
 include any other options. When received, the waiting time value
 overwrites and restarts the current negotiation timer
 (Section 2.8.6).

 The responding node SHOULD send a Negotiation, Negotiation End or
 another Confirm Waiting message before the negotiation timer expires.
 If not, when the initiator’s timer expires, the initiator MUST treat
 the negotiation procedure as failed.

2.8.10. Synchronization Message

 In fragmentary CDDL, a Synchronization message follows the pattern:

 synch-message = [M_SYNCH, session-id, objective]

 A node which receives a Request Synchronization, or a Discovery
 message in Rapid Mode, sends back a unicast Synchronization message
 with the synchronization data, in the form of a GRASP Option for the
 specific synchronization objective present in the Request
 Synchronization.

2.8.11. Flood Synchronization Message

 In fragmentary CDDL, a Flood Synchronization message follows the
 pattern:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

 ttl = 0..4294967295 ; in milliseconds

 A node MAY initiate flooding by sending an unsolicited Flood
 Synchronization Message with synchronization data. This MAY be sent
 to port GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS
 multicast address, in accordance with the rules in Section 2.5.6.

 The initiator address is provided, as described for Discovery
 messages (Section 2.8.4), only to disambiguate the Session ID.

 The message MUST contain a time-to-live (ttl) for the validity of
 the contents, given as a positive integer value in milliseconds.
 There is no default; zero indicates an indefinite lifetime.

Bormann, et al. Expires January 8, 2018 [Page 31]

Internet-Draft GRASP July 2017

 The synchronization data are in the form of GRASP Option(s) for
 specific synchronization objective(s). The loop count(s) MUST be
 set to a suitable value to prevent flood loops (default value is
 GRASP_DEF_LOOPCT).

 Each objective option MAY be followed by a locator option
 associated with the flooded objective. In its absence, an empty
 option MUST be included to indicate a null locator.

 A node that receives a Flood Synchronization message MUST cache the
 received objectives for use by local ASAs. Each cached objective
 MUST be tagged with the locator option sent with it, or with a null
 tag if an empty locator option was sent. If a subsequent Flood
 Synchronization message carrying an objective with same name and the
 same tag, the corresponding cached copy of the objective MUST be
 overwritten. If a subsequent Flood Synchronization message carrying
 an objective with same name arrives with a different tag, a new
 cached entry MUST be created.

 Note: the purpose of this mechanism is to allow the recipient of
 flooded values to distinguish between different senders of the same
 objective, and if necessary communicate with them using the locator,
 protocol and port included in the locator option. Many objectives
 will not need this mechanism, so they will be flooded with a null
 locator.

 Cached entries MUST be ignored or deleted after their lifetime
 expires.

2.8.12. Invalid Message

 In fragmentary CDDL, an Invalid message follows the pattern:

 invalid-message = [M_INVALID, session-id, ?any]

 This message MAY be sent by an implementation in response to an
 incoming unicast message that it considers invalid. The session-id
 MUST be copied from the incoming message. The content SHOULD be
 diagnostic information such as a partial copy of the invalid message
 up to the maximum message size. An M_INVALID message MAY be silently
 ignored by a recipient. However, it could be used in support of
 extensibility, since it indicates that the remote node does not
 support a new or obsolete message or option.

 An M_INVALID message MUST NOT be sent in response to an M_INVALID
 message.

Bormann, et al. Expires January 8, 2018 [Page 32]

Internet-Draft GRASP July 2017

2.8.13. No Operation Message

 In fragmentary CDDL, a No Operation message follows the pattern:

 noop-message = [M_NOOP]

 This message MAY be sent by an implementation that for practical
 reasons needs to initialize a socket. It MUST be silently ignored by
 a recipient.

2.9. GRASP Options

 This section defines the GRASP options for the negotiation and
 synchronization protocol signaling. Additional options may be
 defined in the future.

2.9.1. Format of GRASP Options

 GRASP options are CBOR objects that MUST start with an unsigned
 integer identifying the specific option type carried in this option.
 These option types are formally defined in Section 5. Apart from
 that the only format requirement is that each option MUST be a well-
 formed CBOR object. In general a CBOR array format is RECOMMENDED to
 limit overhead.

 GRASP options may be defined to include encapsulated GRASP options.

2.9.2. Divert Option

 The Divert option is used to redirect a GRASP request to another
 node, which may be more appropriate for the intended negotiation or
 synchronization. It may redirect to an entity that is known as a
 specific negotiation or synchronization counterpart (on-link or off-
 link) or a default gateway. The divert option MUST only be
 encapsulated in Discovery Response messages. If found elsewhere, it
 SHOULD be silently ignored.

 A discovery initiator MAY ignore a Divert option if it only requires
 direct discovery responses.

 In fragmentary CDDL, the Divert option follows the pattern:

 divert-option = [O_DIVERT, +locator-option]

 The embedded Locator Option(s) (Section 2.9.5) point to diverted
 destination target(s) in response to a Discovery message.

Bormann, et al. Expires January 8, 2018 [Page 33]

Internet-Draft GRASP July 2017

2.9.3. Accept Option

 The accept option is used to indicate to the negotiation counterpart
 that the proposed negotiation content is accepted.

 The accept option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Accept option follows the pattern:

 accept-option = [O_ACCEPT]

2.9.4. Decline Option

 The decline option is used to indicate to the negotiation counterpart
 the proposed negotiation content is declined and end the negotiation
 process.

 The decline option MUST only be encapsulated in Negotiation End
 messages. If found elsewhere, it SHOULD be silently ignored.

 In fragmentary CDDL, the Decline option follows the pattern:

 decline-option = [O_DECLINE, ?reason]
 reason = text ;optional UTF-8 error message

 Note: there might be scenarios where an ASA wants to decline the
 proposed value and restart the negotiation process. In this case it
 is an implementation choice whether to send a Decline option or to
 continue with a Negotiate message, with an objective option that
 contains a null value, or one that contains a new value that might
 achieve convergence.

2.9.5. Locator Options

 These locator options are used to present reachability information
 for an ASA, a device or an interface. They are Locator IPv6 Address
 Option, Locator IPv4 Address Option, Locator FQDN (Fully Qualified
 Domain Name) Option and URI (Uniform Resource Identifier) Option.

 Since ASAs will normally run as independent user programs, locator
 options need to indicate the network layer locator plus the transport
 protocol and port number for reaching the target. For this reason,
 the Locator Options for IP addresses and FQDNs include this
 information explicitly. In the case of the URI Option, this
 information can be encoded in the URI itself.

Bormann, et al. Expires January 8, 2018 [Page 34]

Internet-Draft GRASP July 2017

 Note: It is assumed that all locators used in locator options are in
 scope throughout the GRASP domain. As stated in Section 2.2, GRASP
 is not intended to work across disjoint addressing or naming realms.

2.9.5.1. Locator IPv6 address option

 In fragmentary CDDL, the IPv6 address option follows the pattern:

 ipv6-locator-option = [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
 ipv6-address = bytes .size 16

 transport-proto = IPPROTO_TCP / IPPROTO_UDP
 IPPROTO_TCP = 6
 IPPROTO_UDP = 17
 port-number = 0..65535

 The content of this option is a binary IPv6 address followed by the
 protocol number and port number to be used.

 Note 1: The IPv6 address MUST normally have global scope. However,
 during initialization, a link-local address MAY be used for specific
 objectives only (Section 2.5.2). In this case the corresponding
 Discovery Response message MUST be sent via the interface to which
 the link-local address applies.

 Note 2: A link-local IPv6 address MUST NOT be used when this option
 is included in a Divert option.

 Note 3: The IPPROTO values are taken from the existing IANA Protocol
 Numbers registry in order to specify TCP or UDP. If GRASP requires
 future values that are not in that registry, a new registry for
 values outside the range 0..255 will be needed.

2.9.5.2. Locator IPv4 address option

 In fragmentary CDDL, the IPv4 address option follows the pattern:

 ipv4-locator-option = [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
 ipv4-address = bytes .size 4

 The content of this option is a binary IPv4 address followed by the
 protocol number and port number to be used.

 Note: If an operator has internal network address translation for
 IPv4, this option MUST NOT be used within the Divert option.

Bormann, et al. Expires January 8, 2018 [Page 35]

Internet-Draft GRASP July 2017

2.9.5.3. Locator FQDN option

 In fragmentary CDDL, the FQDN option follows the pattern:

 fqdn-locator-option = [O_FQDN_LOCATOR, text,
 transport-proto, port-number]

 The content of this option is the Fully Qualified Domain Name of the
 target followed by the protocol number and port number to be used.

 Note 1: Any FQDN which might not be valid throughout the network in
 question, such as a Multicast DNS name [RFC6762], MUST NOT be used
 when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services.

2.9.5.4. Locator URI option

 In fragmentary CDDL, the URI option follows the pattern:

 uri-locator = [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

 The content of this option is the Uniform Resource Identifier of the
 target followed by the protocol number and port number to be used (or
 by null values if not required) [RFC3986].

 Note 1: Any URI which might not be valid throughout the network in
 question, such as one based on a Multicast DNS name [RFC6762], MUST
 NOT be used when this option is used within the Divert option.

 Note 2: Normal GRASP operations are not expected to use this option.
 It is intended for special purposes such as discovering external
 services. Therefore its use is not further described in this
 specification.

2.10. Objective Options

2.10.1. Format of Objective Options

 An objective option is used to identify objectives for the purposes
 of discovery, negotiation or synchronization. All objectives MUST be
 in the following format, described in fragmentary CDDL:

Bormann, et al. Expires January 8, 2018 [Page 36]

Internet-Draft GRASP July 2017

 objective = [objective-name, objective-flags, loop-count, ?objective-value]

 objective-name = text
 objective-value = any
 loop-count = 0..255

 All objectives are identified by a unique name which is a UTF-8
 string [RFC3629], to be compared byte by byte.

 The names of generic objectives MUST NOT include a colon (":") and
 MUST be registered with IANA (Section 6).

 The names of privately defined objectives MUST include at least one
 colon (":"). The string preceding the last colon in the name MUST be
 globally unique and in some way identify the entity or person
 defining the objective. The following three methods MAY be used to
 create such a globally unique string:

 1. The unique string is a decimal number representing a registered
 32 bit Private Enterprise Number (PEN) [RFC5612] that uniquely
 identifies the enterprise defining the objective.

 2. The unique string is a fully qualified domain name that uniquely
 identifies the entity or person defining the objective.

 3. The unique string is an email address that uniquely identifies
 the entity or person defining the objective.

 The GRASP protocol treats the objective name as an opaque string.
 For example, "EX1", "32473:EX1", "example.com:EX1", "example.org:EX1
 and "user@example.org:EX1" would be five different objectives.

 The ’objective-flags’ field is described below.

 The ’loop-count’ field is used for terminating negotiation as
 described in Section 2.8.7. It is also used for terminating
 discovery as described in Section 2.5.4, and for terminating flooding
 as described in Section 2.5.6.2. It is placed in the objective
 rather than in the GRASP message format because, as far as the ASA is
 concerned, it is a property of the objective itself.

 The ’objective-value’ field is to express the actual value of a
 negotiation or synchronization objective. Its format is defined in
 the specification of the objective and may be a simple value or a
 data structure of any kind, as long as it can be represented in CBOR.
 It is optional because it is optional in a Discovery or Discovery
 Response message.

Bormann, et al. Expires January 8, 2018 [Page 37]

Internet-Draft GRASP July 2017

2.10.2. Objective flags

 An objective may be relevant for discovery only, for discovery and
 negotiation, or for discovery and synchronization. This is expressed
 in the objective by logical flag bits:

 objective-flags = uint .bits objective-flag
 objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is dry-run
)

 These bits are independent and may be combined appropriately, e.g.
 (F_DISC and F_SYNCH) or (F_DISC and F_NEG) or (F_DISC and F_NEG and
 F_NEG_DRY).

 Note that for a given negotiation session, an objective must be
 either used for negotiation, or for dry-run negotiation. Mixing the
 two modes in a single negotiation is not possible.

2.10.3. General Considerations for Objective Options

 As mentioned above, Objective Options MUST be assigned a unique name.
 As long as privately defined Objective Options obey the rules above,
 this document does not restrict their choice of name, but the entity
 or person concerned SHOULD publish the names in use.

 Names are expressed as UTF-8 strings for convenience in designing
 Objective Options for localized use. For generic usage, names
 expressed in the ASCII subset of UTF-8 are RECOMMENDED. Designers
 planning to use non-ASCII names are strongly advised to consult
 [RFC7564] or its successor to understand the complexities involved.
 Since the GRASP protocol compares names byte by byte, all issues of
 Unicode profiling and canonicalization MUST be specified in the
 design of the Objective Option.

 All Objective Options MUST respect the CBOR patterns defined above as
 "objective" and MUST replace the "any" field with a valid CBOR data
 definition for the relevant use case and application.

 An Objective Option that contains no additional fields beyond its
 "loop-count" can only be a discovery objective and MUST only be used
 in Discovery and Discovery Response messages.

 The Negotiation Objective Options contain negotiation objectives,
 which vary according to different functions/services. They MUST be

Bormann, et al. Expires January 8, 2018 [Page 38]

Internet-Draft GRASP July 2017

 carried by Discovery, Request Negotiation or Negotiation messages
 only. The negotiation initiator MUST set the initial "loop-count" to
 a value specified in the specification of the objective or, if no
 such value is specified, to GRASP_DEF_LOOPCT.

 For most scenarios, there should be initial values in the negotiation
 requests. Consequently, the Negotiation Objective options MUST
 always be completely presented in a Request Negotiation message, or
 in a Discovery message in rapid mode. If there is no initial value,
 the value field SHOULD be set to the ’null’ value defined by CBOR.

 Synchronization Objective Options are similar, but MUST be carried by
 Discovery, Discovery Response, Request Synchronization, or Flood
 Synchronization messages only. They include value fields only in
 Synchronization or Flood Synchronization messages.

 The design of an objective interacts in various ways with the design
 of the ASAs that will use it. ASA design considerations are
 discussed in [I-D.carpenter-anima-asa-guidelines].

2.10.4. Organizing of Objective Options

 Generic objective options MUST be specified in documents available to
 the public and SHOULD be designed to use either the negotiation or
 the synchronization mechanism described above.

 As noted earlier, one negotiation objective is handled by each GRASP
 negotiation thread. Therefore, a negotiation objective, which is
 based on a specific function or action, SHOULD be organized as a
 single GRASP option. It is NOT RECOMMENDED to organize multiple
 negotiation objectives into a single option, nor to split a single
 function or action into multiple negotiation objectives.

 It is important to understand that GRASP negotiation does not support
 transactional integrity. If transactional integrity is needed for a
 specific objective, this must be ensured by the ASA. For example, an
 ASA might need to ensure that it only participates in one negotiation
 thread at the same time. Such an ASA would need to stop listening
 for incoming negotiation requests before generating an outgoing
 negotiation request.

 A synchronization objective SHOULD be organized as a single GRASP
 option.

 Some objectives will support more than one operational mode. An
 example is a negotiation objective with both a "dry run" mode (where
 the negotiation is to find out whether the other end can in fact make
 the requested change without problems) and a "live" mode, as

Bormann, et al. Expires January 8, 2018 [Page 39]

Internet-Draft GRASP July 2017

 explained in Section 2.5.5. The semantics of such modes will be
 defined in the specification of the objectives. These objectives
 SHOULD include flags indicating the applicable mode(s).

 An issue requiring particular attention is that GRASP itself is not a
 transactionally safe protocol. Any state associated with a dry run
 operation, such as temporarily reserving a resource for subsequent
 use in a live run, is entirely a matter for the designer of the ASA
 concerned.

 As indicated in Section 2.1, an objective’s value may include
 multiple parameters. Parameters might be categorized into two
 classes: the obligatory ones presented as fixed fields; and the
 optional ones presented in some other form of data structure embedded
 in CBOR. The format might be inherited from an existing management
 or configuration protocol, with the objective option acting as a
 carrier for that format. The data structure might be defined in a
 formal language, but that is a matter for the specifications of
 individual objectives. There are many candidates, according to the
 context, such as ABNF, RBNF, XML Schema, YANG, etc. The GRASP
 protocol itself is agnostic on these questions. The only restriction
 is that the format can be mapped into CBOR.

 It is NOT RECOMMENDED to mix parameters that have significantly
 different response time characteristics in a single objective.
 Separate objectives are more suitable for such a scenario.

 All objectives MUST support GRASP discovery. However, as mentioned
 in Section 2.3, it is acceptable for an ASA to use an alternative
 method of discovery.

 Normally, a GRASP objective will refer to specific technical
 parameters as explained in Section 2.1. However, it is acceptable to
 define an abstract objective for the purpose of managing or
 coordinating ASAs. It is also acceptable to define a special-purpose
 objective for purposes such as trust bootstrapping or formation of
 the ACP.

 To guarantee convergence, a limited number of rounds or a timeout is
 needed for each negotiation objective. Therefore, the definition of
 each negotiation objective SHOULD clearly specify this, for example a
 default loop count and timeout, so that the negotiation can always be
 terminated properly. If not, the GRASP defaults will apply.

 There must be a well-defined procedure for concluding that a
 negotiation cannot succeed, and if so deciding what happens next
 (e.g., deadlock resolution, tie-breaking, or revert to best-effort

Bormann, et al. Expires January 8, 2018 [Page 40]

Internet-Draft GRASP July 2017

 service). This MUST be specified for individual negotiation
 objectives.

2.10.5. Experimental and Example Objective Options

 The names "EX0" through "EX9" have been reserved for experimental
 options. Multiple names have been assigned because a single
 experiment may use multiple options simultaneously. These
 experimental options are highly likely to have different meanings
 when used for different experiments. Therefore, they SHOULD NOT be
 used without an explicit human decision and MUST NOT be used in
 unmanaged networks such as home networks.

 These names are also RECOMMENDED for use in documentation examples.

3. Implementation Status [RFC Editor: please remove]

 Two prototype implementations of GRASP have been made.

3.1. BUPT C++ Implementation

 o Name: BaseNegotiator.cpp, msg.cpp, Client.cpp, Server.cpp

 o Description: C++ implementation of GRASP core and API

 o Maturity: Prototype code, interoperable between Ubuntu.

 o Coverage: Corresponds to draft-carpenter-anima-gdn-protocol-03.
 Since it was implemented based on the old version draft, the most
 significant limitations comparing to current protocol design
 include:

 * Not support CBOR

 * Not support Flooding

 * Not support loop avoidance

 * only coded for IPv6, any IPv4 is accidental

 o Licensing: Huawei License.

 o Experience: https://github.com/liubingpang/IETF-Anima-Signaling-
 Protocol/blob/master/README.md

 o Contact: https://github.com/liubingpang/IETF-Anima-Signaling-
 Protocol

Bormann, et al. Expires January 8, 2018 [Page 41]

Internet-Draft GRASP July 2017

3.2. Python Implementation

 o Name: graspy

 o Description: Python 3 implementation of GRASP core and API.

 o Maturity: Prototype code, interoperable between Windows 7 and
 Linux.

 o Coverage: Corresponds to draft-ietf-anima-grasp-13. Limitations
 include:

 * insecure: uses a dummy ACP module

 * only coded for IPv6, any IPv4 is accidental

 * FQDN and URI locators incompletely supported

 * no code for rapid mode

 * relay code is lazy (no rate control)

 * all unicast transactions use TCP (no unicast UDP).
 Experimental code for unicast UDP proved to be complex and
 brittle.

 * optional Objective option in Response messages not implemented

 * workarounds for defects in Python socket module and Windows
 socket peculiarities

 o Licensing: Simplified BSD

 o Experience: Tested on Windows, Linux and MacOS.
 https://www.cs.auckland.ac.nz/˜brian/graspy/graspy.pdf

 o Contact: https://www.cs.auckland.ac.nz/˜brian/graspy/

4. Security Considerations

 A successful attack on negotiation-enabled nodes would be extremely
 harmful, as such nodes might end up with a completely undesirable
 configuration that would also adversely affect their peers. GRASP
 nodes and messages therefore require full protection. As explained
 in Section 2.5.1, GRASP MUST run within a secure environment such as
 the Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
 except for the constrained instances described in Section 2.5.2.

Bormann, et al. Expires January 8, 2018 [Page 42]

Internet-Draft GRASP July 2017

 - Authentication

 A cryptographically authenticated identity for each device is
 needed in an autonomic network. It is not safe to assume that a
 large network is physically secured against interference or that
 all personnel are trustworthy. Each autonomic node MUST be
 capable of proving its identity and authenticating its messages.
 GRASP relies on a separate external certificate-based security
 mechanism to support authentication, data integrity protection,
 and anti-replay protection.

 Since GRASP must be deployed in an existing secure environment,
 the protocol itself specifies nothing concerning the trust anchor
 and certification authority. For example, in the Autonomic
 Control Plane [I-D.ietf-anima-autonomic-control-plane], all nodes
 can trust each other and the ASAs installed in them.

 If GRASP is used temporarily without an external security
 mechanism, for example during system bootstrap (Section 2.5.1),
 the Session ID (Section 2.7) will act as a nonce to provide
 limited protection against third parties injecting responses. A
 full analysis of the secure bootstrap process is in
 [I-D.ietf-anima-bootstrapping-keyinfra].

 - Authorization and Roles

 The GRASP protocol is agnostic about the roles and capabilities of
 individual ASAs and about which objectives a particular ASA is
 authorized to support. An implementation might support
 precautions such as allowing only one ASA in a given node to
 modify a given objective, but this may not be appropriate in all
 cases. For example, it might be operationally useful to allow an
 old and a new version of the same ASA to run simultaneously during
 an overlap period. These questions are out of scope for the
 present specification.

 - Privacy and confidentiality

 GRASP is intended for network management purposes involving
 network elements, not end hosts. Therefore, no personal
 information is expected to be involved in the signaling protocol,
 so there should be no direct impact on personal privacy.
 Nevertheless, applications that do convey personal information
 cannot be excluded. Also, traffic flow paths, VPNs, etc. could be
 negotiated, which could be of interest for traffic analysis.
 Operators generally want to conceal details of their network
 topology and traffic density from outsiders. Therefore, since
 insider attacks cannot be excluded in a large network, the

Bormann, et al. Expires January 8, 2018 [Page 43]

Internet-Draft GRASP July 2017

 security mechanism for the protocol MUST provide message
 confidentiality. This is why Section 2.5.1 requires either an ACP
 or an alternative security mechanism.

 - Link-local multicast security

 GRASP has no reasonable alternative to using link-local multicast
 for Discovery or Flood Synchronization messages and these messages
 are sent in clear and with no authentication. They are only sent
 on interfaces within the autonomic network (see Section 2.1 and
 Section 2.5.1). They are however available to on-link
 eavesdroppers, and could be forged by on-link attackers. In the
 case of Discovery, the Discovery Responses are unicast and will
 therefore be protected (Section 2.5.1), and an untrusted forger
 will not be able to receive responses. In the case of Flood
 Synchronization, an on-link eavesdropper will be able to receive
 the flooded objectives but there is no response message to
 consider. Some precautions for Flood Synchronization messages are
 suggested in Section 2.5.6.2.

 - DoS Attack Protection

 GRASP discovery partly relies on insecure link-local multicast.
 Since routers participating in GRASP sometimes relay discovery
 messages from one link to another, this could be a vector for
 denial of service attacks. Some mitigations are specified in
 Section 2.5.4. However, malicious code installed inside the
 Autonomic Control Plane could always launch DoS attacks consisting
 of spurious discovery messages, or of spurious discovery
 responses. It is important that firewalls prevent any GRASP
 messages from entering the domain from an unknown source.

 - Security during bootstrap and discovery

 A node cannot trust GRASP traffic from other nodes until the
 security environment (such as the ACP) has identified the trust
 anchor and can authenticate traffic by validating certificates for
 other nodes. Also, until it has succesfully enrolled
 [I-D.ietf-anima-bootstrapping-keyinfra] a node cannot assume that
 other nodes are able to authenticate its own traffic. Therefore,
 GRASP discovery during the bootstrap phase for a new device will
 inevitably be insecure. Secure synchronization and negotiation
 will be impossible until enrollment is complete. Further details
 are given in Section 2.5.2.

 - Security of discovered locators

Bormann, et al. Expires January 8, 2018 [Page 44]

Internet-Draft GRASP July 2017

 When GRASP discovery returns an IP address, it MUST be that of a
 node within the secure environment (Section 2.5.1). If it returns
 an FQDN or a URI, the ASA that receives it MUST NOT assume that
 the target of the locator is within the secure environment.

5. CDDL Specification of GRASP

<CODE BEGINS>
grasp-message = (message .within message-structure) / noop-message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
 *grasp-option]

MESSAGE_TYPE = 0..255
session-id = 0..4294967295 ;up to 32 bits
grasp-option = any

message /= discovery-message
discovery-message = [M_DISCOVERY, session-id, initiator, objective]

message /= response-message ;response to Discovery
response-message = [M_RESPONSE, session-id, initiator, ttl,
 (+locator-option // divert-option), ?objective]

message /= synch-message ;response to Synchronization request
synch-message = [M_SYNCH, session-id, objective]

message /= flood-message
flood-message = [M_FLOOD, session-id, initiator, ttl,
 +[objective, (locator-option / [])]]

message /= request-negotiation-message
request-negotiation-message = [M_REQ_NEG, session-id, objective]

message /= request-synchronization-message
request-synchronization-message = [M_REQ_SYN, session-id, objective]

message /= negotiation-message
negotiation-message = [M_NEGOTIATE, session-id, objective]

message /= end-message
end-message = [M_END, session-id, accept-option / decline-option]

message /= wait-message
wait-message = [M_WAIT, session-id, waiting-time]

message /= invalid-message
invalid-message = [M_INVALID, session-id, ?any]

Bormann, et al. Expires January 8, 2018 [Page 45]

Internet-Draft GRASP July 2017

noop-message = [M_NOOP]

divert-option = [O_DIVERT, +locator-option]

accept-option = [O_ACCEPT]

decline-option = [O_DECLINE, ?reason]
reason = text ;optional UTF-8 error message

waiting-time = 0..4294967295 ; in milliseconds
ttl = 0..4294967295 ; in milliseconds

locator-option /= [O_IPv4_LOCATOR, ipv4-address,
 transport-proto, port-number]
ipv4-address = bytes .size 4

locator-option /= [O_IPv6_LOCATOR, ipv6-address,
 transport-proto, port-number]
ipv6-address = bytes .size 16

locator-option /= [O_FQDN_LOCATOR, text, transport-proto, port-number]

locator-option /= [O_URI_LOCATOR, text,
 transport-proto / null, port-number / null]

transport-proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port-number = 0..65535

initiator = ipv4-address / ipv6-address

objective-flags = uint .bits objective-flag

objective-flag = &(
 F_DISC: 0 ; valid for discovery
 F_NEG: 1 ; valid for negotiation
 F_SYNCH: 2 ; valid for synchronization
 F_NEG_DRY: 3 ; negotiation is dry-run
)

objective = [objective-name, objective-flags, loop-count, ?objective-value]

objective-name = text ;see section "Format of Objective Options"

objective-value = any

loop-count = 0..255

Bormann, et al. Expires January 8, 2018 [Page 46]

Internet-Draft GRASP July 2017

; Constants for message types and option types

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106
<CODE ENDS>

6. IANA Considerations

 This document defines the GeneRic Autonomic Signaling Protocol
 (GRASP).

 Section 2.6 explains the following link-local multicast addresses,
 which IANA is requested to assign for use by GRASP:

 ALL_GRASP_NEIGHBORS multicast address (IPv6): (TBD1). Assigned in
 the IPv6 Link-Local Scope Multicast Addresses registry.

 ALL_GRASP_NEIGHBORS multicast address (IPv4): (TBD2). Assigned in
 the IPv4 Multicast Local Network Control Block.

 Section 2.6 explains the following User Port, which IANA is requested
 to assign for use by GRASP for both UDP and TCP:

 GRASP_LISTEN_PORT: (TBD3)
 Service Name: Generic Autonomic Signaling Protocol (GRASP)
 Transport Protocols: UDP, TCP
 Assignee: iesg@ietf.org
 Contact: chair@ietf.org
 Description: See Section 2.6
 Reference: RFC XXXX (this document)

Bormann, et al. Expires January 8, 2018 [Page 47]

Internet-Draft GRASP July 2017

 The IANA is requested to create a GRASP Parameter Registry including
 two registry tables. These are the GRASP Messages and Options
 Table and the GRASP Objective Names Table.

 GRASP Messages and Options Table. The values in this table are names
 paired with decimal integers. Future values MUST be assigned using
 the Standards Action policy defined by [RFC8126]. The following
 initial values are assigned by this document:

 M_NOOP = 0
 M_DISCOVERY = 1
 M_RESPONSE = 2
 M_REQ_NEG = 3
 M_REQ_SYN = 4
 M_NEGOTIATE = 5
 M_END = 6
 M_WAIT = 7
 M_SYNCH = 8
 M_FLOOD = 9
 M_INVALID = 99

 O_DIVERT = 100
 O_ACCEPT = 101
 O_DECLINE = 102
 O_IPv6_LOCATOR = 103
 O_IPv4_LOCATOR = 104
 O_FQDN_LOCATOR = 105
 O_URI_LOCATOR = 106

 GRASP Objective Names Table. The values in this table are UTF-8
 strings which MUST NOT include a colon (":"), according to
 Section 2.10.1. Future values MUST be assigned using the
 Specification Required policy defined by [RFC8126].

 To assist expert review of a new objective, the specification should
 include a precise description of the format of the new objective,
 with sufficient explanation of its semantics to allow independent
 implementations. See Section 2.10.3 for more details. If the new
 objective is similar in name or purpose to a previously registered
 objective, the specification should explain why a new objective is
 justified.

 The following initial values are assigned by this document:

Bormann, et al. Expires January 8, 2018 [Page 48]

Internet-Draft GRASP July 2017

 EX0
 EX1
 EX2
 EX3
 EX4
 EX5
 EX6
 EX7
 EX8
 EX9

7. Acknowledgements

 A major contribution to the original version of this document was
 made by Sheng Jiang and significant contributions were made by
 Toerless Eckert. Significant early review inputs were received from
 Joel Halpern, Barry Leiba, Charles E. Perkins, and Michael
 Richardson. William Atwood provided important assistance in
 debugging a prototype implementation.

 Valuable comments were received from Michael Behringer, Jeferson
 Campos Nobre, Laurent Ciavaglia, Zongpeng Du, Yu Fu, Joel Jaeggli,
 Zhenbin Li, Dimitri Papadimitriou, Pierre Peloso, Reshad Rahman,
 Markus Stenberg, Martin Stiemerling, Rene Struik, Martin Thomson,
 Dacheng Zhang, and participants in the NMRG research group, the ANIMA
 working group, and the IESG.

8. References

8.1. Normative References

 [I-D.greevenbosch-appsawg-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-greevenbosch-appsawg-
 cbor-cddl-11 (work in progress), July 2017.

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane", draft-ietf-anima-autonomic-control-
 plane-07 (work in progress), July 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Bormann, et al. Expires January 8, 2018 [Page 49]

Internet-Draft GRASP July 2017

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7217] Gont, F., "A Method for Generating Semantically Opaque
 Interface Identifiers with IPv6 Stateless Address
 Autoconfiguration (SLAAC)", RFC 7217,
 DOI 10.17487/RFC7217, April 2014,
 <http://www.rfc-editor.org/info/rfc7217>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <http://www.rfc-editor.org/info/rfc8085>.

8.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]
 Carpenter, B. and S. Jiang, "Guidelines for Autonomic
 Service Agents", draft-carpenter-anima-asa-guidelines-02
 (work in progress), July 2017.

 [I-D.chaparadza-intarea-igcp]
 Behringer, M., Chaparadza, R., Petre, R., Li, X., and H.
 Mahkonen, "IP based Generic Control Protocol (IGCP)",
 draft-chaparadza-intarea-igcp-00 (work in progress), July
 2011.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-07 (work in progress), July 2017.

Bormann, et al. Expires January 8, 2018 [Page 50]

Internet-Draft GRASP July 2017

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-04 (work in progress), July 2017.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-03 (work in progress), July
 2017.

 [I-D.liu-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-liu-anima-grasp-api-04 (work in
 progress), June 2017.

 [I-D.stenberg-anima-adncp]
 Stenberg, M., "Autonomic Distributed Node Consensus
 Protocol", draft-stenberg-anima-adncp-00 (work in
 progress), March 2015.

 [RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
 Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
 Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
 September 1997, <http://www.rfc-editor.org/info/rfc2205>.

 [RFC2334] Luciani, J., Armitage, G., Halpern, J., and N. Doraswamy,
 "Server Cache Synchronization Protocol (SCSP)", RFC 2334,
 DOI 10.17487/RFC2334, April 1998,
 <http://www.rfc-editor.org/info/rfc2334>.

 [RFC2608] Guttman, E., Perkins, C., Veizades, J., and M. Day,
 "Service Location Protocol, Version 2", RFC 2608,
 DOI 10.17487/RFC2608, June 1999,
 <http://www.rfc-editor.org/info/rfc2608>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <http://www.rfc-editor.org/info/rfc2865>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

Bormann, et al. Expires January 8, 2018 [Page 51]

Internet-Draft GRASP July 2017

 [RFC3416] Presuhn, R., Ed., "Version 2 of the Protocol Operations
 for the Simple Network Management Protocol (SNMP)",
 STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
 <http://www.rfc-editor.org/info/rfc3416>.

 [RFC3493] Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",
 RFC 3493, DOI 10.17487/RFC3493, February 2003,
 <http://www.rfc-editor.org/info/rfc3493>.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 DOI 10.17487/RFC4861, September 2007,
 <http://www.rfc-editor.org/info/rfc4861>.

 [RFC5612] Eronen, P. and D. Harrington, "Enterprise Number for
 Documentation Use", RFC 5612, DOI 10.17487/RFC5612, August
 2009, <http://www.rfc-editor.org/info/rfc5612>.

 [RFC5971] Schulzrinne, H. and R. Hancock, "GIST: General Internet
 Signalling Transport", RFC 5971, DOI 10.17487/RFC5971,
 October 2010, <http://www.rfc-editor.org/info/rfc5971>.

 [RFC6206] Levis, P., Clausen, T., Hui, J., Gnawali, O., and J. Ko,
 "The Trickle Algorithm", RFC 6206, DOI 10.17487/RFC6206,
 March 2011, <http://www.rfc-editor.org/info/rfc6206>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6733] Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,
 Ed., "Diameter Base Protocol", RFC 6733,
 DOI 10.17487/RFC6733, October 2012,
 <http://www.rfc-editor.org/info/rfc6733>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <http://www.rfc-editor.org/info/rfc6762>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <http://www.rfc-editor.org/info/rfc6763>.

Bormann, et al. Expires January 8, 2018 [Page 52]

Internet-Draft GRASP July 2017

 [RFC6887] Wing, D., Ed., Cheshire, S., Boucadair, M., Penno, R., and
 P. Selkirk, "Port Control Protocol (PCP)", RFC 6887,
 DOI 10.17487/RFC6887, April 2013,
 <http://www.rfc-editor.org/info/rfc6887>.

 [RFC7558] Lynn, K., Cheshire, S., Blanchet, M., and D. Migault,
 "Requirements for Scalable DNS-Based Service Discovery
 (DNS-SD) / Multicast DNS (mDNS) Extensions", RFC 7558,
 DOI 10.17487/RFC7558, July 2015,
 <http://www.rfc-editor.org/info/rfc7558>.

 [RFC7564] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 7564, DOI 10.17487/RFC7564, May 2015,
 <http://www.rfc-editor.org/info/rfc7564>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <http://www.rfc-editor.org/info/rfc7576>.

 [RFC7787] Stenberg, M. and S. Barth, "Distributed Node Consensus
 Protocol", RFC 7787, DOI 10.17487/RFC7787, April 2016,
 <http://www.rfc-editor.org/info/rfc7787>.

 [RFC7788] Stenberg, M., Barth, S., and P. Pfister, "Home Networking
 Control Protocol", RFC 7788, DOI 10.17487/RFC7788, April
 2016, <http://www.rfc-editor.org/info/rfc7788>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <http://www.rfc-editor.org/info/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <http://www.rfc-editor.org/info/rfc8126>.

Bormann, et al. Expires January 8, 2018 [Page 53]

Internet-Draft GRASP July 2017

Appendix A. Open Issues [RFC Editor: This section should be empty.
 Please remove]

 o 68. (Placeholder)

Appendix B. Closed Issues [RFC Editor: Please remove]

 o 1. UDP vs TCP: For now, this specification suggests UDP and TCP
 as message transport mechanisms. This is not clarified yet. UDP
 is good for short conversations, is necessary for multicast
 discovery, and generally fits the discovery and divert scenarios
 well. However, it will cause problems with large messages. TCP
 is good for stable and long sessions, with a little bit of time
 consumption during the session establishment stage. If messages
 exceed a reasonable MTU, a TCP mode will be required in any case.
 This question may be affected by the security discussion.

 RESOLVED by specifying UDP for short message and TCP for longer
 one.

 o 2. DTLS or TLS vs built-in security mechanism. For now, this
 specification has chosen a PKI based built-in security mechanism
 based on asymmetric cryptography. However, (D)TLS might be chosen
 as security solution to avoid duplication of effort. It also
 allows essentially similar security for short messages over UDP
 and longer ones over TCP. The implementation trade-offs are
 different. The current approach requires expensive asymmetric
 cryptographic calculations for every message. (D)TLS has startup
 overheads but cheaper crypto per message. DTLS is less mature
 than TLS.

 RESOLVED by specifying external security (ACP or (D)TLS).

 o The following open issues applied only if the original security
 model was retained:

 * 2.1. For replay protection, GRASP currently requires every
 participant to have an NTP-synchronized clock. Is this OK for
 low-end devices, and how does it work during device
 bootstrapping? We could take the Timestamp out of signature
 option, to become an independent and OPTIONAL (or RECOMMENDED)
 option.

 * 2.2. The Signature Option states that this option could be any
 place in a message. Wouldn’t it be better to specify a
 position (such as the end)? That would be much simpler to
 implement.

Bormann, et al. Expires January 8, 2018 [Page 54]

Internet-Draft GRASP July 2017

 RESOLVED by changing security model.

 o 3. DoS Attack Protection needs work.

 RESOLVED by adding text.

 o 4. Should we consider preferring a text-based approach to
 discovery (after the initial discovery needed for bootstrapping)?
 This could be a complementary mechanism for multicast based
 discovery, especially for a very large autonomic network.
 Centralized registration could be automatically deployed
 incrementally. At the very first stage, the repository could be
 empty; then it could be filled in by the objectives discovered by
 different devices (for example using Dynamic DNS Update). The
 more records are stored in the repository, the less the multicast-
 based discovery is needed. However, if we adopt such a mechanism,
 there would be challenges: stateful solution, and security.

 RESOLVED for now by adding optional use of DNS-SD by ASAs.
 Subsequently removed by editors as irrelevant to GRASP istelf.

 o 5. Need to expand description of the minimum requirements for the
 specification of an individual discovery, synchronization or
 negotiation objective.

 RESOLVED for now by extra wording.

 o 6. Use case and protocol walkthrough. A description of how a
 node starts up, performs discovery, and conducts negotiation and
 synchronisation for a sample use case would help readers to
 understand the applicability of this specification. Maybe it
 should be an artificial use case or maybe a simple real one, based
 on a conceptual API. However, the authors have not yet decided
 whether to have a separate document or have it in the protocol
 document.

 RESOLVED: recommend a separate document.

 o 7. Cross-check against other ANIMA WG documents for consistency
 and gaps.

 RESOLVED: Satisfied by WGLC.

 o 8. Consideration of ADNCP proposal.

 RESOLVED by adding optional use of DNCP for flooding-type
 synchronization.

Bormann, et al. Expires January 8, 2018 [Page 55]

Internet-Draft GRASP July 2017

 o 9. Clarify how a GDNP instance knows whether it is running inside
 the ACP. (Sheng)

 RESOLVED by improved text.

 o 10. Clarify how a non-ACP GDNP instance initiates (D)TLS.
 (Sheng)

 RESOLVED by improved text and declaring DTLS out of scope for this
 draft.

 o 11. Clarify how UDP/TCP choice is made. (Sheng) [Like DNS? -
 Brian]

 RESOLVED by improved text.

 o 12. Justify that IP address within ACP or (D)TLS environment is
 sufficient to prove AN identity; or explain how Device Identity
 Option is used. (Sheng)

 RESOLVED for now: we assume that all ASAs in a device are trusted
 as soon as the device is trusted, so they share credentials. In
 that case the Device Identity Option is useless. This needs to be
 reviewed later.

 o 13. Emphasise that negotiation/synchronization are independent
 from discovery, although the rapid discovery mode includes the
 first step of a negotiation/synchronization. (Sheng)

 RESOLVED by improved text.

 o 14. Do we need an unsolicited flooding mechanism for discovery
 (for discovery results that everyone needs), to reduce scaling
 impact of flooding discovery messages? (Toerless)

 RESOLVED: Yes, added to requirements and solution.

 o 15. Do we need flag bits in Objective Options to distinguish
 distinguish Synchronization and Negotiation "Request" or rapid
 mode "Discovery" messages? (Bing)

 RESOLVED: yes, work on the API showed that these flags are
 essential.

 o 16. (Related to issue 14). Should we revive the "unsolicited
 Response" for flooding synchronisation data? This has to be done
 carefully due to the well-known issues with flooding, but it could

Bormann, et al. Expires January 8, 2018 [Page 56]

Internet-Draft GRASP July 2017

 be useful, e.g. for Intent distribution, where DNCP doesn’t seem
 applicable.

 RESOLVED: Yes, see #14.

 o 17. Ensure that the discovery mechanism is completely proof
 against loops and protected against duplicate responses.

 RESOLVED: Added loop count mechanism.

 o 18. Discuss the handling of multiple valid discovery responses.

 RESOLVED: Stated that the choice must be available to the ASA but
 GRASP implementation should pick a default.

 o 19. Should we use a text-oriented format such as JSON/CBOR
 instead of native binary TLV format?

 RESOLVED: Yes, changed to CBOR.

 o 20. Is the Divert option needed? If a discovery response
 provides a valid IP address or FQDN, the recipient doesn’t gain
 any extra knowledge from the Divert. On the other hand, the
 presence of Divert informs the receiver that the target is off-
 link, which might be useful sometimes.

 RESOLVED: Decided to keep Divert option.

 o 21. Rename the protocol as GRASP (GeneRic Autonomic Signaling
 Protocol)?

 RESOLVED: Yes, name changed.

 o 22. Does discovery mechanism scale robustly as needed? Need hop
 limit on relaying?

 RESOLVED: Added hop limit.

 o 23. Need more details on TTL for caching discovery responses.

 RESOLVED: Done.

 o 24. Do we need "fast withdrawal" of discovery responses?

 RESOLVED: This doesn’t seem necessary. If an ASA exits or stops
 supporting a given objective, peers will fail to start future
 sessions and will simply repeat discovery.

Bormann, et al. Expires January 8, 2018 [Page 57]

Internet-Draft GRASP July 2017

 o 25. Does GDNP discovery meet the needs of multi-hop DNS-SD?

 RESOLVED: Decided not to consider this further as a GRASP protocol
 issue. GRASP objectives could embed DNS-SD formats if needed.

 o 26. Add a URL type to the locator options (for security bootstrap
 etc.)

 RESOLVED: Done, later renamed as URI.

 o 27. Security of Flood multicasts (Section 2.5.6.2).

 RESOLVED: added text.

 o 28. Does ACP support secure link-local multicast?

 RESOLVED by new text in the Security Considerations.

 o 29. PEN is used to distinguish vendor options. Would it be
 better to use a domain name? Anything unique will do.

 RESOLVED: Simplified this by removing PEN field and changing
 naming rules for objectives.

 o 30. Does response to discovery require randomized delays to
 mitigate amplification attacks?

 RESOLVED: WG feedback is that it’s unnecessary.

 o 31. We have specified repeats for failed discovery etc. Is that
 sufficient to deal with sleeping nodes?

 RESOLVED: WG feedback is that it’s unnecessary to say more.

 o 32. We have one-to-one synchronization and flooding
 synchronization. Do we also need selective flooding to a subset
 of nodes?

 RESOLVED: This will be discussed as a protocol extension in a
 separate draft (draft-liu-anima-grasp-distribution).

 o 33. Clarify if/when discovery needs to be repeated.

 RESOLVED: Done.

 o 34. Clarify what is mandatory for running in ACP, expand
 discussion of security boundary when running with no ACP - might
 rely on the local PKI infrastructure.

Bormann, et al. Expires January 8, 2018 [Page 58]

Internet-Draft GRASP July 2017

 RESOLVED: Done.

 o 35. State that role-based authorization of ASAs is out of scope
 for GRASP. GRASP doesn’t recognize/handle any "roles".

 RESOLVED: Done.

 o 36. Reconsider CBOR definition for PEN syntax. (objective-name
 = text / [pen, text] ; pen = uint)

 RESOLVED: See issue 29.

 o 37. Are URI locators really needed?

 RESOLVED: Yes, e.g. for security bootstrap discovery, but added
 note that addresses are the normal case (same for FQDN locators).

 o 38. Is Session ID sufficient to identify relayed responses?
 Isn’t the originator’s address needed too?

 RESOLVED: Yes, this is needed for multicast messages and their
 responses.

 o 39. Clarify that a node will contain one GRASP instance
 supporting multiple ASAs.

 RESOLVED: Done.

 o 40. Add a "reason" code to the DECLINE option?

 RESOLVED: Done.

 o 41. What happens if an ASA cannot conveniently use one of the
 GRASP mechanisms? Do we (a) add a message type to GRASP, or (b)
 simply pass the discovery results to the ASA so that it can open
 its own socket?

 RESOLVED: Both would be possible, but (b) is preferred.

 o 42. Do we need a feature whereby an ASA can bypass the ACP and
 use the data plane for efficiency/throughput? This would require
 discovery to return non-ACP addresses and would evade ACP
 security.

 RESOLVED: This is considered out of scope for GRASP, but a comment
 has been added in security considerations.

Bormann, et al. Expires January 8, 2018 [Page 59]

Internet-Draft GRASP July 2017

 o 43. Rapid mode synchronization and negotiation is currently
 limited to a single objective for simplicity of design and
 implementation. A future consideration is to allow multiple
 objectives in rapid mode for greater efficiency.

 RESOLVED: This is considered out of scope for this version.

 o 44. In requirement T9, the words that encryption "may not be
 required in all deployments" were removed. Is that OK?.

 RESOLVED: No objections.

 o 45. Device Identity Option is unused. Can we remove it
 completely?.

 RESOLVED: No objections. Done.

 o 46. The ’initiator’ field in DISCOVER, RESPONSE and FLOOD
 messages is intended to assist in loop prevention. However, we
 also have the loop count for that. Also, if we create a new
 Session ID each time a DISCOVER or FLOOD is relayed, that ID can
 be disambiguated by recipients. It would be simpler to remove the
 initiator from the messages, making parsing more uniform. Is that
 OK?

 RESOLVED: Yes. Done.

 o 47. REQUEST is a dual purpose message (request negotiation or
 request synchronization). Would it be better to split this into
 two different messages (and adjust various message names
 accordingly)?

 RESOLVED: Yes. Done.

 o 48. Should the Appendix "Capability Analysis of Current
 Protocols" be deleted before RFC publication?

 RESOLVED: No (per WG meeting at IETF 96).

 o 49. Section 2.5.1 Should say more about signaling between two
 autonomic networks/domains.

 RESOLVED: Description of separate GRASP instance added.

 o 50. Is Rapid mode limited to on-link only? What happens if first
 discovery responder does not support Rapid Mode? Section 2.5.5,
 Section 2.5.6)

Bormann, et al. Expires January 8, 2018 [Page 60]

Internet-Draft GRASP July 2017

 RESOLVED: Not limited to on-link. First responder wins.

 o 51. Should flooded objectives have a time-to-live before they are
 deleted from the flood cache? And should they be tagged in the
 cache with their source locator?

 RESOLVED: TTL added to Flood (and Discovery Response) messages.
 Cached flooded objectives must be tagged with their originating
 ASA locator, and multiple copies must be kept if necessary.

 o 52. Describe in detail what is allowed and disallowed in an
 insecure instance of GRASP.

 RESOLVED: Done.

 o 53. Tune IANA Considerations to support early assignment request.

 o 54. Is there a highly unlikely race condition if two peers
 simultaneously choose the same Session ID and send each other
 simultaneous M_REQ_NEG messages?

 RESOLVED: Yes. Enhanced text on Session ID generation, and added
 precaution when receiving a Request message.

 o 55. Could discovery be performed over TCP?

 RESOLVED: Unicast discovery added as an option.

 o 56. Change Session-ID to 32 bits?

 RESOLVED: Done.

 o 57. Add M_INVALID message?

 RESOLVED: Done.

 o 58. Maximum message size?

 RESOLVED by specifying default maximum message size (2048 bytes).

 o 59. Add F_NEG_DRY flag to specify a "dry run" objective?.

 RESOLVED: Done.

 o 60. Change M_FLOOD syntax to associate a locator with each
 objective?

Bormann, et al. Expires January 8, 2018 [Page 61]

Internet-Draft GRASP July 2017

 RESOLVED: Done.

 o 61. Is the SONN constrained instance really needed?

 RESOLVED: Retained but only as an option.

 o 62. Is it helpful to tag descriptive text with message names
 (M_DISCOVER etc.)?

 RESOLVED: Yes, done in various parts of the text.

 o 63. Should encryption be MUST instead of SHOULD in Section 2.5.1
 and Section 2.5.1?

 RESOLVED: Yes, MUST implement in both cases.

 o 64. Should more security text be moved from the main text into
 the Security Considerations?

 RESOLVED: No, on AD advice.

 o 65. Do we need to formally restrict Unicode characters allowed in
 objective names?

 RESOLVED: No, but need to point to guidance from PRECIS WG.

 o 66. Split requirements into separate document?

 RESOLVED: No, on AD advice.

 o 67. Remove normative dependency on draft-greevenbosch-appsawg-
 cbor-cddl?

 RESOLVED: No, on AD advice. In worst case, fix at AUTH48.

Appendix C. Change log [RFC Editor: Please remove]

 draft-ietf-anima-grasp-15, 2017-07-07:

 Updates following additional IESG comments:

 Security (Eric Rescorla): missing brittleness of group security
 concept, attack via compromised member.

 TSV (Mirja Kuehlewind): clarification on the use of UDP, TCP, mandate
 use of TCP (or other reliable transport).

 Clarified that in ACP, UDP is not used at all.

Bormann, et al. Expires January 8, 2018 [Page 62]

Internet-Draft GRASP July 2017

 Clarified that GRASP itself needs TCP listen port (was previously
 written as if this was optional).

 draft-ietf-anima-grasp-14, 2017-07-02:

 Updates following additional IESG comments:

 Updated 2.5.1 and 2.5.2 based on IESG security feedback (specify
 dependency against security substrate).

 Strengthened requirement for reliable transport protocol.

 draft-ietf-anima-grasp-13, 2017-06-06:

 Updates following additional IESG comments:

 Removed all mention of TLS, including SONN, since it was under-
 specified.

 Clarified other text about trust and security model.

 Banned Rapid Mode when multicast is insecure.

 Explained use of M_INVALID to support extensibility

 Corrected details on discovery cache TTL and discovery timeout.

 Improved description of multicast UDP w.r.t. RFC8085.

 Clarified when transport connections are opened or closed.

 Noted that IPPROTO values come from the Protocol Numbers registry

 Protocol change: Added protocol and port numbers to URI locator.

 Removed inaccurate text about routing protocols

 Moved Requirements section to an Appendix.

 Other editorial and technical clarifications.

 draft-ietf-anima-grasp-12, 2017-05-19:

 Updates following IESG comments:

 Clarified that GRASP runs in a single addressing realm

Bormann, et al. Expires January 8, 2018 [Page 63]

Internet-Draft GRASP July 2017

 Improved wording about FQDN resolution, clarified that URI usage is
 out of scope.

 Clarified description of negotiation timeout.

 Noted that ’dry run’ semantics are ASA-dependent

 Made the ACP a normative reference

 Clarified that LL multicasts are limited to GRASP interfaces

 Unicast UDP moved out of scope

 Editorial clarifications

 draft-ietf-anima-grasp-11, 2017-03-30:

 Updates following IETF 98 discussion:

 Encryption changed to a MUST implement.

 Pointed to guidance on UTF-8 names.

 draft-ietf-anima-grasp-10, 2017-03-10:

 Updates following IETF Last call:

 Protocol change: Specify that an objective with no initial value
 should have its value field set to CBOR ’null’.

 Protocol change: Specify behavior on receiving unrecognized message
 type.

 Noted that UTF-8 names are matched byte-for-byte.

 Added brief guidance for Expert Reviewer of new generic objectives.

 Numerous editorial improvements and clarifications and minor text
 rearrangements, none intended to change the meaning.

 draft-ietf-anima-grasp-09, 2016-12-15:

 Protocol change: Add F_NEG_DRY flag to specify a "dry run" objective.

 Protocol change: Change M_FLOOD syntax to associate a locator with
 each objective.

Bormann, et al. Expires January 8, 2018 [Page 64]

Internet-Draft GRASP July 2017

 Concentrated mentions of TLS in one section, with all details out of
 scope.

 Clarified text around constrained instances of GRASP.

 Strengthened text restricting LL addresses in locator options.

 Clarified description of rapid mode processsing.

 Specified that cached discovery results should not be returned on the
 same interface where they were learned.

 Shortened text in "High Level Design Choices"

 Dropped the word ’kernel’ to avoid confusion with o/s kernel mode.

 Editorial improvements and clarifications.

 draft-ietf-anima-grasp-08, 2016-10-30:

 Protocol change: Added M_INVALID message.

 Protocol change: Increased Session ID space to 32 bits.

 Enhanced rules to avoid Session ID clashes.

 Corrected and completed description of timeouts for Request messages.

 Improved wording about exponential backoff and DoS.

 Clarified that discovery relaying is not done by limited security
 instances.

 Corrected and expanded explanation of port used for Discovery
 Response.

 Noted that Discovery message could be sent unicast in special cases.

 Added paragraph on extensibility.

 Specified default maximum message size.

 Added Appendix for sample messages.

 Added short protocol overview.

 Editorial fixes, including minor re-ordering for readability.

Bormann, et al. Expires January 8, 2018 [Page 65]

Internet-Draft GRASP July 2017

 draft-ietf-anima-grasp-07, 2016-09-13:

 Protocol change: Added TTL field to Flood message (issue 51).

 Protocol change: Added Locator option to Flood message (issue 51).

 Protocol change: Added TTL field to Discovery Response message
 (corrollary to issue 51).

 Clarified details of rapid mode (issues 43 and 50).

 Description of inter-domain GRASP instance added (issue 49).

 Description of limited security GRASP instances added (issue 52).

 Strengthened advice to use TCP rather than UDP.

 Updated IANA considerations and text about well-known port usage
 (issue 53).

 Amended text about ASA authorization and roles to allow for
 overlapping ASAs.

 Added text recommending that Flood should be repeated periodically.

 Editorial fixes.

 draft-ietf-anima-grasp-06, 2016-06-27:

 Added text on discovery cache timeouts.

 Noted that ASAs that are only initiators do not need to respond to
 discovery message.

 Added text on unexpected address changes.

 Added text on robust implementation.

 Clarifications and editorial fixes for numerous review comments

 Added open issues for some review comments.

 draft-ietf-anima-grasp-05, 2016-05-13:

 Noted in requirement T1 that it should be possible to implement ASAs
 independently as user space programs.

Bormann, et al. Expires January 8, 2018 [Page 66]

Internet-Draft GRASP July 2017

 Protocol change: Added protocol number and port to discovery
 response. Updated protocol description, CDDL and IANA considerations
 accordingly.

 Clarified that discovery and flood multicasts are handled by the
 GRASP core, not directly by ASAs.

 Clarified that a node may discover an objective without supporting it
 for synchronization or negotiation.

 Added Implementation Status section.

 Added reference to SCSP.

 Editorial fixes.

 draft-ietf-anima-grasp-04, 2016-03-11:

 Protocol change: Restored initiator field in certain messages and
 adjusted relaying rules to provide complete loop detection.

 Updated IANA Considerations.

 draft-ietf-anima-grasp-03, 2016-02-24:

 Protocol change: Removed initiator field from certain messages and
 adjusted relaying requirement to simplify loop detection. Also
 clarified narrative explanation of discovery relaying.

 Protocol change: Split Request message into two (Request Negotiation
 and Request Synchronization) and updated other message names for
 clarity.

 Protocol change: Dropped unused Device ID option.

 Further clarified text on transport layer usage.

 New text about multicast insecurity in Security Considerations.

 Various other clarifications and editorial fixes, including moving
 some material to Appendix.

 draft-ietf-anima-grasp-02, 2016-01-13:

 Resolved numerous issues according to WG discussions.

 Renumbered requirements, added D9.

Bormann, et al. Expires January 8, 2018 [Page 67]

Internet-Draft GRASP July 2017

 Protocol change: only allow one objective in rapid mode.

 Protocol change: added optional error string to DECLINE option.

 Protocol change: removed statement that seemed to say that a Request
 not preceded by a Discovery should cause a Discovery response. That
 made no sense, because there is no way the initiator would know where
 to send the Request.

 Protocol change: Removed PEN option from vendor objectives, changed
 naming rule accordingly.

 Protocol change: Added FLOOD message to simplify coding.

 Protocol change: Added SYNCH message to simplify coding.

 Protocol change: Added initiator id to DISCOVER, RESPONSE and FLOOD
 messages. But also allowed the relay process for DISCOVER and FLOOD
 to regenerate a Session ID.

 Protocol change: Require that discovered addresses must be global
 (except during bootstrap).

 Protocol change: Receiver of REQUEST message must close socket if no
 ASA is listening for the objective.

 Protocol change: Simplified Waiting message.

 Protocol change: Added No Operation message.

 Renamed URL locator type as URI locator type.

 Updated CDDL definition.

 Various other clarifications and editorial fixes.

 draft-ietf-anima-grasp-01, 2015-10-09:

 Updated requirements after list discussion.

 Changed from TLV to CBOR format - many detailed changes, added co-
 author.

 Tightened up loop count and timeouts for various cases.

 Noted that GRASP does not provide transactional integrity.

 Various other clarifications and editorial fixes.

Bormann, et al. Expires January 8, 2018 [Page 68]

Internet-Draft GRASP July 2017

 draft-ietf-anima-grasp-00, 2015-08-14:

 File name and protocol name changed following WG adoption.

 Added URL locator type.

 draft-carpenter-anima-gdn-protocol-04, 2015-06-21:

 Tuned wording around hierarchical structure.

 Changed "device" to "ASA" in many places.

 Reformulated requirements to be clear that the ASA is the main
 customer for signaling.

 Added requirement for flooding unsolicited synch, and added it to
 protocol spec. Recognized DNCP as alternative for flooding synch
 data.

 Requirements clarified, expanded and rearranged following design team
 discussion.

 Clarified that GDNP discovery must not be a prerequisite for GDNP
 negotiation or synchronization (resolved issue 13).

 Specified flag bits for objective options (resolved issue 15).

 Clarified usage of ACP vs TLS/DTLS and TCP vs UDP (resolved issues
 9,10,11).

 Updated DNCP description from latest DNCP draft.

 Editorial improvements.

 draft-carpenter-anima-gdn-protocol-03, 2015-04-20:

 Removed intrinsic security, required external security

 Format changes to allow DNCP co-existence

 Recognized DNS-SD as alternative discovery method.

 Editorial improvements

 draft-carpenter-anima-gdn-protocol-02, 2015-02-19:

 Tuned requirements to clarify scope,

Bormann, et al. Expires January 8, 2018 [Page 69]

Internet-Draft GRASP July 2017

 Clarified relationship between types of objective,

 Clarified that objectives may be simple values or complex data
 structures,

 Improved description of objective options,

 Added loop-avoidance mechanisms (loop count and default timeout,
 limitations on discovery relaying and on unsolicited responses),

 Allow multiple discovery objectives in one response,

 Provided for missing or multiple discovery responses,

 Indicated how modes such as "dry run" should be supported,

 Minor editorial and technical corrections and clarifications,

 Reorganized future work list.

 draft-carpenter-anima-gdn-protocol-01, restructured the logical flow
 of the document, updated to describe synchronization completely, add
 unsolicited responses, numerous corrections and clarifications,
 expanded future work list, 2015-01-06.

 draft-carpenter-anima-gdn-protocol-00, combination of draft-jiang-
 config-negotiation-ps-03 and draft-jiang-config-negotiation-protocol-
 02, 2014-10-08.

Appendix D. Example Message Formats

 For readers unfamiliar with CBOR, this appendix shows a number of
 example GRASP messages conforming to the CDDL syntax given in
 Section 5. Each message is shown three times in the following
 formats:

 1. CBOR diagnostic notation.

 2. Similar, but showing the names of the constants. (Details of the
 flag bit encoding are omitted.)

 3. Hexadecimal version of the CBOR wire format.

 Long lines are split for display purposes only.

Bormann, et al. Expires January 8, 2018 [Page 70]

Internet-Draft GRASP July 2017

D.1. Discovery Example

 The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a
 discovery message looking for objective EX1:

 [1, 13948744, h’20010db8f000baaa28ccdc4c97036781’, ["EX1", 5, 2, 0]]
 [M_DISCOVERY, 13948744, h’20010db8f000baaa28ccdc4c97036781’,
 ["EX1", F_SYNCH_bits, 2, 0]]
 h’84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200’

 A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a
 locator:

 [2, 13948744, h’20010db8f000baaa28ccdc4c97036781’, 60000,
 [103, h’20010db8f000baaaf000baaaf000baaa’, 6, 49443]]
 [M_RESPONSE, 13948744, h’20010db8f000baaa28ccdc4c97036781’, 60000,
 [O_IPv6_LOCATOR, h’20010db8f000baaaf000baaaf000baaa’,
 IPPROTO_TCP, 49443]]
 h’85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
 20010db8f000baaaf000baaaf000baaa0619c123’

D.2. Flood Example

 The initiator multicasts a flood message. The single objective has a
 null locator. There is no response:

[9, 3504974, h’20010db8f000baaa28ccdc4c97036781’, 10000,
 [["EX1", 5, 2, ["Example 1 value=", 100]],[]]]
[M_FLOOD, 3504974, h’20010db8f000baaa28ccdc4c97036781’, 10000,
 [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[]]]
h’86091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
 828463455831050282704578616d706c6520312076616c75653d186480’

D.3. Synchronization Example

 Following successful discovery of objective EX2, the initiator
 unicasts a request:

 [4, 4038926, ["EX2", 5, 5, 0]]
 [M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
 h’83041a003da10e8463455832050500’

 The peer responds with a value:

 [8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
 [M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
 h’83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8’

Bormann, et al. Expires January 8, 2018 [Page 71]

Internet-Draft GRASP July 2017

D.4. Simple Negotiation Example

 Following successful discovery of objective EX3, the initiator
 unicasts a request:

 [3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
 [M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
 h’83031a000c3ffd8463455833030682634e5a44182f’

 The peer responds with immediate acceptance. Note that no objective
 is needed, because the initiator’s request was accepted without
 change:

 [6, 802813, [101]]
 [M_END , 802813, [O_ACCEPT]]
 h’83061a000c3ffd811865’

D.5. Complete Negotiation Example

 Again the initiator unicasts a request:

 [3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
 [M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
 h’83031a00d214628463455833030682634e5a4419019a’

 The responder starts to negotiate (making an offer):

 [5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
 h’83051a00d214628463455833030682634e5a441850’

 The initiator continues to negotiate (reducing its request, and note
 that the loop count is decremented):

 [5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
 h’83051a00d214628463455833030582634e5a44190133’

 The responder asks for more time:

 [7, 13767778, 34965]
 [M_WAIT, 13767778, 34965]
 h’83071a00d21462198895’

 The responder continues to negotiate (increasing its offer):

Bormann, et al. Expires January 8, 2018 [Page 72]

Internet-Draft GRASP July 2017

 [5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
 h’83051a00d214628463455833030482634e5a441878’

 The initiator continues to negotiate (reducing its request):

 [5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
 [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
 h’83051a00d214628463455833030382634e5a4418f6’

 The responder refuses to negotiate further:

 [6, 13767778, [102, "Insufficient funds"]]
 [M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
 h’83061a00d2146282186672496e73756666696369656e742066756e6473’

 This negotiation has failed. If either side had sent [M_END,
 13767778, [O_ACCEPT]] it would have succeeded, converging on the
 objective value in the preceding M_NEGOTIATE. Note that apart from
 the initial M_REQ_NEG, the process is symmetrical.

Appendix E. Requirement Analysis of Discovery, Synchronization and
 Negotiation

 This section discusses the requirements for discovery, negotiation
 and synchronization capabilities. The primary user of the protocol
 is an autonomic service agent (ASA), so the requirements are mainly
 expressed as the features needed by an ASA. A single physical device
 might contain several ASAs, and a single ASA might manage several
 technical objectives. If a technical objective is managed by several
 ASAs, any necessary coordination is outside the scope of the GRASP
 signaling protocol. Furthermore, requirements for ASAs themselves,
 such as the processing of Intent [RFC7575], are out of scope for the
 present document.

E.1. Requirements for Discovery

 D1. ASAs may be designed to manage any type of configurable device
 or software, as required in Appendix E.2. A basic requirement is
 therefore that the protocol can represent and discover any kind of
 technical objective (as defined in Section 2.1) among arbitrary
 subsets of participating nodes.

 In an autonomic network we must assume that when a device starts up
 it has no information about any peer devices, the network structure,
 or what specific role it must play. The ASA(s) inside the device are
 in the same situation. In some cases, when a new application session
 starts up within a device, the device or ASA may again lack

Bormann, et al. Expires January 8, 2018 [Page 73]

Internet-Draft GRASP July 2017

 information about relevant peers. For example, it might be necessary
 to set up resources on multiple other devices, coordinated and
 matched to each other so that there is no wasted resource. Security
 settings might also need updating to allow for the new device or
 user. The relevant peers may be different for different technical
 objectives. Therefore discovery needs to be repeated as often as
 necessary to find peers capable of acting as counterparts for each
 objective that a discovery initiator needs to handle. From this
 background we derive the next three requirements:

 D2. When an ASA first starts up, it may have no knowledge of the
 specific network to which it is attached. Therefore the discovery
 process must be able to support any network scenario, assuming only
 that the device concerned is bootstrapped from factory condition.

 D3. When an ASA starts up, it must require no configured location
 information about any peers in order to discover them.

 D4. If an ASA supports multiple technical objectives, relevant peers
 may be different for different discovery objectives, so discovery
 needs to be performed separately to find counterparts for each
 objective. Thus, there must be a mechanism by which an ASA can
 separately discover peer ASAs for each of the technical objectives
 that it needs to manage, whenever necessary.

 D5. Following discovery, an ASA will normally perform negotiation or
 synchronization for the corresponding objectives. The design should
 allow for this by conveniently linking discovery to negotiation and
 synchronization. It may provide an optional mechanism to combine
 discovery and negotiation/synchronization in a single protocol
 exchange.

 D6. Some objectives may only be significant on the local link, but
 others may be significant across the routed network and require off-
 link operations. Thus, the relevant peers might be immediate
 neighbors on the same layer 2 link, or they might be more distant and
 only accessible via layer 3. The mechanism must therefore provide
 both on-link and off-link discovery of ASAs supporting specific
 technical objectives.

 D7. The discovery process should be flexible enough to allow for
 special cases, such as the following:

 o During initialization, a device must be able to establish mutual
 trust with autonomic nodes elsewhere in the network and
 participate in an authentication mechanism. Although this will
 inevitably start with a discovery action, it is a special case
 precisely because trust is not yet established. This topic is the

Bormann, et al. Expires January 8, 2018 [Page 74]

Internet-Draft GRASP July 2017

 subject of [I-D.ietf-anima-bootstrapping-keyinfra]. We require
 that once trust has been established for a device, all ASAs within
 the device inherit the device’s credentials and are also trusted.
 This does not preclude the device having multiple credentials.

 o Depending on the type of network involved, discovery of other
 central functions might be needed, such as the Network Operations
 Center (NOC) [I-D.ietf-anima-stable-connectivity]. The protocol
 must be capable of supporting such discovery during
 initialization, as well as discovery during ongoing operation.

 D8. The discovery process must not generate excessive traffic and
 must take account of sleeping nodes.

 D9. There must be a mechanism for handling stale discovery results.

E.2. Requirements for Synchronization and Negotiation Capability

 Autonomic networks need to be able to manage many different types of
 parameter and consider many dimensions, such as latency, load, unused
 or limited resources, conflicting resource requests, security
 settings, power saving, load balancing, etc. Status information and
 resource metrics need to be shared between nodes for dynamic
 adjustment of resources and for monitoring purposes. While this
 might be achieved by existing protocols when they are available, the
 new protocol needs to be able to support parameter exchange,
 including mutual synchronization, even when no negotiation as such is
 required. In general, these parameters do not apply to all
 participating nodes, but only to a subset.

 SN1. A basic requirement for the protocol is therefore the ability
 to represent, discover, synchronize and negotiate almost any kind of
 network parameter among selected subsets of participating nodes.

 SN2. Negotiation is an iterative request/response process that must
 be guaranteed to terminate (with success or failure). While tie-
 breaking rules must be defined specifically for each use case, the
 protocol should have some general mechanisms in support of loop and
 deadlock prevention, such as hop count limits or timeouts.

 SN3. Synchronization must be possible for groups of nodes ranging
 from small to very large.

 SN4. To avoid "reinventing the wheel", the protocol should be able
 to encapsulate the data formats used by existing configuration
 protocols (such as NETCONF/YANG) in cases where that is convenient.

Bormann, et al. Expires January 8, 2018 [Page 75]

Internet-Draft GRASP July 2017

 SN5. Human intervention in complex situations is costly and error-
 prone. Therefore, synchronization or negotiation of parameters
 without human intervention is desirable whenever the coordination of
 multiple devices can improve overall network performance. It follows
 that the protocol’s resource requirements must be small enough to fit
 in any device that would otherwise need human intervention. The
 issue of running in constrained nodes is discussed in
 [I-D.ietf-anima-reference-model].

 SN6. Human intervention in large networks is often replaced by use
 of a top-down network management system (NMS). It therefore follows
 that the protocol, as part of the Autonomic Networking
 Infrastructure, should be capable of running in any device that would
 otherwise be managed by an NMS, and that it can co-exist with an NMS,
 and with protocols such as SNMP and NETCONF.

 SN7. Specific autonomic features are expected to be implemented by
 individual ASAs, but the protocol must be general enough to allow
 them. Some examples follow:

 o Dependencies and conflicts: In order to decide upon a
 configuration for a given device, the device may need information
 from neighbors. This can be established through the negotiation
 procedure, or through synchronization if that is sufficient.
 However, a given item in a neighbor may depend on other
 information from its own neighbors, which may need another
 negotiation or synchronization procedure to obtain or decide.
 Therefore, there are potential dependencies and conflicts among
 negotiation or synchronization procedures. Resolving dependencies
 and conflicts is a matter for the individual ASAs involved. To
 allow this, there need to be clear boundaries and convergence
 mechanisms for negotiations. Also some mechanisms are needed to
 avoid loop dependencies or uncontrolled growth in a tree of
 dependencies. It is the ASA designer’s responsibility to avoid or
 detect looping dependencies or excessive growth of dependency
 trees. The protocol’s role is limited to bilateral signaling
 between ASAs, and the avoidance of loops during bilateral
 signaling.

 o Recovery from faults and identification of faulty devices should
 be as automatic as possible. The protocol’s role is limited to
 discovery, synchronization and negotiation. These processes can
 occur at any time, and an ASA may need to repeat any of these
 steps when the ASA detects an event such as a negotiation
 counterpart failing.

 o Since a major goal is to minimize human intervention, it is
 necessary that the network can in effect "think ahead" before

Bormann, et al. Expires January 8, 2018 [Page 76]

Internet-Draft GRASP July 2017

 changing its parameters. One aspect of this is an ASA that relies
 on a knowledge base to predict network behavior. This is out of
 scope for the signaling protocol. However, another aspect is
 forecasting the effect of a change by a "dry run" negotiation
 before actually installing the change. Signaling a dry run is
 therefore a desirable feature of the protocol.

 Note that management logging, monitoring, alerts and tools for
 intervention are required. However, these can only be features of
 individual ASAs, not of the protocol itself. Another document
 [I-D.ietf-anima-stable-connectivity] discusses how such agents may be
 linked into conventional OAM systems via an Autonomic Control Plane
 [I-D.ietf-anima-autonomic-control-plane].

 SN8. The protocol will be able to deal with a wide variety of
 technical objectives, covering any type of network parameter.
 Therefore the protocol will need a flexible and easily extensible
 format for describing objectives. At a later stage it may be
 desirable to adopt an explicit information model. One consideration
 is whether to adopt an existing information model or to design a new
 one.

E.3. Specific Technical Requirements

 T1. It should be convenient for ASA designers to define new
 technical objectives and for programmers to express them, without
 excessive impact on run-time efficiency and footprint. In
 particular, it should be convenient for ASAs to be implemented
 independently of each other as user space programs rather than as
 kernel code, where such a programming model is possible. The classes
 of device in which the protocol might run is discussed in
 [I-D.ietf-anima-reference-model].

 T2. The protocol should be easily extensible in case the initially
 defined discovery, synchronization and negotiation mechanisms prove
 to be insufficient.

 T3. To be a generic platform, the protocol payload format should be
 independent of the transport protocol or IP version. In particular,
 it should be able to run over IPv6 or IPv4. However, some functions,
 such as multicasting on a link, might need to be IP version
 dependent. By default, IPv6 should be preferred.

 T4. The protocol must be able to access off-link counterparts via
 routable addresses, i.e., must not be restricted to link-local
 operation.

Bormann, et al. Expires January 8, 2018 [Page 77]

Internet-Draft GRASP July 2017

 T5. It must also be possible for an external discovery mechanism to
 be used, if appropriate for a given technical objective. In other
 words, GRASP discovery must not be a prerequisite for GRASP
 negotiation or synchronization.

 T6. The protocol must be capable of distinguishing multiple
 simultaneous operations with one or more peers, especially when wait
 states occur.

 T7. Intent: Although the distribution of Intent is out of scope for
 this document, the protocol must not by design exclude its use for
 Intent distribution.

 T8. Management monitoring, alerts and intervention: Devices should
 be able to report to a monitoring system. Some events must be able
 to generate operator alerts and some provision for emergency
 intervention must be possible (e.g. to freeze synchronization or
 negotiation in a mis-behaving device). These features might not use
 the signaling protocol itself, but its design should not exclude such
 use.

 T9. Because this protocol may directly cause changes to device
 configurations and have significant impacts on a running network, all
 protocol exchanges need to be fully secured against forged messages
 and man-in-the middle attacks, and secured as much as reasonably
 possible against denial of service attacks. There must also be an
 encryption mechanism to resist unwanted monitoring. However, it is
 not required that the protocol itself provides these security
 features; it may depend on an existing secure environment.

Appendix F. Capability Analysis of Current Protocols

 This appendix discusses various existing protocols with properties
 related to the requirements described in Appendix E. The purpose is
 to evaluate whether any existing protocol, or a simple combination of
 existing protocols, can meet those requirements.

 Numerous protocols include some form of discovery, but these all
 appear to be very specific in their applicability. Service Location
 Protocol (SLP) [RFC2608] provides service discovery for managed
 networks, but requires configuration of its own servers. DNS-SD
 [RFC6763] combined with mDNS [RFC6762] provides service discovery for
 small networks with a single link layer. [RFC7558] aims to extend
 this to larger autonomous networks but this is not yet standardized.
 However, both SLP and DNS-SD appear to target primarily application
 layer services, not the layer 2 and 3 objectives relevant to basic
 network configuration. Both SLP and DNS-SD are text-based protocols.

Bormann, et al. Expires January 8, 2018 [Page 78]

Internet-Draft GRASP July 2017

 Simple Network Management Protocol (SNMP) [RFC3416] uses a command/
 response model not well suited for peer negotiation. Network
 Configuration Protocol (NETCONF) [RFC6241] uses an RPC model that
 does allow positive or negative responses from the target system, but
 this is still not adequate for negotiation.

 There are various existing protocols that have elementary negotiation
 abilities, such as Dynamic Host Configuration Protocol for IPv6
 (DHCPv6) [RFC3315], Neighbor Discovery (ND) [RFC4861], Port Control
 Protocol (PCP) [RFC6887], Remote Authentication Dial In User Service
 (RADIUS) [RFC2865], Diameter [RFC6733], etc. Most of them are
 configuration or management protocols. However, they either provide
 only a simple request/response model in a master/slave context or
 very limited negotiation abilities.

 There are some signaling protocols with an element of negotiation.
 For example Resource ReSerVation Protocol (RSVP) [RFC2205] was
 designed for negotiating quality of service parameters along the path
 of a unicast or multicast flow. RSVP is a very specialised protocol
 aimed at end-to-end flows. A more generic design is General Internet
 Signalling Transport (GIST) [RFC5971], but it is complex, tries to
 solve many problems, and is also aimed at per-flow signaling across
 many hops rather than at device-to-device signaling. However, we
 cannot completely exclude extended RSVP or GIST as a synchronization
 and negotiation protocol. They do not appear to be directly useable
 for peer discovery.

 RESTCONF [RFC8040] is a protocol intended to convey NETCONF
 information expressed in the YANG language via HTTP, including the
 ability to transit HTML intermediaries. While this is a powerful
 approach in the context of centralised configuration of a complex
 network, it is not well adapted to efficient interactive negotiation
 between peer devices, especially simple ones that might not include
 YANG processing already.

 The Distributed Node Consensus Protocol (DNCP) [RFC7787] is defined
 as a generic form of state synchronization protocol, with a proposed
 usage profile being the Home Networking Control Protocol (HNCP)
 [RFC7788] for configuring Homenet routers. A specific application of
 DNCP for autonomic networking was proposed in
 [I-D.stenberg-anima-adncp].

 DNCP "is designed to provide a way for each participating node to
 publish a set of TLV (Type-Length-Value) tuples, and to provide a
 shared and common view about the data published... DNCP is most
 suitable for data that changes only infrequently... If constant rapid
 state changes are needed, the preferable choice is to use an
 additional point-to-point channel..."

Bormann, et al. Expires January 8, 2018 [Page 79]

Internet-Draft GRASP July 2017

 Specific features of DNCP include:

 o Every participating node has a unique node identifier.

 o DNCP messages are encoded as a sequence of TLV objects, sent over
 unicast UDP or TCP, with or without (D)TLS security.

 o Multicast is used only for discovery of DNCP neighbors when lower
 security is acceptable.

 o Synchronization of state is maintained by a flooding process using
 the Trickle algorithm. There is no bilateral synchronization or
 negotiation capability.

 o The HNCP profile of DNCP is designed to operate between directly
 connected neighbors on a shared link using UDP and link-local IPv6
 addresses.

 DNCP does not meet the needs of a general negotiation protocol,
 because it is designed specifically for flooding synchronization.
 Also, in its HNCP profile it is limited to link-local messages and to
 IPv6. However, at the minimum it is a very interesting test case for
 this style of interaction between devices without needing a central
 authority, and it is a proven method of network-wide state
 synchronization by flooding.

 The Server Cache Synchronization Protocol (SCSP) [RFC2334] also
 describes a method for cache synchronization and cache replication
 among a group of nodes.

 A proposal was made some years ago for an IP based Generic Control
 Protocol (IGCP) [I-D.chaparadza-intarea-igcp]. This was aimed at
 information exchange and negotiation but not directly at peer
 discovery. However, it has many points in common with the present
 work.

 None of the above solutions appears to completely meet the needs of
 generic discovery, state synchronization and negotiation in a single
 solution. Many of the protocols assume that they are working in a
 traditional top-down or north-south scenario, rather than a fluid
 peer-to-peer scenario. Most of them are specialized in one way or
 another. As a result, we have not identified a combination of
 existing protocols that meets the requirements in Appendix E. Also,
 we have not identified a path by which one of the existing protocols
 could be extended to meet the requirements.

Bormann, et al. Expires January 8, 2018 [Page 80]

Internet-Draft GRASP July 2017

Authors’ Addresses

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Email: cabo@tzi.org

 Brian Carpenter (editor)
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bing Liu (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

Bormann, et al. Expires January 8, 2018 [Page 81]

ANIMA WG S. Jiang, Ed.
Internet-Draft Z. Du
Intended status: Informational Huawei Technologies Co., Ltd
Expires: June 18, 2018 B. Carpenter
 Univ. of Auckland
 Q. Sun
 China Telecom
 December 15, 2017

 Autonomic IPv6 Edge Prefix Management in Large-scale Networks
 draft-ietf-anima-prefix-management-07

Abstract

 This document defines two autonomic technical objectives for IPv6
 prefix management at the edge of large-scale ISP networks, with an
 extension to support IPv4 prefixes. An important purpose of the
 document is to use it for validation of the design of various
 components of the autonomic networking infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Jiang, et al. Expires June 18, 2018 [Page 1]

Internet-Draft Auto IPv6 Prefix Management December 2017

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 4
 3. Problem Statement . 4
 3.1. Intended User and Administrator Experience 4
 3.2. Analysis of Parameters and Information Involved 5
 3.2.1. Parameters each device can define for itself 5
 3.2.2. Information needed from network operations 6
 3.2.3. Comparison with current solutions 6
 3.3. Interaction with other devices 7
 3.3.1. Information needed from other devices 7
 3.3.2. Monitoring, diagnostics and reporting 7
 4. Autonomic Edge Prefix Management Solution 8
 4.1. Behaviors on prefix requesting device 8
 4.2. Behaviors on prefix providing device 9
 4.3. Behavior after Successful Negotiation 10
 4.4. Prefix logging . 10
 5. Autonomic Prefix Management Objectives 10
 5.1. Edge Prefix Objective Option 10
 5.2. IPv4 extension . 11
 6. Prefix Management Parameters 11
 6.1. Example of Prefix Management Parameters 12
 7. Security Considerations 14
 8. IANA Considerations . 14
 9. Acknowledgements . 14
 10. Change log [RFC Editor: Please remove] 14
 11. References . 15
 11.1. Normative References 15
 11.2. Informative References 16
 Appendix A. Deployment Overview 17
 A.1. Address & Prefix management with DHCP 17
 A.2. Prefix management with ANI/GRASP 19
 Authors’ Addresses . 22

1. Introduction

 The original purpose of this document was to validate the design of
 the Autonomic Networking Infrastructure (ANI) for a realistic use
 case. It shows how the ANI can be applied to IP prefix delegation
 and it outlines approaches to build a system to do this. A fully
 standardized solution would require more details, so this document is
 informational in nature.

Jiang, et al. Expires June 18, 2018 [Page 2]

Internet-Draft Auto IPv6 Prefix Management December 2017

 This document defines two autonomic technical objectives for IPv6
 prefix management in large-scale networks, with an extension to
 support IPv4 prefixes. The background to Autonomic Networking (AN)
 is described in [RFC7575] and [RFC7576]. The GeneRic Autonomic
 Signaling Protocol (GRASP) is specified by [I-D.ietf-anima-grasp] and
 can make use of the proposed technical objectives to provide a
 solution for autonomic prefix management. An important purpose of
 the present document is to use it for validation of the design of
 GRASP and other components of the autonomic networking infrastructure
 described in [I-D.ietf-anima-reference-model].

 This document is not a complete functional specification of an
 autonomic prefix management system and it does not describe all
 detailed aspects of the GRASP objective parameters and Autonomic
 Service Agent (ASA) procedures necessary to build a complete system.
 Instead, it describes the architectural framework utilizing the
 components of the ANI, outlines the different deployment options and
 aspects, and defines GRASP objectives for use in building the system.
 It also provides some basic parameter examples.

 This document is not intended to solve all cases of IPv6 prefix
 management. In fact, it assumes that the network’s main
 infrastructure elements already have addresses and prefixes. The
 document is dedicated to how to make IPv6 prefix management at the
 edges of large-scale networks as autonomic as possible. It is
 specifically written for service provider (ISP) networks. Although
 there are similarities between ISPs and large enterprise networks,
 the requirements for the two use cases differ. In any case, the
 scope of the solution is expected to be limited, like any autonomic
 network, to a single management domain.

 However, the solution is designed in a general way. Its use for a
 broader scope than edge prefixes, including some or all
 infrastructure prefixes, is left for future discussion.

 A complete solution has many aspects that are not discussed here.
 Once prefixes have been assigned to routers, they need to be
 communicated to the routing system as they are brought into use.
 Similarly, when prefixes are released, they need to be removed from
 the routing system. Different operators may have different policies
 about prefix lifetimes, and they may prefer to have centralized or
 distributed pools of spare prefixes. In an autonomic network, these
 are properties decided by the design of the relevant ASAs. The GRASP
 objectives are simply building blocks.

 A particular risk of distributed prefix allocation in large networks
 is that over time, it might lead to fragmentation of the address
 space and an undesirable increase in the interior routing protocol

Jiang, et al. Expires June 18, 2018 [Page 3]

Internet-Draft Auto IPv6 Prefix Management December 2017

 tables. The extent of this risk depends on the algorithms and
 policies used by the ASAs. Mitigating this risk might even become an
 autonomic function in itself.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses terminology defined in [RFC7575].

3. Problem Statement

 The autonomic networking use case considered here is autonomic IPv6
 prefix management at the edge of large-scale ISP networks.

 Although DHCPv6 Prefix Delegation [RFC3633] supports automated
 delegation of IPv6 prefixes from one router to another, prefix
 management still largely depends on human planning. In other words,
 there is no basic information or policy to support autonomic
 decisions on the prefix length that each router should request or be
 delegated, according to its role in the network. Roles could be
 defined separately for individual devices or could be generic (edge
 router, interior router, etc.). Furthermore, IPv6 prefix management
 by humans tends to be rigid and static after initial planning.

 The problem to be solved by autonomic networking is how to
 dynamically manage IPv6 address space in large-scale networks, so
 that IPv6 addresses can be used efficiently. Here, we limit the
 problem to assignment of prefixes at the edge of the network, close
 to access routers that support individual fixed-line subscribers,
 mobile customers, and corporate customers. We assume that the core
 infrastructure of the network has already been established with
 appropriately assigned prefixes. The AN approach discussed in this
 document is based on the assumption that there is a generic discovery
 and negotiation protocol that enables direct negotiation between
 intelligent IP routers. GRASP [I-D.ietf-anima-grasp] is intended to
 be such a protocol.

3.1. Intended User and Administrator Experience

 The intended experience is, for the administrators of a large-scale
 network, that the management of IPv6 address space at the edge of the
 network can be run with minimum effort, as devices at the edge are
 added and removed and as customers of all kinds join and leave the

Jiang, et al. Expires June 18, 2018 [Page 4]

Internet-Draft Auto IPv6 Prefix Management December 2017

 network. In the ideal scenario, the administrators only have to
 specify a single IPv6 prefix for the whole network and the initial
 prefix length for each device role. As far as users are concerned,
 IPv6 prefix assignment would occur exactly as it does in any other
 network.

 The actual prefix usage needs to be logged for potential offline
 management operations including audit and security incident tracing.

3.2. Analysis of Parameters and Information Involved

 For specific purposes of address management, a few parameters are
 involved on each edge device (some of them can be pre-configured
 before they are connected). They include:

 o Identity, authentication and authorization of this device. This
 is expected to use the autonomic networking secure bootstrap
 process [I-D.ietf-anima-bootstrapping-keyinfra], following which
 the device could safely take part in autonomic operations.

 o Role of this device. Some example roles are discussed in
 Section 6.1.

 o An IPv6 prefix length for this device.

 o An IPv6 prefix that is assigned to this device and its downstream
 devices.

 A few parameters are involved in the network as a whole. They are:

 o Identity of a trust anchor, which is a certification authority
 (CA) maintained by the network administrators, used during the
 secure bootstrap process.

 o Total IPv6 address space available for edge devices. It is a pool
 of one or several IPv6 prefixes.

 o The initial prefix length for each device role.

3.2.1. Parameters each device can define for itself

 This section identifies those of the above parameters that do not
 need external information in order for the devices concerned to set
 them to a reasonable default value after bootstrap or after a network
 disruption. There are few of these:

 o Default role of this device.

Jiang, et al. Expires June 18, 2018 [Page 5]

Internet-Draft Auto IPv6 Prefix Management December 2017

 o Default IPv6 prefix length for this device.

 o Cryptographic identity of this device, as needed for secure
 bootstrapping [I-D.ietf-anima-bootstrapping-keyinfra].

 The device may be shipped from the manufacturer with pre-configured
 role and default prefix length, which could be modified by an
 autonomic mechanism. Its cryptographic identity will be installed by
 its manufacturer.

3.2.2. Information needed from network operations

 This section identifies those parameters that might need operational
 input in order for the devices concerned to set them to a non-default
 value.

 o Non-default value for the IPv6 prefix length for this device.
 This needs to be decided based on the role of this device.

 o The initial prefix length for each device role.

 o Whether to allow the device to request more address space.

 o The policy when to request more address space, for example, if the
 address usage reaches a certain limit or percentage.

3.2.3. Comparison with current solutions

 This section briefly compares the above use case with current
 solutions. Currently, the address management is still largely
 dependent on human planning. It is rigid and static after initial
 planning. Address requests will fail if the configured address space
 is used up.

 Some autonomic and dynamic address management functions may be
 achievable by extending the existing protocols, for example,
 extending DHCPv6-PD (DHCPv6 Prefix Delegation, [RFC3633]) to request
 IPv6 prefixes according to the device role. However, defining
 uniform device roles may not be a practical task. Some functions are
 not suitable to be achieved by any existing protocols.

 Using a generic autonomic discovery and negotiation protocol instead
 of specific solutions has the advantage that additional parameters
 can be included in the autonomic solution without creating new
 mechanisms. This is the principal argument for a generic approach.

Jiang, et al. Expires June 18, 2018 [Page 6]

Internet-Draft Auto IPv6 Prefix Management December 2017

3.3. Interaction with other devices

3.3.1. Information needed from other devices

 This section identifies those of the above parameters that need
 external information from neighbor devices (including the upstream
 devices). In many cases, two-way dialogue with neighbor devices is
 needed to set or optimize them.

 o Identity of a trust anchor.

 o The device will need to discover a device, from which it can
 acquire IPv6 address space.

 o The initial prefix length for each device role, particularly for
 its own downstream devices.

 o The default value of the IPv6 prefix length may be overridden by a
 non-default value.

 o The device will need to request and acquire one or more IPv6
 prefixes that can be assigned to this device and its downstream
 devices.

 o The device may respond to prefix delegation requests from its
 downstream devices.

 o The device may require to be assigned more IPv6 address space, if
 it used up its assigned IPv6 address space.

3.3.2. Monitoring, diagnostics and reporting

 This section discusses what role devices should play in monitoring,
 fault diagnosis, and reporting.

 o The actual address assignments need to be logged for potential
 offline management operations.

 o In general, the usage situation of address space should be
 reported to the network administrators, in an abstract way, for
 example, statistics or visualized report.

 o A forecast of address exhaustion should be reported.

Jiang, et al. Expires June 18, 2018 [Page 7]

Internet-Draft Auto IPv6 Prefix Management December 2017

4. Autonomic Edge Prefix Management Solution

 This section introduces the building blocks for an autonomic edge
 prefix management solution. As noted in Section 1, this is not a
 complete description of a solution, which will depend on the detailed
 design of the relevant Autonomic Service Agents. It uses the generic
 discovery and negotiation protocol defined by [I-D.ietf-anima-grasp].
 The relevant GRASP objectives are defined in Section 5.

 The procedures described below are carried out by an Autonomic
 Service Agent (ASA) in each device that participates in the solution.
 We will refer to this as the PrefixManager ASA.

4.1. Behaviors on prefix requesting device

 If the device containing a PrefixManager ASA has used up its address
 pool, it can request more space according to its requirements. It
 should decide the length of the requested prefix and request it by
 the mechanism described in Section 6. Note that although the
 device’s role may define certain default allocation lengths, those
 defaults might be changed dynamically, and the device might request
 more, or less, address space due to some local operational heuristic.

 A PrefixManager ASA that needs additional address space should
 firstly discover peers that may be able to provide extra address
 space. The ASA should send out a GRASP Discovery message that
 contains a PrefixManager Objective option (see Section 5.1) in order
 to discover peers also supporting that option. Then it should choose
 one such peer, most likely the first to respond.

 If the GRASP discovery Response message carries a divert option
 pointing to an off-link PrefixManager ASA, the requesting ASA may
 initiate negotiation with that ASA diverted device to find out
 whether it can provide the requested length prefix.

 In any case, the requesting ASA will act as a GRASP negotiation
 initiator by sending a GRASP Request message with a PrefixManager
 Objective option. The ASA indicates in this option the length of the
 requested prefix. This starts a GRASP negotiation process.

 During the subsequent negotiation, the ASA will decide at each step
 whether to accept the offered prefix. That decision, and the
 decision to end negotiation, is an implementation choice.

 The ASA could alternatively initiate rapid mode GRASP discovery with
 an embedded negotiation request, if it is implemented.

Jiang, et al. Expires June 18, 2018 [Page 8]

Internet-Draft Auto IPv6 Prefix Management December 2017

4.2. Behaviors on prefix providing device

 At least one device on the network must be configured with the
 initial pool of available prefixes mentioned in Section 3.2. Apart
 from that requirement, any device may act as a prefix providing
 device.

 A device that receives a Discovery message with a PrefixManager
 Objective option should respond with a GRASP Response message if it
 contains a PrefixManager ASA. Further details of the discovery
 process are described in [I-D.ietf-anima-grasp]. When this ASA
 receives a subsequent Request message, it should conduct a GRASP
 negotiation sequence, using Negotiate, Confirm-waiting, and
 Negotiation-ending messages as appropriate. The Negotiate messages
 carry a PrefixManager Objective option, which will indicate the
 prefix and its length offered to the requesting ASA. As described in
 [I-D.ietf-anima-grasp], negotiation will continue until either end
 stops it with a Negotiation-ending message. If the negotiation
 succeeds, the prefix providing ASA will remove the negotiated prefix
 from its pool, and the requesting ASA will add it. If the
 negotiation fails, the party sending the Negotiation-ending message
 may include an error code string.

 During the negotiation, the ASA will decide at each step how large a
 prefix to offer. That decision, and the decision to end negotiation,
 is an implementation choice.

 The ASA could alternatively negotiate in response to rapid mode GRASP
 discovery, if it is implemented.

 This specification is independent of whether the PrefixManager ASAs
 are all embedded in routers, but that would be a rather natural
 scenario. In a hierarchical network topology, a given router
 typically provide prefixes for routers below it in the hierarchy, and
 it is also likely to contain the first PrefixManager ASA discovered
 by those downstream routers. However, the GRASP discovery model,
 including its Redirect feature, means that this is not an exclusive
 scenario, and a downstream PrefixManager ASA could negotiate a new
 prefix with a device other than its upstream router.

 A resource shortage may cause the gateway router to request more
 resource in turn from its own upstream device. This would be another
 independent GRASP discovery and negotiation process. During the
 processing time, the gateway router should send a Confirm-waiting
 Message to the initial requesting router, to extend its timeout.
 When the new resource becomes available, the gateway router responds
 with a GRASP Negotiate message with a prefix length matching the
 request.

Jiang, et al. Expires June 18, 2018 [Page 9]

Internet-Draft Auto IPv6 Prefix Management December 2017

 The algorithm to choose which prefixes to assign on the prefix
 providing devices is an implementation choice.

4.3. Behavior after Successful Negotiation

 Upon receiving a GRASP Negotiation-ending message that indicates that
 an acceptable prefix length is available, the requesting device may
 use the negotiated prefix without further messages.

 There are use cases where the ANI/GRASP based prefix management
 approach can work together with DHCPv6-PD [RFC3633] as a complement.
 For example, the ANI/GRASP based method can be used intra-domain,
 while the DHCPv6-PD method works inter-domain (i.e., across an
 administrative boundary). Also, ANI/GRASP can be used inside the
 domain, and DHCP/DHCPv6-PD be used on the edge of the domain to
 client (non-ANI devices). Another similar use case would be ANI/
 GRASP inside the domain, with RADIUS [RFC2865] providing prefixes to
 client devices.

4.4. Prefix logging

 Within the autonomic prefix management, all the prefix assignment is
 done by devices without human intervention. It may be required to
 record all the prefix assignment history, for example to detect or
 trace lost prefixes after outages, or to meet legal requirements.
 However, the logging and reporting process is out of scope for this
 document.

5. Autonomic Prefix Management Objectives

 This section defines the GRASP technical objective options that are
 used to support autonomic prefix management.

5.1. Edge Prefix Objective Option

 The PrefixManager Objective option is a GRASP objective option
 conforming to [I-D.ietf-anima-grasp]. Its name is "PrefixManager"
 (see Section 8) and it carries the following data items as its value:
 the prefix length, and the actual prefix bits. Since GRASP is based
 on CBOR (Concise Binary Object Representation [RFC7049]), the format
 of the PrefixManager Objective option is described as follows in CBOR
 data definition language (CDDL) [I-D.ietf-cbor-cddl]:

Jiang, et al. Expires June 18, 2018 [Page 10]

Internet-Draft Auto IPv6 Prefix Management December 2017

 objective = ["PrefixManager", objective-flags, loop-count,
 [length, ?prefix]]

 loop-count = 0..255 ; as in the GRASP specification
 objective-flags /= ; as in the GRASP specification
 length = 0..128 ; requested or offered prefix length
 prefix = bytes .size 16 ; offered prefix in binary format

 The use of the ’dry run’ mode of GRASP is NOT RECOMMENDED for this
 objective, because it would require both ASAs to store state about
 the corresponding negotiation, to no real benefit - the requesting
 ASA cannot base any decisions on the result of a successful dry run
 negotiation.

5.2. IPv4 extension

 This section presents an extended version of the PrefixManager
 Objective that supports IPv4 by adding an extra flag:

 objective = ["PrefixManager", objective-flags, loop-count, prefval]

 loop-count = 0..255 ; as in the GRASP specification
 objective-flags /= ; as in the GRASP specification

 prefval /= pref6val
 pref6val = [version6, length, ?prefix]
 version6 = 6
 length = 0..128 ; requested or offered prefix length
 prefix = bytes .size 16 ; offered prefix in binary format

 prefval /= pref4val
 pref4val = [version4, length4, ?prefix4]
 version4 = 4
 length4 = 0..32 ; requested or offered prefix length
 prefix4 = bytes .size 4 ; offered prefix in binary format

 Prefix and address management for IPv4 is considerably more difficult
 than for IPv6, due to the prevalence of NAT, ambiguous addresses
 [RFC1918], and address sharing [RFC6346]. These complexities might
 require further extending the objective with additional fields which
 are not defined by this document.

6. Prefix Management Parameters

 An implementation of a prefix manager MUST include default settings
 of all necessary parameters. However, within a single administrative
 domain, the network operator MAY change default parameters for all
 devices with a certain role. Thus it would be possible to apply an

Jiang, et al. Expires June 18, 2018 [Page 11]

Internet-Draft Auto IPv6 Prefix Management December 2017

 intended policy for every device in a simple way, without traditional
 configuration files. As noted in Section 4.1, individual autonomic
 devices may also change their own behavior dynamically.

 For example, the network operator could change the default prefix
 length for each type of role. A prefix management parameters
 objective, which contains mapping information of device roles and
 their default prefix lengths, MAY be flooded in the network, through
 the Autonomic Control Plane (ACP)
 [I-D.ietf-anima-autonomic-control-plane]. The objective is defined
 in CDDL as follows:

 objective = ["PrefixManager.Params", objective-flags, any]

 loop-count = 0..255 ; as in the GRASP specification
 objective-flags /= ; as in the GRASP specification

 The ’any’ object would be the relevant parameter definitions (such as
 the example below) transmitted as a CBOR object in an appropriate
 format.

 This could be flooded to all nodes, and any PrefixManager ASA that
 did not receive it for some reason could obtain a copy using GRASP
 unicast synchronization. Upon receiving the prefix management
 parameters, every device can decide its default prefix length by
 matching its own role.

6.1. Example of Prefix Management Parameters

 The parameters comprise mapping information of device roles and their
 default prefix lengths in an autonomic domain. For example, suppose
 an IPRAN (IP Radio Access Network) operator wants to configure the
 prefix length of Radio Network Controller Site Gateway (RSG) as 34,
 the prefix length of Aggregation Site Gateway (ASG) as 44, and the
 prefix length of Cell Site Gateway (CSG) as 56. This could be
 described in the value of the PrefixManager.Params objective as:

 [
 [["role", "RSG"],["prefix_length", 34]],
 [["role", "ASG"],["prefix_length", 44]],
 [["role", "CSG"],["prefix_length", 56]]
]

 This example is expressed in JSON notation [RFC7159], which is easy
 to represent in CBOR.

Jiang, et al. Expires June 18, 2018 [Page 12]

Internet-Draft Auto IPv6 Prefix Management December 2017

 An alternative would be to express the parameters in YANG [RFC7950]
 using the YANG-to-CBOR mapping [I-D.ietf-core-yang-cbor].

 For clarity, the background of the example is introduced below, which
 can also be regarded as a use case of the mechanism proposed in this
 document.

 An IPRAN network is used for mobile backhaul, including radio
 stations, RNC (in 3G) or the packet core (in LTE), and the IP network
 between them as shown in Figure 1. The eNB (Evolved Node B), RNC
 (Radio Network Controller), SGW (Service Gateway), and MME (Mobility
 Management Entity) are mobile network entities defined in 3GPP. The
 CSG, ASG, and RSG are entities defined in the IPRAN solution.

 The IPRAN topology shown in Figure 1 includes Ring1 which is the
 circle following ASG1->RSG1->RSG2->ASG2->ASG1, Ring2 following
 CSG1->ASG1->ASG2->CSG2->CSG1, and Ring3 following
 CSG3->ASG1->ASG2->CSG3. In a real deployment of IPRAN, there may be
 more stations, rings, and routers in the topology, and normally the
 network is highly dependent on human design and configuration, which
 is neither flexible nor cost-effective.

 +------+ +------+
 | eNB1 |---| CSG1 |\
 +------+ +------+ \ +-------+ +------+ +-------+
 | \ | ASG1 |-------| RSG1 |-----------|SGW/MME|
 | Ring2 +-------+ +------+ \ /+-------+
 +------+ +------+ / | | \ /
 | eNB2 |---| CSG2 | \ / | Ring1 | \/
 +------+ +------+ \ Ring3| | /\
 / \ | | / \
 +------+ +------+ / \ +-------+ +------+/ \+-------+
 | eNB3 |---| CSG3 |--------| ASG2 |------| RSG2 |---------| RNC |
 +------+ +------+ +-------+ +------+ +-------+

 Figure 1: IPRAN Topology Example

 If ANI/GRASP is supported in the IPRAN network, the network nodes
 should be able to negotiate with each other, and make some autonomic
 decisions according to their own status and the information collected
 from the network. The Prefix Management Parameters should be part of
 the information they communicate.

 The routers should know the role of their neighbors, the default
 prefix length for each type of role, etc. An ASG should be able to
 request prefixes from an RSG, and an CSG should be able to request
 prefixes from an ASG. In each request, the ASG/CSG should indicate

Jiang, et al. Expires June 18, 2018 [Page 13]

Internet-Draft Auto IPv6 Prefix Management December 2017

 the required prefix length, or its role, which implies what length it
 needs by default.

7. Security Considerations

 Relevant security issues are discussed in [I-D.ietf-anima-grasp].
 The preferred security model is that devices are trusted following
 the secure bootstrap procedure
 [I-D.ietf-anima-bootstrapping-keyinfra] and that a secure Autonomic
 Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane] is in
 place.

 It is RECOMMENDED that DHCPv6-PD, if used, should be operated using
 DHCPv6 authentication or Secure DHCPv6.

8. IANA Considerations

 This document defines two new GRASP Objective Option names,
 "PrefixManager" and "PrefixManager.Params". The IANA is requested to
 add these to the GRASP Objective Names Table registry defined by
 [I-D.ietf-anima-grasp] (if approved).

9. Acknowledgements

 Valuable comments were received from William Atwood, Fred Baker,
 Michael Behringer, Ben Campbell, Laurent Ciavaglia, Toerless Eckert,
 Joel Halpern, Russ Housley, Geoff Huston, Warren Kumari, Dan
 Romascanu, and Chongfeng Xie.

10. Change log [RFC Editor: Please remove]

 draft-jiang-anima-prefix-management-00: original version, 2014-10-25.

 draft-jiang-anima-prefix-management-01: add intent example and
 coauthor Zongpeng Du, 2015-05-04.

 draft-jiang-anima-prefix-management-02: update references and the
 format of the prefix management intent, 2015-10-14.

 draft-ietf-anima-prefix-management-00: WG adoption, clarify scope and
 purpose, update text to match latest GRASP spec, 2016-01-11.

 draft-ietf-anima-prefix-management-01: minor update, 2016-07-08.

 draft-ietf-anima-prefix-management-02: replaced intent discussion by
 parameter setting, 2017-01-10.

Jiang, et al. Expires June 18, 2018 [Page 14]

Internet-Draft Auto IPv6 Prefix Management December 2017

 draft-ietf-anima-prefix-management-03: corrected object format,
 improved parameter setting example, 2017-03-10.

 draft-ietf-anima-prefix-management-04: add more explanations about
 the solution, add IPv4 options, removed PD flag, 2017-06-23.

 draft-ietf-anima-prefix-management-05: selected one IPv4 option,
 updated references, 2017-08-14.

 draft-ietf-anima-prefix-management-06: handled IETF Last Call
 comments, 2017-10-18.

 draft-ietf-anima-prefix-management-07: handled IESG comments,
 2017-12-18.

11. References

11.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]
 Behringer, M., Eckert, T., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-12 (work in progress), October 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-09 (work in progress), October 2017.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR data structures", draft-ietf-cbor-cddl-00
 (work in progress), July 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Jiang, et al. Expires June 18, 2018 [Page 15]

Internet-Draft Auto IPv6 Prefix Management December 2017

 [RFC3633] Troan, O. and R. Droms, "IPv6 Prefix Options for Dynamic
 Host Configuration Protocol (DHCP) version 6", RFC 3633,
 DOI 10.17487/RFC3633, December 2003,
 <https://www.rfc-editor.org/info/rfc3633>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-05 (work in progress), October 2017.

 [I-D.ietf-core-yang-cbor]
 Veillette, M., Pelov, A., Somaraju, A., Turner, R., and A.
 Minaburo, "CBOR Encoding of Data Modeled with YANG",
 draft-ietf-core-yang-cbor-05 (work in progress), August
 2017.

 [I-D.liu-dhc-dhcp-yang-model]
 Liu, B., Lou, K., and C. Chen, "Yang Data Model for DHCP
 Protocol", draft-liu-dhc-dhcp-yang-model-06 (work in
 progress), March 2017.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

Jiang, et al. Expires June 18, 2018 [Page 16]

Internet-Draft Auto IPv6 Prefix Management December 2017

 [RFC3046] Patrick, M., "DHCP Relay Agent Information Option",
 RFC 3046, DOI 10.17487/RFC3046, January 2001,
 <https://www.rfc-editor.org/info/rfc3046>.

 [RFC6221] Miles, D., Ed., Ooghe, S., Dec, W., Krishnan, S., and A.
 Kavanagh, "Lightweight DHCPv6 Relay Agent", RFC 6221,
 DOI 10.17487/RFC6221, May 2011,
 <https://www.rfc-editor.org/info/rfc6221>.

 [RFC6346] Bush, R., Ed., "The Address plus Port (A+P) Approach to
 the IPv4 Address Shortage", RFC 6346,
 DOI 10.17487/RFC6346, August 2011,
 <https://www.rfc-editor.org/info/rfc6346>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015,
 <https://www.rfc-editor.org/info/rfc7576>.

Appendix A. Deployment Overview

 This Appendix includes logical deployment models, and explanations of
 the target deployment models. The purpose is to help in
 understanding the mechanism of the document.

 This Appendix includes two sub-sections: A.1 for the two most common
 DHCP deployment models, and A.2 for the proposed PD deployment model.
 It should be noted that these are just examples, and there are many
 more deployment models.

A.1. Address & Prefix management with DHCP

 Edge DHCP server deployment requires every edge router connecting to
 CPE to be a DHCP server assigning IPv4/IPv6 addresses to CPE - and
 optionally IPv6 prefixes via DHCPv6-PD for IPv6 capable CPE that are
 router and have LANs behind them.

Jiang, et al. Expires June 18, 2018 [Page 17]

Internet-Draft Auto IPv6 Prefix Management December 2017

 edge
 dynamic, "netconf/YANG" interfaces
 <---------------> +-------------+
 +------+ <- telemetry | edge router/|-+ ----- +-----+
 |config| Domain ... | DHCP server | | ... | CPE |+ LANs
 |server| +-------------+ | ----- +-----+| (---|)
 +------+ +--------------+ DHCP/ +-----+
 DHCPv6 / PD

 Figure 2: DHCP Deployment Model without a Central DHCP Server

 This requires various coordination functions via some backend system
 depicted as "config server": The address prefixes on the edge
 interfaces should be slightly larger than required for the number of
 CPEs connected so that the overall address space is best used.

 The config server needs to provision edge interface address prefixes
 and DHCP parameters for every edge router. If too fine grained
 prefixes are used, this will result in large routing tables across
 the "Domain". If too coarse grained prefixes are used, address space
 is wasted. (This is less of a concern for IPv6, but if the model
 includes IPv4, it is a very serious concern.)

 There is no standard describing algorithms for how configuration
 servers would best perform this ongoing dynamic provisioning to
 optimize routing table size and address space utilization.

 There are currently no complete YANG models that a config server
 could use to perform these actions (including telemetry of assigned
 addresses from such distributed DHCP servers).

 For example, a YANG model for controlling DHCP server operations is
 still in draft [I-D.liu-dhc-dhcp-yang-model].

 Due to these and other problems of the above model, the more common
 DHCP deployment model is as follows:

 +------+ edge
 |config| initial, "CLI" interfaces
 |server| ----------------> +-------------+
 +------+ | edge router/|-+ ----- +-----+
 | Domain ... | DHCP relay | | ... | CPE |+ LANs
 +------+ +-------------+ | ----- +-----+| (---|)
 |DHCP | +--------------+ DHCP/ +-----+
 |server| DHCPv6 / PD
 +------+

 Figure 3: DHCP Deployment Model with a Central DHCP Server

Jiang, et al. Expires June 18, 2018 [Page 18]

Internet-Draft Auto IPv6 Prefix Management December 2017

 Dynamic provisioning changes to edge routers are avoided by using a
 central DHCP server and reducing the edge router from DHCP server to
 DHCP relay. The "configuration" on the edge routers is static, the
 DHCP relay function inserts "edge interface" and/or subscriber
 identifying options into DHCP requests from CPE (e.g., [RFC3046],
 [RFC6221]), the DHCP server has complete policies for address
 assignments and prefixes useable on every edge-router/interface/
 subscriber-group. When the DHCP relay sees the DHCP reply, it
 inserts static routes for the assigned address/address-prefix into
 the routing table of the edge router which are then to be distributed
 by the IGP (or BGP) inside the domain to make the CPE and LANs
 reachable across the Domain.

 There is no comprehensive standardization of these solutions.
 [RFC3633] section 14, for example, simply refers to "a [non-defined]
 protocol or other out-of-band communication to add routing
 information for delegated prefixes into the provider edge router".

A.2. Prefix management with ANI/GRASP

 With the proposed use of ANI and Prefix-management ASAs using GRASP,
 the deployment model is intended to look as follows:

 |<............ ANI Domain / ACP............>| (...)->

 Roles
 |
 v "Edge routers"
 GRASP parameter +----------+
 Network wide | PM-ASA | downstream
 parameters/policies | (DHCP- | interfaces
 | |functions)| ------
 v "central device" +----------+
 +------+ ^ +--------+
 |PM-ASA| <............GRASP | CPE |-+ (LANs)
 +------+ . v |(PM-ASA)| | ---|
 . +........+ +----------+ +--------+ |
 +...........+ . PM-ASA . | PM-ASA | ------ +---------+
 .DHCP server. +........+ | (DHCP- | SLAAC/
 +...........+ "intermediate |functions)| DHCP/DHCP-PD
 router" +----------+

 Figure 4: Proposed Deployment Model using ANI/GRASP

 The network runs an ANI domain with ACP
 [I-D.ietf-anima-autonomic-control-plane] between some central device
 (e.g., router or ANI enabled management device) and the edge routers.
 ANI/ACP provides a secure, zero-touch communication channel between

Jiang, et al. Expires June 18, 2018 [Page 19]

Internet-Draft Auto IPv6 Prefix Management December 2017

 the devices and enables the use of GRASP[I-D.ietf-anima-grasp] not
 only for p2p communication, but also for distribution/flooding.

 The central devices and edge routers run software in the form of
 "Autonomic Service Agents" (ASA) to support this document’s autonomic
 IPv6 edge prefix management (PM). The ASAs for prefix management are
 called PM-ASAs below, and together comprise the Autonomic Prefix
 Management Function.

 Edge routers can have different roles based on the type and number of
 CPE attaching to them. Each edge router could be an RSG, ASG, or CSG
 in mobile aggregation networks (see Section 6.1). Mechanisms outside
 the scope of this document make routers aware of their roles.

 Some considerations about the proposed deployment model are listed as
 follows.

 1. In a minimum Prefix Management solution, the central device uses
 the "PrefixManager.Params" GRASP Objective introduced in this
 document to disseminate network wide, per-role parameters to edge
 routers. The PM-ASA uses the parameters applying to its role to
 locally configure pre-existing addressing functions. Because PM-ASA
 does not manage the dynamic assignment of actual IPv6 address
 prefixes in this case, the following options can be considered:

 1.a The edge router connects via downstream interfaces to (host) CPE
 that each requires an address. The PM-ASA sets up for each such
 interface a DHCP requesting router (according to [RFC3633]) to
 request an IPv6 prefix for the interface. The router’s address on
 the downstream interface can be another parameter from the GRASP
 Objective. The CPEs assign addresses in the prefix via RAs from the
 router or the PM-ASA manages a local DHCPv6 server to assign
 addresses to the CPEs. A central DHCP server acting as the DHCP
 delegating router (according to [RFC3633]) is required. Its address
 can be another parameter from the GRASP Objective.

 1.b The edge router also connects via downstream interfaces to
 (customer managed) CPEs that are routers and act as DHCPv6 requesting
 routers. The need to support this could be derived from role and/or
 GRASP parameters and the PM-ASA sets up a DHCP relay function to pass
 on requests to the central DHCP server as in 1.a.

 2. In a solution without a central DHCP server, the PM-ASA on the
 edge routers not only learn parameters from "PrefixManager.Params"
 but also utilize GRASP to request/negotiate actual IPv6 prefix
 delegation via the GRASP "PrefixManager" objective described in more
 detail below. In the most simple case, these prefixes are delegated
 via this GRASP objective from the PM-ASA in the central device. This

Jiang, et al. Expires June 18, 2018 [Page 20]

Internet-Draft Auto IPv6 Prefix Management December 2017

 device must be provisioned initially with a large pool of prefixes.
 The delegated prefixes are then used by the PM-ASA on the edge
 routers to edge routers to configure prefixes on their downstream
 interfaces to assign addresses via RA/SLAAC to host CPEs. The PM-ASA
 may also start local DHCP servers (as in 1.a) to assign addresses via
 DHCP to CPE from the prefixes it received. This includes both host
 CPEs requesting IPv6 addresses as well as router CPEs that request
 IPv6 prefixes. The PM-ASA needs to manage the address pool(s) it has
 requested via GRASP and allocate sub-address pools to interfaces and
 the local DHCP servers it starts. It needs to monitor the address
 utilization and accordingly request more address prefixes if its
 existing prefixes are exhausted, or return address prefixes when they
 are unneeded.

 This solution is quite similar to the initial described IPv6 DHCP
 deployment model without central DHCP server, and ANI/ACP/GRASP and
 the PM-ASA do provide the automation to make this approach work more
 easily than it is possible today.

 3. The address pool(s) from which prefixes are allocated does not
 need to be taken all from one central location. Edge router PM-ASA
 that received a big (short) prefix from a central PM-ASA could offer
 smaller sub-prefixes to neighboring edge-router PM-ASA. GRASP could
 be used in such a way that the PM-ASA would find and select the
 objective from the closest neighboring PM-ASA, therefore allowing to
 maximize aggregation: A PM-ASA would only request further (smaller/
 shorter) prefixes when it exhausts its own poll (from the central
 location) and can not get further large prefixes from that central
 location anymore. Because the overflow prefixes taken from a
 topological nearby PM-ASA, the number of longer prefixes that have to
 be injected into the routing tables is limited and the topological
 proximity increases the chances that aggregation of prefixes in the
 IGP can most likely limit the geography in which the longer prefixes
 need to be routed.

 4. Instead of peer-to-peer optimization of prefix delegation, a
 hierarchy of PM-ASA can be built (indicated in the picture via a
 dotted intermediate router). This would require additional
 parameters to the "PrefixManager" objective to allow creating a
 hierarchy of PM-ASA across which the prefixes can be delegated. This
 is not detailed further below.

 5. In cases where CPEs are also part of the ANI Domain (e.g.,
 "Managed CPE"), then GRASP will extend into the actual customer sites
 and can equally run a PM-ASA. All the options described in points 1
 to 4 above would then apply to the CPE as the edge router with the
 mayor changes being that a) a CPE router will most likley not need to
 run DHCPv6-PD itself, but only DHCP address assignment, b) The edge

Jiang, et al. Expires June 18, 2018 [Page 21]

Internet-Draft Auto IPv6 Prefix Management December 2017

 routers to which the CPE connect would most likely become ideal
 places to run a hierarchical instance of PD-ASAs on as outlined in
 point 1.

Authors’ Addresses

 Sheng Jiang (editor)
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Zongpeng Du
 Huawei Technologies Co., Ltd
 Q14, Huawei Campus, No.156 Beiqing Road
 Hai-Dian District, Beijing, 100095
 P.R. China

 Email: duzongpeng@huawei.com

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Qiong Sun
 China Telecom
 No.118, Xizhimennei Street
 Beijing 100035
 P. R. China

 Email: sunqiong@ctbri.com.cn

Jiang, et al. Expires June 18, 2018 [Page 22]

ANIMA M. Behringer, Ed.
Internet-Draft
Intended status: Informational B. Carpenter
Expires: May 27, 2019 Univ. of Auckland
 T. Eckert
 Futurewei Technologies Inc.
 L. Ciavaglia
 Nokia
 J. Nobre
 University of Vale do Rio dos Sinos
 November 23, 2018

 A Reference Model for Autonomic Networking
 draft-ietf-anima-reference-model-10

Abstract

 This document describes a reference model for Autonomic Networking
 for managed networks. It defines the behaviour of an autonomic node,
 how the various elements in an autonomic context work together, and
 how autonomic services can use the infrastructure.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 27, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Behringer, et al. Expires May 27, 2019 [Page 1]

Internet-Draft AN Reference Model November 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. The Network View . 4
 3. The Autonomic Network Element 5
 3.1. Architecture . 5
 3.2. The Adjacency Table 6
 3.3. State Machine . 8
 3.3.1. State 1: Factory Default 8
 3.3.2. State 2: Enrolled 9
 3.3.3. State 3: In ACP 9
 4. The Autonomic Networking Infrastructure 10
 4.1. Naming . 10
 4.2. Addressing . 10
 4.3. Discovery . 12
 4.4. Signaling Between Autonomic Nodes 12
 4.5. Routing . 13
 4.6. The Autonomic Control Plane 13
 4.7. Information Distribution (*) 13
 5. Security and Trust Infrastructure 14
 5.1. Public Key Infrastructure 14
 5.2. Domain Certificate 14
 5.3. The MASA . 15
 5.4. Sub-Domains (*) . 15
 5.5. Cross-Domain Functionality (*) 15
 6. Autonomic Service Agents (ASA) 15
 6.1. General Description of an ASA 15
 6.2. ASA Life-Cycle Management 17
 6.3. Specific ASAs for the Autonomic Network Infrastructure . 18
 6.3.1. The enrollment ASAs 18
 6.3.2. The ACP ASA . 19
 6.3.3. The Information Distribution ASA (*) 19
 7. Management and Programmability 19
 7.1. Managing a (Partially) Autonomic Network 19
 7.2. Intent (*) . 20
 7.3. Aggregated Reporting (*) 21
 7.4. Feedback Loops to NOC (*) 21
 7.5. Control Loops (*) . 22
 7.6. APIs (*) . 22
 7.7. Data Model (*) . 23
 8. Coordination Between Autonomic Functions (*) 24

Behringer, et al. Expires May 27, 2019 [Page 2]

Internet-Draft AN Reference Model November 2018

 8.1. The Coordination Problem (*) 24
 8.2. A Coordination Functional Block (*) 25
 9. Security Considerations 25
 9.1. Protection Against Outsider Attacks 26
 9.2. Risk of Insider Attacks 27
 10. IANA Considerations . 27
 11. Acknowledgements . 28
 12. Contributors . 28
 13. References . 28
 13.1. Normative References 28
 13.2. Informative References 28
 Authors’ Addresses . 30

1. Introduction

 The document "Autonomic Networking - Definitions and Design Goals"
 [RFC7575] explains the fundamental concepts behind Autonomic
 Networking, and defines the relevant terms in this space, as well as
 a high level reference model. [RFC7576] provides a gap analysis
 between traditional and autonomic approaches.

 This document defines this reference model with more detail, to allow
 for functional and protocol specifications to be developed in an
 architecturally consistent, non-overlapping manner.

 As discussed in [RFC7575], the goal of this work is not to focus
 exclusively on fully autonomic nodes or networks. In reality, most
 networks will run with some autonomic functions, while the rest of
 the network is traditionally managed. This reference model allows
 for this hybrid approach.

 For example, it is possible in an existing, non-autonomic network to
 enrol devices in a traditional way, to bring up a trust
 infrastructure with certificates. This trust infrastructure could
 then be used to automatically bring up an Autonomic Control Plane
 (ACP), and run traditional network operations over the secure and
 self-healing ACP. See [I-D.ietf-anima-stable-connectivity] for a
 description of this use case.

 The scope of this model is therefore limited to networks that are to
 some extent managed by skilled human operators, loosely referred to
 as "professionally managed" networks. Unmanaged networks raise
 additional security and trust issues that this model does not cover.

 This document describes a first, simple, implementable phase of an
 Autonomic Networking solution. It is expected that the experience
 from this phase will be used in defining updated and extended
 specifications over time. Some topics are considered architecturally

Behringer, et al. Expires May 27, 2019 [Page 3]

Internet-Draft AN Reference Model November 2018

 in this document, but are not yet reflected in the implementation
 specifications. They are marked with an (*).

2. The Network View

 This section describes the various elements in a network with
 autonomic functions, and how these entities work together, on a high
 level. Subsequent sections explain the detailed inside view for each
 of the autonomic network elements, as well as the network functions
 (or interfaces) between those elements.

 Figure 1 shows the high level view of an Autonomic Network. It
 consists of a number of autonomic nodes, which interact directly with
 each other. Those autonomic nodes provide a common set of
 capabilities across the network, called the "Autonomic Networking
 Infrastructure" (ANI). The ANI provides functions like naming,
 addressing, negotiation, synchronization, discovery and messaging.

 Autonomic functions typically span several, possibly all nodes in the
 network. The atomic entities of an autonomic function are called the
 "Autonomic Service Agents" (ASA), which are instantiated on nodes.

 +- +
 : : Autonomic Function 1 : :
 : ASA 1 : ASA 1 : ASA 1 : ASA 1 :
 +- +
 : : :
 : +- - - - - - - - - - - - - - + :
 : : Autonomic Function 2 : :
 : : ASA 2 : ASA 2 : :
 : +- - - - - - - - - - - - - - + :
 : : :
 +- +
 : Autonomic Networking Infrastructure :
 +- +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 In a horizontal view, autonomic functions span across the network, as
 well as the Autonomic Networking Infrastructure. In a vertical view,
 a node always implements the ANI, plus it may have one or several
 Autonomic Service Agents. ASAs may be standalone, or use other ASAs
 in a hierarchical way.

Behringer, et al. Expires May 27, 2019 [Page 4]

Internet-Draft AN Reference Model November 2018

 The Autonomic Networking Infrastructure (ANI) therefore is the
 foundation for autonomic functions.

3. The Autonomic Network Element

 This section explains the general architecture of an Autonomic
 Network Element (Section 3.1), how it tracks its surrounding
 environment in an Adjacency Table (Section 3.2), and the state
 machine which defines the behaviour of the network element
 (Section 3.3), based on that adjacency table.

3.1. Architecture

 This section describes an autonomic network element and its internal
 architecture. The reference model explained in the document
 "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
 the sources of information that an autonomic service agent can
 leverage: Self-knowledge, network knowledge (through discovery),
 Intent (see Section 7.2), and feedback loops. There are two levels
 inside an autonomic node: the level of Autonomic Service Agents, and
 the level of the Autonomic Networking Infrastructure, with the former
 using the services of the latter. Figure 2 illustrates this concept.

 +--+
 | |
 | +-----------+ +------------+ +------------+ |
	Autonomic		Autonomic		Autonomic	
	Service		Service		Service	
	Agent 1		Agent 2		Agent 3	
+-----------+ +------------+ +------------+						
^ ^ ^						
- -	- - API level - -	- - - - - - -	- - -			
V V V						
--						
Autonomic Networking Infrastructure						
- Data structures (ex: certificates, peer information)						
- Generalized Autonomic Control Plane (GACP)						
- Autonomic Node Addressing and naming						
- Discovery, negotiation and synchronisation functions						
- Distribution of Intent and other information						
- Aggregated reporting and feedback loops						
- Routing						
--						
Basic Operating System Functions						
 +--+

 Figure 2: Model of an autonomic node

Behringer, et al. Expires May 27, 2019 [Page 5]

Internet-Draft AN Reference Model November 2018

 The Autonomic Networking Infrastructure (lower part of Figure 2)
 contains node specific data structures, for example trust information
 about itself and its peers, as well as a generic set of functions,
 independent of a particular usage. This infrastructure should be
 generic, and support a variety of Autonomic Service Agents (upper
 part of Figure 2). It contains addressing and naming of autonomic
 nodes, discovery, negotiation and synchronisation functions,
 distribution of information, reporting and feedback loops, as well as
 routing inside the Autonomic Control Plane.

 The Generalized Autonomic Control Plane (GACP) is the summary of all
 interactions of the Autonomic Networking Infrastructure with other
 nodes and services. A specific implementation of the GACP is
 referred to here as the Autonomic Control Plane (ACP), and described
 in [I-D.ietf-anima-autonomic-control-plane].

 The use cases of "Autonomics" such as self-management, self-
 optimisation, etc, are implemented as Autonomic Service Agents. They
 use the services and data structures of the underlying Autonomic
 Networking Infrastructure, which should be self-managing.

 The "Basic Operating System Functions" include the "normal OS",
 including the network stack, security functions, etc.

 Full AN nodes have the full Autonomic Networking Infrastructure, with
 the full functionality described in this document. At a later stage
 ANIMA may define a scope for constrained nodes with a reduced ANI and
 well-defined minimal functionality. They are currently out of scope.

3.2. The Adjacency Table

 Autonomic Networking is based on direct interactions between devices
 of a domain. The Autonomic Control Plane (ACP) is normally
 constructed on a hop-by-hop basis. Therefore, many interactions in
 the ANI are based on the ANI adjacency table. There are interactions
 that provide input into the adjacency table, and other interactions
 that leverage the information contained in it.

 The ANI adjacency table contains information about adjacent autonomic
 nodes, at a minimum: node-ID, IP address in data plane, IP address in
 ACP, domain, certificate. An autonomic node maintains this adjacency
 table up to date. The adjacency table only contains information
 about other nodes that are capable of Autonomic Networking; non-
 autonomic nodes are normally not tracked here. However, the
 information is tracked independently of the status of the peer nodes;
 specifically, it contains information about non-enrolled nodes, nodes
 of the same and other domains. The adjacency table may contain

Behringer, et al. Expires May 27, 2019 [Page 6]

Internet-Draft AN Reference Model November 2018

 information about the validity and trust level of the adjacent
 autonomic nodes.

 The adjacency table is fed by the following inputs:

 o Link local discovery: This interaction happens in the data plane,
 using IPv6 link local addressing only, because this addressing
 type is itself autonomic. This way the nodes learns about all
 autonomic nodes around itself. The related standards track
 documents ([I-D.ietf-anima-grasp],
 [I-D.ietf-anima-bootstrapping-keyinfra],
 [I-D.ietf-anima-autonomic-control-plane]) describe in detail how
 link local discovery is used.

 o Vendor re-direct: A new device may receive information on where
 its home network is through a vendor based Manufacturer Authorized
 Signing Authority (MASA, see Section 5.3) re-direct; this is
 typically a routable address.

 o Non-autonomic input: A node may be configured manually with an
 autonomic peer; it could learn about autonomic nodes through DHCP
 options, DNS, and other non-autonomic mechanisms. Generally such
 non-autonomic mechansims require some administrator intervention.
 The key purpose is to by-pass a non-autonomic device or network.
 As this pertains to new devices, it is covered in appendix A and B
 of [I-D.ietf-anima-bootstrapping-keyinfra].

 The adjacency table is defining the behaviour of an autonomic node:

 o If the node has not bootstrapped into a domain (i.e., doesn’t have
 a domain certificate), it rotates through all nodes in the
 adjacency table that claim to have a domain, and will attempt
 bootstrapping through them, one by one. One possible response is
 a re-direct via a vendor MASA, which will be entered into the
 adjacency table (see second bullet above). See
 [I-D.ietf-anima-bootstrapping-keyinfra] for details.

 o If the adjacent node has the same domain, it will authenticate
 that adjacent node and, if successful, establish the Autonomic
 Control Plane (ACP). See
 [I-D.ietf-anima-autonomic-control-plane].

 o Once the node is part of the ACP of a domain, it will use GRASP
 [I-D.ietf-anima-grasp] to find Registrar(s) of its domain and
 potentially other services.

 o If the node is part of an ACP and has discovered at least one
 Registrar in its domain via GRASP, it will start the "join

Behringer, et al. Expires May 27, 2019 [Page 7]

Internet-Draft AN Reference Model November 2018

 assistant" ASA, and act as a join assistant for neighboring nodes
 that need to be bootstrapped. See Section 6.3.1.2 for details.

 o Other behaviours are possible, for example establishing the ACP
 also with devices of a sub-domain, to other domains, etc. Those
 will likely be controlled by Intent. They are outside scope for
 the moment. Note that Intent is distributed through the ACP;
 therefore, a node can only adapt Intent driven behaviour once it
 has joined the ACP. At the moment, ANIMA does not consider
 providing Intent outside the ACP; this can be considered later.

 Once a node has joined the ACP, it will also learn the ACP addresses
 of its adjacent nodes, and add them to the adjacency table, to allow
 for communication inside the ACP. Further autonomic domain
 interactions will now happen inside the ACP. At this moment, only
 negotiation / synchronization via GRASP [I-D.ietf-anima-grasp] is
 being defined. (Note that GRASP runs in the data plane, as an input
 in building the adjacency table, as well as inside the ACP.)

 Autonomic Functions consist of Autonomic Service Agents (ASAs). They
 run logically above the AN Infrastructure, and may use the adjacency
 table, the ACP, negotiation and synchronization through GRASP in the
 ACP, Intent and other functions of the ANI. Since the ANI only
 provides autonomic interactions within a domain, autonomic functions
 can also use any other context on a node, specifically the global
 data plane.

3.3. State Machine

 Autonomic Networking applies during the full life-cycle of a node.
 This section describes a state machine of an autonomic node,
 throughout its life.

 A device is normally expected to store its domain specific identity,
 the LDevID (see Section 5.2), in persistent storage, to be available
 after a powercycle event. For device types that cannot store the
 LDevID in persistent storage, a powercycle event is effectively
 equivalent to a factory reset.

3.3.1. State 1: Factory Default

 An autonomic node leaves the factory in this state. In this state,
 the node has no domain specific configuration, specifically no
 LDevID, and could be used in any particular target network. It does
 however have a vendor/manufacturer specific ID, the IDevID [IDevID].
 Nodes without IDevID cannot be autonomically and securely enrolled
 into a domain; they require manual pre-staging, in which case the
 pre-staging takes them directly to state 2.

Behringer, et al. Expires May 27, 2019 [Page 8]

Internet-Draft AN Reference Model November 2018

 Transitions:

 o Bootstrap event: The device enrols into a domain; as part of this
 process it receives a domain identity (LDevID). If enrollment is
 successful, the next state is state 2. See
 [I-D.ietf-anima-bootstrapping-keyinfra] Section 3 for details on
 enrollment.

 o Powercycle event: The device loses all state tables. It remains
 in state: 1.

3.3.2. State 2: Enrolled

 An autonomic node is in the state "enrolled" if it has a domain
 identity (LDevID), and has currently no ACP channel up. It may have
 further configuration or state, for example if it had been in state 3
 before, but lost all its ACP channels. The LDevID can only be
 removed from a device through a factory reset, which also removes all
 other state from the device. This ensures that a device has no stale
 domain specific state when entering the "enrolled" state from state
 1.

 Transitions:

 o Joining ACP: The device establishes an ACP channel to an adjacent
 device. See [I-D.ietf-anima-autonomic-control-plane] for details.
 Next state: 3.

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). it remains in state: 2.

3.3.3. State 3: In ACP

 In this state, the autonomic node has at least one ACP channel to
 another device. The node can now participate in further autonomic
 transactions, such as starting autonomic service agents (e.g., it
 must now enable the join assistant ASA, to help other devices to join
 the domain. Other conditions may apply to such interactions, for
 example to serve as a join assistant, the device must first discover
 a bootstrap Registrar.

 Transitions:

 o Leaving ACP: The device drops the last (or only) ACP channel to an
 adjacent device. Next state: 2.

Behringer, et al. Expires May 27, 2019 [Page 9]

Internet-Draft AN Reference Model November 2018

 o Factory reset: A factory reset removes all configuration and the
 domain identity (LDevID) from the device. Next state: 1.

 o Powercycle event: The device loses all state tables, but not its
 domain identity (LDevID). Next state: 2.

4. The Autonomic Networking Infrastructure

 The Autonomic Networking Infrastructure provides a layer of common
 functionality across an Autonomic Network. It provides the
 elementary functions and services, as well as extensions. An
 Autonomic Function, comprising of Autonomic Service Agents on nodes,
 uses the functions described in this section.

4.1. Naming

 Inside a domain, each autonomic device should be assigned a unique
 name. The naming scheme should be consistent within a domain. Names
 are typically assigned by a Registrar at bootstrap time and
 persistent over the lifetime of the device. All Registrars in a
 domain must follow the same naming scheme.

 In the absence of a domain specific naming scheme, a default naming
 scheme should use the same logic as the addressing scheme discussed
 in [I-D.ietf-anima-autonomic-control-plane]. The device name is then
 composed of a Registrar ID (for example taking a MAC address of the
 Registrar) and a device number. An example name would then look like
 this:

 0123-4567-89ab-0001

 The first three fields are the MAC address, the fourth field is the
 sequential number for the device.

4.2. Addressing

 Autonomic Service Agents (ASAs) need to communicate with each other,
 using the autonomic addressing of the Autonomic Networking
 Infrastructure of the node they reside on. This section describes
 the addressing approach of the Autonomic Networking Infrastructure,
 used by ASAs.

 Addressing approaches for the data plane of the network are outside
 the scope of this document. These addressing approaches may be
 configured and managed in the traditional way, or negotiated as a
 service of an ASA. One use case for such an autonomic function is
 described in [I-D.ietf-anima-prefix-management].

Behringer, et al. Expires May 27, 2019 [Page 10]

Internet-Draft AN Reference Model November 2018

 Autonomic addressing is a function of the Autonomic Networking
 Infrastructure (lower part of Figure 2), specifically the Autonomic
 Control Plane. ASAs do not have their own addresses. They may use
 either API calls, or the autonomic addressing scheme of the Autonomic
 Networking Infrastructure.

 An autonomic addressing scheme has the following requirements:

 o Zero-touch for simple networks: Simple networks should have
 complete self-management of addressing, and not require any
 central address management, tools, or address planning.

 o Low-touch for complex networks: If complex networks require
 operator input for autonomic address management, it should be
 limited to high level guidance only, expressed in Intent.

 o Flexibility: The addressing scheme must be flexible enough for
 nodes to be able to move around, for the network to grow, split
 and merge.

 o Robustness: It should be as hard as possible for an administrator
 to negatively affect addressing (and thus connectivity) in the
 autonomic context.

 o Stability: The addressing scheme should be as stable as possible.
 However, implementations need to be able to recover from
 unexpected address changes.

 o Support for virtualization: Autonomic functions can exist either
 at the level of the physical network and physical devices, or at
 the level of virtual machines, containers and networks. In
 particular, Autonomic Nodes may support Autonomic Service Agents
 in virtual entities. The infrastructure, including the addressing
 scheme, should be able to support this architecture.

 o Simplicity: To make engineering simpler, and to give the human
 administrator an easy way to trouble-shoot autonomic functions.

 o Scale: The proposed scheme should work in any network of any size.

 o Upgradability: The scheme must be able to support different
 addressing concepts in the future.

 The proposed addressing scheme is described in the document "An
 Autonomic Control Plane" ([I-D.ietf-anima-autonomic-control-plane]).

Behringer, et al. Expires May 27, 2019 [Page 11]

Internet-Draft AN Reference Model November 2018

4.3. Discovery

 Traditionally, most of the information a node requires is provided
 through configuration or northbound interfaces. An autonomic
 function should rely on such northbound interfaces minimally or not
 at all, and therefore it needs to discover peers and other resources
 in the network. This section describes various discovery functions
 in an autonomic network.

 Discovering nodes and their properties and capabilities: A core
 function to establish an autonomic domain is the mutual discovery of
 autonomic nodes, primarily adjacent nodes and secondarily off-link
 peers. This may in principle either leverage existing discovery
 mechanisms, or use new mechanisms tailored to the autonomic context.
 An important point is that discovery must work in a network with no
 predefined topology, ideally no manual configuration of any kind, and
 with nodes starting up from factory condition or after any form of
 failure or sudden topology change.

 Discovering services: Network services such as AAA should also be
 discovered and not configured. Service discovery is required for
 such tasks. An autonomic network can either leverage existing
 service discovery functions, or use a new approach, or a mixture.

 Thus the discovery mechanism could either be fully integrated with
 autonomic signaling (next section) or could use an independent
 discovery mechanism such as DNS Service Discovery or Service Location
 Protocol. This choice could be made independently for each Autonomic
 Service Agent, although the infrastructure might require some minimal
 lowest common denominator (e.g., for discovering the security
 bootstrap mechanism, or the source of information distribution,
 Section 4.7).

 Phase 1 of Autonomic Networking uses GRASP for discovery, described
 in [I-D.ietf-anima-grasp].

4.4. Signaling Between Autonomic Nodes

 Autonomic nodes must communicate with each other, for example to
 negotiate and/or synchronize technical objectives (i.e., network
 parameters) of any kind and complexity. This requires some form of
 signaling between autonomic nodes. Autonomic nodes implementing a
 specific use case might choose their own signaling protocol, as long
 as it fits the overall security model. However, in the general case,
 any pair of autonomic nodes might need to communicate, so there needs
 to be a generic protocol for this. A prerequisite for this is that
 autonomic nodes can discover each other without any preconfiguration,
 as mentioned above. To be generic, discovery and signaling must be

Behringer, et al. Expires May 27, 2019 [Page 12]

Internet-Draft AN Reference Model November 2018

 able to handle any sort of technical objective, including ones that
 require complex data structures. The document "A Generic Autonomic
 Signaling Protocol (GRASP)" [I-D.ietf-anima-grasp] describes more
 detailed requirements for discovery, negotiation and synchronization
 in an autonomic network. It also defines a protocol, GRASP, for this
 purpose, including an integrated but optional discovery protocol.

 GRASP is normally expected to run inside the Autonomic Control Plane
 (ACP; see Section 4.6) and to depend on the ACP for security. It may
 run insecurely for a short time during bootstrapping.

 An autonomic node will normally run a single instance of GRASP, used
 by multiple ASAs. However, scenarios where multiple instances of
 GRASP run in a single node, perhaps with different security
 properties, are not excluded.

4.5. Routing

 All autonomic nodes in a domain must be able to communicate with each
 other, and later phases also with autonomic nodes outside their own
 domain. Therefore, an Autonomic Control Plane relies on a routing
 function. For Autonomic Networks to be interoperable, they must all
 support one common routing protocol.

 The routing protocol is defined in the ACP document
 [I-D.ietf-anima-autonomic-control-plane].

4.6. The Autonomic Control Plane

 The "Autonomic Control Plane" carries the control protocols in an
 autonomic network. In the architecture described here, it is
 implemented as an overlay network. The document "An Autonomic
 Control Plane" ([I-D.ietf-anima-autonomic-control-plane]) describes
 the implementation details suggested here. This document uses the
 term "overlay" to mean a set of point-to-point adjacencies congruent
 with the underlying interconnection topology. The terminology may
 not be aligned with a common usage of the "overlay" term in routing
 context. See [I-D.ietf-anima-stable-connectivity] for uses cases for
 the ACP.

4.7. Information Distribution (*)

 Certain forms of information require distribution across an autonomic
 domain. The distribution of information runs inside the Autonomic
 Control Plane. For example, Intent is distributed across an
 autonomic domain, as explained in [RFC7575].

Behringer, et al. Expires May 27, 2019 [Page 13]

Internet-Draft AN Reference Model November 2018

 Intent is the policy language of an Autonomic Network, see also
 Section 7.2. It is a high level policy, and should change only
 infrequently (order of days). Therefore, information such as Intent
 should be simply flooded to all nodes in an autonomic domain, and
 there is currently no perceived need to have more targeted
 distribution methods. Intent is also expected to be monolithic, and
 flooded as a whole. One possible method for distributing Intent, as
 well as other forms of data, is discussed in
 [I-D.liu-anima-grasp-distribution]. Intent and information
 distribution are not part of phase 1 of ANIMA.

5. Security and Trust Infrastructure

 An Autonomic Network is self-protecting. All protocols are secure by
 default, without the requirement for the administrator to explicitly
 configure security, with the exception of setting up a PKI
 infrastructure.

 Autonomic nodes have direct interactions between themselves, which
 must be secured. Since an autonomic network does not rely on
 configuration, it is not an option to configure, for example, pre-
 shared keys. A trust infrastructure such as a PKI infrastructure
 must be in place. This section describes the principles of this
 trust infrastructure. In this first phase of autonomic networking, a
 device is either within the trust domain and fully trusted, or
 outside the trust domain and fully untrusted.

 The default method to automatically bring up a trust infrastructure
 is defined in the document "Bootstrapping Key Infrastructures"
 [I-D.ietf-anima-bootstrapping-keyinfra]. The ASAs required for this
 enrollment process are described in Section 6.3. An autonomic node
 must implement the enrollment and join assistant ASAs. The registrar
 ASA may be implemented only on a sub-set of nodes.

5.1. Public Key Infrastructure

 An autonomic domain uses a PKI model. The root of trust is a
 certification authority (CA). A registrar acts as a registration
 authority (RA).

 A minimum implementation of an autonomic domain contains one CA, one
 Registrar, and network elements.

5.2. Domain Certificate

 Each device in an autonomic domain uses a domain certificate (LDevID)
 to prove its identity. A new device uses its manufacturer provided
 certificate (IDevID) during bootstrap, to obtain a domain

Behringer, et al. Expires May 27, 2019 [Page 14]

Internet-Draft AN Reference Model November 2018

 certificate. [I-D.ietf-anima-bootstrapping-keyinfra] describes how a
 new device receives a domain certificate, and the certificate format.

5.3. The MASA

 The Manufacturer Authorized Signing Authority (MASA) is a trusted
 service for bootstrapping devices. The purpose of the MASA is to
 provide ownership tracking of devices in a domain. The MASA provides
 audit, authorization, and ownership tokens to the registrar during
 the bootstrap process to assist in the authentication of devices
 attempting to join an Autonomic Domain, and to allow a joining device
 to validate whether it is joining the correct domain. The details
 for MASA service, security, and usage are defined in
 [I-D.ietf-anima-bootstrapping-keyinfra].

5.4. Sub-Domains (*)

 By default, sub-domains are treated as different domains. This
 implies no trust between a domain and its sub-domains, and no trust
 between sub-domains of the same domain. Specifically, no ACP is
 built, and Intent is valid only for the domain it is defined for
 explicitly.

 In phase 2 of ANIMA, alternative trust models should be defined, for
 example to allow full or limited trust between domain and sub-domain.

5.5. Cross-Domain Functionality (*)

 By default, different domains do not interoperate, no ACP is built
 and no trust is implied between them.

 In the future, models can be established where other domains can be
 trusted in full or for limited operations between the domains.

6. Autonomic Service Agents (ASA)

 This section describes how autonomic services run on top of the
 Autonomic Networking Infrastructure.

6.1. General Description of an ASA

 An Autonomic Service Agent (ASA) is defined in [RFC7575] as "An agent
 implemented on an autonomic node that implements an autonomic
 function, either in part (in the case of a distributed function) or
 whole." Thus it is a process that makes use of the features provided
 by the ANI to achieve its own goals, usually including interaction
 with other ASAs via the GRASP protocol [I-D.ietf-anima-grasp] or
 otherwise. Of course it also interacts with the specific targets of

Behringer, et al. Expires May 27, 2019 [Page 15]

Internet-Draft AN Reference Model November 2018

 its function, using any suitable mechanism. Unless its function is
 very simple, the ASA will need to handle overlapping asynchronous
 operations. It may therefore be a quite complex piece of software in
 its own right, forming part of the application layer above the ANI.
 ASA design guidelines are available in
 [I-D.carpenter-anima-asa-guidelines].

 Thus we can distinguish at least three classes of ASAs:

 o Simple ASAs with a small footprint that could run anywhere.

 o Complex, possibly multi-threaded ASAs that have a significant
 resource requirement and will only run on selected nodes.

 o A few ’infrastructure ASAs’ that use basic ANI features in support
 of the ANI itself, which must run in all autonomic nodes. These
 are outlined in the following sections.

 Autonomic nodes, and therefore their ASAs, know their own
 capabilities and restrictions, derived from hardware, firmware or
 pre-installed software: They are "self-aware".

 The role of an autonomic node depends on Intent and on the
 surrounding network behaviors, which may include forwarding
 behaviors, aggregation properties, topology location, bandwidth,
 tunnel or translation properties, etc. For example, a node may
 decide to act as a backup node for a neighbor, if its capabilities
 allow it to do so.

 Following an initial discovery phase, the node properties and those
 of its neighbors are the foundation of the behavior of a specific
 node. A node and its ASAs have no pre-configuration for the
 particular network in which they are installed.

 Since all ASAs will interact with the ANI, they will depend on
 appropriate application programming interfaces (APIs). It is
 desirable that ASAs are portable between operating systems, so these
 APIs need to be universal. An API for GRASP is described in
 [I-D.ietf-anima-grasp-api].

 ASAs will in general be designed and coded by experts in a particular
 technology and use case, not by experts in the ANI and its
 components. Also, they may be coded in a variety of programming
 languages, in particular including languages that support object
 constructs as well as traditional variables and structures. The APIs
 should be designed with these factors in mind.

Behringer, et al. Expires May 27, 2019 [Page 16]

Internet-Draft AN Reference Model November 2018

 It must be possible to run ASAs as non-privileged (user space)
 processes except for those (such as the infrastructure ASAs) that
 necessarily require kernel privilege. Also, it is highly desirable
 that ASAs can be dynamically loaded on a running node.

 Since autonomic systems must be self-repairing, it is of great
 importance that ASAs are coded using robust programming techniques.
 All run-time error conditions must be caught, leading to suitable
 minimally disruptive recovery actions, also considering a complete
 restart of the ASA. Conditions such as discovery failures or
 negotiation failures must be treated as routine, with the ASA
 retrying the failed operation, preferably with an exponential back-
 off in the case of persistent errors. When multiple threads are
 started within an ASA, these threads must be monitored for failures
 and hangups, and appropriate action taken. Attention must be given
 to garbage collection, so that ASAs never run out of resources.
 There is assumed to be no human operator - again, in the worst case,
 every ASA must be capable of restarting itself.

 ASAs will automatically benefit from the security provided by the
 ANI, and specifically by the ACP and by GRASP. However, beyond that,
 they are responsible for their own security, especially when
 communicating with the specific targets of their function.
 Therefore, the design of an ASA must include a security analysis
 beyond ’use ANI security.’

6.2. ASA Life-Cycle Management

 ASAs operating on a given ANI may come from different providers and
 pursue different objectives. Management of ASAs and its interactions
 with the ANI should follow the same operating principles, hence
 comply to a generic life-cycle management model.

 The ASA life-cycle provides standard processes to:

 o install ASA: copy the ASA code onto the node and start it,

 o deploy ASA: associate the ASA instance with a (some) managed
 network device(s) (or network function),

 o control ASA execution: when and how an ASA executes its control
 loop.

 The life-cyle will cover the sequential states below: Installation,
 Deployment, Operation and the transitional states in-between. This
 Life-Cycle will also define which interactions ASAs have with the ANI
 in between the different states. The noticeable interactions are:

Behringer, et al. Expires May 27, 2019 [Page 17]

Internet-Draft AN Reference Model November 2018

 o Self-description of ASA instances at the end of deployment: its
 format needs to define the information required for the management
 of ASAs by ANI entities

 o Control of ASA control-loop during the operation: a signaling has
 to carry formatted messages to control ASA execution (at least
 starting and stopping the control loop)

6.3. Specific ASAs for the Autonomic Network Infrastructure

 The following functions provide essential, required functionality in
 an autonomic network, and are therefore mandatory to implement on
 unconstrained autonomic nodes. They are described here as ASAs that
 include the underlying infrastructure components, but implementation
 details might vary.

 The first three together support the trust enrollment process
 described in Section 5. For details see
 [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1. The enrollment ASAs

6.3.1.1. The Pledge ASA

 This ASA includes the function of an autonomic node that bootstraps
 into the domain with the help of an join assitant ASA (see below).
 Such a node is known as a Pledge during the enrollment process. This
 ASA must be installed by default on all nodes that require an
 autonomic zero-touch bootstrap.

6.3.1.2. The Join Assistant ASA

 This ASA includes the function of an autonomic node that helps a non-
 enrolled, adjacent devices to enroll into the domain. This ASA must
 be installed on all nodes, although only one join assistant needs to
 be active on a given LAN. See also
 [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1.3. The Join Registrar ASA

 This ASA includes the join registrar function in an autonomic
 network. This ASA does not need to be installed on all nodes, but
 only on nodes that implement the Join Registrar function.

Behringer, et al. Expires May 27, 2019 [Page 18]

Internet-Draft AN Reference Model November 2018

6.3.2. The ACP ASA

 This ASA includes the ACP function in an autonomic network. In
 particular it acts to discover other potential ACP nodes, and to
 support the establishment and teardown of ACP channels. This ASA
 must be installed on all nodes. For details see Section 4.6 and
 [I-D.ietf-anima-autonomic-control-plane].

6.3.3. The Information Distribution ASA (*)

 This ASA is currently out of scope in ANIMA, and provided here only
 as background information.

 This ASA includes the information distribution function in an
 autonomic network. In particular it acts to announce the
 availability of Intent and other information to all other autonomic
 nodes. This ASA does not need to be installed on all nodes, but only
 on nodes that implement the information distribution function. For
 details see Section 4.7.

 Note that information distribution can be implemented as a function
 in any ASA. See [I-D.liu-anima-grasp-distribution] for more details
 on how information is suggested to be distributed.

7. Management and Programmability

 This section describes how an Autonomic Network is managed, and
 programmed.

7.1. Managing a (Partially) Autonomic Network

 Autonomic management usually co-exists with traditional management
 methods in most networks. Thus, autonomic behavior will be defined
 for individual functions in most environments. Examples for overlap
 are:

 o Autonomic functions can use traditional methods and protocols
 (e.g., SNMP and NETCONF) to perform management tasks, inside and
 outside the ACP;

 o Autonomic functions can conflict with behavior enforced by the
 same traditional methods and protocols;

 o Traditional functions can use the ACP, for example if reachability
 on the data plane is not (yet) established.

 The autonomic Intent is defined at a high level of abstraction.
 However, since it is necessary to address individual managed

Behringer, et al. Expires May 27, 2019 [Page 19]

Internet-Draft AN Reference Model November 2018

 elements, autonomic management needs to communicate in lower-level
 interactions (e.g., commands and requests). For example, it is
 expected that the configuration of such elements be performed using
 NETCONF and YANG modules as well as the monitoring be executed
 through SNMP and MIBs.

 Conflict can occur between autonomic default behavior, autonomic
 Intent, traditional management methods. Conflict resolution is
 achieved in autonomic management through prioritization [RFC7575].
 The rationale is that manual and node-based management have a higher
 priority over autonomic management. Thus, the autonomic default
 behavior has the lowest priority, then comes the autonomic Intent
 (medium priority), and, finally, the highest priority is taken by
 node-specific network management methods, such as the use of command
 line interfaces.

7.2. Intent (*)

 Intent is not covered in the current implementation specifications.
 This section discusses a topic for further research.

 This section gives an overview of Intent, and how it is managed.
 Intent and Policy-Based Network Management (PBNM) is already
 described inside the IETF (e.g., PCIM) and in other SDOs (e.g., DMTF
 and TMF ZOOM).

 Intent can be described as an abstract, declarative, high-level
 policy used to operate an autonomic domain, such as an enterprise
 network [RFC7575]. Intent should be limited to high level guidance
 only, thus it does not directly define a policy for every network
 element separately.

 Intent can be refined to lower level policies using different
 approaches. This is expected in order to adapt the Intent to the
 capabilities of managed devices. Intent may contain role or function
 information, which can be translated to specific nodes [RFC7575].
 One of the possible refinements of the Intent is using Event-
 Condition-Action (ECA) rules.

 Different parameters may be configured for Intent. These parameters
 are usually provided by the human operator. Some of these parameters
 can influence the behavior of specific autonomic functions as well as
 the way the Intent is used to manage the autonomic domain.

 Intent is discussed in more detail in [I-D.du-anima-an-intent].
 Intent as well as other types of information are distributed via
 GRASP, see [I-D.liu-anima-grasp-distribution].

Behringer, et al. Expires May 27, 2019 [Page 20]

Internet-Draft AN Reference Model November 2018

7.3. Aggregated Reporting (*)

 Aggregated reporting is not covered in the current implementation
 specifications. This section discusses a topic for further research.

 An Autonomic Network should minimize the need for human intervention.
 In terms of how the network should behave, this is done through an
 autonomic Intent provided by the human administrator. In an
 analogous manner, the reports which describe the operational status
 of the network should aggregate the information produced in different
 network elements in order to present the effectiveness of autonomic
 Intent enforcement. Therefore, reporting in an autonomic network
 should happen on a network-wide basis [RFC7575].

 Multiple simultaneous events can occur in an autonomic network in the
 same way they can happen in a traditional network. However, when
 reporting to a human administrator, such events should be aggregated
 to avoid notifications about individual managed elements. In this
 context, algorithms may be used to determine what should be reported
 (e.g., filtering) and in which way and how different events are
 related to each other. Besides that, an event in an individual
 element can be compensated by changes in other elements to maintain a
 network-wide target which is described in the autonomic Intent.

 Reporting in an autonomic network may be at the same abstraction
 level as Intent. In this context, the aggregated view of current
 operational status of an autonomic network can be used to switch to
 different management modes. Despite the fact that autonomic
 management should minimize the need for user intervention, possibly
 there are some events that need to be addressed by human
 administrator actions.

7.4. Feedback Loops to NOC (*)

 Feedback loops are required in an autonomic network to allow the
 intervention of a human administrator or central control systems,
 while maintaining a default behaviour. Through a feedback loop an
 administrator must be prompted with a default action, and has the
 possibility to acknowledge or override the proposed default action.

 Uni-directional notifications to the NOC, that do not propose any
 default action, and do not allow an override as part of the
 transaction are considered like traditional notification services,
 such as syslog. They are expected to co-exist with autonomic
 methods, but are not covered in this draft.

Behringer, et al. Expires May 27, 2019 [Page 21]

Internet-Draft AN Reference Model November 2018

7.5. Control Loops (*)

 Control loops are not covered in the current implementation
 specifications. This section discusses a topic for further research.

 Control loops are used in autonomic networking to provide a generic
 mechanism to enable the Autonomic System to adapt (on its own) to
 various factors that can change the goals that the autonomic network
 is trying to achieve, or how those goals are achieved. For example,
 as user needs, business goals, and the ANI itself changes, self-
 adaptation enables the ANI to change the services and resources it
 makes available to adapt to these changes.

 Control loops operate to continuously observe and collect data that
 enables the autonomic management system to understand changes to the
 behavior of the system being managed, and then provide actions to
 move the state of the system being managed toward a common goal.
 Self-adaptive systems move decision-making from static, pre-defined
 commands to dynamic processes computed at runtime.

 Most autonomic systems use a closed control loop with feedback. Such
 control loops should be able to be dynamically changed at runtime to
 adapt to changing user needs, business goals, and changes in the ANI.

7.6. APIs (*)

 APIs are not covered in the current implementation specifications.
 This section discusses a topic for further research.

 Most APIs are static, meaning that they are pre-defined and represent
 an invariant mechanism for operating with data. An Autonomic Network
 should be able to use dynamic APIs in addition to static APIs.

 A dynamic API is one that retrieves data using a generic mechanism,
 and then enables the client to navigate the retrieved data and
 operate on it. Such APIs typically use introspection and/or
 reflection. Introspection enables software to examine the type and
 properties of an object at runtime, while reflection enables a
 program to manipulate the attributes, methods, and/or metadata of an
 object.

 APIs must be able to express and preserve the semantics of data
 models. For example, software contracts [Meyer97] are based on the
 principle that a software-intensive system, such as an Autonomic
 Network, is a set of communicating components whose interaction is
 based on precisely-defined specifications of the mutual obligations
 that interacting components must respect. This typically includes
 specifying:

Behringer, et al. Expires May 27, 2019 [Page 22]

Internet-Draft AN Reference Model November 2018

 o pre-conditions that must be satisfied before the method can start
 execution

 o post-conditions that must be satisfied when the method has
 finished execution

 o invariant attributes that must not change during the execution of
 the method

7.7. Data Model (*)

 Data models are not covered in the current implementation
 specifications. This section discusses a topic for further research.

 The following definitions are adapted from
 [I-D.ietf-supa-generic-policy-data-model]:

 An information model is a representation of concepts of interest to
 an environment in a form that is independent of data repository, data
 definition language, query language, implementation language, and
 protocol. In contrast, a data model is a representation of concepts
 of interest to an environment in a form that is dependent on data
 repository, data definition language, query language, implementation
 language, and protocol (typically, but not necessarily, all three).

 The utility of an information model is to define objects and their
 relationships in a technology-neutral manner. This forms a
 consensual vocabulary that the ANI and ASAs can use. A data model is
 then a technology-specific mapping of all or part of the information
 model to be used by all or part of the system.

 A system may have multiple data models. Operational Support Systems,
 for example, typically have multiple types of repositories, such as
 SQL and NoSQL, to take advantage of the different properties of each.
 If multiple data models are required by an Autonomic System, then an
 information model should be used to ensure that the concepts of each
 data model can be related to each other without technological bias.

 A data model is essential for certain types of functions, such as a
 Model-Reference Adaptive Control Loop (MRACL). More generally, a
 data model can be used to define the objects, attributes, methods,
 and relationships of a software system (e.g., the ANI, an autonomic
 node, or an ASA). A data model can be used to help design an API, as
 well as any language used to interface to the Autonomic Network.

Behringer, et al. Expires May 27, 2019 [Page 23]

Internet-Draft AN Reference Model November 2018

8. Coordination Between Autonomic Functions (*)

 Coordination between autonomic functions is not covered in the
 current implementation specifications. This section discusses a
 topic for further research.

8.1. The Coordination Problem (*)

 Different autonomic functions may conflict in setting certain
 parameters. For example, an energy efficiency function may want to
 shut down a redundant link, while a load balancing function would not
 want that to happen. The administrator must be able to understand
 and resolve such interactions, to steer autonomic network performance
 to a given (intended) operational point.

 Several interaction types may exist among autonomic functions, for
 example:

 o Cooperation: An autonomic function can improve the behavior or
 performance of another autonomic function, such as a traffic
 forecasting function used by a traffic allocation function.

 o Dependency: An autonomic function cannot work without another one
 being present or accessible in the autonomic network.

 o Conflict: A metric value conflict is a conflict where one metric
 is influenced by parameters of different autonomic functions. A
 parameter value conflict is a conflict where one parameter is
 modified by different autonomic functions.

 Solving the coordination problem beyond one-by-one cases can rapidly
 become intractable for large networks. Specifying a common
 functional block on coordination is a first step to address the
 problem in a systemic way. The coordination life-cycle consists in
 three states:

 o At build-time, a "static interaction map" can be constructed on
 the relationship of functions and attributes. This map can be
 used to (pre-)define policies and priorities on identified
 conflicts.

 o At deploy-time, autonomic functions are not yet active/acting on
 the network. A "dynamic interaction map" is created for each
 instance of each autonomic functions and on a per resource basis,
 including the actions performed and their relationships. This map
 provides the basis to identify conflicts that will happen at run-
 time, categorize them and plan for the appropriate coordination
 strategies/mechanisms.

Behringer, et al. Expires May 27, 2019 [Page 24]

Internet-Draft AN Reference Model November 2018

 o At run-time, when conflicts happen, arbitration is driven by the
 coordination strategies. Also new dependencies can be observed
 and inferred, resulting in an update of the dynamic interaction
 map and adaptation of the coordination strategies and mechanisms.

 Multiple coordination strategies and mechanisms exist and can be
 devised. The set ranges from basic approaches such as random process
 or token-based process, to approaches based on time separation and
 hierarchical optimization, to more complex approaches such as multi-
 objective optimization, and other control theory approaches and
 algorithms family.

8.2. A Coordination Functional Block (*)

 A common coordination functional block is a desirable component of
 the ANIMA reference model. It provides a means to ensure network
 properties and predictable performance or behavior such as stability,
 and convergence, in the presence of several interacting autonomic
 functions.

 A common coordination function requires:

 o A common description of autonomic functions, their attributes and
 life-cycle.

 o A common representation of information and knowledge (e.g.,
 interaction maps).

 o A common "control/command" interface between the coordination
 "agent" and the autonomic functions.

 Guidelines, recommendations or BCPs can also be provided for aspects
 pertaining to the coordination strategies and mechanisms.

9. Security Considerations

 In this section we distinguish outsider and insider attacks. In an
 outsider attack all network elements and protocols are securely
 managed and operating, and an outside attacker can sniff packets in
 transit, inject and replay packets. In an insider attack, the
 attacker has access to an autonomic node or other means (e.g. remote
 code execution in the node by exploiting ACP-independent
 vulnerabilities in the node platform) to produce arbitrary payloads
 on the protected ACP channels.

 If a system has vulnerabilities in the implementation or operation
 (configuration), an outside attacker can exploit such vulnerabilies
 to become an insider attacker.

Behringer, et al. Expires May 27, 2019 [Page 25]

Internet-Draft AN Reference Model November 2018

9.1. Protection Against Outsider Attacks

 Here, we assume that all systems involved in an autonomic network are
 secured and operated according to best current practices. These
 protection methods comprise traditional security implementation and
 operation methods (such as code security, strong randomization
 algorithms, strong passwords, etc.) as well as mechanisms specific to
 an autonomic network (such as a secured MASA service).

 Traditional security methods for both implementation and operation
 are outside scope for this document.

 AN specific protocols and methods must also follow traditional
 security methods, in that all packets that can be sniffed or injected
 by an outside attacker are:

 o protected against modification.

 o authenticated.

 o protected against replay attacks.

 o confidentiality protected (encrypted).

 o and that the AN protocols are robust against packet drops and man-
 in-the-middle attacks.

 How these requirements are met is covered in the AN standards track
 documents that define the methods used, specifically
 [I-D.ietf-anima-bootstrapping-keyinfra], [I-D.ietf-anima-grasp], and
 [I-D.ietf-anima-autonomic-control-plane].

 Most AN messages run inside the cryptographically protected ACP. The
 unprotected AN messages outside the ACP are limited to a simple
 discovery method, defined in Section 2.5.2 of [I-D.ietf-anima-grasp]:
 The "Discovery Unsolicited Link-Local (DULL)" message, with detailed
 rules on its usage.

 If AN messages can be observed by a third party, they might reveal
 valuable information about network configuration, security
 precautions in use, individual users, and their traffic patterns. If
 encrypted, AN messages might still reveal some information via
 traffic analysis.

Behringer, et al. Expires May 27, 2019 [Page 26]

Internet-Draft AN Reference Model November 2018

9.2. Risk of Insider Attacks

 An autonomic network consists of autonomic devices that form a
 distributed self-managing system. Devices within a domain have
 credentials issued from a common trust anchor and can use them to
 create mutual trust. This means that any device inside a trust
 domain can by default use all distributed functions in the entire
 autonomic domain in a malicious way.

 If an autonomic node or protocol has vulnerabilities or is not
 securely operated, an outside attacker has the following generic ways
 to take control of an autonomic network:

 o Introducing a fake device into the trust domain, by subverting the
 authentication methods. This depends on the correct
 specification, implementation and operation of the AN protocols.

 o Subverting a device which is already part of a trust domain, and
 modifying its behavior. This threat is not specific to the
 solution discussed in this document, and applies to all network
 solutions.

 o Exploiting potentially yet unknown protocol vulnerabilities in the
 AN or other protocols. Also this is a generic threat that applies
 to all network solutions.

 The above threats are in principle comparable to other solutions: In
 the presence of design, implementation or operational errors,
 security is no longer guaranteed. However, the distributed nature of
 AN, specifically the Autonomic Control Plane, increases the threat
 surface significantly. For example, a compromised device may have
 full IP reachability to all other devices inside the ACP, and can use
 all AN methods and protocols.

 For the next phase of the ANIMA work it is therefore recommended to
 introduce a sub-domain security model, to reduce the attack surface
 and not expose a full domain to a potential intruder. Furthermore,
 additional security mechanisms on the ASA level should be considered
 for high-risk autonomic functions.

10. IANA Considerations

 This document requests no action by IANA.

Behringer, et al. Expires May 27, 2019 [Page 27]

Internet-Draft AN Reference Model November 2018

11. Acknowledgements

 Many people have provided feedback and input to this document: Sheng
 Jiang, Roberta Maglione, Jonathan Hansford, Jason Coleman, Artur
 Hecker. Useful reviews were made by Joel Halpern, Radia Perlman,
 Tianran Zhou and Christian Hopps.

12. Contributors

 Significant contributions to this document have been made by John
 Strassner and Bing Liu from Huawei, and Pierre Peloso from Nokia.

13. References

13.1. Normative References

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-18 (work in progress), August 2018.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-17 (work in progress), November 2018.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [IDevID] IEEE Standard, , "IEEE 802.1AR Secure Device Identifier",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

13.2. Informative References

 [I-D.carpenter-anima-asa-guidelines]
 Carpenter, B., Ciavaglia, L., Jiang, S., and P. Pierre,
 "Guidelines for Autonomic Service Agents", draft-
 carpenter-anima-asa-guidelines-05 (work in progress), June
 2018.

 [I-D.du-anima-an-intent]
 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L., and M.
 Behringer, "ANIMA Intent Policy and Format", draft-du-
 anima-an-intent-05 (work in progress), February 2017.

Behringer, et al. Expires May 27, 2019 [Page 28]

Internet-Draft AN Reference Model November 2018

 [I-D.ietf-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-02 (work in
 progress), June 2018.

 [I-D.ietf-anima-prefix-management]
 Jiang, S., Du, Z., and B. Carpenter, "Autonomic IPv6 Edge
 Prefix Management in Large-scale Networks", draft-ietf-
 anima-prefix-management-07 (work in progress), December
 2017.

 [I-D.ietf-anima-stable-connectivity]
 Eckert, T. and M. Behringer, "Using Autonomic Control
 Plane for Stable Connectivity of Network OAM", draft-ietf-
 anima-stable-connectivity-10 (work in progress), February
 2018.

 [I-D.ietf-supa-generic-policy-data-model]
 Halpern, J. and J. Strassner, "Generic Policy Data Model
 for Simplified Use of Policy Abstractions (SUPA)", draft-
 ietf-supa-generic-policy-data-model-04 (work in progress),
 June 2017.

 [I-D.liu-anima-grasp-distribution]
 Liu, B., Jiang, S., Xiao, X., Hecker, A., and Z.
 Despotovic, "Information Distribution in Autonomic
 Networking", draft-liu-anima-grasp-distribution-09 (work
 in progress), October 2018.

 [Meyer97] Meyer, B., "Object-Oriented Software Construction (2nd
 edition)", Prentice-Hall, ISBN 978-0136291558, 1997.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015, <https://www.rfc-
 editor.org/info/rfc7575>.

 [RFC7576] Jiang, S., Carpenter, B., and M. Behringer, "General Gap
 Analysis for Autonomic Networking", RFC 7576,
 DOI 10.17487/RFC7576, June 2015, <https://www.rfc-
 editor.org/info/rfc7576>.

Behringer, et al. Expires May 27, 2019 [Page 29]

Internet-Draft AN Reference Model November 2018

Authors’ Addresses

 Michael H. Behringer (editor)

 Email: Michael.H.Behringer@gmail.com

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Toerless Eckert
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte@cs.fau.de

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

 Jeferson Campos Nobre
 University of Vale do Rio dos Sinos
 Av. Unisinos, 950
 Sao Leopoldo 91501-970
 Brazil

 Email: jcnobre@unisinos.br

Behringer, et al. Expires May 27, 2019 [Page 30]

ANIMA T. Eckert, Ed.
Internet-Draft Huawei
Intended status: Informational M. Behringer
Expires: August 9, 2018 February 5, 2018

 Using Autonomic Control Plane for Stable Connectivity of Network OAM
 draft-ietf-anima-stable-connectivity-10

Abstract

 OAM (Operations, Administration and Maintenance - as per BCP161,
 (RFC6291) processes for data networks are often subject to the
 problem of circular dependencies when relying on connectivity
 provided by the network to be managed for the OAM purposes.

 Provisioning while bringing up devices and networks tends to be more
 difficult to automate than service provisioning later on, changes in
 core network functions impacting reachability cannot be automated
 because of ongoing connectivity requirements for the OAM equipment
 itself, and widely used OAM protocols are not secure enough to be
 carried across the network without security concerns.

 This document describes how to integrate OAM processes with an
 autonomic control plane in order to provide stable and secure
 connectivity for those OAM processes. This connectivity is not
 subject to aforementioned circular dependencies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 9, 2018.

Eckert & Behringer Expires August 9, 2018 [Page 1]

Internet-Draft AN Stable Connectivity OAM February 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Self-dependent OAM Connectivity 3
 1.2. Data Communication Networks (DCNs) 3
 1.3. Leveraging a generalized autonomic control plane 4
 2. Solutions . 5
 2.1. Stable Connectivity for Centralized OAM 5
 2.1.1. Simple Connectivity for Non-GACP capable NMS Hosts . 6
 2.1.2. Challenges and Limitation of Simple Connectivity . . 7
 2.1.3. Simultaneous GACP and data-plane Connectivity 8
 2.1.4. IPv4-only NMS Hosts 9
 2.1.5. Path Selection Policies 12
 2.1.6. Autonomic NOC Device/Applications 15
 2.1.7. Encryption of data-plane connections 15
 2.1.8. Long Term Direction of the Solution 16
 2.2. Stable Connectivity for Distributed Network/OAM 17
 3. Architectural Considerations 17
 3.1. No IPv4 for GACP . 17
 4. Security Considerations 18
 5. IANA Considerations . 20
 6. Acknowledgements . 20
 7. Change log [RFC Editor: Please remove] 20
 8. References . 23
 8.1. Normative References 23
 8.2. Informative References 24
 Authors’ Addresses . 25

1. Introduction

Eckert & Behringer Expires August 9, 2018 [Page 2]

Internet-Draft AN Stable Connectivity OAM February 2018

1.1. Self-dependent OAM Connectivity

 OAM (Operations, Administration and Maintenance - as per BCP161,
 [RFC6291]) for data networks is often subject to the problem of
 circular dependencies when relying on the connectivity service
 provided by the network to be managed. OAM can easily but
 unintentionally break the connectivity required for its own
 operations. Avoiding these problems can lead to complexity in OAM.
 This document describes this problem and how to use an autonomic
 control plane to solve it without further OAM complexity:

 The ability to perform OAM on a network device requires first the
 execution of OAM necessary to create network connectivity to that
 device in all intervening devices. This typically leads to
 sequential, ’expanding ring configuration’ from a NOC (Network
 Operations Center). It also leads to tight dependencies between
 provisioning tools and security enrollment of devices. Any process
 that wants to enroll multiple devices along a newly deployed network
 topology needs to tightly interlock with the provisioning process
 that creates connectivity before the enrollment can move on to the
 next device.

 When performing change operations on a network, it likewise is
 necessary to understand at any step of that process that there is no
 interruption of connectivity that could lead to removal of
 connectivity to remote devices. This includes especially change
 provisioning of routing, forwarding, security and addressing policies
 in the network that often occur through mergers and acquisitions, the
 introduction of IPv6 or other mayor re-hauls in the infrastructure
 design. Examples include change of an IGP or areas, PA (Provider
 Aggregatable) to PI (Provider Independent) addressing, or systematic
 topology changes (such as L2 to L3 changes).

 All these circular dependencies make OAM complex and potentially
 fragile. When automation is being used, for example through
 provisioning systems, this complexity extends into that automation
 software.

1.2. Data Communication Networks (DCNs)

 In the late 1990s and early 2000, IP networks became the method of
 choice to build separate OAM networks for the communications
 infrastructure within Network Providers. This concept was
 standardized in ITU-T G.7712/Y.1703 [ITUT] and called "Data
 Communications Networks" (DCN). These were (and still are)
 physically separate IP(/MPLS) networks that provide access to OAM
 interfaces of all equipment that had to be managed, from PSTN (Public

Eckert & Behringer Expires August 9, 2018 [Page 3]

Internet-Draft AN Stable Connectivity OAM February 2018

 Switched Telephone Network) switches over optical equipment to
 nowadays Ethernet and IP/MPLS production network equipment.

 Such DCN provide stable connectivity not subject to aforementioned
 problems because they are a separate network entirely, so change
 configuration of the production IP network is done via the DCN but
 never affects the DCN configuration. Of course, this approach comes
 at a cost of buying and operating a separate network and this cost is
 not feasible for many providers, most notably smaller providers, most
 enterprises and typical IoT networks (Internet of Things).

1.3. Leveraging a generalized autonomic control plane

 One of the goals of the IETF ANIMA (Autonomic Networking Integrated
 Model and Approach) working group is the specification of a secure
 and automatically built inband management plane that provides similar
 stable connectivity as a DCN, but without having to build a separate
 DCN. It is clear that such ’in-band’ approach can never achieve
 fully the same level of separation, but the goal is to get as close
 to it as possible.

 This goal of this document is to discuss how such an inband
 management plane can be used to support the DCN-like OAM use-case,
 leverage its stable connectivity and details the options of deploying
 it incrementally - short and long term.

 The evolving ANIMA working groups specification
 [I-D.ietf-anima-autonomic-control-plane]) calls this inband
 management plane the "Autonomic Control Plane" (ACP). The
 discussions in this document are not depending on the specification
 of that ACP, but only on a set of high level constraints decided
 early on in the work for the ACP. Unless being specific about
 details of the ACP, this document uses the term "Generalized ACP"
 (GACP) and is applicable to any designs that meet those high level
 constraints. For example - but not limited to - variations of the
 ACP protocol choices.

 The high level constraints of a GACP assumed and discussed in this
 document are as follows:

 VRF Isolation: The GACP is a virtual network ("VRF") across network
 devices - its routing and forwarding are separate from other
 routing and forwarding in the network devices. Non-GACP routing/
 forwarding is called the "data-plane".

 IPv6 only addressing: The GACP provides only IPv6 reachability. It
 uses ULA addresses ([RFC4193]) that are routed in a location
 independent fashion for example through per network device subnet

Eckert & Behringer Expires August 9, 2018 [Page 4]

Internet-Draft AN Stable Connectivity OAM February 2018

 prefixes. Automatic addressing in the GACP is therefore simple &
 stable: it does not require allocation by address registries,
 addresses are identifiers, they do not change when devices move,
 and no engineering of the address space to the network topology is
 necessary.

 NOC connectivity: NOC equipment (controlling OAM operations) either
 has access to the GACP directly or has an IP subnet connection to
 a GACP-edge device.

 Closed Group Security: GACP devices have cryptographic credentials
 to mutually authenticate each other as members of a GACP. Traffic
 across the GACP is authenticated with these credentials and then
 encrypted. The only traffic permitted in & out of the GACP that
 is not authenticated by these credentials is through explicit
 configuration the traffic from/to the aforementioned non-GACP NOC
 equipment with subnet connections to a GACP-edge device (as a
 transition method).

 The GACP must be built autonomic and its function must not be
 disruptable by operator or automated (NMS/SDN) configuration/
 provisioning actions. These are allowed to only impact the "data-
 plane". This aspect is not currently covered in this document.
 Instead, it focusses on the impact of the above constraints: IPv6
 only, dual connectivity and security.

2. Solutions

2.1. Stable Connectivity for Centralized OAM

 The ANI is the "Autonomic Networking Infrastructure" consisting of
 secure zero touch Bootstrap (BRSKI -
 [I-D.ietf-anima-bootstrapping-keyinfra]), GeneRic Autonomic Signaling
 Protocol (GRASP - [I-D.ietf-anima-grasp]), and Autonomic Control
 Plane (ACP - [I-D.ietf-anima-autonomic-control-plane]). Refer to
 [I-D.ietf-anima-reference-model] for an overview of the ANI and how
 its components interact and [RFC7575] for concepts and terminology of
 ANI and autonomic networks.

 This section describes stable connectivity for centralized OAM via
 the GACP, for example via the ACP with or without a complete ANI,
 starting by what we expect to be the most easy to deploy short-term
 option. It then describes limitation and challenges of that approach
 and their solutions/workarounds to finish with the preferred target
 option of autonomic NOC devices in Section 2.1.6.

 This order was chosen because it helps to explain how simple initial
 use of a GACP can be, how difficult workarounds can become (and

Eckert & Behringer Expires August 9, 2018 [Page 5]

Internet-Draft AN Stable Connectivity OAM February 2018

 therefore what to avoid), and finally because one very promising
 long-term solution alternative is exactly like the most easy short-
 term solution only virtualized and automated.

 In the most common case, OAM will be performed by one or more
 applications running on a variety of centralized NOC systems that
 communicate with network devices. We describe differently advanced
 approaches to leverage a GACP for stable connectivity. There is a
 wide range of options, some of which are simple, some more complex.

 Three stages can be considered:

 o There are simple options described in sections Section 2.1.1
 through Section 2.1.3 that we consider to be good starting points
 to operationalize the use of a GACP for stable connectivity today.
 These options require only network and OAN/NOC device
 configuration.

 o The are workarounds to connect a GACP to non-IPv6 capable NOC
 devices through the use of IPv4/IPv6 NAT (Network Address
 Translation) as described in section Section 2.1.4. These
 workarounds are not recommended but if such non-IPv6 capable NOC
 devices need to be used longer term, then this is the only option
 to connect them to a GACP.

 o Near to long term options can provide all the desired operational,
 zero touch and security benefits of an autonomic network, but a
 range of details for this still have to be worked out and
 development work on NOC/OAM equipment is necessary. These options
 are discussed in sections Section 2.1.5 through Section 2.1.8.

2.1.1. Simple Connectivity for Non-GACP capable NMS Hosts

 In the most simple candidate deployment case, the GACP extends all
 the way into the NOC via one or more "GACP-edge-devices". See also
 section 6.1 of [I-D.ietf-anima-autonomic-control-plane]. These
 devices "leak" the (otherwise encrypted) GACP natively to NMS hosts.
 They act as the default routers to those NMS hosts and provide them
 with IPv6 connectivity into the GACP. NMS hosts with this setup need
 to support IPv6 (see e.g. [RFC6434]) but require no other
 modifications to leverage the GACP.

 Note that even though the GACP only uses IPv6, it can of course
 support OAM for any type of network deployment as long as the network
 devices support the GACP: The data-plane can be IPv4 only, dual-stack
 or IPv6 only. It is always separate from the GACP, therefore there
 is no dependency between the GACP and the IP version(s) used in the
 data-plane.

Eckert & Behringer Expires August 9, 2018 [Page 6]

Internet-Draft AN Stable Connectivity OAM February 2018

 This setup is sufficient for troubleshooting such as SSH into network
 devices, NMS that performs SNMP read operations for status checking,
 software downloads into autonomic devices, provisioning of devices
 via NETCONF and so on. In conjunction with otherwise unmodified OAM
 via separate NMS hosts it can provide a good subset of the stable
 connectivity goals. The limitations of this approach are discussed
 in the next section.

 Because the GACP provides ’only’ for IPv6 connectivity, and because
 addressing provided by the GACP does not include any topological
 addressing structure that operations in a NOC often relies on to
 recognize where devices are on the network, it is likely highly
 desirable to set up DNS (Domain Name System - see [RFC1034]) so that
 the GACP IPv6 addresses of autonomic devices are known via domain
 names that include the desired structure. For example, if DNS in the
 network was set up with names for network devices as
 devicename.noc.example.com, and the well-known structure of the data-
 plane IPv4 addresses space was used by operators to infer the region
 where a device is located in, then the GACP address of that device
 could be set up as devicename_<region>.acp.noc.example.com, and
 devicename.acp.noc.example.com could be a CNAME to
 devicename_<region>.acp.noc.example.com. Note that many networks
 already use names for network equipment where topological information
 is included, even without a GACP.

2.1.2. Challenges and Limitation of Simple Connectivity

 This simple connectivity of non-autonomic NMS hosts suffers from a
 range of challenges (that is, operators may not be able to do it this
 way) or limitations (that is, operator cannot achieve desired goals
 with this setup). The following list summarizes these challenges and
 limitations. The following sections describe additional mechanisms
 to overcome them.

 Note that these challenges and limitations exist because GACP is
 primarily designed to support distributed ASA (Autonomic Service
 Agent, a piece of autonomic software) in the most lightweight
 fashion, but not mandatorily require support for additional
 mechanisms to best support centralized NOC operations. It is this
 document that describes additional (short term) workarounds and (long
 term) extensions.

 1. (Limitation) NMS hosts cannot directly probe whether the desired
 so called ’data-plane’ network connectivity works because they do
 not directly have access to it. This problem is similar to
 probing connectivity for other services (such as VPN services)
 that they do not have direct access to, so the NOC may already

Eckert & Behringer Expires August 9, 2018 [Page 7]

Internet-Draft AN Stable Connectivity OAM February 2018

 employ appropriate mechanisms to deal with this issue (probing
 proxies). See Section 2.1.3 for candidate solutions.

 2. (Challenge) NMS hosts need to support IPv6 which often is still
 not possible in enterprise networks. See Section 2.1.4 for some
 workarounds.

 3. (Limitation) Performance of the GACP may be limited versus normal
 ’data-plane’ connectivity. The setup of the GACP will often
 support only non-hardware accelerated forwarding. Running a
 large amount of traffic through the GACP, especially for tasks
 where it is not necessary will reduce its performance/
 effectiveness for those operations where it is necessary or
 highly desirable. See Section 2.1.5 for candidate solutions.

 4. (Limitation) Security of the GACP is reduced by exposing the GACP
 natively (and unencrypted) into a subnet in the NOC where the NOC
 devices are attached to it. See Section 2.1.7 for candidate
 solutions.

 These four problems can be tackled independently of each other by
 solution improvements. Combining some of these solutions
 improvements together can lead towards a candidate long term
 solution.

2.1.3. Simultaneous GACP and data-plane Connectivity

 Simultaneous connectivity to both GACP and data-plane can be achieved
 in a variety of ways. If the data-plane is IPv4-only, then any
 method for dual-stack attachment of the NOC device/application will
 suffice: IPv6 connectivity from the NOC provides access via the GACP,
 IPv4 will provide access via the data-plane. If as explained above
 in the simple case, an autonomic device supports native attachment to
 the GACP, and the existing NOC setup is IPv4 only, then it could be
 sufficient to attach the GACP device(s) as the IPv6 default router to
 the NOC subnet and keep the existing IPv4 default router setup
 unchanged.

 If the data-plane of the network is also supporting IPv6, then the
 most compatible setup for NOC devices is to have two IPv6 interfaces.
 One virtual ((e.g. via IEEE 802.1Q [IEEE802.1Q]) or physical
 interface connecting to a data-plane subnet, and another into an GACP
 connect subnet. See section 8.1 of
 [I-D.ietf-anima-autonomic-control-plane] for more details. That
 document also specifies how the NOC devices can receive auto
 configured addressing and routes towards the ACP connect subnet if it
 supports [RFC6724] and [RFC4191].

Eckert & Behringer Expires August 9, 2018 [Page 8]

Internet-Draft AN Stable Connectivity OAM February 2018

 Configuring a second interface on a NOC host may be impossible or be
 seen as undesired complexity. In that case the GACP edge device
 needs to provide support for a "Combined ACP and data-plane
 interface" as also described in section 8.1 of
 [I-D.ietf-anima-autonomic-control-plane]. This setup may not work
 with auto configuration and all NOC host network stacks due to
 limitations in those network stacks. They need to be able to perform
 RFC6724 source address selection rule 5.5 including caching of next-
 hop information.

 For security reasons, it is not considered appropriate to connect a
 non-GACP router to a GACP connect interface. The reason is that the
 GACP is a secured network domain and all NOC devices connecting via
 GACP connect interfaces are also part of that secure domain - the
 main difference is that the physical link between the GACP edge
 device and the NOC devices is not authenticated/encrypted and
 therefore, needs to be physically secured. If the secure GACP was
 extendable via untrusted routers then it would be a lot more
 difficult to verify the secure domain assertion. Therefore the GACP
 edge devices are not supposed to redistribute routes from non-GACP
 routers into the GACP.

2.1.4. IPv4-only NMS Hosts

 One architectural expectation for the GACP as described in
 Section 1.3 is that all devices that want to use the GACP do support
 IPv6. Including NMS hosts. Note that this expectation does not
 imply any requirements against the data-plane, especially no need to
 support IPv6 in it. The data-plane could be IPv4 only, IPv6 only,
 dual stack or it may not need to have any IP host stack on the
 network devices.

 The implication of this architectural decision is the potential need
 for short-term workarounds when the operational practices in a
 network do not yet meet these target expectations. This section
 explains when and why these workarounds may be operationally
 necessary and describes them. However, the long term goal is to
 upgrade all NMS hosts to native IPv6, so the workarounds described in
 this section should not be considered permanent.

 Most network equipment today supports IPv6 but it is by far not
 ubiquitously supported in NOC backend solutions (HW/SW), especially
 not in the product space for enterprises. Even when it is supported,
 there are often additional limitations or issues using it in a dual
 stack setup or the operator mandates for simplicity single stack for
 all operations. For these reasons an IPv4 only management plane is
 still required and common practice in many enterprises. Without the
 desire to leverage the GACP, this required and common practice is not

Eckert & Behringer Expires August 9, 2018 [Page 9]

Internet-Draft AN Stable Connectivity OAM February 2018

 a problem for those enterprises even when they run dual stack in the
 network. We discuss these workarounds here because it is a short
 term deployment challenge specific to the operations of a GACP.

 To connect IPv4 only management plane devices/applications with a
 GACP, some form of IP/ICMP translation of packets IPv4<->IPv6 is
 necessary. The basic mechanisms for this are defined in SIIT
 ([RFC7915]). There are multiple solutions using this mechanism. To
 understand the possible solutions, we consider the requirements:

 1. NMS hosts need to be able to initiate connections to any GACP
 device for management purposes. Examples include provisioning
 via Netconf/(SSH), SNMP poll operations or just diagnostics via
 SSH connections from operators. Every GACP device/function that
 needs to be reachable from NMS hosts needs to have a separate
 IPv4 address.

 2. GACP devices need to be able to initiate connections to NMS hosts
 for example to initiate NTP or radius/diameter connections, send
 syslog or SNMP trap or initiate Netconf Call Home connections
 after bootstrap. Every NMS host needs to have a separate IPv6
 address reachable from the GACP. When connections from GACP
 devices are made to NMS hosts, the IPv4 source address of these
 connections as seen by the NMS Host must also be unique per GACP
 device and the same address as in (1) to maintain the same
 addressing simplicity as in a native IPv4 deployment. For
 example in syslog, the source-IP address of a logging device is
 used to identify it, and if the device shows problems, an
 operator might want to SSH into the device to diagnose it.

 Because of these requirements, the necessary and sufficient set of
 solutions are those that provide 1:1 mapping of IPv6 GACP addresses
 into IPv4 space and 1:1 mapping of IPv4 NMS host space into IPv6 (for
 use in the GACP). This means that stateless SIIT based solutions are
 sufficient and preferred.

 Note that GACP devices may use multiple IPv6 addresses in the GACP.
 For example, [I-D.ietf-anima-autonomic-control-plane] section 6.10
 defines multiple useful addressing sub-schemes supporting this
 option. All those addresses may then need to be reachable through
 the IPv6/IPv4 address translation.

 The need to allocate for every GACP device one or multiple IPv4
 addresses should not be a problem if - as we assume - the NMS hosts
 can use private IPv4 address space ([RFC1918]). Nevertheless even
 with RFC1918 address space it is important that the GACP IPv6
 addresses can efficiently be mapped into IPv4 address space without
 too much waste.

Eckert & Behringer Expires August 9, 2018 [Page 10]

Internet-Draft AN Stable Connectivity OAM February 2018

 The currently most flexible mapping scheme to achieve this is
 [RFC7757] because it allows configured IPv4 <-> IPv6 prefix mapping.
 Assume the GACP uses the ACP "Zone Addressing" Sub-Scheme and there
 are 3 registrars. In the Zone Addressing Sub-Scheme, there is for
 each registrar a constant /112 prefix for which in RFC7757 an EAM
 (Explicit Address Mapping) into a /16 (e.g.: RFC1918) prefix into
 IPv4 can be configured. Within the registrars /112 prefix, Device-
 Numbers for devices are sequentially assigned: with V-bit effectively
 two numbers are assigned per GACP device. This also means that if
 IPv4 address space is even more constrained, and it is known that a
 registrar will never need the full /15 extent of Device-Numbers, then
 a longer than /112 prefix can be configured into the EAM to use less
 IPv4 space.

 When using the ACP "Vlong Addressing" Sub-Scheme, it is unlikely that
 one wants or need to translate the full /8 or /16 bits of addressing
 space per GACP device into IPv4. In this case, the EAM rules of
 dropping trailing bits can be used to map only N bits of the V-bits
 into IPv4. This does imply though that only V-addresses that differ
 in those high-order N V-bits can be distinguished on the IPv4 side.

 Likewise, the IPv4 address space used for NMS hosts can easily be
 mapped into an address prefix assigned to a GACP connect interface.

 A full specification of a solution to perform SIIT in conjunction
 with GACP connect following the considerations below is outside the
 scope of this document.

 To be in compliance with security expectations, SIIT has to happen on
 the GACP edge device itself so that GACP security considerations can
 be taken into account. E.g.: that IPv4 only NMS hosts can be dealt
 with exactly like IPv6 hosts connected to a GACP connect interface.

 Note that prior solutions such as NAT64 ([RFC6146]) may equally be
 useable to translate between GACP IPv6 address space and NMS Hosts
 IPv4 address space, and that as workarounds this can also be done on
 non GACP Edge Devices connected to a GACP connect interface. The
 details vary depending on implementation because the options to
 configure address mappings vary widely. Outside of EAM, there are no
 standardized solutions that allow for mapping of prefixes, so it will
 most likely be necessary to explicitly map every individual (/128)
 GACP device address to an IPv4 address. Such an approach should use
 automation/scripting where these address translation entries are
 created dynamically whenever a GACP device is enrolled or first
 connected to the GACP network.

 Overall, the use of NAT is especially subject to the ROI (Return On
 Investment) considerations, but the methods described here may not be

Eckert & Behringer Expires August 9, 2018 [Page 11]

Internet-Draft AN Stable Connectivity OAM February 2018

 too different from the same problems encountered totally independent
 of GACP when some parts of the network are to introduce IPv6 but NMS
 hosts are not (yet) upgradeable.

2.1.5. Path Selection Policies

 As mentioned above, a GACP is not expected to have high performance
 because its primary goal is connectivity and security, and for
 existing network device platforms this often means that it is a lot
 more effort to implement that additional connectivity with hardware
 acceleration than without - especially because of the desire to
 support full encryption across the GACP to achieve the desired
 security.

 Some of these issues may go away in the future with further adoption
 of a GACP and network device designs that better tender to the needs
 of a separate OAM plane, but it is wise to plan for even long-term
 designs of the solution that does NOT depend on high-performance of
 the GACP. This is opposite to the expectation that future NMS hosts
 will have IPv6, so that any considerations for IPv4/NAT in this
 solution are temporary.

 To solve the expected performance limitations of the GACP, we do
 expect to have the above describe dual-connectivity via both GACP and
 data-plane between NOC application devices and devices with GACP.
 The GACP connectivity is expected to always be there (as soon as a
 device is enrolled), but the data-plane connectivity is only present
 under normal operations but will not be present during e.g. early
 stages of device bootstrap, failures, provisioning mistakes or during
 network configuration changes.

 The desired policy is therefore as follows: In the absence of further
 security considerations (see below), traffic between NMS hosts and
 GACP devices should prefer data-plane connectivity and resort only to
 using the GACP when necessary, unless it is an operation known to be
 so much tied to the cases where the GACP is necessary that it makes
 no sense to try using the data-plane. An example are SSH connections
 from the NOC into a network device to troubleshoot network
 connectivity. This could easily always rely on the GACP. Likewise,
 if an NMS host is known to transmit large amounts of data, and it
 uses the GACP, then its performance need to be controlled so that it
 will not overload the GACP performance. Typical examples of this are
 software downloads.

 There is a wide range of methods to build up these policies. We
 describe a few:

Eckert & Behringer Expires August 9, 2018 [Page 12]

Internet-Draft AN Stable Connectivity OAM February 2018

 Ideally, a NOC system would learn and keep track of all addresses of
 a device (GACP and the various data-plane addresses). Every action
 of the NOC system would indicate via a "path-policy" what type of
 connection it needs (e.g. only data-plane, GACP-only, default to
 data-plane, fallback to GACP,...). A connection policy manager would
 then build connection to the target using the right address(es).
 Shorter term, a common practice is to identify different paths to a
 device via different names (e.g. loopback vs. interface addresses).
 This approach can be expanded to GACP uses, whether it uses NOC
 system local names or DNS. We describe example schemes using DNS:

 DNS can be used to set up names for the same network devices but with
 different addresses assigned: One name (name.noc.example.com) with
 only the data-plane address(es) (IPv4 and/or IPv6) to be used for
 probing connectivity or performing routine software downloads that
 may stall/fail when there are connectivity issues. One name (name-
 acp.noc.example.com) with only the GACP reachable address of the
 device for troubleshooting and probing/discovery that is desired to
 always only use the GACP. One name with data-plane and GACP
 addresses (name-both.noc.example.com).

 Traffic policing and/or shaping at the GACP edge in the NOC can be
 used to throttle applications such as software download into the
 GACP.

 Using different names mapping to different (subset of) addresses can
 be difficult to set up and maintain, especially also because data-
 plane addresses may change due to reconfiguration or relocation of
 devices. The name based approach alone can also not well support
 policies for existing applications and long-lived flows to
 automatically switch between ACP and data-plane in the face of data-
 plane failure and recovery. A solution would be GACP node host
 transport stacks supporting the following requirements:

 1. Only the GACP addresses of the responder must be required by the
 initiator for the initial setup of a connection/flow across the
 GACP.

 2. Responder and Initiator must be able to exchange their data-plane
 addresses through the GACP, and then - if needed by policy -
 build an additional flow across the data-plane.

 3. For unmodified application, the following policies should be
 configurable on at least a per-application basis for its TCP
 connections with GACP peers:

 Fallback (to GACP): An additional data-plane flow is built and
 used exclusively to send data whenever the data-plane is

Eckert & Behringer Expires August 9, 2018 [Page 13]

Internet-Draft AN Stable Connectivity OAM February 2018

 operational. When it can not be built during connection setup
 or when it fails later, traffic is sent across the GACP flow.
 This could be a default-policy for most OAM applications using
 the GACP.

 >Suspend/Fail: Like the Fallback policy, except that traffic
 will not use the GACP flow but will be suspended until a data-
 plane flow is operational or until a policy configurable
 timeout indicates a connection failure to the application.
 This policy would be appropriate for large volume background/
 scavenger class OAM application/connections such as firmware
 downloads or telemetry/diagnostic uploads - which would
 otherwise easily overrun performance limited GACP
 implementations.

 >GACP (only): No additional data-plane flow is built, traffic is
 only sent via the GACP flow. This can just be a TCP
 connection. This policy would be most appropriate for OAM
 operations known to change the data plane in a way that could
 impact (at least temporarily) connectivity through it.

 4. In the presence of responders or initiators not supporting these
 host stack functions, the Fallback and GACP policies must result
 in a TCP connection across the GACP. For Suspend/Fail, presence
 of TCP-only peers should result in failure during connection
 setup.

 5. In case of Fallback and Suspend/Fail, a failed data-plane
 connection should automatically be rebuilt when the data-plane
 recovers, including the case that the data-plane address of one
 (or both) side(s) may have changed - for example because of
 reconfiguration or device repositioning.

 6. Additional data-plane flows created by these host transport stack
 functions must be end-to-end authenticated by it with the GACP
 domain credentials and encrypted. This maintains the expectation
 that connections from GACP addresses to GACP addresses are
 authenticated/encrypted. This may be skipped if the application
 already provides for end-to-end encryption.

 7. For enhanced applications, the host stack may support application
 control to select the policy on a per-connection basis, or even
 more explicit control for building of the flows and which flow
 should pass traffic.

 Protocols like MPTCP (Multipath TCP -see [RFC6824]) and SCTP
 ([RFC4960]) can already support part of these requirements. MPTCP
 for example supports signaling of addresses in a TCP backward

Eckert & Behringer Expires August 9, 2018 [Page 14]

Internet-Draft AN Stable Connectivity OAM February 2018

 compatible fashion, establishment of additional flows (called
 subflows in MPTCP) and having primary and fallback subflows via
 MP_PRIO signalling. The details if or how MPTCP, SCTP and/or other
 approaches potentially with extensions and/or (shim) layers on top of
 them can best provide a complete solution for the above requirements
 is subject to further work outside the scope of this document.

2.1.6. Autonomic NOC Device/Applications

 Setting up connectivity between the NOC and autonomic devices when
 the NOC device itself is non-autonomic is as mentioned in the
 beginning a security issue. It also results as shown in the previous
 paragraphs in a range of connectivity considerations, some of which
 may be quite undesirable or complex to operationalize.

 Making NMS hosts autonomic and having them participate in the GACP is
 therefore not only a highly desirable solution to the security
 issues, but can also provide a likely easier operationalization of
 the GACP because it minimizes NOC-special edge considerations - the
 GACP is simply built all the way automatically, even inside the NOC
 and only authorized and authenticate NOC devices/applications will
 have access to it.

 Supporting the ACP according to
 [I-D.ietf-anima-autonomic-control-plane] all the way into an
 application device requires implementing the following aspects in it:
 AN bootstrap/enrollment mechanisms, the secure channel for the ACP
 and at least the host side of IPv6 routing setup for the ACP.
 Minimally this could all be implemented as an application and be made
 available to the host OS via e.g. a tap driver to make the ACP show
 up as another IPv6 enabled interface.

 Having said this: If the structure of NMS hosts is transformed
 through virtualization anyhow, then it may be considered equally
 secure and appropriate to construct (physical) NMS host system by
 combining a virtual GACP enabled router with non-GACP enabled NOC-
 application VMs via a hypervisor, leveraging the configuration
 options described in the previous sections but just virtualizing
 them.

2.1.7. Encryption of data-plane connections

 When combining GACP and data-plane connectivity for availability and
 performance reasons, this too has an impact on security: When using
 the GACP, the traffic will be mostly encryption protected, especially
 when considering the above described use of application devices with
 GACP. If instead the data-plane is used, then this is not the case
 anymore unless it is done by the application.

Eckert & Behringer Expires August 9, 2018 [Page 15]

Internet-Draft AN Stable Connectivity OAM February 2018

 The simplest solution for this problem exists when using GACP capable
 NMS hosts, because in that case the communicating GACP capable NMS
 host and the GACP network device have credentials they can mutually
 trust (same GACP domain). In result, data-plane connectivity that
 does support this can simply leverage TLS/DTLS
 ([RFC5246])/([RFC6347]) with those GACP credentials for mutual
 authentication - and does not incur new key management.

 If this automatic security benefit is seen as most important, but a
 "full" GACP stack into the NMS host is unfeasible, then it would
 still be possible to design a stripped down version of GACP
 functionality for such NOC hosts that only provides enrollment of the
 NOC host with the GACP cryptographic credentials but without directly
 participating in the GACP encryption method. Instead, the host would
 just leverage TLS/DTLS using its GACP credentials via the data-plane
 with GACP network devices as well as indirectly via the GACP with the
 above mentioned GACP connect into the GACP.

 When using the GACP itself, TLS/DTLS for the transport layer between
 NMS hosts and network device is somewhat of a double price to pay
 (GACP also encrypts) and could potentially be optimized away, but
 given the assumed lower performance of the GACP, it seems that this
 is an unnecessary optimization.

2.1.8. Long Term Direction of the Solution

 If we consider what potentially could be the most lightweight and
 autonomic long term solution based on the technologies described
 above, we see the following direction:

 1. NMS hosts should at least support IPv6. IPv4/IPv6 NAT in the
 network to enable use of a GACP is long term undesirable. Having
 IPv4 only applications automatically leverage IPv6 connectivity
 via host-stack translation may be an option but this has not been
 investigated yet.

 2. Build the GACP as a lightweight application for NMS hosts so GACP
 extends all the way into the actual NMS hosts.

 3. Leverage and as necessary enhance host transport stacks with
 automatic multipath-connectivity GACP and data-plane as outlined
 in Section 2.1.5.

 4. Consider how to best map NMS host desires to underlying transport
 mechanisms: With the above mentioned 3 points, not all options
 are covered. Depending on the OAM, one may still want only GACP,
 only data-plane, or automatically prefer one over the other and/
 or use the GACP with low performance or high-performance (for

Eckert & Behringer Expires August 9, 2018 [Page 16]

Internet-Draft AN Stable Connectivity OAM February 2018

 emergency OAM such as countering DDoS). It is as of today not
 clear what the simplest set of tools is to enable explicitly the
 choice of desired behavior of each OAM. The use of the above
 mentioned DNS and multipath mechanisms is a start, but this will
 require additional work. This is likely a specific case of the
 more generic scope of TAPS.

2.2. Stable Connectivity for Distributed Network/OAM

 Today, many distributed protocols implement their own unique security
 mechanisms.

 KARP (Keying and Authentication for Routing Protocols, see [RFC6518])
 has tried to start to provide common directions and therefore reduce
 the re-invention of at least some of the security aspects, but it
 only covers routing-protocols and it is unclear how well it is
 applicable to a potentially wider range of network distributed agents
 such as those performing distributed OAM. The common security of a
 GACP can help in these cases.

 Furthermore, GRASP ([I-D.ietf-anima-grasp]) can run on top of a GACP
 as a security and transport substrate and provide common local &
 remote neighbor discovery and peer negotiation mechanism, further
 allowing to unifying & reuse future protocol designs.

3. Architectural Considerations

3.1. No IPv4 for GACP

 The GACP is intended to be IPv6 only, and the prior explanations in
 this document show that this can lead to some complexity when having
 to connect IPv4 only NOC solutions, and that it will be impossible to
 leverage the GACP when the OAM agents on a GACP network device do not
 support IPv6. Therefore, the question was raised whether the GACP
 should optionally also support IPv4.

 The decision not to include IPv4 for GACP as something that is
 considered in the use cases in this document is because of the
 following reasons:

 In SP networks that have started to support IPv6, often the next
 planned step is to consider moving out IPv4 from a native transport
 to just a service on the edge. There is no benefit/need for multiple
 parallel transport families within the network, and standardizing on
 one reduces OPEX and improves reliability. This evolution in the
 data-plane makes it highly unlikely that investing development cycles
 into IPv4 support for GACP will have a longer term benefit or enough
 critical short-term use-cases. Support for IPv6-only for GACP is

Eckert & Behringer Expires August 9, 2018 [Page 17]

Internet-Draft AN Stable Connectivity OAM February 2018

 purely a strategic choice to focus on the known important long term
 goals.

 In other types of networks as well, we think that efforts to support
 autonomic networking is better spent in ensuring that one address
 family will be supported so all use cases will long-term work with
 it, instead of duplicating effort into IPv4. Especially because
 auto-addressing for the GACP with IPv4 would be more complex than in
 IPv6 due to the IPv4 addressing space.

4. Security Considerations

 In this section, we discuss only security considerations not covered
 in the appropriate sub-sections of the solutions described.

 Even though GACPs are meant to be isolated, explicit operator
 misconfiguration to connect to insecure OAM equipment and/or bugs in
 GACP devices may cause leakage into places where it is not expected.
 Mergers/Acquisitions and other complex network reconfigurations
 affecting the NOC are typical examples.

 GACP addresses are ULA addresses. Using these addresses also for NOC
 devices as proposed in this document is not only necessary for above
 explained simple routing functionality but it is also more secure
 than global IPv6 addresses. ULA addresses are not routed in the
 global Internet and will therefore be subject to more filtering even
 in places where specific ULA addresses are being used. Packets are
 therefore less likely to leak to be successfully injected into the
 isolated GACP environment.

 The random nature of a ULA prefix provides strong protection against
 address collision even though there is no central assignment
 authority. This is helped by the expectation that GACPs are never
 expected to connect all together, but only few GACPs may ever need to
 connect together, e.g. when mergers and acquisitions occur.

 Note that the GACP constraints demands that only packets from
 connected subnet prefixes are permitted from GACP connect interfaces,
 limiting the scope of non-cryptographically secured transport to a
 subnet within a NOC that instead has to rely on physical security
 (only connect trusted NOC devices to it).

 To help diagnose packets that unexpectedly leaked for example from
 another GACP (that was meant to be deployed separately), it can be
 useful to voluntarily list your own the ULA GACP prefixes on some
 site(s) on the Internet and hope that other users of GACPs do the
 same so that you can look up unknown ULA prefix packets seen in your
 network. Note that this does not constitute registration.

Eckert & Behringer Expires August 9, 2018 [Page 18]

Internet-Draft AN Stable Connectivity OAM February 2018

 https://www.sixxs.net/tools/grh/ula/ was a site to list ULA prefixes
 but it is not open for new listings anymore since the mid of 2017.
 The authors are not aware of other active Internet sites to list ULA
 use.

 Note that there is a provision in [RFC4193] for non-locally assigned
 address space (L bit = 0), but there is no existing standardization
 for this, so these ULA prefixes must not be used.

 According to [RFC4193] section 4.4, PTR records for ULA addresses
 should not be installed into the global DNS (no guaranteed
 ownership). Hence also the need to rely on voluntary lists (and in
 prior paragraph) to make the use of an ULA prefix globally known.

 Nevertheless, some legacy OAM applications running across the GACP
 may rely on reverse DNS lookup for authentication of requests (e.g.:
 TFTP for download of network firmware/config/software). Operators
 may therefore need to use a private DNS setup for the GACP ULA
 addresses. This is the same setup that would be necessary for using
 RFC1918 addresses in DNS. See for example [RFC1918] section 5, last
 paragraph. In [RFC6950] section 4, these setups are discussed in
 more detail.

 Any current and future protocols must rely on secure end-to-end
 communications (TLS/DTLS) and identification and authentication via
 the certificates assigned to both ends. This is enabled by the
 cryptographic credentials mechanisms of the GACP.

 If DNS and especially reverse DNS are set up, then it should be set
 up in an automated fashion when the GACP address for devices are
 assigned. In the case of the ACP, DNS resource record creation can
 be linked to the autonomic registrar backend so that the DNS and
 reverse DNS records are actually derived from the subject name
 elements of the ACP device certificates in the same way as the
 autonomic devices themselves will derive their ULA addresses from
 their certificates to ensure correct and consistent DNS entries.

 If an operator feels that reverse DNS records are beneficial to its
 own operations but that they should not be made available publically
 for "security" by concealment reasons, then the case of GACP DNS
 entries is probably one of the least problematic use cases for split-
 DNS: The GACP DNS names are only needed for the NMS hosts intending
 to use the GACP - but not network wide across the enterprise.

Eckert & Behringer Expires August 9, 2018 [Page 19]

Internet-Draft AN Stable Connectivity OAM February 2018

5. IANA Considerations

 This document requests no action by IANA.

6. Acknowledgements

 This work originated from an Autonomic Networking project at cisco
 Systems, which started in early 2010 including customers involved in
 the design and early testing. Many people contributed to the aspects
 described in this document, including in alphabetical order: BL
 Balaji, Steinthor Bjarnason, Yves Herthoghs, Sebastian Meissner, Ravi
 Kumar Vadapalli. The author would also like to thank Michael
 Richardson, James Woodyatt and Brian Carpenter for their review and
 comments. Special thanks to Sheng Jiang and Mohamed Boucadair for
 their thorough review.

7. Change log [RFC Editor: Please remove]

 10: Added paragraph to multipath text to better summarize the
 reason why to do this.

 10: Mirja: reworded multipath text to remove instructive
 description how the desired functionality would map to MPTCP
 features, extensions or shim layers. Describe the desired
 functionality now only as requirements. Expert WGs including but
 not limited to MPTCP and future documents need to define best
 design/spec option.

 10: BrianC: Added requirement to ’MPTCP’ section for end-to-end
 encryption across data plane when connection is via GACP.

 09: Mirja/Yoshifumi: reworded MPTCP policy rule examples,
 stack->endpoint (agnostic to where policy is implemented).

 08: IESG review fixes.

 * Spell check.

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/01908364cfc7259009603bf2b261354b0cc26913/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Eric Rescorla (comments):Typos, listing ULA on internet
 benefits. Other comments from Eric where addressed via commits
 for other reviewers already.

Eckert & Behringer Expires August 9, 2018 [Page 20]

Internet-Draft AN Stable Connectivity OAM February 2018

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/c02252710fbd7aea15aff550fb393eb36584658b/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Mirja Kuehlewind (discuss) / Yoshifumi Nishida: Fixed and
 Rewrote MPTCP text to be more explanatory, answering questions
 raised in disucss.

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/14d5f9b66b8318bc160cee74ad152c0b926b4042/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Matthew Miller/Alissa Cooper: syntactic nits.

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/9bff109281e8b3c22522c3144cbf0f13e5000498/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Suresh Krishnan (comment): rewrote first paragraph of 2.1.4
 (incomprehensible).

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/f2d8a85c2cc65ca7f823abac0f57d19c744f9b65/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Alvaro Retana: Made references normative where the authors
 think is is important to understand all or parts for the
 mechanisms described in this document.

 * Alvaro Retana: Clarified that the discussions in this document
 are not specific to the ANI ACP, but instead rely primarily on
 a set of design constraints for any type of autonomic inband
 management network. Called this the GACP (generalized ACP).
 Mayor add: explanation of those design constraints in section
 1.3. Textual fixes ACP -> GACP throughout the document, but
 without semantic changes.

 * https://raw.githubusercontent.com/anima-wg/autonomic-control-
 plane/d26df831da2953779c3b3ac41ec118cbbe43373e/draft-ietf-
 anima-stable-connectivity/draft-ietf-anima-stable-connectivity-
 08.txt

 * Co-author organization fix.

Eckert & Behringer Expires August 9, 2018 [Page 21]

Internet-Draft AN Stable Connectivity OAM February 2018

 07: Fixed ID nits.

 06: changed "split-horizon" term to "private-DNS" and reworded the
 paragraph about it.

 05: Integrated fixes from Brian Carpenters review. See github
 draft-ietf-anima-stable-connectivity/04-brian-carpenter-review-
 reply.txt. Details on semantic/structural changes:

 * Folded most comments back into draft-ietf-anima-autonomic-
 control-plane-09 because this stable connectivity draft was
 suggesting things that are better written out and standardized
 in the ACP document.

 * Section on simultaneous ACP and data-plane connectivity section
 reduced/rewritten because of this.

 * Re-emphasized security model of ACP - ACP-connect can not
 arbitrarily extend ACP routing domain.

 * Re-wrote much of NMS section to be less suggestive and more
 descriptive, avoiding the term NAT and referring to relevant
 RFCs (SIIT etc.).

 * Main additional text in IPv4 section is about explaining how we
 suggest to use EAM (Explicit Address Mapping) which actuall
 would well work with the Zone and Vlong Addressing Sub-Schemes
 of ACP.

 * Moved, but not changed section of "why no IPv4 in ACP" before
 IANA considerations to make structure of document more logical.

 * Refined security considerations: explained how optional ULA
 prefix listing on Internet is only for diagnostic purposes.
 Explained how this is useful because DNS must not be used.
 Explained how split horizon DNS can be used nevertheless.

 04: Integrated fixes from Mohamed Boucadairs review (thorough
 textual review).

 03: Integrated fixes from thorough Shepherd review (Sheng Jiang).

 01: Refresh timeout. Stable document, change in author
 association.

 01: Refresh timeout. Stable document, no changes.

Eckert & Behringer Expires August 9, 2018 [Page 22]

Internet-Draft AN Stable Connectivity OAM February 2018

 00: Changed title/dates.

 individual-02: Updated references.

 individual-03: Modified ULA text to not suggest ULA-C as much
 better anymore, but still mention it.

 individual-02: Added explanation why no IPv4 for ACP.

 individual-01: Added security section discussing the role of
 address prefix selection and DNS for ACP. Title change to
 emphasize focus on OAM. Expanded abstract.

 individual-00: Initial version.

8. References

8.1. Normative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC4191] Draves, R. and D. Thaler, "Default Router Preferences and
 More-Specific Routes", RFC 4191, DOI 10.17487/RFC4191,
 November 2005, <https://www.rfc-editor.org/info/rfc4191>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/info/rfc4193>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <https://www.rfc-editor.org/info/rfc7575>.

Eckert & Behringer Expires August 9, 2018 [Page 23]

Internet-Draft AN Stable Connectivity OAM February 2018

 [RFC7757] Anderson, T. and A. Leiva Popper, "Explicit Address
 Mappings for Stateless IP/ICMP Translation", RFC 7757,
 DOI 10.17487/RFC7757, February 2016,
 <https://www.rfc-editor.org/info/rfc7757>.

 [RFC7915] Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont,
 "IP/ICMP Translation Algorithm", RFC 7915,
 DOI 10.17487/RFC7915, June 2016,
 <https://www.rfc-editor.org/info/rfc7915>.

8.2. Informative References

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-
 plane-13 (work in progress), December 2017.

 [I-D.ietf-anima-bootstrapping-keyinfra]
 Pritikin, M., Richardson, M., Behringer, M., Bjarnason,
 S., and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructures (BRSKI)", draft-ietf-anima-bootstrapping-
 keyinfra-09 (work in progress), October 2017.

 [I-D.ietf-anima-grasp]
 Bormann, C., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-anima-
 grasp-15 (work in progress), July 2017.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre, P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-05 (work in progress), October 2017.

 [IEEE802.1Q]
 International Telecommunication Union, "802.1Q-2014 - IEEE
 Standard for Local and metropolitan area networks -
 Bridges and Bridged Networks", 2014.

 [ITUT] International Telecommunication Union, "Architecture and
 specification of data communication network",
 ITU-T Recommendation G.7712/Y.1703, Noevember 2001.

 This is the earliest but superceeded version of the
 series. See "https://www.itu.int/rec/T-REC-G.7712/en" for
 current versions.

Eckert & Behringer Expires August 9, 2018 [Page 24]

Internet-Draft AN Stable Connectivity OAM February 2018

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <https://www.rfc-editor.org/info/rfc4960>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC6291] Andersson, L., van Helvoort, H., Bonica, R., Romascanu,
 D., and S. Mansfield, "Guidelines for the Use of the "OAM"
 Acronym in the IETF", BCP 161, RFC 6291,
 DOI 10.17487/RFC6291, June 2011,
 <https://www.rfc-editor.org/info/rfc6291>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6434] Jankiewicz, E., Loughney, J., and T. Narten, "IPv6 Node
 Requirements", RFC 6434, DOI 10.17487/RFC6434, December
 2011, <https://www.rfc-editor.org/info/rfc6434>.

 [RFC6518] Lebovitz, G. and M. Bhatia, "Keying and Authentication for
 Routing Protocols (KARP) Design Guidelines", RFC 6518,
 DOI 10.17487/RFC6518, February 2012,
 <https://www.rfc-editor.org/info/rfc6518>.

 [RFC6950] Peterson, J., Kolkman, O., Tschofenig, H., and B. Aboba,
 "Architectural Considerations on Application Features in
 the DNS", RFC 6950, DOI 10.17487/RFC6950, October 2013,
 <https://www.rfc-editor.org/info/rfc6950>.

Authors’ Addresses

Eckert & Behringer Expires August 9, 2018 [Page 25]

Internet-Draft AN Stable Connectivity OAM February 2018

 Toerless Eckert (editor)
 Futurewei Technologies Inc.
 2330 Central Expy
 Santa Clara 95050
 USA

 Email: tte+ietf@cs.fau.de

 Michael H. Behringer

 Email: michael.h.behringer@gmail.com

Eckert & Behringer Expires August 9, 2018 [Page 26]

ANIMA WG B. Liu
INTERNET-DRAFT S. Jiang
Intended Status: Standard Track Huawei Technologies
Expires: September 8, 2019 X. Xiao
 A. Hecker
 Z. Despotovic
 MRC, Huawei Technologies
 March 11, 2019

 Information Distribution in Autonomic Networking
 draft-liu-anima-grasp-distribution-10

Abstract

 This document discusses the requirement of capability of information
 distribution among autonomic nodes in autonomic networks. In general,
 information distribution can be categorized into two different modes:
 1) one autonomic node instantly sends information to other nodes in
 the domain; 2) one autonomic node publishes some information and
 asynchronously some other interested nodes request the published
 information. In the former case, information data will be generated
 and consumed instantly. In the latter case, information data live
 longer in the network.

 These capabilities are basic and fundamental to an autonomous network
 system (i.e. ANI [I-D.ietf-anima-reference-model]). This document
 clarifies possible use cases of information distribution in ANI and
 requirements to ANI so that rich information distribution can be
 natively supported. Possible options to realize the information
 distribution function are also briefly discussed.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Liu, et al. Expires September 12, 2019 [Page 1]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1 Introduction . 3
 2. Terminology . 4
 3. Requirements of Advanced Information Distribution 4
 4. Information Distribution in ANI 5
 5. Node Behaviors . 5
 5.1 Instant Information Distribution 6
 5.1.1 Instant P2P and Flooding Communications 6
 5.1.2 Instant Selective Flooding Communication 6
 5.2 Asynchronous Information Distribution 7
 5.2.1 Information Storage 7
 5.2.2 Event Queue . 9
 5.2.3 Interface between IS and EQ Modules 10
 5.3 Summary . 11
 6. Protocol Specification (GRASP extension) 11
 6.1 Un-solicited Synchronization Message (A new GRASP Message) 11
 6.2 Selective Flooding Option 11
 6.3 Subscription Objective Option 12
 6.4 Un_Subscription Objective Option 12
 6.5 Publishing Objective Option 13
 7. Security Considerations 13

Liu, et al. Expires September 12, 2019 [Page 2]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 8. IANA Considerations . 13
 9. References . 14
 9.1 Normative References 14
 9.2 Informative References 14
 Appendix A. 15
 Authors’ Addresses . 15

1 Introduction

 In an autonomic network, autonomic functions (AFs) running on
 autonomic nodes would exchange information constantly, both for
 controlling/management signaling and data exchange. This document
 discusses the information distribution capability of such exchanges
 between AFs.

 According to the number of participants, information distribution can
 happen with the following scenarios:

 1) Point-to-point (P2P) Communication: information are exchanged
 between two communicating parties from one node to another node.

 2) One-to-Many Communication: information exchanges involve an
 information source and multiple receivers.

 The approaches of distributing information could be categorized into
 two basic models:

 1) An instant communication: a sender connects and sends the
 information data (e.g. control/management signaling,
 synchronization data and so on) to the receiver(s) immediately.

 2) An asynchronous communication: a sender saves the information
 in the network, may or may not publish the information to the
 other who is interested in the published information, to which a
 node asks to retrieve.

 The ANI should have provided a generic way to support these various
 scenarios, rather than assisted by other transport or routing
 protocols (HTTP, BGP/IGP as bearing protocols etc.). In fact, GRASP
 already provides part of the capabilities.

 In this document, we first analyze requirements of information
 distribution in autonomic networks (Section 3), and then introduce
 its relationship to the other modules in ANI (Section 4). After that,
 the node behaviors and extensions to the existing GRASP are
 introduced in Section 5 and Section 6, respectively.

Liu, et al. Expires September 12, 2019 [Page 3]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Requirements of Advanced Information Distribution

 If the information exchanged is just short and simple, this can be
 done instantly. In practice, however, this is not always the case. In
 the following cases, a mixture of instant and asynchronous
 communication models is more appropriate.

 1) Long Communication Intervals. The time interval of the
 communication is not necessarily always short and instant.
 Advanced AFs may rather involve heavy jobs/tasks (e.g. database
 lookup, authentication etc.) when gearing the network, so the
 instant mode may introduce unnecessary pending time and become
 less efficient. If simply using an instant mode, the AF has to
 wait until the tasks finish and return. A better way is that an AF
 instantly sends the request but switches to an synchronous mode,
 once the jobs are finished, AFs will get notified.

 2) Common Interest Distribution. As mentioned, some information
 are common interests among AFs. For example, the network intent is
 distributed to network nodes enrolled, which is a typical one-to-
 many scenario. We can also finish the intent distribution by an
 instant flooding (e.g. via GRASP) to every network nodes across
 the network domain. Because of network dynamic, however, not every
 node can be just ready at the moment when the network intent is
 flooded. Actually, nodes may join in the network sequentially. In
 this situation, an asynchronous communication model could be a
 better choice where every (newly joining) node can subscribe the
 intent information and will get notified if it is ready (or
 updated).

 3) Distributed Coordination. With computing and storage resources
 on autonomic nodes, alive AFs not only consumes but also generates
 data information. For example, AFs coordinating with each other as
 distributed schedulers, responding to service requests and
 distributing tasks. It is critical for those AFs to make correct
 decisions based on local information, which might be asymmetric as
 well. AFs may also need synthetic/aggregated data information
 (e.g. statistic info, like average values of several AFs, etc.) to
 make decisions. In these situations, AFs will need an efficient
 way to form a global view of the network (e.g. about resource
 consumption, bandwidth and statistics). Obviously, purely relying
 on instant communication model is inefficient, while a scalable,

Liu, et al. Expires September 12, 2019 [Page 4]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 common, yet distributed data layer, on which AFs can store and
 share information in an asynchronous way, should be a better
 choice.

 For ANI, in order to support various communication scenarios, an
 information distribution module is required, and both instant and
 asynchronous communication models should be supported.

4. Information Distribution in ANI

 This section describes how the information distribution module fits
 into the ANI including what extensions of GRASP are required [I-
 D.ietf-anima-grasp].

 +-------------------+
 | ASAs +
 +-------------------+
 ^
 |
 v
 +-------------------------Info-Dist. APIs-----------------------+
 | +---------------+ +-------------------+ +---------------+ |
 | | Event Queue |-|-| Selective Flooding|-|-| Info. Storage | |
 | +---------------+ +-------------------+ +---------------+ |
 +---+
 ^
 |
 v
 +-------------GRASP APIs----------------+
 | +---------------+ +---------------+ |
 | | GRASP Base |-|-| Extension | | |
 | +---------------+ +---------------+ |
 +---------------------------------------+

 Figure 1. Information Distribution Module and GRASP Extension.

 As the Fig 1 shows, the information distribution module includes
 three sub-modules, all of which provides APIs for ASAs. Specific
 behaviors of these modules is described in Section 5. In order to
 support the modules, the GRASP is also extended, which is described
 in Section 6.

5. Node Behaviors

 ANI is a distributed system, so the information distribution module
 must be implemented in a distributed way as well. This means that
 every node participate to contribute. In this section, we discuss how

Liu, et al. Expires September 12, 2019 [Page 5]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 each autonomic node should behave in order to realize the information
 distribution module. Node interactions and information data exchange
 between network nodes are necessary in order to support the instant
 and asynchronous information distribution, which will be introduced
 in the follow sections, respectively.

5.1 Instant Information Distribution

 In this case, sender(s) and receiver(s) are specified. Information
 will be directly sent from the sender(s) to the receiver(s). This
 requires that every node is equipped by some signaling/transport
 protocols so that they can coordinate with each other and correctly
 deliver the information.

5.1.1 Instant P2P and Flooding Communications

 Current GRASP already provides the capability to support instant P2P
 and flooding. It is natural to use the GRASP Synchronization message
 directly for P2P distribution. Furthermore, it is also natural to use
 the GRASP Flood Synchronization message for 1-to-all distribution.

 However, as mentioned in Section 3, in some scenarios one node needs
 to actively send some information to another. GRASP Synchronization
 just lacks such capability. An un-solicited synchronization mechanism
 is needed. A relevant GRASP extension is defined in Section 6.

5.1.2 Instant Selective Flooding Communication

 When doing selective flooding, the distributed information needs to
 contain the criteria for nodes to judge which interfaces should be
 sent the distributed information and which are not. Specifically, the
 criteria contain:

 o Matching condition: a set of matching rules.

 o Matching object: the object that the match condition would be
 applied to. For example, the matching object could be node itself
 or its neighbors.

 o Action: what behavior the node needs to do when the matching
 object matches or failed the matching condition. For example, the
 action could be forwarding or discarding the distributed message.

 The criteria information must be include in the message that carries
 the distributed information from the sender. The receiving node
 decides the action according to the criteria carried in the message.
 Still considering the criteria attached with the distributed
 information, the node behaviors can be:

Liu, et al. Expires September 12, 2019 [Page 6]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 o When the Matching Object is "Neighbors", then the node matches
 the relevant information of its neighbors to the Matching
 Condition. If the node finds one neighbor matches the Matching
 Condition, then it forwards the distributed message to the
 neighbor. If not, the node discards forwarding the message to the
 neighbor.

 o When the Matching Object is the node itself, then the node
 matches the relevant information of its own to the Matching
 Condition. If the node finds itself matches the Matching
 Condition, then it forwards the distributed message to its
 neighbors; if not, the node discards forwarding the message to the
 neighbors.

 An example of selective flooding is briefly described in the Appendix
 A.

5.2 Asynchronous Information Distribution

 Asynchronous information distribution happens in a different way
 where sender(s) and receiver(s) are normally not immediately
 specified. Both senders and receivers may come up in an asynchronous
 way. First of all, this requires that the information can be stored;
 secondly, it requires an information publication and subscription
 (Pub/Sub) mechanism (corresponding protocol specification of Pub/Sub
 is defined in Section 6).

 As we sketched in the previous section, in general, each node
 requires two modules: 1) Information Storage (IS) module and 2) Event
 Queue (EQ) module in the information distribution module. We
 introduce details of the two modules in the following sections.

5.2.1 Information Storage

 IS module handles how to save and retrieve information for ASAs
 across the network. The IS module uses a syntax to index information,
 generating the hash index value (e.g. a key) of the information and
 mapping the hash index to a certain node in ANI. Note that, this
 mechanism can use existing solutions. Specifically, storing
 information in an ANIMA network will be realized in the following
 steps.

 1) ASA-to-IS Negotiation. An ASA calls the API provided by
 information distribution module (directly supported by IS sub-
 module) to request to store the information somewhere in the
 network. Such a request will be checked by the IS module who will
 be responsible for the request whether such a request is feasible
 according to criteria such as permitted information size.

Liu, et al. Expires September 12, 2019 [Page 7]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 2) Destination Node Mapping. The information block will be handled
 by the IS module in order to calculate/map to a destination node
 in the network. Since ANIMA network is a peer-to-peer network, a
 typical way is to use dynamic hash table (DHT) to map information
 to a unique index identifier. For example, if the size of the
 information is reasonable, the information block itself can be
 hashed, otherwise, some meta-data of the information block can be
 used to generate the mapping.

 3) Destination Node Negotiation Request. Negotiation request of
 storing the information will be sent from the IS module to the IS
 module on the destination node. The negotiation request contains
 parameters about the information block from the source IS module.
 According to the parameters as well as the local available
 resource, the destination node will feedback the source IS module.

 4) Destination Node Negotiation Response. Negotiation response
 from the destination node is sent back to the source IS module. If
 the source IS module gets confirmation that the information can be
 stored, source IS module will prepare to transfer the information
 block; otherwise, a new destination node must be discovered (i.e.
 going to step 7).

 5) Information Block Transfer. Before sending the information
 block to the destination node that accepts the request, the IS
 module of the source node will check if the information block can
 be afforded by one GRASP message. If so, the information block
 will be directly sent by calling a GRASP API. Otherwise, bulk data
 transmission with GRASP will be triggered, where multi-time GRASP
 message sending will be used so that one information block will be
 transferred by smaller pieces [I-D.ietf-anima-reference-model].

 6) Information Writing. Once the information block (or a smaller
 block) is received, the IS module of the destination node will
 store the data block in the local storage, which is accessible.

 7) (Optional) New Destination Node Discovery. If the previously
 selected destination node is not available to store the
 information block, the source IS module will have to identify a
 new destination node to start a new negotiation. In this case, the
 discovery can be done by using discovery GRASP API to identify a
 new candidate, or more complex mechanisms can be introduced.

 Similarly, Getting information from an ANIMA network will be realized
 in the following steps.

 1) ASA-to-IS Request. An ASA accesses the IS module via the APIs
 exposed by the information distribution module. The key/index of

Liu, et al. Expires September 12, 2019 [Page 8]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 the interested information will be sent to the IS module. An
 assumption here is that the key/index should be ready to an ASA
 before an ASA can ask for the information. This relates to the
 publishing/subscribing of the information, which are handled by
 other modules (e.g. Event Queue with Pub/Sub supported by GRASP).

 2) Destination Node Mapping. IS module maps the key/index of the
 requested information to a destination node, and prepares to start
 to request the information. The mapping here follows the same
 mechanism when the information is stored.

 3) Retrieval Negotiation Request. The source IS module sends a
 request to the destination node identified in the previous step
 and asks if such an information object is available.

 4) Retrieval Negotiation Response. The destination node checks the
 key/index of the requested information, and replies to the source
 IS module. If the information is found and the information block
 can be afforded within one GRASP message, the information will be
 sent together with the response to the source IS module.

 5) (Optional) New Destination Request. If the information is not
 found after the source IS module gets the response from the
 original destination node, the source IS module will have to
 discover where the location storing the requested information is.

 IS module can reuse distributed databases and key value stores like
 NoSQL, Cassandra, DHT technologies. storage and retrieval of
 information are all event-driven responsible by the EQ module.

5.2.2 Event Queue

 The main job of Event Queue (EQ) module is to help ASAs to show
 interests to particular information and notify the occurrences of
 that in asynchronous communication scenarios. In ANI, information
 generated on network nodes is labeled as an event identified with an
 event ID, which is semantically related to the topic of the
 information. Key features of EQ module are summarized as follows.

 1) Event Group: EQ module provides isolated queues for different
 event groups. If two groups of AFs could have completely different
 purposes or interests, EQ module allows to create multiple queues
 where only AFs interested in the same topic will be aware of the
 corresponding event queue.

 2) Event Prioritization: Events do not have to be delivered in the
 same priority. This corresponds to how much important the event
 implies. Some of them are more urgent than regular ones.

Liu, et al. Expires September 12, 2019 [Page 9]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 Prioritization allows AFs to differentiate events (i.e. information)
 they publish/subscribe.

 3) Event Matching: an information consumer has to be identified from
 the queue in order to deliver the information from the provider.
 Event matching keeps looking for the subscriptions in the queue to
 see if there is an exact published event there. Whenever a match is
 found, it will notify the upper layer to inform the corresponding
 ASAs who are the information provider and subscriber(s) respectively.

 The procedure of how EQ module on every network node works is
 introduced as follows.

 1) Event ID Generation: If information of an ASA is ready, an
 event ID is generated according to the content of the information.
 This is also related to how the information is stored/saved by the
 IS module introduced before. Meanwhile, the type of the event is
 also specified where it can be of control purpose or user plane
 data.

 2) Priority Specification: According to the type of the event, the
 ASA may specify its priority to say how this event is wanted to be
 processed. By considering both aspects, the priority of the event
 will be determined and ready for enqueuing.

 3) Event Enqueue: Given the event ID, event group and its
 priority, a queue is identified locally if all criteria can be
 satisfied. If there is such a queue, the event will be simply
 added into the queue, otherwise a new queue will be created to
 accommodate such an event.

 4) Event Propagation: The published event will be propagated to
 the other network nodes in the ANIMA domain. A propagation
 algorithm can be employed to here in order to optimize the
 propagation efficiency of the updated event queue states.

 5) Event Match and Notification: While propagating updated event
 states, EQ module in parallel keeps matching published events and
 its interested consumers. Once a match is found, the provider and
 subscriber(s) will be notified for final information retrieval.

 Event contains the address where the information is stored, after a
 subscriber is notified, it directly retrieves the information from
 the given location.

5.2.3 Interface between IS and EQ Modules

Liu, et al. Expires September 12, 2019 [Page 10]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 EQ and IS modules are correlated. When an AF publishes information,
 not only an publishing event is translated and sent to EQ module, but
 also the information is indexed and stored simultaneously. Similarly,
 when an AF subscribes information, not only subscribing event is
 triggered and sent to EQ module, but also the information will be
 retrieved by IS module at the same time.

5.3 Summary

 In summary, the general requirements for the information distribution
 module on each autonomic node are two sub-modules handling instant
 communications and asynchronous communications, respectively. For
 instant communications, node requirements are simple, in which
 signaling protocols have to be supported. With minimum efforts,
 reusing the existing GRASP is possible. For asynchronous
 communications, information distribution module requires event queue
 and information storage mechanism to be supported.

6. Protocol Specification (GRASP extension)

 There are multiple ways to integrate the information distribution
 module. The principle we follow is to minimize modifications made to
 the current ANI.

 We consider to use GRASP as an interface to access the information
 distribution module. The main reason is that the current version of
 GRASP is already an information distribution module for the cases of
 P2P and flooding. In the following discussions, we introduce how to
 complete the missing part.

6.1 Un-solicited Synchronization Message (A new GRASP Message)

 In fragmentary CDDL, a Un-solicited Synchronization message follows
 the pattern:

 unsolicited_synch-message = [M_UNSOLDSYNCH, session-id, objective]

 A node MAY actively send a unicast Un-solicited Synchronization
 message with the Synchronization data, to another node. This MAY be
 sent to port GRASP_LISTEN_PORT at the destination address, which
 might be obtained by GRASP Discovery or other possible ways. The
 synchronization data are in the form of GRASP Option(s) for specific
 synchronization objective(s).

6.2 Selective Flooding Option

 In fragmentary CDDL, the selective flood follows the pattern:

Liu, et al. Expires September 12, 2019 [Page 11]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 selective-flood-option = [O_SELECTIVE_FLOOD, +O_MATCH-CONDITION,
 match-object, action]
 O_MATCH-CONDITION = [O_MATCH-CONDITION, Obj1, match-rule, Obj2]
 Obj1 = text
 match-rule = GREATER / LESS / WITHIN / CONTAIN
 Obj2 = text
 match-object = NEIGHBOR / SELF
 action = FORWARD / DROP

 The selective flood option encapsulates a match-condition option
 which represents the conditions regarding to continue or discontinue
 flood the current message. For the match-condition option, the Obj1
 and Obj2 are to objects that need to be compared. For example, the
 Obj1 could be the role of the device and Obj2 could be "RSG". The
 match rules between the two objects could be greater, less than,
 within, or contain. The match-object represents of which Obj1 belongs
 to, it could be the device itself or the neighbor(s) intended to be
 flooded. The action means, when the match rule applies, the current
 device just continues flood or discontinues.

6.3 Subscription Objective Option

 In fragmentary CDDL, a Subscription Objective Option follows the
 pattern:

 subscription-objection-option = [SUBSCRIPTION, 2, 2, subobj]
 objective-name = SUBSCRIPTION
 objective-flags = 2
 loop-count = 2
 subobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a subscription to a specific
 object.

6.4 Un_Subscription Objective Option

 In fragmentary CDDL, a Un_Subscribe Objective Option follows the
 pattern:

 Unsubscribe-objection-option = [UNSUBSCRIB, 2, 2, unsubobj]
 objective-name = SUBSCRIPTION
 objective-flags = 2
 loop-count = 2
 unsubobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a un-subscription to a

Liu, et al. Expires September 12, 2019 [Page 12]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 specific object.

6.5 Publishing Objective Option

 In fragmentary CDDL, a Publish Objective Option follows the pattern:

 publish-objection-option = [PUBLISH, 2, 2, pubobj] objective-name
 = PUBLISH
 objective-flags = 2
 loop-count = 2
 pubobj = text

 This option MAY be included in GRASP M_Synchronization, when
 included, it means this message is for a publish of a specific object
 data.

 Note that extended GRASP messages with new arguments inside here will
 trigger interactions/actions of the underlying information
 distribution module introduced in Section 5.

7. Security Considerations

 The distribution source authentication could be done at multiple
 layers:

 o Outer layer authentication: the GRASP communication is within
 ACP (Autonomic Control Plane,
 [I-D.ietf-anima-autonomic-control-plane]). This is the default
 GRASP behavior.

 o Inner layer authentication: the GRASP communication might not
 be within a protected channel, then there should be embedded
 protection in distribution information itself. Public key
 infrastructure might be involved in this case.

8. IANA Considerations

Liu, et al. Expires September 12, 2019 [Page 13]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 TBD.

9. References

9.1 Normative References

 [I-D.ietf-anima-grasp]
 Bormann, D., Carpenter, B., and B. Liu, "A Generic
 Autonomic Signaling Protocol (GRASP)", draft-ietf-
 animagrasp-15 (Standard Track), October 2017.

9.2 Informative References

 [RFC7575] Behringer, M., "Autonomic Networking: Definitions and
 Design Goals", RFC 7575, June 2015

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-behringer-anima-autonomic-
 control-plane-13, December 2017.

 [I-D.ietf-anima-stable-connectivity-10]
 Eckert, T., Behringer, M., "Using Autonomic Control Plane
 for Stable Connectivity of Network OAM", draft-ietf-anima-
 stable-connectivity-10, February 2018.

 [I-D.ietf-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Pierre P., Liu, B., Nobre, J., and J. Strassner, "A
 Reference Model for Autonomic Networking", draft-ietf-
 anima-reference-model-05, October 2017.

 [I-D.du-anima-an-intent]
 Du, Z., Jiang, S., Nobre, J., Ciavaglia, L., and M.
 Behringer, "ANIMA Intent Policy and Format", draft-
 duanima-an-intent-05 (work in progress), February 2017.

 [I-D.ietf-anima-grasp-api]
 Carpenter, B., Liu, B., Wang, W., and X. Gong, "Generic
 Autonomic Signaling Protocol Application Program Interface
 (GRASP API)", draft-ietf-anima-grasp-api-00 (work in
 progress), December 2017.

 [I-D.carpenter-anima-grasp-bulk-02]
 Carpenter, B., Jiang, S., Liu, B., "Transferring Bulk Data
 over the GeneRic Autonomic Signaling Protocol (GRASP)",
 draft-carpenter-anima-grasp-bulk-02 (work in progress),

Liu, et al. Expires September 12, 2019 [Page 14]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 June 30, 2018

 [3GPP.29.500]
 3GPP, "Technical Realization of Service Based
 Architecture", 3GPP TS 29.500 15.1.0, 09 2018

 [3GPP.23.501]
 3GPP, "System Architecture for the 5G System", 3GPP TS
 23.501 15.2.0, 6 2018,
 <http://www.3gpp.org/ftp/Specs/html-info/23501.htm>.

 [3GPP.23.502]
 3GPP, "Procedures for the 5G System", 3GPP TS 23.502
 15.2.0, 6 2018, <http://www.3gpp.org/ftp/Specs/html-
 info/23502.htm>.

 [5GAA.use.cases]
 White Paper "Toward fully connected vehicles: Edge
 computing for advanced automotive communications", 5GAA
 <http://5gaa.org/news/toward-fully-connected-vehicles-
 edge-computing-for-advanced-automotive-communications/>

Appendix A.

 GRASP includes flooding criteria together with the delivered
 information so that every node will process and act according to the
 criteria specified in the message. An example of extending GRASP with
 selective criteria can be:

 o Matching condition: "Device role=IPRAN_RSG"

 o Matching objective: "Neighbors"

 o Action: "Forward"

 This example means: only distributing the information to the
 neighbors who are IPRAN_RSG.

Authors’ Addresses

 Bing Liu
 Huawei Technologies
 Q27, Huawei Campus

Liu, et al. Expires September 12, 2019 [Page 15]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: leo.liubing@huawei.com

 Sheng Jiang
 Huawei Technologies
 Q27, Huawei Campus
 No.156 Beiqing Road
 Hai-Dian District, Beijing 100095
 P.R. China

 Email: jiangsheng@huawei.com

 Xun Xiao
 Munich Research Center
 Huawei technologies
 Riesstr. 25, 80992, Muenchen, Germany

 Emails: xun.xiao@huawei.com

 Artur Hecker
 Munich Research Center
 Huawei technologies
 Riesstr. 25, 80992, Muenchen, Germany

 Emails: artur.hecker@huawei.com

 Zoran Despotovic
 Munich Research Center
 Huawei technologies
 Riesstr. 25, 80992, Muenchen, Germany

 Emails: zoran.despotovic@huawei.com

 Appendix A Real-world Use Cases of Information Distribution

 The requirement analysis in Section 3 shows that generally
 information distribution should be better of as an infrastructure
 layer module, which provides to upper layer utilizations. In this
 section, we review some use cases from the real-world where an
 information distribution module with powerful functions do plays a
 critical role there.

Liu, et al. Expires September 12, 2019 [Page 16]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 A.1 Service-Based Architecture (SBA) in 3GPP 5G

 In addition to Internet, the telecommunication network (i.e. carrier
 mobile wireless networks) is another world-wide networking system.
 The architecture of the upcoming 5G mobile networks from 3GPP has
 already been defined to follow a service-based architecture (SBA)
 where any network function (NF) can be dynamically associated with
 any other NF(s) when needed to compose a network service. Note that
 one NF can simultaneously associate with multiple other NFs, instead
 of being physically wired as in the previous generations of mobile
 networks. NFs communicate with each other over service-based
 interface (SBI), which is also standardized by 3GPP [3GPP.23.501].

 In order to realize an SBA network system, detailed requirements are
 further defined to specify how NFs should interact with each other
 with information exchange over the SBI. We now list three
 requirements that are related to information distribution here.

 1) NF Pub/Sub: Any NF should be able to expose its service status
 to the network and any NF should be able to subscribe the service
 status of an NF and get notified if the status is available. An
 concrete example is that a session management function (SMF) can
 subscribe the REGISTER notification from an access management
 function (AMF) if there is a new user entity trying to access the
 mobile network [3GPP.23.502].

 2) Network Exposure Function (NEF): A particular network function
 that is required to manage the event exposure and distributions.
 In specific, SBA requires such a functionality to register network
 events from the other NFs (e.g. AMF, SMF and so on), classify the
 events and properly handle event distributions accordingly in
 terms of different criteria (e.g. priorities) [3GPP.23.502].

 3) Network Repository Function (NRF): A particular network
 function where all service status information is stored for the
 whole network. An SBA network system requires all NFs to be
 stateless so as to improve the resilience as well as agility of
 providing network services. Therefore, the information of the
 available NFs and the service status generated by those NFs will
 be globally stored in NRF as a repository of the system. This
 clearly implies storage capability that keeps the information in
 the network and provides those information when needed. A concrete
 example is that whenever a new NF comes up, it first of all
 registers itself at NRF with its profile. When a network service
 requires a certain NF, it first inquires NRF to retrieve the
 availability information and decides whether or not there is an
 available NF or a new NF must be instantiated [3GPP.23.502].

Liu, et al. Expires September 12, 2019 [Page 17]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 (Note: 3GPP CT might finally adopt HTTP2.0/JSON to be the protocol
 communicating between NFs, but autonomic networks can also load
 HTTP2.0 with in ACP.)

 A.2 Vehicle-to-Everything

 Carrier networks On-boarding services of vertical industries are also
 one of some blooming topics that are heavily discussed. Connected car
 is clearly one of the important scenarios interested in automotive
 manufacturers, carriers and vendors. 5G Automotive Alliance - an
 industry collaboration organization defines many promising use cases
 where services from car industry should be supported by the 5G mobile
 network. Here we list two examples as follows [5GAA.use.cases].

 1) Software/Firmware Update: Car manufacturers expect that the
 software/firmware of their car products can be remotely
 updated/upgraded via 5G network in future, instead of onsite
 visiting their 4S stores/dealers offline as nowadays. This
 requires the network to provide a mechanism for vehicles to
 receive the latest software updates during a certain period of
 time. In order to run such a service for a car manufacturer, the
 network shall not be just like a network pipe anymore. Instead,
 information data have to be stored in the network, and delivered
 in a publishing/subscribing fashion. For example, the latest
 release of a software will be first distributed and stored at the
 access edges of the mobile network, after that, the updates can be
 pushed by the car manufacturer or pulled by the car owner as
 needed.

 2) Real-time HD Maps: Autonomous driving clearly requires much
 finer details of road maps. Finer details not only include the
 details of just static road and streets, but also real-time
 information on the road as well as the driving area for both local
 urgent situations and intelligent driving scheduling. This asks
 for situational awareness at critical road segments in cases of
 changing road conditions. Clearly, a huge amount of traffic data
 that are real-time collected will have to be stored and shared
 across the network. This clearly requires the storage capability,
 data synchronization and event notifications in urgent cases from
 the network, which are still missing at the infrastructure layer.

 A.3 Summary

 Through the general analysis and the concrete examples from the real-
 world, we realize that the ways information are exchanged in the
 coming new scenarios are not just short and instant anymore. More
 advanced as well as diverse information distribution capabilities are
 required and should be generically supported from the infrastructure

Liu, et al. Expires September 12, 2019 [Page 18]

INTERNET DRAFT Information Distribution in ANI March 7, 2019

 layer. Upper layer applications (e.g. ASAs in ANIMA) access and
 utilize such a unified mechanism for their own services.

Liu, et al. Expires September 12, 2019 [Page 19]

ANIMA P. Peloso
Internet-Draft L. Ciavaglia
Intended status: Standards Track Nokia
Expires: September 22, 2016 March 21, 2016

 A Day in the Life of an Autonomic Function
 draft-peloso-anima-autonomic-function-01.txt

Abstract

 While autonomic functions are often pre-installed and integrated with
 the network elements they manage, this is not a mandatory condition.
 Allowing autonomic functions to be dynamically installed and to
 control resources remotely enables more versatile deployment
 approaches and enlarges the application scope to virtually any legacy
 equipment. The analysis of autonomic functions deployment schemes
 through the installation, instantiation and operation phases allows
 constructing a unified life-cycle and identifying new required
 functionality. Thus, the introduction of autonomic technologies will
 be facilitated, the adoption much more rapid and broad. Operators
 will benefit from multi-vendor, inter-operable autonomic functions
 with homogeneous operations and superior quality, and will have more
 freedom in their deployment scenarios.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Peloso & Ciavaglia Expires September 22, 2016 [Page 1]

Internet-Draft Autonomic Function March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

 This document may not be modified, and derivative works of it may not
 be created, except to format it for publication as an RFC or to
 translate it into languages other than English.

Table of Contents

 1. Problem statement . 3
 2. Motivations from an operator viewpoint 4
 2.1. Illustration of increasingly constraining operator’s
 objectives . 4
 2.2. Deployment scenarios of autonomic functions 5
 2.3. Operator’s requirements with regards to autonomic
 functions . 9
 3. Installation phase . 10
 3.1. Operator’s goal . 10
 3.2. Installation phase inputs and outputs 11
 4. Instantiation phase . 12
 4.1. Operator’s goal . 12
 4.2. Instantiation phase inputs and outputs 13
 4.3. Instantiation phase requirements 13
 5. Operation phase . 14
 6. Autonomic Function Agent specifications 15
 6.1. Life-cycle . 15
 6.2. ASA Class Manifest 16
 6.3. ASA Instance Mandate 17
 6.4. ASA Instance Manifest 18
 7. Implication for other ANIMA components 19
 7.1. Additional entities for ANIMA ecosystem 19
 7.2. Requirements for GRASP and ACP messages 20
 7.2.1. Control when an ASA runs 21
 7.2.2. Know what an ASA does to the network 21
 7.2.3. Decide which ASA control which equipment 22
 8. Acknowledgments . 22
 9. IANA Considerations . 22
 10. Security Considerations 22
 11. References . 22

Peloso & Ciavaglia Expires September 22, 2016 [Page 2]

Internet-Draft Autonomic Function March 2016

 11.1. Normative References 22
 11.2. Informative References 23
 Authors’ Addresses . 23

1. Problem statement

 While autonomic functions are often pre-installed and integrated with
 the network elements they manage, this is not a mandatory condition.
 Allowing autonomic functions to be dynamically installed and to
 control resources remotely enables more versatile deployment
 approaches and enlarges the application scope to virtually any legacy
 equipment. The analysis of autonomic functions deployment schemes
 through the installation, instantiation and operation phases allows
 constructing a unified life-cycle and identifying new required
 functionality.

 An Autonomic Service Agent (ASA) controls resources of one or
 multiple Network Elements (NE), e.g. the interfaces of a router for a
 Load Balancing ASA. An ASA is a software, thus an ASA need first to
 be installed and to execute on a host machine in order to control
 resources.

 There are 3 properties applicable to the installation of ASAs:

 The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources’ NE.

 The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties provide the operator a great variety of ASA
 deployment schemes as they decorrelate the evolution of the
 infrastructure layer from the evolution of the autonomic function
 layer. Depending on the capabilities (and constraints) of the
 infrastructure and of the autonomic functions, the operator can
 devise the schemes that will better fit to its deployment objectives
 and practices.

 Based on the above definitions, the ASA deployment process can be
 formulated as a multi-level/criteria matching problem.

 The primary level, present in the three phases, consists in matching
 the objectives of the operator and the capabilities of the
 infrastructure. The secondary level criteria may vary from phase to

Peloso & Ciavaglia Expires September 22, 2016 [Page 3]

Internet-Draft Autonomic Function March 2016

 phase. One goal of the document is thus to identify the specific and
 common functionality among these three phases.

 This draft will explore the implications of these properties along
 each of the 3 phases namely Installation, Instantiation and
 Operation. This draft will then provide a synthesis of these
 implications in requirements for functionalities and life-cycle of
 ASAs. Beforehand, the following section will deal with the network
 operator’s point of view with regards of autonomic networks.

2. Motivations from an operator viewpoint

 Only few operators would dare relying on a pure autonomic network,
 without setting objectives to it. From an operator to the other, the
 strategy of network management vary, as much for historical reasons
 (experience, best-practice, tools in-place, organization), as much
 for differences in the operators goals (business, trade agreements,
 politics, risk policy). Additionally, network operators do not
 necessarily perform a uniform network management across the different
 domains composing their network infrastructure. Hence their
 objectives in terms of availability, load, and dynamics vary
 depending on the nature of the domains and of the types of services
 running over each of those domains.

 To manage the networks according to the above variations, ASAs need
 to capture the underlying objectives implied by the operators. The
 instantiation phase is the step in-between installation and
 operation, where the network operator determine the initial ASA
 behavior according to its objectives. This step allows the network
 operator to determine which ASAs should execute on which domains of
 its network, with appropriate settings. At this stage, thanks to the
 intent-policy setting objectives to groups of ASAs, the network
 management should become far simpler (and less error-prone) than
 setting low-level configurations for each individual network
 resources.

2.1. Illustration of increasingly constraining operator’s objectives

 This paragraph describes the following example of operator intents
 with regards to deployments of autonomic functions. The autonomic
 function involved is a load balancing function, which uses monitoring
 results of links load to autonomously modify the links metrics in
 order to balance the load over the network. The example is divided
 into steps corresponding to an increasing implication of the operator
 in the definition of objectives/intents to the deployment of
 autonomic functions:

Peloso & Ciavaglia Expires September 22, 2016 [Page 4]

Internet-Draft Autonomic Function March 2016

 Step 1 The operator operates its network and benefits from the
 autonomic function on the nodes which have the installed ASAs.

 Step 2 Then the operator, specifies to the autonomic function an
 objective which is to achieve the maximum number of links with a
 load below 6O%.

 Step 3 The network is composed of five domains, a core transport
 network and four metropolitan networks, each interconnected
 through the core network, the operator sets a different objective
 to the autonomic function for each of the five domain.

 Step 4 As inside metropolitan domains the traffic variations are
 steeper and happen in a periodic fashion contrary to the traffic
 in the core domain, the network operators installs an additional
 autonomic function inside each of these domains. This autonomic
 function is learning the traffic demands in order to predict
 traffic variations. The operators instructs the load balancing
 function to augment its monitored input with the traffic
 predictions issued by the newly installed autonomic function.

 Step 5 As the algorithm of the load balancing autonomic function is
 relying on interactions between autonomic function agents, the
 operator expects the interactions to happen in-between ASAs of
 each domain, hence the load will be balanced inside each of the
 domain, while previously it would have been balanced over the
 whole network uniformly.

 Step 6 Finally, the network operator has purchased a new piece of
 software corresponding to an autonomic function achieving load
 balancing with a more powerful algorithm. For trial sake, he
 decides to deploy this new load balancing function instead of the
 previous one on one of its four metropolitan domains.

 This short example illustrates some specificities of deployment
 scenarios, the sub-section below sets itself at providing a more
 exhaustive view of the different deployment scenarios.

2.2. Deployment scenarios of autonomic functions

 The following scenarios illustrate the different ways the autonomic
 functions could be deployed in an ANIMA context. Subsequently,
 requirements for the autonomic functions and requirements these
 autonomic functions impose on other components of the ANIMA ecosystem
 are listed.

 These various deployment scenarios are better understood by referring
 to the High level view of an Autonomic Network, Figure 1 of

Peloso & Ciavaglia Expires September 22, 2016 [Page 5]

Internet-Draft Autonomic Function March 2016

 [I-D.behringer-anima-reference-model]. The figure is slightly
 extended for the purpose of the demonstration as follows:

 + - +
 | : Autonomic Function 1 : |

 | ASA 1.1 : ASA 1.2 : ASA 1.3 : ASA 1.4 |
 + - +
 : : :
 : + - - - - - - - - - - - - - + :
 : | Autonomic Function 2 | :

 : | ASA 2.2 : ASA 2.3 | :
 : + - - - - - - - - - - - - - + :
 : : :
 + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
 | Autonomic Function 3 | : | Autonomic Function 4 |

 | ASA 3.1 : ASA 3.2 | : | ASA 4.3 : ASA 4.4 |
 + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
 : : :
 + - +
 | Autonomic Networking Infrastructure |
 + - +
 +--------+ : +--------+ : +--------+ : +--------+
 | Node 1 |-------| Node 2 |-------| Node 3 |-------| Node 4 |
 +--------+ : +--------+ : +--------+ : +--------+

 Figure 1: High level view of an Autonomic Network

 Figure 1 depicts 4 Nodes, 4 Autonomic Functions and 10 Autonomic
 Service Agents. Let’s list assumptions with regards of these
 elements.

 Starting with nodes,

 each may be either an Unconstrained Autonomic Node, a Constrained
 Autonomic Node (or even a legacy one?),

 they may well be of different models (or having different software
 versions),

 they may well be of different equipment vendors,

 they may well be of different technologies (some may be IP
 routers, some may be Ethernet switches or OTN switches...).

Peloso & Ciavaglia Expires September 22, 2016 [Page 6]

Internet-Draft Autonomic Function March 2016

 Pursuing with Autonomic Functions,

 they may well have different objectives (one could target
 automatic configuration of OSPF-TE, while another one is
 optimizing traffic load), but they may well have identical
 objectives as two could optimize energy consumption (possibly on
 different areas as function 3 and function 4),

 each may be composed of no more than one ASA (either because the
 function is responsible for a single node or because the function
 relies on a centralized implementation),

 each may well be composed of different sort of ASAs, meaning the
 software is different (either because their version number is
 different, or because the software provider is different, or
 because their respective nodes/equipments differ or because the
 role of each agent is different),

 [Observation] Depending on the implementation the same piece of
 software may fulfill different roles or each role may come from a
 different from a different piece of code,

 each has reached a given organization, meaning an organized set of
 ASAs in charge of a set of nodes ()whether formalized or not),
 this organization may either come from the piece of software
 itself (e.g. embedding a self-organization process) or come from
 directions of the network operator (e.g. through intents/policies,
 or through deployment instructions)

 each may work internally in a peer to peer fashion (where every
 agents have the same prerogatives) or in hierarchical fashion
 (where some agents have some prerogatives over other) [this option
 is a good example of role differences],

 each having its scope of work in terms of objective to reach and
 area/space/part of the network to manage.

 Completing with individual Autonomic Service Agents, those are pieces
 of software:

 embedded inside the node/equipment OS (hence present since the
 bootstrap or OS update of the equipment),

 running in a machine different than the node (this could be a node
 controller or any other host or virtual machine)

 [Observation] In the latter case, the ASA would likely require
 external credentials to interact with the node,

Peloso & Ciavaglia Expires September 22, 2016 [Page 7]

Internet-Draft Autonomic Function March 2016

 directly monitoring and configuring the equipment (likely requires
 the ASA to be embedded) or through a management interface of the
 equipment (e.g. SNMP, TL1, Q3, NetConf) or through an equipment
 controller (e.g. SDN paradigm) or through a network manager (e.g.
 using the north interface of the manager)

 either activated at start-up or as the result of a management
 action,

 may be installed (either inside the equipment or on a different
 machine) when requested by an operator from a software origin
 (e.g. a repository in the ACP, a media)

 provided by the same vendor as the equipment it manages or by any
 third party (like another equipment vendor, a management software
 vendor, an open-source initiative or the operator software team),

 sharing a technical objective with the other ASAs of the Autonomic
 Function they belong, (or at least a similar one)?

 can it contains multiple technical objective?

 must the technical objective be intrinsic or can it be set by a
 managing entity (a network operator or a management system)?

 The last three points being largely questionable are marked as
 questions.

 The figure below illustrates how an ASA interacts with a node that
 the ASA manages. The left side depicts external interactions,
 through exchange of commands towards interfaces either to the node OS
 (e.g. via SNMP or NetConf), or to the controller (e.g. (G)MPLS, SDN,
 ...), or to the NMS. The right side depicts the case of the ASA
 embedded inside the Node OS.

Peloso & Ciavaglia Expires September 22, 2016 [Page 8]

Internet-Draft Autonomic Function March 2016

 + - - - + +-------------+
 | ASA |------>| NMS *<--*
 + - - - + +------^------+ |
 | | | |
 | | +------V------+ |
 | +-------->| Controller | |
 | +------^------+ | +---------------------+
 | | | | + - - - + |
 | +------V------+ | | | ASA | Node OS |
 +------------>| Node OS *<--* | + - - - + |
 +------^------+ +--------------*------+
 | |
 +------V------+ +-----*------+
 | Node | | Node |
 +-------------+ +------------+

 Figure 2: Interaction possibilities between ASA and Resources

2.3. Operator’s requirements with regards to autonomic functions

 Regarding the operators, at this point we can try to list few
 requirements they may have with regards with the Autonomic Functions
 and their management...

 Being capable to set those functions a scope of work in term of
 area of duty,

 Being capable to monitor the actions taken by the autonomic
 functions, and which are its results (performance with regards to
 the function KPIs)

 Being capable to halt/suspend the execution of an Autonomic
 function (either because the function is untrusted, or because an
 operation on the network is to be conducted without interference
 from the autonomic functions, etc...)

 Being capable to configure the autonomic functions by adjusting
 the parameters of the function (e.g. a Traffic Engineering
 autonomic function may achieve a trade-off between congestion
 avoidance and electrical power consumption, hence this function
 may be more or less aggressive on the link load ratio, and the
 network operator certainly has his word to say in setting this
 cursor.

Peloso & Ciavaglia Expires September 22, 2016 [Page 9]

Internet-Draft Autonomic Function March 2016

3. Installation phase

 Before being able to instantiate and run ASAs, the operator must
 first provision the infrastructure with the sets of ASA software
 corresponding to its needs and objectives. The provisioning of the
 infrastructure is realized in the installation phase and consists in
 installing (or checking the availability of) the pieces of software
 of the different ASA classes in a set of Installation Hosts.

 As mentioned in the Problem statement section, an Autonomic Function
 Agent (ASA) controls resources of one or multiple Network Elements
 (NE), e.g. the interfaces of a router for a Load Balancing ASA. An
 ASA is a software, thus an ASA need first to be installed and to
 execute on a host machine in order to control resources.

 There are 3 properties applicable to the installation of ASAs:

 The dynamic installation property allows installing an ASA on
 demand, on any hosts compatible with the ASA.

 The decoupling property allows controlling resources of a NE from a
 remote ASA, i.e. an ASA installed on a host machine different from
 the resources’ NE.

 The multiplicity property allows controlling multiple sets of
 resources from a single ASA.

 These three properties are very important in the context of the
 installation phase as their variations condition how the ASA class
 could be installed on the infrastructure.

3.1. Operator’s goal

 In the installation phase, the operator’s goal is to install ASA
 classes on Installation Hosts such that, at the moment of
 instantiation, the corresponding ASAs can control the sets of target
 resources. The complexity of the installation phase come from the
 number of possible configurations for the matching between the ASA
 classes capabilities (e.g. what types of resources it can control,
 what types of hosts it can be installed on...), the Installation
 Hosts capabilities (e.g. support dynamic installation, location and
 reachability...) and the operator’s needs (what deployment schemes
 are favored, functionality coverage vs. cost trade-off...).

 For example, in the coupled mode, the ASA host machine and the
 network element are the same. The ASA is installed on the network
 element and control the resources via interfaces and mechanisms
 internal to the network element. An ASA MUST be installed on the

Peloso & Ciavaglia Expires September 22, 2016 [Page 10]

Internet-Draft Autonomic Function March 2016

 network element of every resource controlled by the ASA. The
 identification of the resources controlled by an ASA is
 straightforward: the resources are the ones of the network element.

 In the decoupled mode, the ASA host machine is different from the
 network element. The ASA is installed on the host machine and
 control the resources via interfaces and mechanisms external to the
 network element. An ASA can be installed on an arbitrary set of
 candidate Installation hosts, which can be defined explicitly by the
 network operator or according to a cost function. A key benefit of
 the decoupled mode is to allow an easier introduction of autonomic
 functions on existing (legacy) infrastructure. The decoupled mode
 also allows de-correlating the installation requirements (compatible
 host machines) from the infrastructure evolution (NEs addition and
 removal, change of NE technology/version...).

 The operator’s goal may be defined as a special type of intent,
 called the Installation phase intent. The details of the content and
 format of this proposed intent are left open and for further study.

3.2. Installation phase inputs and outputs

 Inputs are:

 [ASA class of type_x] that specifies which classes ASAs to install,

 [Installation_target_Infrastructure] that specifies the candidate
 Installation Hosts,

 [ASA class placement function, e.g. under which criteria/constraints
 as defined by the operator]
 that specifies how the installation phase shall meet the
 operator’s needs and objectives for the provision of the
 infrastructure. In the coupled mode, the placement function is
 not necessary, whereas in the decoupled mode, the placement
 function is mandatory, even though it can be as simple as an
 explicit list of Installation hosts.

 The main output of the installation phase is an up-to-date directory
 of installed ASAs which corresponds to [list of ASA classes]
 installed on [list of installation Hosts]. This output is also
 useful for the coordination function and corresponds to the static
 interaction map.

 The condition to validate in order to pass to next phase is to ensure
 that [list of ASA classes] are well installed on [list of
 installation Hosts]. The state of the ASA at the end of the
 installation phase is: installed. (not instantiated). The following

Peloso & Ciavaglia Expires September 22, 2016 [Page 11]

Internet-Draft Autonomic Function March 2016

 commands or messages are foreseen: install(list of ASA classes,
 Installation_target_Infrastructure, ASA class placement function),
 and un-install (list of ASA classes).

4. Instantiation phase

 Once the ASAs are installed on the appropriate hosts in the network,
 these ASA may start to operate. From the operator viewpoint, an
 operating ASA means the ASA manages the network resources as per the
 objectives given. At the ASA local level, operating means executing
 their control loop/algorithm.

 But right before that, there are two things to take into
 consideration. First, there is a difference between 1. having a
 piece of code available to run on a host and 2. having an agent based
 on this piece of code running inside the host. Second, in a coupled
 case, determining which resources are controlled by an ASA is
 straightforward (the determination is embedded), in a decoupled mode
 determining this is a bit more complex (hence a starting agent will
 have to either discover or be taught it).

 The instantiation phase of an ASA covers both these aspects: starting
 the agent piece of code (when this does not start automatically) and
 determining which resources have to be controlled (when this is not
 obvious).

4.1. Operator’s goal

 Through this phase, the operator wants to control its autonomic
 network in two things:

 1 determine the scope of autonomic functions by instructing which of
 the network resources have to be managed by which autonomic
 function (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 2 determine how the autonomic functions are organized by instructing
 which ASAs have to interact with which other ASAs (or more
 precisely which set of network resources have to be handled as an
 autonomous group by their managing ASAs).

 Additionally in this phase, the operator may want to set objectives
 to autonomic functions, by configuring the ASAs technical objectives.

 The operator’s goal can be summarized in an instruction to the ANIMA
 ecosystem matching the following pattern:

Peloso & Ciavaglia Expires September 22, 2016 [Page 12]

Internet-Draft Autonomic Function March 2016

 [ASA of type_x instances] ready to control
 [Instantiation_target_Infrastructure] with
 [Instantiation_target_parameters]

4.2. Instantiation phase inputs and outputs

 Inputs are:

 [ASA of type_x instances] that specifies which are the ASAs to be
 targeted (and more precisely which class e.g. 1. version X or
 version Y or 2. provider A or provider B),

 [Instantiation_target_Infrastructure] that specifies which are the
 resources to be managed by the autonomic function, this can be the
 whole network or a subset of it like a domain a technology segment
 or even a specific list of resources,

 [Instantiation_target_parameters] that specifies which are the
 technical objectives to be set to ASAs (e.g. an optimization
 target)

 Outputs are:

 [Set of ASAs - Resources relations] describing which resources are
 managed by which ASA instances, this is not a formal message, but
 a resulting configuration of a set of ASAs,

4.3. Instantiation phase requirements

 The instructions described in section 4.2 could be either:

 sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 broadcast to all ASAs In which case, the ASAs would collectively
 determine from the list which Agent(s) would handle which
 [Instantiation_target_Infrastructure], with the
 [Instantiation_target_parameters].

 This set of instructions can be materialized through a message that
 is named an Instance Mandate. Instance Mandates are described in the
 requirements part of this document, which lists the needed fields of
 such a message (see Section 6.3 - ASA Instance Mandate).

 The conclusion of this instantiation phase is a ready to operate ASA
 (or interacting set of ASAs), then this (or those) ASA(s) can

Peloso & Ciavaglia Expires September 22, 2016 [Page 13]

Internet-Draft Autonomic Function March 2016

 describe themselves by depicting which are the resources they manage
 and what this means in terms of metrics being monitored and in terms
 of actions that can be executed (like modifying the parameters
 values). A message conveying such a self description is named an
 Instance Manifest. Instance Manifests are described in the
 requirements part of this document, which lists the needed fields of
 such a message (see Section 6.4 - ASA Instance Manifest).

 Though the operator may well use such a self-description "per se",
 the final goal of such a description is to be shared with other ANIMA
 entities like:

 o the coordination entities (see [I-D.ciavaglia-anima-coordination]
 - Autonomic Functions Coordination)

 o collaborative entities in the purpose of establishing knowledge
 exchanges (some ASAs may produce knowledge or even monitor metrics
 that other ASAs cannot make by themselves why those would be
 useful for their execution) (see knowledge exchange items in
 Section 5 - Operation phase)

5. Operation phase

 Note: This section is to be further developed in future revisions of
 the document.

 During the Operation phase, the operator can:

 Activate/Deactivate ASA: meaning enabling those to execute their
 autonomic loop or not.

 Modify ASAs targets: meaning setting them different objectives.

 Modify ASAs managed resources: by updating the instance mandate
 which would specify different set of resources to manage (only
 applicable to decouples ASAs).

 During the Operation phase, running ASAs can interact the one with
 the other:

 in order to exchange knowledge (e.g. an ASA providing traffic
 predictions to load balancing ASA)

 in order to collaboratively reach an objective (e.g. ASAs
 pertaining to the same autonomic function targeted to manage a
 network domain, these ASA will collaborate - in the case of a load
 balancing one, by modifying the links metrics according to the
 neighboring resources loads)

Peloso & Ciavaglia Expires September 22, 2016 [Page 14]

Internet-Draft Autonomic Function March 2016

 During the Operation phase, running ASAs are expected to apply
 coordination schemes

 then execute their control loop under coordination supervision/
 instructions

6. Autonomic Function Agent specifications

6.1. Life-cycle

 Based on the phases described above, this section defines formally
 the different states experienced by Autonomic Function Agents during
 their complete life-cycle.

 The drawing of the life-cycle presented below shows both the states
 and the events/messages triggering the state changes. For
 simplification purposes, this sketch does not display the transitory
 states which correspond to the handling of the messages.

 The installation and Instantiation phase will be concluded by ASA
 reaching respectively Installed and Instantiated states.

 +--------------+
 Undeployed ------>| |------> Undeployed
 | Installed |
 +-->| |---+
 Mandate | +--------------+ | Receives a
 is revoked | +--------------+ | Mandate
 +---| |<--+
 | Instantiated |
 +-->| |---+
 set | +--------------+ | set
 down | +--------------+ | up
 +---| |<--+
 | Operational |
 | |
 +--------------+

 Figure 3: Life cycle of an Autonomic Function Agent

 Here are described the successive states of ASA.

 Undeployed - In this "state", the Autonomic Function Agent is a
 mere piece of software, which may not even be available on any
 host.

Peloso & Ciavaglia Expires September 22, 2016 [Page 15]

Internet-Draft Autonomic Function March 2016

 Installed - In this state, the Autonomic Function Agent is
 available on a (/multiple) host(s), and after having shared its
 ASA class Manifest (which describes in a generic way independently
 of the deployment how the ASA would work). In this state the ASA
 is waiting for an ASA Instance Mandate, to determine which
 resources ti manage (when the ASA is strictly coupled to resources
 [e.g. part of a Node OS], there is no need to wait for an instance
 mandate, the target resources being intrinsically known).

 Instantiated - In this state the Autonomic Function Agent has the
 knowledge of which resources it is meant to manage. In this state
 the ASA is expecting a set Up message in order to start executing
 its autonomic loop. From this state on the ASA can share an
 Instance Manifest (which describes how the ASA instance is going
 to work).

 Operational - In this state, ASAs are executing their autonomic
 loop, hence acting on network, by modifying resources parameters.
 A set down message will turn back the ASA in an Instantiated
 state.

 The messages are described in the following sections.

6.2. ASA Class Manifest

 An ASA class is a piece of software that contains the computer
 program of an Autonomic Function Agent.

 In order to install and instantiate appropriately an autonomic
 function in its network, the operator needs to know which are the
 characteristics of this piece of software.

 This section details a format for an ASA class manifest, which is (a
 machine-readable) description of both the autonomic function and the
 piece of code that executes the function.

 +--------------+---------------+------------------------------------+
 | Field Name | Type | Description |
 +--------------+---------------+------------------------------------+
 | ID | Struct | A unique identifier made out of at |
 | | | least a Function Name, Version and |
 | | | Provider Name (and Release Date). |
 | Description | Struct | A multi-field description of the |
 | | | function performed by the ASA, it |
 | | | is meant to be read by the |
 | | | operator and can point to URLs, |
 | | | user-guides, feature descriptions. |
 | Installation | 3 Booleans | Whether the ASA is dynamically |

Peloso & Ciavaglia Expires September 22, 2016 [Page 16]

Internet-Draft Autonomic Function March 2016

 | properties | | installable, can be decoupled from |
 | | | the NE and can manage multiple |
 | | | resources from a single instance |
 | | | (see Section 1 - Problem |
 | | | statement). |
 | Possible | OS... | Lists the OS/Machines on which the |
 | Hosts | | ASA can be executed. [Only if ASA |
 | | | is dynamically installable] |
 | Network | NetSegment... | Lists the network segments on |
 | Segment | | which the autonomic function is |
 | | | applicable (e.g. IP backbone |
 | | | versus RAN). |
 | Manageable | Equipments... | Lists the nodes/resources that |
 | Equipments | | this piece of code can manage |
 | | | (e.g. ALU 77x routers, Cisco CRS-x |
 | | | routers, Huawei NEXE routers). |
 | Autonomic | Enum | States what is the type of loop |
 | Loop Type | | MAPE-K and whether this loop can |
 | | | be halted in the course of its |
 | | | execution. |
 | Acquired | Raw | Lists the nature of information |
 | Inputs | InfoSpec... | that an ASA agent may acquire from |
 | | | the managed resource(s) (e.g. the |
 | | | links load). |
 | External | Raw | Lists the nature of information |
 | Inputs | InfoSpec... | that an ASA agent may require/wish |
 | | | from other ASA in the ecosystem |
 | | | that could provide such |
 | | | information/knowledge. |
 | Possible | Raw | Lists the nature of actions that |
 | Actions | ActionSpec | an ASA agent may enforce on ASA |
 | | | the managed resource(s) (e.g. |
 | | | modify the links metrics). |
 | Technical | Technical | Lists the type of technical |
 | Objectives | Objective | objectives that can be |
 | Description | Spec... | handled/received by the ASA (e.g. |
 | | | a max load of links). |
 +--------------+---------------+------------------------------------+

 Table 1: Fields of ASA class manifest

6.3. ASA Instance Mandate

 An ASA instance is the ASA agent: a running piece of software of an
 ASA class. A software agent is a persistent, goal-oriented computer
 program that reacts to its environment and interacts with other
 elements of the network.

Peloso & Ciavaglia Expires September 22, 2016 [Page 17]

Internet-Draft Autonomic Function March 2016

 In order to install and instantiate appropriately an autonomic
 function in its network, the operator may specify to ASA instances
 what they are supposed to do: in term of which resources to manage
 and which objective to reach.

 This section details a format for an ASA Instance Mandate, which is
 (a machine-readable) set of instructions sent to create autonomic
 functions out of ASA.

 +-----------+----------------+--------------------------------------+
 | Field | Type | Description |
 | Name | | |
 +-----------+----------------+--------------------------------------+
 | ASA class | Struct | A pattern matching the ID (or part |
 | Pattern | | of it) of ASAs being the target of |
 | | | the Mandate. This field makes sense |
 | | | only for broadcast mandates (see end |
 | | | of this section). |
 | Managed | ResourcesId... | The list of resources to be managed |
 | Resources | | by the ASA (e.g. their IP@ or MAC@ |
 | | | or any other relevant ID). |
 | ID of | Interface Id | The interface to the coordination |
 | Coord | | system in charge of this autonomic |
 | | | function. |
 | Reporting | Policy | A policy describing which entities |
 | Policy | | expect report from ASA, and which |
 | | | are the conditions of these reports |
 | | | (e.g. time wise and content wise) |
 +-----------+----------------+--------------------------------------+

 Table 2: Fields of ASA instance mandate

 An ASA instance mandate could be either:

 sent to a targeted ASA In which case, the receiving Agent will have
 to manage the specified list of resources,

 broadcast to all ASA In which case, the ASAs would collectively
 determine which agent would handle which resources from the list,
 and if needed (and feasible) this could also trigger the dynamic
 installation/instantiation of new agents (ACP should be capable of
 bearing such scenarios).

6.4. ASA Instance Manifest

 Once the ASAs are properly instantiated, the operator and its
 managing system need to know which are the characteristics of these
 ASAs.

Peloso & Ciavaglia Expires September 22, 2016 [Page 18]

Internet-Draft Autonomic Function March 2016

 This section details a format for an ASA instance manifest, which is
 (a machine-readable) description of either an ASA or a set of ASAs
 gathered into an autonomic function.

 +-----------+----------------+--------------------------------------+
 | Field | Type | Description |
 | Name | | |
 +-----------+----------------+--------------------------------------+
 | ASA Class | Struct | A unique identifier made out of at |
 | ID | | least a Function Name, Version and |
 | | | Provider Name (and Release Date). |
 | ASA | Long | A unique Id of the ASA instance (if |
 | Instance | | the ASA instance manifest gathers |
 | ID | | multiple ASAs working together, this |
 | | | would be a list). |
 | Hosts | Resource ID | ID of the Machines on which the ASA |
 | | | executes. |
 | Managed | ResourcesId... | The list of resources effectively |
 | Resources | | managed by the ASA (e.g. their IP@ |
 | | | or MAC@ or any other relevant ID). |
 | Acquired | Instance | Lists information that this ASA |
 | Inputs | InfoSpec... | agent may acquire from the managed |
 | | | resource(s) (e.g. the links load |
 | | | over links with ID x and y). |
 | External | Instance | Lists information that this ASA |
 | Inputs | InfoSpec... | agent requires from the ecosystem |
 | | | (e.g. the links load prediction over |
 | | | links with ID x and y). |
 | Possible | Instance | Lists actions that this ASA agent |
 | Actions | ActionSpec | may enforce on its managed |
 | | | resource(s) (e.g. modify the links |
 | | | metrics over links x and y). |
 +-----------+----------------+--------------------------------------+

 Table 3: Fields of ASA instance manifest

7. Implication for other ANIMA components

7.1. Additional entities for ANIMA ecosystem

 In the previous parts of this document, we have seen successive
 operations pertaining to the management of autonomic functions.
 These phases involve different entities such as the ASAs, the ASA
 Hosts and the ASA Management function. This function serves as the
 interface between the network operator and its managed infrastructure
 (i.e. the autonomic network). The ASA management function
 distributes instructions to the ASAs such as the ASA Instance
 Mandate, ASA set up/set down commands and also trigger the ASA

Peloso & Ciavaglia Expires September 22, 2016 [Page 19]

Internet-Draft Autonomic Function March 2016

 installation inside ASA Hosts. This function is likely to be co-
 located or integrated with the function responsible for the
 management of the Intents.

 In this first version, we do not prescribe any requirements on the
 way the ASA Management function should be implemented, neither the
 various deployment options of such a function and neither on the way
 ACP or GRASP could be extended to interact with this function. We
 believe these design and specifications work should be first
 discussed and analyzed by the working group.

7.2. Requirements for GRASP and ACP messages

 GRASP and ACP seems to be the best (and currently only) candidates to
 convey the following messages between the ASA Management function and
 the ASAs:

 ASA Class Manifest

 ASA Instance Mandate (and Revoke Mandate)

 ASA Instance Manifest

 Set Up and Set Down messages

 These section concludes with requests to GRASP protocol designers in
 order to handle the 3 last messages of the list above. These 3
 messages form the minimal set of features needed to guarantee some
 control on the behavior of ASAs to network operators.

 A mechanism similar to the bootstrapping one would usefully achieve
 discovery of pre-installed ASAs, and possibly provide those with a
 default Instance Mandate.

 A mechanism to achieve dynamic installation of ASAs compatible with
 ACP and GRASP remains to be identified.

 In the case of decoupled ASAs, even more for the ones supporting
 multiplicity, when a Mandate is broadcast (i.e. requesting the
 Instantiation of an autonomic function to manage a bunch of
 resources), these ASAs require synchronization to determine which
 agent(s) will manage which resources. Proper ACP/GRASP messages
 supporting such a mechanism have to be identified together with
 protocol authors.

Peloso & Ciavaglia Expires September 22, 2016 [Page 20]

Internet-Draft Autonomic Function March 2016

7.2.1. Control when an ASA runs

 To control when an ASA runs (and possibly how it runs), the operator
 needs the capacity to start and stop ASAs. That is why an imperative
 command type of message is requested from GRASP.

 Additionally this type of message could also be used to specify how
 the ASA is meant to run, e.g. whether its control loop is subdued to
 some constraints in terms of pace of execution or rhythm of execution
 (once a second, once a minute, once a day...)

 Below a suggestion for GRASP:

 In fragmentary CDDL, an Imperative message follows the pattern:

 imperative-message = [M_IMPERATIVE, session-id, initiator, objective]

 ...

7.2.2. Know what an ASA does to the network

 To know what an ASA does to the network, the operator needs to have
 the information of the elements either monitored or modified by the
 ASA, hence this ASA should disclose those.

 The disclosing should take the form of a ASA Instance Manifest (see
 Section 6.4 - ASA Instance Manifest), which could be conveyed inside
 a GRASP discovery message, hence the fields of the ASA Instance
 Manifest would be conveyed inside the objective.

 At this stage there are two options:

 The whole manifest is conveyed as an objective.

 Each field of the manifest is conveyed as an individual objective,
 more precisely, the acquired inputs would appear as discovery
 only, and the modifiable parameters would appear as negotiation
 objective. The unclear part is the expression of requested fields
 (when the ASA claims being a client for such objective). Could
 one of the already existing objective options a good match or
 should a new one be created.

 ...

Peloso & Ciavaglia Expires September 22, 2016 [Page 21]

Internet-Draft Autonomic Function March 2016

7.2.3. Decide which ASA control which equipment

 To determine which ASA controls which equipment (or vice-versa which
 equipments are controlled by which ASAs), the operators needs to be
 able to instruct ASA before the end of their bootstrap procedure.

 These instructions sent to ASA during bootstrapping should take the
 format of an ASA Instance Mandate (see Section 6.3 -
 ASA Instance Mandate). This ASA Instance Mandate are sorts of
 Intents, and as GRASP is meant to handle Intents in a near future, it
 would be beneficial to already identify which sort of GRASP message
 are meant to be used by Intent in order to already define those. An
 option could be to reuse the Imperative messages defined above.

 ...

8. Acknowledgments

 This draft was written using the xml2rfc project.

 This draft content builds upon work achieved during UniverSelf FP7 EU
 project.

9. IANA Considerations

 This memo includes no request to IANA.

10. Security Considerations

 TBD

11. References

11.1. Normative References

 [I-D.ciavaglia-anima-coordination]
 Ciavaglia, L. and P. Peloso, "Autonomic Functions
 Coordination", draft-ciavaglia-anima-coordination-00 (work
 in progress), July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Peloso & Ciavaglia Expires September 22, 2016 [Page 22]

Internet-Draft Autonomic Function March 2016

11.2. Informative References

 [I-D.behringer-anima-reference-model]
 Behringer, M., Carpenter, B., Eckert, T., Ciavaglia, L.,
 Liu, B., Jeff, J., and J. Strassner, "A Reference Model
 for Autonomic Networking", draft-behringer-anima-
 reference-model-04 (work in progress), October 2015.

 [RFC7575] Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
 Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
 Networking: Definitions and Design Goals", RFC 7575,
 DOI 10.17487/RFC7575, June 2015,
 <http://www.rfc-editor.org/info/rfc7575>.

Authors’ Addresses

 Peloso Pierre
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: pierre.peloso@nokia.com

 Laurent Ciavaglia
 Nokia
 Villarceaux
 Nozay 91460
 FR

 Email: laurent.ciavaglia@nokia.com

Peloso & Ciavaglia Expires September 22, 2016 [Page 23]

	draft-ciavaglia-anima-coordination-01
	draft-ciavaglia-anima-knowledge-00
	draft-du-anima-an-intent-05
	draft-ietf-anima-autonomic-control-plane-19
	draft-ietf-anima-bootstrapping-keyinfra-22
	draft-ietf-anima-grasp-15
	draft-ietf-anima-prefix-management-07
	draft-ietf-anima-reference-model-10
	draft-ietf-anima-stable-connectivity-10
	draft-liu-anima-grasp-distribution-10
	draft-peloso-anima-autonomic-function-01

