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Abstract

   This document describes a management solution capable of avoiding
   conflicts between autonomic functions.  The objective of such a
   solution is to avoid network instabilities, by insuring that the
   autonomic functions pursuing different goals will cooperate instead
   of antagonize each other.  This document provides both requirements
   and specifications for such a solution.

   Disclaimer: the version -01 of the draft has been issued to
   reactivate the document in order to allow discussion within the ANIMA
   WG about the coordination of autonomic functions.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 22, 2016.
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   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

   This document may not be modified, and derivative works of it may not
   be created, except to format it for publication as an RFC or to
   translate it into languages other than English.
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1.  Introduction

   The document Autonomic Networking: Definitions and Design Goals
   [RFC7575] explains the fundamental concepts behind Autonomic
   Networking, and defines the relevant terms in this space.  The
   central concepts are Autonomic Nodes and Autonomic Functions.
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   An Autonomic Function is characterized by its implementing a closed
   control-loop, which we can summarize as successively:

   1.  Gathers metrics monitored by network equipments (that could be
       Autonomic Nodes, but not limited to)

   2.  Determines/computes new actions out of these inputs plus possibly
       some of the additional elements: e.g. contextual inputs, provided
       intents and gathered experience,

   3.  Set the computed parameters values (from the previous actions)
       inside the appropriate network equipments,

   4.  These new parameters values influence the network behavior, such
       that the metrics gathered by the autonomic function will evolve,

   (Section 7.5 of [I-D.behringer-anima-reference-model] details more
   the control loops).

   The Autonomic Functions are normally designed to stabilize
   (converge), at least when the network conditions are themselves
   stable.  However, conflicting interactions among Autonomic Functions
   can create instabilities even when the network conditions have not
   varied.

   The document A Reference Model for Autonomic Networking
   [I-D.behringer-anima-reference-model] describes the reference model
   of autonomic networks, by describing the architecture and enumerating
   fundamental blocks (either infrastructure pieces or enabling
   functionalities).  One of these functionalities pertains to the
   concomitant execution of multiple autonomic functions in a safe way
   (i.e. avoiding conflicts between these different autonomic loops).
   Section 8 of [I-D.behringer-anima-reference-model] (Coordination
   between Autonomic Functions) provides a brief introduction to this
   functionality.

   This document tackles this topic by successively:

   1.  Explaining why such a functionality is needed,

   2.  Detailing which objectives such a functionality should reach,

   3.  Sketching a simple behavior of this function,

   4.  Providing requirements on autonomic functions (a tentative list
       in this document version),
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   5.  Providing some specifications items (in this preliminary version,
       while future versions would provide specifications),

2.  Problem Statement

   The need to coordinate the joint behavior of autonomic functions
   arises from the need to cope with conflicting situations and to
   provide the operator with the ability to steer autonomic network
   performance to a given (intended) operational point.

   Several interaction types exist among autonomic functions such as
   cooperation, dependency, or conflict (and possibly others [TBD]).

   Cooperation happens when an autonomic function can improve the
   behavior or performance of another autonomic function, such as a
   traffic forecasting function used by a traffic allocation function.

   Dependency happens when an autonomic function cannot work without
   another one being present or accessible in the autonomic network.

   Conflicts among autonomic functions emerges from direct and indirect
   interactions.  A metric value conflict is a conflict where one metric
   is influenced by parameters of different autonomic functions.  A
   parameter value conflict is a conflict where one parameter is
   modified by different autonomic functions.  A simple example of
   conflicting interaction between autonomic functions is the
   oscillations caused by an energy-saving function (which switches-off
   interfaces to reduce power consumption) and a load-balancing function
   (which switches-on interfaces to reduce link load).

   Solving the coordination problem beyond one-by-one cases can rapidly
   become intractable if one considers networks composed of tens,
   hundreds or thousands of simultaneously interacting functions.
   Specifying a common functional block on coordination is a first step
   to address the problem in a systemic way.

3.  Guiding principles

   A coordination function appears as an essential component of the
   ANIMA reference model in order to achieve better control on the
   performance, stability and convergence of autonomic networks.

   As guiding principles, the ANIMA coordination function should:

   o  Maximize the autonomic network utility, i.e. mitigate the
      (observed or inferred) detrimental effects of conflicting
      autonomic functions (Efficiency property).
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   o  Balance the autonomic network goal(s) and autonomic functions
      individual goal(s) (Congruence and Coherence properties).

   o  Inform the autonomic network operator (being a human or a machine)
      with processed and aggregated "call(s) for governance" in case the
      goals are incompatible and no satisfactory solution can be found
      (i.e. compliant with the intent).

   o  Deviate the least possible autonomic functions from their design
      objective(s) and individual goal(s) (Liberality property).

   o  Impose minimal additional requirements on the external
      specifications of autonomic functions, such as the format and
      content of the autonomic function descriptor(s)/capabilities
      (Economy property).

   o  Not impose any requirement on the internal specifications of
      autonomic functions (Independence property).

   o  Support multiple coordination mechanism types (Plurality
      property).

   o  Enable coordination mechanisms to be plugged in at deploy- and
      run-time (Modularity property).

   o  Determine the most suitable coordination mechanism(s) to apply
      according to contexts (e.g. change in autonomic functions, change
      in intents/goals, change in coordination mechanisms available)
      (Dynamicity property).

   o  Develop a long-term vision of the autonomic functions interactions
      and devise the most suitable plan to address the conflicting
      cases, based on available coordination mechanisms and mission(s)
      set by the intent (Adaptivity property).

   o  Be able to fully or partially suspend/stop one or multiple
      autonomic functions, temporarily or an undetermined amount of time
      until the situation evolves (Authority property).

   o  Be able to operate equally well in a distributed or centralized
      manner (Distributivity property).

   o  Be able to cope with several thousands of simultaneous
      interactions (Performance and scalability property).
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4.  Initial sketch of a Coordination Function

   For the sake of the following sections, this section is providing a
   rough description of the functioning of a coordination function, and
   how it organizes itself along the network time.

4.1.  Preliminary assumptions

   Autonomic functions do exist in different states corresponding to
   different steps in their life-cycle.  The description of some of
   these steps is better understood by referring to the
   High level view of an Autonomic Network which is depicted in Figure 1
   of [I-D.behringer-anima-reference-model], which Figure is copied
   below:

   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   :            :       Autonomic Function 1        :                 :
   : ASA 1      :      ASA 1      :      ASA 1      :          ASA 1  :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
                :                 :                 :
                :   +- - - - - - - - - - - - - - +  :
                :   :   Autonomic Function 2     :  :
                :   :  ASA 2      :      ASA 2   :  :
                :   +- - - - - - - - - - - - - - +  :
                :                 :                 :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   :                Autonomic Networking Infrastructure               :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   +--------+   :    +--------+   :    +--------+   :        +--------+
   | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
   +--------+   :    +--------+   :    +--------+   :        +--------+

             Figure 1: High level view of an Autonomic Network

   Undeployed -   In this state, the Autonomic Function is a mere piece
      of software, which may not even be copied on any node, but which
      may well be the code of the Autonomic Service Agents (ASA)
      corresponding to this Autonomic Function.

   Instantiated/Deployed -   In this state the Autonomic Function is
      deployed, which means the ASA are available in the Nodes and
      gathered together into an Autonomic Function.  In this state the
      autonomic function is bind to a scope which is the part of the
      network on which the autonomic function is meant to perform its
      duties.  As a first approximation, the scope matches the Nodes
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      which receive instructions from one of the ASA gathered in the
      Autonomic Function.

   Running -   In this state, the autonomic function is deployed and is
      executing its closed control loop, hence acting on network, by
      modifying Nodes parameters.

   The above list of states is not meant to be exhaustive, and would be
   better expanded in a document dedicated to Autonomic Functions,
   nevertheless the distinctions between the three above states are
   unavoidable.

4.2.  Algorithms for coordination

   This sub-section does not intend to specify algorithms capable of
   achieving coordination between autonomic functions, but means to
   illustrate different ways of avoiding conflicts, we can briefly list
   the following families of algorithms:

   Random token -   This algorithm is insuring that each autonomic
      function is executing its control-loop the one after the other,
      the sequence is following a random pattern.

   Time separation -   This algorithm is insuring that each autonomic
      function is executing its control-loop at different rates, e.g.
      for 2 functions: one is running fast enough to have time to
      converge in between two iterations of the slower one (this
      algorithm requires proper settings with regards of the autonomic
      functions to coordinate).

   Efficiency bids -   In this algorithm, each autonomic function
      predicts which improvement its executing of its control-loop would
      bring, hence the coordination algorithms, picks the autonomic
      function promising the "best" improvement, and grants it the right
      to execute.

4.3.  Behavior of the coordination function

   This function is expected to steer the network towards a better
   "operating" point, by avoiding/mitigating detrimental interactions
   between Autonomic Functions.

   The first step of such a process is the identification of these
   interactions and their classification in order to determine which
   ones have to be handled (at least the problematic ones i.e.
   conflicting ones).
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   The second step is the gathering of the identified interactions in
   groups that can be handled together while insuring the proper
   behavior of the network.  This step intends to avoid handling all the
   interactions in one raw, but possibly to split the whole problem in
   smaller pieces, easier to handle.

   The third step is the instantiation of coordination mechanisms well
   suited to handle each groups of interactions previously identified.
   Hence these coordination mechanisms would control the autonomic
   functions in order to insure a network behavior matching the intents
   of the network operator.

4.3.1.  Times of the identification of interactions between AF

   As the coordination function handles autonomic functions, its working
   is related to the different states of autonomic functions, namely,
   build-time, deploy-time and run-time.  Hence the coordination
   function also present a life-cycle consisting in these 3 different
   states , in which the coordination function behaves according to the
   following descriptions:

   At build-time, a common description of the autonomic function
   attributes (metrics, parameters, actions, capabilities...) allows to
   construct a "static interaction map" from the a-priori knowledge that
   can be derived/inferred from the functions attributes relationship.
   The static interaction map can be used as a first element by the
   operator (or mechanism) to (pre-)define policies and priorities as
   coordination strategies to manage the a-priori conflicts identified.

   At deploy-time, autonomic functions are deployed on the network (i.e.
   installed, configured, instantiated...) but are not yet active/acting
   on the network.  At this stage, for each instance of the autonomic
   functions and on a per resource basis, an inventory of the metrics
   monitored, of the actions performed and their relationships can be
   realized, resulting in a "dynamic interaction map".  The dynamic
   interaction map provides the basis to identify conflicts that will
   happen at run-time, categorize them and plan for the appropriate
   coordination strategies/mechanisms.

   At run-time, conflicts happens and arbitration is driven by the
   coordination strategies and available mechanisms.  This is also the
   stage where new dependencies can be observed and inferred, ultimately
   resulting in update of the dynamic interaction map and possible
   adaptation of the coordination strategies and mechanisms.
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4.3.2.  Times of the coordination of AF

   TBC

4.4.  Conclusions

   Some of the previous elements impact directly the coordination
   function, some other imply capacities of external elements such as
   Autonomic Functions and the Autonomic Control Plane.  This conclusion
   is briefly categorizing and summarizing those:

   Requirements onto the AF -

         a descriptor of metrics and parameters/actions: a generic way
         of describing the inputs and outputs of the closed control
         loop, in order to identify the interactions.

         a life-cycle: to match the process of the coordination (shortly
         stated, interaction identification and then conflict solving).

         a common command interface of the autonomic functions: for the
         coordination to control the pace at which an autonomic function
         executes its control loop.

   Requirements onto the ACP -

         a common representation of information and knowledge: a
         function used to build the interactions maps.

   Requirements onto the Coordination Function -

         interaction identification: a function in charge of identifying
         interactions

         interaction grouping: a function coping with grouping the
         previously identified interactions, in bundles that can be
         managed independently (for scalability concerns)

         supporting various coordination mechanisms: to have the freedom
         of picking the most appropriate one.

         interaction solving: a function capable of handling an
         independent bundle of interactions by controling the implied
         autonomic functions according to the picked algorithms.
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5.  External Requirements

   At this stage of the document, this section is merely providing a
   structure of its content.

   In order to achieve the aforementioned goals (detailed in section
   Section 3) a Coordination Functional Block should bring the following
   features:

      a common description of autonomic functions attributes and its
      life-cycle.

      a common command interface between the coordination "agent" and
      the autonomic functions.

      a common representation of information and knowledge (cf.
      interaction maps).

   Guidelines, recommendations or BCPs can also be provided for the
   aspects pertaining to the coordination strategies and mechanisms.

   The coordination function requires a certain set of elements to work
   properly such as the autonomic function descriptor and the
   interaction map(s).

5.1.  Autonomic Function Descriptor (AFD)

   The Autonomic Function Descriptor (AFD) should contain the following
   elements:

      actions, metrics, parameters, controlled resources.

5.2.  control/command interface of AF

   The Autonomic Function could be guided in its executing of its
   control-loop by the coordination mechanism.  The guidance could range
   from preventing the executing of the control loop, to letting run on
   its own.  In the middle of the range, coordination mechanism could
   restrain the actions, halt the control-loop at a given state of the
   execution (before enforcement).

   This section can be expanded in conjunction with Section 7.5 of
   [I-D.behringer-anima-reference-model] details more the control loops.
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5.3.  Interaction/Information Maps

   The Autonomic Control Plane(ACP) should be able to provide a view of
   the interactions between metrics in order to build the interaction
   maps.  This functionality is needed to identify that metrics are
   coupled.  E.g. the capacity of a link and its load ratio are
   intimately coupled, and to identify interactions between autonomic
   function, having this knowledge may prove instrumental.

6.  Specifications

   The coordination function can be decomposed in the following sub-
   functions:

      interaction identification: in charge of identifying interactions

      interaction grouping: coping with assigning the interactions to
      instances of cooperation mechanisms

      interaction solving: coping with various algorithms

   TBC.
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Abstract

   This document describes a solution to manage the exchange and
   processing of information and knowledge between autonomic functions.
   The objective is to provide a unified interface to enable an
   interoperable management of information flows among autonomic
   functions by insuring the use common mechanisms.  The protocol
   negotiate and automatically adapt to the communication and
   information capabilities, requirements and constraints of the
   participating entities.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].
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   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
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1.  Introduction

   The ANIMA autonomic management framework addresses the growing
   management complexity of the highly decentralized and dynamic
   environment of service provider networks.  The ANIMA autonomic
   management framework will help to produce the unification,
   governance, and "plug and play" for autonomic networking solutions
   within existing and future management ecosystems.  Three main
   functional blocks namely the Governance, Coordination and Knowledge
   functionalities are essential to ensure a proper management and
   interworking of Autonomic Service Agents (ASAs).  This document
   describes a solution to manage the exchange and processing of
   information and knowledge between autonomic functions.  The objective
   is to provide a unified interface to enable an interoperable
   management of information flows among autonomic functions by insuring
   the use common mechanisms.  The protocol negotiate and automatically
   adapt to the communication and information capabilities, requirements
   and constraints of the participating entities.  The Knowledge
   functionality plays the role of information / knowledge collection,
   aggregation, storage/registry, knowledge production and distribution
   across all the ANIMA functional components (i.e.  ANI and ASAs).
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   The Knowledge block is composed of the following functions:

   o  Information Collection and Dissemination - ICD

   o  Information Storage and Indexing - ISI

   o  Information Processing and Knowledge Production - IPKP

   o  Information Flow Establishment and Optimization - IFEO

   The Knowledge Block offers basic information/knowledge manipulation
   functionalities to the ANIMA entities through the Knowledge Exchange
   Interface.  A second interface, the Knowledge Management Interface,
   handles information flow management that includes configuration
   actions towards the optimal handling of the information/knowledge in
   the management system.

2.  Knowledge Exchange Interface

   An Autonomic Service Agent needs two different types of interfaces to
   deal with the exchange of knowledge.

      Knowledge Exchange Interface: Interfaces through which the
      information are actually exchanged.

      Knowledge Management Interface: Interfaces through which the
      information flows are negotiated, and information capacities are
      being discovered/advertised.  This interface provides
      configuration actions towards the optimal handling of the
      information/knowledge in the ASA.

   The most important concept is the knowledge exchange flow, which is
   being set between two knowledge exchange interfaces.  It is
   determined by the two endpoints of the flow and by the type of
   information that is being conveyed over the flow.  Some additional
   parameters define the way the information are being exchanged (Push
   or Pull mode plus additional parameters to determine the frequency
   and conditions of the actual information exchange).

   The features of the knowledge exchange flow are being negotiated by
   Knowledge Management Interfaces and possibly a third party in charge
   of optimizing the information flows over the whole system.  The
   objective of this negotiation is to determine the characteristics of
   the exchange flow, which will then be enforced between two/multiple
   knowledge exchange interfaces.
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2.1.  Information Collection and Dissemination - ICD

   The Information Collection and Dissemination (ICD) function is
   responsible for information collection, sharing, retrieval and
   dissemination.  The ASAs can act as sources or sinks of information.
   The sources subscribe to the Information Catalog by exposing the type
   of information they can produce.  On the one hand, each information
   source should subscribe information availability and the equivalent
   collection constraints (e.g., the supported granularity of
   collection).  On the other hand, each information sink should
   subscribe information retrieval requirements with a similar process.
   The subscription process takes place during the ASA bootstrapping.
   The matching of constraints with requirements takes place during an
   equivalent negotiation process.

   Information can be directly retrieved from or shared with a dedicated
   Knowledge Sharing system (a sort of ASA which roles is limited to be
   used as a store and sharing entity at the service of other ASAs).  As
   an information collection process is triggered by a component
   requesting the information, a catalog of the available information
   has to be built and kept.  This catalog indexes which ASA can produce
   which information.  Then upon a bootstrapping ASA requesting a given
   information to work, the entity in charge of this catalog would then
   inform requesting ASA of the source ASA.  This process could be
   supported by GRASP discovery mechanism.

   The information collection process may be optimized by the
   Information Flow Establishment and Optimization - IFEO or another
   utility ASA in charge of optimizing the flows.  This ASA acts as the
   third party during the negotiation phase between an information
   source and an information sink.  If many information sink need the
   same information, the negotiation entity, is liable to enforce the
   use of an intermediate Knowledge Sharing system that would collect
   the information from the source before flooding to sinks according to
   their requirements.

   The collected information may either be directed to the Information
   Processing and Knowledge Production function for a further processing
   (e.g., aggregation or knowledge production) and then optionally
   stored/indexed to the Information Storage and Indexing - ISI
   function.  The storage option may be provided or demanded based on
   the nature of the information, ASA demands, optimization goals, etc.
   After this stage, the information or produced knowledge could be
   passed back to the ICD function for dissemination.
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2.2.  Information Storage and Indexing - ISI

   The Information Storage and Indexing (ISI) function is a logical
   construct representing a distributed repository for registering ASAs,
   indexing (and optionally storing) information/knowledge.  The ISI
   function stores information, such as ASA registration information and
   knowledge.  The ISI functionality includes methods and functions for
   keeping track of information sources, including information
   registration and naming, constraints of information sources,
   information directory and indexing.  An important storage aspect,
   which can assist the knowledge production handled by the Information
   Processing and Knowledge Production function, is the inherent support
   of historical capabilities.  For example, an ASA could request
   information and/or knowledge that was stored in the past using an
   appropriate time stamp.  It should be noted that knowledge production
   functionality is not part of the ISI function, but it supports the
   storing of knowledge derived due to some earlier calculations.  The
   ISI optionally stores knowledge produced from the Information
   Processing and Knowledge Production function (for extended-scoped
   knowledge) or Knowledge Building ASAs (for locally-scoped knowledge).
   The different ANIMA entities either requesting or storing information
   to the Knowledge block, do not directly communicate with the ISI.
   The ICD function handles information collection or dissemination
   between the storage points and the ASAs.  Furthermore, ISI supports:
   (i) publish/subscribe information dissemination capabilities, (ii)
   alternative storage structures (i.e., centralized versus distributed
   or hierarchical) and database technologies based on the context, and
   (iii) information and knowledge caching.

2.3.  Information Processing and Knowledge Production - IPKP

   The Information Processing and Knowledge Production function (IPKP)
   is responsible for operations related to information processing
   (i.e., aggregation) and knowledge production.  The IPKP provides to
   ASAs and the ANIMA management functions the necessary tool kit to
   produce different information abstractions, including processed
   information and extended-scoped knowledge.  The Knowledge Production
   (KP) operation handles and produces knowledge that may be extended-
   scoped.  The latter type of knowledge is being produced out of
   aggregated information or locally-scoped knowledge.  Locally-scoped
   knowledge can be built from the Knowledge Building ASAs out of data/
   information directly collected from the managed entities, i.e., its
   scope is limited to those entities.  In all cases of knowledge
   production, reasoning and inference mechanisms are required.  These
   mechanisms are based on different techniques depending on the exact
   problem addressed, the type of inputs used and the type of output
   that needs to be acquired.  Such techniques come from scientific
   areas like statistics, clustering, reasoning, Fuzzy or machine
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   learning (including supervised, unsupervised and reinforcement
   learning techniques).  All the above information (e.g., problem
   addressed, type of inputs / outputs, inference/reasoning mechanisms
   etc) must be described in a proper ontology, ready to be looked up
   from the IPKP function when such a demand appears.  An ASA or ANIMA
   management function that requires the IPKP functionalities requests
   to utilize either an Information Aggregation (IA) or a Knowledge
   Production (KP) operation.  The ICD function handles the
   communication of the ANIMA management component with the internal
   IPKP functionalities and the IPKP controller is responsible to
   control the internal IPKP components.  The two IPKP operations (i.e.,
   information aggregation and knowledge production) require a number of
   basic steps:

      Step 1: Determining the information aggregation or knowledge
      production parameters (e.g., information filtering configuration,
      the inference/reasoning algorithm to use, translation
      requirements, whether aggregation is required and/or information/
      knowledge post-processing requirements).  This process is being
      handled from the IPKP controller, which matches the ANIMA
      component’s requirements and the type of problem to solve with the
      relevant information.  The parameters are being communicated to
      all relevant internal IPKP components.

      Step 2: Collection of input information either from an ANIMA
      component that produces it or from the ISI function (i.e., the
      knowledge storage).  A collection request is being passed back
      from the IPKP controller to the ICD function.

      Step 3: Pre-processing of the input information (e.g., applying
      information filtering) that may be required.  The pre-processing
      requirements are being set from the IPKP controller.

      Step 4: The input information is being passed to the IA operation
      in case of information aggregation, where an aggregation process
      takes place according the requirements (e.g., aggregation function
      used) being set from the IPKP controller.  In case of knowledge
      production, this step may be bypassed or not (i.e., the higher-
      level knowledge production processes may require aggregation
      before the inference/reasoning process).

      Step 5: In case of knowledge production, the input information may
      need to be translated in a convenient representation, e.g., to
      OWL.  The translation configuration is being set from the IPKP
      controller to match the requirements of the inference/reasoning
      mechanism identified from the (TBD) ANIMA ontology.
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      Step 6: The actual inference/reasoning process takes place in this
      step.  The input information (i.e., in an appropriate form) and
      the relevant knowledge production rules are being passed to the
      identified inference/reasoning mechanism.  A rule description
      language that can be used is the Semantic Web Rule Language
      (SWRL).  The output of this process is the produced Knowledge.
      This step may be bypassed, in case of a request for information
      aggregation without knowledge production.

      Step 7: The produced knowledge or aggregated information may need
      a post-processing (e.g., filtering).  This step is optional.

      Step 8: At this stage, the result is being communicated to the ICD
      function, to find its way to the requesting ANIMA component.  The
      produced knowledge or aggregated information can be optionally
      stored in the ISI function so as to be available for ANIMA
      management mechanisms or ASAs when requested/needed.

2.4.  Information Flow Establishment and Optimization - IFEO

   The information flow negotiation and optimization aspects are crucial
   processes overseen from the Information Flow Establishment and
   Optimization (IFEO) function.  The IFEO function, besides organizing
   internal optimization aspects (e.g., setting filtering or information
   accuracy objectives), also regulates the information flow based on
   the current state and the locations of the participating ANIMA
   components (e.g., the ASAs producing or requiring information).  All
   relevant communication between the knowledge functions and the ANIMA
   components takes place through the Knowledge Management interface,
   unless it is otherwise stated.

   For clarity purposes, we define the specifications of the IFEO
   function along with a representative example.  We assume the
   following two ASAs: (a) the Virtual Infrastructure Management (VIM)
   ASA that provides management and control facilities for virtual
   infrastructures, including support of traffic monitoring; and (b) the
   Placement Optimization (PO) ASA that optimizes the data flow over a
   virtual network through adapting the positioning of communicating
   nodes (e.g., data servers) in response to the dynamic network
   conditions.  In this example, the VIM ASA provides traffic monitoring
   information from a particular virtual network to the PO ASA.  The PO
   ASA takes optimization decisions for the network based on this
   information, i.e., repositions communicating nodes in order to
   optimize network communication.  The information flow negotiation and
   optimization processes include a number of basic phases, elaborated
   below:
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      Phase 1 - Registration: In this phase the ASAs, as part of their
      registration process with the knowledge block (i.e., described in
      section 3.6.2), will communicate the following information to the
      knowledge:

         Information they can offer instantly or after an information
         collection process.

         Knowledge they can offer instantly or after a knowledge
         production process.

         Information/knowledge they would require (mandatory or
         optional).

      The above information is embedded in the description of the ASA
      instance description.  In our example, the VIM ASA registers the
      information it can offer (e.g., the topology information and
      measurements on the link loads).  This information can be offered
      instantly (i.e., does not require an information collection
      process to start, since it monitors the network continuously).
      The PO ASA registers the same information type as mandatory
      information required.

      Phase 2 - An ANIMA management function requesting knowledge: In
      this phase a process in an ANIMA management function (like a
      supervision process in management or a knowledge production
      mechanism or a coordination mechanism) demands to register to a
      given piece of information produced by a given ASA.  This
      information is expressed as a information specification.  In that
      case, the Knowledge Management Interface of the requesting entity
      is calling a TBD knowledge method named to request the registered
      information.

      Phase 3 - Information Flow Negotiation: In the third phase, the
      knowledge block through its IFEO function handles a flow
      negotiation process between entities (i.e., ASAs or management
      mechanisms) requiring information and those can provide it.  The
      two entities exchange information flow related parameters with the
      knowledge block, in order to confirm that all information-related
      requirements can be satisfied under the given constraints.  An
      information flow is either established between the two entities
      directly or between an entity and the knowledge block itself, in
      case the requested information is available in the knowledge
      storage.  The negotiation process includes flow-level optimization
      aspects as well.  This phase is composed of the following steps:

         Step 1 - Preselecting the information flow ends: Whenever a ASA
         registers it advertises requested information/knowledge (under
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         a specific format TBD), the knowledge block fetches in its
         indexing storage the appropriate entity (ASA or management
         mechanism) that can produce the requested information/
         knowledge.  It may either select an entity by considering the
         type of information/knowledge required or, in case of
         alternative options, assign the first entity it finds and
         enlist the other potential choices in a queue.  In case the
         required information is in the knowledge storage, an
         information flow is created with the knowledge.  The same
         process happens when a ANIMA management entity requests some
         knowledge, depending on the form of the request (i.e., a
         fetching from the indexing storage may or may not be required):

            ASA information: already specifies which is the Instance ID
            of the ASA producing the information.

            ANIMA information: a fetching from the index table is
            required to pick the appropriate flow ends.

            Management information: then the fetching does not concern
            finding a flow end, but finding all the flow ends matching
            the pattern provided by the management information in order
            to establish as many flows as indexed ANIMA information
            objects inheriting from the management information (this
            corresponds to a supervision mechanism requesting to
            register to ASA utilities, hence a flow for each ASA capable
            of advertising its utility will be created).  Reversely,
            knowledge may have postponed flow establishments of some
            requested information because at the time the request was
            received, no entity producing this information was
            registered.  In that case, knowledge checks with every
            received instance description whether the advertised
            information matches previously unsolved requests.  After
            that, the IFEO proceeds to Step 2.  In the studied example,
            the knowledge block preselects the VIM ASA as information
            source for the PO ASA that acts as the information sink.
            This selection was based on the matching information URIs
            referenced in the registered ANIMA information data
            structures from the two ASAs.

         Step 2 -Communicating the negotiation parameters: in step 2, a
         negotiation process is initiated between the entity requiring
         information/knowledge (i.e., the information sink entity) and
         the selected information source entity.  The negotiation begins
         with the two entities communicating additional negotiation
         parameters to the knowledge block.  Specifically, the
         information sink entity communicates an augmented version of
         the ANIMA information with:
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            -QoS Requirements on the information/knowledge it requires.

            -Preferred information communication method (i.e., either
            push/pull or pub/sub).

            -List of Knowledge Exchange interfaces (addresses) on which
            the information can be received and possibly an internal
            metric regarding the internal costs to use this information
            from each of these interfaces.

            -REST callback functions that may be required at this end of
            communication (e.g., in case of an information subscribe
            method).

         In a similar way, the information source entity communicates
         the following to the knowledge block:

            -QoS Constraints on the information/knowledge it can offer.

            -Supported(and preferred) information communication method
            (i.e., either push/pull or pub/sub).

            -Whether for this requested information/knowledge an
            "information collection/knowledge production" process is
            already activated or needs to be initiated.

            -List of Knowledge Exchange interfaces (addresses) on which
            the information can be provided and possibly an internal
            metric regarding their internal cost to bring this
            information up to the interface.

            -REST Callback functions for the relevant capabilities
            (i.e., triggering functions for information collection or
            knowledge production - if relevant).

         Practically, the knowledge block initiates a new negotiation
         with the execution of the sink and source parameters
         negotiation methods of the Knowledge Management Interface.
         Both methods take as input the specifications of the
         information to be communicated from the established
         communication flow, represented as an ANIMA information data
         structure.  In the reference scenario, the VIM ASA communicates
         to the knowledge: (i) the QoS constraints of the topology and
         link load information it can offer, e.g., monitors information
         once per 10 secs, and (ii) a number of available Knowledge
         Exchange interfaces that can provide the information.  The PO
         ASA communicates to the knowledge: (i) the QoS requirements of
         the required information, e.g., once per 30 secs, and (ii) a
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         number of available Knowledge Exchange interfaces that can
         receive the information.

         Step 3 - Completing the negotiation: The knowledge block
         matches information flow requirements with constraints,
         determines the information flow parameters with flow
         optimization considerations and then issues a Knowledge
         Exchange Policy summarizing an information flow contract to
         both entities. knowledge also stores the Knowledge Exchange
         Policy through the Information Flow Configuration and
         Statistics operation of the IFEO function.  In case of an
         unsuccessful negotiation (i.e., the requirements do not match
         the constraints), it may disengage or trigger a new
         negotiation:

            a) With the same information source entity but lower
            requirements.

            >b) With another information source entity that waits in the
            queue, until the queue is exhausted.

         The Information Exchange Policies for the corresponding flow
         are being produced from the Information Quality Controller
         operation of the IFEO knowledge block function and include:

            -Location/addresses of the participating Knowledge Exchange
            Interfaces in the information flow.

            -Internal knowledge optimization decisions that may impact
            the information flow (e.g., optimal knowledge aggregation/
            storage points), in case the knowledge block is the one end
            of the flow.

            -Addresses of triggering callback functions for knowledge
            production or information collection - if relevant.

   These policies are considering the requirements/constraints of the
   participating entities and the global performance objective coming
   from the operator (e.g. via the ANIMA Intent Policy).  The knowledge
   establishes the information flow using a set flow method of the
   Knowledge Management Interface, that takes as an input the decided
   Information Flow Exchange Policies, represented as a flow data
   structure.

   The decided Information Exchange Policies are being applied to the
   network through the respective ASAs or communicated to the knowledge
   functions they are associated with.  Since the appropriate context
   environment for the new information flow is prepared, a suitable path
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   between the participating nodes is established next.  This process
   considers the locations of the entities producing and requiring
   information and the required knowledge nodes (e.g., aggregation
   points, storage points etc) as well as the potential traffic
   characteristics.  After that, the Knowledge Exchange interface can be
   accessed anytime from the information sink entity to receive the
   needed information/knowledge.  In our reference scenario, the
   knowledge block matches the information flow constraints (e.g.,
   supported monitoring rate) of the VIM ASA with the information flow
   requirements from the PO ASA.  Then it selects the most appropriate
   Knowledge Exchange interfaces to communicate the information from the
   VIM to the PO ASA.  A new information flow contract is established
   and communicated to the two ASAs and stored in the knowledge block.
   The information flow is established and the PO ASA can retrieve the
   required information from the VIM ASA via the appropriate Knowledge
   Exchange interface.  The PO ASA can now begin taking network
   optimization decisions using that information.

   Knowledge-level Optimization: Furthermore, knowledge supports a
   global optimization process that is triggered periodically or when a
   global performance objective change is requested from the GOV.  This
   process takes optimization decisions using the aggregated information
   from the configuration of all established information flows and is
   related with a restructuring of the knowledge functions themselves.
   In other words, global-optimization algorithms may discard or update
   Knowledge Exchange Policies enforced for established information
   flows.  It takes as an input the global picture of all the
   established information flow contacts and provides as an output
   different contracts aligned better to the new updated demands (e.g.,
   a new received global objective).  This process may initiate re-
   negotiations that include requesting again from the entities what
   their requirements and capabilities are.  For example, the
   distributed knowledge nodes may be increased, decreased or
   repositioned in order to accommodate all established information
   flows and the global optimization goal better.  The optimization
   process is triggered by the IFEO function and regulates the
   information flow based on the current state and the locations of the
   participating ANIMA components.  In particular, the IFEO controls
   information collection handled from the ICD function, information
   aggregation, and aggregation node placement.  Furthermore, it guides
   a filtering system for information collection and aggregation points
   that can significantly reduce the communication overhead.
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1.  Introduction

   One of the goals of autonomic networking is to simplify the
   management of networks by human operators.  Intent Based Networking
   (IBN) is a possible approach to realize this goal.  With IBN, the
   operator indicates to the network what to do (i.e. her intent) and
   not how to do it.  In the field of Policy Based Management (PBM), the
   concept of intent is called a declarative policy.  This document
   proposes a refinement of the intent concept initially defined in
   [RFC7575] for autonomic networks by providing a more complete
   definition, a life-cycle, some use cases and a tentative format of
   the ANIMA Intent Policy.

   An Autonomic Network must be able to operate with minimum
   intervention from human operators.  However, it still needs to
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   receive some form of guidance (e.g.  ANIMA Intent Policies) in order
   to fulfill the operator requirements.

   In PBM, the Policy Continuum defines the levels at which the policies
   are defined (policy creation point), consumed (policy execution
   point) and translated (policy interpretation point).  Using PBM, the
   operator can manage the network as a whole, and does not need to
   configure each individual devices in the network.  The transformation
   of the high-level/abstract policies to the low-level device
   configurations is realized automatically by a set of functions
   usually regrouped inside a Policy Engine.

   The use of policies and in particular of declarative policies assumes
   that the entities in the Autonomic Network receiving the ANIMA Intent
   Policy are capable of processing (refining and/or executing) the
   policy with no ambiguity.  For that, the format of the ANIMA Intent
   Policy and the hierarchy of policy levels must be specified.

   This document proposes a base format of the ANIMA Intent Policy.
   Application-specific extensions of the base format should be defined
   on a per need basis in dedicated documents.

2.  Requirements Language and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119] when they appear in ALL CAPS.  When these words are not in
   ALL CAPS (such as "should" or "Should"), they have their usual
   English meanings, and are not to be interpreted as [RFC2119] key
   words.

   Autonomic Function:  A feature or function which requires no
      configuration, and can derive all required information either
      through self-knowledge, discovery or through Intent.

   Autonomic Node:  A node which employs exclusively Autonomic
      Functions.

   Legacy Node:  A non-autonomic node, i.e., a node which employs some
      non-autonomic functions.

   Autonomic Network:  A network containing exclusively Autonomic Nodes.
      It may contain one or several Autonomic Domains.

   Autonomic Domain:  A collection of autonomic nodes that instantiate
      the same Intent.
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   Autonomic Service Agent:  An agent implemented on an Autonomic Node
      which implements an Autonomic Function.

   Intent:  An abstract, high-level policy used to operate the network.

   ANIMA Intent Policy:  A declarative type of policy used in Autonomic
      Networks.

   Configlet:  Intent is interpreted on the Autonomic Node, and the
      results will be interpreted and stored in a local format on the
      Autonomic Node.  This stored version is known as a "configlet".

   NOC:  A network operations center is the location where network
      monitoring and control is exercised.

3.  Concept of ANIMA Intent Policy

   In the scope of autonomic networking, the definition of intent can be
   found in [I-D.ietf-anima-reference-model], in which intent is
   described as "an abstract, declarative, high-level policy used to
   operate an autonomic domain, such as an enterprise network."

   An Autonomic Network will comprise multiple ANIMA Intent Policies.
   Different ANIMA Intent Policies will be "interpreted" by different
   entities in autonomic networks, and the "level" of understanding of
   the intent will impact how the intent will be presented to this
   entity.  So there should be "intermediate" mechanisms/functions that
   cater for the intent translation continuum across the heterogeneity
   (in policy capabilities) of the network entities.  Also, ANIMA Intent
   Policies will possibly overlap and this overlapping should be managed
   (e.g., avoid conflicts, resolve applicable policies in context).

4.  Intent Life Cycle

   This section describes a top-down flow about how an ANIMA Intent
   Policy is derived through an autonomic network.

   1.   Business goals: The network owner wants the network to follow
        some business goals.  These goals are initially not formalised
        in a particular way.  A Domain Specific Language (DSL) is used
        to format these goals in a form subsequent components can
        interpret and process.

   2.   ANIMA Intent Policy (or Intent): Is the formalisation of
        business goals so that computer can deal with them.  It is
        encoded as a file (or several files), and this file must be
        "given to the network".
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   3.   Ingestion: The Intent file(s) get instantiated on an autonomic
        node.  On a particular node, an intent file is "ingested".
        After that, it needs to be distributed.

   4.   Intent Distribution: Intent is flooded to all nodes in a
        network.  Every node has a copy of the original "Intent"
        file(s), without modification.  Each node re-distributes the
        original Intent files, without modification.  Therefore, Intent
        is optional and transitive in nature.  The Intent files must now
        be interpreted by each node.  Editor’s note: need to better
        defined meaning of "optional" and "transitive".

   5.   Intent splitting (on each node): Intent is split into sections,
        one for the ANI itself, others for specific Autonomic Functions.
        ASAs are notified if there is new Intent for them.  Some intent
        sections may not apply to a particular node.  Now each component
        of a node (ANI, all ASAs) know their respective Intent.

   6.   Intent Interpretation (on each node, by each function): The ANI
        as well as all ASAs on a node interpret their respective Intent
        section(s).  It gets translated into a "target configuration",
        taking into account local state.  For this translation, it may
        be necessary for ASAs to communicate with ASAs on other nodes,
        to pass on resources (IP addresses), to negotiate, etc.  All
        such communications may be triggered by Intent, but the
        communications themselves are not Intent.  (NB: This
        interpretation could also be done centrally, and the resulting
        configurations distributed; This is of course an option, but out
        the scope of ANIMA.)  After interpreting Intent locally on each
        node, each node has target configlet to apply.  Editor’s note:
        define new terms such as "configlet"

   7.   Conflict Resolution with non-autonomic management (on each
        node): The target configlet resulting from Intent has the lowest
        priority; meanwhile, any other management method (CLI, NETCONF,
        etc.) overrides Intent.

   8.   Conflict Resolution between autonomic components (on each node):
        Each autonomic function needs to register with a "conflict
        resolution function" which parameters it modifies; in case of
        conflict, the conflict resolution function takes a decision and
        feeds that back to the autonomic functions.  This may modify the
        target configlet.

   9.   Applying the target configlet.

   10.  Feedback loops to NOC: The NOC needs to know about certain
        conditions, such as conflicts with non-autonomic management.
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        Not all conflicts can be resolved automatically, so they may
        require NOC actions.  Undesirable states (deviations from
        expected default behaviour) may have to be communicated too.  To
        some extent, Intent itself can specify which conditions should
        trigger feedback loops to the NOC.  Feedback loops may happen at
        other phases as well (ex: 8).

5.  Use Cases for ANIMA Intent Policy

   In this section, some use cases are introduced to clarify the concept
   of ANIMA Intent Policy.  It should be noted that intent is defined
   per Autonomic Function, and can also be a general one related to
   multiple AFs.

   The first example is about "arranging VM guest distribution".  The
   autonomic network is supposed to be able to monitor the CPU/power
   utilization on each host machine, and control the status of each host
   machine (e.g. turn on/off).  The operator may have an intent "there
   should be enough hosts to keep CPU utilization less than 70%", and
   also another one "there are few enough hosts powered so that
   electricity isn’t wasted".

   These two intents can both influence the ASA responsible for
   controlling how many hosts are needed.  The final decision is made
   according to multiple factors, including network environment and
   intents entered by the operators.

   In this case, the first intent should have a higher priority than the
   later one.  The two intents should be analyzed and coordinated to
   ensure the ASA act rightly.

   Another example is about coordination of "load balancing" intent and
   "energy saving" intent.  Autonomic Network of Operator A is composed
   of Autonomic Function Agents such as load balancing (LB_AFA) and
   energy saving (ES_AFA).  Operator A wants to limit the proportion of
   links loaded over a certain threshold and thus defines an Intent to
   activate load balancing if the load is superior to 0.6 on more than
   30% of the links.

   Meanwhile, operator A wants different load balancing policies per
   (technology, administrative, topology) domain.  Let’s consider a
   metropolitan network domain and a core network domain, or different
   LB policy for border routers than interior routers.  For the
   metropolitan network domain, Operator A defines an Intent to minimize
   the link load variance.  For the core network domain, Operator A
   applies the previously defined intent (activate load balancing if the
   load is superior to 0.6 on more than 30% of the links).
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   The intents will be distributed to the right network domain, and take
   effect after being interpreted and coordinated, and it is easy to
   change them without the need to configure every device manually.

6.  Distribution of ANIMA Intent Policy

   The distribution of intent can be done by using GRASP
   [I-D.ietf-anima-grasp] and ACP
   [I-D.ietf-anima-autonomic-control-plane].  The operator can issue a
   new intent or modify an intent through any authorized nodes in the
   autonomic network.  After that, the intent will be flooded to all the
   nodes in the autonomic network.  Another scenario is that when a new
   node joins into an autonomic domain, it may receive an intent from
   its neighbor.

   For example, GRASP can be used to communicate version number of the
   intent, and meanwhile, a URL where to find it.

   {Editor Notes: other distribution methods are also possible. }

7.  Management of ANIMA Intent Policy

   Every Autonomic Node in the Autonomic domain should own an intent
   with the same version.  Any updating of intent will cause the change
   of the intent version number.  To ensure all the nodes own the same
   intent, the nodes should be able to communicate with neighbors in the
   domain about the version of the intent.  If its neighbor has a newer
   version of intent, it can request an intent update.

   If the operator issues a new intent or modify intents, it will
   trigger a domain level updating of intent.  Nodes in the Autonomic
   Network should be aware which domain it belongs to, and accept intent
   for that domain.

   {Editor Notes: talk about the questions as follows.  When/on which
   triggers are intents generated, updated?  How the domain(s) are
   defined and recognized (if I am an AFA, how do I know I am part of
   domain x, y or z...?). }

8.  Interpretation of ANIMA Intent Policy

   After receiving an intent, the Autonomic Node should confirm whether
   it is acceptable, according to the domain name information, intent
   version, signature, and so on.  If it passes the validation, an
   intent interpretation module will be involved to decide which ASAs
   will be involved in.  Coordination of intents may be needed before
   the execution of the policies interpreted from the intent.
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   {Editor Notes: talk about the questions as follows.  How the AFAs
   receive, understand and react to an intent? }

   {Editor Notes: how the splitting (step 5 in the Life Cycle section)
   happens here can be explained more here.  It would be better that an
   example can be introduced here.}

9.  Uniform Format of the ANIMA Intent Policy

   {Editor Notes: Format of Intent is FFS.  It is suggested to contain
   the following information.}

   This section proposes a uniform intent format.  It uses the tag-based
   format.

   Autonomic intent:  The root tag for the Autonomic Network Intent.

   Intent type:  It indicates the intent type, which is associated with
      a specific Autonomic Function.

   Autonomic domain:  It indicates the domain of the Autonomic Network.
      It is also the scope of the Autonomic Network Intent.

   Intent version:  It indicates the version of the ANIMA Intent Policy.
      This is an important feature for synchronization.

   Model version:  The version of the model used to define the intent.

   Name:  The name of the intent which describes the intent for human
      operators.

   Signature:  The signature is used as a security mechanism to provide
      authentication, integrity, and non-repudiation.

   Timestamp:  The timestamp of the creation of the intent using the
      format supported by the IETF [TBC].

   Lifetime:  The lifetime in which the intent may be observed.  A
      special case of the lifetime is the definition of permanent
      intents.

   Content:  It contains the main information of the intent.  It may
      include objects, policies, goals and configuration data.  The
      detailed contents and formats should be defined under their
      specific situations by documents that specifies the Autonomic
      Service Agent.  Within the content, there may be sub_intents.
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10.  Security Considerations

   Relevant security issues are discussed in [I-D.ietf-anima-grasp].
   The ANIMA Intent Policy requires strong security environment from the
   start, because it would be great risk if the ANIMA Intent Policy had
   been maliciously tampered.  The Autonomic Intent should employ a
   signature scheme to provide authentication, integrity, and non-
   repudiation.

11.  IANA Considerations

   This document defines one new format.  The IANA is requested to
   establish a new assigned list for it.
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Abstract

   Autonomic functions need a control plane to communicate, which
   depends on some addressing and routing.  This Autonomic Management
   and Control Plane should ideally be self-managing, and as independent
   as possible of configuration.  This document defines such a plane and
   calls it the "Autonomic Control Plane", with the primary use as a
   control plane for autonomic functions.  It also serves as a "virtual
   out-of-band channel" for Operations Administration and Management
   (OAM) communications over a network that provides automatically
   configured hop-by-hop authenticated and encrypted communications via
   automatically configured IPv6 even when the network is not
   configured, or misconfigured.
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1.  Introduction (Informative)

   Autonomic Networking is a concept of self-management: Autonomic
   functions self-configure, and negotiate parameters and settings
   across the network.  [RFC7575] defines the fundamental ideas and
   design goals of Autonomic Networking.  A gap analysis of Autonomic
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   Networking is given in [RFC7576].  The reference architecture for
   Autonomic Networking in the IETF is specified in the document
   [I-D.ietf-anima-reference-model].

   Autonomic functions need an autonomically built communications
   infrastructure.  This infrastructure needs to be secure, resilient
   and re-usable by all autonomic functions.  Section 5 of [RFC7575]
   introduces that infrastructure and calls it the Autonomic Control
   Plane (ACP).  More descriptively it would be the "Autonomic
   communications infrastructure for Management and Control".  For
   naming consistency with that prior document, this document continues
   to use the name ACP though.

   Today, the management and control plane of networks typically uses a
   routing and forwarding table which is dependent on correct
   configuration and routing.  Misconfigurations or routing problems can
   disrupt management and control channels.  Traditionally, an out-of-
   band network has been used to avoid or allow recovery from such
   problems, or personnel are sent on site to access devices through
   out-of-band management ports (also called craft ports, serial
   console, management ethernet port).  However, both options are
   expensive.

   In increasingly automated networks either centralized management
   systems or distributed autonomic service agents in the network
   require a control plane which is independent of the configuration of
   the network they manage, to avoid impacting their own operations
   through the configuration actions they take.

   This document describes a modular design for a self-forming, self-
   managing and self-protecting Autonomic Control Plane (ACP), which is
   a virtual in-band network designed to be as independent as possible
   of configuration, addressing and routing problems.  The details how
   this is achieved are described in Section 6.  The ACP is designed to
   remain operational even in the presence of configuration errors,
   addressing or routing issues, or where policy could inadvertently
   affect connectivity of both data packets or control packets.

   This document uses the term "Data-Plane" to refer to anything in the
   network nodes that is not the ACP, and therefore considered to be
   dependent on (mis-)configuration.  This Data-Plane includes both the
   traditional forwarding-plane, as well as any pre-existing control-
   plane, such as routing protocols that establish routing tables for
   the forwarding plane.

   The Autonomic Control Plane serves several purposes at the same time:
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   1.  Autonomic functions communicate over the ACP.  The ACP therefore
       directly supports Autonomic Networking functions, as described in
       [I-D.ietf-anima-reference-model].  For example, Generic Autonomic
       Signaling Protocol (GRASP - [I-D.ietf-anima-grasp]) runs securely
       inside the ACP and depends on the ACP as its "security and
       transport substrate".

   2.  A controller or network management system can use it to securely
       bootstrap network devices in remote locations, even if the (Data-
       Plane) network in between is not yet configured; no Data-Plane
       dependent bootstrap configuration is required.  An example of
       such a secure bootstrap process is described in
       [I-D.ietf-anima-bootstrapping-keyinfra].

   3.  An operator can use it to log into remote devices, even if the
       network is misconfigured or not configured.

   This document describes these purposes as use cases for the ACP in
   Section 3, it defines the requirements in Section 4.  Section 5 gives
   an overview how the ACP is constructed.

   The normative part of this document starts with Section 6, where the
   ACP is specified.  Section 7 defines normative how to support ACP on
   L2 switches.  Section 8 explains normative how non-ACP nodes and
   networks can be integrated.

   The remaining sections are non-normative: Section 9 reviews benefits
   of the ACP (after all the details have been defined), Section 10
   provides operational recommendations, Appendix A provides additional
   explanations and describes additional details or future standard or
   propriety extensions that were considered not to be appropriate for
   standardization in this document but were considered important to
   document.  There are no dependencies against Appendix A to build a
   complete working and interoperable ACP according to this document.

   The ACP provides secure IPv6 connectivity, therefore it can be used
   not only as the secure connectivity for self-management as required
   for the ACP in [RFC7575], but it can also be used as the secure
   connectivity for traditional (centralized) management.  The ACP can
   be implemented and operated without any other components of autonomic
   networks, except for the GRASP protocol.  ACP relies on per-link DULL
   GRASP (see Section 6.3) to autodiscover ACP neighbors, and includes
   the ACP GRASP instance to provide service discovery for clients of
   the ACP (see Section 6.8) including for its own maintenance of ACP
   certificates.

   The document "Using Autonomic Control Plane for Stable Connectivity
   of Network OAM" [RFC8368] describes how the ACP alone can be used to
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   provide secure and stable connectivity for autonomic and non-
   autonomic Operations Administration and Management (OAM)
   applications.  That document also explains how existing management
   solutions can leverage the ACP in parallel with traditional
   management models, when to use the ACP and how to integrate with
   potentially IPv4 only OAM backends.

   Combining ACP with Bootstrapping Remote Secure Key Infrastructures
   (BRSKI), see [I-D.ietf-anima-bootstrapping-keyinfra]) results in the
   "Autonomic Network Infrastructure" as defined in
   [I-D.ietf-anima-reference-model], which provides autonomic
   connectivity (from ACP) with fully secure zero-touch (automated)
   bootstrap from BRSKI.  The ANI itself does not constitute an
   Autonomic Network, but it allows the building of more or less
   autonomic networks on top of it - using either centralized, Software
   Defined Networking- (SDN-)style (see [RFC7426]) automation or
   distributed automation via Autonomic Service Agents (ASA) / Autonomic
   Functions (AF) - or a mixture of both.  See
   [I-D.ietf-anima-reference-model] for more information.

1.1.  Applicability and Scope

   Please see the following Terminology section (Section 2) for
   explanations of terms used in this section.

   The design of the ACP as defined in this document is considered to be
   applicable to all types of "professionally managed" networks: Service
   Provider, Local Area Network (LAN), Metro(politan networks), Wide
   Area Network (WAN), Enterprise Information Technology (IT) and
   ->"Operational Technology" () (OT) networks.  The ACP can operate
   equally on layer 3 equipment and on layer 2 equipment such as bridges
   (see Section 7).  The hop-by-hop authentication and confidentiality
   mechanism used by the ACP is defined to be negotiable, therefore it
   can be extended to environments with different protocol preferences.
   The minimum implementation requirements in this document attempt to
   achieve maximum interoperability by requiring support for multiple
   options depending on the type of device: IPsec, see [RFC4301], and
   datagram Transport Layer Security version 1.2 (DTLS), see [RFC6347]).

   The implementation footprint of the ACP consists of Public Key
   Infrastructure (PKI) code for the ACP certificate, the GRASP
   protocol, UDP, TCP and TLS (for security and reliability of GRASP),
   the ACP secure channel protocol used (such as IPsec or DTLS), and an
   instance of IPv6 packet forwarding and routing via the Routing
   Protocol for Low-power and Lossy Networks (RPL), see [RFC6550], that
   is separate from routing and forwarding for the Data-Plane (user
   traffic).
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   The ACP uses only IPv6 to avoid complexity of dual-stack ACP
   operations (IPv6/IPv4).  Nevertheless, it can without any changes be
   integrated into even otherwise IPv4-only network devices.  The Data-
   Plane itself would not need to change, it could continue to be IPv4
   only.  For such IPv4 only devices, the IPv6 protocol itself would be
   additional implementation footprint only used for the ACP.

   The protocol choices of the ACP are primarily based on wide use and
   support in networks and devices, well understood security properties
   and required scalability.  The ACP design is an attempt to produce
   the lowest risk combination of existing technologies and protocols to
   build a widely applicable operational network management solution:

   RPL was chosen because it requires a smaller routing table footprint
   in large networks compared to other routing protocols with an
   autonomically configured single area.  The deployment experience of
   large scale Internet of Things (IoT) networks serves as the basis for
   wide deployment experience with RPL.  The profile chosen for RPL in
   the ACP does not leverage any RPL specific forwarding plane features
   (IPv6 extension headers), making its implementation a pure control
   plane software requirement.

   GRASP is the only completely novel protocol used in the ACP, and this
   choice was necessary because there is no existing suitable protocol
   to provide the necessary functions to the ACP, so GRASP was developed
   to fill that gap.

   The ACP design can be applicable to (cpu, memory) constrained devices
   and (bitrate, reliability) constrained networks, but this document
   does not attempt to define the most constrained type of devices or
   networks to which the ACP is applicable.  RPL and DTLS for ACP secure
   channels are two protocol choices already making ACP more applicable
   to constrained environments.  Support for constrained devices in this
   specification is opportunistic, but not complete, because the
   reliable transport for GRASP (see Section 6.8.2) only specifies TCP/
   TLS).  See Appendix A.9 for discussions about how future standards or
   proprietary extensions/variations of the ACP could better meet
   different expectations from those on which the current design is
   based including supporting constrained devices better.

2.  Acronyms and Terminology (Informative)

   [RFC Editor: WG/IETF/IESG review of the terms below asked for
   references between these terms when they refer to each other.  The
   only option I could fin RFC/XML to point to a hanging text acronym
   definition that also displays the actual term is the format="title"
   version, which leads to references such as ’->"ACP domain
   certificate" ()’.  I found no reasonable way to eliminate the
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   trailing ’()’ generated by this type of cross references.  Can you
   please take care of removing these artefacts during editing (after
   conversion to nroff ?).  I also created a ticket to ask for an
   xml2rfc enhancement to avoid this in the future:
   https://trac.tools.ietf.org/tools/xml2rfc/trac/ticket/347.

   [RFC Editor: Question: Is it possible to change the first occurrences
   of [RFCxxxx] references to "rfcxxx title" [RFCxxxx]? the XML2RFC
   format does not seem to offer such a format, but I did not want to
   duplicate 50 first references - one reference for title mentioning
   and one for RFC number.]

   In the rest of the document we will refer to systems using the ACP as
   "nodes".  Typically such a node is a physical (network equipment)
   device, but it can equally be some virtualized system.  Therefore, we
   do not refer to them as devices unless the context specifically calls
   for a physical system.

   This document introduces or uses the following terms (sorted
   alphabetically).  Terms introduced are explained on first use, so
   this list is for reference only.

   ACP:  "Autonomic Control Plane".  The Autonomic Function as defined
      in this document.  It provides secure zero-touch (automated)
      transitive (network wide) IPv6 connectivity for all nodes in the
      same ACP domain as well as a GRASP instance running across this
      ACP IPv6 connectivity.  The ACP is primarily meant to be used as a
      component of the ANI to enable Autonomic Networks but it can
      equally be used in simple ANI networks (with no other Autonomic
      Functions) or completely by itself.

   ACP address:  An IPv6 address assigned to the ACP node.  It is stored
      in the domain information field of the ->"ACP domain certificate"
      ().

   ACP address range/set:  The ACP address may imply a range or set of
      addresses that the node can assign for different purposes.  This
      address range/set is derived by the node from the format of the
      ACP address called the "addressing sub-scheme".

   ACP connect interface:  An interface on an ACP node providing access
      to the ACP for non ACP capable nodes without using an ACP secure
      channel.  See Section 8.1.1.

   ACP domain:  The ACP domain is the set of nodes with ->"ACP domain
      certificates" that allow them to authenticate each other as
      members of the ACP domain.  See also Section 6.1.2.
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   ACP (ANI/AN) Domain Certificate:  A provisioned [RFC5280] certificate
      (LDevID) carrying the domain information field which is used by
      the ACP to learn its address in the ACP and to derive and
      cryptographically assert its membership in the ACP domain.

   domain information (field):  An rfc822Name information element (e.g.,
      field) in the domain certificate in which the ACP relevant
      information is encoded: the domain name and the ACP address.

   ACP Loopback interface:  The Loopback interface in the ACP Virtual
      Routing and Forwarding (VRF) that has the ACP address assigned to
      it.

   ACP network:  The ACP network constitutes all the nodes that have
      access to the ACP.  It is the set of active and transitively
      connected nodes of an ACP domain plus all nodes that get access to
      the ACP of that domain via ACP edge nodes.

   ACP (ULA) prefix(es):  The /48 IPv6 address prefixes used across the
      ACP.  In the normal/simple case, the ACP has one ULA prefix, see
      Section 6.10.  The ACP routing table may include multiple ULA
      prefixes if the "rsub" option is used to create addresses from
      more than one ULA prefix.  See Section 6.1.1.  The ACP may also
      include non-ULA prefixes if those are configured on ACP connect
      interfaces.  See Section 8.1.1.

   ACP secure channel:  A cryptographically authenticated and encrypted
      data connection established between (normally) adjacent ACP nodes
      to carry traffic of the ACP VRF secure and isolated from Data-
      Plane traffic in-band over the same link/path as the Data-Plane.

   ACP secure channel protocol:  The protocol used to build an ACP
      secure channel, e.g., Internet Key Exchange Protocol version 2
      (IKEv2) with IPsec or Datagram Transport Layer Security (DTLS).

   ACP virtual interface:  An interface in the ACP VRF mapped to one or
      more ACP secure channels.  See Section 6.12.5.

   AN "Autonomic Network": A network according to
      [I-D.ietf-anima-reference-model].  Its main components are ANI,
      Autonomic Functions and Intent.

   (AN) Domain Name:  An FQDN (Fully Qualified Domain Name) in the
      domain information field of the Domain Certificate.  See
      Section 6.1.1.

   ANI (nodes/network):  "Autonomic Network Infrastructure".  The ANI is
      the infrastructure to enable Autonomic Networks.  It includes ACP,

Eckert, et al.         Expires September 12, 2019              [Page 11]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

      BRSKI and GRASP.  Every Autonomic Network includes the ANI, but
      not every ANI network needs to include autonomic functions beyond
      the ANI (nor Intent).  An ANI network without further autonomic
      functions can for example support secure zero-touch (automated)
      bootstrap and stable connectivity for SDN networks - see
      [RFC8368].

   ANIMA:  "Autonomic Networking Integrated Model and Approach".  ACP,
      BRSKI and GRASP are products of the IETF ANIMA working group.

   ASA:  "Autonomic Service Agent".  Autonomic software modules running
      on an ANI device.  The components making up the ANI (BRSKI, ACP,
      GRASP) are also described as ASAs.

   Autonomic Function:  A function/service in an Autonomic Network (AN)
      composed of one or more ASA across one or more ANI nodes.

   BRSKI:  "Bootstrapping Remote Secure Key Infrastructures"
      ([I-D.ietf-anima-bootstrapping-keyinfra].  A protocol extending
      EST to enable secure zero-touch bootstrap in conjunction with ACP.
      ANI nodes use ACP, BRSKI and GRASP.

   Data-Plane:  The counterpoint to the ACP VRF in an ACP node: all
      routing and forwarding in the node other than the ACP VRF.  In a
      simple ACP or ANI node, the Data-Plane is typically provisioned by
      means other than autonomically, for example manually (including
      across the ACP) or via SDN controllers.  In a fully Autonomic
      Network node, the Data-Plane is managed autonomically via
      Autonomic Functions and Intent.  Note that other (non-ANIMA) RFCs
      use the Data-Plane to refer to what is better called the
      forwarding plane.  This is not the way the term is used in this
      document!

   device:  A physical system, or physical node.

   Enrollment:  The process where a node presents identification (for
      example through keying material such as the private key of an
      IDevID) to a network and acquires a network specific identity and
      trust anchor such as an LDevID.

   EST:  "Enrollment over Secure Transport" ([RFC7030]).  IETF standard-
      track protocol for enrollment of a node with an LDevID.  BRSKI is
      based on EST.

   GRASP:  "Generic Autonomic Signaling Protocol".  An extensible
      signaling protocol required by the ACP for ACP neighbor discovery.
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      The ACP also provides the "security and transport substrate" for
      the "ACP instance of GRASP".  This instance of GRASP runs across
      the ACP secure channels to support BRSKI and other NOC/OAM or
      Autonomic Functions.  See [I-D.ietf-anima-grasp].

   IDevID:  An "Initial Device IDentity" X.509 certificate installed by
      the vendor on new equipment.  Contains information that
      establishes the identity of the node in the context of its vendor/
      manufacturer such as device model/type and serial number.  See
      [AR8021].  IDevID cannot be used for the ACP because they are not
      provisioned by the owner of the network, so they can not directly
      indicate an ACP domain they belong to.

   in-band (management):  The type of management used predominantly in
      IP based networks, not leveraging an ->"out-of-band network" ().
      In in-band management, access to the managed equipment depends on
      the configuration of this equipment itself: interface, addressing,
      forwarding, routing, policy, security, management.  This
      dependency makes in-band management fragile because the
      configuration actions performed may break in-band management
      connectivity.  Breakage can not only be unintentional, it can
      simply be an unavoidable side effect of being unable to create
      configuration schemes where in-band management connectivity
      configuration is unaffected by Data-Plane configuration.  See also
      ->"(virtual) out-of-band network" ().

   Intent:  Policy language of an autonomic network according to
      [I-D.ietf-anima-reference-model].

   Loopback interface:  The conventional name for an internal IP
      interface to which addresses may be assigned, but which transmits
      no external traffic.

   LDevID:  A "Local Device IDentity" is an X.509 certificate installed
      during "enrollment".  The Domain Certificate used by the ACP is an
      LDevID.  See [AR8021].

   MIC:  "Manufacturer Installed Certificate".  Another word not used in
      this document to describe an IDevID.

   native interface:  Interfaces existing on a node without
      configuration of the already running node.  On physical nodes
      these are usually physical interfaces.  On virtual nodes their
      equivalent.

   node:  A system, e.g., supporting the ACP according to this document.
      Can be virtual or physical.  Physical nodes are called devices.
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   Node-ID:  The identifier of an ACP node inside that ACP.  It is the
      last 64 (see Section 6.10.3) or 78-bits (see Section 6.10.5) of
      the ACP address.

   Operational Technology (OT):  "https://en.wikipedia.org/wiki/
      Operational_Technology" [1]: "The hardware and software dedicated
      to detecting or causing changes in physical processes through
      direct monitoring and/or control of physical devices such as
      valves, pumps, etc.".  OT networks are today in most cases well
      separated from Information Technology (IT) networks.

   (virtual) out-of-band network:  An out-of-band network is a secondary
      network used to manage a primary network.  The equipment of the
      primary network is connected to the out-of-band network via
      dedicated management ports on the primary network equipment.
      Serial (console) management ports were historically most common,
      higher end network equipment now also has ethernet ports dedicated
      only for management.  An out-of-band network provides management
      access to the primary network independent of the configuration
      state of the primary network.  One of the goals of the ACP is to
      provide this benefit of out-of-band networks virtually on the
      primary network equipment.  The ACP VRF acts as a virtual out of
      band network device providing configuration independent management
      access.  The ACP secure channels are the virtual links of the ACP
      virtual out-of-band network, meant to be operating independent of
      the configuration of the primary network.  See also ->"in-band
      (management)" ().

   RPL:  "IPv6 Routing Protocol for Low-Power and Lossy Networks".  The
      routing protocol used in the ACP.  See [RFC6550].

   MASA (service):  "Manufacturer Authorized Signing Authority".  A
      vendor/manufacturer or delegated cloud service on the Internet
      used as part of the BRSKI protocol.

   (ACP/ANI/BRSKI) Registrar:  An ACP registrar is an entity (software
      and/or person) that is orchestrating the enrollment of ACP nodes
      with the ACP domain certificate.  ANI nodes use BRSKI, so ANI
      registrars are also called BRSKI registrars.  For non-ANI ACP
      nodes, the registrar mechanisms are undefined by this document.
      See Section 6.10.7.  Renewal and other maintenance (such as
      revocation) of ACP domain certificates may be performed by other
      entities than registrars.  EST must be supported for ACP domain
      certificate renewal (see Section 6.1.4).  BRSKI is an extension of
      EST, so ANI/BRSKI registrars can easily support ACP domain
      certificate renewal in addition to initial enrollment.
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   sUDI:  "secured Unique Device Identifier".  Another term not used in
      this document to refer to an IDevID.

   UDI:  "Unique Device Identifier".  In the context of this document
      unsecured identity information of a node typically consisting of
      at least device model/type and serial number, often in a vendor
      specific format.  See sUDI and LDevID.

   ULA: (Global ID prefix)  A "Unique Local Address" (ULA) is an IPv6
      address in the block fc00::/7, defined in [RFC4193].  It is the
      approximate IPv6 counterpart of the IPv4 private address
      ([RFC1918]).  The ULA Global ID prefix are the first 48-bits of a
      ULA address.  In this document it is abbreviated as "ULA prefix".

   (ACP) VRF:  The ACP is modeled in this document as a "Virtual Routing
      and Forwarding" instance (VRF).  This means that it is based on a
      "virtual router" consisting of a separate IPv6 forwarding table to
      which the ACP virtual interfaces are attached and an associated
      IPv6 routing table separate from the Data-Plane.  Unlike the VRFs
      on MPLS/VPN-PE ([RFC4364]) or LISP XTR ([RFC6830]), the ACP VRF
      does not have any special "core facing" functionality or routing/
      mapping protocols shared across multiple VRFs.  In vendor products
      a VRF such as the ACP-VRF may also be referred to as a so called
      VRF-lite.

   (ACP) Zone:  An ACP zone is a set of ACP nodes using the same zone
      field value in their ACP address according to Section 6.10.3.
      Zones are a mechanism to support structured addressing of ACP
      addresses within the same /48-bit ULA prefix.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119],[RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Use Cases for an Autonomic Control Plane (Informative)

3.1.  An Infrastructure for Autonomic Functions

   Autonomic Functions need a stable infrastructure to run on, and all
   autonomic functions should use the same infrastructure to minimize
   the complexity of the network.  In this way, there is only need for a
   single discovery mechanism, a single security mechanism, and single
   instances of other processes that distributed functions require.
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3.2.  Secure Bootstrap over a not configured Network

   Today, bootstrapping a new node typically requires all nodes between
   a controlling node such as an SDN controller ("Software Defined
   Networking", see [RFC7426]) and the new node to be completely and
   correctly addressed, configured and secured.  Bootstrapping and
   configuration of a network happens in rings around the controller -
   configuring each ring of devices before the next one can be
   bootstrapped.  Without console access (for example through an out-of-
   band network) it is not possible today to make devices securely
   reachable before having configured the entire network leading up to
   them.

   With the ACP, secure bootstrap of new devices and whole new networks
   can happen without requiring any configuration of unconfigured
   devices along the path: As long as all devices along the path support
   ACP and a zero-touch bootstrap mechanism such as BRSKI, the ACP
   across a whole network of unconfigured devices can be brought up
   without operator/provisioning intervention.  The ACP also provides
   additional security for any bootstrap mechanism, because it can
   provide encrypted discovery (via ACP GRASP) of registrars or other
   bootstrap servers by bootstrap proxies connecting to nodes that are
   to be bootstrapped and the ACP encryption hides the identities of the
   communicating entities (pledge and registrar), making it more
   difficult to learn which network node might be attackable.  The ACP
   domain certificate can also be used to end-to-end encrypt the
   bootstrap communication between such proxies and server.  Note that
   bootstrapping here includes not only the first step that can be
   provided by BRSKI (secure keys), but also later stages where
   configuration is bootstrapped.

3.3.  Data-Plane Independent Permanent Reachability

   Today, most critical control plane protocols and network management
   protocols are using the Data-Plane of the network.  This leads to
   often undesirable dependencies between control and management plane
   on one side and the Data-Plane on the other: Only if the forwarding
   and control plane of the Data-Plane are configured correctly, will
   the Data-Plane and the management plane work as expected.

   Data-Plane connectivity can be affected by errors and faults, for
   example misconfigurations that make AAA (Authentication,
   Authorization and Accounting) servers unreachable or can lock an
   administrator out of a device; routing or addressing issues can make
   a device unreachable; shutting down interfaces over which a current
   management session is running can lock an admin irreversibly out of
   the device.  Traditionally only out-of-band access can help recover
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   from such issues (such as serial console or ethernet management
   port).

   Data-Plane dependencies also affect applications in a Network
   Operations Center (NOC) such as SDN controller applications: Certain
   network changes are today hard to implement, because the change
   itself may affect reachability of the devices.  Examples are address
   or mask changes, routing changes, or security policies.  Today such
   changes require precise hop-by-hop planning.

   Note that specific control plane functions for the Data-Plane often
   want to depend on forwarding of their packets via the Data-Plane:
   Aliveness and routing protocol signaling packets across the Data-
   Plane to verify reachability across the Data-Plane, using IPv4
   signaling packets for IPv4 routing vs. IPv6 signaling packets for
   IPv6 routing.

   Assuming appropriate implementation (see Section 6.12.2 for more
   details), the ACP provides reachability that is independent of the
   Data-Plane.  This allows the control plane and management plane to
   operate more robustly:

   o  For management plane protocols, the ACP provides the functionality
      of a Virtual out-of-band (VooB) channel, by providing connectivity
      to all nodes regardless of their Data-Plane configuration, routing
      and forwarding tables.

   o  For control plane protocols, the ACP allows their operation even
      when the Data-Plane is temporarily faulty, or during transitional
      events, such as routing changes, which may affect the control
      plane at least temporarily.  This is specifically important for
      autonomic service agents, which could affect Data-Plane
      connectivity.

   The document "Using Autonomic Control Plane for Stable Connectivity
   of Network OAM" [RFC8368] explains this use case for the ACP in
   significantly more detail and explains how the ACP can be used in
   practical network operations.

4.  Requirements (Informative)

   The following requirements were identified for the design of the ACP
   based on the above use-cases (Section 3).  These requirements are
   informative.  The ACP as specified in the normative parts of this
   document is meeting or exceeding these use-case requirements:

   ACP1:  The ACP should provide robust connectivity: As far as
          possible, it should be independent of configured addressing,
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          configuration and routing.  Requirements 2 and 3 build on this
          requirement, but also have value on their own.

   ACP2:  The ACP must have a separate address space from the Data-
          Plane.  Reason: traceability, debug-ability, separation from
          Data-Plane, infrastructure security (filtering based on known
          address space).

   ACP3:  The ACP must use autonomically managed address space.  Reason:
          easy bootstrap and setup ("autonomic"); robustness (admin
          cannot break network easily).  This document suggests using
          ULA addressing for this purpose ("Unique Local Address", see
          [RFC4193]).

   ACP4:  The ACP must be generic, that is it must be usable by all the
          functions and protocols of the ANI.  Clients of the ACP must
          not be tied to a particular application or transport protocol.

   ACP5:  The ACP must provide security: Messages coming through the ACP
          must be authenticated to be from a trusted node, and should
          (very strong should) be encrypted.

   Explanation for ACP4: In a fully autonomic network (AN), newly
   written ASA could potentially all communicate exclusively via GRASP
   with each other, and if that was assumed to be the only requirement
   against the ACP, it would not need to provide IPv6 layer connectivity
   between nodes, but only GRASP connectivity.  Nevertheless, because
   ACP also intends to support non-AN networks, it is crucial to support
   IPv6 layer connectivity across the ACP to support any transport and
   application layer protocols.

   The ACP operates hop-by-hop, because this interaction can be built on
   IPv6 link local addressing, which is autonomic, and has no dependency
   on configuration (requirement 1).  It may be necessary to have ACP
   connectivity across non-ACP nodes, for example to link ACP nodes over
   the general Internet.  This is possible, but introduces a dependency
   against stable/resilient routing over the non-ACP hops (see
   Section 8.2).

5.  Overview (Informative)

   The Autonomic Control Plane is constructed in the following way (for
   details, see Section 6):

   1.  An ACP node creates a Virtual Routing and Forwarding (VRF)
       instance, or a similar virtual context.
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   2.  It determines, following a policy, a candidate peer list.  This
       is the list of nodes to which it should establish an Autonomic
       Control Plane.  Default policy is: To all link-layer adjacent
       nodes supporting ACP.

   3.  For each node in the candidate peer list, it authenticates that
       node (according to Section 6.1.2) and negotiates a mutually
       acceptable channel type.

   4.  For each node in the candidate peer list, it then establishes a
       secure tunnel of the negotiated type.  The resulting tunnels are
       then placed into the previously set up VRF.  This creates an
       overlay network with hop-by-hop tunnels.

   5.  Inside the ACP VRF, each node assigns its ULA IPv6 address to a
       Loopback interface assigned to the ACP VRF.

   6.  Each node runs a lightweight routing protocol, to announce
       reachability of the virtual addresses inside the ACP (see
       Section 6.12.5).

   Note:

   o  Non-autonomic NMS ("Network Management Systems") or SDN
      controllers have to be explicitly configured for connection into
      the ACP.

   o  Connecting over non-ACP Layer-3 clouds requires explicit
      configuration.  See Section 8.2.

   o  None of the above operations (except explicit configured ones) are
      reflected in the configuration of the node.

   The following figure illustrates the ACP.
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             ACP node 1                          ACP node 2
          ...................               ...................
   secure .                 .   secure      .                 .  secure
   channel:  +-----------+  :   channel     :  +-----------+  : channel
   ..--------| ACP VRF   |---------------------| ACP VRF   |---------..
          : / \         / \   <--routing-->   / \         / \ :
          : \ /         \ /                   \ /         \ / :
   ..--------| Loopback  |---------------------| Loopback  |---------..
          :  | interface |  :               :  | interface |  :
          :  +-----------+  :               :  +-----------+  :
          :                 :               :                 :
          :   Data-Plane    :...............:   Data-Plane    :
          :                 :    link       :                 :
          :.................:               :.................:

                   Figure 1: ACP VRF and secure channels

   The resulting overlay network is normally based exclusively on hop-
   by-hop tunnels.  This is because addressing used on links is IPv6
   link local addressing, which does not require any prior set-up.  In
   this way the ACP can be built even if there is no configuration on
   the node, or if the Data-Plane has issues such as addressing or
   routing problems.

6.  Self-Creation of an Autonomic Control Plane (ACP) (Normative)

   This section describes the components and steps to set up an
   Autonomic Control Plane (ACP), and highlights the key properties
   which make it "indestructible" against many inadvertent changes to
   the Data-Plane, for example caused by misconfigurations.

   An ACP node can be a router, switch, controller, NMS host, or any
   other IP capable node.  Initially, it must have it’s ACP domain
   certificate, as well as an (empty) ACP Adjacency Table (described in
   Section 6.2).  It then can start to discover ACP neighbors and build
   the ACP.  This is described step by step in the following sections:

6.1.  ACP Domain, Certificate and Network

   The ACP relies on group security.  An ACP domain is a group of nodes
   that trust each other to participate in ACP operations.  To establish
   trust, each ACP member requires keying material: An ACP node MUST
   have a certificate (LDevID) and a Trust Anchor (TA) consisting of a
   certificate (chain) used to sign the LDevID of all ACP domain
   members.  The LDevID is used to cryptographically authenticate the
   membership of its owner node in the ACP domain to other ACP domain
   members, the TA is used to authenticate the ACP domain membership of
   other nodes (see Section 6.1.2).
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   The LDevID is called the ACP domain certificate, the TA is the
   Certificate Authority (CA) of the ACP domain.

   The ACP does not mandate specific mechanisms by which this keying
   material is provisioned into the ACP node, it only requires the
   Domain information field as specified in Section 6.1.1 in its domain
   certificate as well as those of candidate ACP peers.  See
   Appendix A.2 for more information about enrollment or provisioning
   options.

   This document uses the term ACP in many places where the Autonomic
   Networking reference documents [RFC7575] and
   [I-D.ietf-anima-reference-model] use the word autonomic.  This is
   done because those reference documents consider (only) fully
   autonomic networks and nodes, but support of ACP does not require
   support for other components of autonomic networks.  Therefore the
   word autonomic might be misleading to operators interested in only
   the ACP.

   [RFC7575] defines the term "Autonomic Domain" as a collection of
   autonomic nodes.  ACP nodes do not need to be fully autonomic, but
   when they are, then the ACP domain is an autonomic domain.  Likewise,
   [I-D.ietf-anima-reference-model] defines the term "Domain
   Certificate" as the certificate used in an autonomic domain.  The ACP
   domain certificate is that domain certificate when ACP nodes are
   (fully) autonomic nodes.  Finally, this document uses the term ACP
   network to refer to the network created by active ACP nodes in an ACP
   domain.  The ACP network itself can extend beyond ACP nodes through
   the mechanisms described in Section 8.1.

   The ACP domain certificate SHOULD be used for any authentication
   between nodes with ACP domain certificates (ACP nodes and NOC nodes)
   where the required condition is ACP domain membership, such as ACP
   node to NOC/OAM end-to-end security and ASA to ASA end-to-end
   security.  Section 6.1.2 defines this "ACP domain membership check".
   The uses of this check that are standardized in this document are for
   the establishment of ACP secure channels (Section 6.6) and for ACP
   GRASP (Section 6.8.2).

6.1.1.  Certificate ACP Domain Information Field

   Information about the domain MUST be encoded in the domain
   certificate in a subjectAltName / rfc822Name field according to the
   following ABNF definition ([RFC5234]):

   [RFC Editor: Please substitute SELF in all occurrences of rfcSELF in
   this document with the RFC number assigned to this document and
   remove this comment line]
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     domain-information = local-part "@" acp-domain-name
     local-part = key [ "." local-info ]
     key = "rfcSELF"
     local-info = [ acp-address ] [ "+" rsub extensions ]
     acp-address = 32hex-dig | 0
     hex-dig = DIGIT / "a" / "b" / "c" / "d" / "e" / "f"
     rsub = [ <subdomain> ] ; <subdomain> as of RFC1034, section 3.5
     routing-subdomain = [ rsub "." ] acp-domain-name
     acp-domain-name = ; <domain> ; as of RFC 1034, section 3.5
     extensions = *( "+" extension )
     extension = ; future standard definition.
                 ; Must fit RFC5322 simple dot-atom format.

     Example:
     domain-information = rfcSELF+fd89b714f3db00000200000064000000
                          +area51.research@acp.example.com
     acp-domain-name    = acp.example.com
     routing-subdomain  = area51.research.acp.example.com

                Figure 2: ACP Domain Information Field ABNF

   Nodes complying with this specification MUST be able to receive their
   ACP address through the domain certificate, in which case their own
   ACP domain certificate MUST have the 32hex-dig "acp-address" field.
   Nodes complying with this specification MUST also be able to
   authenticate nodes as ACP domain members / ACP secure channel peers
   when they have an empty or 0-value acp-address field.  See
   Section 6.1.2.

   "acp-domain-name" is used to indicate the ACP Domain across which all
   ACP nodes trust each other and are willing to build ACP channels to
   each other.  See Section 6.1.2.  Acp-domain-name SHOULD be the FQDN
   of a DNS domain owned by the operator assigning the certificate.
   This is a simple method to ensure that the domain is globally unique
   and collision of ACP addresses would therefore only happen due to ULA
   hash collisions (see Section 6.10.2).  If the operator does not own
   any FQDN, it should choose a string (in FQDN format) that it intends
   to be equally unique.

   "routing-subdomain" is the autonomic subdomain composed of "rsub" and
   "acp-domain-name".  "rsub" is optional.  When not present, "routing-
   subdomain" is the same as "acp-domain-name". "routing-subdomain"
   determines the /48 ULA prefix for ACP addresses. "rsub" therefore
   allows to use multiple /48 ULA prefixes in an ACP domain.  See
   Appendix A.7 for example use-cases.
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   The optional "extensions" field is used for future standardized
   extensions to this specification.  It MUST be ignored if present and
   not understood.

   Formatting notes:

   o  "rsub" needs to be in the "local-part": If the format just had
      routing-subdomain as the domain part of the domain-information,
      rsub and acp-domain-name could not be separated from each other.
      It also makes acp-domain-name a valid e-mail target across all
      routing-subdomains.

   o  "acp-address" cannot use standard IPv6 address formats because it
      must match the simple dot-atom format of [RFC5322].  The character
      ":" is not allowed in that format.

   o  If "acp-address" is empty, and "rsub" is empty too, the "local-
      part" will have the format "rfcSELF++extension(s)".  The two plus
      characters are necessary so the node can unambiguously parse that
      both "acp-address" and "rsub" are empty.

   o  The maximum size of "domain-information" is 254 characters and the
      maximum size of node-info is 64 characters according to [RFC5280]
      that is referring to [RFC2821] (superseded by [RFC5321]).

   The subjectAltName / rfc822Name encoding of the ACP domain name and
   ACP address is used for the following reasons:

   o  It should be possible to share the LDevID with other uses beside
      the ACP.  Therefore, the information element required for the ACP
      should be encoded so that it minimizes the possibility of creating
      incompatibilities with such other uses.

   o  The information for the ACP should not cause incompatibilities
      with any pre-existing ASN.1 software.  This eliminates the
      introduction of a novel information element because that could
      require extensions to such pre-existing ASN.1 parsers.

   o  subjectAltName / rfc822Name is a pre-existing element that must be
      supported by all existing ASN.1 parsers for LDevID.

   o  The element required for the ACP should not be misinterpreted by
      any other uses of the LDevID.  If the element used for the ACP is
      interpreted by other uses, the impact should be benign.

   o  The element should not require additional ASN.1 en/decoding,
      because it is unclear if all, especially embedded devices
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      certificate libraries would support extensible ASN.1
      functionality.

   o  Using an IP address format encoding could result in non-benign
      misinterpretation of the domain information field; other uses
      unaware of the ACP could try to do something with the ACP address
      that would fail to work correctly.  For example, the address could
      be interpreted to be an address of the node which does not belong
      to the ACP VRF.

   o  At minimum, both the AN domain name and the non-domain name
      derived part of the ACP address need to be encoded in one or more
      appropriate fields of the certificate, so there are not many
      alternatives with pre-existing fields where the only possible
      conflicts would likely be beneficial.

   o  rfc822Name encoding is very flexible.  It allows to encode all the
      different fields of information required for the ACP.

   o  The format of the rfc822Name is chosen so that an operator can set
      up a mailbox called   rfcSELF@<domain> that would receive emails
      sent towards the rfc822Name of any node inside a domain.  This is
      possible because in many modern mail systems, components behind a
      "+" character are considered part of a single mailbox.  In other
      words, it is not necessary to set up a separate mailbox for every
      ACP node, but only one for the whole domain.

   o  In result, if any unexpected use of the ACP addressing information
      in a certificate happens, it is benign and detectable: it would be
      mail to that mailbox.

   See section 4.2.1.6 of [RFC5280] for details on the subjectAltName
   field.

6.1.2.  ACP domain membership check

   The following points constitute the ACP domain membership check of a
   candidate peer certificate, independent of the protocol used:

   1:   The peer certificate is valid (lifetime).

   2:   The peer has proved ownership of the private key associated with
      the certificate’s public key.

   3:   The peer’s certificate passes certificate path validation as
      defined in [RFC5280] against one of the Trust Anchors associated
      with the ACP nodes ACP domain certificate (see Section 6.1.3
      below).
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   4:   If the node certificate indicates a Certificate Revocation List
      (CRL) Distribution Point (CDP) ([RFC5280], section 4.2.1.13) or
      Online Certificate Status Protocol (OCSP) responder ([RFC5280],
      section 4.2.2.1), then the peer’s certificate must be valid
      according to those criteria: An OCSP check for the peer’s
      certificate across the ACP must succeed or the peer certificate
      must not be listed in the CRL retrieved from the CDP.  This rule
      has to be skipped for ACP secure channel peer authentication when
      the node has no ACP or non-ACP connectivity to retrieve current
      CRL or access an OCSP responder (see below).

   5:   The peer’s certificate has a syntactically valid ACP domain
      information field (encoded as subjectAltName / rfc822Name) and the
      acp-domain-name in that peer’s domain information field is the
      same as in this ACP node’s certificate (lowercase normalized).

   When an ACP node learns later via OCSP/CRL that an ACP peers
   certificate for which rule 4 had to be skipped during ACP secure
   channel establishment is invalid, then the ACP secure channel to that
   peer SHOULD be closed even if this peer is the only connectivity to
   access CRL/OCSP.  The ACP secure channel connection MUST be retried
   periodically to support the case that the neighbor aquires a new,
   valid certificate.

   Only when checking a candidate peer’s certificate for the purpose of
   establishing an ACP secure channel, one additional check is
   performed:

   6:   The candidate peer certificate’s ACP domain information field
      has a non-empty acp-address field (either 32hex-dig or 0,
      according to Figure 2).

   Rule 6 for the establishment of ACP secure channels ensures that they
   will only be built between nodes which indicate through the acp-
   address in their ACP domain certificate the ability and permission by
   the Registrar to participate in ACP secure-channels.

   Nodes with an empty acp-address field can only use their ACP domain
   certificate for non-ACP-secure channel authentication purposes.

   The special value 0 in an ACP certificates acp-address field is used
   for nodes that can and should determine their ACP address through
   other mechanisms than learning it through the acp-address field in
   their ACP domain certificate.  These ACP nodes are permitted to
   establish ACP secure channels.  Mechanisms for those nodes to
   determine their ACP address are outside the scope of this
   specification.
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   Formally, the ACP domain membership check includes both the
   authentication of the peers certificate (steps 1...4) and a check
   authorizing this node and the peer to establish an ACP connection
   and/or any other secure connection across ACP or data-plane end to
   end.  Step 5 authorizes to build any non-ACP secure connection
   between members of the same ACP domain, step 5 and 6 are required to
   build an ACP secure channel.  For brevity, the remainder of this
   document refers to this process only as authentication instead of as
   authentication and authorization.

6.1.3.  Trust Points and Trust Anchors

   ACP nodes need Trust Point (TP) certificates to perform certificate
   path validation as required by Section 6.1.2, rule 3.  Trust Point(s)
   must be provisioned to an ACP node (together with its ACP domain
   certificate) by an ACP Registrar during initial enrolment of a
   candidate ACP node.  ACP nodes MUST also support renewal of TPs via
   EST as described below in Section 6.1.4.

   Trust Point is the term used in this document for a certificate
   authority (CA) and its associated set of certificates.  Multiple
   certificates are required for a CA to deal with CA certificate
   renewals as explained in Section 4.4 of CMP ([RFC4210]).

   A certificate path is a chain of certificates starting at a self-
   signed certificate of a so called root-CA or Trust Anchor, followed
   by zero or more intermediate Trust Point or sub-CA certificates and
   ending with an ACP certificate.  Certificate path validation
   authenticates that the ACP certificate is signed by a Trust Anchor,
   directly or indirectly via one or more intermediate Trust Points.

   Note that different ACP nodes may have different Trust Points and
   even different Trust Anchors in their certificate path, as long as
   the set of Trust Points for all ACP node includes the same set of
   Trust Anchors (usually 1), and each ACP nodes set of Trust Anchors
   includes the intermediate Trust Points for its own ACP domain
   certificate.  The protocols through which ACP domain membership check
   rules 1-4 are performed therefore need to support the exchange not
   only of the ACP nodes certificates, but also their intermediate Trust
   Points.

   ACP nodes MUST support for the ACP domain membership check the
   certificate path validation with 0 or 1 intermediate Trust Points.
   They SHOULD support 2 intermediate Trust Points and two Trust Anchors
   (to permit migration to different root-CAs).

   Trust Points for ACP domain certificates must be trusted to sign
   certificates with valid ACP domain information fields only for
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   trusted ACP registrars of that domain.  This can be achieved by using
   Trust Anchors private to the owner of the ACP domain or potentially
   through appropriate contractual agreements between the involved
   parties.  Public CA without such obligations and guarantees can not
   be used.

   A single owner can operate multiple independent ACP domains from the
   same set of private trust anchors (CAs) when the ACP Registrars are
   trusted not to permit certificates with incorrect ACP information
   fields to be signed.  Such as ACP information with a wrong acp-domain
   field.  In this case, CAs can be completely unaware of ACP specifics,
   so that it should be possible to use any existing CA software.  When
   ACP Registrars are not to be trusted, the correctness of the ACP
   domain information field for the candidate ACP node has to be
   verified by the CA signing the ACP domain certificate.

6.1.4.  Certificate and Trust Point Maintenance

   ACP nodes MUST support renewal of their Certificate and Trust Points
   (TP) via EST ("Enrollment over Secure Transport", see [RFC7030]) and
   MAY support other mechanisms.  An ACP network MUST have at least one
   ACP node supporting EST server functionality across the ACP so that
   EST renewal is useable.

   ACP nodes SHOULD be able to remember the EST server from which they
   last renewed their ACP domain certificate and SHOULD provide the
   ability for this remembered EST server to also be set by the ACP
   Registrar (see Section 6.10.7) that initially enrolled the ACP device
   with its ACP domain certificate.  When BRSKI (see
   [I-D.ietf-anima-bootstrapping-keyinfra]) is used, the ACP address of
   the BRSKI registrar from the BRSKI TLS connection SHOULD be
   remembered and used for the next renewal via EST if that registrar
   also announces itself as an EST server via GRASP (see next section)
   on its ACP address.

6.1.4.1.  GRASP objective for EST server

   ACP nodes that are EST servers MUST announce their service via GRASP
   in the ACP through M_FLOOD messages.  See [I-D.ietf-anima-grasp],
   section 2.8.11 for the definition of this message type:
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        Example:

        [M_FLOOD, 12340815, h’fd89b714f3db0000200000064000001’, 210000,
            ["SRV.est", 4, 255 ],
            [O_IPv6_LOCATOR,
                 h’fd89b714f3db0000200000064000001’, TCP, 80]
        ]

                      Figure 3: GRASP SRV.est example

   The formal definition of the objective in Concise data definition
   language (CDDL) (see [I-D.ietf-cbor-cddl]) is as follows:

    flood-message = [M_FLOOD, session-id, initiator, ttl,
                     +[objective, (locator-option / [])]]

    objective = ["SRV.est", objective-flags, loop-count,
                                           objective-value]

    objective-flags = sync-only  ; as in GRASP spec
    sync-only       = 4          ; M_FLOOD only requires synchronization
    loop-count      = 255        ; recommended
    objective-value = any        ; Not used (yet)

                    Figure 4: GRASP SRV.est definition

   The objective name "SRV.est" indicates that the objective is an
   [RFC7030] compliant EST server because "est" is an [RFC6335]
   registered service name for [RFC7030].  Objective-value MUST be
   ignored if present.  Backward compatible extensions to [RFC7030] MAY
   be indicated through objective-value.  Non [RFC7030] compatible
   certificate renewal options MUST use a different objective-name.

   The M_FLOOD message MUST be sent periodically.  The default SHOULD be
   60 seconds, the value SHOULD be operator configurable but SHOULD be
   not smaller than 60 seconds.  The frequency of sending MUST be such
   that the aggregate amount of periodic M_FLOODs from all flooding
   sources cause only negligible traffic across the ACP.  The time-to-
   live (ttl) parameter SHOULD be 3.5 times the period so that up to
   three consecutive messages can be dropped before considering an
   announcement expired.  In the example above, the ttl is 210000 msec,
   3.5 times 60 seconds.  When a service announcer using these
   parameters unexpectedly dies immediately after sending the M_FLOOD,
   receivers would consider it expired 210 seconds later.  When a
   receiver tries to connect to this dead service before this timeout,
   it will experience a failing connection and use that as an indication
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   that the service is dead and select another instance of the same
   service instead.

6.1.4.2.  Renewal

   When performing renewal, the node SHOULD attempt to connect to the
   remembered EST server.  If that fails, it SHOULD attempt to connect
   to an EST server learned via GRASP.  The server with which
   certificate renewal succeeds SHOULD be remembered for the next
   renewal.

   Remembering the last renewal server and preferring it provides
   stickiness which can help diagnostics.  It also provides some
   protection against off-path compromised ACP members announcing bogus
   information into GRASP.

   Renewal of certificates SHOULD start after less than 50% of the
   domain certificate lifetime so that network operations has ample time
   to investigate and resolve any problems that causes a node to not
   renew its domain certificate in time - and to allow prolonged periods
   of running parts of a network disconnected from any CA.

6.1.4.3.  Certificate Revocation Lists (CRLs)

   The ACP node SHOULD support Certificate Revocation Lists (CRL) via
   HTTPs from one or more CRL Distribution Points (CDPs).  The CDP(s)
   MUST be indicated in the Domain Certificate when used.  If the CDP
   URL uses an IPv6 address (ULA address when using the addressing rules
   specified in this document), the ACP node will connect to the CDP via
   the ACP.  If the CDP uses a domain name, the ACP node will connect to
   the CDP via the Data-Plane.

   It is common to use domain names for CDP(s), but there is no
   requirement for the ACP to support DNS.  Any DNS lookup in the Data-
   Plane is not only a possible security issue, but it would also not
   indicate whether the resolved address is meant to be reachable across
   the ACP.  Therefore, the use of an IPv6 address versus the use of a
   DNS name doubles as an indicator whether or not to reach the CDP via
   the ACP.

   A CDP can be reachable across the ACP either by running it on a node
   with ACP or by connecting its node via an ACP connect interface (see
   Section 8.1).  The CDP SHOULD use an ACP domain certificate for its
   HTTPs connections.  The connecting ACP node SHOULD verify that the
   CDP certificate used during the HTTPs connection has the same ACP
   address as indicated in the CDP URL of the nodes ACP domain
   certificate if the CDP URL uses an IPv6 address.
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6.1.4.4.  Lifetimes

   Certificate lifetime may be set to shorter lifetimes than customary
   (1 year) because certificate renewal is fully automated via ACP and
   EST.  The primary limiting factor for shorter certificate lifetimes
   is load on the EST server(s) and CA.  It is therefore recommended
   that ACP domain certificates are managed via a CA chain where the
   assigning CA has enough performance to manage short lived
   certificates.  See also Section 10.2.4 for discussion about an
   example setup achieving this.  See also [I-D.ietf-acme-star].

   When certificate lifetimes are sufficiently short, such as few hours,
   certificate revocation may not be necessary, allowing to simplify the
   overall certificate maintenance infrastructure.

   See Appendix A.2 for further optimizations of certificate maintenance
   when BRSKI can be used ("Bootstrapping Remote Secure Key
   Infrastructures", see [I-D.ietf-anima-bootstrapping-keyinfra]).

6.1.4.5.  Re-enrollment

   An ACP node may determine that its ACP domain certificate has
   expired, for example because the ACP node was powered down or
   disconnected longer than its certificate lifetime.  In this case, the
   ACP node SHOULD convert to a role of a re-enrolling candidate ACP
   node.

   In this role, the node does maintain the trust anchor and certificate
   chain associated with its ACP domain certificate exclusively for the
   purpose of re-enrollment, and attempts (or waits) to get re-enrolled
   with a new ACP certificate.  The details depend on the mechanisms/
   protocols used by the ACP registrars.

   Please refer to Section 6.10.7 and
   [I-D.ietf-anima-bootstrapping-keyinfra] for explanations about ACP
   registrars and vouchers as used in the following text.  When ACP is
   intended to be used without BRSKI, the details about BRSKI and
   vouchers in the following text can be skipped.

   When BRSKI is used (i.e.: on ACP nodes that are ANI nodes), the re-
   enrolling candidate ACP node would attempt to enroll like a candidate
   ACP node (BRSKI pledge), but instead of using the ACP nodes IDevID,
   it SHOULD first attempt to use its ACP domain certificate in the
   BRSKI TLS authentication.  The BRSKI registrar MAY honor this
   certificate beyond its expiration date purely for the purpose of re-
   enrollment.  Using the ACP node’s domain certificate allows the BRSKI
   registrar to learn that nodes ACP domain information field, so that

Eckert, et al.         Expires September 12, 2019              [Page 30]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

   the BRSKI registrar can re-assign the same ACP address information to
   the ACP node in the new ACP domain certificate.

   If the BRSKI registrar denies the use of the old ACP domain
   certificate, the re-enrolling candidate ACP node MUST re-attempt re-
   enrollment using its IDevID as defined in BRSKI during the TLS
   connection setup.

   Both when the BRSKI connection is attempted with the old ACP domain
   certificate or the IDevID, the re-enrolling candidate ACP node SHOULD
   authenticate the BRSKI registrar during TLS connection setup based on
   its existing trust anchor/certificate chain information associated
   with its old ACP certificate.  The re-enrolling candidate ACP node
   SHOULD only request a voucher from the BRSKI registrar when this
   authentication fails during TLS connection setup.

   When other mechanisms than BRSKI are used for ACP domain certificate
   enrollment, the principles of the re-enrolling candidate ACP node are
   the same.  The re-enrolling candidate ACP node attempts to
   authenticate any ACP registrar peers during re-enrollment protocol/
   mechanisms via its existing certificate chain/trust anchor and
   provides its existing ACP domain certificate and other identification
   (such as the IDevID) as necessary to the registrar.

   Maintaining existing trust anchor information is especially important
   when enrollment mechanisms are used that unlike BRSKI do not leverage
   a voucher mechanism to authenticate the ACP registrar and where
   therefore the injection of certificate failures could otherwise make
   the ACP node easily attackable remotely.

   When using BRSKI or other protocol/mechanisms supporting vouchers,
   maintaining existing trust anchor information allows for re-
   enrollment of expired ACP certificates to be more lightweight,
   especially in environments where repeated acquisition of vouchers
   during the lifetime of ACP nodes may be operationally expensive or
   otherwise undesirable.

6.1.4.6.  Failing Certificates

   An ACP domain certificate is called failing in this document, if/when
   the ACP node can determine that it was revoked (or explicitly not
   renewed), or in the absence of such explicit local diagnostics, when
   the ACP node fails to connect to other ACP nodes in the same ACP
   domain using its ACP certificate.  For connection failures to
   determine the ACP domain certificate as the culprit, the peer should
   pass the domain membership check (Section 6.1.2) and other reasons
   for the connection failure can be excluded because of the connection
   error diagnostics.
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   This type of failure can happen during setup/refresh of a secure ACP
   channel connections or any other use of the ACP domain certificate,
   such as for the TLS connection to an EST server for the renewal of
   the ACP domain certificate.

   Example reasons for failing certificates that the ACP node can only
   discover through connection failure are that the domain certificate
   or any of its signing certificates could have been revoked or may
   have expired, but the ACP node cannot self-diagnose this condition
   directly.  Revocation information or clock synchronization may only
   be available across the ACP, but the ACP node cannot build ACP secure
   channels because ACP peers reject the ACP node’s domain certificate.

   ACP nodes SHOULD support the option to determines whether its ACP
   certificate is failing, and when it does, put itself into the role of
   a re-enrolling candidate ACP node as explained above
   (Section 6.1.4.5).

6.2.  ACP Adjacency Table

   To know to which nodes to establish an ACP channel, every ACP node
   maintains an adjacency table.  The adjacency table contains
   information about adjacent ACP nodes, at a minimum: Node-ID
   (identifier of the node inside the ACP, see Section 6.10.3 and
   Section 6.10.5), interface on which neighbor was discovered (by GRASP
   as explained below), link-local IPv6 address of neighbor on that
   interface, certificate (including domain information field).  An ACP
   node MUST maintain this adjacency table.  This table is used to
   determine to which neighbor an ACP connection is established.

   Where the next ACP node is not directly adjacent (i.e., not on a link
   connected to this node), the information in the adjacency table can
   be supplemented by configuration.  For example, the Node-ID and IP
   address could be configured.  See Section 8.2.

   The adjacency table MAY contain information about the validity and
   trust of the adjacent ACP node’s certificate.  However, subsequent
   steps MUST always start with the ACP domain membership check against
   the peer (see Section 6.1.2).

   The adjacency table contains information about adjacent ACP nodes in
   general, independently of their domain and trust status.  The next
   step determines to which of those ACP nodes an ACP connection should
   be established.
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6.3.  Neighbor Discovery with DULL GRASP

   [RFC Editor: GRASP draft is in RFC editor queue, waiting for
   dependencies, including ACP.  Please ensure that references to I-
   D.ietf-anima-grasp that include section number references (throughout
   this document) will be updated in case any last-minute changes in
   GRASP would make those section references change.

   Discovery Unsolicited Link-Local (DULL) GRASP is a limited subset of
   GRASP intended to operate across an insecure link-local scope.  See
   section 2.5.2 of [I-D.ietf-anima-grasp] for its formal definition.
   The ACP uses one instance of DULL GRASP for every L2 interface of the
   ACP node to discover link level adjacent candidate ACP neighbors.
   Unless modified by policy as noted earlier (Section 5 bullet point
   2.), native interfaces (e.g., physical interfaces on physical nodes)
   SHOULD be initialized automatically to a state in which ACP discovery
   can be performed and any native interfaces with ACP neighbors can
   then be brought into the ACP even if the interface is otherwise not
   configured.  Reception of packets on such otherwise not configured
   interfaces MUST be limited so that at first only IPv6 StateLess
   Address Auto Configuration (SLAAC - [RFC4862]) and DULL GRASP work
   and then only the following ACP secure channel setup packets - but
   not any other unnecessary traffic (e.g., no other link-local IPv6
   transport stack responders for example).

   Note that the use of the IPv6 link-local multicast address
   (ALL_GRASP_NEIGHBORS) implies the need to use Multicast Listener
   Discovery Version 2 (MLDv2, see [RFC3810]) to announce the desire to
   receive packets for that address.  Otherwise DULL GRASP could fail to
   operate correctly in the presence of MLD snooping, non-ACP enabled L2
   switches - because those would stop forwarding DULL GRASP packets.
   Switches not supporting MLD snooping simply need to operate as pure
   L2 bridges for IPv6 multicast packets for DULL GRASP to work.

   ACP discovery SHOULD NOT be enabled by default on non-native
   interfaces.  In particular, ACP discovery MUST NOT run inside the ACP
   across ACP virtual interfaces.  See Section 10.3 for further, non-
   normative suggestions on how to enable/disable ACP at node and
   interface level.  See Section 8.2.2 for more details about tunnels
   (typical non-native interfaces).  See Section 7 for how ACP should be
   extended on devices operating (also) as L2 bridges.

   Note: If an ACP node also implements BRSKI to enroll its ACP domain
   certificate (see Appendix A.2 for a summary), then the above
   considerations also apply to GRASP discovery for BRSKI.  Each DULL
   instance of GRASP set up for ACP is then also used for the discovery
   of a bootstrap proxy via BRSKI when the node does not have a domain
   certificate.  Discovery of ACP neighbors happens only when the node
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   does have the certificate.  The node therefore never needs to
   discover both a bootstrap proxy and ACP neighbor at the same time.

   An ACP node announces itself to potential ACP peers by use of the
   "AN_ACP" objective.  This is a synchronization objective intended to
   be flooded on a single link using the GRASP Flood Synchronization
   (M_FLOOD) message.  In accordance with the design of the Flood
   message, a locator consisting of a specific link-local IP address, IP
   protocol number and port number will be distributed with the flooded
   objective.  An example of the message is informally:

         [M_FLOOD, 12340815, h’fe80000000000000c0011001FEEF0000, 210000,
             ["AN_ACP", 4, 1, "IKEv2" ],
             [O_IPv6_LOCATOR,
                  h’fe80000000000000c0011001FEEF0000, UDP, 15000]
             ["AN_ACP", 4, 1, "DTLS" ],
             [O_IPv6_LOCATOR,
                  h’fe80000000000000c0011001FEEF0000, UDP, 17000]
         ]

                      Figure 5: GRASP AN_ACP example

   The formal CDDL definition is:

           flood-message = [M_FLOOD, session-id, initiator, ttl,
                            +[objective, (locator-option / [])]]

           objective = ["AN_ACP", objective-flags, loop-count,
                                                  objective-value]

           objective-flags = sync-only ; as in the GRASP specification
           sync-only =  4    ; M_FLOOD only requires synchronization
           loop-count = 1    ; limit to link-local operation
           objective-value = method
           method = "IKEv2" / "DTLS"  ; or future standard methods

                     Figure 6: GRASP AN_ACP definition

   The objective-flags field is set to indicate synchronization.

   The loop-count is fixed at 1 since this is a link-local operation.

   In the above example the RECOMMENDED period of sending of the
   objective is 60 seconds.  The indicated ttl of 210000 msec means that
   the objective would be cached by ACP nodes even when two out of three
   messages are dropped in transit.
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   The session-id is a random number used for loop prevention
   (distinguishing a message from a prior instance of the same message).
   In DULL this field is irrelevant but must still be set according to
   the GRASP specification.

   The originator MUST be the IPv6 link local address of the originating
   ACP node on the sending interface.

   The ’objective-value’ parameter is a string indicating the secure
   channel protocol available at the specified or implied locator.

   The locator-option is optional and only required when the secure
   channel protocol is not offered at a well-defined port number, or if
   there is no well-defined port number.

   "IKEv2" is the abbreviation for "Internet Key Exchange protocol
   version 2".  It is the main protocol used by the Internet IP security
   architecture (IPsec).  We therefore use the term "IKEv2" and not
   "IPsec" in the GRASP definitions and example above.  "IKEv2" has a
   well-defined port number 500, but in the above example, the candidate
   ACP neighbor is offering ACP secure channel negotiation via IKEv2 on
   port 15000 (for the sake of creating a non-standard example).

   "DTLS" indicates datagram Transport Layer Security version 1.2.
   There is no default UDP port, it must always be locally assigned by
   the node.  See Section 6.7.2.

   If a locator is included, it MUST be an O_IPv6_LOCATOR, and the IPv6
   address MUST be the same as the initiator address (these are DULL
   requirements to minimize third party DoS attacks).

   The secure channel methods defined in this document use the
   objective-values of "IKEv2" and "DTLS".  There is no distinction
   between IKEv2 native and GRE-IKEv2 because this is purely negotiated
   via IKEv2.

   A node that supports more than one secure channel protocol method
   needs to flood multiple versions of the "AN_ACP" objective so that
   each method can be accompanied by its own locator-option.  This can
   use a single GRASP M_FLOOD message as shown in Figure 5.

   Note that a node serving both as an ACP node and BRSKI Join Proxy may
   choose to distribute the "AN_ACP" objective and the respective BRSKI
   in the same M_FLOOD message, since GRASP allows multiple objectives
   in one message.  This may be impractical though if ACP and BRSKI
   operations are implemented via separate software modules / ASAs.
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   The result of the discovery is the IPv6 link-local address of the
   neighbor as well as its supported secure channel protocols (and non-
   standard port they are running on).  It is stored in the ACP
   Adjacency Table (see Section 6.2), which then drives the further
   building of the ACP to that neighbor.

6.4.  Candidate ACP Neighbor Selection

   An ACP node must determine to which other ACP nodes in the adjacency
   table it should build an ACP connection.  This is based on the
   information in the ACP Adjacency table.

   The ACP is established exclusively between nodes in the same domain.
   This includes all routing subdomains.  Appendix A.7 explains how ACP
   connections across multiple routing subdomains are special.

   The result of the candidate ACP neighbor selection process is a list
   of adjacent or configured autonomic neighbors to which an ACP channel
   should be established.  The next step begins that channel
   establishment.

6.5.  Channel Selection

   To avoid attacks, initial discovery of candidate ACP peers cannot
   include any non-protected negotiation.  To avoid re-inventing and
   validating security association mechanisms, the next step after
   discovering the address of a candidate neighbor can only be to try
   first to establish a security association with that neighbor using a
   well-known security association method.

   At this time in the lifecycle of ACP nodes, it is unclear whether it
   is feasible to even decide on a single MTI (mandatory to implement)
   security association protocol across all ACP nodes.

   From the use-cases it seems clear that not all type of ACP nodes can
   or need to connect directly to each other or are able to support or
   prefer all possible mechanisms.  For example, code space limited IoT
   devices may only support DTLS because that code exists already on
   them for end-to-end security, but low-end in-ceiling L2 switches may
   only want to support Media Access Control Security (MacSec, see
   802.1AE ([MACSEC]) because that is also supported in their chips.
   Only a flexible gateway device may need to support both of these
   mechanisms and potentially more.  Note that MacSec is not required by
   any profiles of the ACP in this specification but just mentioned as a
   likely next interesting secure channel protocol.

   To support extensible secure channel protocol selection without a
   single common MTI protocol, ACP nodes must try all the ACP secure
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   channel protocols it supports and that are feasible because the
   candidate ACP neighbor also announced them via its AN_ACP GRASP
   parameters (these are called the "feasible" ACP secure channel
   protocols).

   To ensure that the selection of the secure channel protocols always
   succeeds in a predictable fashion without blocking, the following
   rules apply:

   o  An ACP node may choose to attempt to initiate the different
      feasible ACP secure channel protocols it supports according to its
      local policies sequentially or in parallel, but it MUST support
      acting as a responder to all of them in parallel.

   o  Once the first secure channel protocol succeeds, the two peers
      know each other’s certificates because they must be used by all
      secure channel protocols for mutual authentication.  The node with
      the lower Node-ID in the ACP address becomes Bob, the one with the
      higher Node-ID in the certificate Alice.

   o  Bob becomes passive, he does not attempt to further initiate ACP
      secure channel protocols with Alice and does not consider it to be
      an error when Alice closes secure channels.  Alice becomes the
      active party, continues to attempt setting up secure channel
      protocols with Bob until she arrives at the best one from her view
      that also works with Bob.

   For example, originally Bob could have been the initiator of one ACP
   secure channel protocol that Bob prefers and the security association
   succeeded.  The roles of Bob and Alice are then assigned and the
   connection setup is completed.  The protocol could for example be
   IPsec via IKEv2 ("IP security", see [RFC4301] and "Internet Key
   Exchange protocol version 2", see [RFC7296].  It is now up to Alice
   to decide how to proceed.  Even if the IPsec connection from Bob
   succeeded, Alice might prefer another secure protocol over IPsec
   (e.g., FOOBAR), and try to set that up with Bob.  If that preference
   of Alice succeeds, she would close the IPsec connection.  If no
   better protocol attempt succeeds, she would keep the IPsec
   connection.
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   The following sequence of steps show this example in more detail:

   [1]    Node 1 sends GRASP AN_ACP message to announce itself

   [2]    Node 2 sends GRASP AN_ACP message to announce itself

   [3]    Node 2 receives [1] from Node 1

   [4:C1] Because of [3], Node 2 starts as initiator on its
          preferred secure channel protocol towards Node 1.
          Connection C1.

   [5]    Node 1 receives [2] from Node 2

   [6:C2] Because of [5], Node 1 starts as initiator on its
          preferred secure channel protocol towards Node 2.
          Connection C2.

   [7:C1] Node1 and Node2 have authenticated each others
          certificate on connection C1 as valid ACP peers.

   [8:C1] Node 1 certificate has lower ACP Node-ID than  Node2,
          therefore Node 1 considers itself Bob and Node 2 Alice
          on connection C1. Connection setup C1 is completed.

   [9]    Node 1 (Bob)) refrains from attempting any further secure
          channel connections to Node 2 (Alice) as learned from [2]
          because it knows from [8:C1] that it is Bob relative
          to Node 1.

   [10:C2] Node1 and Node2 have authenticated each others
          certificate on connection C2 (like [7:C1]).

   [11:C2] Node 2 certificate has lower ACP Node-ID than  Node2,
           therefore Node 1 considers itself Bob and Node 2 Alice
           on connection C1, but they also identify that C2 is to the
           same mutual peer as their C1, so this has no further impact.

   [12:C2] Node 1 (Alice) closes C1. Because of [8:C1], Node 2 (Bob)
           expected this.

   [13]    Node 1 (Alice) and Node 2 (Bob) start data transfer across
           C2, which makes it become a secure channel for the ACP.

                Figure 7: Secure Channel sequence of steps

   All this negotiation is in the context of an "L2 interface".  Alice
   and Bob will build ACP connections to each other on every "L2
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   interface" that they both connect to.  An autonomic node must not
   assume that neighbors with the same L2 or link-local IPv6 addresses
   on different L2 interfaces are the same node.  This can only be
   determined after examining the certificate after a successful
   security association attempt.

6.6.  Candidate ACP Neighbor verification

   Independent of the security association protocol chosen, candidate
   ACP neighbors need to be authenticated based on their domain
   certificate.  This implies that any secure channel protocol MUST
   support certificate based authentication that can support the ACP
   domain membership check as defined in Section 6.1.2.  If it fails,
   the connection attempt is aborted and an error logged.  Attempts to
   reconnect MUST be throttled.  The RECOMMENDED default is exponential
   base 2 backoff with a minimum delay of 10 seconds and a maximum delay
   of 640 seconds.

6.7.  Security Association protocols

   The following sections define the security association protocols that
   we consider to be important and feasible to specify in this document:

6.7.1.  ACP via IKEv2

   An ACP node announces its ability to support IKEv2 as the ACP secure
   channel protocol in GRASP as "IKEv2".

6.7.1.1.  Native IPsec

   To run ACP via IPsec natively, no further IANA assignments/
   definitions are required.  An ACP node that is supporting native
   IPsec MUST use IPsec security setup via IKEv2, tunnel mode, local and
   peer link-local IPv6 addresses used for encapsulation.  It MUST then
   support ESP with AES-256-GCM ([RFC4106]) for encryption and SHA256
   hash and MUST NOT permit weaker crypto options.  Key establishment
   MUST support ECDHE with P-256.

   In terms of IKEv2, this means the initiator will offer to support
   IPsec tunnel mode with next protocol equal to 41 (IPv6).

   IPsec tunnel mode is required because the ACP will route/forward
   packets received from any other ACP node across the ACP secure
   channels, and not only its own generated ACP packets.  With IPsec
   transport mode, it would only be possible to send packets originated
   by the ACP node itself.
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   ESP is used because ACP mandates the use of encryption for ACP secure
   channels.

6.7.1.2.  IPsec with GRE encapsulation

   In network devices it is often more common to implement high
   performance virtual interfaces on top of GRE encapsulation than on
   top of a "native" IPsec association (without any other encapsulation
   than those defined by IPsec).  On those devices it may be beneficial
   to run the ACP secure channel on top of GRE protected by the IPsec
   association.

   To run ACP via GRE/IPsec, no further IANA assignments/definitions are
   required.  An ACP node that is supporting ACP via GRE/IPsec MUST then
   support IPsec security setup via IKEv2, IPsec transport mode, local
   and peer link-local IPv6 addresses used for encapsulation, ESP with
   AES256 encryption and SHA256 hash.

   When GRE is used, transport mode is sufficient because the routed ACP
   packets are not "tunneled" by IPsec but rather by GRE: IPsec only has
   to deal with the GRE/IP packet which always uses the local and peer
   link-local IPv6 addresses and is therefore applicable to transport
   mode.

   ESP is used because ACP mandates the use of encryption for ACP secure
   channels.

   In terms of IKEv2 negotiation, this means the initiator must offer to
   support IPsec transport mode with next protocol equal to GRE (47)
   followed by the offer for native IPsec as described above (because
   that option is mandatory to support).

   If IKEv2 initiator and responder support GRE, it will be selected.
   The version of GRE to be used must be determined according to
   [RFC7676].

6.7.2.  ACP via DTLS

   We define the use of ACP via DTLS in the assumption that it is likely
   the first transport encryption code basis supported in some classes
   of constrained devices.

   To run ACP via UDP and DTLS v1.2 [RFC6347] a locally assigned UDP
   port is used that is announced as a parameter in the GRASP AN_ACP
   objective to candidate neighbors.

   All ACP nodes supporting DTLS as a secure channel protocol MUST
   adhere to the DTLS implementation recommendations and security

Eckert, et al.         Expires September 12, 2019              [Page 40]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

   considerations of [RFC7525] except with respect to the DTLS version.
   ACP nodes supporting DTLS MUST implement only DTLS 1.2 or later.  For
   example, implementing DTLS-1.3 ([I-D.ietf-tls-dtls13]) is also an
   option.

   There is no additional session setup or other security association
   besides this simple DTLS setup.  As soon as the DTLS session is
   functional, the ACP peers will exchange ACP IPv6 packets as the
   payload of the DTLS transport connection.  Any DTLS defined security
   association mechanisms such as re-keying are used as they would be
   for any transport application relying solely on DTLS.

6.7.3.  ACP Secure Channel Requirements

   As explained in the beginning of Section 6.5, there is no single
   secure channel mechanism mandated for all ACP nodes.  Instead, this
   section defines two ACP profiles (baseline and constrained) for ACP
   nodes that do introduce such requirements.

   A baseline ACP node MUST support IPsec natively and MAY support IPsec
   via GRE.  A constrained ACP node that cannot support IPsec MUST
   support DTLS.  An ACP node connecting an area of constrained ACP
   nodes with an area of baseline ACP nodes MUST therefore support IPsec
   and DTLS and supports therefore the baseline and constrained profile.

   Explanation: Not all type of ACP nodes can or need to connect
   directly to each other or are able to support or prefer all possible
   secure channel mechanisms.  For example, code space limited IoT
   devices may only support DTLS because that code exists already on
   them for end-to-end security, but high-end core routers may not want
   to support DTLS because they can perform IPsec in accelerated
   hardware but would need to support DTLS in an underpowered CPU
   forwarding path shared with critical control plane operations.  This
   is not a deployment issue for a single ACP across these type of nodes
   as long as there are also appropriate gateway ACP nodes that support
   sufficiently many secure channel mechanisms to allow interconnecting
   areas of ACP nodes with a more constrained set of secure channel
   protocols.  On the edge between IoT areas and high-end core networks,
   general-purpose routers that act as those gateways and that can
   support a variety of secure channel protocols is the norm already.

   ACP nodes need to specify in documentation the set of secure ACP
   mechanisms they support and should declare which profile they support
   according to above requirements.

   An ACP secure channel MUST immediately be terminated when the
   lifetime of any certificate in the chain used to authenticate the
   neighbor expires or becomes revoked.  Note that this is not standard
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   behavior in secure channel protocols such as IPsec because the
   certificate authentication only influences the setup of the secure
   channel in these protocols.

6.8.  GRASP in the ACP

6.8.1.  GRASP as a core service of the ACP

   The ACP MUST run an instance of GRASP inside of it.  It is a key part
   of the ACP services.  The function in GRASP that makes it fundamental
   as a service of the ACP is the ability to provide ACP wide service
   discovery (using objectives in GRASP).

   ACP provides IP unicast routing via the RPL routing protocol (see
   Section 6.11).

   The ACP does not use IP multicast routing nor does it provide generic
   IP multicast services (the handling of GRASP link-local multicast
   messages is explained in Section 6.8.2).  Instead, the ACP provides
   service discovery via the objective discovery/announcement and
   negotiation mechanisms of the ACP GRASP instance (services are a form
   of objectives).  These mechanisms use hop-by-hop reliable flooding of
   GRASP messages for both service discovery (GRASP M_DISCOVERY
   messages) and service announcement (GRASP M_FLOOD messages).

   See Appendix A.5 for discussion about this design choice of the ACP.

6.8.2.  ACP as the Security and Transport substrate for GRASP

   In the terminology of GRASP ([I-D.ietf-anima-grasp]), the ACP is the
   security and transport substrate for the GRASP instance run inside
   the ACP ("ACP GRASP").

   This means that the ACP is responsible for ensuring that this
   instance of GRASP is only sending messages across the ACP GRASP
   virtual interfaces.  Whenever the ACP adds or deletes such an
   interface because of new ACP secure channels or loss thereof, the ACP
   needs to indicate this to the ACP instance of GRASP.  The ACP exists
   also in the absence of any active ACP neighbors.  It is created when
   the node has a domain certificate, and continues to exist even if all
   of its neighbors cease operation.

   In this case ASAs using GRASP running on the same node would still
   need to be able to discover each other’s objectives.  When the ACP
   does not exist, ASAs leveraging the ACP instance of GRASP via APIs
   MUST still be able to operate, and MUST be able to understand that
   there is no ACP and that therefore the ACP instance of GRASP cannot
   operate.
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   The way ACP acts as the security and transport substrate for GRASP is
   visualized in the following picture:
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       ..............................ACP..............................
       .                                                             .
       .         /-GRASP-flooding-\         ACP GRASP instance       .
       .        /                  \                                 A
       .    GRASP      GRASP      GRASP                              C
       .  link-local   unicast  link-local                           P
       .   multicast  messages   multicast                           .
       .   messages      |       messages                            .
       .      |          |          |                                .
       ...............................................................
       .      v          v          v    ACP security and transport  .
       .      |          |          |    substrate for GRASP         .
       .      |          |          |                                .
       .      |       ACP GRASP     |       - ACP GRASP              A
       .      |       Loopback      |         Loopback interface     C
       .      |       interface     |       - ACP-cert auth          P
       .      |         TLS         |                                .
       .   ACP GRASP     |       ACP GRASP  - ACP GRASP virtual      .
       .   subnet1       |       subnet2      virtual interfaces     .
       .     TCP         |         TCP                               .
       .      |          |          |                                .
       ...............................................................
       .      |          |          |   ^^^ Users of ACP (GRASP/ASA) .
       .      |          |          |   ACP interfaces/addressing    .
       .      |          |          |                                .
       .      |          |          |                                A
       .      | ACP-Loopback Interf.|      <- ACP Loopback interface C
       .      |      ACP-address    |       - address (global ULA)   P
       .    subnet1      |        subnet2  <- ACP virtual interfaces .
       .  link-local     |      link-local  - link-local addresses   .
       ...............................................................
       .      |          |          |   ACP VRF                      .
       .      |     RPL-routing     | virtual routing and forwarding .
       .      |   /IP-Forwarding\   |                                A
       .      |  /               \  |                                C
       .  ACP IPv6 packets   ACP IPv6 packets                        P
       .      |/                   \|                                .
       .    IPsec/DTLS        IPsec/DTLS  - ACP-cert auth            .
       ...............................................................
                |                   |   Data-Plane
                |                   |
                |                   |     - ACP secure channel
            link-local        link-local  - encapsulation addresses
              subnet1            subnet2  - Data-Plane interfaces
                |                   |
             ACP-Nbr1            ACP-Nbr2

        Figure 8: ACP as security and transport substrate for GRASP
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   GRASP unicast messages inside the ACP always use the ACP address.
   Link-local addresses from the ACP VRF must not be used inside
   objectives.  GRASP unicast messages inside the ACP are transported
   via TLS 1.2 ([RFC5246]) connections with AES256 encryption and
   SHA256.  Mutual authentication uses the ACP domain membership check
   defined in (Section 6.1.2).

   GRASP link-local multicast messages are targeted for a specific ACP
   virtual interface (as defined Section 6.12.5) but are sent by the ACP
   into an ACP GRASP virtual interface that is constructed from the TCP
   connection(s) to the IPv6 link-local neighbor address(es) on the
   underlying ACP virtual interface.  If the ACP GRASP virtual interface
   has two or more neighbors, the GRASP link-local multicast messages
   are replicated to all neighbor TCP connections.

   TCP and TLS connections for GRASP in the ACP use the IANA assigned
   TCP port for GRASP (7107).  Effectively the transport stack is
   expected to be TLS for connections from/to the ACP address (e.g.,
   global scope address(es)) and TCP for connections from/to link-local
   addresses on the ACP virtual interfaces.  The latter ones are only
   used for flooding of GRASP messages.

6.8.2.1.  Discussion

   TCP encapsulation for GRASP M_DISCOVERY and M_FLOOD link local
   messages is used because these messages are flooded across
   potentially many hops to all ACP nodes and a single link with even
   temporary packet loss issues (e.g., WiFi/Powerline link) can reduce
   the probability for loss free transmission so much that applications
   would want to increase the frequency with which they send these
   messages.  Such shorter periodic retransmission of datagrams would
   result in more traffic and processing overhead in the ACP than the
   hop-by-hop reliable retransmission mechanism by TCP and duplicate
   elimination by GRASP.

   TLS is mandated for GRASP non-link-local unicast because the ACP
   secure channel mandatory authentication and encryption protects only
   against attacks from the outside but not against attacks from the
   inside: Compromised ACP members that have (not yet) been detected and
   removed (e.g., via domain certificate revocation / expiry).

   If GRASP peer connections would just use TCP, compromised ACP members
   could simply eavesdrop passively on GRASP peer connections for whom
   they are on-path ("Man In The Middle" - MITM).  Or intercept and
   modify them.  With TLS, it is not possible to completely eliminate
   problems with compromised ACP members, but attacks are a lot more
   complex:
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   Eavesdropping/spoofing by a compromised ACP node is still possible
   because in the model of the ACP and GRASP, the provider and consumer
   of an objective have initially no unique information (such as an
   identity) about the other side which would allow them to distinguish
   a benevolent from a compromised peer.  The compromised ACP node would
   simply announce the objective as well, potentially filter the
   original objective in GRASP when it is a MITM and act as an
   application level proxy.  This of course requires that the
   compromised ACP node understand the semantics of the GRASP
   negotiation to an extent that allows it to proxy it without being
   detected, but in an ACP environment this is quite likely public
   knowledge or even standardized.

   The GRASP TLS connections are run the same as any other ACP traffic
   through the ACP secure channels.  This leads to double
   authentication/encryption, which has the following benefits:

   o  Secure channel methods such as IPsec may provide protection
      against additional attacks, for example reset-attacks.

   o  The secure channel method may leverage hardware acceleration and
      there may be little or no gain in eliminating it.

   o  There is no different security model for ACP GRASP from other ACP
      traffic.  Instead, there is just another layer of protection
      against certain attacks from the inside which is important due to
      the role of GRASP in the ACP.

6.9.  Context Separation

   The ACP is in a separate context from the normal Data-Plane of the
   node.  This context includes the ACP channels’ IPv6 forwarding and
   routing as well as any required higher layer ACP functions.

   In classical network system, a dedicated so called Virtual routing
   and forwarding instance (VRF) is one logical implementation option
   for the ACP.  If possible by the systems software architecture,
   separation options that minimize shared components are preferred,
   such as a logical container or virtual machine instance.  The context
   for the ACP needs to be established automatically during bootstrap of
   a node.  As much as possible it should be protected from being
   modified unintentionally by ("Data-Plane") configuration.

   Context separation improves security, because the ACP is not
   reachable from the Data-Plane routing or forwarding table(s).  Also,
   configuration errors from the Data-Plane setup do not affect the ACP.
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6.10.  Addressing inside the ACP

   The channels explained above typically only establish communication
   between two adjacent nodes.  In order for communication to happen
   across multiple hops, the autonomic control plane requires ACP
   network wide valid addresses and routing.  Each ACP node must create
   a Loopback interface with an ACP network wide unique address inside
   the ACP context (as explained in in Section 6.9).  This address may
   be used also in other virtual contexts.

   With the algorithm introduced here, all ACP nodes in the same routing
   subdomain have the same /48 ULA prefix.  Conversely, ULA global IDs
   from different domains are unlikely to clash, such that two ACP
   networks can be merged, as long as the policy allows that merge.  See
   also Section 9.1 for a discussion on merging domains.

   Links inside the ACP only use link-local IPv6 addressing, such that
   each nodes ACP only requires one routable virtual address.

6.10.1.  Fundamental Concepts of Autonomic Addressing

   o  Usage: Autonomic addresses are exclusively used for self-
      management functions inside a trusted domain.  They are not used
      for user traffic.  Communications with entities outside the
      trusted domain use another address space, for example normally
      managed routable address space (called "Data-Plane" in this
      document).

   o  Separation: Autonomic address space is used separately from user
      address space and other address realms.  This supports the
      robustness requirement.

   o  Loopback-only: Only ACP Loopback interfaces (and potentially those
      configured for "ACP connect", see Section 8.1) carry routable
      address(es); all other interfaces (called ACP virtual interfaces)
      only use IPv6 link local addresses.  The usage of IPv6 link local
      addressing is discussed in [RFC7404].

   o  Use-ULA: For Loopback interfaces of ACP nodes, we use Unique Local
      Addresses (ULA), as defined in [RFC4193] with L=1 (as defined in
      section 3.1 of [RFC4193]).  Note that the random hash for ACP
      Loopback addresses uses the definition in Section 6.10.2 and not
      the one of [RFC4193] section 3.2.2.

   o  No external connectivity: They do not provide access to the
      Internet.  If a node requires further reaching connectivity, it
      should use another, traditionally managed address scheme in
      parallel.
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   o  Addresses in the ACP are permanent, and do not support temporary
      addresses as defined in [RFC4941].

   o  Addresses in the ACP are not considered sensitive on privacy
      grounds because ACP nodes are not expected to be end-user host.
      All ACP nodes are in one (potentially federated) administrative
      domain.  They are assumed to be to be candidate hosts of ACP
      traffic amongst each other or transit thereof.  There are no
      transit nodes less privileged to know about the identity of other
      hosts in the ACP.  Therefore, ACP addresses do not need to be
      pseudo-random as discussed in [RFC7721].  Because they are not
      propagated to untrusted (non ACP) nodes and stay within a domain
      (of trust), we also consider them not to be subject to scanning
      attacks.

   The ACP is based exclusively on IPv6 addressing, for a variety of
   reasons:

   o  Simplicity, reliability and scale: If other network layer
      protocols were supported, each would have to have its own set of
      security associations, routing table and process, etc.

   o  Autonomic functions do not require IPv4: Autonomic functions and
      autonomic service agents are new concepts.  They can be
      exclusively built on IPv6 from day one.  There is no need for
      backward compatibility.

   o  OAM protocols do not require IPv4: The ACP may carry OAM
      protocols.  All relevant protocols (SNMP, TFTP, SSH, SCP, Radius,
      Diameter, ...) are available in IPv6.  See also [RFC8368] for how
      ACP could be made to interoperate with IPv4 only OAM.

6.10.2.  The ACP Addressing Base Scheme

   The Base ULA addressing scheme for ACP nodes has the following
   format:

     8      40                     2                     78
   +--+-------------------------+------+------------------------------+
   |fd| hash(routing-subdomain) | Type |     (sub-scheme)             |
   +--+-------------------------+------+------------------------------+

                   Figure 9: ACP Addressing Base Scheme

   The first 48-bits follow the ULA scheme, as defined in [RFC4193], to
   which a type field is added:

   o  "fd" identifies a locally defined ULA address.
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   o  The 40-bits ULA "global ID" (term from [RFC4193]) for ACP
      addresses carried in the domain information field of domain
      certificates are the first 40-bits of the SHA256 hash of the
      routing subdomain from the same domain information field.  In the
      example of Section 6.1.1, the routing subdomain is
      "area51.research.acp.example.com" and the 40-bits ULA "global ID"
      89b714f3db.

   o  When creating a new routing-subdomain for an existing autonomic
      network, it MUST be ensured, that rsub is selected so the
      resulting hash of the routing-subdomain does not collide with the
      hash of any pre-existing routing-subdomains of the autonomic
      network.  This ensures that ACP addresses created by registrars
      for different routing subdomains do not collide with each others.

   o  To allow for extensibility, the fact that the ULA "global ID" is a
      hash of the routing subdomain SHOULD NOT be assumed by any ACP
      node during normal operations.  The hash function is only executed
      during the creation of the certificate.  If BRSKI is used then the
      BRSKI registrar will create the domain information field in
      response to the EST Certificate Signing Request (CSR) Attribute
      Request message by the pledge.

   o  Establishing connectivity between different ACP (different acp-
      domain-name) is outside the scope of this specification.  If it is
      being done through future extensions, then the rsub of all
      routing-subdomains across those autonomic networks need to be
      selected so their hashes do not collide.  For example a large
      cooperation with its own private Trust Anchor may want to create
      different autonomic networks that initially should not be able to
      connect but where the option to do so should be kept open.  When
      taking this future possibility into account, it is easy to always
      select rsub so that no collisions happen.

   o  Type: This field allows different address sub-schemes.  This
      addresses the "upgradability" requirement.  Assignment of types
      for this field will be maintained by IANA.

   The sub-scheme may imply a range or set of addresses assigned to the
   node, this is called the ACP address range/set and explained in each
   sub-scheme.

   Please refer to Section 6.10.7 and Appendix A.1 for further
   explanations why the following Sub-Addressing schemes are used and
   why multiple are necessary.

Eckert, et al.         Expires September 12, 2019              [Page 49]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

6.10.3.  ACP Zone Addressing Sub-Scheme

   The sub-scheme defined here is defined by the Type value 00b (zero)
   in the base scheme and 0 in the Z bit.

                    64                             64
   +-----------------+---+---------++-----------------------------+---+
   |  (base scheme)  | Z | Zone-ID ||           Node-ID               |
   |                 |   |         || Registrar-ID |   Node-Number| V |
   +-----------------+---+---------++--------------+--------------+---+
            50         1     13            48           15          1

                 Figure 10: ACP Zone Addressing Sub-Scheme

   The fields are defined as follows:

   o  Zone-ID: If set to all zero bits: The Node-ID bits are used as an
      identifier (as opposed to a locator).  This results in a non-
      hierarchical, flat addressing scheme.  Any other value indicates a
      zone.  See Section 6.10.3.1 on how this field is used in detail.

   o  Z: MUST be 0.

   o  Node-ID: A unique value for each node.

   The 64-bit Node-ID is derived and composed as follows:

   o  Registrar-ID (48-bit): A number unique inside the domain that
      identifies the ACP registrar which assigned the Node-ID to the
      node.  A MAC address of the ACP registrar can be used for this
      purpose.

   o  Node-Number: A number which is unique for a given ACP registrar,
      to identify the node.  This can be a sequentially assigned number.

   o  V (1-bit): Virtualization bit: 0: Indicates the ACP itself ("ACP
      node base system); 1: Indicates the optional "host" context on the
      ACP node (see below).

   In the ACP Zone Addressing Sub-Scheme, the ACP address in the
   certificate has Zone-ID and V fields as all zero bits.  The ACP
   address set includes addresses with any Zone-ID value and any V
   value.

   The "Node-ID" itself is unique in a domain (i.e., the Zone-ID is not
   required for uniqueness).  Therefore, a node can be addressed either
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   as part of a flat hierarchy (Zone-ID = 0), or with an aggregation
   scheme (any other Zone-ID).  An address with Zone-ID = 0 is an
   identifier, with a Zone-ID !=0 it is a locator.  See Section 6.10.3.1
   for more details.

   The Virtual bit in this sub-scheme allows the easy addition of the
   ACP as a component to existing systems without causing problems in
   the port number space between the services in the ACP and the
   existing system.  V:0 is the ACP router (autonomic node base system),
   V:1 is the host with pre-existing transport endpoints on it that
   could collide with the transport endpoints used by the ACP router.
   The ACP host could for example have a p2p virtual interface with the
   V:0 address as its router into the ACP.  Depending on the software
   design of ASAs, which is outside the scope of this specification,
   they may use the V:0 or V:1 address.

   The location of the V bit(s) at the end of the address allows the
   announcement of a single prefix for each ACP node.  For example, in a
   network with 20,000 ACP nodes, this avoid 20,000 additional routes in
   the routing table.

6.10.3.1.  Usage of the Zone-ID Field

   The Zone-ID allows for the introduction of route prefixes in the
   addressing scheme.

   Zone-ID = 0 is the default addressing scheme in an ACP domain.  Every
   ACP node with a Zone Addressing Sub-Scheme address MUST respond to
   its ACP address with Zone-ID = 0.  Used on its own this leads to a
   non-hierarchical address scheme, which is suitable for networks up to
   a certain size.  Zone-ID = 0 addresses act as identifiers for the
   nodes, and aggregation of these address in the ACP routing table is
   not possible.

   If aggregation is required, the 13-bit Zone-ID value allows for up to
   8191 zones.  The allocation of Zone-ID’s may either happen
   automatically through a to-be-defined algorithm; or it could be
   configured and maintained explicitly.

   If a node learns (see Appendix A.10.1) that it is part of a zone, it
   MUST also respond to its ACP address with that Zone-ID.  In this case
   the ACP Loopback is configured with two ACP addresses: One for Zone-
   ID = 0 and one for the assigned Zone-ID.  This method allows for a
   smooth transition between a flat addressing scheme and a hierarchical
   one.

   A node knowing it is in a zone MUST use that Zone-ID != 0 address in
   GRASP locator fields.  This eliminates the use of the identifier
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   address (Zone-ID = 0) in forwarding and the need for network wide
   reachability of those non-aggregable identifier addresses.  Zone-ID
   != 0 addresses are assumed to be aggregable in routing/forwarding
   based on how they are allocated in the ACP topology.

   Note: The Zone-ID is one method to introduce structure or hierarchy
   into the ACP.  Another way is the use of the routing subdomain field
   in the ACP that leads to multiple /48 Global IDs within an ACP
   domain.

   Note: Zones and Zone-ID as defined here are not related to [RFC4007]
   zones or zone_id.  ACP zone addresses are not scoped (reachable only
   from within an RFC4007 zone) but reachable across the whole ACP.  An
   RFC4007 zone_id is a zone index that has only local significance on a
   node, whereas an ACP Zone-ID is an identifier for an ACP zone that is
   unique across that ACP.

6.10.4.  ACP Manual Addressing Sub-Scheme

   The sub-scheme defined here is defined by the Type value 00b (zero)
   in the base scheme and 1 in the Z bit.

                   64                             64
   +---------------------+---+----------++-----------------------------+
   |    (base scheme)    | Z | Subnet-ID||     Interface Identifier    |
   +---------------------+---+----------++-----------------------------+
            50             1    13

                Figure 11: ACP Manual Addressing Sub-Scheme

   The fields are defined as follows:

   o  Subnet-ID: Configured subnet identifier.

   o  Z: MUST be 1.

   o  Interface Identifier.

   This sub-scheme is meant for "manual" allocation to subnets where the
   other addressing schemes cannot be used.  The primary use case is for
   assignment to ACP connect subnets (see Section 8.1.1).

   "Manual" means that allocations of the Subnet-ID need to be done
   today with pre-existing, non-autonomic mechanisms.  Every subnet that
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   uses this addressing sub-scheme needs to use a unique Subnet-ID
   (unless some anycast setup is done).

   The Z bit field was added to distinguish Zone addressing and manual
   addressing sub-schemes without requiring one more bit in the base
   scheme and therefore allowing for the Vlong scheme (described below)
   to have one more bit available.

   Manual addressing sub-scheme addresses SHOULD NOT be used in ACP
   domain certificates.  Any node capable to build ACP secure channels
   and permitted by Registrar policy to participate in building ACP
   secure channels SHOULD receive an ACP address (prefix) from one of
   the other ACP addressing sub-schemes.  Nodes not capable (or
   permitted) to participate in ACP secure channels can connect to the
   ACP via ACP connect interfaces of ACP edge nodes (see Section 8.1),
   without setting up an ACP secure channel.  Their ACP domain
   certificate MUST include an empty acp-address to indicate that their
   ACP domain certificate is only usable for non- ACP secure channel
   authentication, such as end-to-end transport connections across the
   ACP or Data-Plane.

   Address management of ACP connect subnets is done using traditional
   assignment methods and existing IPv6 protocols.  See Section 8.1.3
   for details.

6.10.5.  ACP Vlong Addressing Sub-Scheme

   The sub-scheme defined here is defined by the Type value 01b (one) in
   the base scheme.

             50                              78
   +---------------------++-----------------------------+----------+
   |    (base scheme)    ||           Node-ID                      |
   |                     || Registrar-ID |   Node-Number|        V |
   +---------------------++--------------+--------------+----------+
             50                46             24/16          8/16

                Figure 12: ACP Vlong Addressing Sub-Scheme

   This addressing scheme foregoes the Zone-ID field to allow for
   larger, flatter routed networks (e.g., as in IoT) with 8421376 Node-
   Numbers (2^23+2^15).  It also allows for up to 2^16 (i.e. 65536)
   different virtualized addresses within a node, which could be used to
   address individual software components in an ACP node.

   The fields are the same as in the Zone-ID sub-scheme with the
   following refinements:
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   o  V: Virtualization field: 8 or 16 bit.  Values 0 and 1 are assigned
      in the same way as in the Zone-ID sub-scheme, the other values are
      for further use by the node.

   o  Registrar-ID: To maximize Node-Number and V, the Registrar-ID is
      reduced to 46-bits.  This still permits the use of the MAC address
      of an ACP registrar by removing the V and U bits from the 48-bits
      of a MAC address (those two bits are never unique, so they cannot
      be used to distinguish MAC addresses).

   o  If the first bit of the "Node-Number" is "1", then the Node-Number
      is 16-bit long and the V field is 16-bit long.  Otherwise the
      Node-Number is 24-bit long and the V field is 8-bit long.

   "0" bit Node-Numbers are intended to be used for "general purpose"
   ACP nodes that would potentially have a limited number (< 256) of
   clients (ASA/Autonomic Functions or legacy services) of the ACP that
   require separate V(irtual) addresses.  "1" bit Node-Numbers are
   intended for ACP nodes that are ACP edge nodes (see Section 8.1.1) or
   that have a large number of clients requiring separate V(irtual)
   addresses.  For example large SDN controllers with container modular
   software architecture (see Section 8.1.2).

   In the Vlong addressing sub-scheme, the ACP address in the
   certificate has all V field bits as zero.  The ACP address set for
   the node includes any V value.

6.10.6.  Other ACP Addressing Sub-Schemes

   Before further addressing sub-schemes are defined, experience with
   the schemes defined here should be collected.  The schemes defined in
   this document have been devised to allow hopefully sufficiently
   flexible setup of ACPs for a variety of situation.  These reasons
   also lead to the fairly liberal use of address space: The Zone
   Addressing Sub-Scheme is intended to enable optimized routing in
   large networks by reserving bits for Zone-ID’s.  The Vlong addressing
   sub-scheme enables the allocation of 8/16-bit of addresses inside
   individual ACP nodes.  Both address spaces allow distributed,
   uncoordinated allocation of node addresses by reserving bits for the
   registrar-ID field in the address.

   IANA is asked need to assign a new "type" for each new addressing
   sub-scheme.  With the current allocations, only 2 more schemes are
   possible, so the last addressing scheme MUST provide further
   extensions (e.g., by reserving bits from it for further extensions).
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6.10.7.  ACP Registrars

   ACP registrars are responsible to enroll candidate ACP nodes with ACP
   domain certificates and associated trust point(s).  They are also
   responsible that an ACP domain information field is included in the
   ACP domain certificate carrying the ACP domain name and the ACP nodes
   ACP address prefix.  This address prefix is intended to persist
   unchanged through the lifetime of the ACP node.

   Because of the ACP addressing sub-schemes, an ACP domain can have
   multiple distributed ACP registrars that do not need to coordinate
   for address assignment.  ACP registrars can also be sub-CAs, in which
   case they can also assign ACP domain certificates without
   dependencies against a (shared) root-CA (except during renewals of
   their own certificates).

   ACP registrars are PKI registration authorities (RA) enhanced with
   the handling of the ACP domain certificate specific fields.  They
   request certificates for ACP nodes from a Certificate Authority
   through any appropriate mechanism (out of scope in this document, but
   required to be BRSKI for ANI registrars).  Only nodes that are
   trusted to be compliant with the requirements against registrar
   described in this section must be given the necessary credentials to
   perform this RA function, such as credentials for the BRSKI
   connection to the CA for ANI registrars.

6.10.7.1.  Use of BRSKI or other Mechanism/Protocols

   Any protocols or mechanisms may be used as ACP registrars, as long as
   the resulting ACP certificate and trust anchors allow to perform the
   ACP domain membership described in Section 6.1.2 with other ACP
   domain members, and meet the ACP addressing requirements for its ACP
   domain information field as described further below in this section.

   An ACP registrar could be a person deciding whether to enroll a
   candidate ACP node and then orchestrating the enrollment of the ACP
   certificate and associated trust anchor, using command line or web
   based commands on the candidate ACP node and trust anchor to generate
   and sign the ACP domain certificate and configure certificate and
   trust anchors onto the node.

   The only currently defined protocol for ACP registrars is BRSKI
   ([I-D.ietf-anima-bootstrapping-keyinfra]).  When BRSKI is used, the
   ACP nodes are called ANI nodes, and the ACP registrars are called
   BRSKI or ANI registrars.  The BRSKI specification does not define the
   handling of the ACP domain information field because the rules do not
   depend on BRSKI but apply equally to any protocols/mechanisms an ACP
   registrar may use.
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6.10.7.2.  Unique Address/Prefix allocation

   ACP registrars MUST NOT allocate ACP address prefixes to ACP nodes
   via the ACP domain information field that would collide with the ACP
   address prefixes of other ACP nodes in the same ACP domain.  This
   includes both prefixes allocated by the same ACP registrar to
   different ACP nodes as well as prefixes allocated by other ACP
   registrars for the same ACP domain.

   For this purpose, an ACP registrar MUST have one or more unique
   46-bit identifiers called Registrar-IDs used to allocate ACP address
   prefixes.  The lower 46-bits of a EUI-48 MAC addresses are globally
   unique 46 bit identifiers, so ACP registrars with known unique EUI-48
   MAC addresses can use these as Registrar-IDs.  Registrar-IDs do not
   need to be globally unique but only unique across the set of ACP
   registrars for an ACP domain, so other means to assign unique
   Registrar-IDs to ACP registrars can be used, such as configuration on
   the ACP registrars.

   When the candidate ACP device (called Pledge in BRSKI) is to be
   enrolled into an ACP domain, the ACP registrar needs to allocate a
   unique ACP address to the node and ensure that the ACP certificate
   gets a domain information field (Section 6.1.1) with the appropriate
   information - ACP domain-name, ACP-address, and so on.  If the ACP
   registrar uses BRSKI, it signals the ACP domain information field to
   the Pledge via the EST /csraddrs command (see
   [I-D.ietf-anima-bootstrapping-keyinfra], section 5.8.2 - "EST CSR
   Attributes").

   [RFC Editor: please update reference to section 5.8.2 accordingly
   with latest BRSKI draft at time of publishing, or RFC]

6.10.7.3.  Addressing Sub-Scheme Policies

   The ACP registrar selects for the candidate ACP node a unique address
   prefix from an appropriate ACP addressing sub-scheme, either a zone
   addressing sub-scheme prefix (see Section 6.10.3), or a Vlong
   addressing sub-scheme prefix (see Section 6.10.5).  The assigned ACP
   address prefix encoded in the domain information field of the ACP
   domain certificate indicates to the ACP node its ACP address
   information.  The sub-addressing scheme indicates the prefix length:
   /127 for zone address sub-scheme, /120 or /112 for Vlong address sub-
   scheme.  The first address of the prefix is the ACP address, all
   other addresses in the prefix are for other uses by the ACP node as
   described in the zone and Vlong addressing sub scheme sections.  The
   ACP address prefix itself is then signaled by the ACP node into the
   ACP routing protocol (see Section 6.11) to establish IPv6
   reachability across the ACP.
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   The choice of addressing sub-scheme and prefix-length in the Vlong
   address sub-scheme is subject to ACP registrar policy.  It could be
   an ACP domain wide policy, or a per ACP node or per ACP node type
   policy.  For example, in BRSKI, the ACP registrar is aware of the
   IDevID of the candidate ACP node, which contains a serialNnumber that
   is typically indicating the nodes vendor and device type and can be
   used to drive a policy selecting an appropriate addressing sub-scheme
   for the (class of) node(s).

   ACP registrars SHOULD default to allocate ACP zone sub-address scheme
   addresses with Subnet-ID 0.  Allocation and use of zone sub-addresses
   with Subnet-ID != 0 is outside the scope of this specification
   because it would need to go along with rules for extending ACP
   routing to multiple zones, which is outside the scope of this
   specification.

   ACP registrars that can use the IDevID of a candidate ACP device
   SHOULD be able to choose the zone vs. Vlong sub-address scheme for
   ACP nodes based on the serialNumber of the IDevID, for example by the
   PID (Product Identifier) part which identifies the product type, or
   the complete serialNumber.

   In a simple allocation scheme, an ACP registrar remembers
   persistently across reboots its currently used Registrar-ID and for
   each addressing scheme (zone with Subnet-ID 0, Vlong with /112, Vlong
   with /120), the next Node-Number available for allocation and
   increases it during successful enrollment to an ACP node.  In this
   simple allocation scheme, the ACP registrar would not recycle ACP
   address prefixes from no longer used ACP nodes.

6.10.7.4.  Address/Prefix Persistence

   When an ACP domain certificate is renewed or rekeyed via EST or other
   mechanisms, the ACP address/prefix in the ACP domain information
   field MUST be maintained unless security issues or violations of the
   unique address assignment requirements exist or are suspected by the
   ACP registrar.

   ACP address information SHOULD be maintained even when the renewing/
   rekeying ACP registrar is not the same as the one that enrolled the
   prior ACP certificate.  See Section 10.2.4 for an example.

   ACP address information SHOULD also be maintained even after an ACP
   certificate did expire or failed.  See Section 6.1.4.5 and
   Section 6.1.4.6.
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6.10.7.5.  Further Details

   Section 10.2 discusses further informative details of ACP registrars:
   What interactions registrars need, what parameters they require,
   certificate renewal and limitations, use of sub-CAs on registrars and
   centralized policy control.

6.11.  Routing in the ACP

   Once ULA address are set up all autonomic entities should run a
   routing protocol within the autonomic control plane context.  This
   routing protocol distributes the ULA created in the previous section
   for reachability.  The use of the autonomic control plane specific
   context eliminates the probable clash with Data-Plane routing tables
   and also secures the ACP from interference from the configuration
   mismatch or incorrect routing updates.

   The establishment of the routing plane and its parameters are
   automatic and strictly within the confines of the autonomic control
   plane.  Therefore, no explicit configuration is required.

   All routing updates are automatically secured in transit as the
   channels of the ACP are encrypted, and this routing runs only inside
   the ACP.

   The routing protocol inside the ACP is RPL ([RFC6550]).  See
   Appendix A.4 for more details on the choice of RPL.

   RPL adjacencies are set up across all ACP channels in the same domain
   including all its routing subdomains.  See Appendix A.7 for more
   details.

6.11.1.  RPL Profile

   The following is a description of the RPL profile that ACP nodes need
   to support by default.  The format of this section is derived from
   draft-ietf-roll-applicability-template.

6.11.1.1.  Overview

   The choosen RPL profile is one that expects a fairly reliable network
   with reasonably fast links so that RPL convergence will be triggered
   immediately upon recognition of link failure/recovery.

   The profile is also designed to not require any RPL Data-Plane
   artifacts (such as defined in [RFC6553]).  This is largely driven by
   the desire to avoid introducing the required Hop-by-Hop headers into
   the ACP forwarding plane, especially to support devices with silicon
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   forwarding planes that cannot support insertion/removal of these
   headers in silicon or hop-by-hop forwarding based on them.  Note:
   Insertion/removal of headers by a (potentially silicon based) ACP
   node would be be necessary when senders/receivers of ACP packets are
   legacy NOC devices connected via ACP connect (see Section 8.1.1 to
   the ACP.  Their connectivity can be handled in RPL as non-RPL-aware
   leafs (or "Internet") according to the Data-Plane architecture
   explained in [I-D.ietf-roll-useofrplinfo].

   To avoid Data-Plane artefacts, the profile uses a simple destination
   prefix based routing/forwarding table.  To achieve this, the profiles
   uses only one RPL instanceID.  This single instanceID can contain
   only one Destination Oriented Directed Acyclic Graph (DODAG), and the
   routing/forwarding table can therefore only calculate a single class
   of service ("best effort towards the primary NOC/root") and cannot
   create optimized routing paths to accomplish latency or energy goals
   between any two nodes.

   Consider a network that has multiple NOCs in different locations.
   Only one NOC will become the DODAG root.  Traffic to and from other
   NOCs has to be sent through the DODAG (shortest path tree) rooted in
   the primary NOC.  Depending on topology, this can be an annoyance
   from a latency point of view or from minimizing network path
   resources, but this is deemed to be acceptable given how ACP traffic
   is "only" network management/control traffic.

   Using a single instanceID/DODAG does not introduce a single point of
   failure, as the DODAG will reconfigure itself when it detects data-
   plane forwarding failures including choosing a different root when
   the primary one fails.  See Appendix A.10.4 for more details.

   The benefit of this profile, especially compared to other IGPs is
   that it does not calculate routes for node reachable through the same
   interface as the DODAG root.  This RPL profile can therefore scale to
   much larger number of ACP nodes in the same amount of compute and
   memory than other routing protocols.  Especially on nodes that are
   leafs of the topology or those close to those leafs.

   The lack of RPL Packet Information (RPI, the IPv6 header for RPL
   defined by [RFC6553]), means that the Data-Plane will have no rank
   value that can be used to detect loops.  As a result, traffic may
   loop until the time-to-live (TTL) of the packet reaches zero.  This
   is the same behavior as that of other IGPs that do not have the Data-
   Plane options of RPL.

   Since links in the ACP are assumed to be mostly reliable (or have
   link layer protection against loss) and because there is no stretch
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   according to Section 6.11.1.7, loops caused by RPL routing packet
   loss should be exceedingly rare.

   There are a variety of mechanisms possible in RPL to further avoid
   temporary loops: DODAG Information Objects (DIOs) SHOULD be sent
   2...3 times to inform children when losing the last parent.  The
   technique in [RFC6550] section 8.2.2.6.  (Detaching) SHOULD be
   favored over that in section 8.2.2.5., (Poisoning) because it allows
   local connectivity.  Nodes SHOULD select more than one parent, at
   least 3 if possible, and send Destination Advertisement Objects
   (DAO)s to all of them in parallel.

   Additionally, failed ACP tunnels can be quickly discovered the secure
   channel protocol mechanisms such as IKEv2 Dead Peer Detection.  This
   can function as a replacement for a Low-power and Lossy Networks’
   (LLN’s) Expected Transmission Count (ETX) feature that is not used in
   this profile.  A failure of an ACP tunnel should imediately signal
   the RPL control plane to pick a different parent.

6.11.1.2.  RPL Instances

   Single RPL instance.  Default RPLInstanceID = 0.

6.11.1.3.  Storing vs. Non-Storing Mode

   RPL Mode of Operations (MOP): MUST support mode 2 - "Storing Mode of
   Operations with no multicast support".  Implementations MAY support
   mode 3 ("... with multicast support" as that is a superset of mode
   2).  Note: Root indicates mode in DIO flow.

6.11.1.4.  DAO Policy

   Proactive, aggressive DAO state maintenance:

   o  Use K-flag in unsolicited DAO indicating change from previous
      information (to require DAO-ACK).

   o  Retry such DAO DAO-RETRIES(3) times with DAO- ACK_TIME_OUT(256ms)
      in between.

6.11.1.5.  Path Metric

   Hopcount.
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6.11.1.6.  Objective Function

   Objective Function (OF): Use OF0 [RFC6552].  No use of metric
   containers.

   rank_factor: Derived from link speed: <= 100Mbps:
   LOW_SPEED_FACTOR(5), else HIGH_SPEED_FACTOR(1)

6.11.1.7.  DODAG Repair

   Global Repair: we assume stable links and ranks (metrics), so no need
   to periodically rebuild DODAG.  DODAG version only incremented under
   catastrophic events (e.g., administrative action).

   Local Repair: As soon as link breakage is detected, send No-Path DAO
   for all the targets that were reachable only via this link.  As soon
   as link repair is detected, validate if this link provides you a
   better parent.  If so, compute your new rank, and send new DIO that
   advertises your new rank.  Then send a DAO with a new path sequence
   about yourself.

   stretch_rank: none provided ("not stretched").

   Data Path Validation: Not used.

   Trickle: Not used.

6.11.1.8.  Multicast

   Not used yet but possible because of the selected mode of operations.

6.11.1.9.  Security

   [RFC6550] security not used, substituted by ACP security.

   Because the ACP links already include provisions for confidentiality
   and integrity protection, their usage at the RPL layer would be
   redundant, and so RPL security is not used.

6.11.1.10.  P2P communications

   Not used.

6.11.1.11.  IPv6 address configuration

   Every ACP node (RPL node) announces an IPv6 prefix covering the
   address(es) used in the ACP node.  The prefix length depends on the
   chosen addressing sub-scheme of the ACP address provisioned into the
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   certificate of the ACP node, e.g., /127 for Zone Addressing Sub-
   Scheme or /112 or /120 for Vlong addressing sub-scheme.  See
   Section 6.10 for more details.

   Every ACP node MUST install a black hole (aka null) route for
   whatever ACP address space that it advertises (i.e.: the /96 or
   /127).  This is avoid routing loops for addresses that an ACP node
   has not (yet) used.

6.11.1.12.  Administrative parameters

   Administrative Preference ([RFC6550], 3.2.6 - to become root):
   Indicated in DODAGPreference field of DIO message.

   o  Explicit configured "root": 0b100

   o  ACP registrar (Default): 0b011

   o  ACP-connect (non-registrar): 0b010

   o  Default: 0b001.

6.11.1.13.  RPL Data-Plane artifacts

   RPI (RPL Packet Information [RFC6553]): Not used as there is only a
   single instance, and data path validation is not being used.

   SRH (RPL Source Routing - RFC6552): Not used.  Storing mode is being
   used.

6.11.1.14.  Unknown Destinations

   Because RPL minimizes the size of the routing and forwarding table,
   prefixes reachable through the same interface as the RPL root are not
   known on every ACP node.  Therefore traffic to unknown destination
   addresses can only be discovered at the RPL root.  The RPL root
   SHOULD have attach safe mechanisms to operationally discover and log
   such packets.

6.12.  General ACP Considerations

   Since channels are by default established between adjacent neighbors,
   the resulting overlay network does hop-by-hop encryption.  Each node
   decrypts incoming traffic from the ACP, and encrypts outgoing traffic
   to its neighbors in the ACP.  Routing is discussed in Section 6.11.
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6.12.1.  Performance

   There are no performance requirements against ACP implementations
   defined in this document because the performance requirements depend
   on the intended use case.  It is expected that full autonomic node
   with a wide range of ASA can require high forwarding plane
   performance in the ACP, for example for telemetry.  Implementations
   of ACP to solely support traditional/SDN style use cases can benefit
   from ACP at lower performance, especially if the ACP is used only for
   critical operations, e.g., when the Data-Plane is not available.  The
   design of the ACP as specified in this document is intended to
   support a wide range of performance options: It is intended to allow
   software-only implementations at potentially low performance, but can
   also support high performance options.  See [RFC8368] for more
   details.

6.12.2.  Addressing of Secure Channels

   In order to be independent of the Data-Plane (routing and addressing)
   the GRASP discovered (autonomic) ACP secure channels use IPv6 link
   local addresses between adjacent neighbors.  Note: Section 8.2
   specifies extensions in which secure channels are configured tunnels
   operating over the Data-Plane, so those secure channels cannot be
   independent of the Data-Plane.

   To avoid that Data-Plane configuration can impact the operations of
   the IPv6 (link-local) interface/address used for ACP channels,
   appropriate implementation considerations are required.  If the IPv6
   interface/link-local address is shared with the Data-Plane it needs
   to be impossible to unconfigure/disable it through configuration.
   Instead of sharing the IPv6 interface/link-local address, a separate
   (virtual) interface with a separate IPv6 link-local address can be
   used.  For example, the ACP interface could be run over a separate
   MAC address of an underlying L2 (Ethernet) interface.  For more
   details and options, see Appendix A.10.2.

   Note that other (non-ideal) implementation choices may introduce
   additional undesired dependencies against the Data-Plane.  For
   example shared code and configuration of the secure channel protocols
   (IPsec / DTLS).

6.12.3.  MTU

   The MTU for ACP secure channels must be derived locally from the
   underlying link MTU minus the secure channel encapsulation overhead.

   ACP secure Channel protocols do not need to perform MTU discovery
   because they are built across L2 adjacencies - the MTU on both sides
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   connecting to the L2 connection are assumed to be consistent.
   Extensions to ACP where the ACP is for example tunneled need to
   consider how to guarantee MTU consistency.  This is an issue of
   tunnels, not an issue of running the ACP across a tunnel.  Transport
   stacks running across ACP can perform normal PMTUD (Path MTU
   Discovery).  Because the ACP is meant to be prioritize reliability
   over performance, they MAY opt to only expect IPv6 minimum MTU (1280)
   to avoid running into PMTUD implementation bugs or underlying link
   MTU mismatch problems.

6.12.4.  Multiple links between nodes

   If two nodes are connected via several links, the ACP SHOULD be
   established across every link, but it is possible to establish the
   ACP only on a sub-set of links.  Having an ACP channel on every link
   has a number of advantages, for example it allows for a faster
   failover in case of link failure, and it reflects the physical
   topology more closely.  Using a subset of links (for example, a
   single link), reduces resource consumption on the node, because state
   needs to be kept per ACP channel.  The negotiation scheme explained
   in Section 6.5 allows Alice (the node with the higher ACP address) to
   drop all but the desired ACP channels to Bob - and Bob will not re-
   try to build these secure channels from his side unless Alice shows
   up with a previously unknown GRASP announcement (e.g., on a different
   link or with a different address announced in GRASP).

6.12.5.  ACP interfaces

   The ACP VRF has conceptually two type of interfaces: The "ACP
   Loopback interface(s)" to which the ACP ULA address(es) are assigned
   and the "ACP virtual interfaces" that are mapped to the ACP secure
   channels.

   The term "Loopback interface" was introduced initially to refer to an
   internal interface on a node that would allow IP traffic between
   transport endpoints on the node in the absence or failure of any or
   all external interfaces, see [RFC4291] section 2.5.3.

   Even though Loopback interfaces were originally designed to hold only
   Loopback addresses not reachable from outside the node, these
   interfaces are also commonly used today to hold addresses reachable
   from the outside.  They are meant to be reachable independent of any
   external interface being operational, and therefore to be more
   resilient.  These addresses on Loopback interfaces can be thought of
   as "node addresses" instead of "interface addresses", and that is
   what ACP address(es) are.  This construct makes it therefore possible
   to address ACP nodes with a well-defined set of addresses independent
   of the number of external interfaces.
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   For these reason, the ACP (ULA) address(es) are assigned to Loopback
   interface(s).

   Any type of ACP secure channels to another ACP node can be mapped to
   ACP virtual interfaces in following ways.  This is independent of the
   chosen secure channel protocol (IPsec, DTLS or other future protocol
   - standards or non-standards):

   ACP point-to-point virtual interface:

   Each ACP secure channel is mapped into a separate point-to-point ACP
   virtual interface.  If a physical subnet has more than two ACP
   capable nodes (in the same domain), this implementation approach will
   lead to a full mesh of ACP virtual interfaces between them.

   ACP multi-access virtual interface:

   In a more advanced implementation approach, the ACP will construct a
   single multi-access ACP virtual interface for all ACP secure channels
   to ACP capable nodes reachable across the same underlying (physical)
   subnet.  IPv6 link-local multicast packets sent into an ACP multi-
   access virtual interface are replicated to every ACP secure channel
   mapped into the ACP multicast-access virtual interface.  IPv6 unicast
   packets sent into an ACP multi-access virtual interface are sent to
   the ACP secure channel that belongs to the ACP neighbor that is the
   next-hop in the ACP forwarding table entry used to reach the packets
   destination address.

   There is no requirement for all ACP nodes on the same multi-access
   subnet to use the same type of ACP virtual interface.  This is purely
   a node local decision.

   ACP nodes MUST perform standard IPv6 operations across ACP virtual
   interfaces including SLAAC (Stateless Address Auto-Configuration) -
   [RFC4862]) to assign their IPv6 link local address on the ACP virtual
   interface and ND (Neighbor Discovery - [RFC4861]) to discover which
   IPv6 link-local neighbor address belongs to which ACP secure channel
   mapped to the ACP virtual interface.  This is independent of whether
   the ACP virtual interface is point-to-point or multi-access.

   "Optimistic Duplicate Address Detection (DAD)" according to [RFC4429]
   is RECOMMENDED because the likelihood for duplicates between ACP
   nodes is highly improbable as long as the address can be formed from
   a globally unique local assigned identifier (e.g., EUI-48/EUI-64, see
   below).

   ACP nodes MAY reduce the amount of link-local IPv6 multicast packets
   from ND by learning the IPv6 link-local neighbor address to ACP
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   secure channel mapping from other messages such as the source address
   of IPv6 link-local multicast RPL messages - and therefore forego the
   need to send Neighbor Solicitation messages.

   The ACP virtual interface IPv6 link local address can be derived from
   any appropriate local mechanism such as node local EUI-48 or EUI-64
   ("EUI" stands for "Extended Unique Identifier").  It MUST NOT depend
   on something that is attackable from the Data-Plane such as the IPv6
   link-local address of the underlying physical interface, which can be
   attacked by SLAAC, or parameters of the secure channel encapsulation
   header that may not be protected by the secure channel mechanism.

   The link-layer address of an ACP virtual interface is the address
   used for the underlying interface across which the secure tunnels are
   built, typically Ethernet addresses.  Because unicast IPv6 packets
   sent to an ACP virtual interface are not sent to a link-layer
   destination address but rather an ACP secure channel, the link-layer
   address fields SHOULD be ignored on reception and instead the ACP
   secure channel from which the message was received should be
   remembered.

   Multi-access ACP virtual interfaces are preferable implementations
   when the underlying interface is a (broadcast) multi-access subnet
   because they do reflect the presence of the underlying multi-access
   subnet into the virtual interfaces of the ACP.  This makes it for
   example simpler to build services with topology awareness inside the
   ACP VRF in the same way as they could have been built running
   natively on the multi-access interfaces.

   Consider also the impact of point-to-point vs. multi-access virtual
   interface on the efficiency of flooding via link local multicasted
   messages:

   Assume a LAN with three ACP neighbors, Alice, Bob and Carol.  Alice’s
   ACP GRASP wants to send a link-local GRASP multicast message to Bob
   and Carol.  If Alice’s ACP emulates the LAN as one point-to-point
   virtual interface to Bob and one to Carol, The sending applications
   itself will send two copies, if Alice’s ACP emulates a LAN, GRASP
   will send one packet and the ACP will replicate it.  The result is
   the same.  The difference happens when Bob and Carol receive their
   packet.  If they use ACP point-to-point virtual interfaces, their
   GRASP instance would forward the packet from Alice to each other as
   part of the GRASP flooding procedure.  These packets are unnecessary
   and would be discarded by GRASP on receipt as duplicates (by use of
   the GRASP Session ID).  If Bob and Carol’s ACP would emulate a multi-
   access virtual interface, then this would not happen, because GRASPs
   flooding procedure does not replicate back packets to the interface
   that they were received from.
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   Note that link-local GRASP multicast messages are not sent directly
   as IPv6 link-local multicast UDP messages into ACP virtual
   interfaces, but instead into ACP GRASP virtual interfaces, that are
   layered on top of ACP virtual interfaces to add TCP reliability to
   link-local multicast GRASP messages.  Nevertheless, these ACP GRASP
   virtual interfaces perform the same replication of message and,
   therefore, result in the same impact on flooding.  See Section 6.8.2
   for more details.

   RPL does support operations and correct routing table construction
   across non-broadcast multi-access (NBMA) subnets.  This is common
   when using many radio technologies.  When such NBMA subnets are used,
   they MUST NOT be represented as ACP multi-access virtual interfaces
   because the replication of IPv6 link-local multicast messages will
   not reach all NBMA subnet neighbors.  In result, GRASP message
   flooding would fail.  Instead, each ACP secure channel across such an
   interface MUST be represented as a ACP point-to-point virtual
   interface.  See also Appendix A.10.4.

   Care must also be taken when creating multi-access ACP virtual
   interfaces across ACP secure channels between ACP nodes in different
   domains or routing subdomains.  The policies to be negotiated may be
   described as peer-to-peer policies in which case it is easier to
   create ACP point-to-point virtual interfaces for these secure
   channels.

7.  ACP support on L2 switches/ports (Normative)

7.1.  Why (Benefits of ACP on L2 switches)

       ANrtr1 ------ ANswitch1 --- ANswitch2 ------- ANrtr2
                 .../   \                   \  ...
       ANrtrM ------     \                   ------- ANrtrN
                          ANswitchM ...

                 Figure 13: Topology with L2 ACP switches

   Consider a large L2 LAN with ANrtr1...ANrtrN connected via some
   topology of L2 switches.  Examples include large enterprise campus
   networks with an L2 core, IoT networks or broadband aggregation
   networks which often have even a multi-level L2 switched topology.

   If the discovery protocol used for the ACP is operating at the subnet
   level, every ACP router will see all other ACP routers on the LAN as
   neighbors and a full mesh of ACP channels will be built.  If some or
   all of the AN switches are autonomic with the same discovery
   protocol, then the full mesh would include those switches as well.
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   A full mesh of ACP connections can create fundamental scale
   challenges.  The number of security associations of the secure
   channel protocols will likely not scale arbitrarily, especially when
   they leverage platform accelerated encryption/decryption.  Likewise,
   any other ACP operations (such as routing) needs to scale to the
   number of direct ACP neighbors.  An ACP router with just 4 physical
   interfaces might be deployed into a LAN with hundreds of neighbors
   connected via switches.  Introducing such a new unpredictable scaling
   factor requirement makes it harder to support the ACP on arbitrary
   platforms and in arbitrary deployments.

   Predictable scaling requirements for ACP neighbors can most easily be
   achieved if in topologies such as these, ACP capable L2 switches can
   ensure that discovery messages terminate on them so that neighboring
   ACP routers and switches will only find the physically connected ACP
   L2 switches as their candidate ACP neighbors.  With such a discovery
   mechanism in place, the ACP and its security associations will only
   need to scale to the number of physical interfaces instead of a
   potentially much larger number of "LAN-connected" neighbors.  And the
   ACP topology will follow directly the physical topology, something
   which can then also be leveraged in management operations or by ASAs.

   In the example above, consider ANswitch1 and ANswitchM are ACP
   capable, and ANswitch2 is not ACP capable.  The desired ACP topology
   is that ANrtr1 and ANrtrM only have an ACP connection to ANswitch1,
   and that ANswitch1, ANrtr2, ANrtrN have a full mesh of ACP connection
   amongst each other.  ANswitch1 also has an ACP connection with
   ANswitchM and ANswitchM has ACP connections to anything else behind
   it.

7.2.  How (per L2 port DULL GRASP)

   To support ACP on L2 switches or L2 switched ports of an L3 device,
   it is necessary to make those L2 ports look like L3 interfaces for
   the ACP implementation.  This primarily involves the creation of a
   separate DULL GRASP instance/domain on every such L2 port.  Because
   GRASP has a dedicated link-local IPv6 multicast address
   (ALL_GRASP_NEIGHBORS), it is sufficient that all packets for this
   address are being extracted at the port level and passed to that DULL
   GRASP instance.  Likewise the IPv6 link-local multicast packets sent
   by that DULL GRASP instance need to be sent only towards the L2 port
   for this DULL GRASP instance.

   If the device with L2 ports is supporting per L2 port ACP DULL GRASP
   as well as MLD snooping ([RFC4541]), then MLD snooping must be
   changed to never forward packets for ALL_GRASP_NEIGHBORS because that
   would cause the problem that per L2 port ACP DULL GRASP is meant to
   overcome (forwarding DULL GRASP packets across L2 ports).
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   The rest of ACP operations can operate in the same way as in L3
   devices: Assume for example that the device is an L3/L2 hybrid device
   where L3 interfaces are assigned to VLANs and each VLAN has
   potentially multiple ports.  DULL GRASP is run as described
   individually on each L2 port.  When it discovers a candidate ACP
   neighbor, it passes its IPv6 link-local address and supported secure
   channel protocols to the ACP secure channel negotiation that can be
   bound to the L3 (VLAN) interface.  It will simply use link-local IPv6
   multicast packets to the candidate ACP neighbor.  Once a secure
   channel is established to such a neighbor, the virtual interface to
   which this secure channel is mapped should then actually be the L2
   port and not the L3 interface to best map the actual physical
   topology into the ACP virtual interfaces.  See Section 6.12.5 for
   more details about how to map secure channels into ACP virtual
   interfaces.  Note that a single L2 port can still have multiple ACP
   neighbors if it connect for example to multiple ACP neighbors via a
   non-ACP enabled switch.  The per L2 port ACP virtual interface can
   therefore still be a multi-access virtual LAN.

   For example, in the above picture, ANswitch1 would run separate DULL
   GRASP instances on its ports to ANrtr1, ANswitch2 and ANswitchI, even
   though all those three ports may be in the data plane in the same
   (V)LAN and perform L2 switching between these ports, ANswitch1 would
   perform ACP L3 routing between them.

   The description in the previous paragraph was specifically meant to
   illustrate that on hybrid L3/L2 devices that are common in
   enterprise, IoT and broadband aggregation, there is only the GRASP
   packet extraction (by Ethernet address) and GRASP link-local
   multicast per L2-port packet injection that has to consider L2 ports
   at the hardware forwarding level.  The remaining operations are
   purely ACP control plane and setup of secure channels across the L3
   interface.  This hopefully makes support for per-L2 port ACP on those
   hybrid devices easy.

   This L2/L3 optimized approach is subject to "address stealing", e.g.,
   where a device on one port uses addresses of a device on another
   port.  This is a generic issue in L2 LANs and switches often already
   have some form of "port security" to prohibit this.  They rely on NDP
   or DHCP learning of which port/MAC-address and IPv6 address belong
   together and block duplicates.  This type of function needs to be
   enabled to prohibit DoS attacks.  Likewise the GRASP DULL instance
   needs to ensure that the IPv6 address in the locator-option matches
   the source IPv6 address of the DULL GRASP packet.

   In devices without such a mix of L2 port/interfaces and L3 interfaces
   (to terminate any transport layer connections), implementation
   details will differ.  Logically most simply every L2 port is
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   considered and used as a separate L3 subnet for all ACP operations.
   The fact that the ACP only requires IPv6 link-local unicast and
   multicast should make support for it on any type of L2 devices as
   simple as possible.

   A generic issue with ACP in L2 switched networks is the interaction
   with the Spanning Tree Protocol.  Without further L2 enhancements,
   the ACP would run only across the active STP topology and the ACP
   would be interrupted and re-converge with STP changes.  Ideally, ACP
   peering should be built also across ports that are blocked in STP so
   that the ACP does not depend on STP and can continue to run
   unaffected across STP topology changes, where re-convergence can be
   quite slow.  The above described simple implementation options are
   not sufficient to achieve this.

8.  Support for Non-ACP Components (Normative)

8.1.  ACP Connect

8.1.1.  Non-ACP Controller / NMS system

   The Autonomic Control Plane can be used by management systems, such
   as controllers or network management system (NMS) hosts (henceforth
   called simply "NMS hosts"), to connect to devices (or other type of
   nodes) through it.  For this, an NMS host must have access to the
   ACP.  The ACP is a self-protecting overlay network, which allows by
   default access only to trusted, autonomic systems.  Therefore, a
   traditional, non-ACP NMS system does not have access to the ACP by
   default, such as any other external node.

   If the NMS host is not autonomic, i.e., it does not support autonomic
   negotiation of the ACP, then it can be brought into the ACP by
   explicit configuration.  To support connections to adjacent non-ACP
   nodes, an ACP node must support "ACP connect" (sometimes also called
   "autonomic connect"):

   "ACP connect" is an interface level configured workaround for
   connection of trusted non-ACP nodes to the ACP.  The ACP node on
   which ACP connect is configured is called an "ACP edge node".  With
   ACP connect, the ACP is accessible from those non-ACP nodes (such as
   NOC systems) on such an interface without those non-ACP nodes having
   to support any ACP discovery or ACP channel setup.  This is also
   called "native" access to the ACP because to those (NOC) systems the
   interface looks like a normal network interface (without any
   encryption/novel-signaling).

Eckert, et al.         Expires September 12, 2019              [Page 70]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

                                   Data-Plane "native" (no ACP)
                                            .
  +--------+       +----------------+       .         +-------------+
  | ACP    |       |ACP Edge Node   |       .         |             |
  | Node   |       |                |       v         |             |
  |        |-------|...[ACP VRF]....+-----------------|             |+
  |        |   ^   |.               |                 | NOC Device  ||
  |        |   .   | .[Data-Plane]..+-----------------| "NMS hosts" ||
  |        |   .   |  [          ]  | .          ^    |             ||
  +--------+   .   +----------------+  .         .    +-------------+|
               .                        .        .     +-------------+
               .                        .        .
            Data-Plane "native"         .     ACP "native" (unencrypted)
          + ACP auto-negotiated         .    "ACP connect subnet"
            and encrypted               .
                                        ACP connect interface
                                        e.g., "VRF ACP native" (config)

                          Figure 14: ACP connect

   ACP connect has security consequences: All systems and processes
   connected via ACP connect have access to all ACP nodes on the entire
   ACP, without further authentication.  Thus, the ACP connect interface
   and (NOC) systems connected to it must be physically controlled/
   secured.  For this reason the mechanisms described here do explicitly
   not include options to allow for a non-ACP router to be connected
   across an ACP connect interface and addresses behind such a router
   routed inside the ACP.

   An ACP connect interface provides exclusively access to only the ACP.
   This is likely insufficient for many NMS hosts.  Instead, they would
   require a second "Data-Plane" interface outside the ACP for
   connections between the NMS host and administrators, or Internet
   based services, or for direct access to the Data-Plane.  The document
   "Using Autonomic Control Plane for Stable Connectivity of Network
   OAM" [RFC8368] explains in more detail how the ACP can be integrated
   in a mixed NOC environment.

   An ACP connect interface SHOULD use an IPv6 address/prefix from the
   ACP Manual Addressing Sub-Scheme (Section 6.10.4), letting the
   operator configure for example only the Subnet-ID and having the node
   automatically assign the remaining part of the prefix/address.  It
   SHOULD NOT use a prefix that is also routed outside the ACP so that
   the addresses clearly indicate whether it is used inside the ACP or
   not.
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   The prefix of ACP connect subnets MUST be distributed by the ACP edge
   node into the ACP routing protocol (RPL).  The NMS hosts MUST connect
   to prefixes in the ACP routing table via its ACP connect interface.
   In the simple case where the ACP uses only one ULA prefix and all ACP
   connect subnets have prefixes covered by that ULA prefix, NMS hosts
   can rely on [RFC6724] to determine longest match prefix routes
   towards its different interfaces, ACP and data-plane.  With RFC6724,
   The NMS host will select the ACP connect interface for all addresses
   in the ACP because any ACP destination address is longest matched by
   the address on the ACP connect interface.  If the NMS hosts ACP
   connect interface uses another prefix or if the ACP uses multiple ULA
   prefixes, then the NMS hosts require (static) routes towards the ACP
   interface for these prefixes.

   When an ACP Edge node receives a packet from an ACP connect
   interface, it MUST only forward it intot he ACP if it has an IPv6
   source address from that interface.  This is sometimes called "RPF
   filtering".  This MAY be changed through administrative measures.

   To limit the security impact of ACP connect, nodes supporting it
   SHOULD implement a security mechanism to allow configuration/use of
   ACP connect interfaces only on nodes explicitly targeted to be
   deployed with it (those in physically secure locations such as a
   NOC).  For example, the registrar could disable the ability to enable
   ACP connect on devices during enrollment and that property could only
   be changed through re-enrollment.  See also Appendix A.10.5.

8.1.2.  Software Components

   The ACP connect mechanism be only be used to connect physically
   external systems (NMS hosts) to the ACP but also other applications,
   containers or virtual machines.  In fact, one possible way to
   eliminate the security issue of the external ACP connect interface is
   to collocate an ACP edge node and an NMS host by making one a virtual
   machine or container inside the other; and therefore converting the
   unprotected external ACP subnet into an internal virtual subnet in a
   single device.  This would ultimately result in a fully ACP enabled
   NMS host with minimum impact to the NMS hosts software architecture.
   This approach is not limited to NMS hosts but could equally be
   applied to devices consisting of one or more VNF (virtual network
   functions): An internal virtual subnet connecting out-of-band
   management interfaces of the VNFs to an ACP edge router VNF.

   The core requirement is that the software components need to have a
   network stack that permits access to the ACP and optionally also the
   Data-Plane.  Like in the physical setup for NMS hosts this can be
   realized via two internal virtual subnets.  One that is connecting to
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   the ACP (which could be a container or virtual machine by itself),
   and one (or more) connecting into the Data-Plane.

   This "internal" use of ACP connect approach should not considered to
   be a "workaround" because in this case it is possible to build a
   correct security model: It is not necessary to rely on unprovable
   external physical security mechanisms as in the case of external NMS
   hosts.  Instead, the orchestration of the ACP, the virtual subnets
   and the software components can be done by trusted software that
   could be considered to be part of the ANI (or even an extended ACP).
   This software component is responsible for ensuring that only trusted
   software components will get access to that virtual subnet and that
   only even more trusted software components will get access to both
   the ACP virtual subnet and the Data-Plane (because those ACP users
   could leak traffic between ACP and Data-Plane).  This trust could be
   established for example through cryptographic means such as signed
   software packages.

8.1.3.  Auto Configuration

   ACP edge nodes, NMS hosts and software components that as described
   in the previous section are meant to be composed via virtual
   interfaces SHOULD support on the ACP connect subnet StateLess Address
   Autoconfiguration (SLAAC - [RFC4862]) and route auto configuration
   according to [RFC4191].

   The ACP edge node acts as the router on the ACP connect subnet,
   providing the (auto-)configured prefix for the ACP connect subnet to
   NMS hosts and/or software components.  The ACP edge node uses route
   prefix option of RFC4191 to announce the default route (::/) with a
   lifetime of 0 and aggregated prefixes for routes in the ACP routing
   table with normal lifetimes.  This will ensure that the ACP edge node
   does not become a default router, but that the NMS hosts and software
   components will route the prefixes used in the ACP to the ACP edge
   node.

   Aggregated prefix means that the ACP edge node needs to only announce
   the /48 ULA prefixes used in the ACP but none of the actual /64
   (Manual Addressing Sub-Scheme), /127 (ACP Zone Addressing Sub-
   Scheme), /112 or /120 (Vlong Addressing Sub-Scheme) routes of actual
   ACP nodes.  If ACP interfaces are configured with non ULA prefixes,
   then those prefixes cannot be aggregated without further configured
   policy on the ACP edge node.  This explains the above recommendation
   to use ACP ULA prefix covered prefixes for ACP connect interfaces:
   They allow for a shorter list of prefixes to be signaled via RFC4191
   to NMS hosts and software components.
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   The ACP edge nodes that have a Vlong ACP address MAY allocate a
   subset of their /112 or /120 address prefix to ACP connect
   interface(s) to eliminate the need to non-autonomically configure/
   provision the address prefixes for such ACP connect interfaces.

8.1.4.  Combined ACP/Data-Plane Interface (VRF Select)

                        Combined ACP and Data-Plane interface
                                                .
     +--------+       +--------------------+    .   +--------------+
     | ACP    |       |ACP Edge No         |    .   | NMS Host(s)  |
     | Node   |       |                    |    .   | / Software   |
     |        |       |  [ACP  ].          |    .   |              |+
     |        |       | .[VRF  ] .[VRF   ] |    v   | "ACP address"||
     |        +-------+.         .[Select].+--------+ "Date Plane  ||
     |        |   ^   | .[Data ].          |        |  Address(es)"||
     |        |   .   |  [Plane]           |        |              ||
     |        |   .   |  [     ]           |        +--------------+|
     +--------+   .   +--------------------+         +--------------+
                  .
           Data-Plane "native" and + ACP auto-negotiated/encrypted

                           Figure 15: VRF select

   Using two physical and/or virtual subnets (and therefore interfaces)
   into NMS Hosts (as per Section 8.1.1) or Software (as per
   Section 8.1.2) may be seen as additional complexity, for example with
   legacy NMS Hosts that support only one IP interface.

   To provide a single subnet into both ACP and Data-Plane, the ACP Edge
   node needs to de-multiplex packets from NMS hosts into ACP VRF and
   Data-Plane.  This is sometimes called "VRF select".  If the ACP VRF
   has no overlapping IPv6 addresses with the Data-Plane (it should have
   no overlapping addresses), then this function can use the IPv6
   Destination address.  The problem is Source Address Selection on the
   NMS Host(s) according to RFC6724.

   Consider the simple case: The ACP uses only one ULA prefix, the ACP
   IPv6 prefix for the Combined ACP and Data-Plane interface is covered
   by that ULA prefix.  The ACP edge node announces both the ACP IPv6
   prefix and one (or more) prefixes for the Data-Plane.  Without
   further policy configurations on the NMS Host(s), it may select its
   ACP address as a source address for Data-Plane ULA destinations
   because of Rule 8 of RFC6724.  The ACP edge node can pass on the
   packet to the Data-Plane, but the ACP source address should not be
   used for Data-Plane traffic, and return traffic may fail.
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   If the ACP carries multiple ULA prefixes or non-ULA ACP connect
   prefixes, then the correct source address selection becomes even more
   problematic.

   With separate ACP connect and Data-Plane subnets and RFC4191 prefix
   announcements that are to be routed across the ACP connect interface,
   RFC6724 source address selection Rule 5 (use address of outgoing
   interface) will be used, so that above problems do not occur, even in
   more complex cases of multiple ULA and non-ULA prefixes in the ACP
   routing table.

   To achieve the same behavior with a Combined ACP and Data-Plane
   interface, the ACP Edge Node needs to behave as two separate routers
   on the interface: One link-local IPv6 address/router for its ACP
   reachability, and one link-local IPv6 address/router for its Data-
   Plane reachability.  The Router Advertisements for both are as
   described above (Section 8.1.3): For the ACP, the ACP prefix is
   announced together with RFC4191 option for the prefixes routed across
   the ACP and lifetime=0 to disqualify this next-hop as a default
   router.  For the Data-Plane, the Data-Plane prefix(es) are announced
   together with whatever dafault router parameters are used for the
   Data-Plane.

   In result, RFC6724 source address selection Rule 5.5 may result in
   the same correct source address selection behavior of NMS hosts
   without further configuration on it as the separate ACP connect and
   Data-Plane interfaces.  As described in the text for Rule 5.5, this
   is only a MAY, because IPv6 hosts are not required to track next-hop
   information.  If an NMS Host does not do this, then separate ACP
   connect and Data-Plane interfaces are the preferable method of
   attachment.  Hosts implementing [RFC8028] should (instead of may)
   implement [RFC6724] Rule 5.5, so it is preferred for hosts to support
   [RFC8028].

   ACP edge nodes MAY support the Combined ACP and Data-Plane interface.

8.1.5.  Use of GRASP

   GRASP can and should be possible to use across ACP connect
   interfaces, especially in the architectural correct solution when it
   is used as a mechanism to connect Software (e.g., ASA or legacy NMS
   applications) to the ACP.  Given how the ACP is the security and
   transport substrate for GRASP, the trustworthiness of nodes/software
   allowed to participate in the ACP GRASP domain is one of the main
   reasons why the ACP section describes no solution with non-ACP
   routers participating in the ACP routing table.
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   ACP connect interfaces can be dealt with in the GRASP ACP domain the
   same as any other ACP interface assuming that any physical ACP
   connect interface is physically protected from attacks and that the
   connected Software or NMS Hosts are equally trusted as that on other
   ACP nodes.  ACP edge nodes SHOULD have options to filter GRASP
   messages in and out of ACP connect interfaces (permit/deny) and MAY
   have more fine-grained filtering (e.g., based on IPv6 address of
   originator or objective).

   When using "Combined ACP and Data-Plane Interfaces", care must be
   taken that only GRASP messages intended for the ACP GRASP domain
   received from Software or NMS Hosts are forwarded by ACP edge nodes.
   Currently there is no definition for a GRASP security and transport
   substrate beside the ACP, so there is no definition how such
   Software/NMS Host could participate in two separate GRASP Domains
   across the same subnet (ACP and Data-Plane domains).  At current it
   is assumed that all GRASP packets on a Combined ACP and Data-Plane
   interface belong to the GRASP ACP Domain.  They must all use the ACP
   IPv6 addresses of the Software/NMS Hosts.  The link-local IPv6
   addresses of Software/NMS Hosts (used for GRASP M_DISCOVERY and
   M_FLOOD messages) are also assumed to belong to the ACP address
   space.

8.2.  ACP through Non-ACP L3 Clouds (Remote ACP neighbors)

   Not all nodes in a network may support the ACP.  If non-ACP Layer-2
   devices are between ACP nodes, the ACP will work across it since it
   is IP based.  However, the autonomic discovery of ACP neighbors via
   DULL GRASP is only intended to work across L2 connections, so it is
   not sufficient to autonomically create ACP connections across non-ACP
   Layer-3 devices.

8.2.1.  Configured Remote ACP neighbor

   On the ACP node, remote ACP neighbors are configured explicitly.  The
   parameters of such a "connection" are described in the following
   ABNF.

     connection = [ method , local-addr, remote-addr, ?pmtu ]
     method   = [ "IKEv2" , ?port ]
     method //= [ "DTLS",    port ]
     local-addr  = [ address , ?vrf  ]
     remote-addr = [ address ]
     address = ("any" | ipv4-address | ipv6-address )
     vrf = tstr ; Name of a VRF on this node with local-address

              Figure 16: Parameters for remote ACP neighbors
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   Explicit configuration of a remote-peer according to this ABNF
   provides all the information to build a secure channel without
   requiring a tunnel to that peer and running DULL GRASP inside of it.

   The configuration includes the parameters otherwise signaled via DULL
   GRASP: local address, remote (peer) locator and method.  The
   differences over DULL GRASP local neighbor discovery and secure
   channel creation are as follows:

   o  The local and remote address can be IPv4 or IPv6 and are typically
      global scope addresses.

   o  The VRF across which the connection is built (and in which local-
      addr exists) can to be specified.  If vrf is not specified, it is
      the default VRF on the node.  In DULL GRASP the VRF is implied by
      the interface across which DULL GRASP operates.

   o  If local address is "any", the local address used when initiating
      a secure channel connection is decided by source address selection
      ([RFC6724] for IPv6).  As a responder, the connection listens on
      all addresses of the node in the selected VRF.

   o  Configuration of port is only required for methods where no
      defaults exist (e.g., "DTLS").

   o  If remote address is "any", the connection is only a responder.
      It is a "hub" that can be used by multiple remote peers to connect
      simultaneously - without having to know or configure their
      addresses.  Example: Hub site for remote "spoke" sites reachable
      over the Internet.

   o  Pmtu should be configurable to overcome issues/limitations of Path
      MTU Discovery (PMTUD).

   o  IKEv2/IPsec to remote peers should support the optional NAT
      Traversal (NAT-T) procedures.

8.2.2.  Tunneled Remote ACP Neighbor

   An IPinIP, GRE or other form of pre-existing tunnel is configured
   between two remote ACP peers and the virtual interfaces representing
   the tunnel are configured for "ACP enable".  This will enable IPv6
   link local addresses and DULL on this tunnel.  In result, the tunnel
   is used for normal "L2 adjacent" candidate ACP neighbor discovery
   with DULL and secure channel setup procedures described in this
   document.
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   Tunneled Remote ACP Neighbor requires two encapsulations: the
   configured tunnel and the secure channel inside of that tunnel.  This
   makes it in general less desirable than Configured Remote ACP
   Neighbor.  Benefits of tunnels are that it may be easier to implement
   because there is no change to the ACP functionality - just running it
   over a virtual (tunnel) interface instead of only native interfaces.
   The tunnel itself may also provide PMTUD while the secure channel
   method may not.  Or the tunnel mechanism is permitted/possible
   through some firewall while the secure channel method may not.

8.2.3.  Summary

   Configured/Tunneled Remote ACP neighbors are less "indestructible"
   than L2 adjacent ACP neighbors based on link local addressing, since
   they depend on more correct Data-Plane operations, such as routing
   and global addressing.

   Nevertheless, these options may be crucial to incrementally deploy
   the ACP, especially if it is meant to connect islands across the
   Internet.  Implementations SHOULD support at least Tunneled Remote
   ACP Neighbors via GRE tunnels - which is likely the most common
   router-to-router tunneling protocol in use today.

9.  Benefits (Informative)

9.1.  Self-Healing Properties

   The ACP is self-healing:

   o  New neighbors will automatically join the ACP after successful
      validation and will become reachable using their unique ULA
      address across the ACP.

   o  When any changes happen in the topology, the routing protocol used
      in the ACP will automatically adapt to the changes and will
      continue to provide reachability to all nodes.

   o  The ACP tracks the validity of peer certificates and tears down
      ACP secure channels when a peer certificate has expired.  When
      short-lived certificates with lifetimes in the order of OCSP/CRL
      refresh times are used, then this allows for removal of invalid
      peers (whose certificate was not renewed) at similar speeds as
      when using OCSP/CRL.  The same benefit can be achieved when using
      CRL/OCSP, periodically refreshing the revocation information and
      also tearing down ACP secure channels when the peers (long-lived)
      certificate is revoked.  There is no requirement against ACP
      implementations to require this enhancement though to keep the
      mandatory implementations simpler.
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   The ACP can also sustain network partitions and mergers.  Practically
   all ACP operations are link local, where a network partition has no
   impact.  Nodes authenticate each other using the domain certificates
   to establish the ACP locally.  Addressing inside the ACP remains
   unchanged, and the routing protocol inside both parts of the ACP will
   lead to two working (although partitioned) ACPs.

   There are few central dependencies: A certificate revocation list
   (CRL) may not be available during a network partition; a suitable
   policy to not immediately disconnect neighbors when no CRL is
   available can address this issue.  Also, an ACP registrar or
   Certificate Authority might not be available during a partition.
   This may delay renewal of certificates that are to expire in the
   future, and it may prevent the enrollment of new nodes during the
   partition.

   Highly resilient ACP designs can be built by using ACP registrars
   with embedded sub-CA, as outlined in Section 10.2.4.  As long as a
   partition is left with one or more of such ACP registrars, it can
   continue to enroll new candidate ACP nodes as long as the ACP
   registrars sub-CA certificate does not expire.  Because the ACP
   addressing relies on unique Registrar-IDs, a later re-merge of
   partitions will also not cause problems with ACP addresses assigned
   during partitioning.

   After a network partition, a re-merge will just establish the
   previous status, certificates can be renewed, the CRL is available,
   and new nodes can be enrolled everywhere.  Since all nodes use the
   same trust anchor(s), a re-merge will be smooth.

   Merging two networks with different trust anchors requires the ACP
   nodes to trust the union of Trust Anchors.  As long as the routing-
   subdomain hashes are different, the addressing will not overlap,
   except for the low probability of a 40-bit hash collision in SHA256
   (see Section 6.10).  Note that the complete mechanisms to merge
   networks is out of scope of this specification.

   It is also highly desirable for implementation of the ACP to be able
   to run it over interfaces that are administratively down.  If this is
   not feasible, then it might instead be possible to request explicit
   operator override upon administrative actions that would
   administratively bring down an interface across which the ACP is
   running.  Especially if bringing down the ACP is known to disconnect
   the operator from the node.  For example any such down administrative
   action could perform a dependency check to see if the transport
   connection across which this action is performed is affected by the
   down action (with default RPL routing used, packet forwarding will be
   symmetric, so this is actually possible to check).
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9.2.  Self-Protection Properties

9.2.1.  From the outside

   As explained in Section 6, the ACP is based on secure channels built
   between nodes that have mutually authenticated each other with their
   domain certificates.  The channels themselves are protected using
   standard encryption technologies such as DTLS or IPsec which provide
   additional authentication during channel establishment, data
   integrity and data confidentiality protection of data inside the ACP
   and in addition, provide replay protection.

   An attacker will not be able to join the ACP unless having a valid
   domain certificate, also packet injection and sniffing traffic will
   not be possible due to the security provided by the encryption
   protocol.

   The ACP also serves as protection (through authentication and
   encryption) for protocols relevant to OAM that may not have secured
   protocol stack options or where implementation or deployment of those
   options fail on some vendor/product/customer limitations.  This
   includes protocols such as SNMP ([RFC3411]), NTP ([RFC5905]), PTP
   ([IEEE-1588-2008]), DNS ([RFC1886]), DHCPv6 ([RFC3315]), syslog
   ([RFC3164]), Radius ([RFC2865]), Diameter ([RFC6733]), TACACS
   ([RFC1492]), IPFIX ([RFC7011]), Netflow ([RFC3954]) - just to name a
   few.  Protection via the ACP secure hop-by-hop channels for these
   protocols is meant to be only a stopgap though: The ultimate goal is
   for these and other protocols to use end-to-end encryption utilizing
   the domain certificate and rely on the ACP secure channels primarily
   for zero-touch reliable connectivity, but not primarily for security.

   The remaining attack vector would be to attack the underlying ACP
   protocols themselves, either via directed attacks or by denial-of-
   service attacks.  However, as the ACP is built using link-local IPv6
   addresses, remote attacks from the data-plane are impossible as long
   as the data-plane has no facilities to remotely sent IPv6 link-local
   packets.  The only exception are ACP connected interfaces which
   require higher physical protection.  The ULA addresses are only
   reachable inside the ACP context, therefore, unreachable from the
   Data-Plane.  Also, the ACP protocols should be implemented to be
   attack resistant and not consume unnecessary resources even while
   under attack.

9.2.2.  From the inside

   The security model of the ACP is based on trusting all members of the
   group of nodes that receive an ACP domain certificate for the same
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   domain.  Attacks from the inside by a compromised group member are
   therefore the biggest challenge.

   Group members must be protected against attackers so that there is no
   easy way to compromise them, or use them as a proxy for attacking
   other devices across the ACP.  For example, management plane
   functions (transport ports) should only be reachable from the ACP but
   not the Data-Plane.  Especially for those management plane functions
   that have no good protection by themselves because they do not have
   secure end-to-end transport and to whom ACP does not only provides
   automatic reliable connectivity but also protection against attacks.
   Protection across all potential attack vectors is typically easier to
   do in devices whose software is designed from the ground up with
   security in mind than with legacy software based systems where the
   ACP is added on as another feature.

   As explained above, traffic across the ACP SHOULD still be end-to-end
   encrypted whenever possible.  This includes traffic such as GRASP,
   EST and BRSKI inside the ACP.  This minimizes man in the middle
   attacks by compromised ACP group members.  Such attackers cannot
   eavesdrop or modify communications, they can just filter them (which
   is unavoidable by any means).

   See Appendix A.10.8 for further considerations how to avoid and deal
   with compromised nodes.

9.3.  The Administrator View

   An ACP is self-forming, self-managing and self-protecting, therefore
   has minimal dependencies on the administrator of the network.
   Specifically, since it is (intended to be) independent of
   configuration, there is no scope for configuration errors on the ACP
   itself.  The administrator may have the option to enable or disable
   the entire approach, but detailed configuration is not possible.
   This means that the ACP must not be reflected in the running
   configuration of nodes, except a possible on/off switch (and even
   that is undesirable).

   While configuration is not possible, an administrator must have full
   visibility of the ACP and all its parameters, to be able to do
   trouble-shooting.  Therefore, an ACP must support all show and debug
   options, as for any other network function.  Specifically, a network
   management system or controller must be able to discover the ACP, and
   monitor its health.  This visibility of ACP operations must clearly
   be separated from visibility of Data-Plane so automated systems will
   never have to deal with ACP aspect unless they explicitly desire to
   do so.
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   Since an ACP is self-protecting, a node not supporting the ACP, or
   without a valid domain certificate cannot connect to it.  This means
   that by default a traditional controller or network management system
   cannot connect to an ACP.  See Section 8.1.1 for more details on how
   to connect an NMS host into the ACP.

10.  ACP Operations (Informative)

   The following sections document important operational aspects of the
   ACP.  They are not normative because they do not impact the
   interoperability between components of the ACP, but they include
   recommendations/requirements for the internal operational model
   beneficial or necessary to achieve the desired use-case benefits of
   the ACP (see Section 3).

   o  Section 10.1 describes recommended operator diagnostics
      capabilities of ACP nodes.  The have been derived from diagnostic
      of a commercially available ACP implementation.

   o  Section 10.2 describes high level how an ACP registrar needs to
      work, what its configuration parameters are and specific issues
      impacting the choices of deployment design due to renewal and
      revocation issues.  It describes a model where ACP Registrars have
      their own sub-CA to provide the most distributed deployment option
      for ACP Registrars, and it describes considerations for
      centralized policy control of ACP Registrar operations.

   o  Section 10.3 describes suggested ACP node behavior and operational
      interfaces (configuration options) to manage the ACP in so-called
      greenfield devices (previously unconfigured) and brownfield
      devices (preconfigured).

   The recommendations and suggestions of this chapter were derived from
   operational experience gained with a commercially available pre-
   standard ACP implementation.

10.1.  ACP (and BRSKI) Diagnostics

   Even though ACP and ANI in general are taking out many manual
   configuration mistakes through their automation, it is important to
   provide good diagnostics for them.

   The basic diagnostics is support of (yang) data models representing
   the complete (auto-)configuration and operational state of all
   components: BRSKI, GRASP, ACP and the infrastructure used by them:
   TLS/DTLS, IPsec, certificates, trust anchors, time, VRF and so on.
   While necessary, this is not sufficient:
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   Simply representing the state of components does not allow operators
   to quickly take action - unless they do understand how to interpret
   the data, and that can mean a requirement for deep understanding of
   all components and how they interact in the ACP/ANI.

   Diagnostic supports should help to quickly answer the questions
   operators are expected to ask, such as "is the ACP working
   correctly?", or "why is there no ACP connection to a known
   neighboring node?"

   In current network management approaches, the logic to answer these
   questions is most often built as centralized diagnostics software
   that leverages the above mentioned data models.  While this approach
   is feasible for components utilizing the ANI, it is not sufficient to
   diagnose the ANI itself:

   o  Developing the logic to identify common issues requires
      operational experience with the components of the ANI.  Letting
      each management system define its own analysis is inefficient.

   o  When the ANI is not operating correctly, it may not be possible to
      run diagnostics from remote because of missing connectivity.  The
      ANI should therefore have diagnostic capabilities available
      locally on the nodes themselves.

   o  Certain operations are difficult or impossible to monitor in real-
      time, such as initial bootstrap issues in a network location where
      no capabilities exist to attach local diagnostics.  Therefore it
      is important to also define means of capturing (logging)
      diagnostics locally for later retrieval.  Ideally, these captures
      are also non-volatile so that they can survive extended power-off
      conditions - for example when a device that fails to be brought up
      zero-touch is being sent back for diagnostics at a more
      appropriate location.

   The most simple form of diagnostics answering questions such as the
   above is to represent the relevant information sequentially in
   dependency order, so that the first non-expected/non-operational item
   is the most likely root cause.  Or just log/highlight that item.  For
   example:

   Q: Is ACP operational to accept neighbor connections:

   o  Check if any potentially necessary configuration to make ACP/ANI
      operational are correct (see Section 10.3 for a discussion of such
      commands).
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   o  Does the system time look reasonable, or could it be the default
      system time after clock chip battery failure (certificate checks
      depend on reasonable notion of time).

   o  Does the node have keying material - domain certificate, trust
      anchors.

   o  If no keying material and ANI is supported/enabled, check the
      state of BRSKI (not detailed in this example).

   o  Check the validity of the domain certificate:

      *  Does the certificate authenticate against the trust anchor?

      *  Has it been revoked?

      *  Was the last scheduled attempt to retrieve a CRL successful
         (e.g., do we know that our CRL information is up to date).

      *  Is the certificate valid: validity start time in the past,
         expiration time in the future?

      *  Does the certificate have a correctly formatted ACP domain
         information field?

   o  Was the ACP VRF successfully created?

   o  Is ACP enabled on one or more interfaces that are up and running?

   If all this looks good, the ACP should be running locally "fine" -
   but we did not check any ACP neighbor relationships.

   Question: why does the node not create a working ACP connection to a
   neighbor on an interface?

   o  Is the interface physically up?  Does it have an IPv6 link-local
      address?

   o  Is it enabled for ACP?

   o  Do we successfully send DULL GRASP messages to the interface (link
      layer errors)?

   o  Do we receive DULL GRASP messages on the interface?  If not, some
      intervening L2 equipment performing bad MLD snooping could have
      caused problems.  Provide e.g., diagnostics of the MLD querier
      IPv6 and MAC address.
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   o  Do we see the ACP objective in any DULL GRASP message from that
      interface?  Diagnose the supported secure channel methods.

   o  Do we know the MAC address of the neighbor with the ACP objective?
      If not, diagnose SLAAC/ND state.

   o  When did we last attempt to build an ACP secure channel to the
      neighbor?

   o  If it failed, why:

      *  Did the neighbor close the connection on us or did we close the
         connection on it because the domain certificate membership
         failed?

      *  If the neighbor closed the connection on us, provide any error
         diagnostics from the secure channel protocol.

      *  If we failed the attempt, display our local reason:

         +  There was no common secure channel protocol supported by the
            two neighbors (this could not happen on nodes supporting
            this specification because it mandates common support for
            IPsec).

         +  The ACP domain certificate membership check (Section 6.1.2)
            fails:

            -  The neighbors certificate does not have the required
               trust anchor.  Provide diagnostics which trust anchor it
               has (can identify whom the device belongs to).

            -  The neighbors certificate does not have the same domain
               (or no domain at all).  Diagnose domain-name and
               potentially other cert info.

            -  The neighbors certificate has been revoked or could not
               be authenticated by OCSP.

            -  The neighbors certificate has expired - or is not yet
               valid.

      *  Any other connection issues in e.g., IKEv2 / IPsec, DTLS?.

   Question: Is the ACP operating correctly across its secure channels?

   o  Are there one or more active ACP neighbors with secure channels?
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   o  Is the RPL routing protocol for the ACP running?

   o  Is there a default route to the root in the ACP routing table?

   o  Is there for each direct ACP neighbor not reachable over the ACP
      virtual interface to the root a route in the ACP routing table?

   o  Is ACP GRASP running?

   o  Is at least one SRV.est objective cached (to support certificate
      renewal)?

   o  Is there at least one BRSKI registrar objective cached (in case
      BRSKI is supported)

   o  Is BRSKI proxy operating normally on all interfaces where ACP is
      operating?

   o  ...

   These lists are not necessarily complete, but illustrate the
   principle and show that there are variety of issues ranging from
   normal operational causes (a neighbor in another ACP domain) over
   problems in the credentials management (certificate lifetimes),
   explicit security actions (revocation) or unexpected connectivity
   issues (intervening L2 equipment).

   The items so far are illustrating how the ANI operations can be
   diagnosed with passive observation of the operational state of its
   components including historic/cached/counted events.  This is not
   necessary sufficient to provide good enough diagnostics overall:

   The components of ACP and BRSKI are designed with security in mind
   but they do not attempt to provide diagnostics for building the
   network itself.  Consider two examples:

   1.  BRSKI does not allow for a neighboring device to identify the
       pledges certificate (IDevID).  Only the selected BRSKI registrar
       can do this, but it may be difficult to disseminate information
       about undesired pledges from those BRSKI registrars to locations/
       nodes where information about those pledges is desired.

   2.  The Link Layer Discovery Protocol (LLDP, [LLDP]) disseminates
       information about nodes to their immediate neighbors, such as
       node model/type/software and interface name/number of the
       connection.  This information is often helpful or even necessary
       in network diagnostics.  It can equally considered to be too
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       insecure to make this information available unprotected to all
       possible neighbors.

   An "interested adjacent party" can always determine the IDevID of a
   BRSKI pledge by behaving like a BRSKI proxy/registrar.  Therefore the
   IDevID of a BRSKI pledge is not meant to be protected - it just has
   to be queried and is not signaled unsolicited (as it would be in
   LLDP) so that other observers on the same subnet can determine who is
   an "interested adjacent party".

10.2.  ACP Registrars

   As described in Section 6.10.7, the ACP addressing mechanism is
   designed to enable lightweight, distributed and uncoordinated ACP
   registrars that are providing ACP address prefixes to candidate ACP
   nodes by enrolling them with an ACP domain certificate into an ACP
   domain via any appropriate mechanism/protocol, automated or not.

   This section discusses informatively more details and options for ACP
   registrars.

10.2.1.  Registrar interactions

   This section summarizes and discusses the interactions with other
   entities required by an ACP registrar.

   In a simple instance of an ACP network, no central NOC component
   beside a trust anchor (root CA) is required.  One or more
   uncoordinated acting ACP registrar can be set up, performing the
   following interactions:

   To orchestrate enrolling a candidate ACP node autonomically, the ACP
   registrar can rely on the ACP and use Proxies to reach the candidate
   ACP node, therefore allowing minimum pre-existing (auto-)configured
   network services on the candidate ACP node.  BRSKI defines the BRSKI
   proxy, a design that can be adopted for various protocols that
   Pledges/candidate ACP nodes could want to use, for example BRSKI over
   CoAP (Constrained Application Protocol), or proxying of Netconf.

   To reach a trust anchor unaware of the ACP, the ACP registrar would
   use the Data-Plane.  ACP and Data-Plane in an ACP registrar could
   (and by default should be) completely isolated from each other at the
   network level.  Only applications such as the ACP registrar would
   need the ability for their transport stacks to access both.

   In non-autonomic enrollment options, the Data-Plane between a ACP
   registrar and the candidate ACP node needs to be configured first.
   This includes the ACP registrar and the candidate ACP node.  Then any
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   appropriate set of protocols can be used between ACP registrar and
   candidate ACP node to discover the other side, and then connect and
   enroll (configure) the candidate ACP node with an ACP domain
   certificate.  Netconf ZeroTouch ([I-D.ietf-netconf-zerotouch]) is an
   example protocol that could be used for this.  BRSKI using optional
   discovery mechanisms is equally a possibility for candidate ACP nodes
   attempting to be enrolled across non-ACP networks, such as the
   Internet.

   When candidate ACP nodes have secure bootstrap, such as BRSKI
   Pledges, they will not trust to be configured/enrolled across the
   network, unless being presented with a voucher (see [RFC8366])
   authorizing the network to take possession of the node.  An ACP
   registrar will then need a method to retrieve such a voucher, either
   offline, or online from a MASA (Manufacturer Authorized Signing
   Authority).  BRSKI and Netconf ZeroTouch are two protocols that
   include capabilities to present the voucher to the candidate ACP
   node.

   An ACP registrar could operate EST for ACP certificate renewal and/or
   act as a CRL Distribution point.  A node performing these services
   does not need to support performing (initial) enrollment, but it does
   require the same above described connectivity as an ACP registrar:
   via the ACP to ACP nodes and via the Data-Plane to the trust anchor
   and other sources of CRL information.

10.2.2.  Registrar Parameter

   The interactions of an ACP registrar outlined Section 6.10.7 and
   Section 10.2.1 above depend on the following parameters:

      A URL to the trust anchor (root CA) and credentials so that the
      ACP registrar can let the trust anchor sign candidate ACP member
      certificates.

      The ACP domain-name.

      The Registrar-ID to use.  This could default to a MAC address of
      the ACP registrar.

      For recovery, the next-useable Node-IDs for zone (Zone-ID=0) sub-
      addressing scheme, for Vlong /112 and for Vlong /1120 sub-
      addressing scheme.  These IDs would only need to be provisioned
      after recovering from a crash.  Some other mechanism would be
      required to remember these IDs in a backup location or to recover
      them from the set of currently known ACP nodes.
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      Policies if candidate ACP nodes should receive a domain
      certificate or not, for example based on the devices LDevID as in
      BRSKI.  The ACP registrar may have a whitelist or blacklist of
      devices serialNumbers from their LDevID.

      Policies what type of address prefix to assign to a candidate ACP
      devices, based on likely the same information.

      For BRSKI or other mechanisms using vouchers: Parameters to
      determine how to retrieve vouchers for specific type of secure
      bootstrap candidate ACP nodes (such as MASA URLs), unless this
      information is automatically learned such as from the IDevID of
      candidate ACP nodes (as defined in BRSKI).

10.2.3.  Certificate renewal and limitations

   When an ACP node renews/rekeys its certificate, it may end up doing
   so via a different registrar (e.g., EST server) than the one it
   originally received its ACP domain certificate from, for example
   because that original ACP registrar is gone.  The ACP registrar
   through which the renewal/rekeying is performed would by default
   trust the ACP domain information from the ACP nodes current ACP
   domain certificate and maintain this information so that the ACP node
   maintains its ACP address prefix.  In EST renewal/rekeying, the ACP
   nodes current ACP domain certificate is signaled during the TLS
   handshake.

   This simple scenario has two limitations:

   1.  The ACP registrars cannot directly assign certificates to nodes
       and therefore needs an "online" connection to the trust anchor
       (root CA).

   2.  Recovery from a compromised ACP registrar is difficult.  When an
       ACP registrar is compromised, it can insert for example
       conflicting ACP domain information and create thereby an attack
       against other ACP nodes through the ACP routing protocol.

   Even when such a malicious ACP registrar is detected, resolving the
   problem may be difficult because it would require identifying all the
   wrong ACP domain certificates assigned via the ACP registrar after it
   was compromised.  And without additional centralized tracking of
   assigned certificates there is no way to do this.
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10.2.4.  ACP Registrars with sub-CA

   In situations, where either of the above two limitations are an
   issue, ACP registrars could also be sub-CAs.  This removes the need
   for connectivity to a root-CA whenever an ACP node is enrolled, and
   reduces the need for connectivity of such an ACP registrar to a root-
   CA to only those times when it needs to renew its own certificate.
   The ACP registrar would also now use its own (sub-CA) certificate to
   enroll and sign the ACP nodes certificates, and therefore it is only
   necessary to revoke a compromised ACP registrars sub-CA certificate.
   Alternatively one can let it expire and not renew it, when the
   certificate of the sub-CA is appropriately short-lived.

   As the ACP domain membership check verifies a peer ACP node’s ACP
   domain certificate trust chain, it will also verify the signing
   certificate which is the compromised/revoked sub-CA certificate.
   Therefore ACP domain membership for an ACP node enrolled from a
   compromised and discovered ACP registrar will fail.

   ACP nodes enrolled by a compromised ACP registrar would automatically
   fail to establish ACP channels and ACP domain certificate renewal via
   EST and therefore revert to their role as a candidate ACP members and
   attempt to get a new ACP domain certificate from an ACP registrar -
   for example, via BRSKI.  In result, ACP registrars that have an
   associated sub-CA makes isolating and resolving issues with
   compromised registrars easier.

   Note that ACP registrars with sub-CA functionality also can control
   the lifetime of ACP domain certificates easier and therefore also be
   used as a tool to introduce short lived certificates and not rely on
   CRL, whereas the certificates for the sub-CAs themselves could be
   longer lived and subject to CRL.

10.2.5.  Centralized Policy Control

   When using multiple, uncoordinated ACP registrars, several advanced
   operations are potentially more complex than with a single, resilient
   policy control backend, for example including but not limited to:

      Which candidate ACP node is permitted or not permitted into an ACP
      domain.  This may not be a decision to be taken upfront, so that a
      per-serialNumber policy can be loaded into ever ACP registrar.
      Instead, it may better be decided in real-time including
      potentially a human decision in a NOC.

      Tracking of all enrolled ACP nodes and their certificate
      information.  For example in support of revoking individual ACP
      nodes certificates.
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      More flexible policies what type of address prefix or even what
      specific address prefix to assign to a candidate ACP node.

   These and other operations could be introduced more easily by
   introducing a centralized Policy Management System (PMS) and
   modifying ACP registrar behavior so that it queries the PMS for any
   policy decision occurring during the candidate ACP node enrollment
   process and/or the ACP node certificate renewal process.  For
   example, which ACP address prefix to assign.  Likewise the ACP
   registrar would report any relevant state change information to the
   PMS as well, for example when a certificate was successfully enrolled
   onto a candidate ACP node.

10.3.  Enabling and disabling ACP/ANI

   Both ACP and BRSKI require interfaces to be operational enough to
   support sending/receiving their packets.  In node types where
   interfaces are by default (e.g., without operator configuration)
   enabled, such as most L2 switches, this would be less of a change in
   behavior than in most L3 devices (e.g.: routers), where interfaces
   are by default disabled.  In almost all network devices it is common
   though for configuration to change interfaces to a physically
   disabled state and that would break the ACP.

   In this section, we discuss a suggested operational model to enable/
   disable interfaces and nodes for ACP/ANI in a way that minimizes the
   risk of operator action to break the ACP in this way, and that also
   minimizes operator surprise when ACP/ANI becomes supported in node
   software.

10.3.1.  Filtering for non-ACP/ANI packets

   Whenever this document refers to enabling an interface for ACP (or
   BRSKI), it only requires to permit the interface to send/receive
   packets necessary to operate ACP (or BRSKI) - but not any other Data-
   Plane packets.  Unless the Data-Plane is explicitly configured/
   enabled, all packets not required for ACP/BRSKI should be filtered on
   input and output:

   Both BRSKI and ACP require link-local only IPv6 operations on
   interfaces and DULL GRASP.  IPv6 link-local operations means the
   minimum signaling to auto-assign an IPv6 link-local address and talk
   to neighbors via their link-local address: SLAAC (Stateless Address
   Auto-Configuration - [RFC4862]) and ND (Neighbor Discovery -
   [RFC4861]).  When the device is a BRSKI pledge, it may also require
   TCP/TLS connections to BRSKI proxies on the interface.  When the
   device has keying material, and the ACP is running, it requires DULL
   GRASP packets and packets necessary for the secure-channel mechanism
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   it supports, e.g., IKEv2 and IPsec ESP packets or DTLS packets to the
   IPv6 link-local address of an ACP neighbor on the interface.  It also
   requires TCP/TLS packets for its BRSKI proxy functionality, if it
   does support BRSKI.

10.3.2.  Admin Down State

   Interfaces on most network equipment have at least two states: "up"
   and "down".  These may have product specific names.  "down" for
   example could be called "shutdown" and "up" could be called "no
   shutdown".  The "down" state disables all interface operations down
   to the physical level.  The "up" state enables the interface enough
   for all possible L2/L3 services to operate on top of it and it may
   also auto-enable some subset of them.  More commonly, the operations
   of various L2/L3 services is controlled via additional node-wide or
   interface level options, but they all become only active when the
   interface is not "down".  Therefore an easy way to ensure that all
   L2/L3 operations on an interface are inactive is to put the interface
   into "down" state.  The fact that this also physically shuts down the
   interface is in many cases just a side effect, but it may be
   important in other cases (see below, Section 10.3.2.2).

   To provide ACP/ANI resilience against operators configuring
   interfaces to "down" state, this document recommends to separate the
   "down" state of interfaces into an "admin down" state where the
   physical layer is kept running and ACP/ANI can use the interface and
   a "physical down" state.  Any existing "down" configurations would
   map to "admin down".  In "admin down", any existing L2/L3 services of
   the Data-Plane should see no difference to "physical down" state.  To
   ensure that no Data-Plane packets could be sent/received, packet
   filtering could be established automatically as described above in
   Section 10.3.1.

   As necessary (see discussion below) new configuration options could
   be introduced to issue "physical down".  The options should be
   provided with additional checks to minimize the risk of issuing them
   in a way that breaks the ACP without automatic restoration.  For
   example they could be denied to be issued from a control connection
   (netconf/ssh) that goes across the interface itself ("do not
   disconnect yourself").  Or they could be performed only temporary and
   only be made permanent with additional later reconfirmation.

   In the following sub-sections important aspects to the introduction
   of "admin down" state are discussed.
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10.3.2.1.  Security

   Interfaces are physically brought down (or left in default down
   state) as a form of security.  "Admin down" state as described above
   provides also a high level of security because it only permits ACP/
   ANI operations which are both well secured.  Ultimately, it is
   subject to security review for the deployment whether "admin down" is
   a feasible replacement for "physical down".

   The need to trust the security of ACP/ANI operations needs to be
   weighed against the operational benefits of permitting this: Consider
   the typical example of a CPE (customer premises equipment) with no
   on-site network expert.  User ports are in physical down state unless
   explicitly configured not to be.  In a misconfiguration situation,
   the uplink connection is incorrectly plugged into such as user port.
   The device is disconnected from the network and therefore no
   diagnostics from the network side is possible anymore.
   Alternatively, all ports default to "admin down".  The ACP (but not
   the Data-Plane) would still automatically form.  Diagnostics from the
   network side is possible and operator reaction could include to
   either make this port the operational uplink port or to instruct re-
   cabling.  Security wise, only ACP/ANI could be attacked, all other
   functions are filtered on interfaces in "admin down" state.

10.3.2.2.  Fast state propagation and Diagnostics

   "Physical down" state propagates on many interface types (e.g.,
   Ethernet) to the other side.  This can trigger fast L2/L3 protocol
   reaction on the other side and "admin down" would not have the same
   (fast) result.

   Bringing interfaces to "physical down" state is to the best of our
   knowledge always a result of operator action, but today, never the
   result of (autonomic) L2/L3 services running on the nodes.  Therefore
   one option is to change the operator action to not rely on link-state
   propagation anymore.  This may not be possible when both sides are
   under different operator control, but in that case it is unlikely
   that the ACP is running across the link and actually putting the
   interface into "physical down" state may still be a good option.

   Ideally, fast physical state propagation is replaced by fast software
   driven state propagation.  For example a DULL GRASP "admin-state"
   objective could be used to auto configure a Bidirectional Forwarding
   Protocol (BFD, [RFC5880]) session between the two sides of the link
   that would be used to propagate the "up" vs. admin down state.

   Triggering physical down state may also be used as a mean of
   diagnosing cabling in the absence of easier methods.  It is more
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   complex than automated neighbor diagnostics because it requires
   coordinated remote access to both (likely) sides of a link to
   determine whether up/down toggling will cause the same reaction on
   the remote side.

   See Section 10.1 for a discussion about how LLDP and/or diagnostics
   via GRASP could be used to provide neighbor diagnostics, and
   therefore hopefully eliminating the need for "physical down" for
   neighbor diagnostics - as long as both neighbors support ACP/ANI.

10.3.2.3.  Low Level Link Diagnostics

   "Physical down" is performed to diagnose low-level interface behavior
   when higher layer services (e.g., IPv6) are not working.  Especially
   Ethernet links are subject to a wide variety of possible wrong
   configuration/cablings if they do not support automatic selection of
   variable parameters such as speed (10/100/1000 Mbps), crossover
   (Auto-MDIX) and connector (fiber, copper - when interfaces have
   multiple but can only enable one at a time).  The need for low level
   link diagnostic can therefore be minimized by using fully auto
   configuring links.

   In addition to "Physical down", low level diagnostics of Ethernet or
   other interfaces also involve the creation of other states on
   interfaces, such as physical Loopback (internal and/or external) or
   bringing down all packet transmissions for reflection/cable-length
   measurements.  Any of these options would disrupt ACP as well.

   In cases where such low-level diagnostics of an operational link is
   desired but where the link could be a single point of failure for the
   ACP, ASA on both nodes of the link could perform a negotiated
   diagnostics that automatically terminates in a predetermined manner
   without dependence on external input ensuring the link will become
   operational again.

10.3.2.4.  Power Consumption Issues

   Power consumption of "physical down" interfaces, may be significantly
   lower than those in "admin down" state, for example on long-range
   fiber interfaces.  Bringing up interfaces, for example to probe
   reachability, may also consume additional power.  This can make these
   type of interfaces inappropriate to operate purely for the ACP when
   they are not currently needed for the Data-Plane.
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10.3.3.  Interface level ACP/ANI enable

   The interface level configuration option "ACP enable" enables ACP
   operations on an interface, starting with ACP neighbor discovery via
   DULL GRAP.  The interface level configuration option "ANI enable" on
   nodes supporting BRSKI and ACP starts with BRSKI pledge operations
   when there is no domain certificate on the node.  On ACP/BRSKI nodes,
   "ACP enable" may not need to be supported, but only "ANI enable".
   Unless overridden by global configuration options (see later), "ACP/
   ANI enable" will result in "down" state on an interface to behave as
   "admin down".

10.3.4.  Which interfaces to auto-enable?

   (Section 6.3) requires that "ACP enable" is automatically set on
   native interfaces, but not on non-native interfaces (reminder: a
   native interface is one that exists without operator configuration
   action such as physical interfaces in physical devices).

   Ideally, ACP enable is set automatically on all interfaces that
   provide access to additional connectivity that allows to reach more
   nodes of the ACP domain.  The best set of interfaces necessary to
   achieve this is not possible to determine automatically.  Native
   interfaces are the best automatic approximation.

   Consider an ACP domain of ACP nodes transitively connected via native
   interfaces.  A Data-Plane tunnel between two of these nodes that are
   non-adjacent is created and "ACP enable" is set for that tunnel.  ACP
   RPL sees this tunnel as just as a single hop.  Routes in the ACP
   would use this hop as an attractive path element to connect regions
   adjacent to the tunnel nodes.  In result, the actual hop-by-hop paths
   used by traffic in the ACP can become worse.  In addition, correct
   forwarding in the ACP now depends on correct Data-Plane forwarding
   config including QoS, filtering and other security on the Data-Plane
   path across which this tunnel runs.  This is the main issue why "ACP/
   ANI enable" should not be set automatically on non-native interfaces.

   If the tunnel would connect two previously disjoint ACP regions, then
   it likely would be useful for the ACP.  A Data-Plane tunnel could
   also run across nodes without ACP and provide additional connectivity
   for an already connected ACP network.  The benefit of this additional
   ACP redundancy has to be weighed against the problems of relying on
   the Data-Plane.  If a tunnel connects two separate ACP regions: how
   many tunnels should be created to connect these ACP regions reliably
   enough?  Between which nodes?  These are all standard tunneled
   network design questions not specific to the ACP, and there are no
   generic fully automated answers.
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   Instead of automatically setting "ACP enable" on these type of
   interfaces, the decision needs to be based on the use purpose of the
   non-native interface and "ACP enable" needs to be set in conjunction
   with the mechanism through which the non-native interface is created/
   configured.

   In addition to explicit setting of "ACP/ANI enable", non-native
   interfaces also need to support configuration of the ACP RPL cost of
   the link - to avoid the problems of attracting too much traffic to
   the link as described above.

   Even native interfaces may not be able to automatically perform BRSKI
   or ACP because they may require additional operator input to become
   operational.  Example include DSL interfaces requiring PPPoE
   credentials or mobile interfaces requiring credentials from a SIM
   card.  Whatever mechanism is used to provide the necessary config to
   the device to enable the interface can also be expanded to decide on
   whether or not to set "ACP/ANI enable".

   The goal of automatically setting "ACP/ANI enable" on interfaces
   (native or not) is to eliminate unnecessary "touches" to the node to
   make its operation as much as possible "zero-touch" with respect to
   ACP/ANI.  If there are "unavoidable touches" such a creating/
   configuring a non-native interface or provisioning credentials for a
   native interface, then "ACP/ANI enable" should be added as an option
   to that "touch".  If a wrong "touch" is easily fixed (not creating
   another high-cost touch), then the default should be not to enable
   ANI/ACP, and if it is potentially expensive or slow to fix (e.g.,
   parameters on SIM card shipped to remote location), then the default
   should be to enable ACP/ANI.

10.3.5.  Node Level ACP/ANI enable

   A node level command "ACP/ANI enable [up-if-only]" enables ACP or ANI
   on the node (ANI = ACP + BRSKI).  Without this command set, any
   interface level "ACP/ANI enable" is ignored.  Once set, ACP/ANI will
   operate interface where "ACP/ANI enable" is set.  Setting of
   interface level "ACP/ANI enable" is either automatic (default) or
   explicit through operator action as described in the previous
   section.

   If the option "up-if-only" is selected, the behavior of "down"
   interfaces is unchanged, and ACP/ANI will only operate on interfaces
   where "ACP/ANI enable" is set and that are "up".  When it is not set,
   then "down" state of interfaces with "ACP/ANI enable" is modified to
   behave as "admin down".
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10.3.5.1.  Brownfield nodes

   A "brownfield" node is one that already has a configured Data-Plane.

   Executing global "ACP/ANI enable [up-if-only]" on each node is the
   only command necessary to create an ACP across a network of
   brownfield nodes once all the nodes have a domain certificate.  When
   BRSKI is used ("ANI enable"), provisioning of the certificates only
   requires set-up of a single BRSKI registrar node which could also
   implement a CA for the network.  This is the most simple way to
   introduce ACP/ANI into existing (== brownfield) networks.

   The need to explicitly enable ACP/ANI is especially important in
   brownfield nodes because otherwise software updates may introduce
   support for ACP/ANI: Automatic enablement of ACP/ANI in networks
   where the operator does not only not want ACP/ANI but where the
   operator likely never even heard of it could be quite irritating to
   the operator.  Especially when "down" behavior is changed to "admin
   down".

   Automatically setting "ANI enable" on brownfield nodes where the
   operator is unaware of it could also be a critical security issue
   depending on the vouchers used by BRKSI on these nodes.  An attacker
   could claim to be the owner of these devices and create an ACP that
   the attacker has access/control over.  In networks where the operator
   explicitly wants to enable the ANI this could not happen, because he
   would create a BRSKI registrar that would discover attack attempts.
   Nodes requiring "ownership vouchers" would not be subject to that
   attack.  See [I-D.ietf-anima-bootstrapping-keyinfra] for more
   details.  Note that a global "ACP enable" alone is not subject to
   these type of attacks, because it always depends on some other
   mechanism first to provision domain certificates into the device.

10.3.5.2.  Greenfield nodes

   A "greenfield" node is one that did not have any prior configuration.

   For greenfield nodes, only "ANI enable" is relevant.  If another
   mechanism than BRSKI is used to (zero-touch) bootstrap a node, then
   it is up to that mechanism to provision domain certificates and to
   set global "ACP enable" as desired.

   Nodes supporting full ANI functionality set "ANI enable"
   automatically when they decide that they are greenfield, e.g., that
   they are powering on from factory condition.  They will then put all
   native interfaces into "admin down" state and start to perform BRSKI
   pledge functionality - and once a domain certificate is enrolled they
   automatically enable ACP.
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   Attempts for BRSKI pledge operations in greenfield state should
   terminate automatically when another method of configuring the node
   is used.  Methods that indicate some form of physical possession of
   the device such as configuration via the serial console port could
   lead to immediate termination of BRSKI, while other parallel auto
   configuration methods subject to remote attacks might lead to BRSKI
   termination only after they were successful.  Details of this may
   vary widely over different type of nodes.  When BRSKI pledge
   operation terminates, this will automatically unset "ANI enable" and
   should terminate any temporarily needed state on the device to
   perform BRSKI - DULL GRASP, BRSKI pledge and any IPv6 configuration
   on interfaces.

10.3.6.  Undoing ANI/ACP enable

   Disabling ANI/ACP by undoing "ACP/ANI enable" is a risk for the
   reliable operations of the ACP if it can be executed by mistake or
   unauthorized.  This behavior could be influenced through some
   additional property in the certificate (e.g., in the domain
   information extension field) subject to future work: In an ANI
   deployment intended for convenience, disabling it could be allowed
   without further constraints.  In an ANI deployment considered to be
   critical more checks would be required.  One very controlled option
   would be to not permit these commands unless the domain certificate
   has been revoked or is denied renewal.  Configuring this option would
   be a parameter on the BRSKI registrar(s).  As long as the node did
   not receive a domain certificate, undoing "ANI/ACP enable" should not
   have any additional constraints.

10.3.7.  Summary

   Node-wide "ACP/ANI enable [up-if-only]" commands enable the operation
   of ACP/ANI.  This is only auto-enabled on ANI greenfield devices,
   otherwise it must be configured explicitly.

   If the option "up-if-only" is not selected, interfaces enabled for
   ACP/ANI interpret "down" state as "admin down" and not "physical
   down".  In "admin-down" all non-ACP/ANI packets are filtered, but the
   physical layer is kept running to permit ACP/ANI to operate.

   (New) commands that result in physical interruption ("physical down",
   "loopback") of ACP/ANI enabled interfaces should be built to protect
   continuance or reestablishment of ACP as much as possible.

   Interface level "ACP/ANI enable" control per-interface operations.
   It is enabled by default on native interfaces and has to be
   configured explicitly on other interfaces.
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   Disabling "ACP/ANI enable" global and per-interface should have
   additional checks to minimize undesired breakage of ACP.  The degree
   of control could be a domain wide parameter in the domain
   certificates.

10.4.  Configuration and the ACP (summary)

   There is no desirable configuration for the ACP.  Instead, all
   parameters that need to be configured in support of the ACP are
   limitations of the solution, but they are only needed in cases where
   not all components are made autonomic.  Whereever this is necessary,
   it will rely on pre-existing mechanisms for configuration such as CLI
   or YANG ([RFC7950]) data models.

   The most important examples of such configuration include:

   o  When ACP nodes do not support an autonomic way to receive an ACP
      domain certificate, for example BRSKI, then such certificate needs
      to be configured via some pre-existing mechanisms outside the
      scope of this specification.  Today, router have typically a
      variety of mechanisms to do this.

   o  Certificate maintenance requires PKI functions.  Discovery of
      these functions across the ACP is automated (see Section 6.1.4),
      but their configuration is is not.

   o  When non-ACP capable nodes need to be connected to the ACP, the
      connecting ACP node needs to be configuration to support this
      according to Section 8.1.

   o  When devices are not autonomically bootstrapped, explicit
      configuration to enable the ACP needs to be applied.  See
      Section 10.3.

   o  When the ACP needs to be extended across interfacess other than
      L2, the ACP as defined in this document can not autodiscover
      candidate neighbors automatically.  Remove neighbors need to be
      configured, see Section 8.2.

   Once the ACP is operating, any further configuration for the data-
   lane can be configured more reliably across the ACP itself because
   the ACP provides addressing and connectivity (routing) independent of
   the data-plane itself.  For this, the configuration methods simply
   need to also allow to operate across the ACP VRF - netconf, ssh or
   any other method.

   The ACP also provides additional security through its hop-by-hop
   encryption for any such configuration operations: Some legacy
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   configuration methods (SNMP, TFTP, HTTP) may not use end-to-end
   encryption, and most of the end-to-end secured configuration methods
   still allow for easy passive observation along the path about
   configuration taking place (transport flows, port numbers, IP
   addresses).

   The ACP can and should equally be used as the transport to configure
   any of the aforemention non-automic components of the ACP, but in
   that case, the same caution needs to be exercised as with data-plane
   configuration without ACP: Misconfiguration may cause the configuring
   entity to be disconnected from the node it configures - for example
   when incorrectly unconfiguring a remote ACP neighbor through which
   the configured ACP node is reached.

11.  Security Considerations

   After seeding an ACP by configuring at least one ACP registrar with
   routing-subdomain and a CA, an ACP is self-protecting and there is no
   need to apply configuration to make it secure (typically the ACP
   Registrar doubles as EST server for certificate renewal).  Its
   security therefore does not depend on configuration.  This does not
   include workarounds for non-autonomic components as explained in
   Section 8.  See Section 9.2 for details of how the ACP protects
   itself against attacks from the outside and to a more limited degree
   from the inside as well.

   However, the security of the ACP depends on a number of other
   factors:

   o  The usage of domain certificates depends on a valid supporting PKI
      infrastructure.  If the chain of trust of this PKI infrastructure
      is compromised, the security of the ACP is also compromised.  This
      is typically under the control of the network administrator.

   o  Every ACP registrar is criticial infrastructure that needs to be
      hardened against attacks similar to a CA.  A malicious registrar
      can enroll enemy plegdes to an ACP network or break ACP routing by
      duplicate ACP address assignment to pledges via their ACP domain
      certificates.

   o  Security can be compromised by implementation errors (bugs), as in
      all products.

   There is no prevention of source-address spoofing inside the ACP.
   This implies that if an attacker gains access to the ACP, it can
   spoof all addresses inside the ACP and fake messages from any other
   node.
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   The ACP It is designed to enable automation of current network
   management and future autonomic peer-to-peer/distributed network
   automation.  Any ACP member can send ACP IPv6 packet to other ACP
   members and announce via ACP GRASP services to all ACP members
   without depenency against centralized components.

   The ACP relies on peer-to-peer authentication and authorization using
   ACP certificates.  This security model is necessary to enable the
   autonomic ad-hoc any-to-any connectivity between ACP nodes.  It
   provides infrastructure protection through hop by hop authentication
   and encryption - without relying on third parties.  For any services
   where this complete autonomic peer-to-peer group security model is
   appropriate, the ACP domain certificate can also be used unchanged.
   For example for any type of data-plane routing protocol security.

   This ACP security model is designed primarily to protect against
   attack from the outside, but not against attacks from the inside.  To
   protect against spoofing attacks from compromised on-path ACP nodes,
   end-to-end encryption inside the ACP is used by new ACP signaling:
   GRASP across the ACP using TLS.  The same is expected from any non-
   legacy services/protocols using the ACP.  Because no group-keys are
   used, there is no risk for impacted nodes to access end-to-end
   encrypted traffic from other ACP nodes.

   Attacks from impacted ACP nodes against the ACP are more difficult
   than against the data-plane because of the autoconfiguration of the
   ACP and the absence of configuration options that could be abused
   that allow to change/break ACP behavior.  This is excluding
   configuration for workaround in support of non-autonomic components.

   Mitigation against compromised ACP members is possible through
   standard automated certificate management mechanisms including
   revocation and non-renewal of short-lived cdrtificates.  In this
   version of the specification, there are no further optimization of
   these mechanisms defined for the ACP (but see Appendix A.10.8).

   Higher layer service built using ACP domain certificates should not
   solely rely on undifferentiated group security when another model is
   more appropriate/more secure.  For example central network
   configuration relies on a security model where only few especially
   trusted nodes are allowed to configure the data-plane of network
   nodes (CLIL, Netconf).  This can be done through ACP domain
   certificates by differentiating them and introduce roles.  See
   Appendix A.10.5.

   Fundamentally, security depends on avoiding operator and network
   operations automation mistakes, implementation and architecture.
   Autonomic approaches such as the ACP largely eliminate operator
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   mistakes and make it easier to recover from network operations
   mistakes.  Implementation and architectural mistakes are still
   possible, as in all networking technologies.

   Many details of ACP are designed with security in mind and discussed
   elsewhere in the document:

   IPv6 addresses used by nodes in the ACP are covered as part of the
   node’s domain certificate as described in Section 6.1.1.  This allows
   even verification of ownership of a peers IPv6 address when using a
   connection authenticated with the domain certificate.

   The ACP acts as a security (and transport) substrate for GRASP inside
   the ACP such that GRASP is not only protected by attacks from the
   outside, but also by attacks from compromised inside attackers - by
   relying not only on hop-by-hop security of ACP secure channels, but
   adding end-to-end security for those GRASP messages.  See
   Section 6.8.2.

   ACP provides for secure, resilient zero-touch discovery of EST
   servers for certificate renewal.  See Section 6.1.4.

   ACP provides extensible, auto-configuring hop-by-hop protection of
   the ACP infrastructure via the negotiation of hop-by-hop secure
   channel protocols.  See Section 6.5 and Appendix A.6.

   The ACP is designed to minimize attacks from the outside by
   minimizing its dependency against any non-ACP (Data-Plane)
   operations/configuration on a node.  See also Section 6.12.2.

   In combination with BRSKI, ACP enables a resilient, fully zero-touch
   network solution for short-lived certificates that can be renewed or
   re-enrolled even after unintentional expiry (e.g., because of
   interrupted connectivity).  See Appendix A.2.

   Because ACP secure channels can be long lived, but certificates used
   may be short lived, secure channels, for example built via IPsec need
   to be terminated when peer certificates expire.  See Section 6.7.3.

   The ACP is designed to minimize attacks from the outside by
   minimizing its dependency against any non-ACP (Data-Plane)
   operations/configuration on a node.  See also Section 6.12.2.

12.  IANA Considerations

   This document defines the "Autonomic Control Plane".
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   The IANA is requested to register the value "AN_ACP" (without quotes)
   to the GRASP Objectives Names Table in the GRASP Parameter Registry.
   The specification for this value is this document, Section 6.3.

   The IANA is requested to register the value "SRV.est" (without
   quotes) to the GRASP Objectives Names Table in the GRASP Parameter
   Registry.  The specification for this value is this document,
   Section 6.1.4.

   Explanation: This document chooses the initially strange looking
   format "SRV.<service-name>" because these objective names would be in
   line with potential future simplification of the GRASP objective
   registry.  Today, every name in the GRASP objective registry needs to
   be explicitly allocated with IANA.  In the future, this type of
   objective names could considered to be automatically registered in
   that registry for the same service for which <service-name> is
   registered according to [RFC6335].  This explanation is solely
   informational and has no impact on the requested registration.

   The IANA is requested to create an ACP Parameter Registry with
   currently one registry table - the "ACP Address Type" table.

   "ACP Address Type" Table.  The value in this table are numeric values
   0...3 paired with a name (string).  Future values MUST be assigned
   using the Standards Action policy defined by [RFC8126].  The
   following initial values are assigned by this document:

   0: ACP Zone Addressing Sub-Scheme (ACP RFC Figure 10) / ACP Manual
   Addressing Sub-Scheme (ACP RFC Section 6.10.4)
   1: ACP Vlong Addressing Sub-Scheme (ACP RFC Section 6.10.5)
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14.  Change log [RFC Editor: Please remove]

14.1.  Initial version

   First version of this document: draft-behringer-autonomic-control-
   plane

14.2.  draft-behringer-anima-autonomic-control-plane-00

   Initial version of the anima document; only minor edits.

14.3.  draft-behringer-anima-autonomic-control-plane-01

   o  Clarified that the ACP should be based on, and support only IPv6.

   o  Clarified in intro that ACP is for both, between devices, as well
      as for access from a central entity, such as an NMS.

   o  Added a section on how to connect an NMS system.

   o  Clarified the hop-by-hop crypto nature of the ACP.

   o  Added several references to GDNP as a candidate protocol.

   o  Added a discussion on network split and merge.  Although, this
      should probably go into the certificate management story longer
      term.

14.4.  draft-behringer-anima-autonomic-control-plane-02

   Addresses (numerous) comments from Brian Carpenter.  See mailing list
   for details.  The most important changes are:

   o  Introduced a new section "overview", to ease the understanding of
      the approach.

   o  Merged the previous "problem statement" and "use case" sections
      into a mostly re-written "use cases" section, since they were
      overlapping.

   o  Clarified the relationship with draft-ietf-anima-stable-
      connectivity

14.5.  draft-behringer-anima-autonomic-control-plane-03

   o  Took out requirement for IPv6 --> that’s in the reference doc.

   o  Added requirement section.
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   o  Changed focus: more focus on autonomic functions, not only virtual
      out-of-band.  This goes a bit throughout the document, starting
      with a changed abstract and intro.

14.6.  draft-ietf-anima-autonomic-control-plane-00

   No changes; re-submitted as WG document.

14.7.  draft-ietf-anima-autonomic-control-plane-01

   o  Added some paragraphs in addressing section on "why IPv6 only", to
      reflect the discussion on the list.

   o  Moved the Data-Plane ACP out of the main document, into an
      appendix.  The focus is now the virtually separated ACP, since it
      has significant advantages, and isn’t much harder to do.

   o  Changed the self-creation algorithm: Part of the initial steps go
      into the reference document.  This document now assumes an
      adjacency table, and domain certificate.  How those get onto the
      device is outside scope for this document.

   o  Created a new section 6 "workarounds for non-autonomic nodes", and
      put the previous controller section (5.9) into this new section.
      Now, section 5 is "autonomic only", and section 6 explains what to
      do with non-autonomic stuff.  Much cleaner now.

   o  Added an appendix explaining the choice of RPL as a routing
      protocol.

   o  Formalized the creation process a bit more.  Now, we create a
      "candidate peer list" from the adjacency table, and form the ACP
      with those candidates.  Also it explains now better that policy
      (Intent) can influence the peer selection. (section 4 and 5)

   o  Introduce a section for the capability negotiation protocol
      (section 7).  This needs to be worked out in more detail.  This
      will likely be based on GRASP.

   o  Introduce a new parameter: ACP tunnel type.  And defines it in the
      IANA considerations section.  Suggest GRE protected with IPSec
      transport mode as the default tunnel type.

   o  Updated links, lots of small edits.
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14.8.  draft-ietf-anima-autonomic-control-plane-02

   o  Added explicitly text for the ACP channel negotiation.

   o  Merged draft-behringer-anima-autonomic-addressing-02 into this
      document, as suggested by WG chairs.

14.9.  draft-ietf-anima-autonomic-control-plane-03

   o  Changed Neighbor discovery protocol from GRASP to mDNS.  Bootstrap
      protocol team decided to go with mDNS to discover bootstrap proxy,
      and ACP should be consistent with this.  Reasons to go with mDNS
      in bootstrap were a) Bootstrap should be reuseable also outside of
      full anima solutions and introduce as few as possible new
      elements. mDNS was considered well-known and very-likely even pre-
      existing in low-end devices (IoT). b) Using GRASP both for the
      insecure neighbor discovery and secure ACP operatations raises the
      risk of introducing security issues through implementation issues/
      non-isolation between those two instances of GRASP.

   o  Shortened the section on GRASP instances, because with mDNS being
      used for discovery, there is no insecure GRASP session any longer,
      simplifying the GRASP considerations.

   o  Added certificate requirements for ANIMA in section 5.1.1,
      specifically how the ANIMA information is encoded in
      subjectAltName.

   o  Deleted the appendix on "ACP without separation", as originally
      planned, and the paragraph in the main text referring to it.

   o  Deleted one sub-addressing scheme, focusing on a single scheme
      now.

   o  Included information on how ANIMA information must be encoded in
      the domain certificate in section "preconditions".

   o  Editorial changes, updated draft references, etc.

14.10.  draft-ietf-anima-autonomic-control-plane-04

   Changed discovery of ACP neighbor back from mDNS to GRASP after
   revisiting the L2 problem.  Described problem in discovery section
   itself to justify.  Added text to explain how ACP discovery relates
   to BRSKY (bootstrap) discovery and pointed to Michael Richardsons
   draft detailing it.  Removed appendix section that contained the
   original explanations why GRASP would be useful (current text is
   meant to be better).
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14.11.  draft-ietf-anima-autonomic-control-plane-05

   o  Section 5.3 (candidate ACP neighbor selection): Add that Intent
      can override only AFTER an initial default ACP establishment.

   o  Section 6.10.1 (addressing): State that addresses in the ACP are
      permanent, and do not support temporary addresses as defined in
      RFC4941.

   o  Modified Section 6.3 to point to the GRASP objective defined in
      draft-carpenter-anima-ani-objectives. (and added that reference)

   o  Section 6.10.2: changed from MD5 for calculating the first 40-bits
      to SHA256; reason is MD5 should not be used any more.

   o  Added address sub-scheme to the IANA section.

   o  Made the routing section more prescriptive.

   o  Clarified in Section 8.1.1 the ACP Connect port, and defined that
      term "ACP Connect".

   o  Section 8.2: Added some thoughts (from mcr) on how traversing a L3
      cloud could be automated.

   o  Added a CRL check in Section 6.7.

   o  Added a note on the possibility of source-address spoofing into
      the security considerations section.

   o  Other editoral changes, including those proposed by Michael
      Richardson on 30 Nov 2016 (see ANIMA list).

14.12.  draft-ietf-anima-autonomic-control-plane-06

   o  Added proposed RPL profile.

   o  detailed DTLS profile - DTLS with any additional negotiation/
      signaling channel.

   o  Fixed up text for ACP/GRE encap.  Removed text claiming its
      incompatible with non-GRE IPsec and detailed it.

   o  Added text to suggest admin down interfaces should still run ACP.
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14.13.  draft-ietf-anima-autonomic-control-plane-07

   o  Changed author association.

   o  Improved ACP connect setion (after confusion about term came up in
      the stable connectivity draft review).  Added picture, defined
      complete terminology.

   o  Moved ACP channel negotiation from normative section to appendix
      because it can in the timeline of this document not be fully
      specified to be implementable.  Aka: work for future document.
      That work would also need to include analysing IKEv2 and describin
      the difference of a proposed GRASP/TLS solution to it.

   o  Removed IANA request to allocate registry for GRASP/TLS.  This
      would come with future draft (see above).

   o  Gave the name "ACP domain information field" to the field in the
      certificate carrying the ACP address and domain name.

   o  Changed the rules for mutual authentication of certificates to
      rely on the domain in the ACP information field of the certificate
      instead of the OU in the certificate.  Also renewed the text
      pointing out that the ACP information field in the certificate is
      meant to be in a form that it does not disturb other uses of the
      certificate.  As long as the ACP expected to rely on a common OU
      across all certificates in a domain, this was not really true:
      Other uses of the certificates might require different OUs for
      different areas/type of devices.  With the rules in this draft
      version, the ACP authentication does not rely on any other fields
      in the certificate.

   o  Added an extension field to the ACP information field so that in
      the future additional fields like a subdomain could be inserted.
      An example using such a subdomain field was added to the pre-
      existing text suggesting sub-domains.  This approach is necessary
      so that there can be a single (main) domain in the ACP information
      field, because that is used for mutual authentication of the
      certificate.  Also clarified that only the register(s) SHOULD/MUST
      use that the ACP address was generated from the domain name - so
      that we can easier extend change this in extensions.

   o  Took the text for the GRASP discovery of ACP neighbors from Brians
      grasp-ani-objectives draft.  Alas, that draft was behind the
      latest GRASP draft, so i had to overhaul.  The mayor change is to
      describe in the ACP draft the whole format of the M_FLOOD message
      (and not only the actual objective).  This should make it a lot
      easier to read (without having to go back and forth to the GRASP
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      RFC/draft).  It was also necessary because the locator in the
      M_FLOOD messages has an important role and its not coded inside
      the objective.  The specification of how to format the M_FLOOD
      message shuold now be complete, the text may be some duplicate
      with the DULL specificateion in GRASP, but no contradiction.

   o  One of the main outcomes of reworking the GRASP section was the
      notion that GRASP announces both the candidate peers IPv6 link
      local address but also the support ACP security protocol including
      the port it is running on.  In the past we shied away from using
      this information because it is not secured, but i think the
      additional attack vectors possible by using this information are
      negligible: If an attacker on an L2 subnet can fake another
      devices GRASP message then it can already provide a similar amount
      of attack by purely faking the link-local address.

   o  Removed the section on discovery and BRSKI.  This can be revived
      in the BRSKI document, but it seems mood given how we did remove
      mDNS from the latest BRSKI document (aka: this section discussed
      discrepancies between GRASP and mDNS discovery which should not
      exist anymore with latest BRSKI.

   o  Tried to resolve the EDNOTE about CRL vs. OCSP by pointing out we
      do not specify which one is to be used but that the ACP should be
      used to reach the URL included in the certificate to get to the
      CRL storage or OCSP server.

   o  Changed ACP via IPsec to ACP via IKEv2 and restructured the
      sections to make IPsec native and IPsec via GRE subsections.

   o  No need for any assigned DTLS port if ACP is run across DTLS
      because it is signaled via GRASP.

14.14.  draft-ietf-anima-autonomic-control-plane-08

   Modified mentioning of BRSKI to make it consistent with current
   (07/2017) target for BRSKI: MASA and IDevID are mandatory.  Devices
   with only insecure UDI would need a security reduced variant of
   BRSKI.  Also added mentioning of Netconf Zero-Touch.  Made BRSKI non-
   normative for ACP because wrt.  ACP it is just one option how the
   domain certificate can be provisioned.  Instead, BRSKI is mandatory
   when a device implements ANI which is ACP+BRSKI.

   Enhanced text for ACP across tunnels to describe two options: one
   across configured tunnels (GRE, IPinIP etc) a more efficient one via
   directed DULL.
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   Moved decription of BRSKI to appendix to emphasize that BRSKI is not
   a (normative) dependency of GRASP, enhanced text to indicate other
   options how Domain Certificates can be provisioned.

   Added terminology section.

   Separated references into normative and non-normative.

   Enhanced section about ACP via "tunnels".  Defined an option to run
   ACP secure channel without an outer tunnel, discussed PMTU, benefits
   of tunneling, potential of using this with BRSKI, made ACP via GREP a
   SHOULD requirement.

   Moved appendix sections up before IANA section because there where
   concerns about appendices to be too far on the bottom to be read.
   Added (Informative) / (Normative) to section titles to clarify which
   sections are informative and which are normative

   Moved explanation of ACP with L2 from precondition to separate
   section before workarounds, made it instructive enough to explain how
   to implement ACP on L2 ports for L3/L2 switches and made this part of
   normative requirement (L2/L3 switches SHOULD support this).

   Rewrote section "GRASP in the ACP" to define GRASP in ACP as
   mandatory (and why), and define the ACP as security and transport
   substrate to GRASP in ACP.  And how it works.

   Enhanced "self-protection" properties section: protect legacy
   management protocols.  Security in ACP is for protection from outside
   and those legacy protocols.  Otherwise need end-to-end encryption
   also inside ACP, e.g., with domain certificate.

   Enhanced initial domain certificate section to include requirements
   for maintenance (renewal/revocation) of certificates.  Added
   explanation to BRSKI informative section how to handle very short
   lived certificates (renewal via BRSKI with expired cert).

   Modified the encoding of the ACP address to better fit RFC822 simple
   local-parts (":" as required by RFC5952 are not permitted in simple
   dot-atoms according to RFC5322.  Removed reference to RFC5952 as its
   now not needed anymore.

   Introduced a sub-domain field in the ACP information in the
   certificate to allow defining such subdomains with depending on
   future Intent definitions.  It also makes it clear what the "main
   domain" is.  Scheme is called "routing subdomain" to have a unique
   name.
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   Added V8 (now called Vlong) addressing sub-scheme according to
   suggestion from mcr in his mail from 30 Nov 2016
   (https://mailarchive.ietf.org/arch/msg/anima/
   nZpEphrTqDCBdzsKMpaIn2gsIzI).  Also modified the explanation of the
   single V bit in the first sub-scheme now renamed to Zone sub-scheme
   to distinguish it.

14.15.  draft-ietf-anima-autonomic-control-plane-09

   Added reference to RFC4191 and explained how it should be used on ACP
   edge routers to allow auto configuration of routing by NMS hosts.
   This came after review of stable connectivity draft where ACP connect
   is being referred to.

   V8 addressing Sub-Scheme was modified to allow not only /8 device-
   local address space but also /16.  This was in response to the
   possible need to have maybe as much as 2^12 local addresses for
   future encaps in BRSKI like IPinIP.  It also would allow fully
   autonomic address assignment for ACP connect interfaces from this
   local address space (on an ACP edge device), subject to approval of
   the implied update to rfc4291/rfc4193 (IID length).  Changed name to
   Vlong addressing sub-scheme.

   Added text in response to Brian Carpenters review of draft-ietf-
   anima-stable-connectivity-04.

   o  The stable connectivity draft was vaguely describing ACP connect
      behavior that is better standardized in this ACP draft.

   o  Added new ACP "Manual" addressing sub-scheme with /64 subnets for
      use with ACP connect interfaces.  Being covered by the ACP ULA
      prefix, these subnets do not require additional routing entries
      for NMS hosts.  They also are fully 64-bit IID length compliant
      and therefore not subject to 4191bis considerations.  And they
      avoid that operators manually assign prefixes from the ACP ULA
      prefixes that might later be assigned autonomically.

   o  ACP connect auto-configuration: Defined that ACP edge devices, NMS
      hosts should use RFC4191 to automatically learn ACP prefixes.
      This is especially necessary when the ACP uses multiple ULA
      prefixes (via e.g., the rsub domain certificate option), or if ACP
      connect sub-interfaces use manually configured prefixes NOT
      covered by the ACP ULA prefixes.

   o  Explained how rfc6724 is (only) sufficient when the NMS host has a
      separate ACP connect and Data-Plane interface.  But not when there
      is a single interface.

Eckert, et al.         Expires September 12, 2019             [Page 111]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

   o  Added a separate subsection to talk about "software" instead of
      "NMS hosts" connecting to the ACP via the "ACP connect" method.
      The reason is to point out that the "ACP connect" method is not
      only a workaround (for NMS hosts), but an actual desirable long
      term architectural component to modularly build software (e.g.,
      ASA or OAM for VNF) into ACP devices.

   o  Added a section to define how to run ACP connect across the same
      interface as the Data-Plane.  This turns out to be quite
      challenging because we only want to rely on existing standards for
      the network stack in the NMS host/software and only define what
      features the ACP edge device needs.

   o  Added section about use of GRASP over ACP connect.

   o  Added text to indicate packet processing/filtering for security:
      filter incorrect packets arriving on ACP connect interfaces,
      diagnose on RPL root packets to incorrect destination address (not
      in ACP connect section, but because of it).

   o  Reaffirm security goal of ACP: Do not permit non-ACP routers into
      ACP routing domain.

   Made this ACP document be an update to RFC4291 and RFC4193.  At the
   core, some of the ACP addressing sub-schemes do effectively not use
   64-bit IIDs as required by RFC4191 and debated in rfc4191bis.  During
   6man in Prague, it was suggested that all documents that do not do
   this should be classified as such updates.  Add a rather long section
   that summarizes the relevant parts of ACP addressing and usage and.
   Aka: This section is meant to be the primary review section for
   readers interested in these changes (e.g., 6man WG.).

   Added changes from Michael Richardsons review https://github.com/
   anima-wg/autonomic-control-plane/pull/3/commits, textual and:

   o  ACP discovery inside ACP is bad *doh*!.

   o  Better CA trust and revocation sentences.

   o  More details about RPL behavior in ACP.

   o  black hole route to avoid loops in RPL.

   Added requirement to terminate ACP channels upon cert expiry/
   revocation.

   Added fixes from 08-mcr-review-reply.txt (on github):
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   o  AN Domain Names are FQDNs.

   o  Fixed bit length of schemes, numerical writing of bits (00b/01b).

   o  Lets use US american english.

14.16.  draft-ietf-anima-autonomic-control-plane-10

   Used the term routing subdomain more consistently where previously
   only subdomain was used.  Clarified use of routing subdomain in
   creation of ULA "global ID" addressing prefix.

   6.7.1.* Changed native IPsec encapsulation to tunnel mode
   (necessary), explained why.  Added notion that ESP is used, added
   explanations why tunnel/transport mode in native vs. GRE cases.

   6.10.3/6.10.5 Added term "ACP address range/set" to be able to better
   explain how the address in the ACP certificate is actually the base
   address (lowest address) of a range/set that is available to the
   device.

   6.10.4 Added note that manual address sub-scheme addresses must not
   be used within domain certificates (only for explicit configuration).

   6.12.5 Refined explanation of how ACP virtual interfaces work (p2p
   and multipoint).  Did seek for pre-existing RFCs that explain how to
   build a multi-access interface on top of a full mesh of p2p
   connections (6man WG, anima WG mailing lists), but could not find any
   prior work that had a succinct explanation.  So wrote up an
   explanation here.  Added hopefully all necessary and sufficient
   details how to map ACP unicast packets to ACP secure channel, how to
   deal with ND packet details.  Added verbiage for ACP not to assign
   the virtual interface link-local address from the underlying
   interface.  Added note that GRAP link-local messages are treated
   specially but logically the same.  Added paragraph about NBMA
   interfaces.

   remaining changes from Brian Carpenters review.  See Github file
   draft-ietf-anima-autonomic-control-plane/08-carpenter-review-reply.tx
   for more details:

   Added multiple new RFC references for terms/technologies used.

   Fixed verbage in several places.

   2. (terminology) Added 802.1AR as reference.

   2.  Fixed up definition of ULA.
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   6.1.1 Changed definition of ACP information in cert into ABNF format.
   Added warning about maximum size of ACP address field due to domain-
   name limitations.

   6.2 Mentioned API requirement between ACP and clients leveraging
   adjacency table.

   6.3 Fixed TTL in GRASP example: msec, not hop-count!.

   6.8.2 MAYOR: expanded security/transport substrate text:

   Introduced term ACP GRASP virtual interface to explain how GRASP
   link-local multicast messages are encapsulated and replicated to
   neighbors.  Explain how ACP knows when to use TLS vs. TCP (TCP only
   for link-local address (sockets).  Introduced "ladder" picture to
   visualize stack.

   6.8.2.1 Expanded discussion/explanation of security model.  TLS for
   GRASP unicast connections across ACP is double encryption (plus
   underlying ACP secure channel), but highly necessary to avoid very
   simple man-in-the-middle attacks by compromised ACP members on-path.
   Ultimately, this is done to ensure that any apps using GRASP can get
   full end-to-end secrecy for information sent across GRASP.  But for
   publically known ASA services, even this will not provide 100%
   security (this is discussed).  Also why double encryption is the
   better/easier solution than trying to optimize this.

   6.10.1 Added discussion about pseudo-random addressing, scanning-
   attacks (not an issue for ACP).

   6.12.2 New performance requirements section added.

   6.10.1 Added notion to first experiment with existing addressing
   schemes before defining new ones - we should be flexible enough.

   6.3/7.2 clarified the interactions between MLD and DULL GRASP and
   specified what needs to be done (e.g., in 2 switches doing ACP per L2
   port).

   12.  Added explanations and cross-references to various security
   aspects of ACP discussed elsewhere in the document.

   13.  Added IANA requirements.

   Added RFC2119 boilerplate.
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14.17.  draft-ietf-anima-autonomic-control-plane-11

   Same text as -10 Unfortunately when uploading -10 .xml/.txt to
   datatracker, a wrong version of .txt got uploaded, only the .xml was
   correct.  This impacts the -10 html version on datatracker and the
   PDF versions as well.  Because rfcdiff also compares the .txt
   version, this -11 version was created so that one can compare changes
   from -09 and changes to the next version (-12).

14.18.  draft-ietf-anima-autonomic-control-plane-12

   Sheng Jiangs extensive review.  Thanks!  See Github file draft-ietf-
   anima-autonomic-control-plane/09-sheng-review-reply.txt for more
   details.  Many of the larger changes listed below where inspired by
   the review.

   Removed the claim that the document is updating RFC4291,RFC4193 and
   the section detailing it.  Done on suggestion of Michael Richardson -
   just try to describe use of addressing in a way that would not
   suggest a need claim update to architecture.

   Terminology cleanup:

   o  Replaced "device" with "node" in text.  Kept "device" only when
      referring to "physical node".  Added definitions for those words.
      Includes changes of derived terms, especially in addressing:
      "Node-ID" and "Node-Number" in the addressing details.

   o  Replaced term "autonomic FOOBAR" with "acp FOOBAR" as wherever
      appropriate: "autonomic" would imply that the node would need to
      support more than the ACP, but that is not correct in most of the
      cases.  Wanted to make sure that implementers know they only need
      to support/implement ACP - unless stated otherwise.  Includes
      "AN->ACP node", "AN->ACP adjacency table" and so on.

   1 Added explanation in the introduction about relationship between
   ACP, BRSKI, ANI and Autonomic Networks.

   6.1.1 Improved terminology and features of the certificate
   information field.  Now called domain information field instead of
   ACP information field.  The acp-address field in the domain
   information field is now optional, enabling easier introduction of
   various future options.

   6.1.2 Moved ACP domain membership check from section 6.6 to (ACP
   secure channels setup) here because it is not only used for ACP
   secure channel setup.
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   6.1.3 Fix text about certificate renewal after discussion with Max
   Pritikin/Michael Richardson/Brian Carpenter:

   o  Version 10 erroneously assumed that the certificate itself could
      store a URL for renewal, but that is only possible for CRL URLs.
      Text now only refers to "remembered EST server" without implying
      that this is stored in the certificate.

   o  Objective for RFC7030/EST domain certificate renewal was changed
      to "SRV.est" See also IANA section for explanation.

   o  Removed detail of distance based service selection.  This can be
      better done in future work because it would require a lot more
      detail for a good DNS-SD compatible approach.

   o  Removed detail about trying to create more security by using ACP
      address from certificate of peer.  After rethinking, this does not
      seem to buy additional security.

   6.10 Added reference to 6.12.5 in initial use of "loopback interface"
   in section 6.10 in result of email discussion michaelR/michaelB.

   10.2 Introduced informational section (diagnostics) because of
   operational experience - ACP/ANI undeployable without at least
   diagnostics like this.

   10.3 Introduced informational section (enabling/disabling) ACP.
   Important to discuss this for security reasons (e.g., why to never
   auto-enable ANI on brownfield devices), for implementers and to
   answer ongoing questions during WG meetings about how to deal with
   shutdown interface.

   10.8 Added informational section discussing possible future
   variations of the ACP for potential adopters that cannot directly use
   the complete solution described in this document unmodified.

14.19.  draft-ietf-anima-autonomic-control-plane-13

   Swap author list (with permission).

   6.1.1.  Eliminate blank lines in definition by making it a picture
   (reformatting only).

   6.10.3.1 New paragraph: Explained how nodes using Zone-ID != 0 need
   to use Zone-ID != 0 in GRASP so that we can avoid routing/forwarding
   of Zone-ID = 0 prefixes.
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   Rest of feedback from review of -12, see
   https://raw.githubusercontent.com/anima-wg/autonomic-control-
   plane/master/draft-ietf-anima-autonomic-control-plane/12-feedback-
   reply.txt

   Review from Brian Carpenter:

   various: Autonomous -> autonomic(ally) in all remaining occurrences.

   various: changed "manual (configured)" to "explicitly (configured)"
   to not exclude the option of (SDN controller) automatic configuration
   (no humans involved).

   1.  Fixed reference to section 9.

   2.  Added definition of loopback interface == internal interface.
   After discus on WG mailing lists, including 6man.

   6.1.2 Defined CDP/OCSP and pointed to RFC5280 for them.

   6.1.3 Removed "EST-TLS", no objective value needed or beneficial,
   added explanation paragraph why.

   6.2 Added to adjacency table the interface that a neighbor is
   discovered on.

   6.3 Simplified CDDL syntax: Only one method per AN_ACP objective
   (because of locators).  Example with two objectives in GRASP message.

   6.8.1 Added note about link-local GRASP multicast message to avoid
   confusion.

   8.1.4 Added RFC8028 as recommended on hosts to better support VRF-
   select with ACP.

   8.2.1 Rewrote and Simplified CDDL for configured remote peer and
   explanations.  Removed pattern option for remote peer.  Not important
   enough to be mandated.

   Review thread started by William Atwood:

   2.  Refined definition of VRF (vs.  MPLS/VPN, LISP, VRF-LITE).

   2.  Refined definition of ACP (ACP includes ACP GRASP instance).

   2.  Added explanation for "zones" to terminology section and into
   Zone Addressing Sub Scheme section, relating it to RFC4007 zones
   (from Brian Carpenter).
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   4.  Fixed text for ACP4 requirement (Clients of the ACP must not be
   tied to specific protocol.).

   5.  Fixed step 4. with proposed text.

   6.1.1 Included suggested explanation for rsub semantics.

   6.1.3 must->MUST for at least one EST server in ACP network to
   autonomically renew certs.

   6.7.2 normative: AND MUST NOT (permit weaker crypto options.

   6.7.1.1 also included text denying weaker IPsec profile options.

   6.8.2 Fixed description how to build ACP GRASP virtual interfaces.
   Added text that ACP continues to exist in absence of ACP neighbors.

   various: Make sure all "zone" words are used consistently.

   6.10.2/various: fixed 40-bit RFC4193 ULA prefix in all examples to
   89b714f3db (thanks MichaelR).

   6.10.1 Removed comment about assigned ULA addressing.  Decision not
   to use it now ancient history of WG decision making process, not
   worth nothing anymore in the RFC.

   Review from Yongkang Zhang:

   6.10.5 Fixed length of Node-Numbers in ACP Vlong Addressing Sub-
   Scheme.

14.20.  draft-ietf-anima-autonomic-control-plane-14

   Disclaimer: All new text introduced by this revision provides only
   additional explanations/ details based on received reviews and
   analysis by the authors.  No changes to behavior already specified in
   prior revisions.

   Joel Halpern, review part 3:

   Define/explain "ACP registrar" in reply to Joel Halpern review part
   3, resolving primarily 2 documentation issues::

   1.  Unclear how much ACP depends on BRSKI.  ACP document was
       referring unqualified to registrars and Registrar-ID in the
       addressing section without explaining what a registrar is,
       leading to the assumption it must be a BRSKI Registrar.
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   2.  Unclear how the ACP addresses in ACP domain certificates are
       assigned because the BRSKI document does not defines this, but
       refers to this ACP document.

   Wrt. 1: ACP does NOT depend on BRSKI registrars, instead ANY
   appropriate automated or manual mechanism can be used to enroll ACP
   nodes with ACP domain certificates.  This revision calls defines such
   mechanisms the "ACP registrar" and defines requirements.  this is
   non-normative, because it does not define specific mechanisms that
   need to be support.  In ANI devices, ACP Registrars are BRSKI
   Registrars.  In non-ANI ACP networks, the registrar may simply be a
   person using CLI/web-interfaces to provision domain certificates and
   set the ACP address correctly in the ACP domain certificate.

   Wrt. 2.: The BRSKI document does rightfully not define how the ACP
   address assignment and creation of the ACP domain information field
   has to work because this is independent of BRSKI and needs to follow
   the same rules whatever protocol/mechanisms are used to implement an
   ACP Registrar.  Another set of protocols that could be used instead
   of BRSKI is Netconf/Netconf-Call-Home, but such an alternative ACP
   Registrar solution would need to be specified in its own document.

   Additional text/sections had to be added to detail important
   conditions so that automatic certificate maintenance for ACP nodes
   (with BRSKI or other mechanisms) can be done in a way that as good as
   possible maintains ACP address information of ACP nodes across the
   nodes lifetime because that ACP address is intended as an identifier
   of the ACP node.

   Summary of sections added:

   o  6.1.3.5/6.1.3.6 (normative): re-enrollment of ACP nodes after
      certificate expiry/failure in a way that allows to maintain as
      much as possible ACP address information.

   o  6.10.7 (normative): defines "ACP Registrar" including requirements
      and how it can perform ACP address assignment.

   o  10.3 (informative): details / examples about registrars to help
      implementers and operators understand easier how they operate, and
      provide suggestion of models that a likely very useful (sub-CA
      and/or centralized policy management).

   o  10.4 (informative): Explains the need for the multiple address
      sub-spaces defined in response to discuss with Joel.

   Other changes:
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   Updated references (RFC8366, RFC8368).

   Introduced sub-section headings for 6.1.3 (certificate maintenance)
   because section became too long with newly added sub-sections.  Also
   some small text fixups/remove of duplicate text.

   Gen-ART review, Elwyn Davies:

   [RFC Editor: how can i raise the issue of problematic cross
   references of terms in the terminology section - rendering is
   problematic. ].

   4. added explanation for ACP4 (finally).

   6.1.1 Simplified text in bullet list explaining rfc822 encoding.

   6.1.3 refined second paragraph defining remembering of previous EST
   server and explaining how to do this with BRSKI.

   9.1 Added paragraph outlining the benefit of the sub-CA Registrar
   option for supporting partitioned networks.

   Roughly 100 more nits/minor fixes throughout the document.  See:
   https://raw.githubusercontent.com/anima-wg/autonomic-control-
   plane/master/draft-ietf-anima-autonomic-control-plane/13-elwynd-
   reply.txt

   Joel Halpern, review part 2:

   6.1.1: added note about "+ +" format in address field when acp-
   address and rsub are empty.

   6.5.10 - clarified text about V bit in Vlong addressing scheme.

   6.10.3/6.10.4 - moved the Z bit field up front (directly after base
   scheme) and indicated more explicitly Z is part of selecting of the
   sub-addressing scheme.

   Refined text about reaching CRL Distribution Point, explain why
   address as indicator to use ACP.

   Note from Brian Carpenter: RFC Editor note for section reference into
   GRASP.

   IOT directorate review from Pascal Thubert:

   Various Nits/typos.

Eckert, et al.         Expires September 12, 2019             [Page 120]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

   TBD: Punted wish for mentioning RFC reference titles to RFC editor
   for now.

   1.  Added section 1.1 - applicability, discussing protocol choices
   re. applicability to constrained devices (or not).  Added notion of
   TCP/TLS via CoAP/DTLS to section 10.4 in support of this.

   2.  Added in-band / out-of-band into terminology.

   5.  Referenced section 8.2 for remote ACP channel configuration.

   6.3 made M_FLOOD periods RECOMMENDED (less guesswork)

   6.7.x Clarified conditional nature of MUST for the profile details of
   IPsec parameters (aka: only 6.7.3 defines actual MUST for nodes,
   prior notions only define the requirements for IPsec profiles IF
   IPsec is supported.

   6.8.1 Moved discussion about IP multicast, IGP, RPL for GRASP into a
   new subsection in the informative part (section 10) to tighten up
   text in normative part.

   6.10.1 added another reference to stable-connectivity for interop
   with IPv4 management.

   6.10.1 removed mentioning of ULA-Random, term was used in email
   discus of ULA with L=1, but term actually not defined in rfc4193, so
   mentioning it is just confusing/redundant.  Also added note about the
   random hash being defined in this document, not using SHA1 from
   rfc4193.

   6.11.1.1 added suggested text about mechanisms to further reduce
   opportunities for loop during reconvergence (active signaling options
   from RFC6550).

   6.11.1.3 made mode 2 MUST and mode 2 MAY (RPL MOP - mode of
   operations).  Removes ambiguity.

   6.12.5 Added recommendation for RFC4429 (optimistic DAD).

   Nits from Benjamin Kaduk: dTLS -> DTLS:

   Review from Joel Halpern:

   1. swapped order of "purposes" for ACP to match order in section 3.

   1.  Added notion about manageability of ACP gong beyond RFC7575
   (before discussion of stable connectivity).
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   2.  Changed definition of Intent to be same as reference model
   (policy language instead of API).

   6.1.1 changed BNF specification so that a local-part without acp-
   address (for future extensions) would not be rfcSELF.+rsub but
   simpler rfcSELF+rsub.  Added explanation why rsub is in local-part.

   Tried to eliminate unnecessary references to VRF to minimize
   assumption how system is designed.

   6.1.3 Explained how to make CDP reachable via ACP.

   6.7.2 Made it clearer that constrained devices MUST support DTLS if
   they cannot support IPsec.

   6.8.2.1 clarified first paragraph (TCP retransmissions lightweight).

   6.11.1 fixed up RPL profile text - to remove "VRF".  Text was also
   buggy. mentioned control plane, but it’s a forwarding/silicon issue
   to have these header.

   6.12.5 Clarified how link-local ACP channel address can be derived,
   and how not.

   8.2.1 Fixed up text to distinguish between configuration and model
   describing parameters of the configuration (spec only provides
   parameter model).

   Various Nits.

14.21.  draft-ietf-anima-autonomic-control-plane-15

   Only reshuffling and formatting changes, but wanted to allow
   reviewers later to easily compare -13 with -14, and these changes in
   -15 mess that up too much.

   increased TOC depth to 4.

   Separated and reordered section 10 into an operational and a
   background and futures section.  The background and futures could
   also become appendices if the layout of appendices in RFC format
   wasn’t so horrible that you really only want to avoid using them (all
   the way after a lot of text like references that stop most readers
   from proceeding any further).
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14.22.  draft-ietf-anima-autonomic-control-plane-16

   Mirja Kuehlewind:

   Tightened requirements for ACP related GRASP objective timers.

   Better text to introduce/explains baseline and constrained ACP
   profiles.

   IANA guideline: MUST only accept extensible last allocation for
   address sub-scheme.

   Moved section 11 into appendix.

   Warren Kumari:

   Removed "global routing table", replaced with "Data-Plane routing
   (and forwarding) tables.

   added text to indicate how routing protocols do like to have data-
   plane dependencies.

   Changed power consumption section re. admin-down state.  Power needed
   to bring up such interfaces make t inappropriate to probe.  Need to
   think more about best suggests -> beyond scope.

   Replaced "console" with out-of-band... (console/management ethernet).

   Various nits.

   Joel Halpern:

   Fixed up domain information field ABNF to eliminate confusion that
   rsub is not an FQDN but only a prefix to routing-subdomain.

   Corrected certcheck to separate out cert verification into lifetime
   validity and proof of ownership of private key.

   Fixed pagination for "ACP as security and transport substrate for
   GRASP" picture.

14.23.  draft-ietf-anima-autonomic-control-plane-17

   Review Alissa Cooper:

   Main discuss point fixed by untangling two specific node type cases:
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   NOC nodes have ACP domain cert without acp-address field.  Are ACP
   domain members, but cannot build ACP secure channels (just end-to-end
   or nay other authentications.

   ACP nodes may have other methods to assign ACP address than getting
   it through the cert.  This is indicated through new value 0 for acp-
   address in certificate.

   Accordingly modified texts in ABNF/explanation and Cert-Check
   section.

   Other:

   Better separation of normative text and considerations for "future"
   work:

   - Marked missing chapters as Informative.  Reworded requirements
   section to indicate its informative nature, changed requirements to
   _MUST_/_SHOULD_ to indicate these are not RFC2119 requirements but
   that this requirements section is really just in place of a separate
   solutions requirements document (that ANIMA was not allowed to
   produce).

   - removed ca. 20 instances of "futures" in normative part of
   document.

   - moved important instances of "futures" into new section A.10 (last
   section of appendix).  These serve as reminder of work discussed
   during WG but not able to finish specifying it.

   Eliminated perception that "rsub" (routing subdomain) is only
   beneficial with future work.  Example in A.7.

   Added RFC-editor note re formatting of references to terms defined in
   terminology section.

   Using now correct RFC 8174 boilerplate.

   Clarified semantic and use of manual ACP sub-scheme.  Not used in
   certificates, only assigned via traditional methods.  Use for ACP-
   connect subnets or the like.

   Corrected text about Data-Plane dependencies of ACP.  Appropriate
   implementations can be fully data-plane independent (without more
   spec work) if not sharing link-local address with Data-Plane. 6.12.2
   text updated to discuss those (MAC address), A.10.2 discusses options
   that would require new standards work.
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   Moved all text about Intent into A.8 to clearly mark it as futures.

   Changed suggestion of future insecure ACP option to future "end-to-
   end-security-only" option.

   Various textual fixes.

   Gen-ART review by Elwyn Davies:

   Some fixes also mentioned by Alissa.

   Added reference for OT.

   Fixed notion that secure channel is not only a security association.

   >20 good textual fixes.  Thanks!

   Other:

   Added picture requested by Pascal Thubert about Dual-NOC (A.10.4).

   Moved RFC-editor request for better first RFC reference closer to the
   top of the document.

   Fixed typo /126 -> 127 for prefix length with zone address scheme.

   Overlooked early SecDir review from frank.xialiang@huawei.com:

   most issues fixed through other review in -16.  Added reference to
   self-protection section 9.2 into security considerations section.

14.24.  draft-ietf-anima-autonomic-control-plane-18

   Too many word/grammar mistakes in -17.

14.25.  draft-ietf-anima-autonomic-control-plane-19

   Review Eric Rescola:

   6.1.2 - clarified that we do certificate path validation against
   potentially multiple trust anchors.

   6.1.3 - Added more comprehensive explanation of Trust Points via new
   section 6.1.3.

   6.5 - added figure with sequential steps of ACP channel establishment
   and Alice and Bob finding their role in the setup.
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   6.7.x - detailled crypto profiles: AES-256-GCM, ECDHE.

   6.7.2 - Referring to RFC7525 as the required crypto profile for DTLS
   (taking text from RFC8310 as previously discussed with Eric).

   6.7.3 - Added explanation that ACP needs no single MTI secure channel
   protocol with example.

   6.10.2 - Added requirement that rsub must be choosen so that they
   don’t create SHA256 collisions.  Added explanation how the same could
   be done for different ACP networks with same trust anchors but that
   this outside the scope of this specification.

   6.7.10 - Explains security expectations against ACP registrars: Must
   be trusted and then given credentials to act as PKI RA to help
   pledges to enroll with an ACP certificate.

   9.1 - Added explanations about merging ACP domains requiring both
   domains to trust union of Trust Anchors and need to avod ULA hash
   collisions.

   11 - Added that ACP registrars are critical infrastructure requiring
   hardening like CA, mentioning attack impact examples.

   11 - Mentioning that ACP requires initial setup of CA and registrar.

   11 - long rewrite/extension of group security model and its
   implication shared with review from Ben (below).

   Many nits fixed.

   Review Benjamin Kaduk:

   Fixed various nits.

   Changed style of MUST/SHOULD in Requirements section to all lower
   case to avoid any RFC2119 confusion.

   1. clarified support for constrained devices/DTLS: Opportunistic.

   1.  Clarified ACPs use of two variants of GRASP DULL for neighbor
   discovery and ACP grasp for service discovery/clients.

   3.2 - amended text explaining what additional security ACP provides
   for bootstrap protocols.

   6.1.1 - Added note about ASN.1 encoding in the justification for use
   of rfc822address.
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   6.1.2 - Added details how to handle ACP connection when node via
   which OCSP/CRL-server is reached fails certificate verification.

   12.  Rewrote explanation why objective names requested for ACP use
   SRV.name.

   10.4 - added summary section about ACP and configuration.

   Review Eric Rescorla:

   6.1.2 - changed peer certificate verification to be certificate path
   verification, added lowercase normalizaion comparison to domain name
   check.

   6.1.2 - explained how domain membership check is authentication and
   authorization.

   6.1.4.1 - Fixed "objective value" to "objective name".

   6.1.4.3 - check IPv6 address of CDP against CDP ACP certificate IPv6
   address only if URL uses IPv6 address.

   6.10.1 - added more justification why there is no need for privacy
   protection of ACP addresses.

   6.11.1.1 - thorough fixup of sentences/structure of this RPL overview
   section to make it more logical and easier to digest.  Also added a
   paragraph about the second key benefit of this profile (scalability).

   6.11.1.9 - Added explanation about not using RPL security from
   Benjamin.

   8.1.1 - Fixed up text for address assignment of ACP connect
   interfaces.  Only recommending manual addressing scheme.

   9.1 - changed self-healing benefit text to describe immediate channel
   reset for short-lived certificates and describing how the same with
   CRL/OCSP is optional.

   11. - added note about immediate termination of secure channels after
   certificate expiry as this is uncommon today.

   11. - rewrote section of security model, attacks and mitigation of
   compromised ACP members.

   A.24 - clarified the process in which expired certificates are used
   for certificate renewal to avvoid higher overhead of -re-enrolment.
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   A.4 - removed mentioning of RPL trickle because not used by ACP RPL
   profile.

   A.10.8 - added section discussing how to minimize risk of compromised
   nodes, recovering them or kicking them out.

14.26.  Open Issues in -19

   Need to find good reference for TLS profile for ACP GRASP TLS
   connections.

   TBD: Add DTLS choice to GRASP secure channel.
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Appendix A.  Background and Futures (Informative)

   The following sections discuss additional background information
   about aspects of the normative parts of this document or associated
   mechanisms such as BRSKI (such as why specific choices were made by
   the ACP) and they provide discussion about possible future variations
   of the ACP.

A.1.  ACP Address Space Schemes

   This document defines the Zone, Vlong and Manual sub address schemes
   primarily to support address prefix assignment via distributed,
   potentially uncoordinated ACP registrars as defined in
   Section 6.10.7.  This costs 48/46-bit identifier so that these ACP
   registrar can assign non-conflicting address prefixes.  This design
   does not leave enough bits to simultaneously support a large number
   of nodes (Node-ID) plus a large prefix of local addresses for every
   node plus a large enough set of bits to identify a routing Zone.  In
   result, Zone, Vlong 8/16 attempt to support all features, but in via
   separate prefixes.

   In networks that always expect to rely on a centralized PMS as
   described above (Section 10.2.5), the 48/46-bits for the Registrar-ID
   could be saved.  Such variations of the ACP addressing mechanisms
   could be introduced through future work in different ways.  If the
   prefix rfcSELF in the ACP information field was changed, incompatible
   ACP variations could be created where every design aspect of the ACP
   could be changed.  Including all addressing choices.  If instead a
   new addressing sub-type would be defined, it could be a backward
   compatible extension of this ACP specification.  Information such as
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   the size of a zone-prefix and the length of the prefix assigned to
   the ACP node itself could be encoded via the extension field of the
   ACP domain information.

   Note that an explicitly defined "Manual" addressing sub-scheme is
   always beneficial to provide an easy way for ACP nodes to prohibit
   incorrect manual configuration of any non-"Manual" ACP address spaces
   and therefore ensure that "Manual" operations will never impact
   correct routing for any non-"Manual" ACP addresses assigned via ACP
   domain certificates.

A.2.  BRSKI Bootstrap (ANI)

   [I-D.ietf-anima-bootstrapping-keyinfra] (BRSKI) describes how nodes
   with an IDevID certificate can securely and zero-touch enroll with a
   domain certificate (LDevID) to support the ACP.  BRSKI also leverages
   the ACP to enable zero-touch bootstrap of new nodes across networks
   without any configuration requirements across the transit nodes
   (e.g., no DHCP/DNS forwarding/server setup).  This includes otherwise
   not configured networks as described in Section 3.2.  Therefore BRSKI
   in conjunction with ACP provides for a secure and zero-touch
   management solution for complete networks.  Nodes supporting such an
   infrastructure (BRSKI and ACP) are called ANI nodes (Autonomic
   Networking Infrastructure), see [I-D.ietf-anima-reference-model].
   Nodes that do not support an IDevID but only an (insecure) vendor
   specific Unique Device Identifier (UDI) or nodes whose manufacturer
   does not support a MASA could use some future security reduced
   version of BRSKI.

   When BRSKI is used to provision a domain certificate (which is called
   enrollment), the BRSKI registrar (acting as an enhanced EST server)
   must include the subjectAltName / rfc822Name encoded ACP address and
   domain name to the enrolling node (called pledge) via its response to
   the pledges EST CSR Attribute request that is mandatory in BRSKI.

   The Certificate Authority in an ACP network must not change the
   subjectAltName / rfc822Name in the certificate.  The ACP nodes can
   therefore find their ACP address and domain using this field in the
   domain certificate, both for themselves, as well as for other nodes.

   The use of BRSKI in conjunction with the ACP can also help to further
   simplify maintenance and renewal of domain certificates.  Instead of
   relying on CRL, the lifetime of certificates can be made extremely
   small, for example in the order of hours.  When a node fails to
   connect to the ACP within its certificate lifetime, it cannot connect
   to the ACP to renew its certificate across it (using just EST), but
   it can still renew its certificate as an "enrolled/expired pledge"
   via the BRSKI bootstrap proxy.  This requires only that the BRSKI

Eckert, et al.         Expires September 12, 2019             [Page 138]



Internet-Draft      An Autonomic Control Plane (ACP)          March 2019

   registrar honors expired domain certificates and that the pledge
   attempts to perform TLS authentication for BRSKI bootstrap using its
   expired domain certificate before falling back to attempting to use
   its IDevID for BRSKI.  This mechanism could also render CRLs
   unnecessary because the BRSKI registrar in conjunction with the CA
   would not renew revoked certificates - only a "Do-not-renew" list
   would be necessary on BRSKI registrars/CA.

   In the absence of BRSKI or less secure variants thereof, provisioning
   of certificates may involve one or more touches or non-standardized
   automation.  Node vendors usually support provisioning of
   certificates into nodes via PKCS#7 (see [RFC2315]) and may support
   this provisioning through vendor specific models via Netconf
   ([RFC6241]).  If such nodes also support Netconf Zero-Touch
   ([I-D.ietf-netconf-zerotouch]) then this can be combined to zero-
   touch provisioning of domain certificates into nodes.  Unless there
   are equivalent integration of Netconf connections across the ACP as
   there is in BRSKI, this combination would not support zero-touch
   bootstrap across a not configured network though.

A.3.  ACP Neighbor discovery protocol selection

   This section discusses why GRASP DULL was chosen as the discovery
   protocol for L2 adjacent candidate ACP neighbors.  The contenders
   considered where GRASP, mDNS or LLDP.

A.3.1.  LLDP

   LLDP and Cisco’s earlier Cisco Discovery Protocol (CDP) are example
   of L2 discovery protocols that terminate their messages on L2 ports.
   If those protocols would be chosen for ACP neighbor discovery, ACP
   neighbor discovery would therefore also terminate on L2 ports.  This
   would prevent ACP construction over non-ACP capable but LLDP or CDP
   enabled L2 switches.  LLDP has extensions using different MAC
   addresses and this could have been an option for ACP discovery as
   well, but the additional required IEEE standardization and definition
   of a profile for such a modified instance of LLDP seemed to be more
   work than the benefit of "reusing the existing protocol" LLDP for
   this very simple purpose.

A.3.2.  mDNS and L2 support

   Multicast DNNS (mDNS) [RFC6762] with DNS Service Discovery (DNS-SD)
   Resource Records (RRs) as defined in [RFC6763] is a key contender as
   an ACP discovery protocol. because it relies on link-local IP
   multicast, it does operates at the subnet level, and is also found in
   L2 switches.  The authors of this document are not aware of mDNS
   implementation that terminate their mDNS messages on L2 ports instead
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   of the subnet level.  If mDNS was used as the ACP discovery mechanism
   on an ACP capable (L3)/L2 switch as outlined in Section 7, then this
   would be necessary to implement.  It is likely that termination of
   mDNS messages could only be applied to all mDNS messages from such a
   port, which would then make it necessary to software forward any non-
   ACP related mDNS messages to maintain prior non-ACP mDNS
   functionality.  Adding support for ACP into such L2 switches with
   mDNS could therefore create regression problems for prior mDNS
   functionality on those nodes.  With low performance of software
   forwarding in many L2 switches, this could also make the ACP risky to
   support on such L2 switches.

A.3.3.  Why DULL GRASP

   LLDP was not considered because of the above mentioned issues. mDNS
   was not selected because of the above L2 mDNS considerations and
   because of the following additional points:

   If mDNS was not already existing in a node, it would be more work to
   implement than DULL GRASP, and if an existing implementation of mDNS
   was used, it would likely be more code space than a separate
   implementation of DULL GRASP or a shared implementation of DULL GRASP
   and GRASP in the ACP.

A.4.  Choice of routing protocol (RPL)

   This section motivates why RPL - "IPv6 Routing Protocol for Low-Power
   and Lossy Networks ([RFC6550] was chosen as the default (and in this
   specification only) routing protocol for the ACP.  The choice and
   above explained profile was derived from a pre-standard
   implementation of ACP that was successfully deployed in operational
   networks.

   Requirements for routing in the ACP are:

   o  Self-management: The ACP must build automatically, without human
      intervention.  Therefore routing protocol must also work
      completely automatically.  RPL is a simple, self-managing
      protocol, which does not require zones or areas; it is also self-
      configuring, since configuration is carried as part of the
      protocol (see Section 6.7.6 of [RFC6550]).

   o  Scale: The ACP builds over an entire domain, which could be a
      large enterprise or service provider network.  The routing
      protocol must therefore support domains of 100,000 nodes or more,
      ideally without the need for zoning or separation into areas.  RPL
      has this scale property.  This is based on extensive use of
      default routing.
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   o  Low resource consumption: The ACP supports traditional network
      infrastructure, thus runs in addition to traditional protocols.
      The ACP, and specifically the routing protocol must have low
      resource consumption both in terms of memory and CPU requirements.
      Specifically, at edge nodes, where memory and CPU are scarce,
      consumption should be minimal.  RPL builds a destination-oriented
      directed acyclic graph (DODAG), where the main resource
      consumption is at the root of the DODAG.  The closer to the edge
      of the network, the less state needs to be maintained.  This
      adapts nicely to the typical network design.  Also, all changes
      below a common parent node are kept below that parent node.

   o  Support for unstructured address space: In the Autonomic
      Networking Infrastructure, node addresses are identifiers, and may
      not be assigned in a topological way.  Also, nodes may move
      topologically, without changing their address.  Therefore, the
      routing protocol must support completely unstructured address
      space.  RPL is specifically made for mobile ad-hoc networks, with
      no assumptions on topologically aligned addressing.

   o  Modularity: To keep the initial implementation small, yet allow
      later for more complex methods, it is highly desirable that the
      routing protocol has a simple base functionality, but can import
      new functional modules if needed.  RPL has this property with the
      concept of "objective function", which is a plugin to modify
      routing behavior.

   o  Extensibility: Since the Autonomic Networking Infrastructure is a
      new concept, it is likely that changes in the way of operation
      will happen over time.  RPL allows for new objective functions to
      be introduced later, which allow changes to the way the routing
      protocol creates the DAGs.

   o  Multi-topology support: It may become necessary in the future to
      support more than one DODAG for different purposes, using
      different objective functions.  RPL allow for the creation of
      several parallel DODAGs, should this be required.  This could be
      used to create different topologies to reach different roots.

   o  No need for path optimization: RPL does not necessarily compute
      the optimal path between any two nodes.  However, the ACP does not
      require this today, since it carries mainly non-delay-sensitive
      feedback loops.  It is possible that different optimization
      schemes become necessary in the future, but RPL can be expanded
      (see point "Extensibility" above).
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A.5.  ACP Information Distribution and multicast

   IP multicast is not used by the ACP because the ANI (Autonomic
   Networking Infrastructure) itself does not require IP multicast but
   only service announcement/discovery.  Using IP multicast for that
   would have made it necessary to develop a zero-touch auto configuring
   solution for ASM (Any Source Multicast - the original form of IP
   multicast defined in [RFC1112]), which would be quite complex and
   difficult to justify.  One aspect of complexity where no attempt at a
   solution has been described in IETF documents is the automatic-
   selection of routers that should be PIM Sparse Mode (PIM-SM)
   Rendezvous Points (RPs) (see [RFC7761]).  The other aspects of
   complexity are the implementation of MLD ([RFC4604]), PIM-SM and
   Anycast-RP (see [RFC4610]).  If those implementations already exist
   in a product, then they would be very likely tied to accelerated
   forwarding which consumes hardware resources, and that in return is
   difficult to justify as a cost of performing only service discovery.

   Some future ASA may need high performance in-network data
   replication.  That is the case when the use of IP multicast is
   justified.  Such an ASA can then use service discovery from ACP
   GRASP, and then they do not need ASM but only SSM (Source Specific
   Multicast, see [RFC4607]) for the IP multicast replication.  SSM
   itself can simply be enabled in the Data-Plane (or even in an update
   to the ACP) without any other configuration than just enabling it on
   all nodes and only requires a simpler version of MLD (see [RFC5790]).

   LSP (Link State Protocol) based IGP routing protocols typically have
   a mechanism to flood information, and such a mechanism could be used
   to flood GRASP objectives by defining them to be information of that
   IGP.  This would be a possible optimization in future variations of
   the ACP that do use an LSP routing protocol.  Note though that such a
   mechanism would not work easily for GRASP M_DISCOVERY messages which
   are intelligently (constrained) flooded not across the whole ACP, but
   only up to a node where a responder is found.  We do expect that many
   future services in ASA will have only few consuming ASA, and for
   those cases, M_DISCOVERY is the more efficient method than flooding
   across the whole domain.

   Because the ACP uses RPL, one desirable future extension is to use
   RPLs existing notion of loop-free distribution trees (DODAG) to make
   GRASPs flooding more efficient both for M_FLOOD and M_DISCOVERY) See
   Section 6.12.5 how this will be specifically beneficial when using
   NBMA interfaces.  This is not currently specified in this document
   because it is not quite clear yet what exactly the implications are
   to make GRASP flooding depend on RPL DODAG convergence and how
   difficult it would be to let GRASP flooding access the DODAG
   information.
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A.6.  Extending ACP channel negotiation (via GRASP)

   The mechanism described in the normative part of this document to
   support multiple different ACP secure channel protocols without a
   single network wide MTI protocol is important to allow extending
   secure ACP channel protocols beyond what is specified in this
   document, but it will run into problem if it would be used for
   multiple protocols:

   The need to potentially have multiple of these security associations
   even temporarily run in parallel to determine which of them works
   best does not support the most lightweight implementation options.

   The simple policy of letting one side (Alice) decide what is best may
   not lead to the mutual best result.

   The two limitations can easier be solved if the solution was more
   modular and as few as possible initial secure channel negotiation
   protocols would be used, and these protocols would then take on the
   responsibility to support more flexible objectives to negotiate the
   mutually preferred ACP security channel protocol.

   IKEv2 is the IETF standard protocol to negotiate network security
   associations.  It is meant to be extensible, but it is unclear
   whether it would be feasible to extend IKEv2 to support possible
   future requirements for ACP secure channel negotiation:

   Consider the simple case where the use of native IPsec vs. IPsec via
   GRE is to be negotiated and the objective is the maximum throughput.
   Both sides would indicate some agreed upon performance metric and the
   preferred encapsulation is the one with the higher performance of the
   slower side.  IKEv2 does not support negotiation with this objective.

   Consider DTLS and some form of MacSec are to be added as negotiation
   options - and the performance objective should work across all IPsec,
   DTLS and MacSec options.  In the case of MacSEC, the negotiation
   would also need to determine a key for the peering.  It is unclear if
   it would be even appropriate to consider extending the scope of
   negotiation in IKEv2 to those cases.  Even if feasible to define, it
   is unclear if implementations of IKEv2 would be eager to adopt those
   type of extension given the long cycles of security testing that
   necessarily goes along with core security protocols such as IKEv2
   implementations.

   A more modular alternative to extending IKEv2 could be to layer a
   modular negotiation mechanism on top of the multitude of existing or
   possible future secure channel protocols.  For this, GRASP over TLS
   could be considered as a first ACP secure channel negotiation
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   protocol.  The following are initial considerations for such an
   approach.  A full specification is subject to a separate document:

   To explicitly allow negotiation of the ACP channel protocol, GRASP
   over a TLS connection using the GRASP_LISTEN_PORT and the nodes and
   peers link-local IPv6 address is used.  When Alice and Bob support
   GRASP negotiation, they do prefer it over any other non-explicitly
   negotiated security association protocol and should wait trying any
   non-negotiated ACP channel protocol until after it is clear that
   GRASP/TLS will not work to the peer.

   When Alice and Bob successfully establish the GRASP/TSL session, they
   will negotiate the channel mechanism to use using objectives such as
   performance and perceived quality of the security.  After agreeing on
   a channel mechanism, Alice and Bob start the selected Channel
   protocol.  Once the secure channel protocol is successfully running,
   the GRASP/TLS connection can be kept alive or timed out as long as
   the selected channel protocol has a secure association between Alice
   and Bob.  When it terminates, it needs to be re-negotiated via GRASP/
   TLS.

   Notes:

   o  Negotiation of a channel type may require IANA assignments of code
      points.

   o  TLS is subject to reset attacks, which IKEv2 is not.  Normally,
      ACP connections (as specified in this document) will be over link-
      local addresses so the attack surface for this one issue in TCP
      should be reduced (note that this may not be true when ACP is
      tunneled as described in Section 8.2.2.

   o  GRASP packets received inside a TLS connection established for
      GRASP/TLS ACP negotiation are assigned to a separate GRASP domain
      unique to that TLS connection.

A.7.  CAs, domains and routing subdomains

   There is a wide range of setting up different ACP solution by
   appropriately using CAs and the domain and rsub elements in the
   domain information field of the domain certificate.  We summarize
   these options here as they have been explained in different parts of
   the document in before and discuss possible and desirable extensions:

   An ACP domain is the set of all ACP nodes using certificates from the
   same CA using the same domain field.  GRASP inside the ACP is run
   across all transitively connected ACP nodes in a domain.
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   The rsub element in the domain information field permits the use of
   addresses from different ULA prefixes.  One use case is to create
   multiple physical networks that initially may be separated with one
   ACP domain but different routing subdomains, so that all nodes can
   mutual trust their ACP domain certificates (not depending on rsub)
   and so that they could connect later together into a contiguous ACP
   network.

   One instance of such a use case is an ACP for regions interconnected
   via a non-ACP enabled core, for example due to the absence of product
   support for ACP on the core nodes.  ACP connect configurations as
   defined in this document can be used to extend and interconnect those
   ACP islands to the NOC and merge them into a single ACP when later
   that product support gap is closed.

   Note that RPL scales very well.  It is not necessary to use multiple
   routing subdomains to scale ACP domains in a way it would be possible
   if other routing protocols where used.  They exist only as options
   for the above mentioned reasons.

   If different ACP domains are to be created that should not allow to
   connect to each other by default, these ACP domains simply need to
   have different domain elements in the domain information field.
   These domain elements can be arbitrary, including subdomains of one
   another: Domains "example.com" and "research.example.com" are
   separate domains if both are domain elements in the domain
   information element of certificates.

   It is not necessary to have a separate CA for different ACP domains:
   an operator can use a single CA to sign certificates for multiple ACP
   domains that are not allowed to connect to each other because the
   checks for ACP adjacencies includes comparison of the domain part.

   If multiple independent networks choose the same domain name but had
   their own CA, these would not form a single ACP domain because of CA
   mismatch.  Therefore there is no problem in choosing domain names
   that are potentially also used by others.  Nevertheless it is highly
   recommended to use domain names that one can have high probability to
   be unique.  It is recommended to use domain names that start with a
   DNS domain names owned by the assigning organization and unique
   within it.  For example "acp.example.com" if you own "example.com".

A.8.  Intent for the ACP

   Intent is the architecture component of autonomic networks according
   to [I-D.ietf-anima-reference-model] that allows operators to issue
   policies to the network.  In a simple instance, Intent could simply
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   be policies flooded across ACP GRASP and interpreted on every ACP
   node.

   One concern for future definitions of Intent solutions is the problem
   of circular dependencies when expressing Intent policies about the
   ACP itself.

   For example, Intent could indicate the desire to build an ACP across
   all domains that have a common parent domain (without relying on the
   rsub/routing-subdomain solution defined in this document).  For
   example ACP nodes with domain "example.com", "access.example.com",
   "core.example.com" and "city.core.example.com" should all establish
   one single ACP.

   If each domain has its own source of Intent, then the Intent would
   simply have to allow adding the peer domains trust anchors (CA) and
   domain names to the ACP domain membership check (Section 6.1.2) so
   that nodes from those other domains are accepted as ACP peers.

   If this Intent was to be originated only from one domain, it could
   likely not be made to work because the other domains will not build
   any ACP connection amongst each other, whether they use the same or
   different CA due to the ACP domain membership check.

   If the domains use the same CA one could change the ACP setup to
   permit for the ACP to be established between two ACP nodes with
   different acp-domain-names, but only for the purpose of disseminating
   limited information, such as Intent, but not to set up full ACP
   connectivity, specifically not RPL routing and passing of arbitrary
   GRASP information.  Unless the Intent policies permit this to happen
   across domain boundaries.

   This type of approach where the ACP first allows Intent to operate
   and only then sets up the rest of ACP connectivity based on Intent
   policy could also be used to enable Intent policies that would limit
   functionality across the ACP inside a domain, as long as no policy
   would disturb the distribution of Intent.  For example to limit
   reachability across the ACP to certain type of nodes or locations of
   nodes.

A.9.  Adopting ACP concepts for other environments

   The ACP as specified in this document is very explicit about the
   choice of options to allow interoperable implementations.  The
   choices made may not be the best for all environments, but the
   concepts used by the ACP can be used to build derived solutions:
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   The ACP specifies the use of ULA and deriving its prefix from the
   domain name so that no address allocation is required to deploy the
   ACP.  The ACP will equally work not using ULA but any other /48 IPv6
   prefix.  This prefix could simply be a configuration of the ACP
   registrars (for example when using BRSKI) to enroll the domain
   certificates - instead of the ACP registrar deriving the /48 ULA
   prefix from the AN domain name.

   Some solutions may already have an auto-addressing scheme, for
   example derived from existing unique device identifiers (e.g., MAC
   addresses).  In those cases it may not be desirable to assign
   addresses to devices via the ACP address information field in the way
   described in this document.  The certificate may simply serve to
   identify the ACP domain, and the address field could be empty/unused.
   The only fix required in the remaining way the ACP operate is to
   define another element in the domain certificate for the two peers to
   decide who is Alice and who is Bob during secure channel building.
   Note though that future work may leverage the acp address to
   authenticate "ownership" of the address by the device.  If the
   address used by a device is derived from some pre-existing permanent
   local ID (such as MAC address), then it would be useful to store that
   address in the certificate using the format of the access address
   information field or in a similar way.

   The ACP is defined as a separate VRF because it intends to support
   well managed networks with a wide variety of configurations.
   Therefore, reliable, configuration-indestructible connectivity cannot
   be achieved from the Data-Plane itself.  In solutions where all
   transit connectivity impacting functions are fully automated
   (including security), indestructible and resilient, it would be
   possible to eliminate the need for the ACP to be a separate VRF.
   Consider the most simple example system in which there is no separate
   Data-Plane, but the ACP is the Data-Plane.  Add BRSKI, and it becomes
   a fully autonomic network - except that it does not support automatic
   addressing for user equipment.  This gap can then be closed for
   example by adding a solution derived from
   [I-D.ietf-anima-prefix-management].

   TCP/TLS as the protocols to provide reliability and security to GRASP
   in the ACP may not be the preferred choice in constrained networks.
   For example, CoAP/DTLS (Constrained Application Protocol) may be
   preferred where they are already used, allowing to reduce the
   additional code space footprint for the ACP on those devices.  Hop-
   by-hop reliability for ACP GRASP messages could be made to support
   protocols like DTLS by adding the same type of negotiation as defined
   in this document for ACP secure channel protocol negotiation.  End-
   to-end GRASP connections can be made to select their transport
   protocol in future extensions of the ACP meant to better support
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   constrained devices by indicating the supported transport protocols
   (e.g.: TLS/DTLS) via GRASP parameters of the GRASP objective through
   which the transport endpoint is discovered.

   The routing protocol chosen by the ACP design (RPL) does explicitly
   not optimize for shortest paths and fastest convergence.  Variations
   of the ACP may want to use a different routing protocol or introduce
   more advanced RPL profiles.

   Variations such as what routing protocol to use, or whether to
   instantiate an ACP in a VRF or (as suggested above) as the actual
   Data-Plane, can be automatically chosen in implementations built to
   support multiple options by deriving them from future parameters in
   the certificate.  Parameters in certificates should be limited to
   those that would not need to be changed more often than certificates
   would need to be updated anyhow; Or by ensuring that these parameters
   can be provisioned before the variation of an ACP is activated in a
   node.  Using BRSKI, this could be done for example as additional
   follow-up signaling directly after the certificate enrollment, still
   leveraging the BRSKI TLS connection and therefore not introducing any
   additional connectivity requirements.

   Last but not least, secure channel protocols including their
   encapsulations are easily added to ACP solutions.  ACP hop-by-hop
   network layer secure channels could also be replaced by end-to-end
   security plus other means for infrastructure protection.  Any future
   network OAM should always use end-to-end security anyhow and can
   leverage the domain certificates and is therefore not dependent on
   security to be provided for by ACP secure channels.

A.10.  Further options / futures

A.10.1.  Auto-aggregation of routes

   Routing in the ACP according to this specification only leverages the
   standard RPL mechanism of route optimization, e.g. keeping only
   routes that are not towards the RPL root.  This is known to scale to
   networks with 20,000 or more nodes.  There is no auto-aggregation of
   routes for /48 ULA prefixes (when using rsub in the domain
   information field) and/or Zone-ID based prefixes.

   Automatic assignment of Zone-ID and auto-aggregation of routes could
   be achieved for example by configuring zone-boundaries, announcing
   via GRASP into the zones the zone parameters (zone-ID and /48 ULA
   prefix) and auto-aggegating routes on the zone-boundaries.  Nodes
   would assign their Zone-ID and potentially even /48 prefix based on
   the GRASP announcements.
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A.10.2.  More options for avoiding IPv6 Data-Plane dependency

   As described in Section 6.12.2, the ACP depends on the Data-Plane to
   establish IPv6 link-local addressing on interfaces.  Using a separate
   MAC address for the ACP allows to fully isolate the ACP from the
   data-plane in a way that is compatible with this specification.  It
   is also an ideal option when using Single-root input/output
   virtualization (SR-IOV - see https://en.wikipedia.org/wiki/Single-
   root_input/output_virtualization [2]) in an implementation to isolate
   the ACP because different SR-IOV interfaces use different MAC
   addresses.

   When additional MAC address(es) are not available, separation of the
   ACP could be done at different demux points.  The same subnet
   interface could have a separate IPv6 interface for the ACP and Data-
   Plane and therefore separate link-local addresses for both, where the
   ACP interface is non-configurable on the Data-Plane.  This too would
   be compatible with this specification and not impact
   interoperability.

   An option that would require additional specification is to use a
   different Ethertype from 0x86DD (IPv6) to encapsulate IPv6 packets
   for the ACP.  This would be a similar approach as used for IP
   authentication packets in [IEEE-802.1X] which use the Extensible
   Authentication Protocol over Local Area Network (EAPoL) ethertype
   (0x88A2).

   Note that in the case of ANI nodes, all the above considerations
   equally apply to the encapsulation of BRSKI packets including GRASP
   used for BRSKI.

A.10.3.  ACP APIs and operational models (YANG)

   Future work should define YANG ([RFC7950]) data model and/or node
   internal APIs to monitor and manage the ACP.

   Support for the ACP Adjacency Table (Section 6.2) and ACP GRASP need
   to be included into such model/API.

A.10.4.  RPL enhancements
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                            Figure 17: Dual NOC

   The profile for RPL specified in this document builds only one
   spanning-tree path set to a root (NOC).  In the presence of multiple
   NOCs, routing toward the non-root NOCs may be suboptimal.  Figure 17
   shows an extreme example.  Assuming that node ACP1 becomes the RPL
   root, traffic between ACP11 and NOC2 will pass through
   ACP4-ACP3-ACP1-ACP2 instead of ACP4-ACP2 because the RPL calculated
   DODAG/routes are shortest paths towards the RPL root.

   To overcome these limitations, extensions/modifications to the RPL
   profile can provide optimality for multiple NOCs.  This requires
   utilizing Data-Plane artifact including IPinIP encap/decap on ACP
   routers and processing of IPv6 RPI headers.  Alternatively, (Src,Dst)
   routing table entries could be used.

   Flooding of ACP GRASP messages can be further constrained and
   therefore optimized by flooding only via links that are part of the
   RPL DODAG.

A.10.5.  Role assignments

   ACP connect is an explicit mechanism to "leak" ACP traffic explicitly
   (for example in a NOC).  It is therefore also a possible security gap
   when it is easy to enable ACP connect on arbitrary compromised ACP
   nodes.

   One simple solution is to define an extension in the ACP certificates
   ACP information field indicating the permission for ACP connect to be
   configured on that ACP node.  This could similarly be done to decide
   whether a node is permitted to be a registrar or not.
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   Tying the permitted "roles" of an ACP node to the ACP domain
   certificate provides fairly strong protection against
   misconfiguration, but is still subject to code modifications.

   Another interesting role to assign to certificates is that of a NOC
   node.  This would allow to limit certain type of connections such as
   OAM TLS connections to only NOC initiator or responders.

A.10.6.  Autonomic L3 transit

   In this specification, the ACP can only establish autonomic
   connectivity across L2 hops and only explicitly configured options to
   tunnel across L3.  Future work should specify mechanisms to
   automatically tunnel ACP across L3 networks.  A hub&spoke option
   would allow to tunnel across the Internet to a cloud or central
   instance of the ACP, a peer-to-peer tunneling mechanism could tunnel
   ACP islands across an L3VPN infrastructure.

A.10.7.  Diagnostics

   Section 10.1 describes diagnostics options that can be done without
   changing the external, interoperability affecting characteristics of
   ACP implementations.

   Even better diagnostics of ACP operations is possible with additional
   signaling extensions, such as:

   1.  Consider if LLDP should be a recommended functionality for ANI
       devices to improve diagnostics, and if so, which information
       elements it should signal (insecure).  Includes potentially new
       information elements.

   2.  In alternative to LLDP, A DULL GRASP diagnostics objective could
       be defined to carry these information elements.

   3.  The IDevID of BRSKI pledges should be included in the selected
       insecure diagnostics option.

   4.  A richer set of diagnostics information should be made available
       via the secured ACP channels, using either single-hop GRASP or
       network wide "topology discovery" mechanisms.

A.10.8.  Avoiding and dealing with compromised ACP nodes

   Compromised ACP nodes pose the biggest risk to the operations of the
   network.  The most common type of compromise is leakage of
   credentials to manage/configure the device and the application of
   malicious configuration including the change of access credentials,
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   but not the change of software.  Most of todays networking equipment
   should have secure boot/software infrastructure anyhow, so attacks
   that introduce malicious software should be a lot harder.

   The most important aspect of security design against these type of
   attacks is to eliminate password based configuration access methods
   and instead rely on certificate based credentials handed out only to
   nodes where it is clear that the private keys can not leak.  This
   limits unexpected propagation of credentials.

   If password based credentials to configure devices still need to be
   supported, they must not be locally configurable, but only be
   remotely provisioned or verified (through protocols like Radius or
   Diameter), and there must be no local configuration permitting to
   change these authentication mechanisms, but ideally they should be
   autoconfiguring across the ACP.  See
   [I-D.eckert-anima-noc-autoconfig].

   Without physcial access to the compromised device, attackers with
   access to configuration should not be able to break the ACP
   connectivity, even when they can break or otherwise manipulate
   (spoof) the data-plane connectivity through configuration.  To
   achieve this, it is necessary to avoid providing configuration
   options for the ACP, such as enabling/disabling it on interfaces.
   For example there could be an ACP configuration that locks down the
   current ACP config unless factory reseet is done.

   With such means, the valid administration has the best chances to
   maintain access to ACP nodes, discover malicious configuration though
   ongoing configuration tracking from central locations for example,
   and to react accordingly.

   The primary reaction is withdrawal/change of credentials, terminate
   malicious existing management sessions and fixing the configuration.
   Ensuring that manaement sessions using invalidated credentials are
   terminated automatically without recourse will likely require new
   work.

   Only when these steps are not feasible would it be necessary to
   revoke or expire the ACP domain certificate credentials and consider
   the node kicked off the network - until the situation can be further
   rectified, likely requiring direct physical access to the node.

   Without extensions, compromised ACP nodes can only be removed from
   the ACP at the speed of CRL/OCSP information refresh or expiry (and
   non-removal) of short lived certificates.  Future extensions to the
   ACP could for example use GRASP flooding distribution of triggered
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   updates of CRL/OCSP or explicit removal indication of the compromised
   nodes domain certificate.
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Abstract

   This document specifies automated bootstrapping of an Autonomic
   Control Plane.  To do this a remote secure key infrastructure (BRSKI)
   is created using manufacturer installed X.509 certificate, in
   combination with a manufacturer’s authorizing service, both online
   and offline.  Bootstrapping a new device can occur using a routable
   address and a cloud service, or using only link-local connectivity,
   or on limited/disconnected networks.  Support for lower security
   models, including devices with minimal identity, is described for
   legacy reasons but not encouraged.  Bootstrapping is complete when
   the cryptographic identity of the new key infrastructure is
   successfully deployed to the device but the established secure
   connection can be used to deploy a locally issued certificate to the
   device as well.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 19, 2019.
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1.  Introduction

   BRSKI provides a solution for secure zero-touch (automated) bootstrap
   of new (unconfigured) devices that are called pledges in this
   document.

   This document primarily provides for the needs of the ISP and
   Enterprise focused ANIMA Autonomic Control Plane (ACP)
   [I-D.ietf-anima-autonomic-control-plane].  Other users of the BRSKI
   protocol will need to provide separate applicability statements that
   include privacy and security considerations appropriate to that
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   deployment.  Section Section 9 explains the details applicability for
   this the ACP usage.

   This document describes how pledges discover (or be discovered by) an
   element of the network domain to which the pledge belongs to perform
   the bootstrap.  This element (device) is called the registrar.
   Before any other operation, pledge and registrar need to establish
   mutual trust:

   1.  Registrar authenticating the pledge: "Who is this device?  What
       is its identity?"

   2.  Registrar authorizing the pledge: "Is it mine?  Do I want it?
       What are the chances it has been compromised?"

   3.  Pledge authenticating the registrar: "What is this registrar’s
       identity?"

   4.  Pledge authorizing the registrar: "Should I join it?"

   This document details protocols and messages to answer the above
   questions.  It uses a TLS connection and an PKIX (X.509v3)
   certificate (an IEEE 802.1AR [IDevID] LDevID) of the pledge to answer
   points 1 and 2.  It uses a new artifact called a "voucher" that the
   registrar receives from a "Manufacturer Authorized Signing Authority"
   and passes to the pledge to answer points 3 and 4.

   A proxy provides very limited connectivity between the pledge and the
   registrar.

   The syntactic details of vouchers are described in detail in
   [RFC8366].  This document details automated protocol mechanisms to
   obtain vouchers, including the definition of a ’voucher-request’
   message that is a minor extension to the voucher format (see
   Section 3) defined by [RFC8366].

   BRSKI results in the pledge storing an X.509 root certificate
   sufficient for verifying the registrar identity.  In the process a
   TLS connection is established that can be directly used for
   Enrollment over Secure Transport (EST).  In effect BRSKI provides an
   automated mechanism for the "Bootstrap Distribution of CA
   Certificates" described in [RFC7030] Section 4.1.1 wherein the pledge
   "MUST [...] engage a human user to authorize the CA certificate using
   out-of-band" information".  With BRSKI the pledge now can automate
   this process using the voucher.  Integration with a complete EST
   enrollment is optional but trivial.
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   BRSKI is agile enough to support bootstrapping alternative key
   infrastructures, such as a symmetric key solutions, but no such
   system is described in this document.

1.1.  Prior Bootstrapping Approaches

   To literally "pull yourself up by the bootstraps" is an impossible
   action.  Similarly the secure establishment of a key infrastructure
   without external help is also an impossibility.  Today it is commonly
   accepted that the initial connections between nodes are insecure,
   until key distribution is complete, or that domain-specific keying
   material (often pre-shared keys, including mechanisms like SIM cards)
   is pre-provisioned on each new device in a costly and non-scalable
   manner.  Existing automated mechanisms are known as non-secured
   ’Trust on First Use’ (TOFU) [RFC7435], ’resurrecting duckling’
   [Stajano99theresurrecting] or ’pre-staging’.

   Another prior approach has been to try and minimize user actions
   during bootstrapping, but not eliminate all user-actions.  The
   original EST protocol [RFC7030] does reduce user actions during
   bootstrap but does not provide solutions for how the following
   protocol steps can be made autonomic (not involving user actions):

   o  using the Implicit Trust Anchor [RFC7030] database to authenticate
      an owner specific service (not an autonomic solution because the
      URL must be securely distributed),

   o  engaging a human user to authorize the CA certificate using out-
      of-band data (not an autonomic solution because the human user is
      involved),

   o  using a configured Explicit TA database (not an autonomic solution
      because the distribution of an explicit TA database is not
      autonomic),

   o  and using a Certificate-Less TLS mutual authentication method (not
      an autonomic solution because the distribution of symmetric key
      material is not autonomic).

   These "touch" methods do not meet the requirements for zero-touch.

   There are "call home" technologies where the pledge first establishes
   a connection to a well known manufacturer service using a common
   client-server authentication model.  After mutual authentication,
   appropriate credentials to authenticate the target domain are
   transfered to the pledge.  This creates serveral problems and
   limitations:
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   o  the pledge requires realtime connectivity to the manufacturer
      service,

   o  the domain identity is exposed to the manufacturer service (this
      is a privacy concern),

   o  the manufacturer is responsible for making the authorization
      decisions (this is a liability concern),

   BRSKI addresses these issues by defining extensions to the EST
   protocol for the automated distribution of vouchers.

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119].

   The following terms are defined for clarity:

   domainID:  The domain IDentity is the 160-bit SHA-1 hash of the BIT
      STRING of the subjectPublicKey of the pinned-domain-cert leaf,
      i.e. the Registrars’ certificate.  This is consistent with the
      subject key identifier (Section 4.2.1.2 [RFC5280]).

   drop ship:  The physical distribution of equipment containing the
      "factory default" configuration to a final destination.  In zero-
      touch scenarios there is no staging or pre-configuration during
      drop-ship.

   imprint:  The process where a device obtains the cryptographic key
      material to identify and trust future interactions with a network.
      This term is taken from Konrad Lorenz’s work in biology with new
      ducklings: during a critical period, the duckling would assume
      that anything that looks like a mother duck is in fact their
      mother.  An equivalent for a device is to obtain the fingerprint
      of the network’s root certification authority certificate.  A
      device that imprints on an attacker suffers a similar fate to a
      duckling that imprints on a hungry wolf.  Securely imprinting is a
      primary focus of this document [imprinting].  The analogy to
      Lorenz’s work was first noted in [Stajano99theresurrecting].

   enrollment:  The process where a device presents key material to a
      network and acquires a network specific identity.  For example
      when a certificate signing request is presented to a certification
      authority and a certificate is obtained in response.
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   Pledge:  The prospective device, which has an identity installed at
      the factory.

   Voucher:  A signed artifact from the MASA that indicates to a pledge
      the cryptographic identity of the registrar it should trust.
      There are different types of vouchers depending on how that trust
      is asserted.  Multiple voucher types are defined in [RFC8366]

   Domain:  The set of entities that share a common local trust anchor.
      This includes the proxy, registrar, Domain Certificate Authority,
      Management components and any existing entity that is already a
      member of the domain.

   Domain CA:  The domain Certification Authority (CA) provides
      certification functionalities to the domain.  At a minimum it
      provides certification functionalities to a registrar and manages
      the private key that defines the domain.  Optionally, it certifies
      all elements.

   Join Registrar (and Coordinator):  A representative of the domain
      that is configured, perhaps autonomically, to decide whether a new
      device is allowed to join the domain.  The administrator of the
      domain interfaces with a "join registrar (and coordinator)" to
      control this process.  Typically a join registrar is "inside" its
      domain.  For simplicity this document often refers to this as just
      "registrar".  Within [I-D.ietf-anima-reference-model] this is
      refered to as the "join registrar autonomic service agent".  Other
      communities use the abbreviation "JRC".

   (Public) Key Infrastructure:  The collection of systems and processes
      that sustain the activities of a public key system.  The registrar
      acts as an [RFC5280] and [RFC5272] (see section 7) "Registration
      Authority".

   Join Proxy:  A domain entity that helps the pledge join the domain.
      A join proxy facilitates communication for devices that find
      themselves in an environment where they are not provided
      connectivity until after they are validated as members of the
      domain.  For simplicity this document sometimes uses the term of
      ’proxy’ to indicate the join proxy.  The pledge is unaware that
      they are communicating with a proxy rather than directly with a
      registrar.

   Circuit Proxy:  A stateful implementation of the join proxy.  This is
      the assumed type of proxy.

   IPIP Proxy:  A stateless proxy alternative.
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   MASA Service:  A third-party Manufacturer Authorized Signing
      Authority (MASA) service on the global Internet.  The MASA signs
      vouchers.  It also provides a repository for audit log information
      of privacy protected bootstrapping events.  It does not track
      ownership.

   Ownership Tracker:  An Ownership Tracker service on the global
      internet.  The Ownership Tracker uses business processes to
      accurately track ownership of all devices shipped against domains
      that have purchased them.  Although optional, this component
      allows vendors to provide additional value in cases where their
      sales and distribution channels allow for accurately tracking of
      such ownership.  Ownership tracking information is indicated in
      vouchers as described in [RFC8366]

   IDevID:  An Initial Device Identity X.509 certificate installed by
      the vendor on new equipment.

   TOFU:  Trust on First Use. Used similarly to [RFC7435].  This is
      where a pledge device makes no security decisions but rather
      simply trusts the first registrar it is contacted by.  This is
      also known as the "resurrecting duckling" model.

   nonced:  a voucher (or request) that contains a nonce (the normal
      case).

   nonceless:  a voucher (or request) that does not contain a nonce,
      relying upon accurate clocks for expiration, or which does not
      expire.

   manufacturer:  the term manufacturer is used throughout this document
      to be the entity that created the device.  This is typically the
      "original equipment manufacturer" or OEM, but in more complex
      situations it could be a "value added retailer" (VAR), or possibly
      even a systems integrator.  In general, it a goal of BRSKI to
      eliminate small distinctions between different sales channels.
      The reason for this is that it permits a single device, with a
      uniform firmware load, to be shipped directly to all customers.
      This eliminates costs for the manufacturer.  This also reduces the
      number of products supported in the field increasing the chance
      that firmware will be more up to date.

   ANI:  The Autonomic Network Infrastructure as defined by
      [I-D.ietf-anima-reference-model].  This document details specific
      requirements for pledges, proxies and registrars when they are
      part of an ANI.
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   offline:  When an architectural component cannot perform realtime
      communications with a peer, either due to network connectivity or
      because the peer is turned off, the operation is said to be
      occurring offline.

1.3.  Scope of solution

1.3.1.  Support environment

   This solution (BRSKI) can support large router platforms with multi-
   gigabit inter-connections, mounted in controlled access data centers.
   But this solution is not exclusive to large equipment: it is intended
   to scale to thousands of devices located in hostile environments,
   such as ISP provided CPE devices which are drop-shipped to the end
   user.  The situation where an order is fulfilled from distributed
   warehouse from a common stock and shipped directly to the target
   location at the request of a domain owner is explicitly supported.
   That stock ("SKU") could be provided to a number of potential domain
   owners, and the eventual domain owner will not know a-priori which
   device will go to which location.

   The bootstrapping process can take minutes to complete depending on
   the network infrastructure and device processing speed.  The network
   communication itself is not optimized for speed; for privacy reasons,
   the discovery process allows for the pledge to avoid announcing its
   presence through broadcasting.

   Nomadic or mobile devices often need to aquire credentials to access
   the network at the new location.  An example of this is mobile phone
   roaming among network operators, or even between cell towers.  This
   is usually called handoff.  BRSKI does not provide a low-latency
   handoff which is usually a requirement in such situations.  For these
   solutions BRSKI can be used to create a relationship (an LDevID) with
   the "home" domain owner.  The resulting credentials are then used to
   provide credentials more appropriate for a low-latency handoff.

1.3.2.  Constrained environments

   Questions have been posed as to whether this solution is suitable in
   general for Internet of Things (IoT) networks.  This depends on the
   capabilities of the devices in question.  The terminology of
   [RFC7228] is best used to describe the boundaries.

   The solution described in this document is aimed in general at non-
   constrained (i.e., class 2+) devices operating on a non-Challenged
   network.  The entire solution as described here is not intended to be
   useable as-is by constrained devices operating on challenged networks
   (such as 802.15.4 LLNs).
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   Specifically, there are protocol aspects described here that might
   result in congestion collapse or energy-exhaustion of intermediate
   battery powered routers in an LLN.  Those types of networks SHOULD
   NOT use this solution.  These limitations are predominately related
   to the large credential and key sizes required for device
   authentication.  Defining symmetric key techniques that meet the
   operational requirements is out-of-scope but the underlying protocol
   operations (TLS handshake and signing structures) have sufficient
   algorithm agility to support such techniques when defined.

   The imprint protocol described here could, however, be used by non-
   energy constrained devices joining a non-constrained network (for
   instance, smart light bulbs are usually mains powered, and speak
   802.11).  It could also be used by non-constrained devices across a
   non-energy constrained, but challenged network (such as 802.15.4).
   The certificate contents, and the process by which the four questions
   above are resolved do apply to constrained devices.  It is simply the
   actual on-the-wire imprint protocol that could be inappropriate.

1.3.3.  Network Access Controls

   This document presumes that network access control has either already
   occurred, is not required, or is integrated by the proxy and
   registrar in such a way that the device itself does not need to be
   aware of the details.  Although the use of an X.509 Initial Device
   Identity is consistant with IEEE 802.1AR [IDevID], and allows for
   alignment with 802.1X network access control methods, its use here is
   for pledge authentication rather than network access control.
   Integrating this protocol with network access control, perhaps as an
   Extensible Authentication Protocol (EAP) method (see [RFC3748]), is
   out-of-scope.

1.3.4.  Bootstrapping is not Booting

   This document describes "bootstrapping" as the protocol used to
   obtain a local trust anchor.  It is expected that this trust anchor,
   along with any additional configuration information subsequently
   installed, is persisted on the device across system restarts
   ("booting").  Bootstrapping occurs only infrequently such as when a
   device is transfered to a new owner or has been reset to factory
   default settings.

1.4.  Leveraging the new key infrastructure / next steps

   As a result of the protocol described herein, the bootstrapped
   devices have the Domain CA trust anchor in common.  An end entity
   certificate has optionally been issued from the Domain CA.  This
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   makes it possible to securely deploy functionalities across the
   domain, e.g:

   o  Device management.

   o  Routing authentication.

   o  Service discovery.

   The major beneficiary is that it possible to use the credentials
   deployed by this protocol to secure the Autonomic Control Plane (ACP)
   ([I-D.ietf-anima-autonomic-control-plane]).

1.5.  Requirements for Autonomic Network Infrastructure (ANI) devices

   The BRSKI protocol can be used in a number of environments.  Some of
   the options in this document is the result of requirements that are
   out of the ANI scope.  This section defines the base requirements for
   ANI devices.

   For devices that intend to become part of an Autonomic Network
   Infrastructure (ANI) ([I-D.ietf-anima-reference-model]) that includes
   an Autonomic Control Plane
   ([I-D.ietf-anima-autonomic-control-plane]), the BRSKI protocol MUST
   be implemented.

   The pledge must perform discovery of the proxy as described in
   Section 4.1 using GRASP M_FLOOD announcements.

   Upon successfully validating a voucher artiface, a status telemetry
   MUST be returned.  See Section 5.7.

   An ANIMA ANI pledge MUST implement the EST automation extensions
   described in Section 5.9.  They supplement the [RFC7030] EST to
   better support automated devices that do not have an end user.

   The ANI Join Registrar ASA MUST support all the BRSKI and above
   listed EST operations.

   All ANI devices SHOULD support the BRSKI proxy function, using
   circuit proxies over the ACP.  (See Section 4.3)

2.  Architectural Overview

   The logical elements of the bootstrapping framework are described in
   this section.  Figure 1 provides a simplified overview of the
   components.
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                                              +------------------------+
      +--------------Drop Ship--------------->| Vendor Service         |
      |                                       +------------------------+
      |                                       | M anufacturer|         |
      |                                       | A uthorized  |Ownership|
      |                                       | S igning     |Tracker  |
      |                                       | A uthority   |         |
      |                                       +--------------+---------+
      |                                                      ^
      |                                                      |  BRSKI-
      V                                                      |   MASA
   +-------+     ............................................|...
   |       |     .                                           |  .
   |       |     .  +------------+       +-----------+       |  .
   |       |     .  |            |       |           |       |  .
   |Pledge |     .  |   Join     |       | Domain    <-------+  .
   |       |     .  |   Proxy    |       | Registrar |          .
   |       <-------->............<-------> (PKI RA)  |          .
   |       |        |        BRSKI-EST   |           |          .
   |       |     .  |            |       +-----+-----+          .
   |IDevID |     .  +------------+             | e.g. RFC7030   .
   |       |     .           +-----------------+----------+     .
   |       |     .           | Key Infrastructure         |     .
   |       |     .           | (e.g., PKI Certificate     |     .
   +-------+     .           |       Authority)           |     .
                 .           +----------------------------+     .
                 .                                              .
                 ................................................
                               "Domain" components

   Figure 1

   We assume a multi-vendor network.  In such an environment there could
   be a Manufacturer Service for each manufacturer that supports devices
   following this document’s specification, or an integrator could
   provide a generic service authorized by multiple manufacturers.  It
   is unlikely that an integrator could provide Ownership Tracking
   services for multiple manufacturers due to the required sales channel
   integrations necessary to track ownership.

   The domain is the managed network infrastructure with a Key
   Infrastructure the pledge is joining.  The domain provides initial
   device connectivity sufficient for bootstrapping through a proxy.
   The domain registrar authenticates the pledge, makes authorization
   decisions, and distributes vouchers obtained from the Manufacturer
   Service.  Optionally the registrar also acts as a PKI Registration
   Authority.

Pritikin, et al.        Expires December 19, 2019              [Page 13]



Internet-Draft                    BRSKI                        June 2019

2.1.  Behavior of a Pledge

   The pledge goes through a series of steps, which are outlined here at
   a high level.

                  ------------
                 /  Factory   \
                 \  default   /
                  -----+------
                       |
                +------v-------+
                | (1) Discover |
   +------------>              |
   |            +------+-------+
   |                   |
   |            +------v-------+
   |            | (2) Identity |
   ^------------+              |
   | rejected   +------+-------+
   |                   |
   |            +------v-------+
   |            | (3) Request  |
   |            |     Join     |
   |            +------+-------+
   |                   |
   |            +------v-------+
   |            | (4) Imprint  |
   ^------------+              |
   | Bad MASA   +------+-------+
   | response          |  send Voucher Status Telemetry
   |            +------v-------+
   |            | (5) Enroll   |<---+ (non-error HTTP codes  )
   ^------------+              |\___/ (e.g. 201 ’Retry-After’)
   | Enroll     +------+-------+
   | Failure           |
   |              -----v------
   |             /  Enrolled  \
   ^------------+             |
    Factory      \------------/
    reset

   Figure 2: pledge state diagram

   State descriptions for the pledge are as follows:

   1.  Discover a communication channel to a registrar.
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   2.  Identify itself.  This is done by presenting an X.509 IDevID
       credential to the discovered registrar (via the proxy) in a TLS
       handshake.  (The registrar credentials are only provisionally
       accepted at this time).

   3.  Request to join the discovered registrar.  A unique nonce is
       included ensuring that any responses can be associated with this
       particular bootstrapping attempt.

   4.  Imprint on the registrar.  This requires verification of the
       manufacturer service provided voucher.  A voucher contains
       sufficient information for the pledge to complete authentication
       of a registrar.  This document details this step in depth.

   5.  Enroll.  After imprint an authenticated TLS (HTTPS) connection
       exists between pledge and registrar.  Enrollment over Secure
       Transport (EST) [RFC7030] is then used to obtain a domain
       certificate from a registrar.

   The pledge is now a member of, and can be managed by, the domain and
   will only repeat the discovery aspects of bootstrapping if it is
   returned to factory default settings.

   This specification details integration with EST enrollment so that
   pledges can optionally obtain a locally issued certificate, although
   any REST interface could be integrated in future work.

2.2.  Secure Imprinting using Vouchers

   A voucher is a cryptographically protected artifact (a digital
   signature) to the pledge device authorizing a zero-touch imprint on
   the registrar domain.

   The format and cryptographic mechanism of vouchers is described in
   detail in [RFC8366].

   Vouchers provide a flexible mechanism to secure imprinting: the
   pledge device only imprints when a voucher can be validated.  At the
   lowest security levels the MASA can indiscriminately issue vouchers
   and log claims of ownership by domains.  At the highest security
   levels issuance of vouchers can be integrated with complex sales
   channel integrations that are beyond the scope of this document.  The
   sales channel integration would verify actual (legal) ownership of
   the pledge by the domain.  This provides the flexibility for a number
   of use cases via a single common protocol mechanism on the pledge and
   registrar devices that are to be widely deployed in the field.  The
   MASA services have the flexibility to leverage either the currently
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   defined claim mechanisms or to experiment with higher or lower
   security levels.

   Vouchers provide a signed but non-encrypted communication channel
   among the pledge, the MASA, and the registrar.  The registrar
   maintains control over the transport and policy decisions allowing
   the local security policy of the domain network to be enforced.

2.3.  Initial Device Identifier

   Pledge authentication and pledge voucher-request signing is via a
   PKIX certificate installed during the manufacturing process.  This is
   the 802.1AR Initial Device Identifier (IDevID), and it provides a
   basis for authenticating the pledge during the protocol exchanges
   described here.  There is no requirement for a common root PKI
   hierarchy.  Each device manufacturer can generate its own root
   certificate.  Specifically, the IDevID enables:

   1.  Uniquely identifying the pledge by the Distinguished Name (DN)
       and subjectAltName (SAN) parameters in the IDevID.  The unique
       identification of a pledge in the voucher objects are derived
       from those parameters as described below.

   2.  Provides a cryptographic authentication of the pledge to the
       Registrar (see Section 5.3).

   3.  Secure auto-discovery of the pledge’s MASA by the registrar (see
       Section 2.8).

   4.  Signing of voucher-request by the pledge’s IDevID (see
       Section 3).

   5.  Provides a cryptographic authentication of the pledge to the MASA
       (see Section 5.5.5).

   Section 7.2.13 of [IDevID] discusses keyUsage and extendedKeyUsage
   extensions in the IDevID certificate.  Any restrictions included
   reduce the utility of the IDevID and so this specification RECOMMENDS
   that no key usage restrictions be included.  Additionally, [RFC5280]
   section 4.2.1.3 does not require key usage restrictions for end
   entity certificates.

2.3.1.  Identification of the Pledge

   In the context of BRSKI, pledges are uniquely identified by a
   "serial-number".  This serial-number is used both in the "serial-
   number" field of voucher or voucher-requests (see Section 3) and in
   local policies on registrar or MASA (see Section 5).
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   The following fields are defined in [IDevID] and [RFC5280]:

   o  The subject field’s DN encoding MUST include the "serialNumber"
      attribute with the device’s unique serial number.  (from [IDevID]
      section 7.2.8, and [RFC5280] section 4.1.2.4’s list of standard
      attributes)

   o  The subject-alt field’s encoding MAY include a non-critical
      version of the RFC4108 defined HardwareModuleName.  (from [IDevID]
      section 7.2.9) If the IDevID is stored in a Trusted Platform
      Module (TPM), then this field MAY contain the TPM identification
      rather than the device’s serial number.  If both fields are
      present, then the subject field takes precedence.

   and they are used as follows by the pledge to build the "serial-
   number" that is placed in the voucher-request.  In order to build it,
   the fields need to be converted into a serial-number of "type
   string".  The following methods are used depending on the first
   available IDevID certificate field (attempted in this order):

   1.  [RFC4519] section 2.31 provides an example ("WI-3005") of the
       Distinguished Name "serialNumber" attribute.  [RFC4514] indicates
       this is a printable string so no encoding is necessary.

   2.  The HardwareModuleName hwSerialNum OCTET STRING.  This value is
       base64 encoded to convert it to a printable string format.

   The above process to locate the serial-number MUST be performed by
   the pledge when filling out the voucher-request.  Signed voucher-
   requests are always passed up to the MASA.

   As explained in Section 5.5 the Registrar MUST extract the serial-
   number again itself from the pledge’s TLS certificate.  It can
   consult the serial-number in the pledge-request if there are any
   possible confusion about the source of the serial-number (hwSerialNum
   vs serialNumber).

2.3.2.  MASA URI extension

   This docucment defines a new PKIX non-critical certificate extension
   to carry the MASA URI.  This extension is intended to be used in the
   IDevID certificate.  The URI is represented as described in
   Section 7.4 of [RFC5280].

   Any Internationalized Resource Identifiers (IRIs) MUST be mapped to
   URIs as specified in Section 3.1 of [RFC3987] before they are placed
   in the certificate extension.  The IRI provides the authority
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   information.  The BRSKI "/.well-known" tree ([RFC5785]) is described
   in Section 5.

   As explained in [RFC5280] section 7.4, a complete IRI SHOULD be in
   this extension, including the scheme, iauthority, and ipath.  As a
   consideration to constrained systems, this MAY be reduced to only the
   iauthority, in which case a scheme of "https://" and ipath of
   "/.well-known/est" is to be assumed, as explained in section
   Section 5.

   The registrary can assume that only the iauthority is present in the
   extension, if there are no slash ("/") characters in the extension.

   Section 7.4 of [RFC5280] calls out various schemes that MUST be
   supported, including ldap, http and ftp.  However, the registrar MUST
   use https for the BRSKI-MASA connection.

   The new extension is identified as follows:
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   <CODE BEGINS>

   MASAURLExtnModule-2016 { iso(1) identified-organization(3) dod(6)
   internet(1) security(5) mechanisms(5) pkix(7)
   id-mod(0) id-mod-MASAURLExtn2016(TBD) }

   DEFINITIONS IMPLICIT TAGS ::= BEGIN

   -- EXPORTS ALL --

   IMPORTS
   EXTENSION
   FROM PKIX-CommonTypes-2009
   { iso(1) identified-organization(3) dod(6) internet(1)
   security(5) mechanisms(5) pkix(7) id-mod(0)
   id-mod-pkixCommon-02(57) }

   id-pe
   FROM PKIX1Explicit-2009
   { iso(1) identified-organization(3) dod(6) internet(1)
   security(5) mechanisms(5) pkix(7) id-mod(0)
   id-mod-pkix1-explicit-02(51) } ;
   MASACertExtensions EXTENSION ::= { ext-MASAURL, ... }
   ext-MASAURL EXTENSION ::= { SYNTAX MASAURLSyntax
   IDENTIFIED BY id-pe-masa-url }

   id-pe-masa-url OBJECT IDENTIFIER ::= { id-pe TBD }

   MASAURLSyntax ::= IA5String

   END

   <CODE ENDS>

   The choice of id-pe is based on guidance found in Section 4.2.2 of
   [RFC5280], "These extensions may be used to direct applications to
   on-line information about the issuer or the subject".  The MASA URL
   is precisely that: online information about the particular subject.

2.4.  Protocol Flow

   A representative flow is shown in Figure 3:
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   +--------+         +---------+    +------------+     +------------+
   | Pledge |         | Circuit |    | Domain     |     | Vendor     |
   |        |         | Join    |    | Registrar  |     | Service    |
   |        |         | Proxy   |    |  (JRC)     |     | (MASA)     |
   +--------+         +---------+    +------------+     +------------+
     |                     |                   |           Internet |
   [discover]              |                   |                    |
     |<-RFC4862 IPv6 addr  |                   |                    |
     |<-RFC3927 IPv4 addr  | Appendix A        |  Legend            |
     |-------------------->|                   |  C - circuit       |
     | optional: mDNS query| Appendix B        |      join proxy    |
     | RFC6763/RFC6762     |                   |  P - provisional   |
     |<--------------------|                   |    TLS connection  |
     | GRASP M_FLOOD       |                   |                    |
     |   periodic broadcast|                   |                    |
   [identity]              |                   |                    |
     |<------------------->C<----------------->|                    |
     |         TLS via the Join Proxy          |                    |
     |<--Registrar TLS server authentication---|                    |
   [PROVISIONAL accept of server cert]         |                    |
     P---X.509 client authentication---------->|                    |
   [request join]                              |                    |
     P---Voucher Request(w/nonce for voucher)->|                    |
     P                  /-------------------   |                    |
     P                  |                 [accept device?]          |
     P                  |                 [contact Vendor]          |
     P                  |                      |--Pledge ID-------->|
     P                  |                      |--Domain ID-------->|
     P                  |                      |--optional:nonce--->|
     P              optional:                  |     [extract DomainID]
     P        can occur in advance             |     [update audit log]
     P            if nonceleess                |                    |
     P                  |                      |<- voucher ---------|
     P                  \-------------------   | w/nonce if provided|
     P<------voucher---------------------------|                    |
   [imprint]                                   |                    |
     |-------voucher status telemetry--------->|                    |
     |                                         |<-device audit log--|
     |                             [verify audit log and voucher]   |
     |<--------------------------------------->|                    |
   [enroll]                                    |                    |
     | Continue with RFC7030 enrollment        |                    |
     | using now bidirectionally authenticated |                    |
     | TLS session.                            |                    |
   [enrolled]                                  |                    |

   Figure 3
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2.5.  Architectural Components

2.5.1.  Pledge

   The pledge is the device that is attempting to join.  Until the
   pledge completes the enrollment process, it has link-local network
   connectivity only to the proxy.

2.5.2.  Join Proxy

   The join proxy provides HTTPS connectivity between the pledge and the
   registrar.  A circuit proxy mechanism is described in Section 4.
   Additional mechanisms, including a CoAP mechanism and a stateless
   IPIP mechanism are the subject of future work.

2.5.3.  Domain Registrar

   The domain’s registrar operates as the BRSKI-MASA client when
   requesting vouchers from the MASA (see Section 5.4).  The registrar
   operates as the BRSKI-EST server when pledges request vouchers (see
   Section 5.1).  The registrar operates as the BRSKI-EST server
   "Registration Authority" if the pledge requests an end entity
   certificate over the BRSKI-EST connection (see Section 5.9).

   The registrar uses an Implicit Trust Anchor database for
   authenticating the BRSKI-MASA TLS connection MASA certificate.  The
   registrar uses a different Implicit Trust Anchor database for
   authenticating the BRSKI-EST TLS connection pledge client
   certificate.  Configuration or distribution of these trust anchor
   databases is out-of-scope of this specification.

2.5.4.  Manufacturer Service

   The Manufacturer Service provides two logically seperate functions:
   the Manufacturer Authorized Signing Authority (MASA) described in
   Section 5.5 and Section 5.6, and an ownership tracking/auditing
   function described in Section 5.7 and Section 5.8.

2.5.5.  Public Key Infrastructure (PKI)

   The Public Key Infrastructure (PKI) administers certificates for the
   domain of concerns, providing the trust anchor(s) for it and allowing
   enrollment of pledges with domain certificates.

   The voucher provides a method for the distribution of a single PKI
   trust anchor (as the "pinned-domain-cert").  A distribution of the
   full set of current trust anchors is possible using the optional EST
   integration.
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   The domain’s registrar acts as an [RFC5272] Registration Authority,
   requesting certificates for pledges from the Key Infrastructure.

   The expectations of the PKI are unchanged from EST [[RFC7030]].  This
   document does not place any additional architectural requirements on
   the Public Key Infrastructure.

2.6.  Certificate Time Validation

2.6.1.  Lack of realtime clock

   Many devices when bootstrapping do not have knowledge of the current
   time.  Mechanisms such as Network Time Protocols cannot be secured
   until bootstrapping is complete.  Therefore bootstrapping is defined
   in a method that does not require knowledge of the current time.  A
   pledge MAY ignore all time stamps in the voucher and in the
   certificate validity periods if it does not know the current time.

   The pledge is exposed to dates in the following five places:
   registrar certificate notBefore, registrar certificiate notAfter,
   voucher created-on, and voucher expires-on.  Additionally, CMS
   signatures contain a signingTime.

   If the voucher contains a nonce then the pledge MUST confirm the
   nonce matches the original pledge voucher-request.  This ensures the
   voucher is fresh.  See Section 5.2.

2.6.2.  Infinite Lifetime of IDevID

   [RFC5280] explains that long lived pledge certificates "SHOULD be
   assigned the GeneralizedTime value of 99991231235959Z".  Registrars
   MUST support such lifetimes and SHOULD support ignoring pledge
   lifetimes if they did not follow the RFC5280 recommendations.

   For example, IDevID may have incorrect lifetime of N <= 3 years,
   rendering replacement pledges from storage useless after N years
   unless registrars support ignoring such a lifetime.

2.7.  Cloud Registrar

   There exist operationally open network wherein devices gain
   unauthenticated access to the internet at large.  In these use cases
   the management domain for the device needs to be discovered within
   the larger internet.  These are less likely within the anima scope
   but may be more important in the future.

   There are additionally some greenfield situations involving an
   entirely new installation where a device may have some kind of
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   management uplink that it can use (such as via 3G network for
   instance).  In such a future situation, the device might use this
   management interface to learn that it should configure itself to
   become the local registrar.

   In order to support these scenarios, the pledge MAY contact a well
   known URI of a cloud registrar if a local registrar cannot be
   discovered or if the pledge’s target use cases do not include a local
   registrar.

   If the pledge uses a well known URI for contacting a cloud registrar
   an Implicit Trust Anchor database (see [RFC7030]) MUST be used to
   authenticate service as described in [RFC6125].  This is consistent
   with the human user configuration of an EST server URI in [RFC7030]
   which also depends on RFC6125.

2.8.  Determining the MASA to contact

   The registrar needs to be able to contact a MASA that is trusted by
   the pledge in order to obtain vouchers.  There are three mechanisms
   described:

   The device’s Initial Device Identifier (IDevID) will normally contain
   the MASA URL as detailed in Section 2.3.  This is the RECOMMENDED
   mechanism.

   If the registrar is integrated with [I-D.ietf-opsawg-mud] and the
   pledge IDevID contains the id-pe-mud-url then the registrar MAY
   attempt to obtain the MASA URL from the MUD file.  The MUD file
   extension for the MASA URL is defined in Appendix C.

   It can be operationally difficult to ensure the necessary X.509
   extensions are in the pledge’s IDevID due to the difficulty of
   aligning current pledge manufacturing with software releases and
   development.  As a final fallback the registrar MAY be manually
   configured or distributed with a MASA URL for each manufacturer.
   Note that the registrar can only select the configured MASA URL based
   on the trust anchor -- so manufacturers can only leverage this
   approach if they ensure a single MASA URL works for all pledge’s
   associated with each trust anchor.

3.  Voucher-Request artifact

   Voucher-requests are how vouchers are requested.  The semantics of
   the vouchers are described below, in the YANG model.

   A pledge forms the "pledge voucher-request" and submits it to the
   registrar.
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   The registrar in turn forms the "registrar voucher-request", and
   submits it to the MASA.

   The "proximity-registrar-cert" leaf is used in the pledge voucher-
   requests.  This provides a method for the pledge to assert the
   registrar’s proximity.

   The "prior-signed-voucher-request" leaf is used in registrar voucher-
   requests.  If present, it is the signed pledge voucher-request.  This
   provides a method for the registrar to forward the pledge’s signed
   request to the MASA.  This completes transmission of the signed
   "proximity-registrar-cert" leaf.

   Unless otherwise signaled (outside the voucher-request artifact), the
   signing structure is as defined for vouchers, see [RFC8366].

3.1.  Nonceless Voucher Requests

   A registrar MAY also retrieve nonceless vouchers by sending nonceless
   voucher-requests to the MASA in order to obtain vouchers for use when
   the registrar does not have connectivity to the MASA.  No "prior-
   signed-voucher-request" leaf would be included.  The registrar will
   also need to know the serial number of the pledge.  This document
   does not provide a mechanism for the registrar to learn that in an
   automated fashion.  Typically this will be done via scanning of bar-
   code or QR-code on packaging, or via some sales channel integration.

3.2.  Tree Diagram

   The following tree diagram illustrates a high-level view of a
   voucher-request document.  The voucher-request builds upon the
   voucher artifact described in [RFC8366].  The tree diagram is
   described in [RFC8340].  Each node in the diagram is fully described
   by the YANG module in Section 3.4.  Please review the YANG module for
   a detailed description of the voucher-request format.
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   module: ietf-voucher-request

     grouping voucher-request-grouping
       +-- voucher
          +-- created-on?                      yang:date-and-time
          +-- expires-on?                      yang:date-and-time
          +-- assertion?                       enumeration
          +-- serial-number                    string
          +-- idevid-issuer?                   binary
          +-- pinned-domain-cert?              binary
          +-- domain-cert-revocation-checks?   boolean
          +-- nonce?                           binary
          +-- last-renewal-date?               yang:date-and-time
          +-- prior-signed-voucher-request?    binary
          +-- proximity-registrar-cert?        binary

3.3.  Examples

   This section provides voucher-request examples for illustration
   purposes.  For detailed examples, see Appendix D.2.  These examples
   conform to the encoding rules defined in [RFC7951].

   Example (1)  The following example illustrates a pledge voucher-
                request.  The assertion leaf is indicated as ’proximity’
                and the registrar’s TLS server certificate is included
                in the ’proximity-registrar-cert’ leaf.  See
                Section 5.2.

   {
       "ietf-voucher-request:voucher": {
           "nonce": "62a2e7693d82fcda2624de58fb6722e5",
           "created-on": "2017-01-01T00:00:00.000Z",
           "proximity-registrar-cert": "base64encodedvalue=="
       }
   }

   Example (2)  The following example illustrates a registrar voucher-
                request.  The ’prior-signed-voucher-request’ leaf is
                populated with the pledge’s voucher-request (such as the
                prior example).  The pledge’s voucher-request is a
                binary object.  In the JSON encoding used here it must
                be base64 encoded.  The nonce, created-on and assertion
                is carried forward.  The serial-number is extracted from
                the pledge’s Client Certificate from the TLS connection.
                See Section 5.5.
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   {
       "ietf-voucher-request:voucher": {
           "nonce": "62a2e7693d82fcda2624de58fb6722e5",
           "created-on": "2017-01-01T00:00:02.000Z",
           "idevid-issuer": "base64encodedvalue=="
           "serial-number": "JADA123456789"
           "prior-signed-voucher-request": "base64encodedvalue=="
       }
   }

   Example (3)  The following example illustrates a registrar voucher-
                request.  The ’prior-signed-voucher-request’ leaf is not
                populated with the pledge’s voucher-request nor is the
                nonce leaf.  This form might be used by a registrar
                requesting a voucher when the pledge can not communicate
                with the registrar (such as when it is powered down, or
                still in packaging), and therefore could not submit a
                nonce.  This scenario is most useful when the registrar
                is aware that it will not be able to reach the MASA
                during deployment.  See Section 5.5.

   {
       "ietf-voucher-request:voucher": {
           "created-on":    "2017-01-01T00:00:02.000Z",
           "idevid-issuer": "base64encodedvalue=="
           "serial-number": "JADA123456789"
       }
   }

3.4.  YANG Module

   Following is a YANG [RFC7950] module formally extending the [RFC8366]
   voucher into a voucher-request.

<CODE BEGINS> file "ietf-voucher-request@2018-02-14.yang"
module ietf-voucher-request {
  yang-version 1.1;

  namespace
    "urn:ietf:params:xml:ns:yang:ietf-voucher-request";
  prefix "vch";

  import ietf-restconf {
    prefix rc;
    description "This import statement is only present to access
       the yang-data extension defined in RFC 8040.";
    reference "RFC 8040: RESTCONF Protocol";
  }
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  import ietf-voucher {
    prefix v;
    description "This module defines the format for a voucher,
        which is produced by a pledge’s manufacturer or
        delegate (MASA) to securely assign a pledge to
        an ’owner’, so that the pledge may establish a secure
        conn ection to the owner’s network infrastructure";

    reference "RFC YYYY: Voucher Profile for Bootstrapping Protocols";
  }

  organization
   "IETF ANIMA Working Group";

  contact
   "WG Web:   <http://tools.ietf.org/wg/anima/>
    WG List:  <mailto:anima@ietf.org>
    Author:   Kent Watsen
              <mailto:kwatsen@juniper.net>
    Author:   Max Pritikin
              <mailto:pritikin@cisco.com>
    Author:   Michael Richardson
              <mailto:mcr+ietf@sandelman.ca>
    Author:   Toerless Eckert
              <mailto:tte+ietf@cs.fau.de>";

  description
   "This module defines the format for a voucher request.
    It is a superset of the voucher itself.
    It provides content to the MASA for consideration
    during a voucher request.

    The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL NOT’,
    ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in
    the module text are to be interpreted as described in RFC 2119.

    Copyright (c) 2017 IETF Trust and the persons identified as
    authors of the code. All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, is permitted pursuant to, and subject to the license
    terms contained in, the Simplified BSD License set forth in Section
    4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
    (http://trustee.ietf.org/license-info).

    This version of this YANG module is part of RFC XXXX; see the RFC
    itself for full legal notices.";
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  revision "2018-02-14" {
    description
     "Initial version";
    reference
     "RFC XXXX: Voucher Profile for Bootstrapping Protocols";
  }

  // Top-level statement
  rc:yang-data voucher-request-artifact {
    uses voucher-request-grouping;
  }

  // Grouping defined for future usage
  grouping voucher-request-grouping {
    description
      "Grouping to allow reuse/extensions in future work.";

    uses v:voucher-artifact-grouping {
      refine "voucher/created-on" {
        mandatory false;
      }

      refine "voucher/pinned-domain-cert" {
        mandatory false;
      }

      refine "voucher/domain-cert-revocation-checks" {
        description "The domain-cert-revocation-checks field
                     is not valid in a voucher request, and
                     any occurance MUST be ignored";
      }

      refine "voucher/assertion" {
        mandatory false;
        description "Any assertion included in voucher
              requests SHOULD be ignored by the MASA.";
      }

      augment "voucher"  {
        description
          "Adds leaf nodes appropriate for requesting vouchers.";

        leaf prior-signed-voucher-request {
          type binary;
          description
            "If it is necessary to change a voucher, or re-sign and
             forward a voucher that was previously provided along a
             protocol path, then the previously signed voucher SHOULD be
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             included in this field.

             For example, a pledge might sign a voucher request
             with a proximity-registrar-cert, and the registrar
             then includes it in the prior-signed-voucher-request field.
             This is a simple mechanism for a chain of trusted
             parties to change a voucher request, while
             maintaining the prior signature information.

             The Registrar and MASA MAY examine the prior signed
             voucher information for the
             purposes of policy decisions. For example this information
             could be useful to a MASA to determine that both pledge and
             registrar agree on proximity assertions. The MASA SHOULD
             remove all prior-signed-voucher-request information when
             signing a voucher for imprinting so as to minimize the
             final voucher size.";
        }

        leaf proximity-registrar-cert {
          type binary;
          description
            "An X.509 v3 certificate structure as specified by RFC 5280,
             Section 4 encoded using the ASN.1 distinguished encoding
             rules (DER), as specified in ITU-T X.690.

             The first certificate in the Registrar TLS server
             certificate_list sequence  (see [RFC5246]) presented by
             the Registrar to the Pledge. This MUST be populated in a
             Pledge’s voucher request if a proximity assertion is
             requested.";
        }
      }
    }
  }

}

<CODE ENDS>

4.  Proxying details (Pledge - Proxy - Registrar)

   The role of the proxy is to facilitate communications.  The proxy
   forwards packets between the pledge and a registrar that has been
   provisioned to the proxy via GRASP discovery.

   This section defines a stateful proxy mechanism which is refered to
   as a "circuit" proxy.
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   The proxy does not terminate the TLS handshake: it passes streams of
   bytes onward without examination.  A proxy MUST NOT assume any
   specific TLS version.

   A Registrar can directly provide the proxy announcements described
   below, in which case the announced port can point directly to the
   Registrar itself.  In this scenario the pledge is unaware that there
   is no proxing occuring.  This is useful for Registrars servicing
   pledges on directly connected networks.

   As a result of the proxy Discovery process in Section 4.1.1, the port
   number exposed by the proxy does not need to be well known, or
   require an IANA allocation.

   During the discovery of the Registrar by the Join Proxy, the Join
   Proxy will also learn which kinds of proxy mechanisms are available.
   This will allow the Join Proxy to use the lowest impact mechanism
   which the Join Proxy and Registrar have in common.

   In order to permit the proxy functionality to be implemented on the
   maximum variety of devices the chosen mechanism SHOULD use the
   minimum amount of state on the proxy device.  While many devices in
   the ANIMA target space will be rather large routers, the proxy
   function is likely to be implemented in the control plane CPU of such
   a device, with available capabilities for the proxy function similar
   to many class 2 IoT devices.

   The document [I-D.richardson-anima-state-for-joinrouter] provides a
   more extensive analysis and background of the alternative proxy
   methods.

4.1.  Pledge discovery of Proxy

   The result of discovery is a logical communication with a registrar,
   through a proxy.  The proxy is transparent to the pledge.  The
   communication between the pledge is over IPv6 Link-Local addresses.

   To discover the proxy the pledge performs the following actions:

   1.  MUST: Obtains a local address using IPv6 methods as described in
       [RFC4862] IPv6 Stateless Address AutoConfiguration.  Use of
       [RFC4941] temporary addresses is encouraged.  To limit pervasive
       monitoring ( [RFC7258]), a new temporary address MAY use a short
       lifetime (that is, set TEMP_PREFERRED_LIFETIME to be short).
       Pledges will generally prefer use of IPv6 Link-Local addresses,
       and discovery of proxy will be by Link-Local mechanisms.  IPv4
       methods are described in Appendix A
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   2.  MUST: Listen for GRASP M_FLOOD ([I-D.ietf-anima-grasp])
       announcements of the objective: "AN_Proxy".  See section
       Section 4.1.1 for the details of the objective.  The pledge MAY
       listen concurrently for other sources of information, see
       Appendix B.

   Once a proxy is discovered the pledge communicates with a registrar
   through the proxy using the bootstrapping protocol defined in
   Section 5.

   While the GRASP M_FLOOD mechanism is passive for the pledge, the
   optional other methods (mDNS, and IPv4 methods) are active.  The
   pledge SHOULD run those methods in parallel with listening to for the
   M_FLOOD.  The active methods SHOULD exponentially back-off to a
   maximum of one hour to avoid overloading the network with discovery
   attempts.  Detection of change of physical link status (ethernet
   carrier for instance) SHOULD reset the exponential back off.

   The pledge could discover more than one proxy on a given physical
   interface.  The pledge can have a multitude of physical interfaces as
   well: a layer-2/3 ethernet switch may have hundreds of physical
   ports.

   Each possible proxy offer SHOULD be attempted up to the point where a
   voucher is received: while there are many ways in which the attempt
   may fail, it does not succeed until the voucher has been validated.

   The connection attempts via a single proxy SHOULD exponentially back-
   off to a maximum of one hour to avoid overloading the network
   infrastructure.  The back-off timer for each MUST be independent of
   other connection attempts.

   Connection attempts SHOULD be run in parallel to avoid head of queue
   problems wherein an attacker running a fake proxy or registrar could
   perform protocol actions intentionally slowly.  The pledge SHOULD
   continue to listen to for additional GRASP M_FLOOD messages during
   the connection attempts.

   Once a connection to a registrar is established (e.g. establishment
   of a TLS session key) there are expectations of more timely
   responses, see Section 5.2.

   Once all discovered services are attempted (assuming that none
   succeeded) the device MUST return to listening for GRASP M_FLOOD.  It
   SHOULD periodically retry the manufacturer specific mechanisms.  The
   pledge MAY prioritize selection order as appropriate for the
   anticipated environment.
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4.1.1.  Proxy GRASP announcements

   A proxy uses the DULL GRASP M_FLOOD mechanism to announce itself.
   This announcement can be within the same message as the ACP
   announcement detailed in [I-D.ietf-anima-autonomic-control-plane].
   The M_FLOOD is formatted as follows:

  [M_FLOOD, 12340815, h’fe800000000000000000000000000001’, 180000,
              ["AN_Proxy", 4, 1, ""],
              [O_IPv6_LOCATOR,
                h’fe800000000000000000000000000001’, IPPROTO_TCP, 4443]]

   Figure 6b: Proxy Discovery

   The formal CDDL [I-D.ietf-cbor-cddl] definition is:

 flood-message = [M_FLOOD, session-id, initiator, ttl,
                  +[objective, (locator-option / [])]]

 objective = ["AN_Proxy", objective-flags, loop-count,
                                        objective-value]

 ttl             = 180000     ; 180,000 ms (3 minutes)
 initiator = ACP address to contact Registrar
 objective-flags   = sync-only  ; as in GRASP spec
 sync-only         =  4         ; M_FLOOD only requires synchronization
 loop-count        =  1         ; one hop only
 objective-value   =  any       ; none

 locator-option    = [ O_IPv6_LOCATOR, ipv6-address,
                     transport-proto, port-number ]
 ipv6-address      = the v6 LL of the Proxy
 $transport-proto /= IPPROTO_TCP   ; note this can be any value from the
                                  ; IANA protocol registry, as per
                                  ; [GRASP] section 2.9.5.1, note 3.
 port-number      = selected by Proxy

   Figure 6c: AN_Proxy CDDL

   On a small network the Registrar MAY include the GRASP M_FLOOD
   announcements to locally connected networks.

   The $transport-proto above indicates the method that the pledge-
   proxy-registrar will use.  The TCP method described here is
   mandatory, and other proxy methods, such as CoAP methods not defined
   in this document are optional.  Other methods MUST NOT be enabled
   unless the Join Registrar ASA indicates support for them in it’s own
   announcement.
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4.2.  CoAP connection to Registrar

   The use of CoAP to connect from pledge to registrar is out of scope
   for this document, and is described in future work.  See
   [I-D.ietf-anima-constrained-voucher].

4.3.  Proxy discovery and communication of Registrar

   The registrar SHOULD announce itself so that proxies can find it and
   determine what kind of connections can be terminated.

   The registrar announces itself using ACP instance of GRASP using
   M_FLOOD messages.  ANI proxies MUST support GRASP discovery of
   registrars.

   The M_FLOOD is formatted as follows:

   [M_FLOOD, 12340815, h’fda379a6f6ee00000200000064000001’, 180000,
               ["AN_join_registrar", 4, 255, "EST-TLS"],
               [O_IPv6_LOCATOR,
                 h’fda379a6f6ee00000200000064000001’, IPPROTO_TCP, 80]]

   Figure 7a: Registrar Discovery

   The formal CDDL definition is:

   flood-message = [M_FLOOD, session-id, initiator, ttl,
                    +[objective, (locator-option / [])]]

   objective = ["AN_join_registrar", objective-flags, loop-count,
                                          objective-value]

   initiator = ACP address to contact Registrar
   objective-flags = sync-only  ; as in GRASP spec
   sync-only =  4               ; M_FLOOD only requires synchronization
   loop-count      = 255        ; mandatory maximum
   objective-value = text       ; name of the (list of) of supported
                                ; protocols: "EST-TLS" for RFC7030.

   Figure 7: AN_join_registrar CDDL

   The M_FLOOD message MUST be sent periodically.  The period is subject
   to network administrator policy (EST server configuration).  It must
   be sufficiently low that the aggregate amount of periodic M_FLOODs
   from all EST servers causes negligible traffic across the ACP.
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   Here are some examples of locators for illustrative purposes.  Only
   the first one ($transport-protocol = 6, TCP) is defined in this
   document and is mandatory to implement.

   locator1  = [O_IPv6_LOCATOR, fd45:1345::6789, 6,  443]
   locator2  = [O_IPv6_LOCATOR, fd45:1345::6789, 17, 5683]
   locator3  = [O_IPv6_LOCATOR, fe80::1234, 41, nil]

   A protocol of 6 indicates that TCP proxying on the indicated port is
   desired.

   Registrars MUST announce the set of protocols that they support.
   They MUST support TCP traffic.

   Registrars MUST accept HTTPS/EST traffic on the TCP ports indicated.

   Registrars MUST support ANI TLS circuit proxy and therefore BRSKI
   across HTTPS/TLS native across the ACP.

   In the ANI, the Autonomic Control Plane (ACP) secured instance of
   GRASP ([I-D.ietf-anima-grasp]) MUST be used for discovery of ANI
   registrar ACP addresses and ports by ANI proxies.  The TCP leg of the
   proxy connection between ANI proxy and ANI registrar therefore also
   runs across the ACP.

5.  Protocol Details (Pledge - Registrar - MASA)

   The pledge MUST initiate BRSKI after boot if it is unconfigured.  The
   pledge MUST NOT automatically initiate BRSKI if it has been
   configured or is in the process of being configured.

   BRSKI is described as extensions to EST [RFC7030].  The goal of these
   extensions is to reduce the number of TLS connections and crypto
   operations required on the pledge.  The registrar implements the
   BRSKI REST interface within the same "/.well-known" URI tree as the
   existing EST URIs as described in EST [RFC7030] section 3.2.2.  The
   communication channel between the pledge and the registrar is
   referred to as "BRSKI-EST" (see Figure 1).

   The communication channel between the registrar and MASA is similarly
   described as extensions to EST within the same "/.well-known" tree.
   For clarity this channel is referred to as "BRSKI-MASA".  (See
   Figure 1).

   MASA URI is "https://" iauthority "/.well-known/est".
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   BRSKI uses existing CMS message formats for existing EST operations.
   BRSKI uses JSON [RFC7159] for all new operations defined here, and
   voucher formats.

   While EST section 3.2 does not insist upon use of HTTP 1.1 persistent
   connections, BRSKI-EST connections SHOULD use persistent connections.
   The intention of this guidance is to ensure the provisional TLS state
   occurs only once, and that the subsequent resolution of the provision
   state is not subject to a MITM attack during a critical phase.

   Summarized automation extensions for the BRSKI-EST flow are:

   o  The pledge either attempts concurrent connections via each
      discovered proxy, or it times out quickly and tries connections in
      series, as explained at the end of Section 5.1.

   o  The pledge provisionally accepts the registrar certificate during
      the TLS handshake as detailed in Section 5.1.

   o  The pledge requests and validates a voucher using the new REST
      calls described below.

   o  The pledge completes authentication of the server certificate as
      detailed in Section 5.6.1.  This moves the BRSKI-EST TLS
      connection out of the provisional state.

   o  Mandatory boostrap steps conclude with voucher status telemetry
      (see Section 5.7).

   The BRSKI-EST TLS connection can now be used for EST enrollment.

   The extensions for a registrar (equivalent to EST server) are:

   o  Client authentication is automated using Initial Device Identity
      (IDevID) as per the EST certificate based client authentication.
      The subject field’s DN encoding MUST include the "serialNumber"
      attribute with the device’s unique serial number.

   o  In the language of [RFC6125] this provides for a SERIALNUM-ID
      category of identifier that can be included in a certificate and
      therefore that can also be used for matching purposes.  The
      SERIALNUM-ID whitelist is collated according to manufacturer trust
      anchor since serial numbers are not globally unique.

   o  The registrar requests and validates the voucher from the MASA.

   o  The registrar forwards the voucher to the pledge when requested.
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   o  The registrar performs log verifications in addition to local
      authorization checks before accepting optional pledge device
      enrollment requests.

5.1.  BRSKI-EST TLS establishment details

   The pledge establishes the TLS connection with the registrar through
   the circuit proxy (see Section 4) but the TLS handshake is with the
   registrar.  The BRSKI-EST pledge is the TLS client and the BRSKI-EST
   registrar is the TLS server.  All security associations established
   are between the pledge and the registrar regardless of proxy
   operations.

   Establishment of the BRSKI-EST TLS connection is as specified in EST
   [RFC7030] section 4.1.1 "Bootstrap Distribution of CA Certificates"
   [RFC7030] wherein the client is authenticated with the IDevID
   certificate, and the EST server (the registrar) is provisionally
   authenticated with an unverified server certificate.

   The pledge maintains a security paranoia concerning the provisional
   state, and all data received, until a voucher is received and
   verified as specified in Section 5.6.1

   A Pledge that can connect to multiple registries concurrently, SHOULD
   do so.  Some devices may be unable to do so for lack of threading, or
   resource issues.  Concurrent connections defeat atttempts by a
   malicious proxy from causing a TCP Slowloris-like attack (see
   [slowloris]).

   A pledge that can not maintain as many connections as there are
   eligible proxies.  If no connection is making process after 5 seconds
   then the pledge SHOULD drop the oldest connection and go on to a
   different proxy: the proxy that has been communicated with least
   recently.  If there were no other proxies discovered, the pledge MAY
   continue to wait, as long as it is concurrently listening for new
   proxy announcements.

5.2.  Pledge Requests Voucher from the Registrar

   When the pledge bootstraps it makes a request for a voucher from a
   registrar.

   This is done with an HTTPS POST using the operation path value of
   "/.well-known/est/requestvoucher".

   The pledge voucher-request Content-Type is:
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   application/voucher-cms+json  The request is a "YANG-defined JSON
      document that has been signed using a CMS structure" as described
      in Section 3 using the JSON encoding described in [RFC7951].  This
      voucher media type is defined in [RFC8366] and is also used for
      the pledge voucher-request.  The pledge SHOULD sign the request
      using the Section 2.3 credential.

   Registrar impementations SHOULD anticipate future media types but of
   course will simply fail the request if those types are not yet known.

   The pledge SHOULD include an [RFC7231] section 5.3.2 "Accept" header
   indicating the acceptable media type for the voucher response.  The
   "application/voucher-cms+json" media type is defined in [RFC8366] but
   constrained voucher formats are expected in the future.  Registrar’s
   and MASA’s are expected to be flexible in what they accept.

   The pledge populates the voucher-request fields as follows:

   created-on:  Pledges that have a realtime clock are RECOMMENDED to
      populate this field.  This provides additional information to the
      MASA.

   nonce:  The pledge voucher-request MUST contain a cryptographically
      strong random or pseudo-random number nonce. (see [RFC4086]) Doing
      so ensures Section 2.6.1 functionality.  The nonce MUST NOT be
      reused for multiple bootstrapping attempts.  (The registrar
      voucher-request MAY omit the nonce as per Section 3.1)

   proximity-registrar-cert:  In a pledge voucher-request this is the
      first certificate in the TLS server ’certificate_list’ sequence
      (see [RFC5246]) presented by the registrar to the pledge.  This
      MUST be populated in a pledge voucher-request if the "proximity"
      assertion is populated.

   All other fields MAY be omitted in the pledge voucher-request.

   An example JSON payload of a pledge voucher-request is in Section 3.3
   Example 1.

   The registrar validates the client identity as described in EST
   [RFC7030] section 3.3.2.  The registrar confirms that the ’proximity’
   assertion and associated ’proximity-registrar-cert’ are correct.

5.3.  Registrar Authorization of Pledge

   In a fully automated network all devices must be securely identified
   and authorized to join the domain.
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   A Registrar accepts or declines a request to join the domain, based
   on the authenticated identity presented.  Automated acceptance
   criteria include:

   o  allow any device of a specific type (as determined by the X.509
      IDevID),

   o  allow any device from a specific vendor (as determined by the
      X.509 IDevID),

   o  allow a specific device from a vendor (as determined by the X.509
      IDevID) against a domain white list.  (The mechanism for checking
      a shared white list potentially used by multiple Registrars is out
      of scope).

   If these validations fail the registrar SHOULD respond with an
   appropriate HTTP error code.

   If authorization is successful the registrar obtains a voucher from
   the MASA service (see Section 5.5) and returns that MASA signed
   voucher to the pledge as described in Section 5.6.

5.4.  BRSKI-MASA TLS establishment details

   The BRSKI-MASA TLS connection is a ’normal’ TLS connection
   appropriate for HTTPS REST interfaces.  The registrar initiates the
   connection and uses the MASA URL obtained as described in Section 2.8
   for [RFC6125] authentication of the MASA.

   The primary method of registrar "authentication" by the MASA is
   detailed in Section 5.5.  As detailed in Section 11 the MASA might
   find it necessary to request additional registrar authentication.

   The MASA and the registrars SHOULD be prepared to support TLS client
   certificate authentication and/or HTTP Basic or Digest authentication
   as described in [RFC7030] for EST clients.  This connection MAY also
   have no client authentication at all (Section 7.4)

   The authentication of the BRSKI-MASA connection does not affect the
   voucher-request process, as voucher-requests are already signed by
   the registrar.  Instead, this authentication provides access control
   to the audit log.

   Implementors are advised that contacting the MASA is to establish a
   secured REST connection with a web service and that there are a
   number of authentication models being explored within the industry.
   Registrars are RECOMMENDED to fail gracefully and generate useful
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   administrative notifications or logs in the advent of unexpected HTTP
   401 (Unauthorized) responses from the MASA.

5.5.  Registrar Requests Voucher from MASA

   When a registrar receives a pledge voucher-request it in turn submits
   a registrar voucher-request to the MASA service via an HTTPS RESTful
   interface ([RFC7231]).

   This is done with an HTTP POST using the operation path value of
   "/.well-known/est/requestvoucher".

   The voucher media type "application/voucher-cms+json" is defined in
   [RFC8366] and is also used for the registrar voucher-request.  It is
   a JSON document that has been signed using a CMS structure.  The
   registrar MUST sign the registrar voucher-request.  The entire
   registrar certificate chain, up to and including the Domain CA, MUST
   be included in the CMS structure.

   MASA impementations SHOULD anticipate future media types but of
   course will simply fail the request if those types are not yet known.

   The Registrar SHOULD include an [RFC7231] section 5.3.2 "Accept"
   header indicating the response media types that are acceptable.  This
   list SHOULD be the entire list presented to the Registrar in the
   Pledge’s original request (see Section 5.2) but MAY be a subset.
   MASA’s are expected to be flexible in what they accept.

   The registrar populates the voucher-request fields as follows:

   created-on:  Registrars are RECOMMENDED to populate this field.  This
      provides additional information to the MASA.

   nonce:  This is the value from the pledge voucher-request.  The
      registrar voucher-request MAY omit the nonce as per Section 3.1)

   serial-number:  The serial number of the pledge the registrar would
      like a voucher for.  The registrar determines this value by
      parsing the authenticated pledge IDevID certificate.  See
      Section 2.3.  The registrar MUST verify that the serial number
      field it parsed matches the serial number field the pledge
      provided in its voucher-request.  This provides a sanity check
      useful for detecting error conditions and logging.  The registrar
      MUST NOT simply copy the serial number field from a pledge voucher
      request as that field is claimed but not certified.

   idevid-issuer:  The idevid-issuer value from the pledge certificate
      is included to ensure a statistically unique identity.
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   prior-signed-voucher-request:  The signed pledge voucher-request
      SHOULD be included in the registrar voucher-request.  (NOTE: what
      is included is the complete pledge voucher-request, inclusive of
      the ’assertion’, ’proximity-registrar-cert’, etc wrapped by the
      pledge’s original signature).  If a signed voucher-request was not
      recieved from the pledge then this leaf is omitted from the
      registrar voucher request.

   A nonceless registrar voucher-request MAY be submitted to the MASA.
   Doing so allows the registrar to request a voucher when the pledge is
   offline, or when the registrar anticipates not being able to connect
   to the MASA while the pledge is being deployed.  Some use cases
   require the registrar to learn the appropriate IDevID SerialNumber
   field and appropriate ’Accept header’ field values from the physical
   device labeling or from the sales channel (out-of-scope for this
   document).

   All other fields MAY be omitted in the registrar voucher-request.

   Example JSON payloads of registrar voucher-requests are in
   Section 3.3 Examples 2 through 4.

   The MASA verifies that the registrar voucher-request is internally
   consistent but does not necessarily authenticate the registrar
   certificate since the registrar is not known to the MASA in advance.
   The MASA performs the actions and validation checks described in the
   following sub-sections before issuing a voucher.

5.5.1.  MASA renewal of expired vouchers

   As described in [RFC8366] vouchers are normally short lived to avoid
   revocation issues.  If the request is for a previous (expired)
   voucher using the same registrar then the request for a renewed
   voucher SHOULD be automatically authorized.  The MASA has sufficient
   information to determine this by examining the request, the registrar
   authentication, and the existing audit log.  The issuance of a
   renewed voucher is logged as detailed in Section 5.6.

   To inform the MASA that existing vouchers are not to be renewed one
   can update or revoke the registrar credentials used to authorize the
   request (see Section 5.5.3 and Section 5.5.4).  More flexible methods
   will likely involve sales channel integration and authorizations
   (details are out-of-scope of this document).
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5.5.2.  MASA verification of voucher-request signature consistency

   The MASA MUST verify that the registrar voucher-request is signed by
   a registrar.  This is confirmed by verifying that the id-kp-cmcRA
   extended key usage extension field (as detailed in EST RFC7030
   section 3.6.1) exists in the certificate of the entity that signed
   the registrar voucher-request.  This verification is only a
   consistency check that the unauthenticated domain CA intended the
   voucher-request signer to be a registrar.  Performing this check
   provides value to the domain PKI by assuring the domain administrator
   that the MASA service will only respect claims from authorized
   Registration Authorities of the domain.

   The MASA verifies that the domain CA certificate is included in the
   CMS structure as detailed in Section 5.5.

5.5.3.  MASA authentication of registrar (certificate)

   If a nonceless voucher-request is submitted the MASA MUST
   authenticate the registrar as described in either EST [RFC7030]
   section 3.2, section 3.3, or by validating the registrar’s
   certificate used to sign the registrar voucher-request.  Any of these
   methods reduce the risk of DDoS attacks and provide an authenticated
   identity as an input to sales channel integration and authorizations
   (details are out-of-scope of this document).

   In the nonced case, validation of the registrar MAY be omitted if the
   device policy is to accept audit-only vouchers.

5.5.4.  MASA revocation checking of registrar (certificate)

   As noted in Section 5.5.3 the MASA performs registrar authentication
   in a subset of situations (e.g. nonceless voucher requests).  Normal
   PKIX revocation checking is assumed during either EST client
   authentication or voucher-request signature validation.  Similarly,
   as noted in Section 5.5.2, the MASA performs normal PKIX revocation
   checking during signature consistency checks (a signature by a
   registrar certificate that has been revoked is an inconsistency).

5.5.5.  MASA verification of pledge prior-signed-voucher-request

   The MASA MAY verify that the registrar voucher-request includes the
   ’prior-signed-voucher-request’ field.  If so the prior-signed-
   voucher-request MUST include a ’proximity-registrar-cert’ that is
   consistent with the certificate used to sign the registrar voucher-
   request.  Additionally the voucher-request serial-number leaf MUST
   match the pledge serial-number that the MASA extracts from the
   signing certificate of the prior-signed-voucher-request.  The MASA is
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   aware of which pledges support signing of their voucher requests and
   can use this information to confirm proximity of the pledge with the
   registrar, thus ensuring that the BRSKI-EST TLS connection has no
   man-in-the-middle.

   If these checks succeed the MASA updates the voucher and audit log
   assertion leafs with the "proximity" assertion.

5.5.6.  MASA pinning of registrar

   The registrar’s certificate chain is extracted from the signature
   method.  The chain includes the domain CA certificate as specified in
   Section 5.5.  This certificate is used to populate the "pinned-
   domain-cert" of the voucher being issued.  The domainID (e.g., hash
   of the root public key) is determined from the pinned-domain-cert and
   is used to update the audit log.

5.5.7.  MASA nonce handling

   The MASA does not verify the nonce itself.  If the registrar voucher-
   request contains a nonce, and the prior-signed-voucher-request is
   exist, then the MASA MUST verify that the nonce is consistent.
   (Recall from above that the voucher-request might not contain a
   nonce, see Section 5.5 and Section 5.5.3).

   The MASA MUST use the nonce from the registrar voucher-request for
   the resulting voucher and audit log.  The prior-signed-voucher-
   request nonce is ignored during this operation.

5.6.  MASA and Registrar Voucher Response

   The MASA voucher response to the registrar is forwarded without
   changes to the pledge; therefore this section applies to both the
   MASA and the registrar.  The HTTP signaling described applies to both
   the MASA and registrar responses.  A registrar either caches prior
   MASA responses or dynamically requests a new voucher based on local
   policy (it does not generate or sign a voucher).  Registrar
   evaluation of the voucher itself is purely for transparency and audit
   purposes to further inform log verification (see Section 5.8.2) and
   therefore a registrar could accept future voucher formats that are
   opaque to the registrar.

   If the voucher-request is successful, the server (MASA responding to
   registrar or registrar responding to pledge) response MUST contain an
   HTTP 200 response code.  The server MUST answer with a suitable 4xx
   or 5xx HTTP [RFC2616] error code when a problem occurs.  In this
   case, the response data from the MASA MUST be a plaintext human-
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   readable (ASCII, English) error message containing explanatory
   information describing why the request was rejected.

   The registrar MAY respond with an HTTP 202 ("the request has been
   accepted for processing, but the processing has not been completed")
   as described in EST [RFC7030] section 4.2.3 wherein the client "MUST
   wait at least the specified ’Retry-After’ time before repeating the
   same request".  (see [RFC7231] section 6.6.4) The pledge is
   RECOMMENDED to provide local feedback (blinked LED etc) during this
   wait cycle if mechanisms for this are available.  To prevent an
   attacker registrar from significantly delaying bootstrapping the
   pledge MUST limit the ’Retry-After’ time to 60 seconds.  Ideally the
   pledge would keep track of the appropriate Retry-After header values
   for any number of outstanding registrars but this would involve a
   state table on the pledge.  Instead the pledge MAY ignore the exact
   Retry-After value in favor of a single hard coded value (a registrar
   that is unable to complete the transaction after the first 60 seconds
   has another chance a minute later).  A pledge SHOULD only maintain a
   202 retry-state for up to 4 days, which is longer than a long
   weekend, after which time the enrollment attempt fails and the pledge
   returns to discovery state.

   In order to avoid infinite redirect loops, which a malicious
   registrar might do in order to keep the pledge from discovering the
   correct registrar, the pledge MUST NOT follow more than one
   redirection (3xx code) to another web origins.  EST supports
   redirection but requires user input; this change allows the pledge to
   follow a single redirection without a user interaction.

   A 403 (Forbidden) response is appropriate if the voucher-request is
   not signed correctly, stale, or if the pledge has another outstanding
   voucher that cannot be overridden.

   A 404 (Not Found) response is appropriate when the request is for a
   device that is not known to the MASA.

   A 406 (Not Acceptable) response is appropriate if a voucher of the
   desired type or using the desired algorithms (as indicated by the
   Accept: headers, and algorithms used in the signature) cannot be
   issued such as because the MASA knows the pledge cannot process that
   type.  The registrar SHOULD use this response if it determines the
   pledge is unacceptable due to inventory control, MASA audit logs, or
   any other reason.

   A 415 (Unsupported Media Type) response is approriate for a request
   that has a voucher-request or accept encoding that is not understood.

Pritikin, et al.        Expires December 19, 2019              [Page 43]



Internet-Draft                    BRSKI                        June 2019

   The voucher response format is as indicated in the submitted accept
   header or based on the MASA’s prior understanding of proper format
   for this Pledge.  Only the [RFC8366] "application/voucher-cms+json"
   media type is defined at this time.  The syntactic details of
   vouchers are described in detail in [RFC8366].  For example, the
   voucher consists of:

   {
     "ietf-voucher:voucher": {
       "nonce": "62a2e7693d82fcda2624de58fb6722e5",
       "assertion": "logging"
       "pinned-domain-cert": "base64encodedvalue=="
       "serial-number": "JADA123456789"
     }
   }

   The MASA populates the voucher fields as follows:

   nonce:  The nonce from the pledge if available.  See Section 5.5.7.

   assertion:  The method used to verify assertion.  See Section 5.5.5.

   pinned-domain-cert:  The domain CA cert.  See Section 5.5.6.  This
      figure is illustrative, for an example, see Appendix D.2

   serial-number:  The serial-number as provided in the voucher-request.
      Also see Section 5.5.5.

   domain-cert-revocation-checks:  Set as appropriate for the pledge’s
      capabilities and as documented in [RFC8366].  The MASA MAY set
      this field to ’false’ since setting it to ’true’ would require
      that revocation information be available to the pledge and this
      document does not make normative requirements for [RFC6961] or
      equivalent integrations.

   expires-on:  This is set for nonceless vouchers.  The MASA ensures
      the voucher lifetime is consistent with any revocation or pinned-
      domain-cert consistency checks the pledge might perform.  See
      section Section 2.6.1.  There are three times to consider: (a) a
      configured voucher lifetime in the MASA, (b) the expiry time for
      the registrar’s certificate, (c) any certificate revocation
      information (CRL) lifetime.  The expires-on field SHOULD be before
      the earliest of these three values.  Typically (b) will be some
      significant time in the future, but (c) will typically be short
      (on the order of a week or less).  The RECOMMENDED period for (a)
      is on the order of 20 minutes, so it will typically determine the
      lifespan of the resulting voucher.  20 minutes is sufficent time
      to reach the post-provisional state in the pledge, at which point
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      there is an established trust relationship between pledge and
      registrar.  The subsequent operations can take as long as required
      from that point onwards.  The lifetime of the voucher has no
      impact on the lifespan of the ownership relationship.

   Whenever a voucher is issued the MASA MUST update the audit log
   appropriately.  The internal state requirements to maintain the audit
   log are out-of-scope.  See Section 5.8.1 for a discussion of
   reporting the log to a registrar.

5.6.1.  Pledge voucher verification

   The pledge MUST verify the voucher signature using the manufacturer
   installed trust anchor(s) associated with the manufacturer’s MASA
   (this is likely included in the pledge’s firmware).  Management of
   the manufacter installed trust anchor(s) is out-of-scope of this
   document; this protocol does not update these trust anchor(s).

   The pledge MUST verify the serial-number field of the signed voucher
   matches the pledge’s own serial-number.

   The pledge MUST verify that the voucher nonce field is accurate and
   matches the nonce the pledge submitted to this registrar, or that the
   voucher is nonceless (see Section 7.2).

   The pledge MUST be prepared to parse and fail gracefully from a
   voucher response that does not contain a ’pinned-domain-cert’ field.
   The pledge MUST be prepared to ignore additional fields that it does
   not recognize.

5.6.2.  Pledge authentication of provisional TLS connection

   The ’pinned-domain-cert’ element of the voucher contains the domain
   CA’s public key.  The pledge MUST use the ’pinned-domain-cert’ trust
   anchor to immediately complete authentication of the provisional TLS
   connection.

   If a registrar’s credentials cannot be verified using the pinned-
   domain-cert trust anchor from the voucher then the TLS connection is
   immediately discarded and the pledge abandons attempts to bootstrap
   with this discovered registrar.  The pledge SHOULD send voucher
   status telemetry (described below) before closing the TLS connection.
   The pledge MUST attempt to enroll using any other proxies it has
   found.  It SHOULD return to the same proxy again after attempting
   with other proxies.  Attempts should be attempted in the exponential
   backoff described earlier.  Attempts SHOULD be repeated as failure
   may be the result of a temporary inconsistently (an inconsistently
   rolled registrar key, or some other mis-configuration).  The
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   inconsistently could also be the result an active MITM attack on the
   EST connection.

   The registrar MUST use a certificate that chains to the pinned-
   domain-cert as its TLS server certificate.

   The pledge’s PKIX path validation of a registrar certificate’s
   validity period information is as described in Section 2.6.1.  Once
   the PKIX path validation is successful the TLS connection is no
   longer provisional.

   The pinned-domain-cert MAY be installed as an trust anchor for future
   operations such as enrollment (e.g.  [RFC7030] as recommended) or
   trust anchor management or raw protocols that do not need full PKI
   based key management.  It can be used to authenticate any dynamically
   discovered EST server that contain the id-kp-cmcRA extended key usage
   extension as detailed in EST RFC7030 section 3.6.1; but to reduce
   system complexity the pledge SHOULD avoid additional discovery
   operations.  Instead the pledge SHOULD communicate directly with the
   registrar as the EST server.  The ’pinned-domain-cert’ is not a
   complete distribution of the [RFC7030] section 4.1.3 CA Certificate
   Response, which is an additional justification for the recommendation
   to proceed with EST key management operations.  Once a full CA
   Certificate Response is obtained it is more authoritative for the
   domain than the limited ’pinned-domain-cert’ response.

5.7.  Pledge BRSKI Status Telemetry

   The domain is expected to provide indications to the system
   administrators concerning device lifecycle status.  To facilitate
   this it needs telemetry information concerning the device’s status.

   To indicate pledge status regarding the voucher, the pledge MUST post
   a status message.

   The posted data media type: application/json

   The client HTTP POSTs the following to the server at the EST well
   known URI "/voucher_status".  The Status field indicates if the
   voucher was acceptable.  If it was not acceptable the Reason string
   indicates why.  In the failure case this message may be sent to an
   unauthenticated, potentially malicious registrar and therefore the
   Reason string SHOULD NOT provide information beneficial to an
   attacker.  The operational benefit of this telemetry information is
   balanced against the operational costs of not recording that an
   voucher was ignored by a client the registrar expected to continue
   joining the domain.
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   {
     "version":"1",
     "Status":FALSE /* TRUE=Success, FALSE=Fail"
     "Reason":"Informative human readable message"
     "reason-context": { additional JSON }
   }

   The server SHOULD respond with an HTTP 200 but MAY simply fail with
   an HTTP 404 error.  The client ignores any response.  Within the
   server logs the server SHOULD capture this telemetry information.

   The reason-context attribute is an arbitrary JSON object (literal
   value or hash of values) which provides additional information
   specific to this pledge.  The contents of this field are not subject
   to standardization.

   Additional standard JSON fields in this POST MAY be added, see
   Section 8.3.

5.8.  Registrar audit log request

   After receiving the pledge status telemetry Section 5.7, the
   registrar SHOULD request the MASA audit log from the MASA service.

   This is done with an HTTP GET using the operation path value of
   "/.well-known/est/requestauditlog".

   The registrar SHOULD HTTP POST the same registrar voucher-request as
   it did when requesting a voucher (using the same Content-Type).  It
   is posted to the /requestauditlog URI instead.  The "idevid-issuer"
   and "serial-number" informs the MASA which log is requested so the
   appropriate log can be prepared for the response.  Using the same
   media type and message minimizes cryptographic and message operations
   although it results in additional network traffic.  The relying MASA
   implementation MAY leverage internal state to associate this request
   with the original, and by now already validated, voucher-request so
   as to avoid an extra crypto validation.

   A registrar MAY request logs at future times.  If the registrar
   generates a new request then the MASA is forced to perform the
   additional cryptographic operations to verify the new request.

   A MASA that receives a request for a device that does not exist, or
   for which the requesting owner was never an owner returns an HTTP 404
   ("Not found") code.

   Rather than returning the audit log as a response to the POST (with a
   return code 200), the MASA MAY instead return a 201 ("Created")
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   RESTful response ([RFC7231] section 7.1) containing a URL to the
   prepared (and easily cachable) audit response.

   In order to avoid enumeration of device audit logs, MASA that return
   URLs SHOULD take care to make the returned URL unguessable.  For
   instance, rather than returning URLs containing a database number
   such as https://example.com/auditlog/1234 or the EUI of the device
   such https://example.com/auditlog/10-00-00-11-22-33, the MASA SHOULD
   return a randomly generated value (a "slug" in web parlance).  The
   value is used to find the relevant database entry.

   A MASA that returns a code 200 MAY also include a Location: header
   for future reference by the registrar.

5.8.1.  MASA audit log response

   A log data file is returned consisting of all log entries associated
   with the the device selected by the IDevID presented in the request.
   The audit log may be truncated of old or repeated values as explained
   below.  The returned data is in JSON format ([RFC7951]), and the
   Content-Type SHOULD be "application/json".  For example:

   {
     "version":"1",
     "events":[
       {
        "date":"<date/time of the entry>",
        "domainID":"<domainID extracted from voucher-request>",
        "nonce":"<any nonce if supplied (or the exact string ’NULL’)>"
        "assertion":"<the value from the voucher assertion leaf>"
        "truncated":"<the number of domainID entries truncated>"
       },
       {
        "date":"<date/time of the entry>",
        "domainID":"<anotherDomainID extracted from voucher-request>",
        "nonce":"<any nonce if supplied (or the exact string ’NULL’)>"
        "assertion":"<the value from the voucher assertion leaf>"
       }
     ],
     "truncation": {
        "nonced duplicates": "<total number of entries truncated>",
        "nonceless duplicates": "<total number of entries truncated>",
        "arbitrary": "<number of domainID entries removed entirely>"
        }
   }

   Distribution of a large log is less than ideal.  This structure can
   be optimized as follows: Nonced or Nonceless entries for the same
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   domainID MAY be truncated from the log leaving only the single most
   recent nonced or nonceless entry for that domainID.  In the case of
   truncation the ’event’ truncation value SHOULD contain a count of the
   number of events for this domainID that were truncated.  The log
   SHOULD NOT be further reduced but there could exist operational
   situation where maintaining the full log is not possible.  In such
   situations the log MAY be arbitrarily truncated for length, with the
   number of removed entries indicated as ’arbitrary’.

   If the truncation count exceeds 1024 then the MASA MAY use this value
   without further incrementing it.

   A log where duplicate entries for the same domain have been truncated
   ("nonced duplicates" and/or "nonceless duplicates) could still be
   acceptable for informed decisions.  A log that has had "arbitrary"
   truncations is less acceptable but manufacturer transparency is
   better than hidden truncations.

   This document specifies a simple log format as provided by the MASA
   service to the registrar.  This format could be improved by
   distributed consensus technologies that integrate vouchers with
   technologies such as block-chain or hash trees or optimized logging
   approaches.  Doing so is out of the scope of this document but is an
   anticipated improvement for future work.  As such, the registrar
   client SHOULD anticipate new kinds of responses, and SHOULD provide
   operator controls to indicate how to process unknown responses.

5.8.2.  Registrar audit log verification

   Each time the Manufacturer Authorized Signing Authority (MASA) issues
   a voucher, it places it into the audit log for that device.  The
   details are described in Section 5.8.  The contents of the audit log
   can express a variety of trust levels, and this section explains what
   kind of trust a registrar can derive from the entries.

   While the audit log provides a list of vouchers that were issued by
   the MASA, the vouchers are issued in response to voucher-requests,
   and it is the contents of the voucher-requests which determines how
   meaningful the audit log entries are.

   A registrar SHOULD use the log information to make an informed
   decision regarding the continued bootstrapping of the pledge.  The
   exact policy is out of scope of this document as it depends on the
   security requirements within the registrar domain.  Equipment that is
   purchased pre-owned can be expected to have an extensive history.
   The following dicussion is provided to help explain the value of each
   log element:
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   date:  The date field provides the registrar an opportunity to divide
      the log around known events such as the purchase date.  Depending
      on context known to the registrar or administrator evens before/
      after certain dates can have different levels of importance.  For
      example for equipment that is expected to be new, and thus have no
      history, it would be a surprise to find prior entries.

   domainID:  If the log includes an unexpected domainID then the pledge
      could have imprinted on an unexpected domain.  The registrar can
      be expected to use a variety of techniques to define "unexpected"
      ranging from white lists of prior domains to anomoly detection
      (e.g. "this device was previously bound to a different domain than
      any other device deployed").  Log entries can also be compared
      against local history logs in search of discrepancies (e.g. "this
      device was re-deployed some number of times internally but the
      external audit log shows additional re-deployments our internal
      logs are unaware of").

   nonce:  Nonceless entries mean the logged domainID could
      theoretically trigger a reset of the pledge and then take over
      management by using the existing nonceless voucher.

   assertion:  The assertion leaf in the voucher and audit log indicates
      why the MASA issued the voucher.  A "verified" entry means that
      the MASA issued the associated voucher as a result of positive
      verification of ownership but this can still be problematic for
      registrar’s that expected only new (not pre-owned) pledges.  A
      "logged" assertion informs the registrar that the prior vouchers
      were issued with minimal verification.  A "proximity" assertion
      assures the registrar that the pledge was truly communicating with
      the prior domain and thus provides assurance that the prior domain
      really has deployed the pledge.

   A relatively simple policy is to white list known (internal or
   external) domainIDs and to require all vouchers to have a nonce and/
   or require that all nonceless vouchers be from a subset (e.g. only
   internal) domainIDs.  A simple action is to revoke any locally issued
   credentials for the pledge in question or to refuse to forward the
   voucher.  A registrar MAY be configured to ignore the history of the
   device but it is RECOMMENDED that this only be configured if hardware
   assisted NEA [RFC5209] is supported.

5.9.  EST Integration for PKI bootstrapping

   The pledge SHOULD follow the BRSKI operations with EST enrollment
   operations including "CA Certificates Request", "CSR Attributes" and
   "Client Certificate Request" or "Server-Side Key Generation", etc.
   This is a relatively seamless integration since BRSKI REST calls
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   provide an automated alternative to the manual bootstrapping method
   described in [RFC7030].  As noted above, use of HTTP 1.1 persistent
   connections simplifies the pledge state machine.

   Although EST allows clients to obtain multiple certificates by
   sending multiple CSR requests BRSKI mandates use of the CSR
   Attributes request and mandates that the registrar validate the CSR
   against the expected attributes.  This implies that client requests
   will "look the same" and therefore result in a single logical
   certificate being issued even if the client were to make multiple
   requests.  Registrars MAY contain more complex logic but doing so is
   out-of-scope of this specification.  BRSKI does not signal any
   enhancement or restriction to this capability.

5.9.1.  EST Distribution of CA Certificates

   The pledge SHOULD request the full EST Distribution of CA
   Certificates message.  See RFC7030, section 4.1.

   This ensures that the pledge has the complete set of current CA
   certificates beyond the pinned-domain-cert (see Section 5.6.1 for a
   discussion of the limitations inherent in having a single certificate
   instead of a full CA Certificates response.)  Although these
   limitations are acceptable during initial bootstrapping, they are not
   appropriate for ongoing PKIX end entity certificate validation.

5.9.2.  EST CSR Attributes

   Automated bootstrapping occurs without local administrative
   configuration of the pledge.  In some deployments it is plausible
   that the pledge generates a certificate request containing only
   identity information known to the pledge (essentially the X.509
   IDevID information) and ultimately receives a certificate containing
   domain specific identity information.  Conceptually the CA has
   complete control over all fields issued in the end entity
   certificate.  Realistically this is operationally difficult with the
   current status of PKI certificate authority deployments, where the
   CSR is submitted to the CA via a number of non-standard protocols.
   Even with all standardized protocols used, it could operationally be
   problematic to expect that service specific certificate fields can be
   created by a CA that is likely operated by a group that has no
   insight into different network services/protocols used.  For example,
   the CA could even be outsourced.

   To alleviate these operational difficulties, the pledge MUST request
   the EST "CSR Attributes" from the EST server and the EST server needs
   to be able to reply with the attributes necessary for use of the
   certificate in its intended protocols/services.  This approach allows
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   for minimal CA integrations and instead the local infrastructure (EST
   server) informs the pledge of the proper fields to include in the
   generated CSR.  This approach is beneficial to automated boostrapping
   in the widest number of environments.

   If the hardwareModuleName in the X.509 IDevID is populated then it
   SHOULD by default be propagated to the LDevID along with the
   hwSerialNum.  The EST server SHOULD support local policy concerning
   this functionality.

   In networks using the BRSKI enrolled certificate to authenticate the
   ACP (Autonomic Control Plane), the EST attributes MUST include the
   "ACP information" field.  See
   [I-D.ietf-anima-autonomic-control-plane] for more details.

   The registrar MUST also confirm that the resulting CSR is formatted
   as indicated before forwarding the request to a CA.  If the registrar
   is communicating with the CA using a protocol such as full CMC, which
   provides mechanisms to override the CSR attributes, then these
   mechanisms MAY be used even if the client ignores CSR Attribute
   guidance.

5.9.3.  EST Client Certificate Request

   The pledge MUST request a new client certificate.  See RFC7030,
   section 4.2.

5.9.4.  Enrollment Status Telemetry

   For automated bootstrapping of devices, the adminstrative elements
   providing bootstrapping also provide indications to the system
   administrators concerning device lifecycle status.  This might
   include information concerning attempted bootstrapping messages seen
   by the client, MASA provides logs and status of credential
   enrollment.  [RFC7030] assumes an end user and therefore does not
   include a final success indication back to the server.  This is
   insufficient for automated use cases.

   To indicate successful enrollment the client SHOULD re-negotiate the
   EST TLS session using the newly obtained credentials.  This occurs by
   the client initiating a new TLS ClientHello message on the existing
   TLS connection.  The client MAY simply close the old TLS session and
   start a new one.  The server MUST support either model.

   In the case of a FAIL, the Reason string indicates why the most
   recent enrollment failed.  The SubjectKeyIdentifier field MUST be
   included if the enrollment attempt was for a keypair that is locally
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   known to the client.  If EST /serverkeygen was used and failed then
   the field is omitted from the status telemetry.

   In the case of a SUCCESS the Reason string is omitted.  The
   SubjectKeyIdentifier is included so that the server can record the
   successful certificate distribution.

   Status media type: application/json

   The client HTTP POSTs the following to the server at the new EST well
   known URI /enrollstatus.

   {
     "version":"1",
     "Status":TRUE /* TRUE=Success, FALSE=Fail"
     "Reason":"Informative human readable message"
     "reason-context": "Additional information"
   }

   The server SHOULD respond with an HTTP 200 but MAY simply fail with
   an HTTP 404 error.

   Within the server logs the server MUST capture if this message was
   received over an TLS session with a matching client certificate.
   This allows for clients that wish to minimize their crypto operations
   to simply POST this response without renegotiating the TLS session -
   at the cost of the server not being able to accurately verify that
   enrollment was truly successful.

5.9.5.  Multiple certificates

   Pledges that require multiple certificates could establish direct EST
   connections to the registrar.

5.9.6.  EST over CoAP

   This document describes extensions to EST for the purposes of
   bootstrapping of remote key infrastructures.  Bootstrapping is
   relevant for CoAP enrollment discussions as well.  The defintion of
   EST and BRSKI over CoAP is not discussed within this document beyond
   ensuring proxy support for CoAP operations.  Instead it is
   anticipated that a definition of CoAP mappings will occur in
   subsequent documents such as [I-D.ietf-ace-coap-est] and that CoAP
   mappings for BRSKI will be discussed either there or in future work.
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6.  Clarification of transfer-encoding

   [RFC7030] defines it’s endpoints to include a "Content-Transfer-
   Encoding" heading, and the payloads to be [RFC4648] Base64 encoded
   DER.

   When used within BRSKI, the original RFC7030 EST endpoints remain
   Base64 encoded, but the new BRSKI end points which send and receive
   binary artifacts (specifically, ../voucherrequest) are binary.  That
   is, no encoding is used.

   In the BRSKI context, the EST "Content-Transfer-Encoding" header if
   present, SHOULD be ignored.  This header does not need to included.

7.  Reduced security operational modes

   A common requirement of bootstrapping is to support less secure
   operational modes for support specific use cases.  The following
   sections detail specific ways that the pledge, registrar and MASA can
   be configured to run in a less secure mode for the indicated reasons.

   This section is considered non-normative: use suggested methods MUST
   be detailed in specific profiles of BRSKI.  This is the subject for
   future work.

7.1.  Trust Model

   This section explains the trust relationships detailed in
   Section 2.4:

   +--------+         +---------+    +------------+     +------------+
   | Pledge |         | Join    |    | Domain     |     |Manufacturer|
   |        |         | Proxy   |    | Registrar  |     | Service    |
   |        |         |         |    |            |     | (Internet) |
   +--------+         +---------+    +------------+     +------------+

   Figure 10

   Pledge:  The pledge could be compromised and providing an attack
      vector for malware.  The entity is trusted to only imprint using
      secure methods described in this document.  Additional endpoint
      assessment techniques are RECOMMENDED but are out-of-scope of this
      document.

   Join Proxy:  Provides proxy functionalities but is not involved in
      security considerations.
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   Registrar:  When interacting with a MASA a registrar makes all
      decisions.  For Ownership Audit Vouchers (see [RFC8366]) the
      registrar is provided an opportunity to accept MASA decisions.

   Vendor Service, MASA:  This form of manufacturer service is trusted
      to accurately log all claim attempts and to provide authoritative
      log information to registrars.  The MASA does not know which
      devices are associated with which domains.  These claims could be
      strengthened by using cryptographic log techniques to provide
      append only, cryptographic assured, publicly auditable logs.
      Current text provides only for a trusted manufacturer.

   Vendor Service, Ownership Validation:  This form of manufacturer
      service is trusted to accurately know which device is owned by
      which domain.

7.2.  Pledge security reductions

   The pledge can choose to accept vouchers using less secure methods.
   These methods enable offline and emergency (touch based) deployment
   use cases:

   1.  The pledge MUST accept nonceless vouchers.  This allows for a use
       case where the registrar can not connect to the MASA at the
       deployment time.  Logging and validity periods address the
       security considerations of supporting these use cases.

   2.  Many devices already support "trust on first use" for physical
       interfaces such as console ports.  This document does not change
       that reality.  Devices supporting this protocol MUST NOT support
       "trust on first use" on network interfaces.  This is because
       "trust on first use" over network interfaces would undermine the
       logging based security protections provided by this
       specification.

   3.  The pledge MAY have an operational mode where it skips voucher
       validation one time.  For example if a physical button is
       depressed during the bootstrapping operation.  This can be useful
       if the manufacturer service is unavailable.  This behavior SHOULD
       be available via local configuration or physical presence methods
       (such as use of a serial/craft console) to ensure new entities
       can always be deployed even when autonomic methods fail.  This
       allows for unsecured imprint.

   It is RECOMMENDED that "trust on first use" or any method of skipping
   voucher validation (including use of craft serial console) only be
   available if hardware assisted Network Endpoint Assessment [RFC5209]
   is supported.  This recommendation ensures that domain network
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   monitoring can detect innappropriate use of offline or emergency
   deployment procedures when voucher-based bootstrapping is not used.

7.3.  Registrar security reductions

   A registrar can choose to accept devices using less secure methods.
   These methods are acceptable when low security models are needed, as
   the security decisions are being made by the local administrator, but
   they MUST NOT be the default behavior:

   1.  A registrar MAY choose to accept all devices, or all devices of a
       particular type, at the administrator’s discretion.  This could
       occur when informing all registrars of unique identifiers of new
       entities might be operationally difficult.

   2.  A registrar MAY choose to accept devices that claim a unique
       identity without the benefit of authenticating that claimed
       identity.  This could occur when the pledge does not include an
       X.509 IDevID factory installed credential.  New Entities without
       an X.509 IDevID credential MAY form the Section 5.2 request using
       the Section 5.5 format to ensure the pledge’s serial number
       information is provided to the registrar (this includes the
       IDevID AuthorityKeyIdentifier value, which would be statically
       configured on the pledge.)  The pledge MAY refuse to provide a
       TLS client certificate (as one is not available.)  The pledge
       SHOULD support HTTP-based or certificate-less TLS authentication
       as described in EST RFC7030 section 3.3.2.  A registrar MUST NOT
       accept unauthenticated New Entities unless it has been configured
       to do so by an administrator that has verified that only expected
       new entities can communicate with a registrar (presumably via a
       physically secured perimeter.)

   3.  A registrar MAY submit a nonceless voucher-requests to the MASA
       service (by not including a nonce in the voucher-request.)  The
       resulting vouchers can then be stored by the registrar until they
       are needed during bootstrapping operations.  This is for use
       cases where the target network is protected by an air gap and
       therefore cannot contact the MASA service during pledge
       deployment.

   4.  A registrar MAY ignore unrecognized nonceless log entries.  This
       could occur when used equipment is purchased with a valid history
       being deployed in air gap networks that required permanent
       vouchers.

   5.  A registrar MAY accept voucher formats of future types that can
       not be parsed by the Registrar.  This reduces the Registrar’s
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       visibility into the exact voucher contents but does not change
       the protocol operations.

7.4.  MASA security reductions

   Lower security modes chosen by the MASA service affect all device
   deployments unless bound to the specific device identities.  In which
   case these modes can be provided as additional features for specific
   customers.  The MASA service can choose to run in less secure modes
   by:

   1.  Not enforcing that a nonce is in the voucher.  This results in
       distribution of a voucher that never expires and in effect makes
       the Domain an always trusted entity to the pledge during any
       subsequent bootstrapping attempts.  That this occurred is
       captured in the log information so that the registrar can make
       appropriate security decisions when a pledge joins the Domain.
       This is useful to support use cases where registrars might not be
       online during actual device deployment.  Because this results in
       a long lived voucher and does not require the proof that the
       device is online, this is only accepted when the registrar is
       authenticated by the MASA and authorized to provide this
       functionality.  The MASA is RECOMMENDED to use this functionality
       only in concert with an enhanced level of ownership tracking
       (out-of-scope.)  If the pledge device is known to have a real-
       time-clock that is set from the factory, use of a voucher
       validity period is RECOMMENDED.

   2.  Not verifying ownership before responding with a voucher.  This
       is expected to be a common operational model because doing so
       relieves the manufacturer providing MASA services from having to
       track ownership during shipping and supply chain and allows for a
       very low overhead MASA service.  A registrar uses the audit log
       information as a defense in depth strategy to ensure that this
       does not occur unexpectedly (for example when purchasing new
       equipment the registrar would throw an error if any audit log
       information is reported.)  The MASA SHOULD verify the ’prior-
       signed-voucher-request’ information for pledges that support that
       functionality.  This provides a proof-of-proximity check that
       reduces the need for ownership verification.

8.  IANA Considerations

   This document requires the following IANA actions:
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8.1.  Well-known EST registration

   This document extends the definitions of "est" (so far defined via
   RFC7030) in the "https://www.iana.org/assignments/well-known-uris/
   well-known-uris.xhtml" registry as follows:

   o  add /.well-known/est/requestvoucher (see Section 5.5 )

   o  add /.well-known/est/requestauditlog (see Section 5.7)

8.2.  PKIX Registry

   IANA is requested to register the following:

   This document requests a number for id-mod-MASAURLExtn2016(TBD) from
   the pkix(7) id-mod(0) Registry.

   This document has received an early allocation from the id-pe
   registry (SMI Security for PKIX Certificate Extension) for id-pe-
   masa-url with the value 32, resulting in an OID of
   1.3.6.1.5.5.7.1.32.

8.3.  Pledge BRSKI Status Telemetry

   IANA is requested to create a new Registry entitled: "BRSKI
   Parameters", and within that Registry to create a table called:
   "Pledge BRSKI Status Telemetry Attributes".  New items can be added
   using the Specification Required.  The following items are to be in
   the initial registration, with this document (Section 5.7) as the
   reference:

   o  version

   o  Status

   o  Reason

   o  reason-context

8.4.  DNS Service Names

   IANA is requested to register the following Service Names:
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   Service Name: _brski-proxy
   Transport Protocol(s): tcp
   Assignee: IESG <iesg@ietf.org>.
   Contact: IESG <iesg@ietf.org>
   Description: The Bootstrapping Remote Secure Key
                Infrastructures Proxy
   Reference: [This document]

   Service Name: _brski-registrar
   Transport Protocol(s): tcp
   Assignee: IESG <iesg@ietf.org>.
   Contact: IESG <iesg@ietf.org>
   Description: The Bootstrapping Remote Secure Key
                Infrastructures Registrar
   Reference: [This document]

8.5.  MUD File Extension for the MASA

   The IANA is requested to list the name "masa" in the MUD extensions
   registry defined in [I-D.ietf-opsawg-mud].  Its use is documented in
   Appendix C.

9.  Applicability to the Autonomic Control Plane

   This document provides a solution to the requirements for secure
   bootstrap set out in Using an Autonomic Control Plane for Stable
   Connectivity of Network Operations, Administration, and Maintenance
   [RFC8368], A Reference Model for Autonomic Networking
   [I-D.ietf-anima-reference-model] and specifically the An Autonomic
   Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane], section
   3.2 (Secure Bootstrap), and section 6.1 (ACP Domain, Certificate and
   Network).

   The protocol described in this document has appeal in a number of
   other non-ANIMA use cases.  Such uses of the protocol will be
   deploying into other environments with different tradeoffs of
   privacy, security, reliability and autonomy from manufacturers.  As
   such those use cases will need to provide their own applicability
   statements, and will need to address unique privacy and security
   considerations for the environments in which they are used.

   The autonomic control plane that this document provides bootstrap for
   is typically a medium to large Internet Service Provider
   organization, or an equivalent Enterprise that has signficant layer-3
   router connectivity.  (A network consistenting of primarily layer-2
   is not excluded, but the adjacencies that the ACP will create and
   maintain will not reflect the topology until all devices participate
   in the ACP).
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   As specified in the ANIMA charter, this work "..focuses on
   professionally-managed networks."  Such a network has an operator and
   can do things like like install, configure and operate the Registrar
   function.  The operator makes purchasing decisions and is aware of
   what manufacturers it expects to see on it’s network.

   Such an operator also is capable of performing the traditional (craft
   serial-console) based bootstrap of devices.  The zero-touch mechanism
   presented in this and the ACP document represents a signficiant
   efficiency: in particular it reduces the need to put senior experts
   on airplanes to configure devices in person.  There is a recognition
   as the technology evolves that not every situation may work out, and
   occasionally a human still still have to visit.

   The BRSKI protocol is going into environments where there have
   already been quite a number of vendor proprietary management systems.
   Those are not expected to go away quickly, but rather to leverage the
   secure credentials that are provisioned by BRSKI.  The connectivity
   requirements of said management systems are provided by the ACP.

10.  Privacy Considerations

10.1.  MASA audit log

   The MASA audit log includes a hash of the domainID for each Registrar
   a voucher has been issued to.  This information is closely related to
   the actual domain identity, especially when paired with the anti-DDoS
   authentication information the MASA might collect.  This could
   provide sufficient information for the MASA service to build a
   detailed understanding the devices that have been provisioned within
   a domain.

   There are a number of design choices that mitigate this risk.  The
   domain can maintain some privacy since it has not necessarily been
   authenticated and is not authoritatively bound to the supply chain.

   Additionally the domainID captures only the unauthenticated subject
   key identifier of the domain.  A privacy sensitive domain could
   theoretically generate a new domainID for each device being deployed.
   Similarly a privacy sensitive domain would likely purchase devices
   that support proximity assertions from a manufacturer that does not
   require sales channel integrations.  This would result in a
   significant level of privacy while maintaining the security
   characteristics provided by Registrar based audit log inspection.
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10.2.  What BRSKI-MASA reveals to the manufacturer

   The so-called "call-home" mechanism that occurs as part of the BRSKI-
   MASA connection standardizes what has been deemed by some as a
   sinister mechanism for corporate oversight of individuals.
   ([livingwithIoT] and [IoTstrangeThings] for a small sample).

   As the Autonomic Control Plane (ACP) usage of BRSKI is not targetted
   at individual usage of IoT devices, but rather at the Enterprise and
   ISP creation of networks in a zero-touch fashion, the "call-home"
   represents a different kind of concern.

   It needs to be re-iterated that the BRSKI-MASA mechanism only occurs
   once during the comissioning of the device.  It is well defined, and
   although encrypted with TLS, it could in theory be made auditable as
   the contents are well defined.  This connection does not occur when
   the device powers on or is restarted for normal routines.  It is
   conceivable that a device could be forced to go through a full
   factory reset during an exceptional firmware update situation, after
   which enrollment would have be repeated.

   The BRSKI call-home mechanism is mediated via the owner’s Registrar,
   and the information that is transmitted is directly auditable by the
   device owner.  This is in stark constrast to many "call-home"
   protocols where the device autonomously calls home and uses an
   undocumented protocol.

   While the contents of the signed part of the pledge voucher request
   can not be changed, they are not encrypted at the registrar.  The
   ability to audit the messages by the owner of the network prevents
   exfiltration of data by a nefarious pledge.  The contents of an
   unsigned voucher request are, however, completely changeable by the
   Registrar.  Both are, to re-iterate, encrypted by TLS while in
   transit.

   The BRSKI-MASA exchange reveals the following information to the
   manufacturer:

   o  the identity of the device being enrolled (down to the serial-
      number!).

   o  an identity of the domain owner in the form of the domain trust
      anchor.  However, this is not a global PKI anchored name within
      the WebPKI, so this identity could be pseudonymous.  If there is
      sales channel integration, then the MASA will have authenticated
      the domain owner, either via pinned certificate, or perhaps
      another HTTP authentication method, as per Section 5.5.3.
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   o  the time the device is activated,

   o  the IP address of the domain Owner’s Registrar.  For ISPs and
      Enterprises, the IP address provides very clear geolocation of the
      owner.  No amount of IP address privacy extensions ([RFC4941]) can
      do anything about this, as a simple whois lookup likely identifies
      the ISP or Enterprise from the upper bits anyway.  A passive
      attacker who observes the connection definitely may conclude that
      the given enterprise/ISP is a customer of the particular equipment
      vendor.  The precise model that is being enrolled will remain
      private.

   The above situation is to be distinguished from a residential/
   individual person who registers a device from a manufacturer: that an
   enterprise/ISP purchases routing products is hardly worth mentioning.
   Deviations would, however, be notable.

   The situation is not improved by the enterprise/ISP using
   anonymization services such as ToR [Dingledine2004], as a TLS 1.2
   connection will reveal the ClientCertificate used, clearly
   identifying the enterprise/ISP involved.  TLS 1.3 is better in this
   regard, but an active attacker can still discover the parties
   involved by performing a Man-In-The-Middle-Attack on the first
   attempt (breaking/killing it with a TCP RST), and then letting
   subsequent connection pass through.

   A manufacturer could attempt to mix the BRSKI-MASA traffic in with
   general traffic their site by hosting the MASA behind the same (set)
   of load balancers that the companies normal marketing site is hosted
   behind.  This makes lots of sense from a straight capacity planning
   point of view as the same set of services (and the same set of
   Distributed Denial of Service mitigations) may be used.
   Unfortunately, as the BRSKI-MASA connections include TLS
   ClientCertificate exchanges, this may easily be observed in TLS 1.2,
   and a traffic analysis may reveal it even in TLS 1.3.  This does not
   make such a plan irrelevant.  There may be other organizational
   reasons to keep the marketing site (which is often subject to
   frequent redesigs, outsourcing, etc.) seperate from the MASA, which
   may need to operate reliably for decades.

10.3.  Manufacturers and Used or Stolen Equipment

   As explained above, the manufacturer receives information each time
   that a device which is in factory-default mode does a zero-touch
   bootstrap, and attempts to enroll into a domain owner’s registrar.
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   The manufacturer is therefore in a position to decline to issue a
   voucher if it detects that the new owner is not the same as the
   previous owner.

   1.  This can be seen as a feature if the equipment is believed to
       have been stolen.  If the legitimate owner notifies the
       manufacturer of the theft, then when the new owner brings the
       device up, if they use the zero-touch mechanism, the new
       (illegitimate) owner reveals their location and identity.

   2.  In the case of Used equipment, the initial owner could inform the
       manufacturer of the sale, or the manufacturer may just permit
       resales unless told otherwise.  In which case, the transfer of
       ownership simply occurs.

   3.  A manufacturer could however decide not to issue a new voucher in
       response to a transfer of ownership.  This is essentially the
       same as the stolen case, with the manufacturer having decided
       that the sale was not legitimate.

   4.  There is a fourth case, if the manufacturer is providing
       protection against stolen devices.  The manufacturer then has a
       responsability to protect the legitimate owner against fraudulent
       claims that the the equipment was stolen.  Such a claim would
       cause the manufacturer to refuse to issue a new voucher.  Should
       the device go through a deep factory reset (for instance,
       replacement of a damaged main board component, the device would
       not bootstrap.

   5.  Finally, there is a fifth case: the manufacturer has decided to
       end-of-line the device, or the owner has not paid a yearly
       support amount, and the manufacturer refuses to issue new
       vouchers at that point.  This last case is not new to the
       industry: many license systems are already deployed that have
       significantly worse effect.

   This section has outlined five situations in which a manufacturer
   could use the voucher system to enforce what are clearly license
   terms.  A manufacturer that attempted to enforce license terms via
   vouchers would find it rather ineffective as the terms would only be
   enforced when the device is enrolled, and this is not (to repeat), a
   daily or even monthly occurrance.

10.4.  Manufacturers and Grey market equipment

   Manufacturers of devices often sell different products into different
   regional markets.  Which product is available in which market can be
   driven by price differentials, support issues (some markets may
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   require manuals and tech-support to be done in the local language),
   government export regulation (such as whether strong crypto is
   permitted to be exported, or permitted to be used in a particular
   market).  When an domain owner obtains a device from a different
   market (they can be new) and transfers it to a different location,
   this is called a Grey Market.

   A manufacturer could decide not to issue a voucher to an enterprise/
   ISP based upon their location.  There are a number of ways which this
   could be determined: from the geolocation of the registrar, from
   sales channel knowledge about the customer, and what products are
   (un-)available in that market.  If the device has a GPS the
   coordinates of the device could even be placed into an extension of
   the voucher.

   The above actions are not illegal, and not new.  Many manufacturers
   have shipped crypto-weak (exportable) versions of firmware as the
   default on equipment for decades.  The first task of an enterprise/
   ISP has always been to login to a manufacturer system, show one’s
   "entitlement" (country informatin, proof that support payments have
   been made), and receive either a new updated firmware, or a license
   key that will activate the correct firmware.

   BRSKI permits the above process to automated (in an autonomic
   fashion), and therefore perhaps encourages this kind of
   differentiation by reducing the cost of doing it.

   An issue that manufacturers will need to deal with in the above
   automated process is when a device is shipped to one country with one
   set of rules (or laws or entitlements), but the domain registry is in
   another one.  Which rules apply is something will have to be worked
   out: the manufacturer could come to believe they are dealing with
   Grey market equipment, when it is simply dealing with a global
   enterprise.

10.5.  Some mitigations for meddling by manufacturers

   The most obvious mitigation is not to buy the product.  Pick
   manufacturers that are up-front about their policies, who do not
   change them gratutiously.

   A manufacturer could provide a mechanism to manage the trust anchors
   and built-in certificates (IDevID) as an extension.  This is a
   substantial amount of work, and may be an area for future
   standardization work.

   Replacement of the voucher validation anchors (usually pointing to
   the original manufacturer’s MASA) with those of the new owner permits
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   the new owner to issue vouchers to subsequent owners.  This would be
   done by having the selling (old) owner to run a MASA.

   In order to automatically find the new MASA, the mechanism describe
   in this document is to look for the MASA URL extension in the IDevID.
   A new owner could override this in their Registrar, or the
   manufacturer could provide a mechanism to update or replace the
   IDevID prior to sale.

   Once the voucher trust anchor and the IDevID is replaced, then the
   device will no longer trust the manufacturer in any way.  When a new
   owner performs a bootstrap, the device will point to a MASA that has
   been chosen, and will validate vouchers from this new entity.

   The BRSKI protocol depends upon a trust anchor on the device and an
   identity on the device.  Management of these these entities
   facilitiates a few new operatonal modes without making any changes to
   the BRSKI protocol.  Those modes include: offline modes where the
   domain owner operates an internal MASA for all devices, resell modes
   where the first domain owner becomes the MASA for the next (resold-
   to) domain owner, and services where an aggregator acquires a large
   variety of devices, and then acts as a pseudonymized MASA for a
   variety of devices from a variety of manufacturers.

   Some manufacturers may wish to consider replacement of the IDevID as
   an indication that the device’s warantee is terminated.  For others,
   the privacy requiments of some deployments might consider this a
   standard operating practice.

   As discussed at the end of Section 5.8.1, new work could be done to
   use a distributed consensus technology for the audit log.  This would
   permit the audit log to continue to be useful, even when there is a
   chain of MASA due to changes of ownership.

11.  Security Considerations

   This document details a protocol for bootstrapping that balances
   operational concerns against security concerns.  As detailed in the
   introduction, and touched on again in Section 7, the protocol allows
   for reduced security modes.  These attempt to deliver additional
   control to the local administrator and owner in cases where less
   security provides operational benefits.  This section goes into more
   detail about a variety of specific considerations.

   To facilitate logging and administrative oversight, in addition to
   triggering Registration verification of MASA logs, the pledge reports
   on voucher parsing status to the registrar.  In the case of a
   failure, this information is informative to a potentially malicious
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   registrar.  This is mandated anyway because of the operational
   benefits of an informed administrator in cases where the failure is
   indicative of a problem.  The registrar is RECOMMENDED to verify MASA
   logs if voucher status telemetry is not received.

   To facilitate truely limited clients EST RFC7030 section 3.3.2
   requirements that the client MUST support a client authentication
   model have been reduced in Section 7 to a statement that the
   registrar "MAY" choose to accept devices that fail cryptographic
   authentication.  This reflects current (poor) practices in shipping
   devices without a cryptographic identity that are NOT RECOMMENDED.

   During the provisional period of the connection the pledge MUST treat
   all HTTP header and content data as untrusted data.  HTTP libraries
   are regularly exposed to non-secured HTTP traffic: mature libraries
   should not have any problems.

   Pledges might chose to engage in protocol operations with multiple
   discovered registrars in parallel.  As noted above they will only do
   so with distinct nonce values, but the end result could be multiple
   vouchers issued from the MASA if all registrars attempt to claim the
   device.  This is not a failure and the pledge choses whichever
   voucher to accept based on internal logic.  The registrars verifying
   log information will see multiple entries and take this into account
   for their analytics purposes.

11.1.  DoS against MASA

   There are uses cases where the MASA could be unavailable or
   uncooperative to the Registrar.  They include active DoS attacks,
   planned and unplanned network partitions, changes to MASA policy, or
   other instances where MASA policy rejects a claim.  These introduce
   an operational risk to the Registrar owner in that MASA behavior
   might limit the ability to bootstrap a pledge device.  For example
   this might be an issue during disaster recovery.  This risk can be
   mitigated by Registrars that request and maintain long term copies of
   "nonceless" vouchers.  In that way they are guaranteed to be able to
   bootstrap their devices.

   The issuance of nonceless vouchers themselves creates a security
   concern.  If the Registrar of a previous domain can intercept
   protocol communications then it can use a previously issued nonceless
   voucher to establish management control of a pledge device even after
   having sold it.  This risk is mitigated by recording the issuance of
   such vouchers in the MASA audit log that is verified by the
   subsequent Registrar and by Pledges only bootstrapping when in a
   factory default state.  This reflects a balance between enabling MASA
   independence during future bootstrapping and the security of
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   bootstrapping itself.  Registrar control over requesting and auditing
   nonceless vouchers allows device owners to choose an appropriate
   balance.

   The MASA is exposed to DoS attacks wherein attackers claim an
   unbounded number of devices.  Ensuring a registrar is representative
   of a valid manufacturer customer, even without validating ownership
   of specific pledge devices, helps to mitigate this.  Pledge
   signatures on the pledge voucher-request, as forwarded by the
   registrar in the prior-signed-voucher-request field of the registrar
   voucher-request, significantly reduce this risk by ensuring the MASA
   can confirm proximity between the pledge and the registrar making the
   request.  This mechanism is optional to allow for constrained
   devices.  Supply chain integration ("know your customer") is an
   additional step that MASA providers and device vendors can explore.

11.2.  Freshness in Voucher-Requests

   A concern has been raised that the pledge voucher-request should
   contain some content (a nonce) provided by the registrar and/or MASA
   in order for those actors to verify that the pledge voucher-request
   is fresh.

   There are a number of operational problems with getting a nonce from
   the MASA to the pledge.  It is somewhat easier to collect a random
   value from the registrar, but as the registrar is not yet vouched
   for, such a registrar nonce has little value.  There are privacy and
   logistical challenges to addressing these operational issues, so if
   such a thing were to be considered, it would have to provide some
   clear value.  This section examines the impacts of not having a fresh
   pledge voucher-request.

   Because the registrar authenticates the pledge, a full Man-in-the-
   Middle attack is not possible, despite the provisional TLS
   authentication by the pledge (see Section 5.)  Instead we examine the
   case of a fake registrar (Rm) that communicates with the pledge in
   parallel or in close time proximity with the intended registrar.
   (This scenario is intentionally supported as described in
   Section 4.1.)

   The fake registrar (Rm) can obtain a voucher signed by the MASA
   either directly or through arbitrary intermediaries.  Assuming that
   the MASA accepts the registrar voucher-request (either because Rm is
   collaborating with a legitimate registrar according to supply chain
   information, or because the MASA is in audit-log only mode), then a
   voucher linking the pledge to the registrar Rm is issued.
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   Such a voucher, when passed back to the pledge, would link the pledge
   to registrar Rm, and would permit the pledge to end the provisional
   state.  It now trusts Rm and, if it has any security vulnerabilities
   leveragable by an Rm with full administrative control, can be assumed
   to be a threat against the intended registrar.

   This flow is mitigated by the intended registrar verifying the audit
   logs available from the MASA as described in Section 5.8.  Rm might
   chose to collect a voucher-request but wait until after the intended
   registrar completes the authorization process before submitting it.
   This pledge voucher-request would be ’stale’ in that it has a nonce
   that no longer matches the internal state of the pledge.  In order to
   successfully use any resulting voucher the Rm would need to remove
   the stale nonce or anticipate the pledge’s future nonce state.
   Reducing the possibility of this is why the pledge is mandated to
   generate a strong random or pseudo-random number nonce.

   Additionally, in order to successfully use the resulting voucher the
   Rm would have to attack the pledge and return it to a bootstrapping
   enabled state.  This would require wiping the pledge of current
   configuration and triggering a re-bootstrapping of the pledge.  This
   is no more likely than simply taking control of the pledge directly
   but if this is a consideration the target network is RECOMMENDED to
   take the following steps:

   o  Ongoing network monitoring for unexpected bootstrapping attempts
      by pledges.

   o  Retreival and examination of MASA log information upon the
      occurance of any such unexpected events.  Rm will be listed in the
      logs along with nonce information for analysis.

11.3.  Trusting manufacturers

   The BRSKI extensions to EST permit a new pledge to be completely
   configured with domain specific trust anchors.  The link from built-
   in manufacturer-provided trust anchors to domain-specific trust
   anchors is mediated by the signed voucher artifact.

   If the manufacturer’s IDevID signing key is not properly validated,
   then there is a risk that the network will accept a pledge that
   should not be a member of the network.  As the address of the
   manufacturer’s MASA is provided in the IDevID using the extension
   from Section 2.3, the malicious pledge will have no problem
   collaborating with it’s MASA to produce a completely valid voucher.

   BRSKI does not, however, fundamentally change the trust model from
   domain owner to manufacturer.  Assuming that the pledge used its
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   IDevID with RFC7030 EST and BRSKI, the domain (registrar) still needs
   to trust the manufacturer.

   Establishing this trust between domain and manufacturer is outside
   the scope of BRSKI.  There are a number of mechanisms that can
   adopted including:

   o  Manually configuring each manufacturer’s trust anchor.

   o  A Trust-On-First-Use (TOFU) mechanism.  A human would be queried
      upon seeing a manufacturer’s trust anchor for the first time, and
      then the trust anchor would be installed to the trusted store.
      There are risks with this; even if the key to name is validated
      using something like the WebPKI, there remains the possibility
      that the name is a look alike: e.g, dem0.example. vs demO.example.

   o  scanning the trust anchor from a QR code that came with the
      packaging (this is really a manual TOFU mechanism)

   o  some sales integration process where trust anchors are provided as
      part of the sales process, probably included in a digital packing
      "slip", or a sales invoice.

   o  consortium membership, where all manufacturers of a particular
      device category (e.g, a light bulb, or a cable-modem) are signed
      by an certificate authority specifically for this.  This is done
      by CableLabs today.  It is used for authentication and
      authorization as part of TR-79: [docsisroot] and [TR069].

   The existing WebPKI provides a reasonable anchor between manufacturer
   name and public key.  It authenticates the key.  It does not provide
   a reasonable authorization for the manufacturer, so it is not
   directly useable on it’s own.

11.4.  Manufacturer Maintainance of trust anchors

   BRSKI depends upon the manufacturer building in trust anchors to the
   pledge device.  The voucher artifact which is signed by the MASA will
   be validated by the pledge using that anchor.  This implies that the
   manufacturer needs to maintain access to a signing key that the
   pledge can validate.

   The manufacturer will need to maintain the ability to make signatures
   that can be validated for the lifetime that the device could be
   onboarded.  Whether this onboarding lifetime is less than the device
   lifetime depends upon how the device is used.  An inventory of
   devices kept in a warehouse as spares might not be onboarded for many
   decades.
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   There are good cryptographic hygiene reasons why a manufacturer would
   not want to maintain access to a private key for many decades.  A
   manufacturer in that situation can leverage a long-term certificate
   authority anchor, built-in to the pledge, and then a certificate
   chain may be incorporated using the normal CMS certificate set.  This
   may increase the size of the voucher artifacts, but that is not a
   significant issues in non-constrained environements.

   There are a few other operational variations that manufacturers could
   consider.  For instance, there is no reason that every device need
   have the same set of trust anchors pre-installed.  Devices built in
   different factories, or on different days, or any other consideration
   could have different trust anchors built in, and the record of which
   batch the device is in would be recorded in the asset database.  The
   manufacturer would then know which anchor to sign an artifact
   against.

   Aside from the concern about long-term access to private keys, a
   major limiting factor for the shelf-life of many devices will be the
   age of the cryptographic algorithms included.  A device produced in
   2019 will have hardware and software capable of validating algorithms
   common in 2019, and will have no defense against attacks (both
   quantum and von-neuman brute force attacks) which have not yet been
   invented.  This concern is orthogonal to the concern about access to
   private keys, but this concern likely dominates and limits the
   lifespan of a device in a warehouse.  If any update to firmware to
   support new cryptographic mechanism were possible (while the device
   was in a warehouse), updates to trust anchors would also be done at
   the same time.
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Appendix A.  IPv4 and non-ANI operations

   The secification of BRSKI in Section 4 intentionally only covers the
   mechanisms for an IPv6 pledge using Link-Local addresses.  This
   section describes non-normative extensions that can be used in other
   environments.

A.1.  IPv4 Link Local addresses

   Instead of an IPv6 link-local address, an IPv4 address may be
   generated using [RFC3927] Dynamic Configuration of IPv4 Link-Local
   Addresses.

   In the case that an IPv4 Link-Local address is formed, then the
   bootstrap process would continue as in the IPv6 case by looking for a
   (circuit) proxy.

A.2.  Use of DHCPv4

   The Plege MAY obtain an IP address via DHCP [RFC2131].  The DHCP
   provided parameters for the Domain Name System can be used to perform
   DNS operations if all local discovery attempts fail.
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Appendix B.  mDNS / DNSSD proxy discovery options

   Pledge discovery of the proxy (Section 4.1) MAY be performed with
   DNS-based Service Discovery [RFC6763] over Multicast DNS [RFC6762] to
   discover the proxy at "_brski-proxy._tcp.local.".

   Proxy discovery of the registrar (Section 4.3) MAY be performed with
   DNS-based Service Discovery over Multicast DNS to discover registrars
   by searching for the service "_brski-registrar._tcp.local.".

   To prevent unaccceptable levels of network traffic, when using mDNS,
   the congestion avoidance mechanisms specified in [RFC6762] section 7
   MUST be followed.  The pledge SHOULD listen for an unsolicited
   broadcast response as described in [RFC6762].  This allows devices to
   avoid announcing their presence via mDNS broadcasts and instead
   silently join a network by watching for periodic unsolicited
   broadcast responses.

   Discovery of registrar MAY also be performed with DNS-based service
   discovery by searching for the service "_brski-
   registrar._tcp.example.com".  In this case the domain "example.com"
   is discovered as described in [RFC6763] section 11 (Appendix A.2
   suggests the use of DHCP parameters).

   If no local proxy or registrar service is located using the GRASP
   mechanisms or the above mentioned DNS-based Service Discovery methods
   the pledge MAY contact a well known manufacturer provided
   bootstrapping server by performing a DNS lookup using a well known
   URI such as "brski-registrar.manufacturer.example.com".  The details
   of the URI are manufacturer specific.  Manufacturers that leverage
   this method on the pledge are responsible for providing the registrar
   service.  Also see Section 2.7.

   The current DNS services returned during each query are maintained
   until bootstrapping is completed.  If bootstrapping fails and the
   pledge returns to the Discovery state, it picks up where it left off
   and continues attempting bootstrapping.  For example, if the first
   Multicast DNS _bootstrapks._tcp.local response doesn’t work then the
   second and third responses are tried.  If these fail the pledge moves
   on to normal DNS-based Service Discovery.

Appendix C.  MUD Extension

   The following extension augments the MUD model to include a single
   node, as described in [I-D.ietf-opsawg-mud] section 3.6, using the
   following sample module that has the following tree structure:
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   module: ietf-mud-brski-masa
   augment /ietf-mud:mud:
   +--rw masa-server?   inet:uri

   The model is defined as follows:
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   <CODE BEGINS> file "ietf-mud-extension@2018-02-14.yang"
   module ietf-mud-brski-masa {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-mud-brski-masa";
     prefix ietf-mud-brski-masa;
     import ietf-mud {
       prefix ietf-mud;
     }
     import ietf-inet-types {
       prefix inet;
     }

     organization
       "IETF ANIMA (Autonomic Networking Integrated Model and
       Approach) Working Group";
       contact
       "WG Web: http://tools.ietf.org/wg/anima/
       WG List: anima@ietf.org
       ";
     description
       "BRSKI extension to a MUD file to indicate the
       MASA URL.";

     revision 2018-02-14 {
       description
       "Initial revision.";
       reference
       "RFC XXXX: Manufacturer Usage Description
       Specification";
     }

     augment "/ietf-mud:mud" {
       description
       "BRSKI extension to a MUD file to indicate the
       MASA URL.";
       leaf masa-server {
         type inet:uri;
         description
         "This value is the URI of the MASA server";
       }
     }
   }
   <CODE ENDS>

   The MUD extensions string "masa" is defined, and MUST be included in
   the extensions array of the mud container of a MUD file when this
   extension is used.
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Appendix D.  Example Vouchers

   Three entities are involved in a voucher: the MASA issues (signs) it,
   the registrar’s public key is mentioned in the voucher, and the
   pledge validates it.  In order to provide reproduceable examples the
   public and private keys for an example MASA and registrar are first
   listed.

D.1.  Keys involved

   The Manufacturer has a Certificate Authority that signs the pledge’s
   IDevID.  In addition the Manufacturer’s signing authority (the MASA)
   signs the vouchers, and that certificate must distributed to the
   devices at manufacturing time so that vouchers can be validated.

D.1.1.  MASA key pair for voucher signatures

   This private key signs vouchers:

   -----BEGIN EC PRIVATE KEY-----
   MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
   r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
   zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
   Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
   -----END EC PRIVATE KEY-----

   This public key validates vouchers:

   -----BEGIN CERTIFICATE-----
   MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
   Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
   IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
   EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
   BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
   b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
   w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
   MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
   DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
   MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
   -----END CERTIFICATE-----

D.1.2.  Manufacturer key pair for IDevID signatures

   This private key signs IDevID certificates:
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   -----BEGIN EC PRIVATE KEY-----
   MIGkAgEBBDAgiRoYqKoEcfOfvRvmZ5P5Azn58tuI7nSnIy7OgFnCeiNo+BmbgMho
   r6lcU60gwVagBwYFK4EEACKhZANiAATZAH3Rb2FvIJOnts+vXuWW35ofyNbCHzjA
   zOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCfw5ICgJ8CuM3vV5ty9bf7KUlOkejz
   Tvv+5PV++elkP9HQ83vqTAws2WwWTxI=
   -----END EC PRIVATE KEY-----

   This public key validates IDevID certificates:

   -----BEGIN CERTIFICATE-----
   MIIBzzCCAVagAwIBAgIBATAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQBGRYC
   Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3RydW5n
   IEhpZ2h3YXkgQ0EwHhcNMTcwMzI2MTYxOTQwWhcNMTkwMzI2MTYxOTQwWjBHMRIw
   EAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xFjAU
   BgNVBAMMDVVuc3RydW5nIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAATZAH3R
   b2FvIJOnts+vXuWW35ofyNbCHzjAzOi2kWZFE1ByurKImNcNMFGirGnRXIXGqWCf
   w5ICgJ8CuM3vV5ty9bf7KUlOkejzTvv+5PV++elkP9HQ83vqTAws2WwWTxKjEDAO
   MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwGb0oyM0doP6t3/LSPL5O
   DuatEwMYh7WGO+IYTHC8K7EyHBOmCYReKT2+GhV/CLWzAjBNy6UMJTt1tsxJsJqd
   MPUIFj+4wZg1AOIb/JoA6M7r33pwLQTrHRxEzVMGfWOkYUw=
   -----END CERTIFICATE-----

D.1.3.  Registrar key pair

   The registrar key (or chain) is the representative of the domain
   owner.  This key signs registrar voucher-requests:

   -----BEGIN EC PRIVATE KEY-----
   MHcCAQEEIF+obiToYYYeMifPsZvrjWJ0yFsCJwIFhpokmT/TULmXoAoGCCqGSM49
   AwEHoUQDQgAENWQOzcNMUjP0NrtfeBc0DJLWfeMGgCFdIv6FUz4DifM1ujMBec/g
   6W/P6boTmyTGdFOh/8HwKUerL5bpneK8sg==
   -----END EC PRIVATE KEY-----

   The public key is indicated in a pledge voucher-request to show
   proximity.

   -----BEGIN CERTIFICATE-----
   MIIBrjCCATOgAwIBAgIBAzAKBggqhkjOPQQDAzBOMRIwEAYKCZImiZPyLGQBGRYC
   Y2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHTAbBgNVBAMMFFVuc3RydW5n
   IEZvdW50YWluIENBMB4XDTE3MDkwNTAxMTI0NVoXDTE5MDkwNTAxMTI0NVowQzES
   MBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMRIw
   EAYDVQQDDAlsb2NhbGhvc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAAQ1ZA7N
   w0xSM/Q2u194FzQMktZ94waAIV0i/oVTPgOJ8zW6MwF5z+Dpb8/puhObJMZ0U6H/
   wfApR6svlumd4ryyow0wCzAJBgNVHRMEAjAAMAoGCCqGSM49BAMDA2kAMGYCMQC3
   /iTQJ3evYYcgbXhbmzrp64t3QC6qjIeY2jkDx062nuNifVKtyaara3F30AIkKSEC
   MQDi29efbTLbdtDk3tecY/rD7V77XaJ6nYCmdDCR54TrSFNLgxvt1lyFM+0fYpYR
   c3o=
   -----END CERTIFICATE-----
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   The registrar public certificate as decoded by openssl’s x509
   utility.  Note that the registrar certificate is marked with the
   cmcRA extension.

   Certificate:
       Data:
           Version: 3 (0x2)
           Serial Number: 3 (0x3)
           Signature Algorithm: ecdsa-with-SHA384
           Issuer: DC = ca, DC = sandelman, CN = Unstrung Fount
   ain CA
           Validity
               Not Before: Sep  5 01:12:45 2017 GMT
               Not After : Sep  5 01:12:45 2019 GMT
           Subject: DC = ca, DC = sandelman, CN = localhost
           Subject Public Key Info:
               Public Key Algorithm: id-ecPublicKey
                   Public-Key: (256 bit)
                   pub:
                       04:35:64:0e:cd:c3:4c:52:33:f4:36:bb:5f:7
   8:17:
                       34:0c:92:d6:7d:e3:06:80:21:5d:22:fe:85:5
   3:3e:
                       03:89:f3:35:ba:33:01:79:cf:e0:e9:6f:cf:e
   9:ba:
                       13:9b:24:c6:74:53:a1:ff:c1:f0:29:47:ab:2
   f:96:
                       e9:9d:e2:bc:b2
                   ASN1 OID: prime256v1
                   NIST CURVE: P-256
           X509v3 extensions:
               X509v3 Basic Constraints:
                   CA:FALSE
       Signature Algorithm: ecdsa-with-SHA384
            30:66:02:31:00:b7:fe:24:d0:27:77:af:61:87:20:6d:78:
   5b:
            9b:3a:e9:eb:8b:77:40:2e:aa:8c:87:98:da:39:03:c7:4e:
   b6:
            9e:e3:62:7d:52:ad:c9:a6:ab:6b:71:77:d0:02:24:29:21:
   02:
            31:00:e2:db:d7:9f:6d:32:db:76:d0:e4:de:d7:9c:63:fa:
   c3:
            ed:5e:fb:5d:a2:7a:9d:80:a6:74:30:91:e7:84:eb:48:53:
   4b:
            83:1b:ed:d6:5c:85:33:ed:1f:62:96:11:73:7a
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D.1.4.  Pledge key pair

   The pledge has an IDevID key pair built in at manufacturing time:

   -----BEGIN EC PRIVATE KEY-----
   MHcCAQEEIBgR6SV+uEvWfl5zCQWZxWjYbMhXPyNqdHJ3KPh11mm4oAoGCCqGSM49
   AwEHoUQDQgAEWi/jqPpRJ0JgWghZRgeZlLKutbXVjmnHb+1AYaEF/YQjE2g5FZV8
   KjiR/bkEl+l8M4onIC7KHaXKKkuag9S6Tw==
   -----END EC PRIVATE KEY-----

   The public key is used by the registrar to find the MASA.  The MASA
   URL is in an extension described in Section 2.3.

   -----BEGIN CERTIFICATE-----
   MIICBDCCAYugAwIBAgIECe20qTAKBggqhkjOPQQDAjBNMRIwEAYKCZImiZPyLGQB
   GRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xHDAaBgNVBAMME1Vuc3Ry
   dW5nIEhpZ2h3YXkgQ0EwIBcNMTkwNDI0MDIxNjU4WhgPMjk5OTEyMzEwMDAwMDBa
   MBwxGjAYBgNVBAUMETAwLWQwLWU1LTAyLTAwLTJkMFkwEwYHKoZIzj0CAQYIKoZI
   zj0DAQcDQgAEWi/jqPpRJ0JgWghZRgeZlLKutbXVjmnHb+1AYaEF/YQjE2g5FZV8
   KjiR/bkEl+l8M4onIC7KHaXKKkuag9S6T6OBhzCBhDAdBgNVHQ4EFgQUj8KYdUoE
   OvJ0kcOIbjEWwgWdDYkwCQYDVR0TBAIwADArBgNVHREEJDAioCAGCSsGAQQBgu5S
   AaATDBEwMC1EMC1FNS0wMi0wMC0yRDArBgkrBgEEAYLuUgIEHgwcbWFzYS5ob25l
   eWR1a2VzLnNhbmRlbG1hbi5jYTAKBggqhkjOPQQDAgNnADBkAjAmvMjmNgjypDhc
   fynMV3kMuIpSKrYzRWr4g3PtTwXDsAe0oitTTj4QtU1bajhOfTkCMGMNbsW2Q41F
   z9t6PDVdtOKabBbAP1RVoFTlDQuO9nmLzb5kU+cUqCtPRFZBUXP3kg==
   -----END CERTIFICATE-----

   The pledge public certificate as decoded by openssl’s x509 utility so
   that the extensions can be seen.  There is a second Custom Extension
   is included to provided to contain the EUI48/EUI64 that the pledge
   will configure as it’s layer-2 address (this is non-normative).
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Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number: 166573225 (0x9edb4a9)
        Signature Algorithm: ecdsa-with-SHA256
        Issuer: DC = ca, DC = sandelman, CN = Unstrung Highway CA
        Validity
            Not Before: Apr 24 02:16:58 2019 GMT
            Not After : Dec 31 00:00:00 2999 GMT
        Subject: serialNumber = 00-d0-e5-02-00-2d
        Subject Public Key Info:
            Public Key Algorithm: id-ecPublicKey
                Public-Key: (256 bit)
                pub:
                    04:5a:2f:e3:a8:fa:51:27:42:60:5a:08:59:46:07:
                    99:94:b2:ae:b5:b5:d5:8e:69:c7:6f:ed:40:61:a1:
                    05:fd:84:23:13:68:39:15:95:7c:2a:38:91:fd:b9:
                    04:97:e9:7c:33:8a:27:20:2e:ca:1d:a5:ca:2a:4b:
                    9a:83:d4:ba:4f
                ASN1 OID: prime256v1
                NIST CURVE: P-256
        X509v3 extensions:
            X509v3 Subject Key Identifier:
                8F:C2:98:75:4A:04:3A:F2:74:91:C3:88:6E:31:16:C2:05:9D:0D:89
            X509v3 Basic Constraints:
                CA:FALSE
            X509v3 Subject Alternative Name:
                othername:<unsupported>
            1.3.6.1.4.1.46930.2:
                ..masa.honeydukes.sandelman.ca
    Signature Algorithm: ecdsa-with-SHA256
         30:64:02:30:26:bc:c8:e6:36:08:f2:a4:38:5c:7f:29:cc:57:
         79:0c:b8:8a:52:2a:b6:33:45:6a:f8:83:73:ed:4f:05:c3:b0:
         07:b4:a2:2b:53:4e:3e:10:b5:4d:5b:6a:38:4e:7d:39:02:30:
         63:0d:6e:c5:b6:43:8d:45:cf:db:7a:3c:35:5d:b4:e2:9a:6c:
         16:c0:3f:54:55:a0:54:e5:0d:0b:8e:f6:79:8b:cd:be:64:53:
         e7:14:a8:2b:4f:44:56:41:51:73:f7:92

D.2.  Example process

   RFC-EDITOR: these examples will need to be replaced with CMS versions
   once IANA has assigned the eContentType in [RFC8366].

D.2.1.  Pledge to Registrar

   As described in Section 5.2, the pledge will sign a pledge voucher-
   request containing the registrar’s public key in the proximity-
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   registrar-cert field.  The base64 has been wrapped at 60 characters
   for presentation reasons.

   -----BEGIN CMS-----
   MIIGtQYJKoZIhvcNAQcCoIIGpjCCBqICAQExDTALBglghkgBZQMEAgEwggNRBgkq
   hkiG9w0BBwGgggNCBIIDPnsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6
   eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAxOS0wNS0x
   NVQxNzoyNTo1NS42NDQtMDQ6MDAiLCJzZXJpYWwtbnVtYmVyIjoiMDAtZDAtZTUt
   MDItMDAtMmQiLCJub25jZSI6IlZPVUZULVd3ckV2ME51QVFFSG9WN1EiLCJwcm94
   aW1pdHktcmVnaXN0cmFyLWNlcnQiOiJNSUlCMFRDQ0FWYWdBd0lCQWdJQkFqQUtC
   Z2dxaGtqT1BRUURBekJ4TVJJd0VBWUtDWkltaVpQeUxHUUJHUllDWTJFeEdUQVhC
   Z29Ka2lhSmsvSXNaQUVaRmdsellXNWtaV3h0WVc0eFFEQStCZ05WQkFNTU55TThV
   M2x6ZEdWdFZtRnlhV0ZpYkdVNk1IZ3dNREF3TURBd05HWTVNVEZoTUQ0Z1ZXNXpk
   SEoxYm1jZ1JtOTFiblJoYVc0Z1EwRXdIaGNOTVRjeE1UQTNNak0wTlRJNFdoY05N
   VGt4TVRBM01qTTBOVEk0V2pCRE1SSXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhH
   VEFYQmdvSmtpYUprL0lzWkFFWkZnbHpZVzVrWld4dFlXNHhFakFRQmdOVkJBTU1D
   V3h2WTJGc2FHOXpkREJaTUJNR0J5cUdTTTQ5QWdFR0NDcUdTTTQ5QXdFSEEwSUFC
   SlpsVUhJMHVwL2wzZVpmOXZDQmIrbElub0VNRWdjN1JvK1haQ3RqQUkwQ0QxZkpm
   SlIvaEl5eURtSFd5WWlORmJSQ0g5ZnlhcmZremdYNHAwelRpenFqRFRBTE1Ba0dB
   MVVkRXdRQ01BQXdDZ1lJS29aSXpqMEVBd01EYVFBd1pnSXhBTFFNTnVyZjh0djUw
   bFJPRDVEUVhIRU9KSk5XM1FWMmc5UUVkRFNrMk1ZK0FvU3JCU21HU05qaDRvbEVP
   aEV1TGdJeEFKNG5XZk53K0JqYlptS2lJaVVFY1R3SE1oR1ZYYU1IWS9GN24zOXd3
   S2NCQlNPbmROUHFDcE9FTGw2YnEzQ1pxUT09In19oIICCDCCAgQwggGLoAMCAQIC
   BAnttKkwCgYIKoZIzj0EAwIwTTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYKCZIm
   iZPyLGQBGRYJc2FuZGVsbWFuMRwwGgYDVQQDDBNVbnN0cnVuZyBIaWdod2F5IENB
   MCAXDTE5MDQyNDAyMTY1OFoYDzI5OTkxMjMxMDAwMDAwWjAcMRowGAYDVQQFDBEw
   MC1kMC1lNS0wMi0wMC0yZDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABFov46j6
   USdCYFoIWUYHmZSyrrW11Y5px2/tQGGhBf2EIxNoORWVfCo4kf25BJfpfDOKJyAu
   yh2lyipLmoPUuk+jgYcwgYQwHQYDVR0OBBYEFI/CmHVKBDrydJHDiG4xFsIFnQ2J
   MAkGA1UdEwQCMAAwKwYDVR0RBCQwIqAgBgkrBgEEAYLuUgGgEwwRMDAtRDAtRTUt
   MDItMDAtMkQwKwYJKwYBBAGC7lICBB4MHG1hc2EuaG9uZXlkdWtlcy5zYW5kZWxt
   YW4uY2EwCgYIKoZIzj0EAwIDZwAwZAIwJrzI5jYI8qQ4XH8pzFd5DLiKUiq2M0Vq
   +INz7U8Fw7AHtKIrU04+ELVNW2o4Tn05AjBjDW7FtkONRc/bejw1XbTimmwWwD9U
   VaBU5Q0LjvZ5i82+ZFPnFKgrT0RWQVFz95IxggErMIIBJwIBATBVME0xEjAQBgoJ
   kiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1hbjEcMBoGA1UE
   AwwTVW5zdHJ1bmcgSGlnaHdheSBDQQIECe20qTALBglghkgBZQMEAgGgaTAYBgkq
   hkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0xOTA1MTUyMTI1
   NTVaMC8GCSqGSIb3DQEJBDEiBCAQN2lP7aqwyhmj9qUHt6Qk/SbOTOPXFOwn1wv2
   5YGYgDAKBggqhkjOPQQDAgRHMEUCIEYQhHToU0rrhPyQv2fR0TwWePTx2Z1DEhR4
   tTl/Dr/ZAiEA47u9+bIz/p6nFJ+wctKHER+ycUzYQF56h9odMo+Ilkc=
   -----END CMS-----

   file: examples/vr_00-D0-E5-02-00-2D.pkcs

   The ASN1 decoding of the artifact:

    0:d=0  hl=4 l=1717 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
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   15:d=1  hl=4 l=1702 cons: cont [ 0 ]
   19:d=2  hl=4 l=1698 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 849 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 834 cons: cont [ 0 ]
   60:d=5  hl=4 l= 830 prim: OCTET STRING      :{"ietf-voucher-request:v
  894:d=3  hl=4 l= 520 cons: cont [ 0 ]
  898:d=4  hl=4 l= 516 cons: SEQUENCE
  902:d=5  hl=4 l= 395 cons: SEQUENCE
  906:d=6  hl=2 l=   3 cons: cont [ 0 ]
  908:d=7  hl=2 l=   1 prim: INTEGER           :02
  911:d=6  hl=2 l=   4 prim: INTEGER           :09EDB4A9
  917:d=6  hl=2 l=  10 cons: SEQUENCE
  919:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  929:d=6  hl=2 l=  77 cons: SEQUENCE
  931:d=7  hl=2 l=  18 cons: SET
  933:d=8  hl=2 l=  16 cons: SEQUENCE
  935:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
  947:d=9  hl=2 l=   2 prim: IA5STRING         :ca
  951:d=7  hl=2 l=  25 cons: SET
  953:d=8  hl=2 l=  23 cons: SEQUENCE
  955:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
  967:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
  978:d=7  hl=2 l=  28 cons: SET
  980:d=8  hl=2 l=  26 cons: SEQUENCE
  982:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  987:d=9  hl=2 l=  19 prim: UTF8STRING        :Unstrung Highway CA
 1008:d=6  hl=2 l=  32 cons: SEQUENCE
 1010:d=7  hl=2 l=  13 prim: UTCTIME           :190424021658Z
 1025:d=7  hl=2 l=  15 prim: GENERALIZEDTIME   :29991231000000Z
 1042:d=6  hl=2 l=  28 cons: SEQUENCE
 1044:d=7  hl=2 l=  26 cons: SET
 1046:d=8  hl=2 l=  24 cons: SEQUENCE
 1048:d=9  hl=2 l=   3 prim: OBJECT            :serialNumber
 1053:d=9  hl=2 l=  17 prim: UTF8STRING        :00-d0-e5-02-00-2d
 1072:d=6  hl=2 l=  89 cons: SEQUENCE
 1074:d=7  hl=2 l=  19 cons: SEQUENCE
 1076:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1085:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 1095:d=7  hl=2 l=  66 prim: BIT STRING
 1163:d=6  hl=3 l= 135 cons: cont [ 3 ]
 1166:d=7  hl=3 l= 132 cons: SEQUENCE
 1169:d=8  hl=2 l=  29 cons: SEQUENCE
 1171:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key Ident
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 1176:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX DUMP]:04148FC298754A
 1200:d=8  hl=2 l=   9 cons: SEQUENCE
 1202:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 1207:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1211:d=8  hl=2 l=  43 cons: SEQUENCE
 1213:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Alternati
 1218:d=9  hl=2 l=  36 prim: OCTET STRING      [HEX DUMP]:3022A02006092B
 1256:d=8  hl=2 l=  43 cons: SEQUENCE
 1258:d=9  hl=2 l=   9 prim: OBJECT            :1.3.6.1.4.1.46930.2
 1269:d=9  hl=2 l=  30 prim: OCTET STRING      [HEX DUMP]:0C1C6D6173612E
 1301:d=5  hl=2 l=  10 cons: SEQUENCE
 1303:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1313:d=5  hl=2 l= 103 prim: BIT STRING
 1418:d=3  hl=4 l= 299 cons: SET
 1422:d=4  hl=4 l= 295 cons: SEQUENCE
 1426:d=5  hl=2 l=   1 prim: INTEGER           :01
 1429:d=5  hl=2 l=  85 cons: SEQUENCE
 1431:d=6  hl=2 l=  77 cons: SEQUENCE
 1433:d=7  hl=2 l=  18 cons: SET
 1435:d=8  hl=2 l=  16 cons: SEQUENCE
 1437:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 1449:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 1453:d=7  hl=2 l=  25 cons: SET
 1455:d=8  hl=2 l=  23 cons: SEQUENCE
 1457:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 1469:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 1480:d=7  hl=2 l=  28 cons: SET
 1482:d=8  hl=2 l=  26 cons: SEQUENCE
 1484:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1489:d=9  hl=2 l=  19 prim: UTF8STRING        :Unstrung Highway CA
 1510:d=6  hl=2 l=   4 prim: INTEGER           :09EDB4A9
 1516:d=5  hl=2 l=  11 cons: SEQUENCE
 1518:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1529:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1531:d=6  hl=2 l=  24 cons: SEQUENCE
 1533:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1544:d=7  hl=2 l=  11 cons: SET
 1546:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 1557:d=6  hl=2 l=  28 cons: SEQUENCE
 1559:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1570:d=7  hl=2 l=  15 cons: SET
 1572:d=8  hl=2 l=  13 prim: UTCTIME           :190515212555Z
 1587:d=6  hl=2 l=  47 cons: SEQUENCE
 1589:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 1600:d=7  hl=2 l=  34 cons: SET
 1602:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:1037694FEDAAB0
 1636:d=5  hl=2 l=  10 cons: SEQUENCE
 1638:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
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 1648:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX DUMP]:30450220461084

   The JSON contained in the voucher request:

{"ietf-voucher-request:voucher":{"assertion":"proximity","created-on":"2019-05-1
5T17:25:55.644-04:00","serial-number":"00-d0-e5-02-00-2d","nonce":"VOUFT-WwrEv0N
uAQEHoV7Q","proximity-registrar-cert":"MIIB0TCCAVagAwIBAgIBAjAKBggqhkjOPQQDAzBxM
RIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xQDA+BgNVBAMMNyM8U
3lzdGVtVmFyaWFibGU6MHgwMDAwMDAwNGY5MTFhMD4gVW5zdHJ1bmcgRm91bnRhaW4gQ0EwHhcNMTcxM
TA3MjM0NTI4WhcNMTkxMTA3MjM0NTI4WjBDMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZ
AEZFglzYW5kZWxtYW4xEjAQBgNVBAMMCWxvY2FsaG9zdDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IAB
JZlUHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHWyYiNFbRCH9fyarfkzgX4p
0zTizqjDTALMAkGA1UdEwQCMAAwCgYIKoZIzj0EAwMDaQAwZgIxALQMNurf8tv50lROD5DQXHEOJJNW3
QV2g9QEdDSk2MY+AoSrBSmGSNjh4olEOhEuLgIxAJ4nWfNw+BjbZmKiIiUEcTwHMhGVXaMHY/F7n39ww
KcBBSOndNPqCpOELl6bq3CZqQ=="}}

D.2.2.  Registrar to MASA

   As described in Section 5.5 the registrar will sign a registrar
   voucher-request, and will include pledge’s voucher request in the
   prior-signed-voucher-request.

   -----BEGIN CMS-----
   MIIPkwYJKoZIhvcNAQcCoIIPhDCCD4ACAQExDTALBglghkgBZQMEAgEwggnUBgkq
   hkiG9w0BBwGgggnFBIIJwXsiaWV0Zi12b3VjaGVyLXJlcXVlc3Q6dm91Y2hlciI6
   eyJhc3NlcnRpb24iOiJwcm94aW1pdHkiLCJjcmVhdGVkLW9uIjoiMjAxOS0wNS0x
   NVQyMToyNTo1NS43NThaIiwic2VyaWFsLW51bWJlciI6IjAwLWQwLWU1LTAyLTAw
   LTJkIiwibm9uY2UiOiJWT1VGVC1Xd3JFdjBOdUFRRUhvVjdRIiwicHJpb3Itc2ln
   bmVkLXZvdWNoZXItcmVxdWVzdCI6Ik1JSUd0UVlKS29aSWh2Y05BUWNDb0lJR3Bq
   Q0NCcUlDQVFFeERUQUxCZ2xnaGtnQlpRTUVBZ0V3Z2dOUkJna3Foa2lHOXcwQkJ3
   R2dnZ05DQklJRFBuc2lhV1YwWmkxMmIzVmphR1Z5TFhKbGNYVmxjM1E2ZG05MVky
   aGxjaUk2ZXlKaGMzTmxjblJwYjI0aU9pSndjbTk0YVcxcGRIa2lMQ0pqY21WaGRH
   VmtMVzl1SWpvaU1qQXhPUzB3TlMweE5WUXhOem95TlRvMU5TNDJORFF0TURRNk1E
   QWlMQ0p6WlhKcFlXd3RiblZ0WW1WeUlqb2lNREF0WkRBdFpUVXRNREl0TURBdE1t
   UWlMQ0p1YjI1alpTSTZJbFpQVlVaVUxWZDNja1YyTUU1MVFWRkZTRzlXTjFFaUxD
   SndjbTk0YVcxcGRIa3RjbVZuYVhOMGNtRnlMV05sY25RaU9pSk5TVWxDTUZSRFEw
   RldZV2RCZDBsQ1FXZEpRa0ZxUVV0Q1oyZHhhR3RxVDFCUlVVUkJla0o0VFZKSmQw
   VkJXVXREV2tsdGFWcFFlVXhIVVVKSFVsbERXVEpGZUVkVVFWaENaMjlLYTJsaFNt
   c3ZTWE5hUVVWYVJtZHNlbGxYTld0YVYzaDBXVmMwZUZGRVFTdENaMDVXUWtGTlRV
   NTVUVGhWTTJ4NlpFZFdkRlp0Um5saFYwWnBZa2RWTmsxSVozZE5SRUYzVFVSQmQw
   NUhXVFZOVkVab1RVUTBaMVpYTlhwa1NFb3hZbTFqWjFKdE9URmlibEpvWVZjMFox
   RXdSWGRJYUdOT1RWUmplRTFVUVROTmFrMHdUbFJKTkZkb1kwNU5WR3Q0VFZSQk0w
   MXFUVEJPVkVrMFYycENSRTFTU1hkRlFWbExRMXBKYldsYVVIbE1SMUZDUjFKWlEx
   a3lSWGhIVkVGWVFtZHZTbXRwWVVwckwwbHpXa0ZGV2tabmJIcFpWelZyV2xkNGRG
   bFhOSGhGYWtGUlFtZE9Wa0pCVFUxRFYzaDJXVEpHYzJGSE9YcGtSRUphVFVKTlIw
   SjVjVWRUVFRRNVFXZEZSME5EY1VkVFRUUTVRWGRGU0VFd1NVRkNTbHBzVlVoSk1I
   VndMMnd6WlZwbU9YWkRRbUlyYkVsdWIwVk5SV2RqTjFKdksxaGFRM1JxUVVrd1Ew
   UXhaa3BtU2xJdmFFbDVlVVJ0U0ZkNVdXbE9SbUpTUTBnNVpubGhjbVpyZW1kWU5I
   QXdlbFJwZW5GcVJGUkJURTFCYTBkQk1WVmtSWGRSUTAxQlFYZERaMWxKUzI5YVNY
   cHFNRVZCZDAxRVlWRkJkMXBuU1hoQlRGRk5UblZ5WmpoMGRqVXdiRkpQUkRWRVVW
   aElSVTlLU2s1WE0xRldNbWM1VVVWa1JGTnJNazFaSzBGdlUzSkNVMjFIVTA1cWFE
   UnZiRVZQYUVWMVRHZEplRUZLTkc1WFprNTNLMEpxWWxwdFMybEphVlZGWTFSM1NF
   MW9SMVpZWVUxSVdTOUdOMjR6T1hkM1MyTkNRbE5QYm1ST1VIRkRjRTlGVEd3Mllu
   RXpRMXB4VVQwOUluMTlvSUlDQ0RDQ0FnUXdnZ0dMb0FNQ0FRSUNCQW50dEtrd0Nn
   WUlLb1pJemowRUF3SXdUVEVTTUJBR0NnbVNKb21UOGl4a0FSa1dBbU5oTVJrd0Z3
   WUtDWkltaVpQeUxHUUJHUllKYzJGdVpHVnNiV0Z1TVJ3d0dnWURWUVFEREJOVmJu
   TjBjblZ1WnlCSWFXZG9kMkY1SUVOQk1DQVhEVEU1TURReU5EQXlNVFkxT0ZvWUR6
   STVPVGt4TWpNeE1EQXdNREF3V2pBY01Sb3dHQVlEVlFRRkRCRXdNQzFrTUMxbE5T
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   MHdNaTB3TUMweVpEQlpNQk1HQnlxR1NNNDlBZ0VHQ0NxR1NNNDlBd0VIQTBJQUJG
   b3Y0Nmo2VVNkQ1lGb0lXVVlIbVpTeXJyVzExWTVweDIvdFFHR2hCZjJFSXhOb09S
   V1ZmQ280a2YyNUJKZnBmRE9LSnlBdXloMmx5aXBMbW9QVXVrK2pnWWN3Z1lRd0hR
   WURWUjBPQkJZRUZJL0NtSFZLQkRyeWRKSERpRzR4RnNJRm5RMkpNQWtHQTFVZEV3
   UUNNQUF3S3dZRFZSMFJCQ1F3SXFBZ0Jna3JCZ0VFQVlMdVVnR2dFd3dSTURBdFJE
   QXRSVFV0TURJdE1EQXRNa1F3S3dZSkt3WUJCQUdDN2xJQ0JCNE1IRzFoYzJFdWFH
   OXVaWGxrZFd0bGN5NXpZVzVrWld4dFlXNHVZMkV3Q2dZSUtvWkl6ajBFQXdJRFp3
   QXdaQUl3SnJ6STVqWUk4cVE0WEg4cHpGZDVETGlLVWlxMk0wVnErSU56N1U4Rnc3
   QUh0S0lyVTA0K0VMVk5XMm80VG4wNUFqQmpEVzdGdGtPTlJjL2JlancxWGJUaW1t
   d1d3RDlVVmFCVTVRMExqdlo1aTgyK1pGUG5GS2dyVDBSV1FWRno5NUl4Z2dFck1J
   SUJKd0lCQVRCVk1FMHhFakFRQmdvSmtpYUprL0lzWkFFWkZnSmpZVEVaTUJjR0Nn
   bVNKb21UOGl4a0FSa1dDWE5oYm1SbGJHMWhiakVjTUJvR0ExVUVBd3dUVlc1emRI
   SjFibWNnU0dsbmFIZGhlU0JEUVFJRUNlMjBxVEFMQmdsZ2hrZ0JaUU1FQWdHZ2FU
   QVlCZ2txaGtpRzl3MEJDUU14Q3dZSktvWklodmNOQVFjQk1Cd0dDU3FHU0liM0RR
   RUpCVEVQRncweE9UQTFNVFV5TVRJMU5UVmFNQzhHQ1NxR1NJYjNEUUVKQkRFaUJD
   QVFOMmxQN2Fxd3lobWo5cVVIdDZRay9TYk9UT1BYRk93bjF3djI1WUdZZ0RBS0Jn
   Z3Foa2pPUFFRREFnUkhNRVVDSUVZUWhIVG9VMHJyaFB5UXYyZlIwVHdXZVBUeDJa
   MURFaFI0dFRsL0RyL1pBaUVBNDd1OStiSXovcDZuRkord2N0S0hFUit5Y1V6WVFG
   NTZoOW9kTW8rSWxrYz0ifX2gggRCMIIB0TCCAVagAwIBAgIBAjAKBggqhkjOPQQD
   AzBxMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxt
   YW4xQDA+BgNVBAMMNyM8U3lzdGVtVmFyaWFibGU6MHgwMDAwMDAwNGY5MTFhMD4g
   VW5zdHJ1bmcgRm91bnRhaW4gQ0EwHhcNMTcxMTA3MjM0NTI4WhcNMTkxMTA3MjM0
   NTI4WjBDMRIwEAYKCZImiZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5k
   ZWxtYW4xEjAQBgNVBAMMCWxvY2FsaG9zdDBZMBMGByqGSM49AgEGCCqGSM49AwEH
   A0IABJZlUHI0up/l3eZf9vCBb+lInoEMEgc7Ro+XZCtjAI0CD1fJfJR/hIyyDmHW
   yYiNFbRCH9fyarfkzgX4p0zTizqjDTALMAkGA1UdEwQCMAAwCgYIKoZIzj0EAwMD
   aQAwZgIxALQMNurf8tv50lROD5DQXHEOJJNW3QV2g9QEdDSk2MY+AoSrBSmGSNjh
   4olEOhEuLgIxAJ4nWfNw+BjbZmKiIiUEcTwHMhGVXaMHY/F7n39wwKcBBSOndNPq
   CpOELl6bq3CZqTCCAmkwggHvoAMCAQICAQMwCgYIKoZIzj0EAwIwbTESMBAGCgmS
   JomT8ixkARkWAmNhMRkwFwYKCZImiZPyLGQBGRYJc2FuZGVsbWFuMTwwOgYDVQQD
   DDNmb3VudGFpbi10ZXN0LmV4YW1wbGUuY29tIFVuc3RydW5nIEZvdW50YWluIFJv
   b3QgQ0EwHhcNMTkwMTEzMjI1NDQ0WhcNMjEwMTEyMjI1NDQ0WjBtMRIwEAYKCZIm
   iZPyLGQBGRYCY2ExGTAXBgoJkiaJk/IsZAEZFglzYW5kZWxtYW4xPDA6BgNVBAMM
   M2ZvdW50YWluLXRlc3QuZXhhbXBsZS5jb20gVW5zdHJ1bmcgRm91bnRhaW4gUm9v
   dCBDQTB2MBAGByqGSM49AgEGBSuBBAAiA2IABBt/WboXwxq8Zo2MbODD+jFxD2X2
   IpG9t1aAB9vfuHqlRU15ikaXGVmWMbGPaX0yvjzIPltjtUb2qNVvm/nA89O5FD9y
   R1Gkdt3S8L/1yo8wAX/4wl/T9SADRIuL8gdstKNjMGEwDwYDVR0TAQH/BAUwAwEB
   /zAOBgNVHQ8BAf8EBAMCAQYwHQYDVR0OBBYEFLml9ssR4QekSSynCMZ8ELyHs3Qm
   MB8GA1UdIwQYMBaAFLml9ssR4QekSSynCMZ8ELyHs3QmMAoGCCqGSM49BAMCA2gA
   MGUCMAviLdbfd6AZdsOxNgf7D15WFmGC1JkHeEbT/0w4UXz6q/48S71/IMbSXRWH
   aNxiJwIxAOCRjtlN+VSmCLTvWwMTxnSpIuqMr/O1y2Z8rl459VRFphWPdbf4i0qE
   cwu0u4JzpDGCAUwwggFIAgEBMHYwcTESMBAGCgmSJomT8ixkARkWAmNhMRkwFwYK
   CZImiZPyLGQBGRYJc2FuZGVsbWFuMUAwPgYDVQQDDDcjPFN5c3RlbVZhcmlhYmxl
   OjB4MDAwMDAwMDRmOTExYTA+IFVuc3RydW5nIEZvdW50YWluIENBAgECMAsGCWCG
   SAFlAwQCAaBpMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkF
   MQ8XDTE5MDUxNTIxMjU1NVowLwYJKoZIhvcNAQkEMSIEIFBQjMmWzZOEkRHXrVAS
   snJwgQ26goyvOAtUFYs3MstMMAoGCCqGSM49BAMCBEcwRQIgBthbhEmgbqZbYDkD
   zxHXLzJ5eusWplzHKqZyxNpzaR8CIQC3UtMu0QsXoUpYL016iTsbd7Eedi8IfnwQ
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   akExfhh0ew==
   -----END CMS-----

   file: examples/parboiled_vr_00_D0-E5-02-00-2D.pkcs

   The ASN1 decoding of the artifact:

    0:d=0  hl=4 l=3987 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=3972 cons: cont [ 0 ]
   19:d=2  hl=4 l=3968 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l=2516 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l=2501 cons: cont [ 0 ]
   60:d=5  hl=4 l=2497 prim: OCTET STRING      :{"ietf-voucher-request:v
 2561:d=3  hl=4 l=1090 cons: cont [ 0 ]
 2565:d=4  hl=4 l= 465 cons: SEQUENCE
 2569:d=5  hl=4 l= 342 cons: SEQUENCE
 2573:d=6  hl=2 l=   3 cons: cont [ 0 ]
 2575:d=7  hl=2 l=   1 prim: INTEGER           :02
 2578:d=6  hl=2 l=   1 prim: INTEGER           :02
 2581:d=6  hl=2 l=  10 cons: SEQUENCE
 2583:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA384
 2593:d=6  hl=2 l= 113 cons: SEQUENCE
 2595:d=7  hl=2 l=  18 cons: SET
 2597:d=8  hl=2 l=  16 cons: SEQUENCE
 2599:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2611:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 2615:d=7  hl=2 l=  25 cons: SET
 2617:d=8  hl=2 l=  23 cons: SEQUENCE
 2619:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2631:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2642:d=7  hl=2 l=  64 cons: SET
 2644:d=8  hl=2 l=  62 cons: SEQUENCE
 2646:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2651:d=9  hl=2 l=  55 prim: UTF8STRING        :#<SystemVariable:0x00000
 2708:d=6  hl=2 l=  30 cons: SEQUENCE
 2710:d=7  hl=2 l=  13 prim: UTCTIME           :171107234528Z
 2725:d=7  hl=2 l=  13 prim: UTCTIME           :191107234528Z
 2740:d=6  hl=2 l=  67 cons: SEQUENCE
 2742:d=7  hl=2 l=  18 cons: SET
 2744:d=8  hl=2 l=  16 cons: SEQUENCE
 2746:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2758:d=9  hl=2 l=   2 prim: IA5STRING         :ca
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 2762:d=7  hl=2 l=  25 cons: SET
 2764:d=8  hl=2 l=  23 cons: SEQUENCE
 2766:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 2778:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 2789:d=7  hl=2 l=  18 cons: SET
 2791:d=8  hl=2 l=  16 cons: SEQUENCE
 2793:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 2798:d=9  hl=2 l=   9 prim: UTF8STRING        :localhost
 2809:d=6  hl=2 l=  89 cons: SEQUENCE
 2811:d=7  hl=2 l=  19 cons: SEQUENCE
 2813:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 2822:d=8  hl=2 l=   8 prim: OBJECT            :prime256v1
 2832:d=7  hl=2 l=  66 prim: BIT STRING
 2900:d=6  hl=2 l=  13 cons: cont [ 3 ]
 2902:d=7  hl=2 l=  11 cons: SEQUENCE
 2904:d=8  hl=2 l=   9 cons: SEQUENCE
 2906:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 2911:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 2915:d=5  hl=2 l=  10 cons: SEQUENCE
 2917:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA384
 2927:d=5  hl=2 l= 105 prim: BIT STRING
 3034:d=4  hl=4 l= 617 cons: SEQUENCE
 3038:d=5  hl=4 l= 495 cons: SEQUENCE
 3042:d=6  hl=2 l=   3 cons: cont [ 0 ]
 3044:d=7  hl=2 l=   1 prim: INTEGER           :02
 3047:d=6  hl=2 l=   1 prim: INTEGER           :03
 3050:d=6  hl=2 l=  10 cons: SEQUENCE
 3052:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3062:d=6  hl=2 l= 109 cons: SEQUENCE
 3064:d=7  hl=2 l=  18 cons: SET
 3066:d=8  hl=2 l=  16 cons: SEQUENCE
 3068:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3080:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3084:d=7  hl=2 l=  25 cons: SET
 3086:d=8  hl=2 l=  23 cons: SEQUENCE
 3088:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3100:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3111:d=7  hl=2 l=  60 cons: SET
 3113:d=8  hl=2 l=  58 cons: SEQUENCE
 3115:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3120:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 3173:d=6  hl=2 l=  30 cons: SEQUENCE
 3175:d=7  hl=2 l=  13 prim: UTCTIME           :190113225444Z
 3190:d=7  hl=2 l=  13 prim: UTCTIME           :210112225444Z
 3205:d=6  hl=2 l= 109 cons: SEQUENCE
 3207:d=7  hl=2 l=  18 cons: SET
 3209:d=8  hl=2 l=  16 cons: SEQUENCE
 3211:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
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 3223:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3227:d=7  hl=2 l=  25 cons: SET
 3229:d=8  hl=2 l=  23 cons: SEQUENCE
 3231:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3243:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3254:d=7  hl=2 l=  60 cons: SET
 3256:d=8  hl=2 l=  58 cons: SEQUENCE
 3258:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3263:d=9  hl=2 l=  51 prim: UTF8STRING        :fountain-test.example.co
 3316:d=6  hl=2 l= 118 cons: SEQUENCE
 3318:d=7  hl=2 l=  16 cons: SEQUENCE
 3320:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 3329:d=8  hl=2 l=   5 prim: OBJECT            :secp384r1
 3336:d=7  hl=2 l=  98 prim: BIT STRING
 3436:d=6  hl=2 l=  99 cons: cont [ 3 ]
 3438:d=7  hl=2 l=  97 cons: SEQUENCE
 3440:d=8  hl=2 l=  15 cons: SEQUENCE
 3442:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 3447:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3450:d=9  hl=2 l=   5 prim: OCTET STRING      [HEX DUMP]:30030101FF
 3457:d=8  hl=2 l=  14 cons: SEQUENCE
 3459:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Key Usage
 3464:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 3467:d=9  hl=2 l=   4 prim: OCTET STRING      [HEX DUMP]:03020106
 3473:d=8  hl=2 l=  29 cons: SEQUENCE
 3475:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Subject Key Ident
 3480:d=9  hl=2 l=  22 prim: OCTET STRING      [HEX DUMP]:0414B9A5F6CB11
 3504:d=8  hl=2 l=  31 cons: SEQUENCE
 3506:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Authority Key Ide
 3511:d=9  hl=2 l=  24 prim: OCTET STRING      [HEX DUMP]:30168014B9A5F6
 3537:d=5  hl=2 l=  10 cons: SEQUENCE
 3539:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3549:d=5  hl=2 l= 104 prim: BIT STRING
 3655:d=3  hl=4 l= 332 cons: SET
 3659:d=4  hl=4 l= 328 cons: SEQUENCE
 3663:d=5  hl=2 l=   1 prim: INTEGER           :01
 3666:d=5  hl=2 l= 118 cons: SEQUENCE
 3668:d=6  hl=2 l= 113 cons: SEQUENCE
 3670:d=7  hl=2 l=  18 cons: SET
 3672:d=8  hl=2 l=  16 cons: SEQUENCE
 3674:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3686:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 3690:d=7  hl=2 l=  25 cons: SET
 3692:d=8  hl=2 l=  23 cons: SEQUENCE
 3694:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 3706:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 3717:d=7  hl=2 l=  64 cons: SET
 3719:d=8  hl=2 l=  62 cons: SEQUENCE
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 3721:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 3726:d=9  hl=2 l=  55 prim: UTF8STRING        :#<SystemVariable:0x00000
 3783:d=6  hl=2 l=   1 prim: INTEGER           :02
 3786:d=5  hl=2 l=  11 cons: SEQUENCE
 3788:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 3799:d=5  hl=2 l= 105 cons: cont [ 0 ]
 3801:d=6  hl=2 l=  24 cons: SEQUENCE
 3803:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 3814:d=7  hl=2 l=  11 cons: SET
 3816:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 3827:d=6  hl=2 l=  28 cons: SEQUENCE
 3829:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 3840:d=7  hl=2 l=  15 cons: SET
 3842:d=8  hl=2 l=  13 prim: UTCTIME           :190515212555Z
 3857:d=6  hl=2 l=  47 cons: SEQUENCE
 3859:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 3870:d=7  hl=2 l=  34 cons: SET
 3872:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:50508CC996CD93
 3906:d=5  hl=2 l=  10 cons: SEQUENCE
 3908:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 3918:d=5  hl=2 l=  71 prim: OCTET STRING      [HEX DUMP]:3045022006D85B

D.2.3.  MASA to Registrar

   The MASA will return a voucher to the registrar, to be relayed to the
   pledge.
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   -----BEGIN CMS-----
   MIIGsgYJKoZIhvcNAQcCoIIGozCCBp8CAQExDTALBglghkgBZQMEAgEwggNABgkq
   hkiG9w0BBwGgggMxBIIDLXsiaWV0Zi12b3VjaGVyOnZvdWNoZXIiOnsiYXNzZXJ0
   aW9uIjoibG9nZ2VkIiwiY3JlYXRlZC1vbiI6IjIwMTktMDUtMTZUMDI6NTE6NDIu
   Njk3KzAwOjAwIiwic2VyaWFsLW51bWJlciI6IjAwLWQwLWU1LTAyLTAwLTJkIiwi
   bm9uY2UiOiJHWmUtT2pvZXJwS0VNNFNNN1N6UzlnIiwicGlubmVkLWRvbWFpbi1j
   ZXJ0IjoiTUlJQjBUQ0NBVmFnQXdJQkFnSUJBakFLQmdncWhrak9QUVFEQXpCeE1S
   SXdFQVlLQ1pJbWlaUHlMR1FCR1JZQ1kyRXhHVEFYQmdvSmtpYUprL0lzWkFFWkZn
   bHpZVzVrWld4dFlXNHhRREErQmdOVkJBTU1OeU04VTNsemRHVnRWbUZ5YVdGaWJH
   VTZNSGd3TURBd01EQXdOR1k1TVRGaE1ENGdWVzV6ZEhKMWJtY2dSbTkxYm5SaGFX
   NGdRMEV3SGhjTk1UY3hNVEEzTWpNME5USTRXaGNOTVRreE1UQTNNak0wTlRJNFdq
   QkRNUkl3RUFZS0NaSW1pWlB5TEdRQkdSWUNZMkV4R1RBWEJnb0praWFKay9Jc1pB
   RVpGZ2x6WVc1a1pXeHRZVzR4RWpBUUJnTlZCQU1NQ1d4dlkyRnNhRzl6ZERCWk1C
   TUdCeXFHU000OUFnRUdDQ3FHU000OUF3RUhBMElBQkpabFVISTB1cC9sM2VaZjl2
   Q0JiK2xJbm9FTUVnYzdSbytYWkN0akFJMENEMWZKZkpSL2hJeXlEbUhXeVlpTkZi
   UkNIOWZ5YXJma3pnWDRwMHpUaXpxakRUQUxNQWtHQTFVZEV3UUNNQUF3Q2dZSUtv
   Wkl6ajBFQXdNRGFRQXdaZ0l4QUxRTU51cmY4dHY1MGxST0Q1RFFYSEVPSkpOVzNR
   VjJnOVFFZERTazJNWStBb1NyQlNtR1NOamg0b2xFT2hFdUxnSXhBSjRuV2ZOdytC
   amJabUtpSWlVRWNUd0hNaEdWWGFNSFkvRjduMzl3d0tjQkJTT25kTlBxQ3BPRUxs
   NmJxM0NacVE9PSJ9faCCAfUwggHxMIIBeKADAgECAgQjzIkTMAoGCCqGSM49BAMC
   ME0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRlbG1h
   bjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQTAeFw0xOTA0MjMyMzIxMDda
   Fw0xOTA1MjQwOTIxMDdaMGYxDzANBgNVBAYTBkNhbmFkYTESMBAGA1UECgwJU2Fu
   ZGVsbWFuMRMwEQYDVQQLDApob25leWR1a2VzMSowKAYDVQQDDCFtYXNhLmhvbmV5
   ZHVrZXMuc2FuZGVsbWFuLmNhIE1BU0EwdjAQBgcqhkjOPQIBBgUrgQQAIgNiAAQ1
   /2UdVp8zVmgADoBNql7LcPlJsEaaVAogYEqABikNOkoTO3oPjIQfNBxtGfRFzBXx
   gihzkTH58r8SW1L/Mej8AFqhB4SZyyjmWURdzD71Ju0M+tRritWf7T+QGaE+fcWj
   EDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDZwAwZAIwOMlNOMNYEZo4yLW4
   iRltDL8uirmjMdtVmmVYzqYHSindjP0a3pXQkQZ5LLARoSRWAjBTxsnv6ya5HpZI
   IWcspDPZGlOSDPm7nuRJSDkgWqevxLI4+9nmIhsfMBsDvz1DJhAxggFMMIIBSAIB
   ATBVME0xEjAQBgoJkiaJk/IsZAEZFgJjYTEZMBcGCgmSJomT8ixkARkWCXNhbmRl
   bG1hbjEcMBoGA1UEAwwTVW5zdHJ1bmcgSGlnaHdheSBDQQIEI8yJEzALBglghkgB
   ZQMEAgGgaTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEP
   Fw0xOTA1MTYwMjUxNDJaMC8GCSqGSIb3DQEJBDEiBCCYRh4i21QjEjEk8leRLSVA
   x/EVY5g1bM40QM21oR4c2DAKBggqhkjOPQQDAgRoMGYCMQCYYOiSbIlED4nAN0iL
   e4S8ixWAZ9SXpGv77bB/G4fTTVTN35mnAeYBfeNfhC6/kOECMQDqlkCmwQJQDdEL
   asj1ISinJ/FnZjjgOMz9MXOmGNGIfw9v2VBb9mVyhsOSMcqlVig=
   -----END CMS-----

   file: examples/voucher_00-D0-E5-02-00-2D.pkcs

   The ASN1 decoding of the artifact:

    0:d=0  hl=4 l=1714 cons: SEQUENCE
    4:d=1  hl=2 l=   9 prim: OBJECT            :pkcs7-signedData
   15:d=1  hl=4 l=1699 cons: cont [ 0 ]
   19:d=2  hl=4 l=1695 cons: SEQUENCE
   23:d=3  hl=2 l=   1 prim: INTEGER           :01
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   26:d=3  hl=2 l=  13 cons: SET
   28:d=4  hl=2 l=  11 cons: SEQUENCE
   30:d=5  hl=2 l=   9 prim: OBJECT            :sha256
   41:d=3  hl=4 l= 832 cons: SEQUENCE
   45:d=4  hl=2 l=   9 prim: OBJECT            :pkcs7-data
   56:d=4  hl=4 l= 817 cons: cont [ 0 ]
   60:d=5  hl=4 l= 813 prim: OCTET STRING      :{"ietf-voucher:voucher":
  877:d=3  hl=4 l= 501 cons: cont [ 0 ]
  881:d=4  hl=4 l= 497 cons: SEQUENCE
  885:d=5  hl=4 l= 376 cons: SEQUENCE
  889:d=6  hl=2 l=   3 cons: cont [ 0 ]
  891:d=7  hl=2 l=   1 prim: INTEGER           :02
  894:d=6  hl=2 l=   4 prim: INTEGER           :23CC8913
  900:d=6  hl=2 l=  10 cons: SEQUENCE
  902:d=7  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
  912:d=6  hl=2 l=  77 cons: SEQUENCE
  914:d=7  hl=2 l=  18 cons: SET
  916:d=8  hl=2 l=  16 cons: SEQUENCE
  918:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
  930:d=9  hl=2 l=   2 prim: IA5STRING         :ca
  934:d=7  hl=2 l=  25 cons: SET
  936:d=8  hl=2 l=  23 cons: SEQUENCE
  938:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
  950:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
  961:d=7  hl=2 l=  28 cons: SET
  963:d=8  hl=2 l=  26 cons: SEQUENCE
  965:d=9  hl=2 l=   3 prim: OBJECT            :commonName
  970:d=9  hl=2 l=  19 prim: UTF8STRING        :Unstrung Highway CA
  991:d=6  hl=2 l=  30 cons: SEQUENCE
  993:d=7  hl=2 l=  13 prim: UTCTIME           :190423232107Z
 1008:d=7  hl=2 l=  13 prim: UTCTIME           :190524092107Z
 1023:d=6  hl=2 l= 102 cons: SEQUENCE
 1025:d=7  hl=2 l=  15 cons: SET
 1027:d=8  hl=2 l=  13 cons: SEQUENCE
 1029:d=9  hl=2 l=   3 prim: OBJECT            :countryName
 1034:d=9  hl=2 l=   6 prim: PRINTABLESTRING   :Canada
 1042:d=7  hl=2 l=  18 cons: SET
 1044:d=8  hl=2 l=  16 cons: SEQUENCE
 1046:d=9  hl=2 l=   3 prim: OBJECT            :organizationName
 1051:d=9  hl=2 l=   9 prim: UTF8STRING        :Sandelman
 1062:d=7  hl=2 l=  19 cons: SET
 1064:d=8  hl=2 l=  17 cons: SEQUENCE
 1066:d=9  hl=2 l=   3 prim: OBJECT            :organizationalUnitName
 1071:d=9  hl=2 l=  10 prim: UTF8STRING        :honeydukes
 1083:d=7  hl=2 l=  42 cons: SET
 1085:d=8  hl=2 l=  40 cons: SEQUENCE
 1087:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1092:d=9  hl=2 l=  33 prim: UTF8STRING        :masa.honeydukes.sandelma
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 1127:d=6  hl=2 l= 118 cons: SEQUENCE
 1129:d=7  hl=2 l=  16 cons: SEQUENCE
 1131:d=8  hl=2 l=   7 prim: OBJECT            :id-ecPublicKey
 1140:d=8  hl=2 l=   5 prim: OBJECT            :secp384r1
 1147:d=7  hl=2 l=  98 prim: BIT STRING
 1247:d=6  hl=2 l=  16 cons: cont [ 3 ]
 1249:d=7  hl=2 l=  14 cons: SEQUENCE
 1251:d=8  hl=2 l=  12 cons: SEQUENCE
 1253:d=9  hl=2 l=   3 prim: OBJECT            :X509v3 Basic Constraints
 1258:d=9  hl=2 l=   1 prim: BOOLEAN           :255
 1261:d=9  hl=2 l=   2 prim: OCTET STRING      [HEX DUMP]:3000
 1265:d=5  hl=2 l=  10 cons: SEQUENCE
 1267:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1277:d=5  hl=2 l= 103 prim: BIT STRING
 1382:d=3  hl=4 l= 332 cons: SET
 1386:d=4  hl=4 l= 328 cons: SEQUENCE
 1390:d=5  hl=2 l=   1 prim: INTEGER           :01
 1393:d=5  hl=2 l=  85 cons: SEQUENCE
 1395:d=6  hl=2 l=  77 cons: SEQUENCE
 1397:d=7  hl=2 l=  18 cons: SET
 1399:d=8  hl=2 l=  16 cons: SEQUENCE
 1401:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 1413:d=9  hl=2 l=   2 prim: IA5STRING         :ca
 1417:d=7  hl=2 l=  25 cons: SET
 1419:d=8  hl=2 l=  23 cons: SEQUENCE
 1421:d=9  hl=2 l=  10 prim: OBJECT            :domainComponent
 1433:d=9  hl=2 l=   9 prim: IA5STRING         :sandelman
 1444:d=7  hl=2 l=  28 cons: SET
 1446:d=8  hl=2 l=  26 cons: SEQUENCE
 1448:d=9  hl=2 l=   3 prim: OBJECT            :commonName
 1453:d=9  hl=2 l=  19 prim: UTF8STRING        :Unstrung Highway CA
 1474:d=6  hl=2 l=   4 prim: INTEGER           :23CC8913
 1480:d=5  hl=2 l=  11 cons: SEQUENCE
 1482:d=6  hl=2 l=   9 prim: OBJECT            :sha256
 1493:d=5  hl=2 l= 105 cons: cont [ 0 ]
 1495:d=6  hl=2 l=  24 cons: SEQUENCE
 1497:d=7  hl=2 l=   9 prim: OBJECT            :contentType
 1508:d=7  hl=2 l=  11 cons: SET
 1510:d=8  hl=2 l=   9 prim: OBJECT            :pkcs7-data
 1521:d=6  hl=2 l=  28 cons: SEQUENCE
 1523:d=7  hl=2 l=   9 prim: OBJECT            :signingTime
 1534:d=7  hl=2 l=  15 cons: SET
 1536:d=8  hl=2 l=  13 prim: UTCTIME           :190516025142Z
 1551:d=6  hl=2 l=  47 cons: SEQUENCE
 1553:d=7  hl=2 l=   9 prim: OBJECT            :messageDigest
 1564:d=7  hl=2 l=  34 cons: SET
 1566:d=8  hl=2 l=  32 prim: OCTET STRING      [HEX DUMP]:98461E22DB5423
 1600:d=5  hl=2 l=  10 cons: SEQUENCE
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 1602:d=6  hl=2 l=   8 prim: OBJECT            :ecdsa-with-SHA256
 1612:d=5  hl=2 l= 104 prim: OCTET STRING      [HEX DUMP]:30660231009860
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1.  Introduction

   The success of the Internet has made IP-based networks bigger and
   more complicated.  Large-scale ISP and enterprise networks have
   become more and more problematic for human based management.  Also,
   operational costs are growing quickly.  Consequently, there are
   increased requirements for autonomic behavior in the networks.
   General aspects of autonomic networks are discussed in [RFC7575] and
   [RFC7576].

   One approach is to largely decentralize the logic of network
   management by migrating it into network elements.  A reference model
   for autonomic networking on this basis is given in
   [I-D.ietf-anima-reference-model].  The reader should consult this
   document to understand how various autonomic components fit together.
   In order to fulfill autonomy, devices that embody Autonomic Service
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   Agents (ASAs, [RFC7575]) have specific signaling requirements.  In
   particular they need to discover each other, to synchronize state
   with each other, and to negotiate parameters and resources directly
   with each other.  There is no limitation on the types of parameters
   and resources concerned, which can include very basic information
   needed for addressing and routing, as well as anything else that
   might be configured in a conventional non-autonomic network.  The
   atomic unit of discovery, synchronization or negotiation is referred
   to as a technical objective, i.e, a configurable parameter or set of
   parameters (defined more precisely in Section 2.1).

   Negotiation is an iterative process, requiring multiple message
   exchanges forming a closed loop between the negotiating entities.  In
   fact, these entities are ASAs, normally but not necessarily in
   different network devices.  State synchronization, when needed, can
   be regarded as a special case of negotiation, without iteration.
   Both negotiation and synchronization must logically follow discovery.
   More details of the requirements are found in Appendix E.
   Section 2.3 describes a behavior model for a protocol intended to
   support discovery, synchronization and negotiation.  The design of
   GeneRic Autonomic Signaling Protocol (GRASP) in Section 2 of this
   document is based on this behavior model.  The relevant capabilities
   of various existing protocols are reviewed in Appendix F.

   The proposed discovery mechanism is oriented towards synchronization
   and negotiation objectives.  It is based on a neighbor discovery
   process on the local link, but also supports diversion to peers on
   other links.  There is no assumption of any particular form of
   network topology.  When a device starts up with no pre-configuration,
   it has no knowledge of the topology.  The protocol itself is capable
   of being used in a small and/or flat network structure such as a
   small office or home network as well as in a large professionally
   managed network.  Therefore, the discovery mechanism needs to be able
   to allow a device to bootstrap itself without making any prior
   assumptions about network structure.

   Because GRASP can be used as part of a decision process among
   distributed devices or between networks, it must run in a secure and
   strongly authenticated environment.

   In realistic deployments, not all devices will support GRASP.
   Therefore, some autonomic service agents will directly manage a group
   of non-autonomic nodes, and other non-autonomic nodes will be managed
   traditionally.  Such mixed scenarios are not discussed in this
   specification.
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2.  GRASP Protocol Overview

2.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   [RFC2119] when they appear in ALL CAPS.  When these words are not in
   ALL CAPS (such as "should" or "Should"), they have their usual
   English meanings, and are not to be interpreted as [RFC2119] key
   words.

   This document uses terminology defined in [RFC7575].

   The following additional terms are used throughout this document:

   o  Discovery: a process by which an ASA discovers peers according to
      a specific discovery objective.  The discovery results may be
      different according to the different discovery objectives.  The
      discovered peers may later be used as negotiation counterparts or
      as sources of synchronization data.

   o  Negotiation: a process by which two ASAs interact iteratively to
      agree on parameter settings that best satisfy the objectives of
      both ASAs.

   o  State Synchronization: a process by which ASAs interact to receive
      the current state of parameter values stored in other ASAs.  This
      is a special case of negotiation in which information is sent but
      the ASAs do not request their peers to change parameter settings.
      All other definitions apply to both negotiation and
      synchronization.

   o  Technical Objective (usually abbreviated as Objective): A
      technical objective is a data structure, whose main contents are a
      name and a value.  The value consists of a single configurable
      parameter or a set of parameters of some kind.  The exact format
      of an objective is defined in Section 2.10.1.  An objective occurs
      in three contexts: Discovery, Negotiation and Synchronization.
      Normally, a given objective will not occur in negotiation and
      synchronization contexts simultaneously.

      *  One ASA may support multiple independent objectives.

      *  The parameter(s) in the value of a given objective apply to a
         specific service or function or action.  They may in principle
         be anything that can be set to a specific logical, numerical or
         string value, or a more complex data structure, by a network
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         node.  Each node is expected to contain one or more ASAs which
         may each manage subsidiary non-autonomic nodes.

      *  Discovery Objective: an objective in the process of discovery.
         Its value may be undefined.

      *  Synchronization Objective: an objective whose specific
         technical content needs to be synchronized among two or more
         ASAs.  Thus, each ASA will maintain its own copy of the
         objective.

      *  Negotiation Objective: an objective whose specific technical
         content needs to be decided in coordination with another ASA.
         Again, each ASA will maintain its own copy of the objective.

      A detailed discussion of objectives, including their format, is
      found in Section 2.10.

   o  Discovery Initiator: an ASA that starts discovery by sending a
      discovery message referring to a specific discovery objective.

   o  Discovery Responder: a peer that either contains an ASA supporting
      the discovery objective indicated by the discovery initiator, or
      caches the locator(s) of the ASA(s) supporting the objective.  It
      sends a Discovery Response, as described later.

   o  Synchronization Initiator: an ASA that starts synchronization by
      sending a request message referring to a specific synchronization
      objective.

   o  Synchronization Responder: a peer ASA which responds with the
      value of a synchronization objective.

   o  Negotiation Initiator: an ASA that starts negotiation by sending a
      request message referring to a specific negotiation objective.

   o  Negotiation Counterpart: a peer with which the Negotiation
      Initiator negotiates a specific negotiation objective.

   o  GRASP Instance: This refers to an instantiation of a GRASP
      protocol engine, likely including multiple threads or processes as
      well as dynamic data structures such as a discovery cache, running
      in a given security environment on a single device.

   o  GRASP Core: This refers to the code and shared data structures of
      a GRASP instance, which will communicate with individual ASAs via
      a suitable Application Programming Interface (API).
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   o  Interface or GRASP Interface: Unless otherwise stated, these refer
      to a network interface - which might be physical or virtual - that
      a specific instance of GRASP is currently using.  A device might
      have other interfaces that are not used by GRASP and which are
      outside the scope of the autonomic network.

2.2.  High Level Deployment Model

   A GRASP implementation will be part of the Autonomic Networking
   Infrastructure (ANI) in an autonomic node, which must also provide an
   appropriate security environment.  In accordance with
   [I-D.ietf-anima-reference-model], this SHOULD be the Autonomic
   Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane].  As a
   result, all autonomic nodes in the ACP are able to trust each other.
   It is expected that GRASP will access the ACP by using a typical
   socket programming interface and the ACP will make available only
   network interfaces within the autonomic network.  If there is no ACP,
   the considerations described in Section 2.5.1 apply.

   There will also be one or more Autonomic Service Agents (ASAs).  In
   the minimal case of a single-purpose device, these components might
   be fully integrated with GRASP and the ACP.  A more common model is
   expected to be a multi-purpose device capable of containing several
   ASAs, such as a router or large switch.  In this case it is expected
   that the ACP, GRASP and the ASAs will be implemented as separate
   processes, which are able to support asynchronous and simultaneous
   operations, for example by multi-threading.

   In some scenarios, a limited negotiation model might be deployed
   based on a limited trust relationship such as that between two
   administrative domains.  ASAs might then exchange limited information
   and negotiate some particular configurations.

   GRASP is explicitly designed to operate within a single addressing
   realm.  Its discovery and flooding mechanisms do not support
   autonomic operations that cross any form of address translator or
   upper layer proxy.

   A suitable Application Programming Interface (API) will be needed
   between GRASP and the ASAs.  In some implementations, ASAs would run
   in user space with a GRASP library providing the API, and this
   library would in turn communicate via system calls with core GRASP
   functions.  Details of the API are out of scope for the present
   document.  For further details of possible deployment models, see
   [I-D.ietf-anima-reference-model].

   An instance of GRASP must be aware of the network interfaces it will
   use, and of the appropriate global-scope and link-local addresses.
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   In the presence of the ACP, such information will be available from
   the adjacency table discussed in [I-D.ietf-anima-reference-model].
   In other cases, GRASP must determine such information for itself.
   Details depend on the device and operating system.  In the rest of
   this document, the terms ’interfaces’ or ’GRASP interfaces’ refers
   only to the set of network interfaces that a specific instance of
   GRASP is currently using.

   Because GRASP needs to work with very high reliability, especially
   during bootstrapping and during fault conditions, it is essential
   that every implementation continues to operate in adverse conditions.
   For example, discovery failures, or any kind of socket exception at
   any time, must not cause irrecoverable failures in GRASP itself, and
   must return suitable error codes through the API so that ASAs can
   also recover.

   GRASP must not depend upon non-volatile data storage.  All run time
   error conditions, and events such as address renumbering, network
   interface failures, and CPU sleep/wake cycles, must be handled in
   such a way that GRASP will still operate correctly and securely
   (Section 2.5.1) afterwards.

   An autonomic node will normally run a single instance of GRASP, used
   by multiple ASAs.  Possible exceptions are mentioned below.

2.3.  High Level Design

   This section describes the behavior model and general design of
   GRASP, supporting discovery, synchronization and negotiation, to act
   as a platform for different technical objectives.

   o  A generic platform:

      The protocol design is generic and independent of the
      synchronization or negotiation contents.  The technical contents
      will vary according to the various technical objectives and the
      different pairs of counterparts.

   o  Normally, a single main instance of the GRASP protocol engine will
      exist in an autonomic node, and each ASA will run as an
      independent asynchronous process.  However, scenarios where
      multiple instances of GRASP run in a single node, perhaps with
      different security properties, are possible (Section 2.5.2).  In
      this case, each instance MUST listen independently for GRASP link-
      local multicasts, and all instances MUST be woken by each such
      multicast, in order for discovery and flooding to work correctly.
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   o  Security infrastructure:

      As noted above, the protocol itself has no built-in security
      functionality, and relies on a separate secure infrastructure.

   o  Discovery, synchronization and negotiation are designed together:

      The discovery method and the synchronization and negotiation
      methods are designed in the same way and can be combined when this
      is useful, allowing a rapid mode of operation described in
      Section 2.5.4.  These processes can also be performed
      independently when appropriate.

      *  Thus, for some objectives, especially those concerned with
         application layer services, another discovery mechanism such as
         the future DNS Service Discovery [RFC7558] MAY be used.  The
         choice is left to the designers of individual ASAs.

   o  A uniform pattern for technical objectives:

      The synchronization and negotiation objectives are defined
      according to a uniform pattern.  The values that they contain
      could be carried either in a simple binary format or in a complex
      object format.  The basic protocol design uses the Concise Binary
      Object Representation (CBOR) [RFC7049], which is readily
      extensible for unknown future requirements.

   o  A flexible model for synchronization:

      GRASP supports synchronization between two nodes, which could be
      used repeatedly to perform synchronization among a small number of
      nodes.  It also supports an unsolicited flooding mode when large
      groups of nodes, possibly including all autonomic nodes, need data
      for the same technical objective.

      *  There may be some network parameters for which a more
         traditional flooding mechanism such as DNCP [RFC7787] is
         considered more appropriate.  GRASP can coexist with DNCP.

   o  A simple initiator/responder model for negotiation:

      Multi-party negotiations are very complicated to model and cannot
      readily be guaranteed to converge.  GRASP uses a simple bilateral
      model and can support multi-party negotiations by indirect steps.
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   o  Organizing of synchronization or negotiation content:

      The technical content transmitted by GRASP will be organized
      according to the relevant function or service.  The objectives for
      different functions or services are kept separate, because they
      may be negotiated or synchronized with different counterparts or
      have different response times.  Thus a normal arrangement would be
      a single ASA managing a small set of closely related objectives,
      with a version of that ASA in each relevant autonomic node.
      Further discussion of this aspect is out of scope for the current
      document.

   o  Requests and responses in negotiation procedures:

      The initiator can negotiate a specific negotiation objective with
      relevant counterpart ASAs.  It can request relevant information
      from a counterpart so that it can coordinate its local
      configuration.  It can request the counterpart to make a matching
      configuration.  It can request simulation or forecast results by
      sending some dry run conditions.

      Beyond the traditional yes/no answer, the responder can reply with
      a suggested alternative value for the objective concerned.  This
      would start a bi-directional negotiation ending in a compromise
      between the two ASAs.

   o  Convergence of negotiation procedures:

      To enable convergence, when a responder suggests a new value or
      condition in a negotiation step reply, it should be as close as
      possible to the original request or previous suggestion.  The
      suggested value of later negotiation steps should be chosen
      between the suggested values from the previous two steps.  GRASP
      provides mechanisms to guarantee convergence (or failure) in a
      small number of steps, namely a timeout and a maximum number of
      iterations.

   o  Extensibility:

      GRASP intentionally does not have a version number, and can be
      extended by adding new message types and options.  The Invalid
      Message (M_INVALID) will be used to signal that an implementation
      does not recognize a message or option sent by another
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      implementation.  In normal use, new semantics will be added by
      defining new synchronization or negotiation objectives.

2.4.  Quick Operating Overview

   An instance of GRASP is expected to run as a separate core module,
   providing an API (such as [I-D.liu-anima-grasp-api]) to interface to
   various ASAs.  These ASAs may operate without special privilege,
   unless they need it for other reasons (such as configuring IP
   addresses or manipulating routing tables).

   The GRASP mechanisms used by the ASA are built around GRASP
   objectives defined as data structures containing administrative
   information such as the objective’s unique name, and its current
   value.  The format and size of the value is not restricted by the
   protocol, except that it must be possible to serialize it for
   transmission in CBOR, which is no restriction at all in practice.

   GRASP provides the following mechanisms:

   o  A discovery mechanism (M_DISCOVERY, M_RESPONSE), by which an ASA
      can discover other ASAs supporting a given objective.

   o  A negotiation request mechanism (M_REQ_NEG), by which an ASA can
      start negotiation of an objective with a counterpart ASA.  Once a
      negotiation has started, the process is symmetrical, and there is
      a negotiation step message (M_NEGOTIATE) for each ASA to use in
      turn.  Two other functions support negotiating steps (M_WAIT,
      M_END).

   o  A synchronization mechanism (M_REQ_SYN), by which an ASA can
      request the current value of an objective from a counterpart ASA.
      With this, there is a corresponding response function (M_SYNCH)
      for an ASA that wishes to respond to synchronization requests.

   o  A flood mechanism (M_FLOOD), by which an ASA can cause the current
      value of an objective to be flooded throughout the autonomic
      network so that any ASA can receive it.  One application of this
      is to act as an announcement, avoiding the need for discovery of a
      widely applicable objective.

   Some example messages and simple message flows are provided in
   Appendix D.
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2.5.  GRASP Protocol Basic Properties and Mechanisms

2.5.1.  Required External Security Mechanism

   GRASP does not specify transport security because it is meant to be
   adapted to different environments.  Every solution adopting GRASP
   MUST specify a security and transport substrate used by GRASP in that
   solution.

   The substrate MUST enforce sending and receiving GRASP messages only
   between members of a mutually trusted group running GRASP.  Each
   group member is an instance of GRASP.  The group members are nodes of
   a connected graph.  The group and graph is created by the security
   and transport substrate and called the GRASP domain.  The substrate
   must support unicast messages between any group members and (link-
   local) multicast messages between adjacent group members.  It must
   deny messages between group members and non group members.  With this
   model, security is provided by enforcing group membership, but any
   member of the trusted group can attack the entire network until
   revoked.

   Substrates MUST use cryptographic member authentication and message
   integrity for GRASP messages.  This can be end-to-end or hop-by-hop
   across the domain.  The security and transport substrate MUST provide
   mechanisms to remove untrusted members from the group.

   If the substrate does not mandate and enforce GRASP message
   encryption then any service using GRASP in such a solution MUST
   provide protection and encryption for message elements whose exposure
   could constitute an attack vector.

   The security and transport substrate for GRASP in the ANI is the ACP.
   Unless otherwise noted, we assume this security and transport
   substrate in the remainder of this document.  The ACP does mandate
   the use of encryption; therefore GRASP in the ANI can rely on GRASP
   message being encrypted.  The GRASP domain is the ACP: all nodes in
   an autonomic domain connected by encrypted virtual links formed by
   the ACP.  The ACP uses hop-by-hop security (authentication/
   encryption) of messages.  Removal of nodes relies on standard PKI
   certificate revocation or expiry of sufficiently short lived
   certificates.  Refer to [I-D.ietf-anima-autonomic-control-plane] for
   more details.

   As mentioned in Section 2.3, some GRASP operations might be performed
   across an administrative domain boundary by mutual agreement, without
   the benefit of an ACP.  Such operations MUST be confined to a
   separate instance of GRASP with its own copy of all GRASP data
   structures running across a separate GRASP domain with a security and
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   transport substrate.  In the most simple case, each point-to-point
   interdomain GRASP peering could be a separate domain and the security
   and transport substrate could be built using transport or network
   layer security protocols.  This is subject to future specifications.

   An exception to the requirements for the security and transport
   substrate exists for highly constrained subsets of GRASP meant to
   support the establishment of a security and transport substrate,
   described in the following section.

2.5.2.  Discovery Unsolicited Link-Local (DULL) GRASP

   Some services may need to use insecure GRASP discovery, response and
   flood messages without being able to use pre-existing security
   associations, for example as part of discovery for establishing
   security associations such as a security substrate for GRASP.

   Such operations being intrinsically insecure, they need to be
   confined to link-local use to minimize the risk of malicious actions.
   Possible examples include discovery of candidate ACP neighbors
   [I-D.ietf-anima-autonomic-control-plane], discovery of bootstrap
   proxies [I-D.ietf-anima-bootstrapping-keyinfra] or perhaps
   initialization services in networks using GRASP without being fully
   autonomic (e.g., no ACP).  Such usage MUST be limited to link-local
   operations on a single interface and MUST be confined to a separate
   insecure instance of GRASP with its own copy of all GRASP data
   structures.  This instance is nicknamed DULL - Discovery Unsolicited
   Link-Local.

   The detailed rules for the DULL instance of GRASP are as follows:

   o  An initiator MAY send Discovery or Flood Synchronization link-
      local multicast messages which MUST have a loop count of 1, to
      prevent off-link operations.  Other unsolicited GRASP message
      types MUST NOT be sent.

   o  A responder MUST silently discard any message whose loop count is
      not 1.

   o  A responder MUST silently discard any message referring to a GRASP
      Objective that is not directly part of a service that requires
      this insecure mode.

   o  A responder MUST NOT relay any multicast messages.

   o  A Discovery Response MUST indicate a link-local address.

   o  A Discovery Response MUST NOT include a Divert option.

Bormann, et al.          Expires January 8, 2018               [Page 13]



Internet-Draft                    GRASP                        July 2017

   o  A node MUST silently discard any message whose source address is
      not link-local.

   To minimize traffic possibly observed by third parties, GRASP traffic
   SHOULD be minimized by using only Flood Synchronization to announce
   objectives and their associated locators, rather than by using
   Discovery and Response.  Further details are out of scope for this
   document

2.5.3.  Transport Layer Usage

   All GRASP messages, after they are serialized as a CBOR byte string,
   are transmitted as such directly over the transport protocol in use.
   The transport protocol(s) for a GRASP domain are specified by the
   security and transport substrate as introduced in Section 2.5.1.

   GRASP discovery and flooding messages are designed for GRASP domain
   wide flooding through hop-by-hop link-local multicast forwarding
   between adjacent GRASP nodes.  The GRASP security and transport
   substrate needs to specify how these link local multicasts are
   transported.  This can be unreliable transport (UDP) but it SHOULD be
   reliable transport (e.g., TCP).

   If the substrate specifies an unreliable transport such as UDP for
   discovery and flooding messages, then it MUST NOT use IP
   fragmentation because of its loss characteristic, especially in
   multi-hop flooding.  GRASP MUST then enforce at the user API level a
   limit to the size of discovery and flooding messages, so that no
   fragmentation can occur.  For IPv6 transport this means that those
   messages must be at most 1280 bytes sized IPv6 packets (unless there
   is a known larger minimum link MTU across the whole GRASP domain).

   All other GRASP messages are unicast beteween group members of the
   GRASP domain.  These MUST use a reliable transport protocol because
   GRASP itself does not provide for error detection, retransmission or
   flow control.  Unless otherwise specified by the security and
   transport substrate, TCP MUST be used.

   The security and transport substrate for GRASP in the ANI is the ACP.
   Unless otherwise noted, we assume this security and transport
   substrate in the remainder of this document when describing GRASPs
   message transport.  In the ACP, TCP is used for GRASP unicast
   messages.  GRASP discovery and flooding messages also use TCP: These
   link-local messages are forwarded by replicating them to all adjacent
   GRASP nodes on the link via TCP connections to those adjacent GRASP
   nodes.  Because of this, GRASP in the ANI has no limitations on the
   size of discovery and flooding messages with respect to fragmentation
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   issues.  UDP is used in the ANI with GRASP only with DULL when the
   ACP is built to discover ACP/GRASP neighbors on links.

   For link-local UDP multicast, the GRASP protocol listens to the well-
   known GRASP Listen Port (Section 2.6).  Transport connections for
   Discovery and Flooding on relay nodes must terminate in GRASP
   instances (eg: GRASP ASAs) so that link-local multicast, hop-by-hop
   flooding of M_DISCOVERY and M_FLOOD and hop-by-hop forwarding of
   M_RESPONSE and caching of those responses along the path work
   correctly.

   Unicast transport connections used for synchronization and
   negotiation can terminate directly in ASAs that implement objectives
   and therefore this traffic does not need to pass through GRASP
   instances.  For this, the ASA listens on its own dynamically assigned
   ports, which are communicated to its peers during discovery.
   Alternatively, the GRASP instance can also terminate the unicast
   transport connections and pass the traffic from/to the ASA if that is
   preferrable in some implementation (eg: to better decouple ASAs from
   network connections).

2.5.4.  Discovery Mechanism and Procedures

2.5.4.1.  Separated discovery and negotiation mechanisms

   Although discovery and negotiation or synchronization are defined
   together in GRASP, they are separate mechanisms.  The discovery
   process could run independently from the negotiation or
   synchronization process.  Upon receiving a Discovery (Section 2.8.4)
   message, the recipient node should return a response message in which
   it either indicates itself as a discovery responder or diverts the
   initiator towards another more suitable ASA.  However, this response
   may be delayed if the recipient needs to relay the discovery onwards,
   as described below.

   The discovery action (M_DISCOVERY) will normally be followed by a
   negotiation (M_REQ_NEG) or synchronization (M_REQ_SYN) action.  The
   discovery results could be utilized by the negotiation protocol to
   decide which ASA the initiator will negotiate with.

   The initiator of a discovery action for a given objective need not be
   capable of responding to that objective as a Negotiation Counterpart,
   as a Synchronization Responder or as source for flooding.  For
   example, an ASA might perform discovery even if it only wishes to act
   a Synchronization Initiator or Negotiation Initiator.  Such an ASA
   does not itself need to respond to discovery messages.
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   It is also entirely possible to use GRASP discovery without any
   subsequent negotiation or synchronization action.  In this case, the
   discovered objective is simply used as a name during the discovery
   process and any subsequent operations between the peers are outside
   the scope of GRASP.

2.5.4.2.  Discovery Overview

   A complete discovery process will start with a multicast (of
   M_DISCOVERY) on the local link.  On-link neighbors supporting the
   discovery objective will respond directly (with M_RESPONSE).  A
   neighbor with multiple interfaces may respond with a cached discovery
   response.  If it has no cached response, it will relay the discovery
   on its other GRASP interfaces.  If a node receiving the relayed
   discovery supports the discovery objective, it will respond to the
   relayed discovery.  If it has a cached response, it will respond with
   that.  If not, it will repeat the discovery process, which thereby
   becomes iterative.  The loop count and timeout will ensure that the
   process ends.  Further details are given below.

   A Discovery message MAY be sent unicast to a peer node, which SHOULD
   then proceed exactly as if the message had been multicast, except
   that when TCP is used, the response will be on the same socket as the
   query.  However, this mode does not guarantee successful discovery in
   the general case.

2.5.4.3.  Discovery Procedures

   Discovery starts as an on-link operation.  The Divert option can tell
   the discovery initiator to contact an off-link ASA for that discovery
   objective.  If the security and transport substrate of the GRASP
   domain (see Section 2.5.3) uses UDP link-local multicast then the
   discovery initiator sends these to the ALL_GRASP_NEIGHBORS link-local
   multicast address (Section 2.6) and and all GRASP nodes need to
   listen to this address to act as discovery responder.  Because this
   port is unique in a device, this is a function of the GRASP instance
   and not of an individual ASA.  As a result, each ASA will need to
   register the objectives that it supports with the local GRASP
   instance.

   If an ASA in a neighbor device supports the requested discovery
   objective, the device SHOULD respond to the link-local multicast with
   a unicast Discovery Response message (Section 2.8.5) with locator
   option(s), unless it is temporarily unavailable.  Otherwise, if the
   neighbor has cached information about an ASA that supports the
   requested discovery objective (usually because it discovered the same
   objective before), it SHOULD respond with a Discovery Response
   message with a Divert option pointing to the appropriate Discovery
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   Responder.  However, it SHOULD NOT respond with a cached response on
   an interface if it learnt that information from the same interface,
   because the peer in question will answer directly if still
   operational.

   If a device has no information about the requested discovery
   objective, and is not acting as a discovery relay (see below) it MUST
   silently discard the Discovery message.

   The discovery initiator MUST set a reasonable timeout on the
   discovery process.  A suggested value is 100 milliseconds multiplied
   by the loop count embedded in the objective.

   If no discovery response is received within the timeout, the
   Discovery message MAY be repeated, with a newly generated Session ID
   (Section 2.7).  An exponential backoff SHOULD be used for subsequent
   repetitions, to limit the load during busy periods.  The details of
   the backoff algorithm will depend on the use case for the objective
   concerned but MUST be consistent with the recommendations in
   [RFC8085] for low data-volume multicast.  Frequent repetition might
   be symptomatic of a denial of service attack.

   After a GRASP device successfully discovers a locator for a Discovery
   Responder supporting a specific objective, it SHOULD cache this
   information, including the interface index [RFC3493] via which it was
   discovered.  This cache record MAY be used for future negotiation or
   synchronization, and the locator SHOULD be passed on when appropriate
   as a Divert option to another Discovery Initiator.

   The cache mechanism MUST include a lifetime for each entry.  The
   lifetime is derived from a time-to-live (ttl) parameter in each
   Discovery Response message.  Cached entries MUST be ignored or
   deleted after their lifetime expires.  In some environments,
   unplanned address renumbering might occur.  In such cases, the
   lifetime SHOULD be short compared to the typical address lifetime.
   The discovery mechanism needs to track the node’s current address to
   ensure that Discovery Responses always indicate the correct address.

   If multiple Discovery Responders are found for the same objective,
   they SHOULD all be cached, unless this creates a resource shortage.
   The method of choosing between multiple responders is an
   implementation choice.  This choice MUST be available to each ASA but
   the GRASP implementation SHOULD provide a default choice.

   Because Discovery Responders will be cached in a finite cache, they
   might be deleted at any time.  In this case, discovery will need to
   be repeated.  If an ASA exits for any reason, its locator might still
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   be cached for some time, and attempts to connect to it will fail.
   ASAs need to be robust in these circumstances.

2.5.4.4.  Discovery Relaying

   A GRASP instance with multiple link-layer interfaces (typically
   running in a router) MUST support discovery on all GRASP interfaces.
   We refer to this as a ’relaying instance’.

   DULL Instances (Section 2.5.2) are always single-interface instances
   and therefore MUST NOT perform discovery relaying.

   If a relaying instance receives a Discovery message on a given
   interface for a specific objective that it does not support and for
   which it has not previously cached a Discovery Responder, it MUST
   relay the query by re-issuing a new Discovery message as a link-local
   multicast on its other GRASP interfaces.

   The relayed discovery message MUST have the same Session ID and
   Initiator field as the incoming (see Section 2.8.4).  The Initiator
   IP address field is only used to allow for disambiguation of the
   Session ID and is never used to address Response packets.  Response
   packets are sent back to the relaying instance, not the original
   initiator.

   The M_DISCOVERY message does not encode the transport address of the
   originator or relay.  Response packets must therefore be sent to the
   transport layer address of the connection on which the M_DISCOVERY
   message was received.  If the M_DISCOVERY was relayed via a reliable
   hop-by-hop transport connection, the response is simply sent back via
   the same connection.

   If the M_DISCOVERY was relayed via link-local (eg: UDP) multicast,
   the response is sent back via a reliable hop-by-hop transport
   connection with the same port number as the source port of the link-
   local multicast.  Therefore, if link-local multicast is used and
   M_RESPONSE messages are required (which is the case in almost all
   GRASP instances except for the limited use of DULL instances in the
   ANI), GRASP needs to be able to bind to one port number on UDP from
   which to originate the link-local multicast M_DISCOVERY messages and
   the same port number on the reliable hop-by-hop transport (eg: TCP by
   default) to be able to respond to transport connections from
   responders that want to send M_RESPONSE messages back.  Note that
   this port does not need to be the GRASP_LISTEN_PORT.

   The relaying instance MUST decrement the loop count within the
   objective, and MUST NOT relay the Discovery message if the result is
   zero.  Also, it MUST limit the total rate at which it relays
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   discovery messages to a reasonable value, in order to mitigate
   possible denial of service attacks.  For example, the rate limit
   could be set to a small multiple of the observed rate of discovery
   messages during normal operation.  The relaying instance MUST cache
   the Session ID value and initiator address of each relayed Discovery
   message until any Discovery Responses have arrived or the discovery
   process has timed out.  To prevent loops, it MUST NOT relay a
   Discovery message which carries a given cached Session ID and
   initiator address more than once.  These precautions avoid discovery
   loops and mitigate potential overload.

   Since the relay device is unaware of the timeout set by the original
   initiator it SHOULD set a suitable timeout for the relayed discovery.
   A suggested value is 100 milliseconds multiplied by the remaining
   loop count.

   The discovery results received by the relaying instance MUST in turn
   be sent as a Discovery Response message to the Discovery message that
   caused the relay action.

2.5.4.5.  Rapid Mode (Discovery with Negotiation or Synchronization )

   A Discovery message MAY include an Objective option.  This allows a
   rapid mode of negotiation (Section 2.5.5.1) or synchronization
   (Section 2.5.6.3).  Rapid mode is currently limited to a single
   objective for simplicity of design and implementation.  A possible
   future extension is to allow multiple objectives in rapid mode for
   greater efficiency.

2.5.5.  Negotiation Procedures

   A negotiation initiator opens a transport connection to a counterpart
   ASA using the address, protocol and port obtained during discovery.
   It then sends a negotiation request (using M_REQ_NEG) to the
   counterpart, including a specific negotiation objective.  It may
   request the negotiation counterpart to make a specific configuration.
   Alternatively, it may request a certain simulation or forecast result
   by sending a dry run configuration.  The details, including the
   distinction between a dry run and a live configuration change, will
   be defined separately for each type of negotiation objective.  Any
   state associated with a dry run operation, such as temporarily
   reserving a resource for subsequent use in a live run, is entirely a
   matter for the designer of the ASA concerned.

   Each negotiation session as a whole is subject to a timeout (default
   GRASP_DEF_TIMEOUT milliseconds, Section 2.6), initialised when the
   request is sent (see Section 2.8.6).  If no reply message of any kind
   is received within the timeout, the negotiation request MAY be
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   repeated, with a newly generated Session ID (Section 2.7).  An
   exponential backoff SHOULD be used for subsequent repetitions.  The
   details of the backoff algorithm will depend on the use case for the
   objective concerned.

   If the counterpart can immediately apply the requested configuration,
   it will give an immediate positive (O_ACCEPT) answer (using M_END).
   This will end the negotiation phase immediately.  Otherwise, it will
   negotiate (using M_NEGOTIATE).  It will reply with a proposed
   alternative configuration that it can apply (typically, a
   configuration that uses fewer resources than requested by the
   negotiation initiator).  This will start a bi-directional negotiation
   (using M_NEGOTIATE) to reach a compromise between the two ASAs.

   The negotiation procedure is ended when one of the negotiation peers
   sends a Negotiation Ending (M_END) message, which contains an accept
   (O_ACCEPT) or decline (O_DECLINE) option and does not need a response
   from the negotiation peer.  Negotiation may also end in failure
   (equivalent to a decline) if a timeout is exceeded or a loop count is
   exceeded.  When the procedure ends for whatever reason, the transport
   connection SHOULD be closed.  A transport session failure is treated
   as a negotiation failure.

   A negotiation procedure concerns one objective and one counterpart.
   Both the initiator and the counterpart may take part in simultaneous
   negotiations with various other ASAs, or in simultaneous negotiations
   about different objectives.  Thus, GRASP is expected to be used in a
   multi-threaded mode or its logical equivalent.  Certain negotiation
   objectives may have restrictions on multi-threading, for example to
   avoid over-allocating resources.

   Some configuration actions, for example wavelength switching in
   optical networks, might take considerable time to execute.  The ASA
   concerned needs to allow for this by design, but GRASP does allow for
   a peer to insert latency in a negotiation process if necessary
   (Section 2.8.9, M_WAIT).

2.5.5.1.  Rapid Mode (Discovery/Negotiation Linkage)

   A Discovery message MAY include a Negotiation Objective option.  In
   this case it is as if the initiator sent the sequence M_DISCOVERY,
   immediately followed by M_REQ_NEG.  This has implications for the
   construction of the GRASP core, as it must carefully pass the
   contents of the Negotiation Objective option to the ASA so that it
   may evaluate the objective directly.  When a Negotiation Objective
   option is present the ASA replies with an M_NEGOTIATE message (or
   M_END with O_ACCEPT if it is immediately satisfied with the
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   proposal), rather than with an M_RESPONSE.  However, if the recipient
   node does not support rapid mode, discovery will continue normally.

   It is possible that a Discovery Response will arrive from a responder
   that does not support rapid mode, before such a Negotiation message
   arrives.  In this case, rapid mode will not occur.

   This rapid mode could reduce the interactions between nodes so that a
   higher efficiency could be achieved.  However, a network in which
   some nodes support rapid mode and others do not will have complex
   timing-dependent behaviors.  Therefore, the rapid negotiation
   function SHOULD be disabled by default.

2.5.6.  Synchronization and Flooding Procedures

2.5.6.1.  Unicast Synchronization

   A synchronization initiator opens a transport connection to a
   counterpart ASA using the address, protocol and port obtained during
   discovery.  It then sends a synchronization request (using M_REQ_SYN)
   to the counterpart, including a specific synchronization objective.
   The counterpart responds with a Synchronization message (M_SYNCH,
   Section 2.8.10) containing the current value of the requested
   synchronization objective.  No further messages are needed and the
   transport connection SHOULD be closed.  A transport session failure
   is treated as a synchronization failure.

   If no reply message of any kind is received within a given timeout
   (default GRASP_DEF_TIMEOUT milliseconds, Section 2.6), the
   synchronization request MAY be repeated, with a newly generated
   Session ID (Section 2.7).  An exponential backoff SHOULD be used for
   subsequent repetitions.  The details of the backoff algorithm will
   depend on the use case for the objective concerned.

2.5.6.2.  Flooding

   In the case just described, the message exchange is unicast and
   concerns only one synchronization objective.  For large groups of
   nodes requiring the same data, synchronization flooding is available.
   For this, a flooding initiator MAY send an unsolicited Flood
   Synchronization message containing one or more Synchronization
   Objective option(s), if and only if the specification of those
   objectives permits it.  This is sent as a multicast message to the
   ALL_GRASP_NEIGHBORS multicast address (Section 2.6).

   Receiving flood multicasts is a function of the GRASP core, as in the
   case of discovery multicasts (Section 2.5.4.3).
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   To ensure that flooding does not result in a loop, the originator of
   the Flood Synchronization message MUST set the loop count in the
   objectives to a suitable value (the default is GRASP_DEF_LOOPCT).
   Also, a suitable mechanism is needed to avoid excessive multicast
   traffic.  This mechanism MUST be defined as part of the specification
   of the synchronization objective(s) concerned.  It might be a simple
   rate limit or a more complex mechanism such as the Trickle algorithm
   [RFC6206].

   A GRASP device with multiple link-layer interfaces (typically a
   router) MUST support synchronization flooding on all GRASP
   interfaces.  If it receives a multicast Flood Synchronization message
   on a given interface, it MUST relay it by re-issuing a Flood
   Synchronization message as a link-local multicast on its other GRASP
   interfaces.  The relayed message MUST have the same Session ID as the
   incoming message and MUST be tagged with the IP address of its
   original initiator.

   Link-layer Flooding is supported by GRASP by setting the loop count
   to 1, and sending with a link-local source address.  Floods with
   link-local source addresses and a loop count other than 1 are
   invalid, and such messages MUST be discarded.

   The relaying device MUST decrement the loop count within the first
   objective, and MUST NOT relay the Flood Synchronization message if
   the result is zero.  Also, it MUST limit the total rate at which it
   relays Flood Synchronization messages to a reasonable value, in order
   to mitigate possible denial of service attacks.  For example, the
   rate limit could be set to a small multiple of the observed rate of
   flood messages during normal operation.  The relaying device MUST
   cache the Session ID value and initiator address of each relayed
   Flood Synchronization message for a time not less than twice
   GRASP_DEF_TIMEOUT milliseconds.  To prevent loops, it MUST NOT relay
   a Flood Synchronization message which carries a given cached Session
   ID and initiator address more than once.  These precautions avoid
   synchronization loops and mitigate potential overload.

   Note that this mechanism is unreliable in the case of sleeping nodes,
   or new nodes that join the network, or nodes that rejoin the network
   after a fault.  An ASA that initiates a flood SHOULD repeat the flood
   at a suitable frequency, which MUST be consistent with the
   recommendations in [RFC8085] for low data-volume multicast.  The ASA
   SHOULD also act as a synchronization responder for the objective(s)
   concerned.  Thus nodes that require an objective subject to flooding
   can either wait for the next flood or request unicast synchronization
   for that objective.
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   The multicast messages for synchronization flooding are subject to
   the security rules in Section 2.5.1.  In practice this means that
   they MUST NOT be transmitted and MUST be ignored on receipt unless
   there is an operational ACP or equivalent strong security in place.
   However, because of the security weakness of link-local multicast
   (Section 4), synchronization objectives that are flooded SHOULD NOT
   contain unencrypted private information and SHOULD be validated by
   the recipient ASA.

2.5.6.3.  Rapid Mode (Discovery/Synchronization Linkage)

   A Discovery message MAY include a Synchronization Objective option.
   In this case the Discovery message also acts as a Request
   Synchronization message to indicate to the Discovery Responder that
   it could directly reply to the Discovery Initiator with a
   Synchronization message Section 2.8.10 with synchronization data for
   rapid processing, if the discovery target supports the corresponding
   synchronization objective.  The design implications are similar to
   those discussed in Section 2.5.5.1.

   It is possible that a Discovery Response will arrive from a responder
   that does not support rapid mode, before such a Synchronization
   message arrives.  In this case, rapid mode will not occur.

   This rapid mode could reduce the interactions between nodes so that a
   higher efficiency could be achieved.  However, a network in which
   some nodes support rapid mode and others do not will have complex
   timing-dependent behaviors.  Therefore, the rapid synchronization
   function SHOULD be configured off by default and MAY be configured on
   or off by Intent.

2.6.  GRASP Constants

   o  ALL_GRASP_NEIGHBORS

      A link-local scope multicast address used by a GRASP-enabled
      device to discover GRASP-enabled neighbor (i.e., on-link) devices.
      All devices that support GRASP are members of this multicast
      group.

      *  IPv6 multicast address: TBD1

      *  IPv4 multicast address: TBD2

   o  GRASP_LISTEN_PORT (TBD3)

      A well-known UDP user port that every GRASP-enabled network device
      MUST listen to for link-local multicasts when UDP is used for
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      M_DISCOVERY or M_FLOOD messages in the GRASP instance This user
      port MAY also be used to listen for TCP or UDP unicast messages in
      a simple implementation of GRASP (Section 2.5.3).

   o  GRASP_DEF_TIMEOUT (60000 milliseconds)

      The default timeout used to determine that an operation has failed
      to complete.

   o  GRASP_DEF_LOOPCT (6)

      The default loop count used to determine that a negotiation has
      failed to complete, and to avoid looping messages.

   o  GRASP_DEF_MAX_SIZE (2048)

      The default maximum message size in bytes.

2.7.  Session Identifier (Session ID)

   This is an up to 32-bit opaque value used to distinguish multiple
   sessions between the same two devices.  A new Session ID MUST be
   generated by the initiator for every new Discovery, Flood
   Synchronization or Request message.  All responses and follow-up
   messages in the same discovery, synchronization or negotiation
   procedure MUST carry the same Session ID.

   The Session ID SHOULD have a very low collision rate locally.  It
   MUST be generated by a pseudo-random number generator (PRNG) using a
   locally generated seed which is unlikely to be used by any other
   device in the same network.  The PRNG SHOULD be cryptographically
   strong [RFC4086].  When allocating a new Session ID, GRASP MUST check
   that the value is not already in use and SHOULD check that it has not
   been used recently, by consulting a cache of current and recent
   sessions.  In the unlikely event of a clash, GRASP MUST generate a
   new value.

   However, there is a finite probability that two nodes might generate
   the same Session ID value.  For that reason, when a Session ID is
   communicated via GRASP, the receiving node MUST tag it with the
   initiator’s IP address to allow disambiguation.  In the highly
   unlikely event of two peers opening sessions with the same Session ID
   value, this tag will allow the two sessions to be distinguished.
   Multicast GRASP messages and their responses, which may be relayed
   between links, therefore include a field that carries the initiator’s
   global IP address.
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   There is a highly unlikely race condition in which two peers start
   simultaneous negotiation sessions with each other using the same
   Session ID value.  Depending on various implementation choices, this
   might lead to the two sessions being confused.  See Section 2.8.6 for
   details of how to avoid this.

2.8.  GRASP Messages

2.8.1.  Message Overview

   This section defines the GRASP message format and message types.
   Message types not listed here are reserved for future use.

   The messages currently defined are:

      Discovery and Discovery Response (M_DISCOVERY, M_RESPONSE).

      Request Negotiation, Negotiation, Confirm Waiting and Negotiation
      End (M_REQ_NEG, M_NEGOTIATE, M_WAIT, M_END).

      Request Synchronization, Synchronization, and Flood
      Synchronization (M_REQ_SYN, M_SYNCH, M_FLOOD.

      No Operation and Invalid (M_NOOP, M_INVALID).

2.8.2.  GRASP Message Format

   GRASP messages share an identical header format and a variable format
   area for options.  GRASP message headers and options are transmitted
   in Concise Binary Object Representation (CBOR) [RFC7049].  In this
   specification, they are described using CBOR data definition language
   (CDDL) [I-D.greevenbosch-appsawg-cbor-cddl].  Fragmentary CDDL is
   used to describe each item in this section.  A complete and normative
   CDDL specification of GRASP is given in Section 5, including
   constants such as message types.

   Every GRASP message, except the No Operation message, carries a
   Session ID (Section 2.7).  Options are then presented serially in the
   options field.

   In fragmentary CDDL, every GRASP message follows the pattern:
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     grasp-message = (message .within message-structure) / noop-message

     message-structure = [MESSAGE_TYPE, session-id, ?initiator,
                          *grasp-option]

     MESSAGE_TYPE = 1..255
     session-id = 0..4294967295 ;up to 32 bits
     grasp-option = any

   The MESSAGE_TYPE indicates the type of the message and thus defines
   the expected options.  Any options received that are not consistent
   with the MESSAGE_TYPE SHOULD be silently discarded.

   The No Operation (noop) message is described in Section 2.8.13.

   The various MESSAGE_TYPE values are defined in Section 5.

   All other message elements are described below and formally defined
   in Section 5.

   If an unrecognized MESSAGE_TYPE is received in a unicast message, an
   Invalid message (Section 2.8.12) MAY be returned.  Otherwise the
   message MAY be logged and MUST be discarded.  If an unrecognized
   MESSAGE_TYPE is received in a multicast message, it MAY be logged and
   MUST be silently discarded.

2.8.3.  Message Size

   GRASP nodes MUST be able to receive unicast messages of at least
   GRASP_DEF_MAX_SIZE bytes.  GRASP nodes MUST NOT send unicast messages
   longer than GRASP_DEF_MAX_SIZE bytes unless a longer size is
   explicitly allowed for the objective concerned.  For example, GRASP
   negotiation itself could be used to agree on a longer message size.

   The message parser used by GRASP should be configured to know about
   the GRASP_DEF_MAX_SIZE, or any larger negotiated message size, so
   that it may defend against overly long messages.

   The maximum size of multicast messages (M_DISCOVERY and M_FLOOD)
   depends on the link layer technology or link adaptation layer in use.

2.8.4.  Discovery Message

   In fragmentary CDDL, a Discovery message follows the pattern:

     discovery-message = [M_DISCOVERY, session-id, initiator, objective]
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   A discovery initiator sends a Discovery message to initiate a
   discovery process for a particular objective option.

   The discovery initiator sends all Discovery messages via UDP to port
   GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS multicast
   address on each link-layer interface in use by GRASP.  It then
   listens for unicast TCP responses on a given port, and stores the
   discovery results (including responding discovery objectives and
   corresponding unicast locators).

   The listening port used for TCP MUST be the same port as used for
   sending the Discovery UDP multicast, on a given interface.  In an
   implementation with a single GRASP instance in a node this MAY be
   GRASP_LISTEN_PORT.  To support multiple instances in the same node,
   the GRASP discovery mechanism in each instance needs to find, for
   each interface, a dynamic port that it can bind to for both sending
   UDP link-local multicast and listening for TCP, before initiating any
   discovery.

   The ’initiator’ field in the message is a globally unique IP address
   of the initiator, for the sole purpose of disambiguating the Session
   ID in other nodes.  If for some reason the initiator does not have a
   globally unique IP address, it MUST use a link-local address for this
   purpose that is highly likely to be unique, for example using
   [RFC7217].  Determination of a node’s globally unique IP address is
   implementation-dependent.

   A Discovery message MUST include exactly one of the following:

   o  a discovery objective option (Section 2.10.1).  Its loop count
      MUST be set to a suitable value to prevent discovery loops
      (default value is GRASP_DEF_LOOPCT).  If the discovery initiator
      requires only on-link responses, the loop count MUST be set to 1.

   o  a negotiation objective option (Section 2.10.1).  This is used
      both for the purpose of discovery and to indicate to the discovery
      target that it MAY directly reply to the discovery initiatior with
      a Negotiation message for rapid processing, if it could act as the
      corresponding negotiation counterpart.  The sender of such a
      Discovery message MUST initialize a negotiation timer and loop
      count in the same way as a Request Negotiation message
      (Section 2.8.6).

   o  a synchronization objective option (Section 2.10.1).  This is used
      both for the purpose of discovery and to indicate to the discovery
      target that it MAY directly reply to the discovery initiator with
      a Synchronization message for rapid processing, if it could act as
      the corresponding synchronization counterpart.  Its loop count
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      MUST be set to a suitable value to prevent discovery loops
      (default value is GRASP_DEF_LOOPCT).

   As mentioned in Section 2.5.4.2, a Discovery message MAY be sent
   unicast to a peer node, which SHOULD then proceed exactly as if the
   message had been multicast.

2.8.5.  Discovery Response Message

   In fragmentary CDDL, a Discovery Response message follows the
   pattern:

     response-message = [M_RESPONSE, session-id, initiator, ttl,
                        (+locator-option // divert-option), ?objective)]

     ttl = 0..4294967295 ; in milliseconds

   A node which receives a Discovery message SHOULD send a Discovery
   Response message if and only if it can respond to the discovery.

      It MUST contain the same Session ID and initiator as the Discovery
      message.

      It MUST contain a time-to-live (ttl) for the validity of the
      response, given as a positive integer value in milliseconds.  Zero
      implies a value significantly greater than GRASP_DEF_TIMEOUT
      milliseconds (Section 2.6).  A suggested value is ten times that
      amount.

      It MAY include a copy of the discovery objective from the
      Discovery message.

   It is sent to the sender of the Discovery message via TCP at the port
   used to send the Discovery message (as explained in Section 2.8.4).
   In the case of a relayed Discovery message, the Discovery Response is
   thus sent to the relay, not the original initiator.

   In all cases, the transport session SHOULD be closed after sending
   the Discovery Response.  A transport session failure is treated as no
   response.

   If the responding node supports the discovery objective of the
   discovery, it MUST include at least one kind of locator option
   (Section 2.9.5) to indicate its own location.  A sequence of multiple
   kinds of locator options (e.g.  IP address option and FQDN option) is
   also valid.
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   If the responding node itself does not support the discovery
   objective, but it knows the locator of the discovery objective, then
   it SHOULD respond to the discovery message with a divert option
   (Section 2.9.2) embedding a locator option or a combination of
   multiple kinds of locator options which indicate the locator(s) of
   the discovery objective.

   More details on the processing of Discovery Responses are given in
   Section 2.5.4.

2.8.6.  Request Messages

   In fragmentary CDDL, Request Negotiation and Request Synchronization
   messages follow the patterns:

   request-negotiation-message = [M_REQ_NEG, session-id, objective]

   request-synchronization-message = [M_REQ_SYN, session-id, objective]

   A negotiation or synchronization requesting node sends the
   appropriate Request message to the unicast address of the negotiation
   or synchronization counterpart, using the appropriate protocol and
   port numbers (selected from the discovery result).  If the discovery
   result is an FQDN, it will be resolved first.

   A Request message MUST include the relevant objective option.  In the
   case of Request Negotiation, the objective option MUST include the
   requested value.

   When an initiator sends a Request Negotiation message, it MUST
   initialize a negotiation timer for the new negotiation thread.  The
   default is GRASP_DEF_TIMEOUT milliseconds.  Unless this timeout is
   modified by a Confirm Waiting message (Section 2.8.9), the initiator
   will consider that the negotiation has failed when the timer expires.

   Similarly, when an initiator sends a Request Synchronization, it
   SHOULD initialize a synchronization timer.  The default is
   GRASP_DEF_TIMEOUT milliseconds.  The initiator will consider that
   synchronization has failed if there is no response before the timer
   expires.

   When an initiator sends a Request message, it MUST initialize the
   loop count of the objective option with a value defined in the
   specification of the option or, if no such value is specified, with
   GRASP_DEF_LOOPCT.

Bormann, et al.          Expires January 8, 2018               [Page 29]



Internet-Draft                    GRASP                        July 2017

   If a node receives a Request message for an objective for which no
   ASA is currently listening, it MUST immediately close the relevant
   socket to indicate this to the initiator.  This is to avoid
   unnecessary timeouts if, for example, an ASA exits prematurely but
   the GRASP core is listening on its behalf.

   To avoid the highly unlikely race condition in which two nodes
   simultaneously request sessions with each other using the same
   Session ID (Section 2.7), when a node receives a Request message, it
   MUST verify that the received Session ID is not already locally
   active.  In case of a clash, it MUST discard the Request message, in
   which case the initiator will detect a timeout.

2.8.7.  Negotiation Message

   In fragmentary CDDL, a Negotiation message follows the pattern:

     negotiate-message = [M_NEGOTIATE, session-id, objective]

   A negotiation counterpart sends a Negotiation message in response to
   a Request Negotiation message, a Negotiation message, or a Discovery
   message in Rapid Mode.  A negotiation process MAY include multiple
   steps.

   The Negotiation message MUST include the relevant Negotiation
   Objective option, with its value updated according to progress in the
   negotiation.  The sender MUST decrement the loop count by 1.  If the
   loop count becomes zero the message MUST NOT be sent.  In this case
   the negotiation session has failed and will time out.

2.8.8.  Negotiation End Message

   In fragmentary CDDL, a Negotiation End message follows the pattern:

     end-message = [M_END, session-id, accept-option / decline-option]

   A negotiation counterpart sends an Negotiation End message to close
   the negotiation.  It MUST contain either an accept or a decline
   option, defined in Section 2.9.3 and Section 2.9.4.  It could be sent
   either by the requesting node or the responding node.

2.8.9.  Confirm Waiting Message

   In fragmentary CDDL, a Confirm Waiting message follows the pattern:

     wait-message = [M_WAIT, session-id, waiting-time]
     waiting-time = 0..4294967295 ; in milliseconds
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   A responding node sends a Confirm Waiting message to ask the
   requesting node to wait for a further negotiation response.  It might
   be that the local process needs more time or that the negotiation
   depends on another triggered negotiation.  This message MUST NOT
   include any other options.  When received, the waiting time value
   overwrites and restarts the current negotiation timer
   (Section 2.8.6).

   The responding node SHOULD send a Negotiation, Negotiation End or
   another Confirm Waiting message before the negotiation timer expires.
   If not, when the initiator’s timer expires, the initiator MUST treat
   the negotiation procedure as failed.

2.8.10.  Synchronization Message

   In fragmentary CDDL, a Synchronization message follows the pattern:

     synch-message = [M_SYNCH, session-id, objective]

   A node which receives a Request Synchronization, or a Discovery
   message in Rapid Mode, sends back a unicast Synchronization message
   with the synchronization data, in the form of a GRASP Option for the
   specific synchronization objective present in the Request
   Synchronization.

2.8.11.  Flood Synchronization Message

   In fragmentary CDDL, a Flood Synchronization message follows the
   pattern:

     flood-message = [M_FLOOD, session-id, initiator, ttl,
                     +[objective, (locator-option / [])]]

     ttl = 0..4294967295 ; in milliseconds

   A node MAY initiate flooding by sending an unsolicited Flood
   Synchronization Message with synchronization data.  This MAY be sent
   to port GRASP_LISTEN_PORT at the link-local ALL_GRASP_NEIGHBORS
   multicast address, in accordance with the rules in Section 2.5.6.

      The initiator address is provided, as described for Discovery
      messages (Section 2.8.4), only to disambiguate the Session ID.

      The message MUST contain a time-to-live (ttl) for the validity of
      the contents, given as a positive integer value in milliseconds.
      There is no default; zero indicates an indefinite lifetime.
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      The synchronization data are in the form of GRASP Option(s) for
      specific synchronization objective(s).  The loop count(s) MUST be
      set to a suitable value to prevent flood loops (default value is
      GRASP_DEF_LOOPCT).

      Each objective option MAY be followed by a locator option
      associated with the flooded objective.  In its absence, an empty
      option MUST be included to indicate a null locator.

   A node that receives a Flood Synchronization message MUST cache the
   received objectives for use by local ASAs.  Each cached objective
   MUST be tagged with the locator option sent with it, or with a null
   tag if an empty locator option was sent.  If a subsequent Flood
   Synchronization message carrying an objective with same name and the
   same tag, the corresponding cached copy of the objective MUST be
   overwritten.  If a subsequent Flood Synchronization message carrying
   an objective with same name arrives with a different tag, a new
   cached entry MUST be created.

   Note: the purpose of this mechanism is to allow the recipient of
   flooded values to distinguish between different senders of the same
   objective, and if necessary communicate with them using the locator,
   protocol and port included in the locator option.  Many objectives
   will not need this mechanism, so they will be flooded with a null
   locator.

   Cached entries MUST be ignored or deleted after their lifetime
   expires.

2.8.12.  Invalid Message

   In fragmentary CDDL, an Invalid message follows the pattern:

     invalid-message = [M_INVALID, session-id, ?any]

   This message MAY be sent by an implementation in response to an
   incoming unicast message that it considers invalid.  The session-id
   MUST be copied from the incoming message.  The content SHOULD be
   diagnostic information such as a partial copy of the invalid message
   up to the maximum message size.  An M_INVALID message MAY be silently
   ignored by a recipient.  However, it could be used in support of
   extensibility, since it indicates that the remote node does not
   support a new or obsolete message or option.

   An M_INVALID message MUST NOT be sent in response to an M_INVALID
   message.
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2.8.13.  No Operation Message

   In fragmentary CDDL, a No Operation message follows the pattern:

     noop-message = [M_NOOP]

   This message MAY be sent by an implementation that for practical
   reasons needs to initialize a socket.  It MUST be silently ignored by
   a recipient.

2.9.  GRASP Options

   This section defines the GRASP options for the negotiation and
   synchronization protocol signaling.  Additional options may be
   defined in the future.

2.9.1.  Format of GRASP Options

   GRASP options are CBOR objects that MUST start with an unsigned
   integer identifying the specific option type carried in this option.
   These option types are formally defined in Section 5.  Apart from
   that the only format requirement is that each option MUST be a well-
   formed CBOR object.  In general a CBOR array format is RECOMMENDED to
   limit overhead.

   GRASP options may be defined to include encapsulated GRASP options.

2.9.2.  Divert Option

   The Divert option is used to redirect a GRASP request to another
   node, which may be more appropriate for the intended negotiation or
   synchronization.  It may redirect to an entity that is known as a
   specific negotiation or synchronization counterpart (on-link or off-
   link) or a default gateway.  The divert option MUST only be
   encapsulated in Discovery Response messages.  If found elsewhere, it
   SHOULD be silently ignored.

   A discovery initiator MAY ignore a Divert option if it only requires
   direct discovery responses.

   In fragmentary CDDL, the Divert option follows the pattern:

     divert-option = [O_DIVERT, +locator-option]

   The embedded Locator Option(s) (Section 2.9.5) point to diverted
   destination target(s) in response to a Discovery message.
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2.9.3.  Accept Option

   The accept option is used to indicate to the negotiation counterpart
   that the proposed negotiation content is accepted.

   The accept option MUST only be encapsulated in Negotiation End
   messages.  If found elsewhere, it SHOULD be silently ignored.

   In fragmentary CDDL, the Accept option follows the pattern:

     accept-option = [O_ACCEPT]

2.9.4.  Decline Option

   The decline option is used to indicate to the negotiation counterpart
   the proposed negotiation content is declined and end the negotiation
   process.

   The decline option MUST only be encapsulated in Negotiation End
   messages.  If found elsewhere, it SHOULD be silently ignored.

   In fragmentary CDDL, the Decline option follows the pattern:

     decline-option = [O_DECLINE, ?reason]
     reason = text  ;optional UTF-8 error message

   Note: there might be scenarios where an ASA wants to decline the
   proposed value and restart the negotiation process.  In this case it
   is an implementation choice whether to send a Decline option or to
   continue with a Negotiate message, with an objective option that
   contains a null value, or one that contains a new value that might
   achieve convergence.

2.9.5.  Locator Options

   These locator options are used to present reachability information
   for an ASA, a device or an interface.  They are Locator IPv6 Address
   Option, Locator IPv4 Address Option, Locator FQDN (Fully Qualified
   Domain Name) Option and URI (Uniform Resource Identifier) Option.

   Since ASAs will normally run as independent user programs, locator
   options need to indicate the network layer locator plus the transport
   protocol and port number for reaching the target.  For this reason,
   the Locator Options for IP addresses and FQDNs include this
   information explicitly.  In the case of the URI Option, this
   information can be encoded in the URI itself.
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   Note: It is assumed that all locators used in locator options are in
   scope throughout the GRASP domain.  As stated in Section 2.2, GRASP
   is not intended to work across disjoint addressing or naming realms.

2.9.5.1.  Locator IPv6 address option

   In fragmentary CDDL, the IPv6 address option follows the pattern:

     ipv6-locator-option = [O_IPv6_LOCATOR, ipv6-address,
                            transport-proto, port-number]
     ipv6-address = bytes .size 16

     transport-proto = IPPROTO_TCP / IPPROTO_UDP
     IPPROTO_TCP = 6
     IPPROTO_UDP = 17
     port-number = 0..65535

   The content of this option is a binary IPv6 address followed by the
   protocol number and port number to be used.

   Note 1: The IPv6 address MUST normally have global scope.  However,
   during initialization, a link-local address MAY be used for specific
   objectives only (Section 2.5.2).  In this case the corresponding
   Discovery Response message MUST be sent via the interface to which
   the link-local address applies.

   Note 2: A link-local IPv6 address MUST NOT be used when this option
   is included in a Divert option.

   Note 3: The IPPROTO values are taken from the existing IANA Protocol
   Numbers registry in order to specify TCP or UDP.  If GRASP requires
   future values that are not in that registry, a new registry for
   values outside the range 0..255 will be needed.

2.9.5.2.  Locator IPv4 address option

   In fragmentary CDDL, the IPv4 address option follows the pattern:

     ipv4-locator-option = [O_IPv4_LOCATOR, ipv4-address,
                            transport-proto, port-number]
     ipv4-address = bytes .size 4

   The content of this option is a binary IPv4 address followed by the
   protocol number and port number to be used.

   Note: If an operator has internal network address translation for
   IPv4, this option MUST NOT be used within the Divert option.
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2.9.5.3.  Locator FQDN option

   In fragmentary CDDL, the FQDN option follows the pattern:

     fqdn-locator-option = [O_FQDN_LOCATOR, text,
                            transport-proto, port-number]

   The content of this option is the Fully Qualified Domain Name of the
   target followed by the protocol number and port number to be used.

   Note 1: Any FQDN which might not be valid throughout the network in
   question, such as a Multicast DNS name [RFC6762], MUST NOT be used
   when this option is used within the Divert option.

   Note 2: Normal GRASP operations are not expected to use this option.
   It is intended for special purposes such as discovering external
   services.

2.9.5.4.  Locator URI option

   In fragmentary CDDL, the URI option follows the pattern:

     uri-locator = [O_URI_LOCATOR, text,
                    transport-proto / null, port-number / null]

   The content of this option is the Uniform Resource Identifier of the
   target followed by the protocol number and port number to be used (or
   by null values if not required) [RFC3986].

   Note 1: Any URI which might not be valid throughout the network in
   question, such as one based on a Multicast DNS name [RFC6762], MUST
   NOT be used when this option is used within the Divert option.

   Note 2: Normal GRASP operations are not expected to use this option.
   It is intended for special purposes such as discovering external
   services.  Therefore its use is not further described in this
   specification.

2.10.  Objective Options

2.10.1.  Format of Objective Options

   An objective option is used to identify objectives for the purposes
   of discovery, negotiation or synchronization.  All objectives MUST be
   in the following format, described in fragmentary CDDL:
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  objective = [objective-name, objective-flags, loop-count, ?objective-value]

  objective-name = text
  objective-value = any
  loop-count = 0..255

   All objectives are identified by a unique name which is a UTF-8
   string [RFC3629], to be compared byte by byte.

   The names of generic objectives MUST NOT include a colon (":") and
   MUST be registered with IANA (Section 6).

   The names of privately defined objectives MUST include at least one
   colon (":").  The string preceding the last colon in the name MUST be
   globally unique and in some way identify the entity or person
   defining the objective.  The following three methods MAY be used to
   create such a globally unique string:

   1.  The unique string is a decimal number representing a registered
       32 bit Private Enterprise Number (PEN) [RFC5612] that uniquely
       identifies the enterprise defining the objective.

   2.  The unique string is a fully qualified domain name that uniquely
       identifies the entity or person defining the objective.

   3.  The unique string is an email address that uniquely identifies
       the entity or person defining the objective.

   The GRASP protocol treats the objective name as an opaque string.
   For example, "EX1", "32473:EX1", "example.com:EX1", "example.org:EX1
   and "user@example.org:EX1" would be five different objectives.

   The ’objective-flags’ field is described below.

   The ’loop-count’ field is used for terminating negotiation as
   described in Section 2.8.7.  It is also used for terminating
   discovery as described in Section 2.5.4, and for terminating flooding
   as described in Section 2.5.6.2.  It is placed in the objective
   rather than in the GRASP message format because, as far as the ASA is
   concerned, it is a property of the objective itself.

   The ’objective-value’ field is to express the actual value of a
   negotiation or synchronization objective.  Its format is defined in
   the specification of the objective and may be a simple value or a
   data structure of any kind, as long as it can be represented in CBOR.
   It is optional because it is optional in a Discovery or Discovery
   Response message.
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2.10.2.  Objective flags

   An objective may be relevant for discovery only, for discovery and
   negotiation, or for discovery and synchronization.  This is expressed
   in the objective by logical flag bits:

     objective-flags = uint .bits objective-flag
     objective-flag = &(
     F_DISC: 0    ; valid for discovery
     F_NEG: 1     ; valid for negotiation
     F_SYNCH: 2   ; valid for synchronization
     F_NEG_DRY: 3 ; negotiation is dry-run
     )

   These bits are independent and may be combined appropriately, e.g.
   (F_DISC and F_SYNCH) or (F_DISC and F_NEG) or (F_DISC and F_NEG and
   F_NEG_DRY).

   Note that for a given negotiation session, an objective must be
   either used for negotiation, or for dry-run negotiation.  Mixing the
   two modes in a single negotiation is not possible.

2.10.3.  General Considerations for Objective Options

   As mentioned above, Objective Options MUST be assigned a unique name.
   As long as privately defined Objective Options obey the rules above,
   this document does not restrict their choice of name, but the entity
   or person concerned SHOULD publish the names in use.

   Names are expressed as UTF-8 strings for convenience in designing
   Objective Options for localized use.  For generic usage, names
   expressed in the ASCII subset of UTF-8 are RECOMMENDED.  Designers
   planning to use non-ASCII names are strongly advised to consult
   [RFC7564] or its successor to understand the complexities involved.
   Since the GRASP protocol compares names byte by byte, all issues of
   Unicode profiling and canonicalization MUST be specified in the
   design of the Objective Option.

   All Objective Options MUST respect the CBOR patterns defined above as
   "objective" and MUST replace the "any" field with a valid CBOR data
   definition for the relevant use case and application.

   An Objective Option that contains no additional fields beyond its
   "loop-count" can only be a discovery objective and MUST only be used
   in Discovery and Discovery Response messages.

   The Negotiation Objective Options contain negotiation objectives,
   which vary according to different functions/services.  They MUST be
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   carried by Discovery, Request Negotiation or Negotiation messages
   only.  The negotiation initiator MUST set the initial "loop-count" to
   a value specified in the specification of the objective or, if no
   such value is specified, to GRASP_DEF_LOOPCT.

   For most scenarios, there should be initial values in the negotiation
   requests.  Consequently, the Negotiation Objective options MUST
   always be completely presented in a Request Negotiation message, or
   in a Discovery message in rapid mode.  If there is no initial value,
   the value field SHOULD be set to the ’null’ value defined by CBOR.

   Synchronization Objective Options are similar, but MUST be carried by
   Discovery, Discovery Response, Request Synchronization, or Flood
   Synchronization messages only.  They include value fields only in
   Synchronization or Flood Synchronization messages.

   The design of an objective interacts in various ways with the design
   of the ASAs that will use it.  ASA design considerations are
   discussed in [I-D.carpenter-anima-asa-guidelines].

2.10.4.  Organizing of Objective Options

   Generic objective options MUST be specified in documents available to
   the public and SHOULD be designed to use either the negotiation or
   the synchronization mechanism described above.

   As noted earlier, one negotiation objective is handled by each GRASP
   negotiation thread.  Therefore, a negotiation objective, which is
   based on a specific function or action, SHOULD be organized as a
   single GRASP option.  It is NOT RECOMMENDED to organize multiple
   negotiation objectives into a single option, nor to split a single
   function or action into multiple negotiation objectives.

   It is important to understand that GRASP negotiation does not support
   transactional integrity.  If transactional integrity is needed for a
   specific objective, this must be ensured by the ASA.  For example, an
   ASA might need to ensure that it only participates in one negotiation
   thread at the same time.  Such an ASA would need to stop listening
   for incoming negotiation requests before generating an outgoing
   negotiation request.

   A synchronization objective SHOULD be organized as a single GRASP
   option.

   Some objectives will support more than one operational mode.  An
   example is a negotiation objective with both a "dry run" mode (where
   the negotiation is to find out whether the other end can in fact make
   the requested change without problems) and a "live" mode, as
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   explained in Section 2.5.5.  The semantics of such modes will be
   defined in the specification of the objectives.  These objectives
   SHOULD include flags indicating the applicable mode(s).

   An issue requiring particular attention is that GRASP itself is not a
   transactionally safe protocol.  Any state associated with a dry run
   operation, such as temporarily reserving a resource for subsequent
   use in a live run, is entirely a matter for the designer of the ASA
   concerned.

   As indicated in Section 2.1, an objective’s value may include
   multiple parameters.  Parameters might be categorized into two
   classes: the obligatory ones presented as fixed fields; and the
   optional ones presented in some other form of data structure embedded
   in CBOR.  The format might be inherited from an existing management
   or configuration protocol, with the objective option acting as a
   carrier for that format.  The data structure might be defined in a
   formal language, but that is a matter for the specifications of
   individual objectives.  There are many candidates, according to the
   context, such as ABNF, RBNF, XML Schema, YANG, etc.  The GRASP
   protocol itself is agnostic on these questions.  The only restriction
   is that the format can be mapped into CBOR.

   It is NOT RECOMMENDED to mix parameters that have significantly
   different response time characteristics in a single objective.
   Separate objectives are more suitable for such a scenario.

   All objectives MUST support GRASP discovery.  However, as mentioned
   in Section 2.3, it is acceptable for an ASA to use an alternative
   method of discovery.

   Normally, a GRASP objective will refer to specific technical
   parameters as explained in Section 2.1.  However, it is acceptable to
   define an abstract objective for the purpose of managing or
   coordinating ASAs.  It is also acceptable to define a special-purpose
   objective for purposes such as trust bootstrapping or formation of
   the ACP.

   To guarantee convergence, a limited number of rounds or a timeout is
   needed for each negotiation objective.  Therefore, the definition of
   each negotiation objective SHOULD clearly specify this, for example a
   default loop count and timeout, so that the negotiation can always be
   terminated properly.  If not, the GRASP defaults will apply.

   There must be a well-defined procedure for concluding that a
   negotiation cannot succeed, and if so deciding what happens next
   (e.g., deadlock resolution, tie-breaking, or revert to best-effort
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   service).  This MUST be specified for individual negotiation
   objectives.

2.10.5.  Experimental and Example Objective Options

   The names "EX0" through "EX9" have been reserved for experimental
   options.  Multiple names have been assigned because a single
   experiment may use multiple options simultaneously.  These
   experimental options are highly likely to have different meanings
   when used for different experiments.  Therefore, they SHOULD NOT be
   used without an explicit human decision and MUST NOT be used in
   unmanaged networks such as home networks.

   These names are also RECOMMENDED for use in documentation examples.

3.  Implementation Status [RFC Editor: please remove]

   Two prototype implementations of GRASP have been made.

3.1.  BUPT C++ Implementation

   o  Name: BaseNegotiator.cpp, msg.cpp, Client.cpp, Server.cpp

   o  Description: C++ implementation of GRASP core and API

   o  Maturity: Prototype code, interoperable between Ubuntu.

   o  Coverage: Corresponds to draft-carpenter-anima-gdn-protocol-03.
      Since it was implemented based on the old version draft, the most
      significant limitations comparing to current protocol design
      include:

      *  Not support CBOR

      *  Not support Flooding

      *  Not support loop avoidance

      *  only coded for IPv6, any IPv4 is accidental

   o  Licensing: Huawei License.

   o  Experience: https://github.com/liubingpang/IETF-Anima-Signaling-
      Protocol/blob/master/README.md

   o  Contact: https://github.com/liubingpang/IETF-Anima-Signaling-
      Protocol
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3.2.  Python Implementation

   o  Name: graspy

   o  Description: Python 3 implementation of GRASP core and API.

   o  Maturity: Prototype code, interoperable between Windows 7 and
      Linux.

   o  Coverage: Corresponds to draft-ietf-anima-grasp-13.  Limitations
      include:

      *  insecure: uses a dummy ACP module

      *  only coded for IPv6, any IPv4 is accidental

      *  FQDN and URI locators incompletely supported

      *  no code for rapid mode

      *  relay code is lazy (no rate control)

      *  all unicast transactions use TCP (no unicast UDP).
         Experimental code for unicast UDP proved to be complex and
         brittle.

      *  optional Objective option in Response messages not implemented

      *  workarounds for defects in Python socket module and Windows
         socket peculiarities

   o  Licensing: Simplified BSD

   o  Experience: Tested on Windows, Linux and MacOS.
      https://www.cs.auckland.ac.nz/˜brian/graspy/graspy.pdf

   o  Contact: https://www.cs.auckland.ac.nz/˜brian/graspy/

4.  Security Considerations

   A successful attack on negotiation-enabled nodes would be extremely
   harmful, as such nodes might end up with a completely undesirable
   configuration that would also adversely affect their peers.  GRASP
   nodes and messages therefore require full protection.  As explained
   in Section 2.5.1, GRASP MUST run within a secure environment such as
   the Autonomic Control Plane [I-D.ietf-anima-autonomic-control-plane],
   except for the constrained instances described in Section 2.5.2.
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   - Authentication

      A cryptographically authenticated identity for each device is
      needed in an autonomic network.  It is not safe to assume that a
      large network is physically secured against interference or that
      all personnel are trustworthy.  Each autonomic node MUST be
      capable of proving its identity and authenticating its messages.
      GRASP relies on a separate external certificate-based security
      mechanism to support authentication, data integrity protection,
      and anti-replay protection.

      Since GRASP must be deployed in an existing secure environment,
      the protocol itself specifies nothing concerning the trust anchor
      and certification authority.  For example, in the Autonomic
      Control Plane [I-D.ietf-anima-autonomic-control-plane], all nodes
      can trust each other and the ASAs installed in them.

      If GRASP is used temporarily without an external security
      mechanism, for example during system bootstrap (Section 2.5.1),
      the Session ID (Section 2.7) will act as a nonce to provide
      limited protection against third parties injecting responses.  A
      full analysis of the secure bootstrap process is in
      [I-D.ietf-anima-bootstrapping-keyinfra].

   - Authorization and Roles

      The GRASP protocol is agnostic about the roles and capabilities of
      individual ASAs and about which objectives a particular ASA is
      authorized to support.  An implementation might support
      precautions such as allowing only one ASA in a given node to
      modify a given objective, but this may not be appropriate in all
      cases.  For example, it might be operationally useful to allow an
      old and a new version of the same ASA to run simultaneously during
      an overlap period.  These questions are out of scope for the
      present specification.

   - Privacy and confidentiality

      GRASP is intended for network management purposes involving
      network elements, not end hosts.  Therefore, no personal
      information is expected to be involved in the signaling protocol,
      so there should be no direct impact on personal privacy.
      Nevertheless, applications that do convey personal information
      cannot be excluded.  Also, traffic flow paths, VPNs, etc. could be
      negotiated, which could be of interest for traffic analysis.
      Operators generally want to conceal details of their network
      topology and traffic density from outsiders.  Therefore, since
      insider attacks cannot be excluded in a large network, the
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      security mechanism for the protocol MUST provide message
      confidentiality.  This is why Section 2.5.1 requires either an ACP
      or an alternative security mechanism.

   - Link-local multicast security

      GRASP has no reasonable alternative to using link-local multicast
      for Discovery or Flood Synchronization messages and these messages
      are sent in clear and with no authentication.  They are only sent
      on interfaces within the autonomic network (see Section 2.1 and
      Section 2.5.1).  They are however available to on-link
      eavesdroppers, and could be forged by on-link attackers.  In the
      case of Discovery, the Discovery Responses are unicast and will
      therefore be protected (Section 2.5.1), and an untrusted forger
      will not be able to receive responses.  In the case of Flood
      Synchronization, an on-link eavesdropper will be able to receive
      the flooded objectives but there is no response message to
      consider.  Some precautions for Flood Synchronization messages are
      suggested in Section 2.5.6.2.

   - DoS Attack Protection

      GRASP discovery partly relies on insecure link-local multicast.
      Since routers participating in GRASP sometimes relay discovery
      messages from one link to another, this could be a vector for
      denial of service attacks.  Some mitigations are specified in
      Section 2.5.4.  However, malicious code installed inside the
      Autonomic Control Plane could always launch DoS attacks consisting
      of spurious discovery messages, or of spurious discovery
      responses.  It is important that firewalls prevent any GRASP
      messages from entering the domain from an unknown source.

   - Security during bootstrap and discovery

      A node cannot trust GRASP traffic from other nodes until the
      security environment (such as the ACP) has identified the trust
      anchor and can authenticate traffic by validating certificates for
      other nodes.  Also, until it has succesfully enrolled
      [I-D.ietf-anima-bootstrapping-keyinfra] a node cannot assume that
      other nodes are able to authenticate its own traffic.  Therefore,
      GRASP discovery during the bootstrap phase for a new device will
      inevitably be insecure.  Secure synchronization and negotiation
      will be impossible until enrollment is complete.  Further details
      are given in Section 2.5.2.

   - Security of discovered locators

Bormann, et al.          Expires January 8, 2018               [Page 44]



Internet-Draft                    GRASP                        July 2017

      When GRASP discovery returns an IP address, it MUST be that of a
      node within the secure environment (Section 2.5.1).  If it returns
      an FQDN or a URI, the ASA that receives it MUST NOT assume that
      the target of the locator is within the secure environment.

5.  CDDL Specification of GRASP

<CODE BEGINS>
grasp-message = (message .within message-structure) / noop-message

message-structure = [MESSAGE_TYPE, session-id, ?initiator,
                     *grasp-option]

MESSAGE_TYPE = 0..255
session-id = 0..4294967295 ;up to 32 bits
grasp-option = any

message /= discovery-message
discovery-message = [M_DISCOVERY, session-id, initiator, objective]

message /= response-message ;response to Discovery
response-message = [M_RESPONSE, session-id, initiator, ttl,
                   (+locator-option // divert-option), ?objective]

message /= synch-message ;response to Synchronization request
synch-message = [M_SYNCH, session-id, objective]

message /= flood-message
flood-message = [M_FLOOD, session-id, initiator, ttl,
                +[objective, (locator-option / [])]]

message /= request-negotiation-message
request-negotiation-message = [M_REQ_NEG, session-id, objective]

message /= request-synchronization-message
request-synchronization-message = [M_REQ_SYN, session-id, objective]

message /= negotiation-message
negotiation-message = [M_NEGOTIATE, session-id, objective]

message /= end-message
end-message = [M_END, session-id, accept-option / decline-option ]

message /= wait-message
wait-message = [M_WAIT, session-id, waiting-time]

message /= invalid-message
invalid-message = [M_INVALID, session-id, ?any]
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noop-message = [M_NOOP]

divert-option = [O_DIVERT, +locator-option]

accept-option = [O_ACCEPT]

decline-option = [O_DECLINE, ?reason]
reason = text  ;optional UTF-8 error message

waiting-time = 0..4294967295 ; in milliseconds
ttl = 0..4294967295 ; in milliseconds

locator-option /= [O_IPv4_LOCATOR, ipv4-address,
                   transport-proto, port-number]
ipv4-address = bytes .size 4

locator-option /= [O_IPv6_LOCATOR, ipv6-address,
                   transport-proto, port-number]
ipv6-address = bytes .size 16

locator-option /= [O_FQDN_LOCATOR, text, transport-proto, port-number]

locator-option /= [O_URI_LOCATOR, text,
                   transport-proto / null, port-number / null]

transport-proto = IPPROTO_TCP / IPPROTO_UDP
IPPROTO_TCP = 6
IPPROTO_UDP = 17
port-number = 0..65535

initiator = ipv4-address / ipv6-address

objective-flags = uint .bits objective-flag

objective-flag = &(
  F_DISC: 0    ; valid for discovery
  F_NEG: 1     ; valid for negotiation
  F_SYNCH: 2   ; valid for synchronization
  F_NEG_DRY: 3 ; negotiation is dry-run
)

objective = [objective-name, objective-flags, loop-count, ?objective-value]

objective-name = text ;see section "Format of Objective Options"

objective-value = any

loop-count = 0..255
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; Constants for message types and option types

M_NOOP = 0
M_DISCOVERY = 1
M_RESPONSE = 2
M_REQ_NEG = 3
M_REQ_SYN = 4
M_NEGOTIATE = 5
M_END = 6
M_WAIT = 7
M_SYNCH = 8
M_FLOOD = 9
M_INVALID = 99

O_DIVERT = 100
O_ACCEPT = 101
O_DECLINE = 102
O_IPv6_LOCATOR = 103
O_IPv4_LOCATOR = 104
O_FQDN_LOCATOR = 105
O_URI_LOCATOR = 106
<CODE ENDS>

6.  IANA Considerations

   This document defines the GeneRic Autonomic Signaling Protocol
   (GRASP).

   Section 2.6 explains the following link-local multicast addresses,
   which IANA is requested to assign for use by GRASP:

   ALL_GRASP_NEIGHBORS multicast address  (IPv6): (TBD1).  Assigned in
      the IPv6 Link-Local Scope Multicast Addresses registry.

   ALL_GRASP_NEIGHBORS multicast address  (IPv4): (TBD2).  Assigned in
      the IPv4 Multicast Local Network Control Block.

   Section 2.6 explains the following User Port, which IANA is requested
   to assign for use by GRASP for both UDP and TCP:

   GRASP_LISTEN_PORT: (TBD3)
   Service Name: Generic Autonomic Signaling Protocol (GRASP)
   Transport Protocols: UDP, TCP
   Assignee: iesg@ietf.org
   Contact: chair@ietf.org
   Description: See Section 2.6
   Reference: RFC XXXX (this document)
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   The IANA is requested to create a GRASP Parameter Registry including
   two registry tables.  These are the GRASP Messages and Options
   Table and the GRASP Objective Names Table.

   GRASP Messages and Options Table.  The values in this table are names
   paired with decimal integers.  Future values MUST be assigned using
   the Standards Action policy defined by [RFC8126].  The following
   initial values are assigned by this document:

   M_NOOP = 0
   M_DISCOVERY = 1
   M_RESPONSE = 2
   M_REQ_NEG = 3
   M_REQ_SYN = 4
   M_NEGOTIATE = 5
   M_END = 6
   M_WAIT = 7
   M_SYNCH = 8
   M_FLOOD = 9
   M_INVALID = 99

   O_DIVERT = 100
   O_ACCEPT = 101
   O_DECLINE = 102
   O_IPv6_LOCATOR = 103
   O_IPv4_LOCATOR = 104
   O_FQDN_LOCATOR = 105
   O_URI_LOCATOR = 106

   GRASP Objective Names Table.  The values in this table are UTF-8
   strings which MUST NOT include a colon (":"), according to
   Section 2.10.1.  Future values MUST be assigned using the
   Specification Required policy defined by [RFC8126].

   To assist expert review of a new objective, the specification should
   include a precise description of the format of the new objective,
   with sufficient explanation of its semantics to allow independent
   implementations.  See Section 2.10.3 for more details.  If the new
   objective is similar in name or purpose to a previously registered
   objective, the specification should explain why a new objective is
   justified.

   The following initial values are assigned by this document:
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    EX0
    EX1
    EX2
    EX3
    EX4
    EX5
    EX6
    EX7
    EX8
    EX9
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Appendix A.  Open Issues [RFC Editor: This section should be empty.
             Please remove]

   o  68.  (Placeholder)

Appendix B.  Closed Issues [RFC Editor: Please remove]

   o  1.  UDP vs TCP: For now, this specification suggests UDP and TCP
      as message transport mechanisms.  This is not clarified yet.  UDP
      is good for short conversations, is necessary for multicast
      discovery, and generally fits the discovery and divert scenarios
      well.  However, it will cause problems with large messages.  TCP
      is good for stable and long sessions, with a little bit of time
      consumption during the session establishment stage.  If messages
      exceed a reasonable MTU, a TCP mode will be required in any case.
      This question may be affected by the security discussion.

      RESOLVED by specifying UDP for short message and TCP for longer
      one.

   o  2.  DTLS or TLS vs built-in security mechanism.  For now, this
      specification has chosen a PKI based built-in security mechanism
      based on asymmetric cryptography.  However, (D)TLS might be chosen
      as security solution to avoid duplication of effort.  It also
      allows essentially similar security for short messages over UDP
      and longer ones over TCP.  The implementation trade-offs are
      different.  The current approach requires expensive asymmetric
      cryptographic calculations for every message.  (D)TLS has startup
      overheads but cheaper crypto per message.  DTLS is less mature
      than TLS.

      RESOLVED by specifying external security (ACP or (D)TLS).

   o  The following open issues applied only if the original security
      model was retained:

      *  2.1.  For replay protection, GRASP currently requires every
         participant to have an NTP-synchronized clock.  Is this OK for
         low-end devices, and how does it work during device
         bootstrapping?  We could take the Timestamp out of signature
         option, to become an independent and OPTIONAL (or RECOMMENDED)
         option.

      *  2.2.  The Signature Option states that this option could be any
         place in a message.  Wouldn’t it be better to specify a
         position (such as the end)?  That would be much simpler to
         implement.
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      RESOLVED by changing security model.

   o  3.  DoS Attack Protection needs work.

      RESOLVED by adding text.

   o  4.  Should we consider preferring a text-based approach to
      discovery (after the initial discovery needed for bootstrapping)?
      This could be a complementary mechanism for multicast based
      discovery, especially for a very large autonomic network.
      Centralized registration could be automatically deployed
      incrementally.  At the very first stage, the repository could be
      empty; then it could be filled in by the objectives discovered by
      different devices (for example using Dynamic DNS Update).  The
      more records are stored in the repository, the less the multicast-
      based discovery is needed.  However, if we adopt such a mechanism,
      there would be challenges: stateful solution, and security.

      RESOLVED for now by adding optional use of DNS-SD by ASAs.
      Subsequently removed by editors as irrelevant to GRASP istelf.

   o  5.  Need to expand description of the minimum requirements for the
      specification of an individual discovery, synchronization or
      negotiation objective.

      RESOLVED for now by extra wording.

   o  6.  Use case and protocol walkthrough.  A description of how a
      node starts up, performs discovery, and conducts negotiation and
      synchronisation for a sample use case would help readers to
      understand the applicability of this specification.  Maybe it
      should be an artificial use case or maybe a simple real one, based
      on a conceptual API.  However, the authors have not yet decided
      whether to have a separate document or have it in the protocol
      document.

      RESOLVED: recommend a separate document.

   o  7.  Cross-check against other ANIMA WG documents for consistency
      and gaps.

      RESOLVED: Satisfied by WGLC.

   o  8.  Consideration of ADNCP proposal.

      RESOLVED by adding optional use of DNCP for flooding-type
      synchronization.

Bormann, et al.          Expires January 8, 2018               [Page 55]



Internet-Draft                    GRASP                        July 2017

   o  9.  Clarify how a GDNP instance knows whether it is running inside
      the ACP.  (Sheng)

      RESOLVED by improved text.

   o  10.  Clarify how a non-ACP GDNP instance initiates (D)TLS.
      (Sheng)

      RESOLVED by improved text and declaring DTLS out of scope for this
      draft.

   o  11.  Clarify how UDP/TCP choice is made.  (Sheng) [Like DNS? -
      Brian]

      RESOLVED by improved text.

   o  12.  Justify that IP address within ACP or (D)TLS environment is
      sufficient to prove AN identity; or explain how Device Identity
      Option is used.  (Sheng)

      RESOLVED for now: we assume that all ASAs in a device are trusted
      as soon as the device is trusted, so they share credentials.  In
      that case the Device Identity Option is useless.  This needs to be
      reviewed later.

   o  13.  Emphasise that negotiation/synchronization are independent
      from discovery, although the rapid discovery mode includes the
      first step of a negotiation/synchronization.  (Sheng)

      RESOLVED by improved text.

   o  14.  Do we need an unsolicited flooding mechanism for discovery
      (for discovery results that everyone needs), to reduce scaling
      impact of flooding discovery messages?  (Toerless)

      RESOLVED: Yes, added to requirements and solution.

   o  15.  Do we need flag bits in Objective Options to distinguish
      distinguish Synchronization and Negotiation "Request" or rapid
      mode "Discovery" messages?  (Bing)

      RESOLVED: yes, work on the API showed that these flags are
      essential.

   o  16.  (Related to issue 14).  Should we revive the "unsolicited
      Response" for flooding synchronisation data?  This has to be done
      carefully due to the well-known issues with flooding, but it could
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      be useful, e.g. for Intent distribution, where DNCP doesn’t seem
      applicable.

      RESOLVED: Yes, see #14.

   o  17.  Ensure that the discovery mechanism is completely proof
      against loops and protected against duplicate responses.

      RESOLVED: Added loop count mechanism.

   o  18.  Discuss the handling of multiple valid discovery responses.

      RESOLVED: Stated that the choice must be available to the ASA but
      GRASP implementation should pick a default.

   o  19.  Should we use a text-oriented format such as JSON/CBOR
      instead of native binary TLV format?

      RESOLVED: Yes, changed to CBOR.

   o  20.  Is the Divert option needed?  If a discovery response
      provides a valid IP address or FQDN, the recipient doesn’t gain
      any extra knowledge from the Divert.  On the other hand, the
      presence of Divert informs the receiver that the target is off-
      link, which might be useful sometimes.

      RESOLVED: Decided to keep Divert option.

   o  21.  Rename the protocol as GRASP (GeneRic Autonomic Signaling
      Protocol)?

      RESOLVED: Yes, name changed.

   o  22.  Does discovery mechanism scale robustly as needed?  Need hop
      limit on relaying?

      RESOLVED: Added hop limit.

   o  23.  Need more details on TTL for caching discovery responses.

      RESOLVED: Done.

   o  24.  Do we need "fast withdrawal" of discovery responses?

      RESOLVED: This doesn’t seem necessary.  If an ASA exits or stops
      supporting a given objective, peers will fail to start future
      sessions and will simply repeat discovery.
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   o  25.  Does GDNP discovery meet the needs of multi-hop DNS-SD?

      RESOLVED: Decided not to consider this further as a GRASP protocol
      issue.  GRASP objectives could embed DNS-SD formats if needed.

   o  26.  Add a URL type to the locator options (for security bootstrap
      etc.)

      RESOLVED: Done, later renamed as URI.

   o  27.  Security of Flood multicasts (Section 2.5.6.2).

      RESOLVED: added text.

   o  28.  Does ACP support secure link-local multicast?

      RESOLVED by new text in the Security Considerations.

   o  29.  PEN is used to distinguish vendor options.  Would it be
      better to use a domain name?  Anything unique will do.

      RESOLVED: Simplified this by removing PEN field and changing
      naming rules for objectives.

   o  30.  Does response to discovery require randomized delays to
      mitigate amplification attacks?

      RESOLVED: WG feedback is that it’s unnecessary.

   o  31.  We have specified repeats for failed discovery etc.  Is that
      sufficient to deal with sleeping nodes?

      RESOLVED: WG feedback is that it’s unnecessary to say more.

   o  32.  We have one-to-one synchronization and flooding
      synchronization.  Do we also need selective flooding to a subset
      of nodes?

      RESOLVED: This will be discussed as a protocol extension in a
      separate draft (draft-liu-anima-grasp-distribution).

   o  33.  Clarify if/when discovery needs to be repeated.

      RESOLVED: Done.

   o  34.  Clarify what is mandatory for running in ACP, expand
      discussion of security boundary when running with no ACP - might
      rely on the local PKI infrastructure.
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      RESOLVED: Done.

   o  35.  State that role-based authorization of ASAs is out of scope
      for GRASP.  GRASP doesn’t recognize/handle any "roles".

      RESOLVED: Done.

   o  36.  Reconsider CBOR definition for PEN syntax.  ( objective-name
      = text / [pen, text] ; pen = uint )

      RESOLVED: See issue 29.

   o  37.  Are URI locators really needed?

      RESOLVED: Yes, e.g. for security bootstrap discovery, but added
      note that addresses are the normal case (same for FQDN locators).

   o  38.  Is Session ID sufficient to identify relayed responses?
      Isn’t the originator’s address needed too?

      RESOLVED: Yes, this is needed for multicast messages and their
      responses.

   o  39.  Clarify that a node will contain one GRASP instance
      supporting multiple ASAs.

      RESOLVED: Done.

   o  40.  Add a "reason" code to the DECLINE option?

      RESOLVED: Done.

   o  41.  What happens if an ASA cannot conveniently use one of the
      GRASP mechanisms?  Do we (a) add a message type to GRASP, or (b)
      simply pass the discovery results to the ASA so that it can open
      its own socket?

      RESOLVED: Both would be possible, but (b) is preferred.

   o  42.  Do we need a feature whereby an ASA can bypass the ACP and
      use the data plane for efficiency/throughput?  This would require
      discovery to return non-ACP addresses and would evade ACP
      security.

      RESOLVED: This is considered out of scope for GRASP, but a comment
      has been added in security considerations.

Bormann, et al.          Expires January 8, 2018               [Page 59]



Internet-Draft                    GRASP                        July 2017

   o  43.  Rapid mode synchronization and negotiation is currently
      limited to a single objective for simplicity of design and
      implementation.  A future consideration is to allow multiple
      objectives in rapid mode for greater efficiency.

      RESOLVED: This is considered out of scope for this version.

   o  44.  In requirement T9, the words that encryption "may not be
      required in all deployments" were removed.  Is that OK?.

      RESOLVED: No objections.

   o  45.  Device Identity Option is unused.  Can we remove it
      completely?.

      RESOLVED: No objections.  Done.

   o  46.  The ’initiator’ field in DISCOVER, RESPONSE and FLOOD
      messages is intended to assist in loop prevention.  However, we
      also have the loop count for that.  Also, if we create a new
      Session ID each time a DISCOVER or FLOOD is relayed, that ID can
      be disambiguated by recipients.  It would be simpler to remove the
      initiator from the messages, making parsing more uniform.  Is that
      OK?

      RESOLVED: Yes. Done.

   o  47.  REQUEST is a dual purpose message (request negotiation or
      request synchronization).  Would it be better to split this into
      two different messages (and adjust various message names
      accordingly)?

      RESOLVED: Yes. Done.

   o  48.  Should the Appendix "Capability Analysis of Current
      Protocols" be deleted before RFC publication?

      RESOLVED: No (per WG meeting at IETF 96).

   o  49.  Section 2.5.1 Should say more about signaling between two
      autonomic networks/domains.

      RESOLVED: Description of separate GRASP instance added.

   o  50.  Is Rapid mode limited to on-link only?  What happens if first
      discovery responder does not support Rapid Mode?  Section 2.5.5,
      Section 2.5.6)
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      RESOLVED: Not limited to on-link.  First responder wins.

   o  51.  Should flooded objectives have a time-to-live before they are
      deleted from the flood cache?  And should they be tagged in the
      cache with their source locator?

      RESOLVED: TTL added to Flood (and Discovery Response) messages.
      Cached flooded objectives must be tagged with their originating
      ASA locator, and multiple copies must be kept if necessary.

   o  52.  Describe in detail what is allowed and disallowed in an
      insecure instance of GRASP.

      RESOLVED: Done.

   o  53.  Tune IANA Considerations to support early assignment request.

   o  54.  Is there a highly unlikely race condition if two peers
      simultaneously choose the same Session ID and send each other
      simultaneous M_REQ_NEG messages?

      RESOLVED: Yes. Enhanced text on Session ID generation, and added
      precaution when receiving a Request message.

   o  55.  Could discovery be performed over TCP?

      RESOLVED: Unicast discovery added as an option.

   o  56.  Change Session-ID to 32 bits?

      RESOLVED: Done.

   o  57.  Add M_INVALID message?

      RESOLVED: Done.

   o  58.  Maximum message size?

      RESOLVED by specifying default maximum message size (2048 bytes).

   o  59.  Add F_NEG_DRY flag to specify a "dry run" objective?.

      RESOLVED: Done.

   o  60.  Change M_FLOOD syntax to associate a locator with each
      objective?
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      RESOLVED: Done.

   o  61.  Is the SONN constrained instance really needed?

      RESOLVED: Retained but only as an option.

   o  62.  Is it helpful to tag descriptive text with message names
      (M_DISCOVER etc.)?

      RESOLVED: Yes, done in various parts of the text.

   o  63.  Should encryption be MUST instead of SHOULD in Section 2.5.1
      and Section 2.5.1?

      RESOLVED: Yes, MUST implement in both cases.

   o  64.  Should more security text be moved from the main text into
      the Security Considerations?

      RESOLVED: No, on AD advice.

   o  65.  Do we need to formally restrict Unicode characters allowed in
      objective names?

      RESOLVED: No, but need to point to guidance from PRECIS WG.

   o  66.  Split requirements into separate document?

      RESOLVED: No, on AD advice.

   o  67.  Remove normative dependency on draft-greevenbosch-appsawg-
      cbor-cddl?

      RESOLVED: No, on AD advice.  In worst case, fix at AUTH48.

Appendix C.  Change log [RFC Editor: Please remove]

   draft-ietf-anima-grasp-15, 2017-07-07:

   Updates following additional IESG comments:

   Security (Eric Rescorla): missing brittleness of group security
   concept, attack via compromised member.

   TSV (Mirja Kuehlewind): clarification on the use of UDP, TCP, mandate
   use of TCP (or other reliable transport).

   Clarified that in ACP, UDP is not used at all.
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   Clarified that GRASP itself needs TCP listen port (was previously
   written as if this was optional).

   draft-ietf-anima-grasp-14, 2017-07-02:

   Updates following additional IESG comments:

   Updated 2.5.1 and 2.5.2 based on IESG security feedback (specify
   dependency against security substrate).

   Strengthened requirement for reliable transport protocol.

   draft-ietf-anima-grasp-13, 2017-06-06:

   Updates following additional IESG comments:

   Removed all mention of TLS, including SONN, since it was under-
   specified.

   Clarified other text about trust and security model.

   Banned Rapid Mode when multicast is insecure.

   Explained use of M_INVALID to support extensibility

   Corrected details on discovery cache TTL and discovery timeout.

   Improved description of multicast UDP w.r.t.  RFC8085.

   Clarified when transport connections are opened or closed.

   Noted that IPPROTO values come from the Protocol Numbers registry

   Protocol change: Added protocol and port numbers to URI locator.

   Removed inaccurate text about routing protocols

   Moved Requirements section to an Appendix.

   Other editorial and technical clarifications.

   draft-ietf-anima-grasp-12, 2017-05-19:

   Updates following IESG comments:

   Clarified that GRASP runs in a single addressing realm
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   Improved wording about FQDN resolution, clarified that URI usage is
   out of scope.

   Clarified description of negotiation timeout.

   Noted that ’dry run’ semantics are ASA-dependent

   Made the ACP a normative reference

   Clarified that LL multicasts are limited to GRASP interfaces

   Unicast UDP moved out of scope

   Editorial clarifications

   draft-ietf-anima-grasp-11, 2017-03-30:

   Updates following IETF 98 discussion:

   Encryption changed to a MUST implement.

   Pointed to guidance on UTF-8 names.

   draft-ietf-anima-grasp-10, 2017-03-10:

   Updates following IETF Last call:

   Protocol change: Specify that an objective with no initial value
   should have its value field set to CBOR ’null’.

   Protocol change: Specify behavior on receiving unrecognized message
   type.

   Noted that UTF-8 names are matched byte-for-byte.

   Added brief guidance for Expert Reviewer of new generic objectives.

   Numerous editorial improvements and clarifications and minor text
   rearrangements, none intended to change the meaning.

   draft-ietf-anima-grasp-09, 2016-12-15:

   Protocol change: Add F_NEG_DRY flag to specify a "dry run" objective.

   Protocol change: Change M_FLOOD syntax to associate a locator with
   each objective.
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   Concentrated mentions of TLS in one section, with all details out of
   scope.

   Clarified text around constrained instances of GRASP.

   Strengthened text restricting LL addresses in locator options.

   Clarified description of rapid mode processsing.

   Specified that cached discovery results should not be returned on the
   same interface where they were learned.

   Shortened text in "High Level Design Choices"

   Dropped the word ’kernel’ to avoid confusion with o/s kernel mode.

   Editorial improvements and clarifications.

   draft-ietf-anima-grasp-08, 2016-10-30:

   Protocol change: Added M_INVALID message.

   Protocol change: Increased Session ID space to 32 bits.

   Enhanced rules to avoid Session ID clashes.

   Corrected and completed description of timeouts for Request messages.

   Improved wording about exponential backoff and DoS.

   Clarified that discovery relaying is not done by limited security
   instances.

   Corrected and expanded explanation of port used for Discovery
   Response.

   Noted that Discovery message could be sent unicast in special cases.

   Added paragraph on extensibility.

   Specified default maximum message size.

   Added Appendix for sample messages.

   Added short protocol overview.

   Editorial fixes, including minor re-ordering for readability.
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   draft-ietf-anima-grasp-07, 2016-09-13:

   Protocol change: Added TTL field to Flood message (issue 51).

   Protocol change: Added Locator option to Flood message (issue 51).

   Protocol change: Added TTL field to Discovery Response message
   (corrollary to issue 51).

   Clarified details of rapid mode (issues 43 and 50).

   Description of inter-domain GRASP instance added (issue 49).

   Description of limited security GRASP instances added (issue 52).

   Strengthened advice to use TCP rather than UDP.

   Updated IANA considerations and text about well-known port usage
   (issue 53).

   Amended text about ASA authorization and roles to allow for
   overlapping ASAs.

   Added text recommending that Flood should be repeated periodically.

   Editorial fixes.

   draft-ietf-anima-grasp-06, 2016-06-27:

   Added text on discovery cache timeouts.

   Noted that ASAs that are only initiators do not need to respond to
   discovery message.

   Added text on unexpected address changes.

   Added text on robust implementation.

   Clarifications and editorial fixes for numerous review comments

   Added open issues for some review comments.

   draft-ietf-anima-grasp-05, 2016-05-13:

   Noted in requirement T1 that it should be possible to implement ASAs
   independently as user space programs.
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   Protocol change: Added protocol number and port to discovery
   response.  Updated protocol description, CDDL and IANA considerations
   accordingly.

   Clarified that discovery and flood multicasts are handled by the
   GRASP core, not directly by ASAs.

   Clarified that a node may discover an objective without supporting it
   for synchronization or negotiation.

   Added Implementation Status section.

   Added reference to SCSP.

   Editorial fixes.

   draft-ietf-anima-grasp-04, 2016-03-11:

   Protocol change: Restored initiator field in certain messages and
   adjusted relaying rules to provide complete loop detection.

   Updated IANA Considerations.

   draft-ietf-anima-grasp-03, 2016-02-24:

   Protocol change: Removed initiator field from certain messages and
   adjusted relaying requirement to simplify loop detection.  Also
   clarified narrative explanation of discovery relaying.

   Protocol change: Split Request message into two (Request Negotiation
   and Request Synchronization) and updated other message names for
   clarity.

   Protocol change: Dropped unused Device ID option.

   Further clarified text on transport layer usage.

   New text about multicast insecurity in Security Considerations.

   Various other clarifications and editorial fixes, including moving
   some material to Appendix.

   draft-ietf-anima-grasp-02, 2016-01-13:

   Resolved numerous issues according to WG discussions.

   Renumbered requirements, added D9.
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   Protocol change: only allow one objective in rapid mode.

   Protocol change: added optional error string to DECLINE option.

   Protocol change: removed statement that seemed to say that a Request
   not preceded by a Discovery should cause a Discovery response.  That
   made no sense, because there is no way the initiator would know where
   to send the Request.

   Protocol change: Removed PEN option from vendor objectives, changed
   naming rule accordingly.

   Protocol change: Added FLOOD message to simplify coding.

   Protocol change: Added SYNCH message to simplify coding.

   Protocol change: Added initiator id to DISCOVER, RESPONSE and FLOOD
   messages.  But also allowed the relay process for DISCOVER and FLOOD
   to regenerate a Session ID.

   Protocol change: Require that discovered addresses must be global
   (except during bootstrap).

   Protocol change: Receiver of REQUEST message must close socket if no
   ASA is listening for the objective.

   Protocol change: Simplified Waiting message.

   Protocol change: Added No Operation message.

   Renamed URL locator type as URI locator type.

   Updated CDDL definition.

   Various other clarifications and editorial fixes.

   draft-ietf-anima-grasp-01, 2015-10-09:

   Updated requirements after list discussion.

   Changed from TLV to CBOR format - many detailed changes, added co-
   author.

   Tightened up loop count and timeouts for various cases.

   Noted that GRASP does not provide transactional integrity.

   Various other clarifications and editorial fixes.
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   draft-ietf-anima-grasp-00, 2015-08-14:

   File name and protocol name changed following WG adoption.

   Added URL locator type.

   draft-carpenter-anima-gdn-protocol-04, 2015-06-21:

   Tuned wording around hierarchical structure.

   Changed "device" to "ASA" in many places.

   Reformulated requirements to be clear that the ASA is the main
   customer for signaling.

   Added requirement for flooding unsolicited synch, and added it to
   protocol spec.  Recognized DNCP as alternative for flooding synch
   data.

   Requirements clarified, expanded and rearranged following design team
   discussion.

   Clarified that GDNP discovery must not be a prerequisite for GDNP
   negotiation or synchronization (resolved issue 13).

   Specified flag bits for objective options (resolved issue 15).

   Clarified usage of ACP vs TLS/DTLS and TCP vs UDP (resolved issues
   9,10,11).

   Updated DNCP description from latest DNCP draft.

   Editorial improvements.

   draft-carpenter-anima-gdn-protocol-03, 2015-04-20:

   Removed intrinsic security, required external security

   Format changes to allow DNCP co-existence

   Recognized DNS-SD as alternative discovery method.

   Editorial improvements

   draft-carpenter-anima-gdn-protocol-02, 2015-02-19:

   Tuned requirements to clarify scope,
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   Clarified relationship between types of objective,

   Clarified that objectives may be simple values or complex data
   structures,

   Improved description of objective options,

   Added loop-avoidance mechanisms (loop count and default timeout,
   limitations on discovery relaying and on unsolicited responses),

   Allow multiple discovery objectives in one response,

   Provided for missing or multiple discovery responses,

   Indicated how modes such as "dry run" should be supported,

   Minor editorial and technical corrections and clarifications,

   Reorganized future work list.

   draft-carpenter-anima-gdn-protocol-01, restructured the logical flow
   of the document, updated to describe synchronization completely, add
   unsolicited responses, numerous corrections and clarifications,
   expanded future work list, 2015-01-06.

   draft-carpenter-anima-gdn-protocol-00, combination of draft-jiang-
   config-negotiation-ps-03 and draft-jiang-config-negotiation-protocol-
   02, 2014-10-08.

Appendix D.  Example Message Formats

   For readers unfamiliar with CBOR, this appendix shows a number of
   example GRASP messages conforming to the CDDL syntax given in
   Section 5.  Each message is shown three times in the following
   formats:

   1.  CBOR diagnostic notation.

   2.  Similar, but showing the names of the constants.  (Details of the
       flag bit encoding are omitted.)

   3.  Hexadecimal version of the CBOR wire format.

   Long lines are split for display purposes only.
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D.1.  Discovery Example

   The initiator (2001:db8:f000:baaa:28cc:dc4c:9703:6781) multicasts a
   discovery message looking for objective EX1:

   [1, 13948744, h’20010db8f000baaa28ccdc4c97036781’, ["EX1", 5, 2, 0]]
   [M_DISCOVERY, 13948744, h’20010db8f000baaa28ccdc4c97036781’,
                 ["EX1", F_SYNCH_bits, 2, 0]]
   h’84011a00d4d7485020010db8f000baaa28ccdc4c970367818463455831050200’

   A peer (2001:0db8:f000:baaa:f000:baaa:f000:baaa) responds with a
   locator:

   [2, 13948744, h’20010db8f000baaa28ccdc4c97036781’, 60000,
                 [103, h’20010db8f000baaaf000baaaf000baaa’, 6, 49443]]
   [M_RESPONSE, 13948744, h’20010db8f000baaa28ccdc4c97036781’, 60000,
                 [O_IPv6_LOCATOR, h’20010db8f000baaaf000baaaf000baaa’,
                  IPPROTO_TCP, 49443]]
   h’85021a00d4d7485020010db8f000baaa28ccdc4c9703678119ea6084186750
     20010db8f000baaaf000baaaf000baaa0619c123’

D.2.  Flood Example

   The initiator multicasts a flood message.  The single objective has a
   null locator.  There is no response:

[9, 3504974, h’20010db8f000baaa28ccdc4c97036781’, 10000,
             [["EX1", 5, 2, ["Example 1 value=", 100]],[] ] ]
[M_FLOOD, 3504974, h’20010db8f000baaa28ccdc4c97036781’, 10000,
             [["EX1", F_SYNCH_bits, 2, ["Example 1 value=", 100]],[] ] ]
h’86091a00357b4e5020010db8f000baaa28ccdc4c97036781192710
  828463455831050282704578616d706c6520312076616c75653d186480’

D.3.  Synchronization Example

   Following successful discovery of objective EX2, the initiator
   unicasts a request:

   [4, 4038926, ["EX2", 5, 5, 0]]
   [M_REQ_SYN, 4038926, ["EX2", F_SYNCH_bits, 5, 0]]
   h’83041a003da10e8463455832050500’

   The peer responds with a value:

 [8, 4038926, ["EX2", 5, 5, ["Example 2 value=", 200]]]
 [M_SYNCH, 4038926, ["EX2", F_SYNCH_bits, 5, ["Example 2 value=", 200]]]
 h’83081a003da10e8463455832050582704578616d706c6520322076616c75653d18c8’
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D.4.  Simple Negotiation Example

   Following successful discovery of objective EX3, the initiator
   unicasts a request:

   [3, 802813, ["EX3", 3, 6, ["NZD", 47]]]
   [M_REQ_NEG, 802813, ["EX3", F_NEG_bits, 6, ["NZD", 47]]]
   h’83031a000c3ffd8463455833030682634e5a44182f’

   The peer responds with immediate acceptance.  Note that no objective
   is needed, because the initiator’s request was accepted without
   change:

   [6, 802813, [101]]
   [M_END , 802813, [O_ACCEPT]]
   h’83061a000c3ffd811865’

D.5.  Complete Negotiation Example

   Again the initiator unicasts a request:

   [3, 13767778, ["EX3", 3, 6, ["NZD", 410]]]
   [M_REQ_NEG, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 410]]]
   h’83031a00d214628463455833030682634e5a4419019a’

   The responder starts to negotiate (making an offer):

   [5, 13767778, ["EX3", 3, 6, ["NZD", 80]]]
   [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 6, ["NZD", 80]]]
   h’83051a00d214628463455833030682634e5a441850’

   The initiator continues to negotiate (reducing its request, and note
   that the loop count is decremented):

   [5, 13767778, ["EX3", 3, 5, ["NZD", 307]]]
   [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 5, ["NZD", 307]]]
   h’83051a00d214628463455833030582634e5a44190133’

   The responder asks for more time:

   [7, 13767778, 34965]
   [M_WAIT, 13767778, 34965]
   h’83071a00d21462198895’

   The responder continues to negotiate (increasing its offer):

Bormann, et al.          Expires January 8, 2018               [Page 72]



Internet-Draft                    GRASP                        July 2017

   [5, 13767778, ["EX3", 3, 4, ["NZD", 120]]]
   [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 4, ["NZD", 120]]]
   h’83051a00d214628463455833030482634e5a441878’

   The initiator continues to negotiate (reducing its request):

   [5, 13767778, ["EX3", 3, 3, ["NZD", 246]]]
   [M_NEGOTIATE, 13767778, ["EX3", F_NEG_bits, 3, ["NZD", 246]]]
   h’83051a00d214628463455833030382634e5a4418f6’

   The responder refuses to negotiate further:

   [6, 13767778, [102, "Insufficient funds"]]
   [M_END , 13767778, [O_DECLINE, "Insufficient funds"]]
   h’83061a00d2146282186672496e73756666696369656e742066756e6473’

   This negotiation has failed.  If either side had sent [M_END,
   13767778, [O_ACCEPT]] it would have succeeded, converging on the
   objective value in the preceding M_NEGOTIATE.  Note that apart from
   the initial M_REQ_NEG, the process is symmetrical.

Appendix E.  Requirement Analysis of Discovery, Synchronization and
             Negotiation

   This section discusses the requirements for discovery, negotiation
   and synchronization capabilities.  The primary user of the protocol
   is an autonomic service agent (ASA), so the requirements are mainly
   expressed as the features needed by an ASA.  A single physical device
   might contain several ASAs, and a single ASA might manage several
   technical objectives.  If a technical objective is managed by several
   ASAs, any necessary coordination is outside the scope of the GRASP
   signaling protocol.  Furthermore, requirements for ASAs themselves,
   such as the processing of Intent [RFC7575], are out of scope for the
   present document.

E.1.  Requirements for Discovery

   D1.  ASAs may be designed to manage any type of configurable device
   or software, as required in Appendix E.2.  A basic requirement is
   therefore that the protocol can represent and discover any kind of
   technical objective (as defined in Section 2.1) among arbitrary
   subsets of participating nodes.

   In an autonomic network we must assume that when a device starts up
   it has no information about any peer devices, the network structure,
   or what specific role it must play.  The ASA(s) inside the device are
   in the same situation.  In some cases, when a new application session
   starts up within a device, the device or ASA may again lack

Bormann, et al.          Expires January 8, 2018               [Page 73]



Internet-Draft                    GRASP                        July 2017

   information about relevant peers.  For example, it might be necessary
   to set up resources on multiple other devices, coordinated and
   matched to each other so that there is no wasted resource.  Security
   settings might also need updating to allow for the new device or
   user.  The relevant peers may be different for different technical
   objectives.  Therefore discovery needs to be repeated as often as
   necessary to find peers capable of acting as counterparts for each
   objective that a discovery initiator needs to handle.  From this
   background we derive the next three requirements:

   D2.  When an ASA first starts up, it may have no knowledge of the
   specific network to which it is attached.  Therefore the discovery
   process must be able to support any network scenario, assuming only
   that the device concerned is bootstrapped from factory condition.

   D3.  When an ASA starts up, it must require no configured location
   information about any peers in order to discover them.

   D4.  If an ASA supports multiple technical objectives, relevant peers
   may be different for different discovery objectives, so discovery
   needs to be performed separately to find counterparts for each
   objective.  Thus, there must be a mechanism by which an ASA can
   separately discover peer ASAs for each of the technical objectives
   that it needs to manage, whenever necessary.

   D5.  Following discovery, an ASA will normally perform negotiation or
   synchronization for the corresponding objectives.  The design should
   allow for this by conveniently linking discovery to negotiation and
   synchronization.  It may provide an optional mechanism to combine
   discovery and negotiation/synchronization in a single protocol
   exchange.

   D6.  Some objectives may only be significant on the local link, but
   others may be significant across the routed network and require off-
   link operations.  Thus, the relevant peers might be immediate
   neighbors on the same layer 2 link, or they might be more distant and
   only accessible via layer 3.  The mechanism must therefore provide
   both on-link and off-link discovery of ASAs supporting specific
   technical objectives.

   D7.  The discovery process should be flexible enough to allow for
   special cases, such as the following:

   o  During initialization, a device must be able to establish mutual
      trust with autonomic nodes elsewhere in the network and
      participate in an authentication mechanism.  Although this will
      inevitably start with a discovery action, it is a special case
      precisely because trust is not yet established.  This topic is the
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      subject of [I-D.ietf-anima-bootstrapping-keyinfra].  We require
      that once trust has been established for a device, all ASAs within
      the device inherit the device’s credentials and are also trusted.
      This does not preclude the device having multiple credentials.

   o  Depending on the type of network involved, discovery of other
      central functions might be needed, such as the Network Operations
      Center (NOC) [I-D.ietf-anima-stable-connectivity].  The protocol
      must be capable of supporting such discovery during
      initialization, as well as discovery during ongoing operation.

   D8.  The discovery process must not generate excessive traffic and
   must take account of sleeping nodes.

   D9.  There must be a mechanism for handling stale discovery results.

E.2.  Requirements for Synchronization and Negotiation Capability

   Autonomic networks need to be able to manage many different types of
   parameter and consider many dimensions, such as latency, load, unused
   or limited resources, conflicting resource requests, security
   settings, power saving, load balancing, etc.  Status information and
   resource metrics need to be shared between nodes for dynamic
   adjustment of resources and for monitoring purposes.  While this
   might be achieved by existing protocols when they are available, the
   new protocol needs to be able to support parameter exchange,
   including mutual synchronization, even when no negotiation as such is
   required.  In general, these parameters do not apply to all
   participating nodes, but only to a subset.

   SN1.  A basic requirement for the protocol is therefore the ability
   to represent, discover, synchronize and negotiate almost any kind of
   network parameter among selected subsets of participating nodes.

   SN2.  Negotiation is an iterative request/response process that must
   be guaranteed to terminate (with success or failure).  While tie-
   breaking rules must be defined specifically for each use case, the
   protocol should have some general mechanisms in support of loop and
   deadlock prevention, such as hop count limits or timeouts.

   SN3.  Synchronization must be possible for groups of nodes ranging
   from small to very large.

   SN4.  To avoid "reinventing the wheel", the protocol should be able
   to encapsulate the data formats used by existing configuration
   protocols (such as NETCONF/YANG) in cases where that is convenient.
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   SN5.  Human intervention in complex situations is costly and error-
   prone.  Therefore, synchronization or negotiation of parameters
   without human intervention is desirable whenever the coordination of
   multiple devices can improve overall network performance.  It follows
   that the protocol’s resource requirements must be small enough to fit
   in any device that would otherwise need human intervention.  The
   issue of running in constrained nodes is discussed in
   [I-D.ietf-anima-reference-model].

   SN6.  Human intervention in large networks is often replaced by use
   of a top-down network management system (NMS).  It therefore follows
   that the protocol, as part of the Autonomic Networking
   Infrastructure, should be capable of running in any device that would
   otherwise be managed by an NMS, and that it can co-exist with an NMS,
   and with protocols such as SNMP and NETCONF.

   SN7.  Specific autonomic features are expected to be implemented by
   individual ASAs, but the protocol must be general enough to allow
   them.  Some examples follow:

   o  Dependencies and conflicts: In order to decide upon a
      configuration for a given device, the device may need information
      from neighbors.  This can be established through the negotiation
      procedure, or through synchronization if that is sufficient.
      However, a given item in a neighbor may depend on other
      information from its own neighbors, which may need another
      negotiation or synchronization procedure to obtain or decide.
      Therefore, there are potential dependencies and conflicts among
      negotiation or synchronization procedures.  Resolving dependencies
      and conflicts is a matter for the individual ASAs involved.  To
      allow this, there need to be clear boundaries and convergence
      mechanisms for negotiations.  Also some mechanisms are needed to
      avoid loop dependencies or uncontrolled growth in a tree of
      dependencies.  It is the ASA designer’s responsibility to avoid or
      detect looping dependencies or excessive growth of dependency
      trees.  The protocol’s role is limited to bilateral signaling
      between ASAs, and the avoidance of loops during bilateral
      signaling.

   o  Recovery from faults and identification of faulty devices should
      be as automatic as possible.  The protocol’s role is limited to
      discovery, synchronization and negotiation.  These processes can
      occur at any time, and an ASA may need to repeat any of these
      steps when the ASA detects an event such as a negotiation
      counterpart failing.

   o  Since a major goal is to minimize human intervention, it is
      necessary that the network can in effect "think ahead" before
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      changing its parameters.  One aspect of this is an ASA that relies
      on a knowledge base to predict network behavior.  This is out of
      scope for the signaling protocol.  However, another aspect is
      forecasting the effect of a change by a "dry run" negotiation
      before actually installing the change.  Signaling a dry run is
      therefore a desirable feature of the protocol.

   Note that management logging, monitoring, alerts and tools for
   intervention are required.  However, these can only be features of
   individual ASAs, not of the protocol itself.  Another document
   [I-D.ietf-anima-stable-connectivity] discusses how such agents may be
   linked into conventional OAM systems via an Autonomic Control Plane
   [I-D.ietf-anima-autonomic-control-plane].

   SN8.  The protocol will be able to deal with a wide variety of
   technical objectives, covering any type of network parameter.
   Therefore the protocol will need a flexible and easily extensible
   format for describing objectives.  At a later stage it may be
   desirable to adopt an explicit information model.  One consideration
   is whether to adopt an existing information model or to design a new
   one.

E.3.  Specific Technical Requirements

   T1.  It should be convenient for ASA designers to define new
   technical objectives and for programmers to express them, without
   excessive impact on run-time efficiency and footprint.  In
   particular, it should be convenient for ASAs to be implemented
   independently of each other as user space programs rather than as
   kernel code, where such a programming model is possible.  The classes
   of device in which the protocol might run is discussed in
   [I-D.ietf-anima-reference-model].

   T2.  The protocol should be easily extensible in case the initially
   defined discovery, synchronization and negotiation mechanisms prove
   to be insufficient.

   T3.  To be a generic platform, the protocol payload format should be
   independent of the transport protocol or IP version.  In particular,
   it should be able to run over IPv6 or IPv4.  However, some functions,
   such as multicasting on a link, might need to be IP version
   dependent.  By default, IPv6 should be preferred.

   T4.  The protocol must be able to access off-link counterparts via
   routable addresses, i.e., must not be restricted to link-local
   operation.
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   T5.  It must also be possible for an external discovery mechanism to
   be used, if appropriate for a given technical objective.  In other
   words, GRASP discovery must not be a prerequisite for GRASP
   negotiation or synchronization.

   T6.  The protocol must be capable of distinguishing multiple
   simultaneous operations with one or more peers, especially when wait
   states occur.

   T7.  Intent: Although the distribution of Intent is out of scope for
   this document, the protocol must not by design exclude its use for
   Intent distribution.

   T8.  Management monitoring, alerts and intervention: Devices should
   be able to report to a monitoring system.  Some events must be able
   to generate operator alerts and some provision for emergency
   intervention must be possible (e.g.  to freeze synchronization or
   negotiation in a mis-behaving device).  These features might not use
   the signaling protocol itself, but its design should not exclude such
   use.

   T9.  Because this protocol may directly cause changes to device
   configurations and have significant impacts on a running network, all
   protocol exchanges need to be fully secured against forged messages
   and man-in-the middle attacks, and secured as much as reasonably
   possible against denial of service attacks.  There must also be an
   encryption mechanism to resist unwanted monitoring.  However, it is
   not required that the protocol itself provides these security
   features; it may depend on an existing secure environment.

Appendix F.  Capability Analysis of Current Protocols

   This appendix discusses various existing protocols with properties
   related to the requirements described in Appendix E.  The purpose is
   to evaluate whether any existing protocol, or a simple combination of
   existing protocols, can meet those requirements.

   Numerous protocols include some form of discovery, but these all
   appear to be very specific in their applicability.  Service Location
   Protocol (SLP) [RFC2608] provides service discovery for managed
   networks, but requires configuration of its own servers.  DNS-SD
   [RFC6763] combined with mDNS [RFC6762] provides service discovery for
   small networks with a single link layer.  [RFC7558] aims to extend
   this to larger autonomous networks but this is not yet standardized.
   However, both SLP and DNS-SD appear to target primarily application
   layer services, not the layer 2 and 3 objectives relevant to basic
   network configuration.  Both SLP and DNS-SD are text-based protocols.
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   Simple Network Management Protocol (SNMP) [RFC3416] uses a command/
   response model not well suited for peer negotiation.  Network
   Configuration Protocol (NETCONF) [RFC6241] uses an RPC model that
   does allow positive or negative responses from the target system, but
   this is still not adequate for negotiation.

   There are various existing protocols that have elementary negotiation
   abilities, such as Dynamic Host Configuration Protocol for IPv6
   (DHCPv6) [RFC3315], Neighbor Discovery (ND) [RFC4861], Port Control
   Protocol (PCP) [RFC6887], Remote Authentication Dial In User Service
   (RADIUS) [RFC2865], Diameter [RFC6733], etc.  Most of them are
   configuration or management protocols.  However, they either provide
   only a simple request/response model in a master/slave context or
   very limited negotiation abilities.

   There are some signaling protocols with an element of negotiation.
   For example Resource ReSerVation Protocol (RSVP) [RFC2205] was
   designed for negotiating quality of service parameters along the path
   of a unicast or multicast flow.  RSVP is a very specialised protocol
   aimed at end-to-end flows.  A more generic design is General Internet
   Signalling Transport (GIST) [RFC5971], but it is complex, tries to
   solve many problems, and is also aimed at per-flow signaling across
   many hops rather than at device-to-device signaling.  However, we
   cannot completely exclude extended RSVP or GIST as a synchronization
   and negotiation protocol.  They do not appear to be directly useable
   for peer discovery.

   RESTCONF [RFC8040] is a protocol intended to convey NETCONF
   information expressed in the YANG language via HTTP, including the
   ability to transit HTML intermediaries.  While this is a powerful
   approach in the context of centralised configuration of a complex
   network, it is not well adapted to efficient interactive negotiation
   between peer devices, especially simple ones that might not include
   YANG processing already.

   The Distributed Node Consensus Protocol (DNCP) [RFC7787] is defined
   as a generic form of state synchronization protocol, with a proposed
   usage profile being the Home Networking Control Protocol (HNCP)
   [RFC7788] for configuring Homenet routers.  A specific application of
   DNCP for autonomic networking was proposed in
   [I-D.stenberg-anima-adncp].

   DNCP "is designed to provide a way for each participating node to
   publish a set of TLV (Type-Length-Value) tuples, and to provide a
   shared and common view about the data published... DNCP is most
   suitable for data that changes only infrequently... If constant rapid
   state changes are needed, the preferable choice is to use an
   additional point-to-point channel..."
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   Specific features of DNCP include:

   o  Every participating node has a unique node identifier.

   o  DNCP messages are encoded as a sequence of TLV objects, sent over
      unicast UDP or TCP, with or without (D)TLS security.

   o  Multicast is used only for discovery of DNCP neighbors when lower
      security is acceptable.

   o  Synchronization of state is maintained by a flooding process using
      the Trickle algorithm.  There is no bilateral synchronization or
      negotiation capability.

   o  The HNCP profile of DNCP is designed to operate between directly
      connected neighbors on a shared link using UDP and link-local IPv6
      addresses.

   DNCP does not meet the needs of a general negotiation protocol,
   because it is designed specifically for flooding synchronization.
   Also, in its HNCP profile it is limited to link-local messages and to
   IPv6.  However, at the minimum it is a very interesting test case for
   this style of interaction between devices without needing a central
   authority, and it is a proven method of network-wide state
   synchronization by flooding.

   The Server Cache Synchronization Protocol (SCSP) [RFC2334] also
   describes a method for cache synchronization and cache replication
   among a group of nodes.

   A proposal was made some years ago for an IP based Generic Control
   Protocol (IGCP) [I-D.chaparadza-intarea-igcp].  This was aimed at
   information exchange and negotiation but not directly at peer
   discovery.  However, it has many points in common with the present
   work.

   None of the above solutions appears to completely meet the needs of
   generic discovery, state synchronization and negotiation in a single
   solution.  Many of the protocols assume that they are working in a
   traditional top-down or north-south scenario, rather than a fluid
   peer-to-peer scenario.  Most of them are specialized in one way or
   another.  As a result, we have not identified a combination of
   existing protocols that meets the requirements in Appendix E.  Also,
   we have not identified a path by which one of the existing protocols
   could be extended to meet the requirements.
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1.  Introduction

   The original purpose of this document was to validate the design of
   the Autonomic Networking Infrastructure (ANI) for a realistic use
   case.  It shows how the ANI can be applied to IP prefix delegation
   and it outlines approaches to build a system to do this.  A fully
   standardized solution would require more details, so this document is
   informational in nature.
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   This document defines two autonomic technical objectives for IPv6
   prefix management in large-scale networks, with an extension to
   support IPv4 prefixes.  The background to Autonomic Networking (AN)
   is described in [RFC7575] and [RFC7576].  The GeneRic Autonomic
   Signaling Protocol (GRASP) is specified by [I-D.ietf-anima-grasp] and
   can make use of the proposed technical objectives to provide a
   solution for autonomic prefix management.  An important purpose of
   the present document is to use it for validation of the design of
   GRASP and other components of the autonomic networking infrastructure
   described in [I-D.ietf-anima-reference-model].

   This document is not a complete functional specification of an
   autonomic prefix management system and it does not describe all
   detailed aspects of the GRASP objective parameters and Autonomic
   Service Agent (ASA) procedures necessary to build a complete system.
   Instead, it describes the architectural framework utilizing the
   components of the ANI, outlines the different deployment options and
   aspects, and defines GRASP objectives for use in building the system.
   It also provides some basic parameter examples.

   This document is not intended to solve all cases of IPv6 prefix
   management.  In fact, it assumes that the network’s main
   infrastructure elements already have addresses and prefixes.  The
   document is dedicated to how to make IPv6 prefix management at the
   edges of large-scale networks as autonomic as possible.  It is
   specifically written for service provider (ISP) networks.  Although
   there are similarities between ISPs and large enterprise networks,
   the requirements for the two use cases differ.  In any case, the
   scope of the solution is expected to be limited, like any autonomic
   network, to a single management domain.

   However, the solution is designed in a general way.  Its use for a
   broader scope than edge prefixes, including some or all
   infrastructure prefixes, is left for future discussion.

   A complete solution has many aspects that are not discussed here.
   Once prefixes have been assigned to routers, they need to be
   communicated to the routing system as they are brought into use.
   Similarly, when prefixes are released, they need to be removed from
   the routing system.  Different operators may have different policies
   about prefix lifetimes, and they may prefer to have centralized or
   distributed pools of spare prefixes.  In an autonomic network, these
   are properties decided by the design of the relevant ASAs.  The GRASP
   objectives are simply building blocks.

   A particular risk of distributed prefix allocation in large networks
   is that over time, it might lead to fragmentation of the address
   space and an undesirable increase in the interior routing protocol
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   tables.  The extent of this risk depends on the algorithms and
   policies used by the ASAs.  Mitigating this risk might even become an
   autonomic function in itself.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document uses terminology defined in [RFC7575].

3.  Problem Statement

   The autonomic networking use case considered here is autonomic IPv6
   prefix management at the edge of large-scale ISP networks.

   Although DHCPv6 Prefix Delegation [RFC3633] supports automated
   delegation of IPv6 prefixes from one router to another, prefix
   management still largely depends on human planning.  In other words,
   there is no basic information or policy to support autonomic
   decisions on the prefix length that each router should request or be
   delegated, according to its role in the network.  Roles could be
   defined separately for individual devices or could be generic (edge
   router, interior router, etc.).  Furthermore, IPv6 prefix management
   by humans tends to be rigid and static after initial planning.

   The problem to be solved by autonomic networking is how to
   dynamically manage IPv6 address space in large-scale networks, so
   that IPv6 addresses can be used efficiently.  Here, we limit the
   problem to assignment of prefixes at the edge of the network, close
   to access routers that support individual fixed-line subscribers,
   mobile customers, and corporate customers.  We assume that the core
   infrastructure of the network has already been established with
   appropriately assigned prefixes.  The AN approach discussed in this
   document is based on the assumption that there is a generic discovery
   and negotiation protocol that enables direct negotiation between
   intelligent IP routers.  GRASP [I-D.ietf-anima-grasp] is intended to
   be such a protocol.

3.1.  Intended User and Administrator Experience

   The intended experience is, for the administrators of a large-scale
   network, that the management of IPv6 address space at the edge of the
   network can be run with minimum effort, as devices at the edge are
   added and removed and as customers of all kinds join and leave the
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   network.  In the ideal scenario, the administrators only have to
   specify a single IPv6 prefix for the whole network and the initial
   prefix length for each device role.  As far as users are concerned,
   IPv6 prefix assignment would occur exactly as it does in any other
   network.

   The actual prefix usage needs to be logged for potential offline
   management operations including audit and security incident tracing.

3.2.  Analysis of Parameters and Information Involved

   For specific purposes of address management, a few parameters are
   involved on each edge device (some of them can be pre-configured
   before they are connected).  They include:

   o  Identity, authentication and authorization of this device.  This
      is expected to use the autonomic networking secure bootstrap
      process [I-D.ietf-anima-bootstrapping-keyinfra], following which
      the device could safely take part in autonomic operations.

   o  Role of this device.  Some example roles are discussed in
      Section 6.1.

   o  An IPv6 prefix length for this device.

   o  An IPv6 prefix that is assigned to this device and its downstream
      devices.

   A few parameters are involved in the network as a whole.  They are:

   o  Identity of a trust anchor, which is a certification authority
      (CA) maintained by the network administrators, used during the
      secure bootstrap process.

   o  Total IPv6 address space available for edge devices.  It is a pool
      of one or several IPv6 prefixes.

   o  The initial prefix length for each device role.

3.2.1.  Parameters each device can define for itself

   This section identifies those of the above parameters that do not
   need external information in order for the devices concerned to set
   them to a reasonable default value after bootstrap or after a network
   disruption.  There are few of these:

   o  Default role of this device.
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   o  Default IPv6 prefix length for this device.

   o  Cryptographic identity of this device, as needed for secure
      bootstrapping [I-D.ietf-anima-bootstrapping-keyinfra].

   The device may be shipped from the manufacturer with pre-configured
   role and default prefix length, which could be modified by an
   autonomic mechanism.  Its cryptographic identity will be installed by
   its manufacturer.

3.2.2.  Information needed from network operations

   This section identifies those parameters that might need operational
   input in order for the devices concerned to set them to a non-default
   value.

   o  Non-default value for the IPv6 prefix length for this device.
      This needs to be decided based on the role of this device.

   o  The initial prefix length for each device role.

   o  Whether to allow the device to request more address space.

   o  The policy when to request more address space, for example, if the
      address usage reaches a certain limit or percentage.

3.2.3.  Comparison with current solutions

   This section briefly compares the above use case with current
   solutions.  Currently, the address management is still largely
   dependent on human planning.  It is rigid and static after initial
   planning.  Address requests will fail if the configured address space
   is used up.

   Some autonomic and dynamic address management functions may be
   achievable by extending the existing protocols, for example,
   extending DHCPv6-PD (DHCPv6 Prefix Delegation, [RFC3633]) to request
   IPv6 prefixes according to the device role.  However, defining
   uniform device roles may not be a practical task.  Some functions are
   not suitable to be achieved by any existing protocols.

   Using a generic autonomic discovery and negotiation protocol instead
   of specific solutions has the advantage that additional parameters
   can be included in the autonomic solution without creating new
   mechanisms.  This is the principal argument for a generic approach.
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3.3.  Interaction with other devices

3.3.1.  Information needed from other devices

   This section identifies those of the above parameters that need
   external information from neighbor devices (including the upstream
   devices).  In many cases, two-way dialogue with neighbor devices is
   needed to set or optimize them.

   o  Identity of a trust anchor.

   o  The device will need to discover a device, from which it can
      acquire IPv6 address space.

   o  The initial prefix length for each device role, particularly for
      its own downstream devices.

   o  The default value of the IPv6 prefix length may be overridden by a
      non-default value.

   o  The device will need to request and acquire one or more IPv6
      prefixes that can be assigned to this device and its downstream
      devices.

   o  The device may respond to prefix delegation requests from its
      downstream devices.

   o  The device may require to be assigned more IPv6 address space, if
      it used up its assigned IPv6 address space.

3.3.2.  Monitoring, diagnostics and reporting

   This section discusses what role devices should play in monitoring,
   fault diagnosis, and reporting.

   o  The actual address assignments need to be logged for potential
      offline management operations.

   o  In general, the usage situation of address space should be
      reported to the network administrators, in an abstract way, for
      example, statistics or visualized report.

   o  A forecast of address exhaustion should be reported.
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4.  Autonomic Edge Prefix Management Solution

   This section introduces the building blocks for an autonomic edge
   prefix management solution.  As noted in Section 1, this is not a
   complete description of a solution, which will depend on the detailed
   design of the relevant Autonomic Service Agents.  It uses the generic
   discovery and negotiation protocol defined by [I-D.ietf-anima-grasp].
   The relevant GRASP objectives are defined in Section 5.

   The procedures described below are carried out by an Autonomic
   Service Agent (ASA) in each device that participates in the solution.
   We will refer to this as the PrefixManager ASA.

4.1.  Behaviors on prefix requesting device

   If the device containing a PrefixManager ASA has used up its address
   pool, it can request more space according to its requirements.  It
   should decide the length of the requested prefix and request it by
   the mechanism described in Section 6.  Note that although the
   device’s role may define certain default allocation lengths, those
   defaults might be changed dynamically, and the device might request
   more, or less, address space due to some local operational heuristic.

   A PrefixManager ASA that needs additional address space should
   firstly discover peers that may be able to provide extra address
   space.  The ASA should send out a GRASP Discovery message that
   contains a PrefixManager Objective option (see Section 5.1) in order
   to discover peers also supporting that option.  Then it should choose
   one such peer, most likely the first to respond.

   If the GRASP discovery Response message carries a divert option
   pointing to an off-link PrefixManager ASA, the requesting ASA may
   initiate negotiation with that ASA diverted device to find out
   whether it can provide the requested length prefix.

   In any case, the requesting ASA will act as a GRASP negotiation
   initiator by sending a GRASP Request message with a PrefixManager
   Objective option.  The ASA indicates in this option the length of the
   requested prefix.  This starts a GRASP negotiation process.

   During the subsequent negotiation, the ASA will decide at each step
   whether to accept the offered prefix.  That decision, and the
   decision to end negotiation, is an implementation choice.

   The ASA could alternatively initiate rapid mode GRASP discovery with
   an embedded negotiation request, if it is implemented.
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4.2.  Behaviors on prefix providing device

   At least one device on the network must be configured with the
   initial pool of available prefixes mentioned in Section 3.2.  Apart
   from that requirement, any device may act as a prefix providing
   device.

   A device that receives a Discovery message with a PrefixManager
   Objective option should respond with a GRASP Response message if it
   contains a PrefixManager ASA.  Further details of the discovery
   process are described in [I-D.ietf-anima-grasp].  When this ASA
   receives a subsequent Request message, it should conduct a GRASP
   negotiation sequence, using Negotiate, Confirm-waiting, and
   Negotiation-ending messages as appropriate.  The Negotiate messages
   carry a PrefixManager Objective option, which will indicate the
   prefix and its length offered to the requesting ASA.  As described in
   [I-D.ietf-anima-grasp], negotiation will continue until either end
   stops it with a Negotiation-ending message.  If the negotiation
   succeeds, the prefix providing ASA will remove the negotiated prefix
   from its pool, and the requesting ASA will add it.  If the
   negotiation fails, the party sending the Negotiation-ending message
   may include an error code string.

   During the negotiation, the ASA will decide at each step how large a
   prefix to offer.  That decision, and the decision to end negotiation,
   is an implementation choice.

   The ASA could alternatively negotiate in response to rapid mode GRASP
   discovery, if it is implemented.

   This specification is independent of whether the PrefixManager ASAs
   are all embedded in routers, but that would be a rather natural
   scenario.  In a hierarchical network topology, a given router
   typically provide prefixes for routers below it in the hierarchy, and
   it is also likely to contain the first PrefixManager ASA discovered
   by those downstream routers.  However, the GRASP discovery model,
   including its Redirect feature, means that this is not an exclusive
   scenario, and a downstream PrefixManager ASA could negotiate a new
   prefix with a device other than its upstream router.

   A resource shortage may cause the gateway router to request more
   resource in turn from its own upstream device.  This would be another
   independent GRASP discovery and negotiation process.  During the
   processing time, the gateway router should send a Confirm-waiting
   Message to the initial requesting router, to extend its timeout.
   When the new resource becomes available, the gateway router responds
   with a GRASP Negotiate message with a prefix length matching the
   request.
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   The algorithm to choose which prefixes to assign on the prefix
   providing devices is an implementation choice.

4.3.  Behavior after Successful Negotiation

   Upon receiving a GRASP Negotiation-ending message that indicates that
   an acceptable prefix length is available, the requesting device may
   use the negotiated prefix without further messages.

   There are use cases where the ANI/GRASP based prefix management
   approach can work together with DHCPv6-PD [RFC3633] as a complement.
   For example, the ANI/GRASP based method can be used intra-domain,
   while the DHCPv6-PD method works inter-domain (i.e., across an
   administrative boundary).  Also, ANI/GRASP can be used inside the
   domain, and DHCP/DHCPv6-PD be used on the edge of the domain to
   client (non-ANI devices).  Another similar use case would be ANI/
   GRASP inside the domain, with RADIUS [RFC2865] providing prefixes to
   client devices.

4.4.  Prefix logging

   Within the autonomic prefix management, all the prefix assignment is
   done by devices without human intervention.  It may be required to
   record all the prefix assignment history, for example to detect or
   trace lost prefixes after outages, or to meet legal requirements.
   However, the logging and reporting process is out of scope for this
   document.

5.  Autonomic Prefix Management Objectives

   This section defines the GRASP technical objective options that are
   used to support autonomic prefix management.

5.1.  Edge Prefix Objective Option

   The PrefixManager Objective option is a GRASP objective option
   conforming to [I-D.ietf-anima-grasp].  Its name is "PrefixManager"
   (see Section 8) and it carries the following data items as its value:
   the prefix length, and the actual prefix bits.  Since GRASP is based
   on CBOR (Concise Binary Object Representation [RFC7049]), the format
   of the PrefixManager Objective option is described as follows in CBOR
   data definition language (CDDL) [I-D.ietf-cbor-cddl]:
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     objective = ["PrefixManager", objective-flags, loop-count,
                  [length, ?prefix]]

     loop-count = 0..255         ; as in the GRASP specification
     objective-flags /=          ; as in the GRASP specification
     length = 0..128             ; requested or offered prefix length
     prefix = bytes .size 16     ; offered prefix in binary format

   The use of the ’dry run’ mode of GRASP is NOT RECOMMENDED for this
   objective, because it would require both ASAs to store state about
   the corresponding negotiation, to no real benefit - the requesting
   ASA cannot base any decisions on the result of a successful dry run
   negotiation.

5.2.  IPv4 extension

   This section presents an extended version of the PrefixManager
   Objective that supports IPv4 by adding an extra flag:

     objective = ["PrefixManager", objective-flags, loop-count, prefval]

     loop-count = 0..255         ; as in the GRASP specification
     objective-flags /=          ; as in the GRASP specification

     prefval /= pref6val
     pref6val = [version6, length, ?prefix]
     version6 = 6
     length = 0..128             ; requested or offered prefix length
     prefix = bytes .size 16     ; offered prefix in binary format

     prefval /= pref4val
     pref4val = [version4, length4, ?prefix4]
     version4 = 4
     length4 = 0..32             ; requested or offered prefix length
     prefix4 = bytes .size 4     ; offered prefix in binary format

   Prefix and address management for IPv4 is considerably more difficult
   than for IPv6, due to the prevalence of NAT, ambiguous addresses
   [RFC1918], and address sharing [RFC6346].  These complexities might
   require further extending the objective with additional fields which
   are not defined by this document.

6.  Prefix Management Parameters

   An implementation of a prefix manager MUST include default settings
   of all necessary parameters.  However, within a single administrative
   domain, the network operator MAY change default parameters for all
   devices with a certain role.  Thus it would be possible to apply an
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   intended policy for every device in a simple way, without traditional
   configuration files.  As noted in Section 4.1, individual autonomic
   devices may also change their own behavior dynamically.

   For example, the network operator could change the default prefix
   length for each type of role.  A prefix management parameters
   objective, which contains mapping information of device roles and
   their default prefix lengths, MAY be flooded in the network, through
   the Autonomic Control Plane (ACP)
   [I-D.ietf-anima-autonomic-control-plane].  The objective is defined
   in CDDL as follows:

     objective = ["PrefixManager.Params", objective-flags, any]

     loop-count = 0..255         ; as in the GRASP specification
     objective-flags /=          ; as in the GRASP specification

   The ’any’ object would be the relevant parameter definitions (such as
   the example below) transmitted as a CBOR object in an appropriate
   format.

   This could be flooded to all nodes, and any PrefixManager ASA that
   did not receive it for some reason could obtain a copy using GRASP
   unicast synchronization.  Upon receiving the prefix management
   parameters, every device can decide its default prefix length by
   matching its own role.

6.1.  Example of Prefix Management Parameters

   The parameters comprise mapping information of device roles and their
   default prefix lengths in an autonomic domain.  For example, suppose
   an IPRAN (IP Radio Access Network) operator wants to configure the
   prefix length of Radio Network Controller Site Gateway (RSG) as 34,
   the prefix length of Aggregation Site Gateway (ASG) as 44, and the
   prefix length of Cell Site Gateway (CSG) as 56.  This could be
   described in the value of the PrefixManager.Params objective as:

   [
      [["role", "RSG"],["prefix_length", 34]],
      [["role", "ASG"],["prefix_length", 44]],
      [["role", "CSG"],["prefix_length", 56]]
   ]

   This example is expressed in JSON notation [RFC7159], which is easy
   to represent in CBOR.
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   An alternative would be to express the parameters in YANG [RFC7950]
   using the YANG-to-CBOR mapping [I-D.ietf-core-yang-cbor].

   For clarity, the background of the example is introduced below, which
   can also be regarded as a use case of the mechanism proposed in this
   document.

   An IPRAN network is used for mobile backhaul, including radio
   stations, RNC (in 3G) or the packet core (in LTE), and the IP network
   between them as shown in Figure 1.  The eNB (Evolved Node B), RNC
   (Radio Network Controller), SGW (Service Gateway), and MME (Mobility
   Management Entity) are mobile network entities defined in 3GPP.  The
   CSG, ASG, and RSG are entities defined in the IPRAN solution.

   The IPRAN topology shown in Figure 1 includes Ring1 which is the
   circle following ASG1->RSG1->RSG2->ASG2->ASG1, Ring2 following
   CSG1->ASG1->ASG2->CSG2->CSG1, and Ring3 following
   CSG3->ASG1->ASG2->CSG3.  In a real deployment of IPRAN, there may be
   more stations, rings, and routers in the topology, and normally the
   network is highly dependent on human design and configuration, which
   is neither flexible nor cost-effective.

   +------+   +------+
   | eNB1 |---| CSG1 |\
   +------+   +------+  \   +-------+       +------+           +-------+
                  |       \ |  ASG1 |-------| RSG1 |-----------|SGW/MME|
                  |  Ring2  +-------+       +------+ \        /+-------+
   +------+   +------+     /     |              |      \    /
   | eNB2 |---| CSG2 | \  /      |      Ring1   |        \/
   +------+   +------+   \  Ring3|              |        /\
                        / \      |              |      /   \
   +------+   +------+ /    \ +-------+      +------+/       \+-------+
   | eNB3 |---| CSG3 |--------|  ASG2 |------| RSG2 |---------|  RNC  |
   +------+   +------+        +-------+      +------+         +-------+

                   Figure 1: IPRAN Topology Example

   If ANI/GRASP is supported in the IPRAN network, the network nodes
   should be able to negotiate with each other, and make some autonomic
   decisions according to their own status and the information collected
   from the network.  The Prefix Management Parameters should be part of
   the information they communicate.

   The routers should know the role of their neighbors, the default
   prefix length for each type of role, etc.  An ASG should be able to
   request prefixes from an RSG, and an CSG should be able to request
   prefixes from an ASG.  In each request, the ASG/CSG should indicate
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   the required prefix length, or its role, which implies what length it
   needs by default.

7.  Security Considerations

   Relevant security issues are discussed in [I-D.ietf-anima-grasp].
   The preferred security model is that devices are trusted following
   the secure bootstrap procedure
   [I-D.ietf-anima-bootstrapping-keyinfra] and that a secure Autonomic
   Control Plane (ACP) [I-D.ietf-anima-autonomic-control-plane] is in
   place.

   It is RECOMMENDED that DHCPv6-PD, if used, should be operated using
   DHCPv6 authentication or Secure DHCPv6.

8.  IANA Considerations

   This document defines two new GRASP Objective Option names,
   "PrefixManager" and "PrefixManager.Params".  The IANA is requested to
   add these to the GRASP Objective Names Table registry defined by
   [I-D.ietf-anima-grasp] (if approved).
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Appendix A.  Deployment Overview

   This Appendix includes logical deployment models, and explanations of
   the target deployment models.  The purpose is to help in
   understanding the mechanism of the document.

   This Appendix includes two sub-sections: A.1 for the two most common
   DHCP deployment models, and A.2 for the proposed PD deployment model.
   It should be noted that these are just examples, and there are many
   more deployment models.

A.1.  Address & Prefix management with DHCP

   Edge DHCP server deployment requires every edge router connecting to
   CPE to be a DHCP server assigning IPv4/IPv6 addresses to CPE - and
   optionally IPv6 prefixes via DHCPv6-PD for IPv6 capable CPE that are
   router and have LANs behind them.
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                                                edge
           dynamic, "netconf/YANG"            interfaces
            <---------------> +-------------+
   +------+    <- telemetry   | edge router/|-+  -----  +-----+
   |config|  .... Domain ...  | DHCP server | |  ...    | CPE |+  LANs
   |server|                   +-------------+ |  -----  +-----+| (---| )
   +------+                    +--------------+  DHCP/   +-----+
                                              DHCPv6 / PD

      Figure 2: DHCP Deployment Model without a Central DHCP Server

   This requires various coordination functions via some backend system
   depicted as "config server": The address prefixes on the edge
   interfaces should be slightly larger than required for the number of
   CPEs connected so that the overall address space is best used.

   The config server needs to provision edge interface address prefixes
   and DHCP parameters for every edge router.  If too fine grained
   prefixes are used, this will result in large routing tables across
   the "Domain".  If too coarse grained prefixes are used, address space
   is wasted.  (This is less of a concern for IPv6, but if the model
   includes IPv4, it is a very serious concern.)

   There is no standard describing algorithms for how configuration
   servers would best perform this ongoing dynamic provisioning to
   optimize routing table size and address space utilization.

   There are currently no complete YANG models that a config server
   could use to perform these actions (including telemetry of assigned
   addresses from such distributed DHCP servers).

   For example, a YANG model for controlling DHCP server operations is
   still in draft [I-D.liu-dhc-dhcp-yang-model].

   Due to these and other problems of the above model, the more common
   DHCP deployment model is as follows:

   +------+                                      edge
   |config|    initial, "CLI"                   interfaces
   |server| ----------------> +-------------+
   +------+                   | edge router/|-+  -----  +-----+
      |     .... Domain ...   | DHCP relay  | |  ...    | CPE |+  LANs
   +------+                   +-------------+ |  -----  +-----+| (---| )
   |DHCP  |                    +--------------+   DHCP/  +-----+
   |server|                                   DHCPv6 / PD
   +------+

       Figure 3: DHCP Deployment Model with a Central DHCP Server
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   Dynamic provisioning changes to edge routers are avoided by using a
   central DHCP server and reducing the edge router from DHCP server to
   DHCP relay.  The "configuration" on the edge routers is static, the
   DHCP relay function inserts "edge interface" and/or subscriber
   identifying options into DHCP requests from CPE (e.g., [RFC3046],
   [RFC6221]), the DHCP server has complete policies for address
   assignments and prefixes useable on every edge-router/interface/
   subscriber-group.  When the DHCP relay sees the DHCP reply, it
   inserts static routes for the assigned address/address-prefix into
   the routing table of the edge router which are then to be distributed
   by the IGP (or BGP) inside the domain to make the CPE and LANs
   reachable across the Domain.

   There is no comprehensive standardization of these solutions.
   [RFC3633] section 14, for example, simply refers to "a [non-defined]
   protocol or other out-of-band communication to add routing
   information for delegated prefixes into the provider edge router".

A.2.  Prefix management with ANI/GRASP

   With the proposed use of ANI and Prefix-management ASAs using GRASP,
   the deployment model is intended to look as follows:

   |<............ ANI Domain / ACP............>| (...) ........->

                                      Roles
                                        |
                                        v   "Edge routers"
   GRASP parameter               +----------+
    Network wide                 |  PM-ASA  | downstream
   parameters/policies           |  (DHCP-  | interfaces
        |                        |functions)| ------
        v  "central device"      +----------+
   +------+                            ^             +--------+
   |PM-ASA|      <............GRASP ....      ....   |  CPE   |-+ (LANs)
   +------+             .              v             |(PM-ASA)| |  ---|
        .           +........+   +----------+        +--------+ |
   +...........+    . PM-ASA .   |  PM-ASA  | ------  +---------+
   .DHCP server.    +........+   |  (DHCP-  | SLAAC/
   +...........+  "intermediate  |functions)| DHCP/DHCP-PD
                     router"     +----------+

          Figure 4: Proposed Deployment Model using ANI/GRASP

   The network runs an ANI domain with ACP
   [I-D.ietf-anima-autonomic-control-plane] between some central device
   (e.g., router or ANI enabled management device) and the edge routers.
   ANI/ACP provides a secure, zero-touch communication channel between
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   the devices and enables the use of GRASP[I-D.ietf-anima-grasp] not
   only for p2p communication, but also for distribution/flooding.

   The central devices and edge routers run software in the form of
   "Autonomic Service Agents" (ASA) to support this document’s autonomic
   IPv6 edge prefix management (PM).  The ASAs for prefix management are
   called PM-ASAs below, and together comprise the Autonomic Prefix
   Management Function.

   Edge routers can have different roles based on the type and number of
   CPE attaching to them.  Each edge router could be an RSG, ASG, or CSG
   in mobile aggregation networks (see Section 6.1).  Mechanisms outside
   the scope of this document make routers aware of their roles.

   Some considerations about the proposed deployment model are listed as
   follows.

   1.  In a minimum Prefix Management solution, the central device uses
   the "PrefixManager.Params" GRASP Objective introduced in this
   document to disseminate network wide, per-role parameters to edge
   routers.  The PM-ASA uses the parameters applying to its role to
   locally configure pre-existing addressing functions.  Because PM-ASA
   does not manage the dynamic assignment of actual IPv6 address
   prefixes in this case, the following options can be considered:

   1.a The edge router connects via downstream interfaces to (host) CPE
   that each requires an address.  The PM-ASA sets up for each such
   interface a DHCP requesting router (according to [RFC3633]) to
   request an IPv6 prefix for the interface.  The router’s address on
   the downstream interface can be another parameter from the GRASP
   Objective.  The CPEs assign addresses in the prefix via RAs from the
   router or the PM-ASA manages a local DHCPv6 server to assign
   addresses to the CPEs.  A central DHCP server acting as the DHCP
   delegating router (according to [RFC3633]) is required.  Its address
   can be another parameter from the GRASP Objective.

   1.b The edge router also connects via downstream interfaces to
   (customer managed) CPEs that are routers and act as DHCPv6 requesting
   routers.  The need to support this could be derived from role and/or
   GRASP parameters and the PM-ASA sets up a DHCP relay function to pass
   on requests to the central DHCP server as in 1.a.

   2.  In a solution without a central DHCP server, the PM-ASA on the
   edge routers not only learn parameters from "PrefixManager.Params"
   but also utilize GRASP to request/negotiate actual IPv6 prefix
   delegation via the GRASP "PrefixManager" objective described in more
   detail below.  In the most simple case, these prefixes are delegated
   via this GRASP objective from the PM-ASA in the central device.  This
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   device must be provisioned initially with a large pool of prefixes.
   The delegated prefixes are then used by the PM-ASA on the edge
   routers to edge routers to configure prefixes on their downstream
   interfaces to assign addresses via RA/SLAAC to host CPEs.  The PM-ASA
   may also start local DHCP servers (as in 1.a) to assign addresses via
   DHCP to CPE from the prefixes it received.  This includes both host
   CPEs requesting IPv6 addresses as well as router CPEs that request
   IPv6 prefixes.  The PM-ASA needs to manage the address pool(s) it has
   requested via GRASP and allocate sub-address pools to interfaces and
   the local DHCP servers it starts.  It needs to monitor the address
   utilization and accordingly request more address prefixes if its
   existing prefixes are exhausted, or return address prefixes when they
   are unneeded.

   This solution is quite similar to the initial described IPv6 DHCP
   deployment model without central DHCP server, and ANI/ACP/GRASP and
   the PM-ASA do provide the automation to make this approach work more
   easily than it is possible today.

   3.  The address pool(s) from which prefixes are allocated does not
   need to be taken all from one central location.  Edge router PM-ASA
   that received a big (short) prefix from a central PM-ASA could offer
   smaller sub-prefixes to neighboring edge-router PM-ASA.  GRASP could
   be used in such a way that the PM-ASA would find and select the
   objective from the closest neighboring PM-ASA, therefore allowing to
   maximize aggregation: A PM-ASA would only request further (smaller/
   shorter) prefixes when it exhausts its own poll (from the central
   location) and can not get further large prefixes from that central
   location anymore.  Because the overflow prefixes taken from a
   topological nearby PM-ASA, the number of longer prefixes that have to
   be injected into the routing tables is limited and the topological
   proximity increases the chances that aggregation of prefixes in the
   IGP can most likely limit the geography in which the longer prefixes
   need to be routed.

   4.  Instead of peer-to-peer optimization of prefix delegation, a
   hierarchy of PM-ASA can be built (indicated in the picture via a
   dotted intermediate router).  This would require additional
   parameters to the "PrefixManager" objective to allow creating a
   hierarchy of PM-ASA across which the prefixes can be delegated.  This
   is not detailed further below.

   5.  In cases where CPEs are also part of the ANI Domain (e.g.,
   "Managed CPE"), then GRASP will extend into the actual customer sites
   and can equally run a PM-ASA.  All the options described in points 1
   to 4 above would then apply to the CPE as the edge router with the
   mayor changes being that a) a CPE router will most likley not need to
   run DHCPv6-PD itself, but only DHCP address assignment, b) The edge
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   routers to which the CPE connect would most likely become ideal
   places to run a hierarchical instance of PD-ASAs on as outlined in
   point 1.
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Abstract

   This document describes a reference model for Autonomic Networking
   for managed networks.  It defines the behaviour of an autonomic node,
   how the various elements in an autonomic context work together, and
   how autonomic services can use the infrastructure.
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1.  Introduction

   The document "Autonomic Networking - Definitions and Design Goals"
   [RFC7575] explains the fundamental concepts behind Autonomic
   Networking, and defines the relevant terms in this space, as well as
   a high level reference model.  [RFC7576] provides a gap analysis
   between traditional and autonomic approaches.

   This document defines this reference model with more detail, to allow
   for functional and protocol specifications to be developed in an
   architecturally consistent, non-overlapping manner.

   As discussed in [RFC7575], the goal of this work is not to focus
   exclusively on fully autonomic nodes or networks.  In reality, most
   networks will run with some autonomic functions, while the rest of
   the network is traditionally managed.  This reference model allows
   for this hybrid approach.

   For example, it is possible in an existing, non-autonomic network to
   enrol devices in a traditional way, to bring up a trust
   infrastructure with certificates.  This trust infrastructure could
   then be used to automatically bring up an Autonomic Control Plane
   (ACP), and run traditional network operations over the secure and
   self-healing ACP.  See [I-D.ietf-anima-stable-connectivity] for a
   description of this use case.

   The scope of this model is therefore limited to networks that are to
   some extent managed by skilled human operators, loosely referred to
   as "professionally managed" networks.  Unmanaged networks raise
   additional security and trust issues that this model does not cover.

   This document describes a first, simple, implementable phase of an
   Autonomic Networking solution.  It is expected that the experience
   from this phase will be used in defining updated and extended
   specifications over time.  Some topics are considered architecturally
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   in this document, but are not yet reflected in the implementation
   specifications.  They are marked with an (*).

2.  The Network View

   This section describes the various elements in a network with
   autonomic functions, and how these entities work together, on a high
   level.  Subsequent sections explain the detailed inside view for each
   of the autonomic network elements, as well as the network functions
   (or interfaces) between those elements.

   Figure 1 shows the high level view of an Autonomic Network.  It
   consists of a number of autonomic nodes, which interact directly with
   each other.  Those autonomic nodes provide a common set of
   capabilities across the network, called the "Autonomic Networking
   Infrastructure" (ANI).  The ANI provides functions like naming,
   addressing, negotiation, synchronization, discovery and messaging.

   Autonomic functions typically span several, possibly all nodes in the
   network.  The atomic entities of an autonomic function are called the
   "Autonomic Service Agents" (ASA), which are instantiated on nodes.

   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   :            :       Autonomic Function 1        :                 :
   : ASA 1      :      ASA 1      :      ASA 1      :          ASA 1  :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
                :                 :                 :
                :   +- - - - - - - - - - - - - - +  :
                :   :   Autonomic Function 2     :  :
                :   :  ASA 2      :      ASA 2   :  :
                :   +- - - - - - - - - - - - - - +  :
                :                 :                 :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   :                Autonomic Networking Infrastructure               :
   +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   +--------+   :    +--------+   :    +--------+   :        +--------+
   | Node 1 |--------| Node 2 |--------| Node 3 |----...-----| Node n |
   +--------+   :    +--------+   :    +--------+   :        +--------+

             Figure 1: High level view of an Autonomic Network

   In a horizontal view, autonomic functions span across the network, as
   well as the Autonomic Networking Infrastructure.  In a vertical view,
   a node always implements the ANI, plus it may have one or several
   Autonomic Service Agents.  ASAs may be standalone, or use other ASAs
   in a hierarchical way.
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   The Autonomic Networking Infrastructure (ANI) therefore is the
   foundation for autonomic functions.

3.  The Autonomic Network Element

   This section explains the general architecture of an Autonomic
   Network Element (Section 3.1), how it tracks its surrounding
   environment in an Adjacency Table (Section 3.2), and the state
   machine which defines the behaviour of the network element
   (Section 3.3), based on that adjacency table.

3.1.  Architecture

   This section describes an autonomic network element and its internal
   architecture.  The reference model explained in the document
   "Autonomic Networking - Definitions and Design Goals" [RFC7575] shows
   the sources of information that an autonomic service agent can
   leverage: Self-knowledge, network knowledge (through discovery),
   Intent (see Section 7.2), and feedback loops.  There are two levels
   inside an autonomic node: the level of Autonomic Service Agents, and
   the level of the Autonomic Networking Infrastructure, with the former
   using the services of the latter.  Figure 2 illustrates this concept.

   +------------------------------------------------------------+
   |                                                            |
   | +-----------+        +------------+        +------------+  |
   | | Autonomic |        | Autonomic  |        | Autonomic  |  |
   | | Service   |        | Service    |        | Service    |  |
   | | Agent 1   |        | Agent 2    |        | Agent 3    |  |
   | +-----------+        +------------+        +------------+  |
   |       ^                    ^                     ^         |
   | -  -  | -  - API level -  -| -  -  -  -  -  -  - |-  -  -  |
   |       V                    V                     V         |
   |------------------------------------------------------------|
   | Autonomic Networking Infrastructure                        |
   |    - Data structures (ex: certificates, peer information)  |
   |    - Generalized Autonomic Control Plane (GACP)            |
   |    - Autonomic Node Addressing and naming                  |
   |    - Discovery, negotiation and synchronisation functions  |
   |    - Distribution of Intent and other information          |
   |    - Aggregated reporting and feedback loops               |
   |    - Routing                                               |
   |------------------------------------------------------------|
   |             Basic Operating System Functions               |
   +------------------------------------------------------------+

                   Figure 2: Model of an autonomic node
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   The Autonomic Networking Infrastructure (lower part of Figure 2)
   contains node specific data structures, for example trust information
   about itself and its peers, as well as a generic set of functions,
   independent of a particular usage.  This infrastructure should be
   generic, and support a variety of Autonomic Service Agents (upper
   part of Figure 2).  It contains addressing and naming of autonomic
   nodes, discovery, negotiation and synchronisation functions,
   distribution of information, reporting and feedback loops, as well as
   routing inside the Autonomic Control Plane.

   The Generalized Autonomic Control Plane (GACP) is the summary of all
   interactions of the Autonomic Networking Infrastructure with other
   nodes and services.  A specific implementation of the GACP is
   referred to here as the Autonomic Control Plane (ACP), and described
   in [I-D.ietf-anima-autonomic-control-plane].

   The use cases of "Autonomics" such as self-management, self-
   optimisation, etc, are implemented as Autonomic Service Agents.  They
   use the services and data structures of the underlying Autonomic
   Networking Infrastructure, which should be self-managing.

   The "Basic Operating System Functions" include the "normal OS",
   including the network stack, security functions, etc.

   Full AN nodes have the full Autonomic Networking Infrastructure, with
   the full functionality described in this document.  At a later stage
   ANIMA may define a scope for constrained nodes with a reduced ANI and
   well-defined minimal functionality.  They are currently out of scope.

3.2.  The Adjacency Table

   Autonomic Networking is based on direct interactions between devices
   of a domain.  The Autonomic Control Plane (ACP) is normally
   constructed on a hop-by-hop basis.  Therefore, many interactions in
   the ANI are based on the ANI adjacency table.  There are interactions
   that provide input into the adjacency table, and other interactions
   that leverage the information contained in it.

   The ANI adjacency table contains information about adjacent autonomic
   nodes, at a minimum: node-ID, IP address in data plane, IP address in
   ACP, domain, certificate.  An autonomic node maintains this adjacency
   table up to date.  The adjacency table only contains information
   about other nodes that are capable of Autonomic Networking; non-
   autonomic nodes are normally not tracked here.  However, the
   information is tracked independently of the status of the peer nodes;
   specifically, it contains information about non-enrolled nodes, nodes
   of the same and other domains.  The adjacency table may contain
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   information about the validity and trust level of the adjacent
   autonomic nodes.

   The adjacency table is fed by the following inputs:

   o  Link local discovery: This interaction happens in the data plane,
      using IPv6 link local addressing only, because this addressing
      type is itself autonomic.  This way the nodes learns about all
      autonomic nodes around itself.  The related standards track
      documents ([I-D.ietf-anima-grasp],
      [I-D.ietf-anima-bootstrapping-keyinfra],
      [I-D.ietf-anima-autonomic-control-plane]) describe in detail how
      link local discovery is used.

   o  Vendor re-direct: A new device may receive information on where
      its home network is through a vendor based Manufacturer Authorized
      Signing Authority (MASA, see Section 5.3) re-direct; this is
      typically a routable address.

   o  Non-autonomic input: A node may be configured manually with an
      autonomic peer; it could learn about autonomic nodes through DHCP
      options, DNS, and other non-autonomic mechanisms.  Generally such
      non-autonomic mechansims require some administrator intervention.
      The key purpose is to by-pass a non-autonomic device or network.
      As this pertains to new devices, it is covered in appendix A and B
      of [I-D.ietf-anima-bootstrapping-keyinfra].

   The adjacency table is defining the behaviour of an autonomic node:

   o  If the node has not bootstrapped into a domain (i.e., doesn’t have
      a domain certificate), it rotates through all nodes in the
      adjacency table that claim to have a domain, and will attempt
      bootstrapping through them, one by one.  One possible response is
      a re-direct via a vendor MASA, which will be entered into the
      adjacency table (see second bullet above).  See
      [I-D.ietf-anima-bootstrapping-keyinfra] for details.

   o  If the adjacent node has the same domain, it will authenticate
      that adjacent node and, if successful, establish the Autonomic
      Control Plane (ACP).  See
      [I-D.ietf-anima-autonomic-control-plane].

   o  Once the node is part of the ACP of a domain, it will use GRASP
      [I-D.ietf-anima-grasp] to find Registrar(s) of its domain and
      potentially other services.

   o  If the node is part of an ACP and has discovered at least one
      Registrar in its domain via GRASP, it will start the "join
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      assistant" ASA, and act as a join assistant for neighboring nodes
      that need to be bootstrapped.  See Section 6.3.1.2 for details.

   o  Other behaviours are possible, for example establishing the ACP
      also with devices of a sub-domain, to other domains, etc.  Those
      will likely be controlled by Intent.  They are outside scope for
      the moment.  Note that Intent is distributed through the ACP;
      therefore, a node can only adapt Intent driven behaviour once it
      has joined the ACP.  At the moment, ANIMA does not consider
      providing Intent outside the ACP; this can be considered later.

   Once a node has joined the ACP, it will also learn the ACP addresses
   of its adjacent nodes, and add them to the adjacency table, to allow
   for communication inside the ACP.  Further autonomic domain
   interactions will now happen inside the ACP.  At this moment, only
   negotiation / synchronization via GRASP [I-D.ietf-anima-grasp] is
   being defined.  (Note that GRASP runs in the data plane, as an input
   in building the adjacency table, as well as inside the ACP.)

   Autonomic Functions consist of Autonomic Service Agents (ASAs).  They
   run logically above the AN Infrastructure, and may use the adjacency
   table, the ACP, negotiation and synchronization through GRASP in the
   ACP, Intent and other functions of the ANI.  Since the ANI only
   provides autonomic interactions within a domain, autonomic functions
   can also use any other context on a node, specifically the global
   data plane.

3.3.  State Machine

   Autonomic Networking applies during the full life-cycle of a node.
   This section describes a state machine of an autonomic node,
   throughout its life.

   A device is normally expected to store its domain specific identity,
   the LDevID (see Section 5.2), in persistent storage, to be available
   after a powercycle event.  For device types that cannot store the
   LDevID in persistent storage, a powercycle event is effectively
   equivalent to a factory reset.

3.3.1.  State 1: Factory Default

   An autonomic node leaves the factory in this state.  In this state,
   the node has no domain specific configuration, specifically no
   LDevID, and could be used in any particular target network.  It does
   however have a vendor/manufacturer specific ID, the IDevID [IDevID].
   Nodes without IDevID cannot be autonomically and securely enrolled
   into a domain; they require manual pre-staging, in which case the
   pre-staging takes them directly to state 2.
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   Transitions:

   o  Bootstrap event: The device enrols into a domain; as part of this
      process it receives a domain identity (LDevID).  If enrollment is
      successful, the next state is state 2.  See
      [I-D.ietf-anima-bootstrapping-keyinfra] Section 3 for details on
      enrollment.

   o  Powercycle event: The device loses all state tables.  It remains
      in state: 1.

3.3.2.  State 2: Enrolled

   An autonomic node is in the state "enrolled" if it has a domain
   identity (LDevID), and has currently no ACP channel up.  It may have
   further configuration or state, for example if it had been in state 3
   before, but lost all its ACP channels.  The LDevID can only be
   removed from a device through a factory reset, which also removes all
   other state from the device.  This ensures that a device has no stale
   domain specific state when entering the "enrolled" state from state
   1.

   Transitions:

   o  Joining ACP: The device establishes an ACP channel to an adjacent
      device.  See [I-D.ietf-anima-autonomic-control-plane] for details.
      Next state: 3.

   o  Factory reset: A factory reset removes all configuration and the
      domain identity (LDevID) from the device.  Next state: 1.

   o  Powercycle event: The device loses all state tables, but not its
      domain identity (LDevID). it remains in state: 2.

3.3.3.  State 3: In ACP

   In this state, the autonomic node has at least one ACP channel to
   another device.  The node can now participate in further autonomic
   transactions, such as starting autonomic service agents (e.g., it
   must now enable the join assistant ASA, to help other devices to join
   the domain.  Other conditions may apply to such interactions, for
   example to serve as a join assistant, the device must first discover
   a bootstrap Registrar.

   Transitions:

   o  Leaving ACP: The device drops the last (or only) ACP channel to an
      adjacent device.  Next state: 2.
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   o  Factory reset: A factory reset removes all configuration and the
      domain identity (LDevID) from the device.  Next state: 1.

   o  Powercycle event: The device loses all state tables, but not its
      domain identity (LDevID).  Next state: 2.

4.  The Autonomic Networking Infrastructure

   The Autonomic Networking Infrastructure provides a layer of common
   functionality across an Autonomic Network.  It provides the
   elementary functions and services, as well as extensions.  An
   Autonomic Function, comprising of Autonomic Service Agents on nodes,
   uses the functions described in this section.

4.1.  Naming

   Inside a domain, each autonomic device should be assigned a unique
   name.  The naming scheme should be consistent within a domain.  Names
   are typically assigned by a Registrar at bootstrap time and
   persistent over the lifetime of the device.  All Registrars in a
   domain must follow the same naming scheme.

   In the absence of a domain specific naming scheme, a default naming
   scheme should use the same logic as the addressing scheme discussed
   in [I-D.ietf-anima-autonomic-control-plane].  The device name is then
   composed of a Registrar ID (for example taking a MAC address of the
   Registrar) and a device number.  An example name would then look like
   this:

   0123-4567-89ab-0001

   The first three fields are the MAC address, the fourth field is the
   sequential number for the device.

4.2.  Addressing

   Autonomic Service Agents (ASAs) need to communicate with each other,
   using the autonomic addressing of the Autonomic Networking
   Infrastructure of the node they reside on.  This section describes
   the addressing approach of the Autonomic Networking Infrastructure,
   used by ASAs.

   Addressing approaches for the data plane of the network are outside
   the scope of this document.  These addressing approaches may be
   configured and managed in the traditional way, or negotiated as a
   service of an ASA.  One use case for such an autonomic function is
   described in [I-D.ietf-anima-prefix-management].
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   Autonomic addressing is a function of the Autonomic Networking
   Infrastructure (lower part of Figure 2), specifically the Autonomic
   Control Plane.  ASAs do not have their own addresses.  They may use
   either API calls, or the autonomic addressing scheme of the Autonomic
   Networking Infrastructure.

   An autonomic addressing scheme has the following requirements:

   o  Zero-touch for simple networks: Simple networks should have
      complete self-management of addressing, and not require any
      central address management, tools, or address planning.

   o  Low-touch for complex networks: If complex networks require
      operator input for autonomic address management, it should be
      limited to high level guidance only, expressed in Intent.

   o  Flexibility: The addressing scheme must be flexible enough for
      nodes to be able to move around, for the network to grow, split
      and merge.

   o  Robustness: It should be as hard as possible for an administrator
      to negatively affect addressing (and thus connectivity) in the
      autonomic context.

   o  Stability: The addressing scheme should be as stable as possible.
      However, implementations need to be able to recover from
      unexpected address changes.

   o  Support for virtualization: Autonomic functions can exist either
      at the level of the physical network and physical devices, or at
      the level of virtual machines, containers and networks.  In
      particular, Autonomic Nodes may support Autonomic Service Agents
      in virtual entities.  The infrastructure, including the addressing
      scheme, should be able to support this architecture.

   o  Simplicity: To make engineering simpler, and to give the human
      administrator an easy way to trouble-shoot autonomic functions.

   o  Scale: The proposed scheme should work in any network of any size.

   o  Upgradability: The scheme must be able to support different
      addressing concepts in the future.

   The proposed addressing scheme is described in the document "An
   Autonomic Control Plane" ([I-D.ietf-anima-autonomic-control-plane]).
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4.3.  Discovery

   Traditionally, most of the information a node requires is provided
   through configuration or northbound interfaces.  An autonomic
   function should rely on such northbound interfaces minimally or not
   at all, and therefore it needs to discover peers and other resources
   in the network.  This section describes various discovery functions
   in an autonomic network.

   Discovering nodes and their properties and capabilities: A core
   function to establish an autonomic domain is the mutual discovery of
   autonomic nodes, primarily adjacent nodes and secondarily off-link
   peers.  This may in principle either leverage existing discovery
   mechanisms, or use new mechanisms tailored to the autonomic context.
   An important point is that discovery must work in a network with no
   predefined topology, ideally no manual configuration of any kind, and
   with nodes starting up from factory condition or after any form of
   failure or sudden topology change.

   Discovering services: Network services such as AAA should also be
   discovered and not configured.  Service discovery is required for
   such tasks.  An autonomic network can either leverage existing
   service discovery functions, or use a new approach, or a mixture.

   Thus the discovery mechanism could either be fully integrated with
   autonomic signaling (next section) or could use an independent
   discovery mechanism such as DNS Service Discovery or Service Location
   Protocol.  This choice could be made independently for each Autonomic
   Service Agent, although the infrastructure might require some minimal
   lowest common denominator (e.g., for discovering the security
   bootstrap mechanism, or the source of information distribution,
   Section 4.7).

   Phase 1 of Autonomic Networking uses GRASP for discovery, described
   in [I-D.ietf-anima-grasp].

4.4.  Signaling Between Autonomic Nodes

   Autonomic nodes must communicate with each other, for example to
   negotiate and/or synchronize technical objectives (i.e., network
   parameters) of any kind and complexity.  This requires some form of
   signaling between autonomic nodes.  Autonomic nodes implementing a
   specific use case might choose their own signaling protocol, as long
   as it fits the overall security model.  However, in the general case,
   any pair of autonomic nodes might need to communicate, so there needs
   to be a generic protocol for this.  A prerequisite for this is that
   autonomic nodes can discover each other without any preconfiguration,
   as mentioned above.  To be generic, discovery and signaling must be

Behringer, et al.         Expires May 27, 2019                 [Page 12]



Internet-Draft             AN Reference Model              November 2018

   able to handle any sort of technical objective, including ones that
   require complex data structures.  The document "A Generic Autonomic
   Signaling Protocol (GRASP)" [I-D.ietf-anima-grasp] describes more
   detailed requirements for discovery, negotiation and synchronization
   in an autonomic network.  It also defines a protocol, GRASP, for this
   purpose, including an integrated but optional discovery protocol.

   GRASP is normally expected to run inside the Autonomic Control Plane
   (ACP; see Section 4.6) and to depend on the ACP for security.  It may
   run insecurely for a short time during bootstrapping.

   An autonomic node will normally run a single instance of GRASP, used
   by multiple ASAs.  However, scenarios where multiple instances of
   GRASP run in a single node, perhaps with different security
   properties, are not excluded.

4.5.  Routing

   All autonomic nodes in a domain must be able to communicate with each
   other, and later phases also with autonomic nodes outside their own
   domain.  Therefore, an Autonomic Control Plane relies on a routing
   function.  For Autonomic Networks to be interoperable, they must all
   support one common routing protocol.

   The routing protocol is defined in the ACP document
   [I-D.ietf-anima-autonomic-control-plane].

4.6.  The Autonomic Control Plane

   The "Autonomic Control Plane" carries the control protocols in an
   autonomic network.  In the architecture described here, it is
   implemented as an overlay network.  The document "An Autonomic
   Control Plane" ([I-D.ietf-anima-autonomic-control-plane]) describes
   the implementation details suggested here.  This document uses the
   term "overlay" to mean a set of point-to-point adjacencies congruent
   with the underlying interconnection topology.  The terminology may
   not be aligned with a common usage of the "overlay" term in routing
   context.  See [I-D.ietf-anima-stable-connectivity] for uses cases for
   the ACP.

4.7.  Information Distribution (*)

   Certain forms of information require distribution across an autonomic
   domain.  The distribution of information runs inside the Autonomic
   Control Plane.  For example, Intent is distributed across an
   autonomic domain, as explained in [RFC7575].
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   Intent is the policy language of an Autonomic Network, see also
   Section 7.2.  It is a high level policy, and should change only
   infrequently (order of days).  Therefore, information such as Intent
   should be simply flooded to all nodes in an autonomic domain, and
   there is currently no perceived need to have more targeted
   distribution methods.  Intent is also expected to be monolithic, and
   flooded as a whole.  One possible method for distributing Intent, as
   well as other forms of data, is discussed in
   [I-D.liu-anima-grasp-distribution].  Intent and information
   distribution are not part of phase 1 of ANIMA.

5.  Security and Trust Infrastructure

   An Autonomic Network is self-protecting.  All protocols are secure by
   default, without the requirement for the administrator to explicitly
   configure security, with the exception of setting up a PKI
   infrastructure.

   Autonomic nodes have direct interactions between themselves, which
   must be secured.  Since an autonomic network does not rely on
   configuration, it is not an option to configure, for example, pre-
   shared keys.  A trust infrastructure such as a PKI infrastructure
   must be in place.  This section describes the principles of this
   trust infrastructure.  In this first phase of autonomic networking, a
   device is either within the trust domain and fully trusted, or
   outside the trust domain and fully untrusted.

   The default method to automatically bring up a trust infrastructure
   is defined in the document "Bootstrapping Key Infrastructures"
   [I-D.ietf-anima-bootstrapping-keyinfra].  The ASAs required for this
   enrollment process are described in Section 6.3.  An autonomic node
   must implement the enrollment and join assistant ASAs.  The registrar
   ASA may be implemented only on a sub-set of nodes.

5.1.  Public Key Infrastructure

   An autonomic domain uses a PKI model.  The root of trust is a
   certification authority (CA).  A registrar acts as a registration
   authority (RA).

   A minimum implementation of an autonomic domain contains one CA, one
   Registrar, and network elements.

5.2.  Domain Certificate

   Each device in an autonomic domain uses a domain certificate (LDevID)
   to prove its identity.  A new device uses its manufacturer provided
   certificate (IDevID) during bootstrap, to obtain a domain
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   certificate.  [I-D.ietf-anima-bootstrapping-keyinfra] describes how a
   new device receives a domain certificate, and the certificate format.

5.3.  The MASA

   The Manufacturer Authorized Signing Authority (MASA) is a trusted
   service for bootstrapping devices.  The purpose of the MASA is to
   provide ownership tracking of devices in a domain.  The MASA provides
   audit, authorization, and ownership tokens to the registrar during
   the bootstrap process to assist in the authentication of devices
   attempting to join an Autonomic Domain, and to allow a joining device
   to validate whether it is joining the correct domain.  The details
   for MASA service, security, and usage are defined in
   [I-D.ietf-anima-bootstrapping-keyinfra].

5.4.  Sub-Domains (*)

   By default, sub-domains are treated as different domains.  This
   implies no trust between a domain and its sub-domains, and no trust
   between sub-domains of the same domain.  Specifically, no ACP is
   built, and Intent is valid only for the domain it is defined for
   explicitly.

   In phase 2 of ANIMA, alternative trust models should be defined, for
   example to allow full or limited trust between domain and sub-domain.

5.5.  Cross-Domain Functionality (*)

   By default, different domains do not interoperate, no ACP is built
   and no trust is implied between them.

   In the future, models can be established where other domains can be
   trusted in full or for limited operations between the domains.

6.  Autonomic Service Agents (ASA)

   This section describes how autonomic services run on top of the
   Autonomic Networking Infrastructure.

6.1.  General Description of an ASA

   An Autonomic Service Agent (ASA) is defined in [RFC7575] as "An agent
   implemented on an autonomic node that implements an autonomic
   function, either in part (in the case of a distributed function) or
   whole."  Thus it is a process that makes use of the features provided
   by the ANI to achieve its own goals, usually including interaction
   with other ASAs via the GRASP protocol [I-D.ietf-anima-grasp] or
   otherwise.  Of course it also interacts with the specific targets of
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   its function, using any suitable mechanism.  Unless its function is
   very simple, the ASA will need to handle overlapping asynchronous
   operations.  It may therefore be a quite complex piece of software in
   its own right, forming part of the application layer above the ANI.
   ASA design guidelines are available in
   [I-D.carpenter-anima-asa-guidelines].

   Thus we can distinguish at least three classes of ASAs:

   o  Simple ASAs with a small footprint that could run anywhere.

   o  Complex, possibly multi-threaded ASAs that have a significant
      resource requirement and will only run on selected nodes.

   o  A few ’infrastructure ASAs’ that use basic ANI features in support
      of the ANI itself, which must run in all autonomic nodes.  These
      are outlined in the following sections.

   Autonomic nodes, and therefore their ASAs, know their own
   capabilities and restrictions, derived from hardware, firmware or
   pre-installed software: They are "self-aware".

   The role of an autonomic node depends on Intent and on the
   surrounding network behaviors, which may include forwarding
   behaviors, aggregation properties, topology location, bandwidth,
   tunnel or translation properties, etc.  For example, a node may
   decide to act as a backup node for a neighbor, if its capabilities
   allow it to do so.

   Following an initial discovery phase, the node properties and those
   of its neighbors are the foundation of the behavior of a specific
   node.  A node and its ASAs have no pre-configuration for the
   particular network in which they are installed.

   Since all ASAs will interact with the ANI, they will depend on
   appropriate application programming interfaces (APIs).  It is
   desirable that ASAs are portable between operating systems, so these
   APIs need to be universal.  An API for GRASP is described in
   [I-D.ietf-anima-grasp-api].

   ASAs will in general be designed and coded by experts in a particular
   technology and use case, not by experts in the ANI and its
   components.  Also, they may be coded in a variety of programming
   languages, in particular including languages that support object
   constructs as well as traditional variables and structures.  The APIs
   should be designed with these factors in mind.
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   It must be possible to run ASAs as non-privileged (user space)
   processes except for those (such as the infrastructure ASAs) that
   necessarily require kernel privilege.  Also, it is highly desirable
   that ASAs can be dynamically loaded on a running node.

   Since autonomic systems must be self-repairing, it is of great
   importance that ASAs are coded using robust programming techniques.
   All run-time error conditions must be caught, leading to suitable
   minimally disruptive recovery actions, also considering a complete
   restart of the ASA.  Conditions such as discovery failures or
   negotiation failures must be treated as routine, with the ASA
   retrying the failed operation, preferably with an exponential back-
   off in the case of persistent errors.  When multiple threads are
   started within an ASA, these threads must be monitored for failures
   and hangups, and appropriate action taken.  Attention must be given
   to garbage collection, so that ASAs never run out of resources.
   There is assumed to be no human operator - again, in the worst case,
   every ASA must be capable of restarting itself.

   ASAs will automatically benefit from the security provided by the
   ANI, and specifically by the ACP and by GRASP.  However, beyond that,
   they are responsible for their own security, especially when
   communicating with the specific targets of their function.
   Therefore, the design of an ASA must include a security analysis
   beyond ’use ANI security.’

6.2.  ASA Life-Cycle Management

   ASAs operating on a given ANI may come from different providers and
   pursue different objectives.  Management of ASAs and its interactions
   with the ANI should follow the same operating principles, hence
   comply to a generic life-cycle management model.

   The ASA life-cycle provides standard processes to:

   o  install ASA: copy the ASA code onto the node and start it,

   o  deploy ASA: associate the ASA instance with a (some) managed
      network device(s) (or network function),

   o  control ASA execution: when and how an ASA executes its control
      loop.

   The life-cyle will cover the sequential states below: Installation,
   Deployment, Operation and the transitional states in-between.  This
   Life-Cycle will also define which interactions ASAs have with the ANI
   in between the different states.  The noticeable interactions are:
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   o  Self-description of ASA instances at the end of deployment: its
      format needs to define the information required for the management
      of ASAs by ANI entities

   o  Control of ASA control-loop during the operation: a signaling has
      to carry formatted messages to control ASA execution (at least
      starting and stopping the control loop)

6.3.  Specific ASAs for the Autonomic Network Infrastructure

   The following functions provide essential, required functionality in
   an autonomic network, and are therefore mandatory to implement on
   unconstrained autonomic nodes.  They are described here as ASAs that
   include the underlying infrastructure components, but implementation
   details might vary.

   The first three together support the trust enrollment process
   described in Section 5.  For details see
   [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1.  The enrollment ASAs

6.3.1.1.  The Pledge ASA

   This ASA includes the function of an autonomic node that bootstraps
   into the domain with the help of an join assitant ASA (see below).
   Such a node is known as a Pledge during the enrollment process.  This
   ASA must be installed by default on all nodes that require an
   autonomic zero-touch bootstrap.

6.3.1.2.  The Join Assistant ASA

   This ASA includes the function of an autonomic node that helps a non-
   enrolled, adjacent devices to enroll into the domain.  This ASA must
   be installed on all nodes, although only one join assistant needs to
   be active on a given LAN.  See also
   [I-D.ietf-anima-bootstrapping-keyinfra].

6.3.1.3.  The Join Registrar ASA

   This ASA includes the join registrar function in an autonomic
   network.  This ASA does not need to be installed on all nodes, but
   only on nodes that implement the Join Registrar function.
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6.3.2.  The ACP ASA

   This ASA includes the ACP function in an autonomic network.  In
   particular it acts to discover other potential ACP nodes, and to
   support the establishment and teardown of ACP channels.  This ASA
   must be installed on all nodes.  For details see Section 4.6 and
   [I-D.ietf-anima-autonomic-control-plane].

6.3.3.  The Information Distribution ASA (*)

   This ASA is currently out of scope in ANIMA, and provided here only
   as background information.

   This ASA includes the information distribution function in an
   autonomic network.  In particular it acts to announce the
   availability of Intent and other information to all other autonomic
   nodes.  This ASA does not need to be installed on all nodes, but only
   on nodes that implement the information distribution function.  For
   details see Section 4.7.

   Note that information distribution can be implemented as a function
   in any ASA.  See [I-D.liu-anima-grasp-distribution] for more details
   on how information is suggested to be distributed.

7.  Management and Programmability

   This section describes how an Autonomic Network is managed, and
   programmed.

7.1.  Managing a (Partially) Autonomic Network

   Autonomic management usually co-exists with traditional management
   methods in most networks.  Thus, autonomic behavior will be defined
   for individual functions in most environments.  Examples for overlap
   are:

   o  Autonomic functions can use traditional methods and protocols
      (e.g., SNMP and NETCONF) to perform management tasks, inside and
      outside the ACP;

   o  Autonomic functions can conflict with behavior enforced by the
      same traditional methods and protocols;

   o  Traditional functions can use the ACP, for example if reachability
      on the data plane is not (yet) established.

   The autonomic Intent is defined at a high level of abstraction.
   However, since it is necessary to address individual managed
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   elements, autonomic management needs to communicate in lower-level
   interactions (e.g., commands and requests).  For example, it is
   expected that the configuration of such elements be performed using
   NETCONF and YANG modules as well as the monitoring be executed
   through SNMP and MIBs.

   Conflict can occur between autonomic default behavior, autonomic
   Intent, traditional management methods.  Conflict resolution is
   achieved in autonomic management through prioritization [RFC7575].
   The rationale is that manual and node-based management have a higher
   priority over autonomic management.  Thus, the autonomic default
   behavior has the lowest priority, then comes the autonomic Intent
   (medium priority), and, finally, the highest priority is taken by
   node-specific network management methods, such as the use of command
   line interfaces.

7.2.  Intent (*)

   Intent is not covered in the current implementation specifications.
   This section discusses a topic for further research.

   This section gives an overview of Intent, and how it is managed.
   Intent and Policy-Based Network Management (PBNM) is already
   described inside the IETF (e.g., PCIM) and in other SDOs (e.g., DMTF
   and TMF ZOOM).

   Intent can be described as an abstract, declarative, high-level
   policy used to operate an autonomic domain, such as an enterprise
   network [RFC7575].  Intent should be limited to high level guidance
   only, thus it does not directly define a policy for every network
   element separately.

   Intent can be refined to lower level policies using different
   approaches.  This is expected in order to adapt the Intent to the
   capabilities of managed devices.  Intent may contain role or function
   information, which can be translated to specific nodes [RFC7575].
   One of the possible refinements of the Intent is using Event-
   Condition-Action (ECA) rules.

   Different parameters may be configured for Intent.  These parameters
   are usually provided by the human operator.  Some of these parameters
   can influence the behavior of specific autonomic functions as well as
   the way the Intent is used to manage the autonomic domain.

   Intent is discussed in more detail in [I-D.du-anima-an-intent].
   Intent as well as other types of information are distributed via
   GRASP, see [I-D.liu-anima-grasp-distribution].
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7.3.  Aggregated Reporting (*)

   Aggregated reporting is not covered in the current implementation
   specifications.  This section discusses a topic for further research.

   An Autonomic Network should minimize the need for human intervention.
   In terms of how the network should behave, this is done through an
   autonomic Intent provided by the human administrator.  In an
   analogous manner, the reports which describe the operational status
   of the network should aggregate the information produced in different
   network elements in order to present the effectiveness of autonomic
   Intent enforcement.  Therefore, reporting in an autonomic network
   should happen on a network-wide basis [RFC7575].

   Multiple simultaneous events can occur in an autonomic network in the
   same way they can happen in a traditional network.  However, when
   reporting to a human administrator, such events should be aggregated
   to avoid notifications about individual managed elements.  In this
   context, algorithms may be used to determine what should be reported
   (e.g., filtering) and in which way and how different events are
   related to each other.  Besides that, an event in an individual
   element can be compensated by changes in other elements to maintain a
   network-wide target which is described in the autonomic Intent.

   Reporting in an autonomic network may be at the same abstraction
   level as Intent.  In this context, the aggregated view of current
   operational status of an autonomic network can be used to switch to
   different management modes.  Despite the fact that autonomic
   management should minimize the need for user intervention, possibly
   there are some events that need to be addressed by human
   administrator actions.

7.4.  Feedback Loops to NOC (*)

   Feedback loops are required in an autonomic network to allow the
   intervention of a human administrator or central control systems,
   while maintaining a default behaviour.  Through a feedback loop an
   administrator must be prompted with a default action, and has the
   possibility to acknowledge or override the proposed default action.

   Uni-directional notifications to the NOC, that do not propose any
   default action, and do not allow an override as part of the
   transaction are considered like traditional notification services,
   such as syslog.  They are expected to co-exist with autonomic
   methods, but are not covered in this draft.
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7.5.  Control Loops (*)

   Control loops are not covered in the current implementation
   specifications.  This section discusses a topic for further research.

   Control loops are used in autonomic networking to provide a generic
   mechanism to enable the Autonomic System to adapt (on its own) to
   various factors that can change the goals that the autonomic network
   is trying to achieve, or how those goals are achieved.  For example,
   as user needs, business goals, and the ANI itself changes, self-
   adaptation enables the ANI to change the services and resources it
   makes available to adapt to these changes.

   Control loops operate to continuously observe and collect data that
   enables the autonomic management system to understand changes to the
   behavior of the system being managed, and then provide actions to
   move the state of the system being managed toward a common goal.
   Self-adaptive systems move decision-making from static, pre-defined
   commands to dynamic processes computed at runtime.

   Most autonomic systems use a closed control loop with feedback.  Such
   control loops should be able to be dynamically changed at runtime to
   adapt to changing user needs, business goals, and changes in the ANI.

7.6.  APIs (*)

   APIs are not covered in the current implementation specifications.
   This section discusses a topic for further research.

   Most APIs are static, meaning that they are pre-defined and represent
   an invariant mechanism for operating with data.  An Autonomic Network
   should be able to use dynamic APIs in addition to static APIs.

   A dynamic API is one that retrieves data using a generic mechanism,
   and then enables the client to navigate the retrieved data and
   operate on it.  Such APIs typically use introspection and/or
   reflection.  Introspection enables software to examine the type and
   properties of an object at runtime, while reflection enables a
   program to manipulate the attributes, methods, and/or metadata of an
   object.

   APIs must be able to express and preserve the semantics of data
   models.  For example, software contracts [Meyer97] are based on the
   principle that a software-intensive system, such as an Autonomic
   Network, is a set of communicating components whose interaction is
   based on precisely-defined specifications of the mutual obligations
   that interacting components must respect.  This typically includes
   specifying:
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   o  pre-conditions that must be satisfied before the method can start
      execution

   o  post-conditions that must be satisfied when the method has
      finished execution

   o  invariant attributes that must not change during the execution of
      the method

7.7.  Data Model (*)

   Data models are not covered in the current implementation
   specifications.  This section discusses a topic for further research.

   The following definitions are adapted from
   [I-D.ietf-supa-generic-policy-data-model]:

   An information model is a representation of concepts of interest to
   an environment in a form that is independent of data repository, data
   definition language, query language, implementation language, and
   protocol.  In contrast, a data model is a representation of concepts
   of interest to an environment in a form that is dependent on data
   repository, data definition language, query language, implementation
   language, and protocol (typically, but not necessarily, all three).

   The utility of an information model is to define objects and their
   relationships in a technology-neutral manner.  This forms a
   consensual vocabulary that the ANI and ASAs can use.  A data model is
   then a technology-specific mapping of all or part of the information
   model to be used by all or part of the system.

   A system may have multiple data models.  Operational Support Systems,
   for example, typically have multiple types of repositories, such as
   SQL and NoSQL, to take advantage of the different properties of each.
   If multiple data models are required by an Autonomic System, then an
   information model should be used to ensure that the concepts of each
   data model can be related to each other without technological bias.

   A data model is essential for certain types of functions, such as a
   Model-Reference Adaptive Control Loop (MRACL).  More generally, a
   data model can be used to define the objects, attributes, methods,
   and relationships of a software system (e.g., the ANI, an autonomic
   node, or an ASA).  A data model can be used to help design an API, as
   well as any language used to interface to the Autonomic Network.
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8.  Coordination Between Autonomic Functions (*)

   Coordination between autonomic functions is not covered in the
   current implementation specifications.  This section discusses a
   topic for further research.

8.1.  The Coordination Problem (*)

   Different autonomic functions may conflict in setting certain
   parameters.  For example, an energy efficiency function may want to
   shut down a redundant link, while a load balancing function would not
   want that to happen.  The administrator must be able to understand
   and resolve such interactions, to steer autonomic network performance
   to a given (intended) operational point.

   Several interaction types may exist among autonomic functions, for
   example:

   o  Cooperation: An autonomic function can improve the behavior or
      performance of another autonomic function, such as a traffic
      forecasting function used by a traffic allocation function.

   o  Dependency: An autonomic function cannot work without another one
      being present or accessible in the autonomic network.

   o  Conflict: A metric value conflict is a conflict where one metric
      is influenced by parameters of different autonomic functions.  A
      parameter value conflict is a conflict where one parameter is
      modified by different autonomic functions.

   Solving the coordination problem beyond one-by-one cases can rapidly
   become intractable for large networks.  Specifying a common
   functional block on coordination is a first step to address the
   problem in a systemic way.  The coordination life-cycle consists in
   three states:

   o  At build-time, a "static interaction map" can be constructed on
      the relationship of functions and attributes.  This map can be
      used to (pre-)define policies and priorities on identified
      conflicts.

   o  At deploy-time, autonomic functions are not yet active/acting on
      the network.  A "dynamic interaction map" is created for each
      instance of each autonomic functions and on a per resource basis,
      including the actions performed and their relationships.  This map
      provides the basis to identify conflicts that will happen at run-
      time, categorize them and plan for the appropriate coordination
      strategies/mechanisms.
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   o  At run-time, when conflicts happen, arbitration is driven by the
      coordination strategies.  Also new dependencies can be observed
      and inferred, resulting in an update of the dynamic interaction
      map and adaptation of the coordination strategies and mechanisms.

   Multiple coordination strategies and mechanisms exist and can be
   devised.  The set ranges from basic approaches such as random process
   or token-based process, to approaches based on time separation and
   hierarchical optimization, to more complex approaches such as multi-
   objective optimization, and other control theory approaches and
   algorithms family.

8.2.  A Coordination Functional Block (*)

   A common coordination functional block is a desirable component of
   the ANIMA reference model.  It provides a means to ensure network
   properties and predictable performance or behavior such as stability,
   and convergence, in the presence of several interacting autonomic
   functions.

   A common coordination function requires:

   o  A common description of autonomic functions, their attributes and
      life-cycle.

   o  A common representation of information and knowledge (e.g.,
      interaction maps).

   o  A common "control/command" interface between the coordination
      "agent" and the autonomic functions.

   Guidelines, recommendations or BCPs can also be provided for aspects
   pertaining to the coordination strategies and mechanisms.

9.  Security Considerations

   In this section we distinguish outsider and insider attacks.  In an
   outsider attack all network elements and protocols are securely
   managed and operating, and an outside attacker can sniff packets in
   transit, inject and replay packets.  In an insider attack, the
   attacker has access to an autonomic node or other means (e.g. remote
   code execution in the node by exploiting ACP-independent
   vulnerabilities in the node platform) to produce arbitrary payloads
   on the protected ACP channels.

   If a system has vulnerabilities in the implementation or operation
   (configuration), an outside attacker can exploit such vulnerabilies
   to become an insider attacker.
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9.1.  Protection Against Outsider Attacks

   Here, we assume that all systems involved in an autonomic network are
   secured and operated according to best current practices.  These
   protection methods comprise traditional security implementation and
   operation methods (such as code security, strong randomization
   algorithms, strong passwords, etc.) as well as mechanisms specific to
   an autonomic network (such as a secured MASA service).

   Traditional security methods for both implementation and operation
   are outside scope for this document.

   AN specific protocols and methods must also follow traditional
   security methods, in that all packets that can be sniffed or injected
   by an outside attacker are:

   o  protected against modification.

   o  authenticated.

   o  protected against replay attacks.

   o  confidentiality protected (encrypted).

   o  and that the AN protocols are robust against packet drops and man-
      in-the-middle attacks.

   How these requirements are met is covered in the AN standards track
   documents that define the methods used, specifically
   [I-D.ietf-anima-bootstrapping-keyinfra], [I-D.ietf-anima-grasp], and
   [I-D.ietf-anima-autonomic-control-plane].

   Most AN messages run inside the cryptographically protected ACP.  The
   unprotected AN messages outside the ACP are limited to a simple
   discovery method, defined in Section 2.5.2 of [I-D.ietf-anima-grasp]:
   The "Discovery Unsolicited Link-Local (DULL)" message, with detailed
   rules on its usage.

   If AN messages can be observed by a third party, they might reveal
   valuable information about network configuration, security
   precautions in use, individual users, and their traffic patterns.  If
   encrypted, AN messages might still reveal some information via
   traffic analysis.
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9.2.  Risk of Insider Attacks

   An autonomic network consists of autonomic devices that form a
   distributed self-managing system.  Devices within a domain have
   credentials issued from a common trust anchor and can use them to
   create mutual trust.  This means that any device inside a trust
   domain can by default use all distributed functions in the entire
   autonomic domain in a malicious way.

   If an autonomic node or protocol has vulnerabilities or is not
   securely operated, an outside attacker has the following generic ways
   to take control of an autonomic network:

   o  Introducing a fake device into the trust domain, by subverting the
      authentication methods.  This depends on the correct
      specification, implementation and operation of the AN protocols.

   o  Subverting a device which is already part of a trust domain, and
      modifying its behavior.  This threat is not specific to the
      solution discussed in this document, and applies to all network
      solutions.

   o  Exploiting potentially yet unknown protocol vulnerabilities in the
      AN or other protocols.  Also this is a generic threat that applies
      to all network solutions.

   The above threats are in principle comparable to other solutions: In
   the presence of design, implementation or operational errors,
   security is no longer guaranteed.  However, the distributed nature of
   AN, specifically the Autonomic Control Plane, increases the threat
   surface significantly.  For example, a compromised device may have
   full IP reachability to all other devices inside the ACP, and can use
   all AN methods and protocols.

   For the next phase of the ANIMA work it is therefore recommended to
   introduce a sub-domain security model, to reduce the attack surface
   and not expose a full domain to a potential intruder.  Furthermore,
   additional security mechanisms on the ASA level should be considered
   for high-risk autonomic functions.

10.  IANA Considerations

   This document requests no action by IANA.
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Abstract

   OAM (Operations, Administration and Maintenance - as per BCP161,
   (RFC6291) processes for data networks are often subject to the
   problem of circular dependencies when relying on connectivity
   provided by the network to be managed for the OAM purposes.

   Provisioning while bringing up devices and networks tends to be more
   difficult to automate than service provisioning later on, changes in
   core network functions impacting reachability cannot be automated
   because of ongoing connectivity requirements for the OAM equipment
   itself, and widely used OAM protocols are not secure enough to be
   carried across the network without security concerns.

   This document describes how to integrate OAM processes with an
   autonomic control plane in order to provide stable and secure
   connectivity for those OAM processes.  This connectivity is not
   subject to aforementioned circular dependencies.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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1.1.  Self-dependent OAM Connectivity

   OAM (Operations, Administration and Maintenance - as per BCP161,
   [RFC6291]) for data networks is often subject to the problem of
   circular dependencies when relying on the connectivity service
   provided by the network to be managed.  OAM can easily but
   unintentionally break the connectivity required for its own
   operations.  Avoiding these problems can lead to complexity in OAM.
   This document describes this problem and how to use an autonomic
   control plane to solve it without further OAM complexity:

   The ability to perform OAM on a network device requires first the
   execution of OAM necessary to create network connectivity to that
   device in all intervening devices.  This typically leads to
   sequential, ’expanding ring configuration’ from a NOC (Network
   Operations Center).  It also leads to tight dependencies between
   provisioning tools and security enrollment of devices.  Any process
   that wants to enroll multiple devices along a newly deployed network
   topology needs to tightly interlock with the provisioning process
   that creates connectivity before the enrollment can move on to the
   next device.

   When performing change operations on a network, it likewise is
   necessary to understand at any step of that process that there is no
   interruption of connectivity that could lead to removal of
   connectivity to remote devices.  This includes especially change
   provisioning of routing, forwarding, security and addressing policies
   in the network that often occur through mergers and acquisitions, the
   introduction of IPv6 or other mayor re-hauls in the infrastructure
   design.  Examples include change of an IGP or areas, PA (Provider
   Aggregatable) to PI (Provider Independent) addressing, or systematic
   topology changes (such as L2 to L3 changes).

   All these circular dependencies make OAM complex and potentially
   fragile.  When automation is being used, for example through
   provisioning systems, this complexity extends into that automation
   software.

1.2.  Data Communication Networks (DCNs)

   In the late 1990s and early 2000, IP networks became the method of
   choice to build separate OAM networks for the communications
   infrastructure within Network Providers.  This concept was
   standardized in ITU-T G.7712/Y.1703 [ITUT] and called "Data
   Communications Networks" (DCN).  These were (and still are)
   physically separate IP(/MPLS) networks that provide access to OAM
   interfaces of all equipment that had to be managed, from PSTN (Public
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   Switched Telephone Network) switches over optical equipment to
   nowadays Ethernet and IP/MPLS production network equipment.

   Such DCN provide stable connectivity not subject to aforementioned
   problems because they are a separate network entirely, so change
   configuration of the production IP network is done via the DCN but
   never affects the DCN configuration.  Of course, this approach comes
   at a cost of buying and operating a separate network and this cost is
   not feasible for many providers, most notably smaller providers, most
   enterprises and typical IoT networks (Internet of Things).

1.3.  Leveraging a generalized autonomic control plane

   One of the goals of the IETF ANIMA (Autonomic Networking Integrated
   Model and Approach ) working group is the specification of a secure
   and automatically built inband management plane that provides similar
   stable connectivity as a DCN, but without having to build a separate
   DCN.  It is clear that such ’in-band’ approach can never achieve
   fully the same level of separation, but the goal is to get as close
   to it as possible.

   This goal of this document is to discuss how such an inband
   management plane can be used to support the DCN-like OAM use-case,
   leverage its stable connectivity and details the options of deploying
   it incrementally - short and long term.

   The evolving ANIMA working groups specification
   [I-D.ietf-anima-autonomic-control-plane] ) calls this inband
   management plane the "Autonomic Control Plane" (ACP).  The
   discussions in this document are not depending on the specification
   of that ACP, but only on a set of high level constraints decided
   early on in the work for the ACP.  Unless being specific about
   details of the ACP, this document uses the term "Generalized ACP"
   (GACP) and is applicable to any designs that meet those high level
   constraints.  For example - but not limited to - variations of the
   ACP protocol choices.

   The high level constraints of a GACP assumed and discussed in this
   document are as follows:

   VRF Isolation:  The GACP is a virtual network ("VRF") across network
      devices - its routing and forwarding are separate from other
      routing and forwarding in the network devices.  Non-GACP routing/
      forwarding is called the "data-plane".

   IPv6 only addressing:  The GACP provides only IPv6 reachability.  It
      uses ULA addresses ([RFC4193]) that are routed in a location
      independent fashion for example through per network device subnet
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      prefixes.  Automatic addressing in the GACP is therefore simple &
      stable: it does not require allocation by address registries,
      addresses are identifiers, they do not change when devices move,
      and no engineering of the address space to the network topology is
      necessary.

   NOC connectivity:  NOC equipment (controlling OAM operations) either
      has access to the GACP directly or has an IP subnet connection to
      a GACP-edge device.

   Closed Group Security:  GACP devices have cryptographic credentials
      to mutually authenticate each other as members of a GACP.  Traffic
      across the GACP is authenticated with these credentials and then
      encrypted.  The only traffic permitted in & out of the GACP that
      is not authenticated by these credentials is through explicit
      configuration the traffic from/to the aforementioned non-GACP NOC
      equipment with subnet connections to a GACP-edge device (as a
      transition method).

   The GACP must be built autonomic and its function must not be
   disruptable by operator or automated (NMS/SDN) configuration/
   provisioning actions.  These are allowed to only impact the "data-
   plane".  This aspect is not currently covered in this document.
   Instead, it focusses on the impact of the above constraints: IPv6
   only, dual connectivity and security.

2.  Solutions

2.1.  Stable Connectivity for Centralized OAM

   The ANI is the "Autonomic Networking Infrastructure" consisting of
   secure zero touch Bootstrap (BRSKI -
   [I-D.ietf-anima-bootstrapping-keyinfra]), GeneRic Autonomic Signaling
   Protocol (GRASP - [I-D.ietf-anima-grasp]), and Autonomic Control
   Plane (ACP - [I-D.ietf-anima-autonomic-control-plane]).  Refer to
   [I-D.ietf-anima-reference-model]  for an overview of the ANI and how
   its components interact and [RFC7575] for concepts and terminology of
   ANI and autonomic networks.

   This section describes stable connectivity for centralized OAM via
   the GACP, for example via the ACP with or without a complete ANI,
   starting by what we expect to be the most easy to deploy short-term
   option.  It then describes limitation and challenges of that approach
   and their solutions/workarounds to finish with the preferred target
   option of autonomic NOC devices in Section 2.1.6.

   This order was chosen because it helps to explain how simple initial
   use of a GACP can be, how difficult workarounds can become (and
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   therefore what to avoid), and finally because one very promising
   long-term solution alternative is exactly like the most easy short-
   term solution only virtualized and automated.

   In the most common case, OAM will be performed by one or more
   applications running on a variety of centralized NOC systems that
   communicate with network devices.  We describe differently advanced
   approaches to leverage a GACP for stable connectivity.  There is a
   wide range of options, some of which are simple, some more complex.

   Three stages can be considered:

   o  There are simple options described in sections Section 2.1.1
      through Section 2.1.3 that we consider to be good starting points
      to operationalize the use of a GACP for stable connectivity today.
      These options require only network and OAN/NOC device
      configuration.

   o  The are workarounds to connect a GACP to non-IPv6 capable NOC
      devices through the use of IPv4/IPv6 NAT (Network Address
      Translation) as described in section Section 2.1.4.  These
      workarounds are not recommended but if such non-IPv6 capable NOC
      devices need to be used longer term, then this is the only option
      to connect them to a GACP.

   o  Near to long term options can provide all the desired operational,
      zero touch and security benefits of an autonomic network, but a
      range of details for this still have to be worked out and
      development work on NOC/OAM equipment is necessary.  These options
      are discussed in sections Section 2.1.5 through Section 2.1.8.

2.1.1.  Simple Connectivity for Non-GACP capable NMS Hosts

   In the most simple candidate deployment case, the GACP extends all
   the way into the NOC via one or more "GACP-edge-devices".  See also
   section 6.1 of [I-D.ietf-anima-autonomic-control-plane].  These
   devices "leak" the (otherwise encrypted) GACP natively to NMS hosts.
   They act as the default routers to those NMS hosts and provide them
   with IPv6 connectivity into the GACP.  NMS hosts with this setup need
   to support IPv6 (see e.g.  [RFC6434]) but require no other
   modifications to leverage the GACP.

   Note that even though the GACP only uses IPv6, it can of course
   support OAM for any type of network deployment as long as the network
   devices support the GACP: The data-plane can be IPv4 only, dual-stack
   or IPv6 only.  It is always separate from the GACP, therefore there
   is no dependency between the GACP and the IP version(s) used in the
   data-plane.
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   This setup is sufficient for troubleshooting such as SSH into network
   devices, NMS that performs SNMP read operations for status checking,
   software downloads into autonomic devices, provisioning of devices
   via NETCONF and so on.  In conjunction with otherwise unmodified OAM
   via separate NMS hosts it can provide a good subset of the stable
   connectivity goals.  The limitations of this approach are discussed
   in the next section.

   Because the GACP provides ’only’ for IPv6 connectivity, and because
   addressing provided by the GACP does not include any topological
   addressing structure that operations in a NOC often relies on to
   recognize where devices are on the network, it is likely highly
   desirable to set up DNS (Domain Name System - see [RFC1034]) so that
   the GACP IPv6 addresses of autonomic devices are known via domain
   names that include the desired structure.  For example, if DNS in the
   network was set up with names for network devices as
   devicename.noc.example.com, and the well-known structure of the data-
   plane IPv4 addresses space was used by operators to infer the region
   where a device is located in, then the GACP address of that device
   could be set up as devicename_<region>.acp.noc.example.com, and
   devicename.acp.noc.example.com could be a CNAME to
   devicename_<region>.acp.noc.example.com.  Note that many networks
   already use names for network equipment where topological information
   is included, even without a GACP.

2.1.2.  Challenges and Limitation of Simple Connectivity

   This simple connectivity of non-autonomic NMS hosts suffers from a
   range of challenges (that is, operators may not be able to do it this
   way) or limitations (that is, operator cannot achieve desired goals
   with this setup).  The following list summarizes these challenges and
   limitations.  The following sections describe additional mechanisms
   to overcome them.

   Note that these challenges and limitations exist because GACP is
   primarily designed to support distributed ASA (Autonomic Service
   Agent, a piece of autonomic software) in the most lightweight
   fashion, but not mandatorily require support for additional
   mechanisms to best support centralized NOC operations.  It is this
   document that describes additional (short term) workarounds and (long
   term) extensions.

   1.  (Limitation) NMS hosts cannot directly probe whether the desired
       so called ’data-plane’ network connectivity works because they do
       not directly have access to it.  This problem is similar to
       probing connectivity for other services (such as VPN services)
       that they do not have direct access to, so the NOC may already
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       employ appropriate mechanisms to deal with this issue (probing
       proxies).  See Section 2.1.3 for candidate solutions.

   2.  (Challenge) NMS hosts need to support IPv6 which often is still
       not possible in enterprise networks.  See Section 2.1.4 for some
       workarounds.

   3.  (Limitation) Performance of the GACP may be limited versus normal
       ’data-plane’ connectivity.  The setup of the GACP will often
       support only non-hardware accelerated forwarding.  Running a
       large amount of traffic through the GACP, especially for tasks
       where it is not necessary will reduce its performance/
       effectiveness for those operations where it is necessary or
       highly desirable.  See Section 2.1.5 for candidate solutions.

   4.  (Limitation) Security of the GACP is reduced by exposing the GACP
       natively (and unencrypted) into a subnet in the NOC where the NOC
       devices are attached to it.  See Section 2.1.7 for candidate
       solutions.

   These four problems can be tackled independently of each other by
   solution improvements.  Combining some of these solutions
   improvements together can lead towards a candidate long term
   solution.

2.1.3.  Simultaneous GACP and data-plane Connectivity

   Simultaneous connectivity to both GACP and data-plane can be achieved
   in a variety of ways.  If the data-plane is IPv4-only, then any
   method for dual-stack attachment of the NOC device/application will
   suffice: IPv6 connectivity from the NOC provides access via the GACP,
   IPv4 will provide access via the data-plane.  If as explained above
   in the simple case, an autonomic device supports native attachment to
   the GACP, and the existing NOC setup is IPv4 only, then it could be
   sufficient to attach the GACP device(s) as the IPv6 default router to
   the NOC subnet and keep the existing IPv4 default router setup
   unchanged.

   If the data-plane of the network is also supporting IPv6, then the
   most compatible setup for NOC devices is to have two IPv6 interfaces.
   One virtual ((e.g. via IEEE 802.1Q [IEEE802.1Q]) or physical
   interface connecting to a data-plane subnet, and another into an GACP
   connect subnet.  See section 8.1 of
   [I-D.ietf-anima-autonomic-control-plane] for more details.  That
   document also specifies how the NOC devices can receive auto
   configured addressing and routes towards the ACP connect subnet if it
   supports [RFC6724] and [RFC4191].
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   Configuring a second interface on a NOC host may be impossible or be
   seen as undesired complexity.  In that case the GACP edge device
   needs to provide support for a "Combined ACP and data-plane
   interface" as also described in section 8.1 of
   [I-D.ietf-anima-autonomic-control-plane].  This setup may not work
   with auto configuration and all NOC host network stacks due to
   limitations in those network stacks.  They need to be able to perform
   RFC6724 source address selection rule 5.5 including caching of next-
   hop information.

   For security reasons, it is not considered appropriate to connect a
   non-GACP router to a GACP connect interface.  The reason is that the
   GACP is a secured network domain and all NOC devices connecting via
   GACP connect interfaces are also part of that secure domain - the
   main difference is that the physical link between the GACP edge
   device and the NOC devices is not authenticated/encrypted and
   therefore, needs to be physically secured.  If the secure GACP was
   extendable via untrusted routers then it would be a lot more
   difficult to verify the secure domain assertion.  Therefore the GACP
   edge devices are not supposed to redistribute routes from non-GACP
   routers into the GACP.

2.1.4.  IPv4-only NMS Hosts

   One architectural expectation for the GACP as described in
   Section 1.3 is that all devices that want to use the GACP do support
   IPv6.  Including NMS hosts.  Note that this expectation does not
   imply any requirements against the data-plane, especially no need to
   support IPv6 in it.  The data-plane could be IPv4 only, IPv6 only,
   dual stack or it may not need to have any IP host stack on the
   network devices.

   The implication of this architectural decision is the potential need
   for short-term workarounds when the operational practices in a
   network do not yet meet these target expectations.  This section
   explains when and why these workarounds may be operationally
   necessary and describes them.  However, the long term goal is to
   upgrade all NMS hosts to native IPv6, so the workarounds described in
   this section should not be considered permanent.

   Most network equipment today supports IPv6 but it is by far not
   ubiquitously supported in NOC backend solutions (HW/SW), especially
   not in the product space for enterprises.  Even when it is supported,
   there are often additional limitations or issues using it in a dual
   stack setup or the operator mandates for simplicity single stack for
   all operations.  For these reasons an IPv4 only management plane is
   still required and common practice in many enterprises.  Without the
   desire to leverage the GACP, this required and common practice is not
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   a problem for those enterprises even when they run dual stack in the
   network.  We discuss these workarounds here because it is a short
   term deployment challenge specific to the operations of a GACP.

   To connect IPv4 only management plane devices/applications with a
   GACP, some form of IP/ICMP translation of packets IPv4<->IPv6 is
   necessary.  The basic mechanisms for this are defined in SIIT
   ([RFC7915]).  There are multiple solutions using this mechanism.  To
   understand the possible solutions, we consider the requirements:

   1.  NMS hosts need to be able to initiate connections to any GACP
       device for management purposes.  Examples include provisioning
       via Netconf/(SSH), SNMP poll operations or just diagnostics via
       SSH connections from operators.  Every GACP device/function that
       needs to be reachable from NMS hosts needs to have a separate
       IPv4 address.

   2.  GACP devices need to be able to initiate connections to NMS hosts
       for example to initiate NTP or radius/diameter connections, send
       syslog or SNMP trap or initiate Netconf Call Home connections
       after bootstrap.  Every NMS host needs to have a separate IPv6
       address reachable from the GACP.  When connections from GACP
       devices are made to NMS hosts, the IPv4 source address of these
       connections as seen by the NMS Host must also be unique per GACP
       device and the same address as in (1) to maintain the same
       addressing simplicity as in a native IPv4 deployment.  For
       example in syslog, the source-IP address of a logging device is
       used to identify it, and if the device shows problems, an
       operator might want to SSH into the device to diagnose it.

   Because of these requirements, the necessary and sufficient set of
   solutions are those that provide 1:1 mapping of IPv6 GACP addresses
   into IPv4 space and 1:1 mapping of IPv4 NMS host space into IPv6 (for
   use in the GACP).  This means that stateless SIIT based solutions are
   sufficient and preferred.

   Note that GACP devices may use multiple IPv6 addresses in the GACP.
   For example, [I-D.ietf-anima-autonomic-control-plane] section 6.10
   defines multiple useful addressing sub-schemes supporting this
   option.  All those addresses may then need to be reachable through
   the IPv6/IPv4 address translation.

   The need to allocate for every GACP device one or multiple IPv4
   addresses should not be a problem if - as we assume - the NMS hosts
   can use private IPv4 address space ([RFC1918]).  Nevertheless even
   with RFC1918 address space it is important that the GACP IPv6
   addresses can efficiently be mapped into IPv4 address space without
   too much waste.
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   The currently most flexible mapping scheme to achieve this is
   [RFC7757] because it allows configured IPv4 <-> IPv6 prefix mapping.
   Assume the GACP uses the ACP "Zone Addressing" Sub-Scheme and there
   are 3 registrars.  In the Zone Addressing Sub-Scheme, there is for
   each registrar a constant /112 prefix for which in RFC7757 an EAM
   (Explicit Address Mapping) into a /16 (e.g.: RFC1918) prefix into
   IPv4 can be configured.  Within the registrars /112 prefix, Device-
   Numbers for devices are sequentially assigned: with V-bit effectively
   two numbers are assigned per GACP device.  This also means that if
   IPv4 address space is even more constrained, and it is known that a
   registrar will never need the full /15 extent of Device-Numbers, then
   a longer than /112 prefix can be configured into the EAM to use less
   IPv4 space.

   When using the ACP "Vlong Addressing" Sub-Scheme, it is unlikely that
   one wants or need to translate the full /8 or /16 bits of addressing
   space per GACP device into IPv4.  In this case, the EAM rules of
   dropping trailing bits can be used to map only N bits of the V-bits
   into IPv4.  This does imply though that only V-addresses that differ
   in those high-order N V-bits can be distinguished on the IPv4 side.

   Likewise, the IPv4 address space used for NMS hosts can easily be
   mapped into an address prefix assigned to a GACP connect interface.

   A full specification of a solution to perform SIIT in conjunction
   with GACP connect following the considerations below is outside the
   scope of this document.

   To be in compliance with security expectations, SIIT has to happen on
   the GACP edge device itself so that GACP security considerations can
   be taken into account.  E.g.: that IPv4 only NMS hosts can be dealt
   with exactly like IPv6 hosts connected to a GACP connect interface.

   Note that prior solutions such as NAT64 ([RFC6146]) may equally be
   useable to translate between GACP IPv6 address space and NMS Hosts
   IPv4 address space, and that as workarounds this can also be done on
   non GACP Edge Devices connected to a GACP connect interface.  The
   details vary depending on implementation because the options to
   configure address mappings vary widely.  Outside of EAM, there are no
   standardized solutions that allow for mapping of prefixes, so it will
   most likely be necessary to explicitly map every individual (/128)
   GACP device address to an IPv4 address.  Such an approach should use
   automation/scripting where these address translation entries are
   created dynamically whenever a GACP device is enrolled or first
   connected to the GACP network.

   Overall, the use of NAT is especially subject to the ROI (Return On
   Investment) considerations, but the methods described here may not be
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   too different from the same problems encountered totally independent
   of GACP when some parts of the network are to introduce IPv6 but NMS
   hosts are not (yet) upgradeable.

2.1.5.  Path Selection Policies

   As mentioned above, a GACP is not expected to have high performance
   because its primary goal is connectivity and security, and for
   existing network device platforms this often means that it is a lot
   more effort to implement that additional connectivity with hardware
   acceleration than without - especially because of the desire to
   support full encryption across the GACP to achieve the desired
   security.

   Some of these issues may go away in the future with further adoption
   of a GACP and network device designs that better tender to the needs
   of a separate OAM plane, but it is wise to plan for even long-term
   designs of the solution that does NOT depend on high-performance of
   the GACP.  This is opposite to the expectation that future NMS hosts
   will have IPv6, so that any considerations for IPv4/NAT in this
   solution are temporary.

   To solve the expected performance limitations of the GACP, we do
   expect to have the above describe dual-connectivity via both GACP and
   data-plane between NOC application devices and devices with GACP.
   The GACP connectivity is expected to always be there (as soon as a
   device is enrolled), but the data-plane connectivity is only present
   under normal operations but will not be present during e.g.  early
   stages of device bootstrap, failures, provisioning mistakes or during
   network configuration changes.

   The desired policy is therefore as follows: In the absence of further
   security considerations (see below), traffic between NMS hosts and
   GACP devices should prefer data-plane connectivity and resort only to
   using the GACP when necessary, unless it is an operation known to be
   so much tied to the cases where the GACP is necessary that it makes
   no sense to try using the data-plane.  An example are SSH connections
   from the NOC into a network device to troubleshoot network
   connectivity.  This could easily always rely on the GACP.  Likewise,
   if an NMS host is known to transmit large amounts of data, and it
   uses the GACP, then its performance need to be controlled so that it
   will not overload the GACP performance.  Typical examples of this are
   software downloads.

   There is a wide range of methods to build up these policies.  We
   describe a few:
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   Ideally, a NOC system would learn and keep track of all addresses of
   a device (GACP and the various data-plane addresses).  Every action
   of the NOC system would indicate via a "path-policy" what type of
   connection it needs (e.g. only data-plane, GACP-only, default to
   data-plane, fallback to GACP,...).  A connection policy manager would
   then build connection to the target using the right address(es).
   Shorter term, a common practice is to identify different paths to a
   device via different names (e.g. loopback vs. interface addresses).
   This approach can be expanded to GACP uses, whether it uses NOC
   system local names or DNS.  We describe example schemes using DNS:

   DNS can be used to set up names for the same network devices but with
   different addresses assigned: One name (name.noc.example.com) with
   only the data-plane address(es) (IPv4 and/or IPv6) to be used for
   probing connectivity or performing routine software downloads that
   may stall/fail when there are connectivity issues.  One name (name-
   acp.noc.example.com) with only the GACP reachable address of the
   device for troubleshooting and probing/discovery that is desired to
   always only use the GACP.  One name with data-plane and GACP
   addresses (name-both.noc.example.com).

   Traffic policing and/or shaping at the GACP edge in the NOC can be
   used to throttle applications such as software download into the
   GACP.

   Using different names mapping to different (subset of) addresses can
   be difficult to set up and maintain, especially also because data-
   plane addresses may change due to reconfiguration or relocation of
   devices.  The name based approach alone can also not well support
   policies for existing applications and long-lived flows to
   automatically switch between ACP and data-plane in the face of data-
   plane failure and recovery.  A solution would be GACP node host
   transport stacks supporting the following requirements:

   1.  Only the GACP addresses of the responder must be required by the
       initiator for the initial setup of a connection/flow across the
       GACP.

   2.  Responder and Initiator must be able to exchange their data-plane
       addresses through the GACP, and then - if needed by policy -
       build an additional flow across the data-plane.

   3.  For unmodified application, the following policies should be
       configurable on at least a per-application basis for its TCP
       connections with GACP peers:

       Fallback (to GACP):  An additional data-plane flow is built and
          used exclusively to send data whenever the data-plane is
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          operational.  When it can not be built during connection setup
          or when it fails later, traffic is sent across the GACP flow.
          This could be a default-policy for most OAM applications using
          the GACP.

       >Suspend/Fail:  Like the Fallback policy, except that traffic
          will not use the GACP flow but will be suspended until a data-
          plane flow is operational or until a policy configurable
          timeout indicates a connection failure to the application.
          This policy would be appropriate for large volume background/
          scavenger class OAM application/connections such as firmware
          downloads or telemetry/diagnostic uploads - which would
          otherwise easily overrun performance limited GACP
          implementations.

       >GACP (only):  No additional data-plane flow is built, traffic is
          only sent via the GACP flow.  This can just be a TCP
          connection.  This policy would be most appropriate for OAM
          operations known to change the data plane in a way that could
          impact (at least temporarily) connectivity through it.

   4.  In the presence of responders or initiators not supporting these
       host stack functions, the Fallback and GACP policies must result
       in a TCP connection across the GACP.  For Suspend/Fail, presence
       of TCP-only peers should result in failure during connection
       setup.

   5.  In case of Fallback and Suspend/Fail, a failed data-plane
       connection should automatically be rebuilt when the data-plane
       recovers, including the case that the data-plane address of one
       (or both) side(s) may have changed - for example because of
       reconfiguration or device repositioning.

   6.  Additional data-plane flows created by these host transport stack
       functions must be end-to-end authenticated by it with the GACP
       domain credentials and encrypted.  This maintains the expectation
       that connections from GACP addresses to GACP addresses are
       authenticated/encrypted.  This may be skipped if the application
       already provides for end-to-end encryption.

   7.  For enhanced applications, the host stack may support application
       control to select the policy on a per-connection basis, or even
       more explicit control for building of the flows and which flow
       should pass traffic.

   Protocols like MPTCP (Multipath TCP -see [RFC6824]) and SCTP
   ([RFC4960]) can already support part of these requirements.  MPTCP
   for example supports signaling of addresses in a TCP backward
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   compatible fashion, establishment of additional flows (called
   subflows in MPTCP) and having primary and fallback subflows via
   MP_PRIO signalling.  The details if or how MPTCP, SCTP and/or other
   approaches potentially with extensions and/or (shim) layers on top of
   them can best provide a complete solution for the above requirements
   is subject to further work outside the scope of this document.

2.1.6.  Autonomic NOC Device/Applications

   Setting up connectivity between the NOC and autonomic devices when
   the NOC device itself is non-autonomic is as mentioned in the
   beginning a security issue.  It also results as shown in the previous
   paragraphs in a range of connectivity considerations, some of which
   may be quite undesirable or complex to operationalize.

   Making NMS hosts autonomic and having them participate in the GACP is
   therefore not only a highly desirable solution to the security
   issues, but can also provide a likely easier operationalization of
   the GACP because it minimizes NOC-special edge considerations - the
   GACP is simply built all the way automatically, even inside the NOC
   and only authorized and authenticate NOC devices/applications will
   have access to it.

   Supporting the ACP according to
   [I-D.ietf-anima-autonomic-control-plane] all the way into an
   application device requires implementing the following aspects in it:
   AN bootstrap/enrollment mechanisms, the secure channel for the ACP
   and at least the host side of IPv6 routing setup for the ACP.
   Minimally this could all be implemented as an application and be made
   available to the host OS via e.g. a tap driver to make the ACP show
   up as another IPv6 enabled interface.

   Having said this: If the structure of NMS hosts is transformed
   through virtualization anyhow, then it may be considered equally
   secure and appropriate to construct (physical) NMS host system by
   combining a virtual GACP enabled router with non-GACP enabled NOC-
   application VMs via a hypervisor, leveraging the configuration
   options described in the previous sections but just virtualizing
   them.

2.1.7.  Encryption of data-plane connections

   When combining GACP and data-plane connectivity for availability and
   performance reasons, this too has an impact on security: When using
   the GACP, the traffic will be mostly encryption protected, especially
   when considering the above described use of application devices with
   GACP.  If instead the data-plane is used, then this is not the case
   anymore unless it is done by the application.

Eckert & Behringer       Expires August 9, 2018                [Page 15]



Internet-Draft         AN Stable Connectivity OAM          February 2018

   The simplest solution for this problem exists when using GACP capable
   NMS hosts, because in that case the communicating GACP capable NMS
   host and the GACP network device have credentials they can mutually
   trust (same GACP domain).  In result, data-plane connectivity that
   does support this can simply leverage TLS/DTLS
   ([RFC5246])/([RFC6347]) with those GACP credentials for mutual
   authentication - and does not incur new key management.

   If this automatic security benefit is seen as most important, but a
   "full" GACP stack into the NMS host is unfeasible, then it would
   still be possible to design a stripped down version of GACP
   functionality for such NOC hosts that only provides enrollment of the
   NOC host with the GACP cryptographic credentials but without directly
   participating in the GACP encryption method.  Instead, the host would
   just leverage TLS/DTLS using its GACP credentials via the data-plane
   with GACP network devices as well as indirectly via the GACP with the
   above mentioned GACP connect into the GACP.

   When using the GACP itself, TLS/DTLS for the transport layer between
   NMS hosts and network device is somewhat of a double price to pay
   (GACP also encrypts) and could potentially be optimized away, but
   given the assumed lower performance of the GACP, it seems that this
   is an unnecessary optimization.

2.1.8.  Long Term Direction of the Solution

   If we consider what potentially could be the most lightweight and
   autonomic long term solution based on the technologies described
   above, we see the following direction:

   1.  NMS hosts should at least support IPv6.  IPv4/IPv6 NAT in the
       network to enable use of a GACP is long term undesirable.  Having
       IPv4 only applications automatically leverage IPv6 connectivity
       via host-stack translation may be an option but this has not been
       investigated yet.

   2.  Build the GACP as a lightweight application for NMS hosts so GACP
       extends all the way into the actual NMS hosts.

   3.  Leverage and as necessary enhance host transport stacks with
       automatic multipath-connectivity GACP and data-plane as outlined
       in Section 2.1.5.

   4.  Consider how to best map NMS host desires to underlying transport
       mechanisms: With the above mentioned 3 points, not all options
       are covered.  Depending on the OAM, one may still want only GACP,
       only data-plane, or automatically prefer one over the other and/
       or use the GACP with low performance or high-performance (for
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       emergency OAM such as countering DDoS).  It is as of today not
       clear what the simplest set of tools is to enable explicitly the
       choice of desired behavior of each OAM.  The use of the above
       mentioned DNS and multipath mechanisms is a start, but this will
       require additional work.  This is likely a specific case of the
       more generic scope of TAPS.

2.2.  Stable Connectivity for Distributed Network/OAM

   Today, many distributed protocols implement their own unique security
   mechanisms.

   KARP (Keying and Authentication for Routing Protocols, see [RFC6518])
   has tried to start to provide common directions and therefore reduce
   the re-invention of at least some of the security aspects, but it
   only covers routing-protocols and it is unclear how well it is
   applicable to a potentially wider range of network distributed agents
   such as those performing distributed OAM.  The common security of a
   GACP can help in these cases.

   Furthermore, GRASP ([I-D.ietf-anima-grasp]) can run on top of a GACP
   as a security and transport substrate and provide common local &
   remote neighbor discovery and peer negotiation mechanism, further
   allowing to unifying & reuse future protocol designs.

3.  Architectural Considerations

3.1.  No IPv4 for GACP

   The GACP is intended to be IPv6 only, and the prior explanations in
   this document show that this can lead to some complexity when having
   to connect IPv4 only NOC solutions, and that it will be impossible to
   leverage the GACP when the OAM agents on a GACP network device do not
   support IPv6.  Therefore, the question was raised whether the GACP
   should optionally also support IPv4.

   The decision not to include IPv4 for GACP as something that is
   considered in the use cases in this document is because of the
   following reasons:

   In SP networks that have started to support IPv6, often the next
   planned step is to consider moving out IPv4 from a native transport
   to just a service on the edge.  There is no benefit/need for multiple
   parallel transport families within the network, and standardizing on
   one reduces OPEX and improves reliability.  This evolution in the
   data-plane makes it highly unlikely that investing development cycles
   into IPv4 support for GACP will have a longer term benefit or enough
   critical short-term use-cases.  Support for IPv6-only for GACP is
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   purely a strategic choice to focus on the known important long term
   goals.

   In other types of networks as well, we think that efforts to support
   autonomic networking is better spent in ensuring that one address
   family will be supported so all use cases will long-term work with
   it, instead of duplicating effort into IPv4.  Especially because
   auto-addressing for the GACP with IPv4 would be more complex than in
   IPv6 due to the IPv4 addressing space.

4.  Security Considerations

   In this section, we discuss only security considerations not covered
   in the appropriate sub-sections of the solutions described.

   Even though GACPs are meant to be isolated, explicit operator
   misconfiguration to connect to insecure OAM equipment and/or bugs in
   GACP devices may cause leakage into places where it is not expected.
   Mergers/Acquisitions and other complex network reconfigurations
   affecting the NOC are typical examples.

   GACP addresses are ULA addresses.  Using these addresses also for NOC
   devices as proposed in this document is not only necessary for above
   explained simple routing functionality but it is also more secure
   than global IPv6 addresses.  ULA addresses are not routed in the
   global Internet and will therefore be subject to more filtering even
   in places where specific ULA addresses are being used.  Packets are
   therefore less likely to leak to be successfully injected into the
   isolated GACP environment.

   The random nature of a ULA prefix provides strong protection against
   address collision even though there is no central assignment
   authority.  This is helped by the expectation that GACPs are never
   expected to connect all together, but only few GACPs may ever need to
   connect together, e.g. when mergers and acquisitions occur.

   Note that the GACP constraints demands that only packets from
   connected subnet prefixes are permitted from GACP connect interfaces,
   limiting the scope of non-cryptographically secured transport to a
   subnet within a NOC that instead has to rely on physical security
   (only connect trusted NOC devices to it).

   To help diagnose packets that unexpectedly leaked for example from
   another GACP (that was meant to be deployed separately), it can be
   useful to voluntarily list your own the ULA GACP prefixes on some
   site(s) on the Internet and hope that other users of GACPs do the
   same so that you can look up unknown ULA prefix packets seen in your
   network.  Note that this does not constitute registration.
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   https://www.sixxs.net/tools/grh/ula/ was a site to list ULA prefixes
   but it is not open for new listings anymore since the mid of 2017.
   The authors are not aware of other active Internet sites to list ULA
   use.

   Note that there is a provision in [RFC4193] for non-locally assigned
   address space (L bit = 0), but there is no existing standardization
   for this, so these ULA prefixes must not be used.

   According to [RFC4193] section 4.4, PTR records for ULA addresses
   should not be installed into the global DNS (no guaranteed
   ownership).  Hence also the need to rely on voluntary lists (and in
   prior paragraph) to make the use of an ULA prefix globally known.

   Nevertheless, some legacy OAM applications running across the GACP
   may rely on reverse DNS lookup for authentication of requests (e.g.:
   TFTP for download of network firmware/config/software).  Operators
   may therefore need to use a private DNS setup for the GACP ULA
   addresses.  This is the same setup that would be necessary for using
   RFC1918 addresses in DNS.  See for example [RFC1918] section 5, last
   paragraph.  In [RFC6950] section 4, these setups are discussed in
   more detail.

   Any current and future protocols must rely on secure end-to-end
   communications (TLS/DTLS) and identification and authentication via
   the certificates assigned to both ends.  This is enabled by the
   cryptographic credentials mechanisms of the GACP.

   If DNS and especially reverse DNS are set up, then it should be set
   up in an automated fashion when the GACP address for devices are
   assigned.  In the case of the ACP, DNS resource record creation can
   be linked to the autonomic registrar backend so that the DNS and
   reverse DNS records are actually derived from the subject name
   elements of the ACP device certificates in the same way as the
   autonomic devices themselves will derive their ULA addresses from
   their certificates to ensure correct and consistent DNS entries.

   If an operator feels that reverse DNS records are beneficial to its
   own operations but that they should not be made available publically
   for "security" by concealment reasons, then the case of GACP DNS
   entries is probably one of the least problematic use cases for split-
   DNS: The GACP DNS names are only needed for the NMS hosts intending
   to use the GACP - but not network wide across the enterprise.
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5.  IANA Considerations

   This document requests no action by IANA.
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Abstract

   This document discusses the requirement of capability of information
   distribution among autonomic nodes in autonomic networks. In general,
   information distribution can be categorized into two different modes:
   1) one autonomic node instantly sends information to other nodes in
   the domain; 2) one autonomic node publishes some information and
   asynchronously some other interested nodes request the published
   information. In the former case, information data will be generated
   and consumed instantly. In the latter case, information data live
   longer in the network.

   These capabilities are basic and fundamental to an autonomous network
   system (i.e. ANI [I-D.ietf-anima-reference-model]). This document
   clarifies possible use cases of information distribution in ANI and
   requirements to ANI so that rich information distribution can be
   natively supported. Possible options to realize the information
   distribution function are also briefly discussed.

Status of this Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as
   Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
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   material or to cite them other than as "work in progress."
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1  Introduction

   In an autonomic network, autonomic functions (AFs) running on
   autonomic nodes would exchange information constantly, both for
   controlling/management signaling and data exchange. This document
   discusses the information distribution capability of such exchanges
   between AFs.

   According to the number of participants, information distribution can
   happen with the following scenarios:

      1) Point-to-point (P2P) Communication: information are exchanged
      between two communicating parties from one node to another node.

      2) One-to-Many Communication: information exchanges involve an
      information source and multiple receivers.

   The approaches of distributing information could be categorized into
   two basic models:

      1) An instant communication: a sender connects and sends the
      information data (e.g. control/management signaling,
      synchronization data and so on) to the receiver(s) immediately.

      2) An asynchronous communication: a sender saves the information
      in the network, may or may not publish the information to the
      other who is interested in the published information, to which a
      node asks to retrieve.

   The ANI should have provided a generic way to support these various
   scenarios, rather than assisted by other transport or routing
   protocols (HTTP, BGP/IGP as bearing protocols etc.). In fact, GRASP
   already provides part of the capabilities.

   In this document, we first analyze requirements of information
   distribution in autonomic networks (Section 3), and then introduce
   its relationship to the other modules in ANI (Section 4). After that,
   the node behaviors and extensions to the existing GRASP are
   introduced in Section 5 and Section 6, respectively.

Liu, et al.            Expires September 12, 2019               [Page 3]



INTERNET DRAFT      Information Distribution in ANI        March 7, 2019

2. Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3. Requirements of Advanced Information Distribution

   If the information exchanged is just short and simple, this can be
   done instantly. In practice, however, this is not always the case. In
   the following cases, a mixture of instant and asynchronous
   communication models is more appropriate.

      1) Long Communication Intervals. The time interval of the
      communication is not necessarily always short and instant.
      Advanced AFs  may rather involve heavy jobs/tasks (e.g. database
      lookup, authentication etc.) when gearing the network, so the
      instant mode may introduce unnecessary pending time and become
      less efficient. If simply using an instant mode, the AF has to
      wait until the tasks finish and return. A better way is that an AF
      instantly sends the request but switches to an synchronous mode,
      once the jobs are finished, AFs will get notified.

      2) Common Interest Distribution. As mentioned, some information
      are common interests among AFs. For example, the network intent is
      distributed to network nodes enrolled, which is a typical one-to-
      many scenario. We can also finish the intent distribution by an
      instant flooding (e.g. via GRASP) to every network nodes across
      the network domain. Because of network dynamic, however, not every
      node can be just ready at the moment when the network intent is
      flooded. Actually, nodes may join in the network sequentially. In
      this situation, an asynchronous communication model could be a
      better choice where every (newly joining) node can subscribe the
      intent information and will get notified if it is ready (or
      updated).

      3) Distributed Coordination. With computing and storage resources
      on autonomic nodes, alive AFs not only consumes but also generates
      data information. For example, AFs coordinating with each other as
      distributed schedulers, responding to service requests and
      distributing tasks. It is critical for those AFs to make correct
      decisions based on local information, which might be asymmetric as
      well. AFs may also need synthetic/aggregated data information
      (e.g. statistic info, like average values of several AFs, etc.) to
      make decisions. In these situations, AFs will need an efficient
      way to form a global view of the network (e.g. about resource
      consumption, bandwidth and statistics). Obviously, purely relying
      on instant communication model is inefficient, while a scalable,
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      common, yet distributed data layer, on which AFs can store and
      share information in an asynchronous way, should be a better
      choice.

   For ANI, in order to support various communication scenarios, an
   information distribution module is required, and both instant and
   asynchronous communication models should be supported.

4. Information Distribution in ANI

   This section describes how the information distribution module fits
   into the ANI including what extensions of GRASP are required [I-
   D.ietf-anima-grasp].

                          +-------------------+
                          |       ASAs        +
                          +-------------------+
                                   ^
                                   |
                                   v
    +-------------------------Info-Dist. APIs-----------------------+
    | +---------------+   +-------------------+   +---------------+ |
    | |  Event Queue  |-|-| Selective Flooding|-|-| Info. Storage | |
    | +---------------+   +-------------------+   +---------------+ |
    +---------------------------------------------------------------+
                                ^
                                |
                                v
                +-------------GRASP APIs----------------+
                | +---------------+   +---------------+ |
                | |  GRASP Base   |-|-|   Extension | | |
                | +---------------+   +---------------+ |
                +---------------------------------------+

   Figure 1. Information Distribution Module and GRASP Extension.

   As the Fig 1 shows, the information distribution module includes
   three sub-modules, all of which provides APIs for ASAs. Specific
   behaviors of these modules is described in Section 5. In order to
   support the modules, the GRASP is also extended, which is described
   in Section 6.

5. Node Behaviors

   ANI is a distributed system, so the information distribution module
   must be implemented in a distributed way as well. This means that
   every node participate to contribute. In this section, we discuss how
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   each autonomic node should behave in order to realize the information
   distribution module. Node interactions and information data exchange
   between network nodes are necessary in order to support the instant
   and asynchronous information distribution, which will be introduced
   in the follow sections, respectively.

5.1 Instant Information Distribution

   In this case, sender(s) and receiver(s) are specified. Information
   will be directly sent from the sender(s) to the receiver(s). This
   requires that every node is equipped by some signaling/transport
   protocols so that they can coordinate with each other and correctly
   deliver the information.

5.1.1 Instant P2P and Flooding Communications

   Current GRASP already provides the capability to support instant P2P
   and flooding. It is natural to use the GRASP Synchronization message
   directly for P2P distribution. Furthermore, it is also natural to use
   the GRASP Flood Synchronization message for 1-to-all distribution.

   However, as mentioned in Section 3, in some scenarios one node needs
   to actively send some information to another. GRASP Synchronization
   just lacks such capability. An un-solicited synchronization mechanism
   is needed. A relevant GRASP extension is defined in Section 6.

5.1.2 Instant Selective Flooding Communication

   When doing selective flooding, the distributed information needs to
   contain the criteria for nodes to judge which interfaces should be
   sent the distributed information and which are not. Specifically, the
   criteria contain:

      o  Matching condition: a set of matching rules.

      o  Matching object: the object that the match condition would be
      applied to.  For example, the matching object could be node itself
      or its neighbors.

      o  Action: what behavior the node needs to do when the matching
      object matches or failed the matching condition.  For example, the
      action could be forwarding or discarding the distributed message.

   The criteria information must be include in the message that carries
   the distributed information from the sender. The receiving node
   decides the action according to the criteria carried in the message.
   Still considering the criteria attached with the distributed
   information, the node behaviors can be:

Liu, et al.            Expires September 12, 2019               [Page 6]



INTERNET DRAFT      Information Distribution in ANI        March 7, 2019

      o When the Matching Object is "Neighbors", then the node matches
      the relevant information of its neighbors to the Matching
      Condition.  If the node finds one neighbor matches the Matching
      Condition, then it forwards the distributed message to the
      neighbor.  If not, the node discards forwarding the message to the
      neighbor.

      o When the Matching Object is the node itself, then the node
      matches the relevant information of its own to the Matching
      Condition.  If the node finds itself matches the Matching
      Condition, then it forwards the distributed message to its
      neighbors; if not, the node discards forwarding the message to the
      neighbors.

   An example of selective flooding is briefly described in the Appendix
   A.

5.2 Asynchronous Information Distribution

   Asynchronous information distribution happens in a different way
   where sender(s) and receiver(s) are normally not immediately
   specified. Both senders and receivers may come up in an asynchronous
   way. First of all, this requires that the information can be stored;
   secondly, it requires an information publication and subscription
   (Pub/Sub) mechanism (corresponding protocol specification of Pub/Sub
   is defined in Section 6).

   As we sketched in the previous section, in general, each node
   requires two modules: 1) Information Storage (IS) module and 2) Event
   Queue (EQ) module in the information distribution module. We
   introduce details of the two modules in the following sections.

5.2.1 Information Storage

   IS module handles how to save and retrieve information for ASAs
   across the network. The IS module uses a syntax to index information,
   generating the hash index value (e.g. a key) of the information and
   mapping the hash index to a certain node in ANI. Note that, this
   mechanism can use existing solutions. Specifically, storing
   information in an ANIMA network will be realized in the following
   steps.

      1) ASA-to-IS Negotiation. An ASA calls the API provided by
      information distribution module (directly supported by IS sub-
      module) to request to store the information somewhere in the
      network. Such a request will be checked by the IS module who will
      be responsible for the request whether such a request is feasible
      according to criteria such as permitted information size.
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      2) Destination Node Mapping. The information block will be handled
      by the IS module in order to calculate/map to a destination node
      in the network. Since ANIMA network is a peer-to-peer network, a
      typical way is to use dynamic hash table (DHT) to map information
      to a unique index identifier. For example, if the size of the
      information is reasonable, the information block itself can be
      hashed, otherwise, some meta-data of the information block can be
      used to generate the mapping.

      3) Destination Node Negotiation Request. Negotiation request of
      storing the information will be sent from the IS module to the IS
      module on the destination node. The negotiation request contains
      parameters about the information block from the source IS module.
      According to the parameters as well as the local available
      resource, the destination node will feedback the source IS module.

      4) Destination Node Negotiation Response. Negotiation response
      from the destination node is sent back to the source IS module. If
      the source IS module gets confirmation that the information can be
      stored, source IS module will prepare to transfer the information
      block; otherwise, a new destination node must be discovered (i.e.
      going to step 7).

      5) Information Block Transfer. Before sending the information
      block to the destination node that accepts the request, the IS
      module of the source node will check if the information block can
      be afforded by one GRASP message. If so, the information block
      will be directly sent by calling a GRASP API. Otherwise, bulk data
      transmission with GRASP will be triggered, where multi-time GRASP
      message sending will be used so that one information block will be
      transferred by smaller pieces [I-D.ietf-anima-reference-model].

      6) Information Writing. Once the information block (or a smaller
      block) is received, the IS module of the destination node will
      store the data block in the local storage, which is accessible.

      7) (Optional) New Destination Node Discovery. If the previously
      selected destination node is not available to store the
      information block, the source IS module will have to identify a
      new destination node to start a new negotiation. In this case, the
      discovery can be done by using discovery GRASP API to identify a
      new candidate, or more complex mechanisms can be introduced.

   Similarly, Getting information from an ANIMA network will be realized
   in the following steps.

      1) ASA-to-IS Request. An ASA accesses the IS module via the APIs
      exposed by the information distribution module. The key/index of
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      the interested information will be sent to the IS module. An
      assumption here is that the key/index should be ready to an ASA
      before an ASA can ask for the information. This relates to the
      publishing/subscribing of the information, which are handled by
      other modules (e.g. Event Queue with Pub/Sub supported by GRASP).

      2) Destination Node Mapping. IS module maps the key/index of the
      requested information to a destination node, and prepares to start
      to request the information. The mapping here follows the same
      mechanism when the information is stored.

      3) Retrieval Negotiation Request. The source IS module sends a
      request to the destination node identified in the previous step
      and asks if such an information object is available.

      4) Retrieval Negotiation Response. The destination node checks the
      key/index of the requested information, and replies to the source
      IS module. If the information is found and the information block
      can be afforded within one GRASP message, the information will be
      sent together with the response to the source IS module.

      5) (Optional) New Destination Request. If the information is not
      found after the source IS module gets the response from the
      original destination node, the source IS module will have to
      discover where the location storing the requested information is.

   IS module can reuse distributed databases and key value stores like
   NoSQL, Cassandra, DHT technologies. storage and retrieval of
   information are all event-driven responsible by the EQ module.

5.2.2 Event Queue

   The main job of Event Queue (EQ) module is to help ASAs to show
   interests to particular information and notify the occurrences of
   that in asynchronous communication scenarios. In ANI, information
   generated on network nodes is labeled as an event identified with an
   event ID, which is semantically related to the topic of the
   information. Key features of EQ module are summarized as follows.

   1) Event Group: EQ module provides isolated queues for different
   event groups. If two groups of AFs could have completely different
   purposes or interests, EQ module allows to create multiple queues
   where only AFs interested in the same topic will be aware of the
   corresponding event queue.

   2) Event Prioritization: Events do not have to be delivered in the
   same priority. This corresponds to how much important the event
   implies. Some of them are more urgent than regular ones.
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   Prioritization allows AFs to differentiate events (i.e. information)
   they publish/subscribe.

   3) Event Matching: an information consumer has to be identified from
   the queue in order to deliver the information from the provider.
   Event matching keeps looking for the subscriptions in the queue to
   see if there is an exact published event there. Whenever a match is
   found, it will notify the upper layer to inform the corresponding
   ASAs who are the information provider and subscriber(s) respectively.

   The procedure of how EQ module on every network node works is
   introduced as follows.

      1) Event ID Generation: If information of an ASA is ready, an
      event ID is generated according to the content of the information.
      This is also related to how the information is stored/saved by the
      IS module introduced before. Meanwhile, the type of the event is
      also specified where it can be of control purpose or user plane
      data.

      2) Priority Specification: According to the type of the event, the
      ASA may specify its priority to say how this event is wanted to be
      processed. By considering both aspects, the priority of the event
      will be determined and ready for enqueuing.

      3) Event Enqueue: Given the event ID, event group and its
      priority, a queue is identified locally if all criteria can be
      satisfied. If there is such a queue, the event will be simply
      added into the queue, otherwise a new queue will be created to
      accommodate such an event.

      4) Event Propagation: The published event will be propagated to
      the other network nodes in the ANIMA domain. A propagation
      algorithm can be employed to here in order to optimize the
      propagation efficiency of the updated event queue states.

      5) Event Match and Notification: While propagating updated event
      states, EQ module in parallel keeps matching published events and
      its interested consumers. Once a match is found, the provider and
      subscriber(s) will be notified for final information retrieval.

   Event contains the address where the information is stored, after a
   subscriber is notified, it directly retrieves the information from
   the given location.

5.2.3 Interface between IS and EQ Modules
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   EQ and IS modules are correlated. When an AF publishes information,
   not only an publishing event is translated and sent to EQ module, but
   also the information is indexed and stored simultaneously. Similarly,
   when an AF subscribes information, not only subscribing event is
   triggered and sent to EQ module, but also the information will be
   retrieved by IS module at the same time.

5.3 Summary

   In summary, the general requirements for the information distribution
   module on each autonomic node are two sub-modules handling instant
   communications and asynchronous communications, respectively. For
   instant communications, node requirements are simple, in which
   signaling protocols have to be supported. With minimum efforts,
   reusing the existing GRASP is possible. For asynchronous
   communications, information distribution module requires event queue
   and information storage mechanism to be supported.

6. Protocol Specification (GRASP extension)

   There are multiple ways to integrate the information distribution
   module. The principle we follow is to minimize modifications made to
   the current ANI.

   We consider to use GRASP as an interface to access the information
   distribution module. The main reason is that the current version of
   GRASP is already an information distribution module for the cases of
   P2P and flooding. In the following discussions, we introduce how to
   complete the missing part.

6.1 Un-solicited Synchronization Message (A new GRASP Message)

   In fragmentary CDDL, a Un-solicited Synchronization message follows
   the pattern:

      unsolicited_synch-message = [M_UNSOLDSYNCH, session-id, objective]

   A node MAY actively send a unicast Un-solicited Synchronization
   message with the Synchronization data, to another node. This MAY be
   sent to port GRASP_LISTEN_PORT at the destination address, which
   might be obtained by GRASP Discovery or other possible ways. The
   synchronization data are in the form of GRASP Option(s) for specific
   synchronization objective(s).

6.2 Selective Flooding Option

   In fragmentary CDDL, the selective flood follows the pattern:
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      selective-flood-option = [O_SELECTIVE_FLOOD, +O_MATCH-CONDITION,
                                match-object, action]
      O_MATCH-CONDITION = [O_MATCH-CONDITION, Obj1, match-rule, Obj2]
         Obj1 = text
         match-rule = GREATER / LESS / WITHIN / CONTAIN
         Obj2 = text
      match-object = NEIGHBOR / SELF
      action = FORWARD / DROP

   The selective flood option encapsulates a match-condition option
   which represents the conditions regarding to continue or discontinue
   flood the current message. For the match-condition option, the Obj1
   and Obj2 are to objects that need to be compared. For example, the
   Obj1 could be the role of the device and Obj2 could be "RSG". The
   match rules between the two objects could be greater, less than,
   within, or contain. The match-object represents of which Obj1 belongs
   to, it could be the device itself or the neighbor(s) intended to be
   flooded. The action means, when the match rule applies, the current
   device just continues flood or discontinues.

6.3 Subscription Objective Option

   In fragmentary CDDL, a Subscription Objective Option follows the
   pattern:

      subscription-objection-option = [SUBSCRIPTION, 2, 2, subobj]
      objective-name = SUBSCRIPTION
      objective-flags = 2
      loop-count = 2
      subobj = text

   This option MAY be included in GRASP M_Synchronization, when
   included, it means this message is for a subscription to a specific
   object.

6.4 Un_Subscription Objective Option

   In fragmentary CDDL, a Un_Subscribe Objective Option follows the
   pattern:

      Unsubscribe-objection-option = [UNSUBSCRIB, 2, 2, unsubobj]
      objective-name = SUBSCRIPTION
      objective-flags = 2
      loop-count = 2
      unsubobj = text

   This option MAY be included in GRASP M_Synchronization, when
   included, it means this message is for a un-subscription to a
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   specific object.

6.5 Publishing Objective Option

   In fragmentary CDDL, a Publish Objective Option follows the pattern:

      publish-objection-option = [PUBLISH, 2, 2, pubobj] objective-name
      = PUBLISH
      objective-flags = 2
      loop-count = 2
      pubobj = text

   This option MAY be included in GRASP M_Synchronization, when
   included, it means this message is for a publish of a specific object
   data.

   Note that extended GRASP messages with new arguments inside here will
   trigger interactions/actions of the underlying information
   distribution module introduced in Section 5.

7. Security Considerations

   The distribution source authentication could be done at multiple
   layers:

      o  Outer layer authentication: the GRASP communication is within
      ACP (Autonomic Control Plane,
      [I-D.ietf-anima-autonomic-control-plane]). This is the default
      GRASP behavior.

      o  Inner layer authentication: the GRASP communication might not
      be within a protected channel, then there should be embedded
      protection in distribution information itself. Public key
      infrastructure might be involved in this case.

8. IANA Considerations
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   TBD.
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Appendix A.

   GRASP includes flooding criteria together with the delivered
   information so that every node will process and act according to the
   criteria specified in the message. An example of extending GRASP with
   selective criteria can be:

      o  Matching condition: "Device role=IPRAN_RSG"

      o  Matching objective: "Neighbors"

      o  Action: "Forward"

   This example means: only distributing the information to the
   neighbors who are IPRAN_RSG.
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   Appendix A  Real-world Use Cases of Information Distribution

   The requirement analysis in Section 3 shows that generally
   information distribution should be better of as an infrastructure
   layer module, which provides to upper layer utilizations. In this
   section, we review some use cases from the real-world where an
   information distribution module with powerful functions do plays a
   critical role there.
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   A.1 Service-Based Architecture (SBA) in 3GPP 5G

   In addition to Internet, the telecommunication network (i.e. carrier
   mobile wireless networks) is another world-wide networking system.
   The architecture of the upcoming 5G mobile networks from 3GPP has
   already been defined to follow a service-based architecture (SBA)
   where any network function (NF) can be dynamically associated with
   any other NF(s) when needed to compose a network service. Note that
   one NF can simultaneously associate with multiple other NFs, instead
   of being physically wired as in the previous generations of mobile
   networks. NFs communicate with each other over service-based
   interface (SBI), which is also standardized by 3GPP [3GPP.23.501].

   In order to realize an SBA network system, detailed requirements are
   further defined to specify how NFs should interact with each other
   with information exchange over the SBI. We now list three
   requirements that are related to information distribution here.

      1) NF Pub/Sub: Any NF should be able to expose its service status
      to the network and any NF should be able to subscribe the service
      status of an NF and get notified if the status is available. An
      concrete example is that a session management function (SMF) can
      subscribe the REGISTER notification from an access management
      function (AMF) if there is a new user entity trying to access the
      mobile network [3GPP.23.502].

      2) Network Exposure Function (NEF): A particular network function
      that is required to manage the event exposure and distributions.
      In specific, SBA requires such a functionality to register network
      events from the other NFs (e.g. AMF, SMF and so on), classify the
      events and properly handle event distributions accordingly in
      terms of different criteria (e.g. priorities) [3GPP.23.502].

      3) Network Repository Function (NRF): A particular network
      function where all service status information is stored for the
      whole network. An SBA network system requires all NFs to be
      stateless so as to improve the resilience as well as agility of
      providing network services. Therefore, the information of the
      available NFs and the service status generated by those NFs will
      be globally stored in NRF as a repository of the system. This
      clearly implies storage capability that keeps the information in
      the network and provides those information when needed. A concrete
      example is that whenever a new NF comes up, it first of all
      registers itself at NRF with its profile. When a network service
      requires a certain NF, it first inquires NRF to retrieve the
      availability information and decides whether or not there is an
      available NF or a new NF must be instantiated [3GPP.23.502].
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   (Note: 3GPP CT might finally adopt HTTP2.0/JSON to be the protocol
   communicating between NFs, but autonomic networks can also load
   HTTP2.0 with in ACP.)

   A.2 Vehicle-to-Everything

   Carrier networks On-boarding services of vertical industries are also
   one of some blooming topics that are heavily discussed. Connected car
   is clearly one of the important scenarios interested in automotive
   manufacturers, carriers and vendors. 5G Automotive Alliance - an
   industry collaboration organization defines many promising use cases
   where services from car industry should be supported by the 5G mobile
   network. Here we list two examples as follows [5GAA.use.cases].

      1) Software/Firmware Update: Car manufacturers expect that the
      software/firmware of their car products can be remotely
      updated/upgraded via 5G network in future, instead of onsite
      visiting their 4S stores/dealers offline as nowadays. This
      requires the network to provide a mechanism for vehicles to
      receive the latest software updates during a certain period of
      time. In order to run such a service for a car manufacturer, the
      network shall not be just like a network pipe anymore. Instead,
      information data have to be stored in the network, and delivered
      in a publishing/subscribing fashion. For example, the latest
      release of a software will be first distributed and stored at the
      access edges of the mobile network, after that, the updates can be
      pushed by the car manufacturer or pulled by the car owner as
      needed.

      2) Real-time HD Maps: Autonomous driving clearly requires much
      finer details of road maps. Finer details not only include the
      details of just static road and streets, but also real-time
      information on the road as well as the driving area for both local
      urgent situations and intelligent driving scheduling. This asks
      for situational awareness at critical road segments in cases of
      changing road conditions. Clearly, a huge amount of traffic data
      that are real-time collected will have to be stored and shared
      across the network. This clearly requires the storage capability,
      data synchronization and event notifications in urgent cases from
      the network, which are still missing at the infrastructure layer.

   A.3 Summary

   Through the general analysis and the concrete examples from the real-
   world, we realize that the ways information are exchanged in the
   coming new scenarios are not just short and instant anymore. More
   advanced as well as diverse information distribution capabilities are
   required and should be generically supported from the infrastructure
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   layer. Upper layer applications (e.g. ASAs in ANIMA) access and
   utilize such a unified mechanism for their own services.
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Abstract

   While autonomic functions are often pre-installed and integrated with
   the network elements they manage, this is not a mandatory condition.
   Allowing autonomic functions to be dynamically installed and to
   control resources remotely enables more versatile deployment
   approaches and enlarges the application scope to virtually any legacy
   equipment.  The analysis of autonomic functions deployment schemes
   through the installation, instantiation and operation phases allows
   constructing a unified life-cycle and identifying new required
   functionality.  Thus, the introduction of autonomic technologies will
   be facilitated, the adoption much more rapid and broad.  Operators
   will benefit from multi-vendor, inter-operable autonomic functions
   with homogeneous operations and superior quality, and will have more
   freedom in their deployment scenarios.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted to IETF in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 22, 2016.
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1.  Problem statement

   While autonomic functions are often pre-installed and integrated with
   the network elements they manage, this is not a mandatory condition.
   Allowing autonomic functions to be dynamically installed and to
   control resources remotely enables more versatile deployment
   approaches and enlarges the application scope to virtually any legacy
   equipment.  The analysis of autonomic functions deployment schemes
   through the installation, instantiation and operation phases allows
   constructing a unified life-cycle and identifying new required
   functionality.

   An Autonomic Service Agent (ASA) controls resources of one or
   multiple Network Elements (NE), e.g. the interfaces of a router for a
   Load Balancing ASA.  An ASA is a software, thus an ASA need first to
   be installed and to execute on a host machine in order to control
   resources.

   There are 3 properties applicable to the installation of ASAs:

   The dynamic installation property  allows installing an ASA on
      demand, on any hosts compatible with the ASA.

   The decoupling property  allows controlling resources of a NE from a
      remote ASA, i.e. an ASA installed on a host machine different from
      the resources’ NE.

   The multiplicity property  allows controlling multiple sets of
      resources from a single ASA.

   These three properties provide the operator a great variety of ASA
   deployment schemes as they decorrelate the evolution of the
   infrastructure layer from the evolution of the autonomic function
   layer.  Depending on the capabilities (and constraints) of the
   infrastructure and of the autonomic functions, the operator can
   devise the schemes that will better fit to its deployment objectives
   and practices.

   Based on the above definitions, the ASA deployment process can be
   formulated as a multi-level/criteria matching problem.

   The primary level, present in the three phases, consists in matching
   the objectives of the operator and the capabilities of the
   infrastructure.  The secondary level criteria may vary from phase to
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   phase.  One goal of the document is thus to identify the specific and
   common functionality among these three phases.

   This draft will explore the implications of these properties along
   each of the 3 phases namely Installation, Instantiation and
   Operation.  This draft will then provide a synthesis of these
   implications in requirements for functionalities and life-cycle of
   ASAs.  Beforehand, the following section will deal with the network
   operator’s point of view with regards of autonomic networks.

2.  Motivations from an operator viewpoint

   Only few operators would dare relying on a pure autonomic network,
   without setting objectives to it.  From an operator to the other, the
   strategy of network management vary, as much for historical reasons
   (experience, best-practice, tools in-place, organization), as much
   for differences in the operators goals (business, trade agreements,
   politics, risk policy).  Additionally, network operators do not
   necessarily perform a uniform network management across the different
   domains composing their network infrastructure.  Hence their
   objectives in terms of availability, load, and dynamics vary
   depending on the nature of the domains and of the types of services
   running over each of those domains.

   To manage the networks according to the above variations, ASAs need
   to capture the underlying objectives implied by the operators.  The
   instantiation phase is the step in-between installation and
   operation, where the network operator determine the initial ASA
   behavior according to its objectives.  This step allows the network
   operator to determine which ASAs should execute on which domains of
   its network, with appropriate settings.  At this stage, thanks to the
   intent-policy setting objectives to groups of ASAs, the network
   management should become far simpler (and less error-prone) than
   setting low-level configurations for each individual network
   resources.

2.1.  Illustration of increasingly constraining operator’s objectives

   This paragraph describes the following example of operator intents
   with regards to deployments of autonomic functions.  The autonomic
   function involved is a load balancing function, which uses monitoring
   results of links load to autonomously modify the links metrics in
   order to balance the load over the network.  The example is divided
   into steps corresponding to an increasing implication of the operator
   in the definition of objectives/intents to the deployment of
   autonomic functions:
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   Step 1  The operator operates its network and benefits from the
      autonomic function on the nodes which have the installed ASAs.

   Step 2  Then the operator, specifies to the autonomic function an
      objective which is to achieve the maximum number of links with a
      load below 6O%.

   Step 3  The network is composed of five domains, a core transport
      network and four metropolitan networks, each interconnected
      through the core network, the operator sets a different objective
      to the autonomic function for each of the five domain.

   Step 4  As inside metropolitan domains the traffic variations are
      steeper and happen in a periodic fashion contrary to the traffic
      in the core domain, the network operators installs an additional
      autonomic function inside each of these domains.  This autonomic
      function is learning the traffic demands in order to predict
      traffic variations.  The operators instructs the load balancing
      function to augment its monitored input with the traffic
      predictions issued by the newly installed autonomic function.

   Step 5  As the algorithm of the load balancing autonomic function is
      relying on interactions between autonomic function agents, the
      operator expects the interactions to happen in-between ASAs of
      each domain, hence the load will be balanced inside each of the
      domain, while previously it would have been balanced over the
      whole network uniformly.

   Step 6  Finally, the network operator has purchased a new piece of
      software corresponding to an autonomic function achieving load
      balancing with a more powerful algorithm.  For trial sake, he
      decides to deploy this new load balancing function instead of the
      previous one on one of its four metropolitan domains.

   This short example illustrates some specificities of deployment
   scenarios, the sub-section below sets itself at providing a more
   exhaustive view of the different deployment scenarios.

2.2.  Deployment scenarios of autonomic functions

   The following scenarios illustrate the different ways the autonomic
   functions could be deployed in an ANIMA context.  Subsequently,
   requirements for the autonomic functions and requirements these
   autonomic functions impose on other components of the ANIMA ecosystem
   are listed.

   These various deployment scenarios are better understood by referring
   to the High level view of an Autonomic Network, Figure 1 of
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   [I-D.behringer-anima-reference-model].  The figure is slightly
   extended for the purpose of the demonstration as follows:

   + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   |            :      Autonomic Function 1       :            |

   |  ASA 1.1   :      ASA 1.2   :   ASA 1.3      :   ASA 1.4  |
   + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
                :                :                :
                :  + - - - - - - - - - - - - - +  :
                :  |   Autonomic Function 2    |  :

                :  |   ASA 2.2   :   ASA 2.3   |  :
                :  + - - - - - - - - - - - - - +  :
                :                :                :
   + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
   |   Autonomic Function 3    | : |   Autonomic Function 4    |

   |   ASA 3.1  :    ASA 3.2   | : |   ASA 4.3    :  ASA 4.4   |
   + - - - - - - - - - - - - - + : + - - - - - - - - - - - - - +
                :                :                :
   + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   |              Autonomic Networking Infrastructure          |
   + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
   +--------+   :   +--------+   :   +--------+   :   +--------+
   | Node 1 |-------| Node 2 |-------| Node 3 |-------| Node 4 |
   +--------+   :   +--------+   :   +--------+   :   +--------+

             Figure 1: High level view of an Autonomic Network

   Figure 1 depicts 4 Nodes, 4 Autonomic Functions and 10 Autonomic
   Service Agents.  Let’s list assumptions with regards of these
   elements.

   Starting with nodes,

      each may be either an Unconstrained Autonomic Node, a Constrained
      Autonomic Node (or even a legacy one?),

      they may well be of different models (or having different software
      versions),

      they may well be of different equipment vendors,

      they may well be of different technologies (some may be IP
      routers, some may be Ethernet switches or OTN switches...).
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   Pursuing with Autonomic Functions,

      they may well have different objectives (one could target
      automatic configuration of OSPF-TE, while another one is
      optimizing traffic load), but they may well have identical
      objectives as two could optimize energy consumption (possibly on
      different areas as function 3 and function 4),

      each may be composed of no more than one ASA (either because the
      function is responsible for a single node or because the function
      relies on a centralized implementation),

      each may well be composed of different sort of ASAs, meaning the
      software is different (either because their version number is
      different, or because the software provider is different, or
      because their respective nodes/equipments differ or because the
      role of each agent is different),

      [Observation] Depending on the implementation the same piece of
      software may fulfill different roles or each role may come from a
      different from a different piece of code,

      each has reached a given organization, meaning an organized set of
      ASAs in charge of a set of nodes ()whether formalized or not),
      this organization may either come from the piece of software
      itself (e.g. embedding a self-organization process) or come from
      directions of the network operator (e.g. through intents/policies,
      or through deployment instructions)

      each may work internally in a peer to peer fashion (where every
      agents have the same prerogatives) or in hierarchical fashion
      (where some agents have some prerogatives over other) [this option
      is a good example of role differences],

      each having its scope of work in terms of objective to reach and
      area/space/part of the network to manage.

   Completing with individual Autonomic Service Agents, those are pieces
   of software:

      embedded inside the node/equipment OS (hence present since the
      bootstrap or OS update of the equipment),

      running in a machine different than the node (this could be a node
      controller or any other host or virtual machine)

      [Observation] In the latter case, the ASA would likely require
      external credentials to interact with the node,
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      directly monitoring and configuring the equipment (likely requires
      the ASA to be embedded) or through a management interface of the
      equipment (e.g.  SNMP, TL1, Q3, NetConf) or through an equipment
      controller (e.g.  SDN paradigm) or through a network manager (e.g.
      using the north interface of the manager)

      either activated at start-up or as the result of a management
      action,

      may be installed (either inside the equipment or on a different
      machine) when requested by an operator from a software origin
      (e.g. a repository in the ACP, a media)

      provided by the same vendor as the equipment it manages or by any
      third party (like another equipment vendor, a management software
      vendor, an open-source initiative or the operator software team),

      sharing a technical objective with the other ASAs of the Autonomic
      Function they belong, (or at least a similar one)?

      can it contains multiple technical objective?

      must the technical objective be intrinsic or can it be set by a
      managing entity (a network operator or a management system)?

   The last three points being largely questionable are marked as
   questions.

   The figure below illustrates how an ASA interacts with a node that
   the ASA manages.  The left side depicts external interactions,
   through exchange of commands towards interfaces either to the node OS
   (e.g. via SNMP or NetConf), or to the controller (e.g.  (G)MPLS, SDN,
   ...), or to the NMS.  The right side depicts the case of the ASA
   embedded inside the Node OS.
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   + - - - +       +-------------+
   |  ASA  |------>|     NMS     *<--*
   + - - - +       +------^------+   |
     |   |                |          |
     |   |         +------V------+   |
     |   +-------->| Controller  |   |
     |             +------^------+   |  +---------------------+
     |                    |          |  | + - - - +           |
     |             +------V------+   |  | |  ASA  |  Node OS  |
     +------------>|   Node OS   *<--*  | + - - - +           |
                   +------^------+      +--------------*------+
                          |                            |
                   +------V------+               +-----*------+
                   |     Node    |               |    Node    |
                   +-------------+               +------------+

       Figure 2: Interaction possibilities between ASA and Resources

2.3.  Operator’s requirements with regards to autonomic functions

   Regarding the operators, at this point we can try to list few
   requirements they may have with regards with the Autonomic Functions
   and their management...

      Being capable to set those functions a scope of work in term of
      area of duty,

      Being capable to monitor the actions taken by the autonomic
      functions, and which are its results (performance with regards to
      the function KPIs)

      Being capable to halt/suspend the execution of an Autonomic
      function (either because the function is untrusted, or because an
      operation on the network is to be conducted without interference
      from the autonomic functions, etc...)

      Being capable to configure the autonomic functions by adjusting
      the parameters of the function (e.g. a Traffic Engineering
      autonomic function may achieve a trade-off between congestion
      avoidance and electrical power consumption, hence this function
      may be more or less aggressive on the link load ratio, and the
      network operator certainly has his word to say in setting this
      cursor.
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3.  Installation phase

   Before being able to instantiate and run ASAs, the operator must
   first provision the infrastructure with the sets of ASA software
   corresponding to its needs and objectives.  The provisioning of the
   infrastructure is realized in the installation phase and consists in
   installing (or checking the availability of) the pieces of software
   of the different ASA classes in a set of Installation Hosts.

   As mentioned in the Problem statement section, an Autonomic Function
   Agent (ASA) controls resources of one or multiple Network Elements
   (NE), e.g. the interfaces of a router for a Load Balancing ASA.  An
   ASA is a software, thus an ASA need first to be installed and to
   execute on a host machine in order to control resources.

   There are 3 properties applicable to the installation of ASAs:

   The dynamic installation property  allows installing an ASA on
      demand, on any hosts compatible with the ASA.

   The decoupling property  allows controlling resources of a NE from a
      remote ASA, i.e. an ASA installed on a host machine different from
      the resources’ NE.

   The multiplicity property  allows controlling multiple sets of
      resources from a single ASA.

   These three properties are very important in the context of the
   installation phase as their variations condition how the ASA class
   could be installed on the infrastructure.

3.1.  Operator’s goal

   In the installation phase, the operator’s goal is to install ASA
   classes on Installation Hosts such that, at the moment of
   instantiation, the corresponding ASAs can control the sets of target
   resources.  The complexity of the installation phase come from the
   number of possible configurations for the matching between the ASA
   classes capabilities (e.g. what types of resources it can control,
   what types of hosts it can be installed on...), the Installation
   Hosts capabilities (e.g. support dynamic installation, location and
   reachability...) and the operator’s needs (what deployment schemes
   are favored, functionality coverage vs. cost trade-off...).

   For example, in the coupled mode, the ASA host machine and the
   network element are the same.  The ASA is installed on the network
   element and control the resources via interfaces and mechanisms
   internal to the network element.  An ASA MUST be installed on the
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   network element of every resource controlled by the ASA.  The
   identification of the resources controlled by an ASA is
   straightforward: the resources are the ones of the network element.

   In the decoupled mode, the ASA host machine is different from the
   network element.  The ASA is installed on the host machine and
   control the resources via interfaces and mechanisms external to the
   network element.  An ASA can be installed on an arbitrary set of
   candidate Installation hosts, which can be defined explicitly by the
   network operator or according to a cost function.  A key benefit of
   the decoupled mode is to allow an easier introduction of autonomic
   functions on existing (legacy) infrastructure.  The decoupled mode
   also allows de-correlating the installation requirements (compatible
   host machines) from the infrastructure evolution (NEs addition and
   removal, change of NE technology/version...).

   The operator’s goal may be defined as a special type of intent,
   called the Installation phase intent.  The details of the content and
   format of this proposed intent are left open and for further study.

3.2.  Installation phase inputs and outputs

   Inputs are:

   [ASA class of type_x]  that specifies which classes ASAs to install,

   [Installation_target_Infrastructure]  that specifies the candidate
      Installation Hosts,

   [ASA class placement function, e.g. under which criteria/constraints
   as defined by the operator]
      that specifies how the installation phase shall meet the
      operator’s needs and objectives for the provision of the
      infrastructure.  In the coupled mode, the placement function is
      not necessary, whereas in the decoupled mode, the placement
      function is mandatory, even though it can be as simple as an
      explicit list of Installation hosts.

   The main output of the installation phase is an up-to-date directory
   of installed ASAs which corresponds to [list of ASA classes]
   installed on [list of installation Hosts].  This output is also
   useful for the coordination function and corresponds to the static
   interaction map.

   The condition to validate in order to pass to next phase is to ensure
   that [list of ASA classes] are well installed on [list of
   installation Hosts].  The state of the ASA at the end of the
   installation phase is: installed. (not instantiated).  The following
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   commands or messages are foreseen: install(list of ASA classes,
   Installation_target_Infrastructure, ASA class placement function),
   and un-install (list of ASA classes).

4.  Instantiation phase

   Once the ASAs are installed on the appropriate hosts in the network,
   these ASA may start to operate.  From the operator viewpoint, an
   operating ASA means the ASA manages the network resources as per the
   objectives given.  At the ASA local level, operating means executing
   their control loop/algorithm.

   But right before that, there are two things to take into
   consideration.  First, there is a difference between 1. having a
   piece of code available to run on a host and 2. having an agent based
   on this piece of code running inside the host.  Second, in a coupled
   case, determining which resources are controlled by an ASA is
   straightforward (the determination is embedded), in a decoupled mode
   determining this is a bit more complex (hence a starting agent will
   have to either discover or be taught it).

   The instantiation phase of an ASA covers both these aspects: starting
   the agent piece of code (when this does not start automatically) and
   determining which resources have to be controlled (when this is not
   obvious).

4.1.  Operator’s goal

   Through this phase, the operator wants to control its autonomic
   network in two things:

   1  determine the scope of autonomic functions by instructing which of
      the network resources have to be managed by which autonomic
      function (and more precisely which class e.g. 1. version X or
      version Y or 2. provider A or provider B),

   2  determine how the autonomic functions are organized by instructing
      which ASAs have to interact with which other ASAs (or more
      precisely which set of network resources have to be handled as an
      autonomous group by their managing ASAs).

   Additionally in this phase, the operator may want to set objectives
   to autonomic functions, by configuring the ASAs technical objectives.

   The operator’s goal can be summarized in an instruction to the ANIMA
   ecosystem matching the following pattern:
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      [ASA of type_x instances] ready to control
      [Instantiation_target_Infrastructure] with
      [Instantiation_target_parameters]

4.2.  Instantiation phase inputs and outputs

   Inputs are:

   [ASA of type_x instances]  that specifies which are the ASAs to be
      targeted (and more precisely which class e.g. 1. version X or
      version Y or 2. provider A or provider B),

   [Instantiation_target_Infrastructure]  that specifies which are the
      resources to be managed by the autonomic function, this can be the
      whole network or a subset of it like a domain a technology segment
      or even a specific list of resources,

   [Instantiation_target_parameters]  that specifies which are the
      technical objectives to be set to ASAs (e.g. an optimization
      target)

   Outputs are:

   [Set of ASAs - Resources relations]  describing which resources are
      managed by which ASA instances, this is not a formal message, but
      a resulting configuration of a set of ASAs,

4.3.  Instantiation phase requirements

   The instructions described in section 4.2 could be either:

   sent to a targeted ASA  In which case, the receiving Agent will have
      to manage the specified list of
      [Instantiation_target_Infrastructure], with the
      [Instantiation_target_parameters].

   broadcast to all ASAs  In which case, the ASAs would collectively
      determine from the list which Agent(s) would handle which
      [Instantiation_target_Infrastructure], with the
      [Instantiation_target_parameters].

   This set of instructions can be materialized through a message that
   is named an Instance Mandate.  Instance Mandates are described in the
   requirements part of this document, which lists the needed fields of
   such a message (see Section 6.3 - ASA Instance Mandate).

   The conclusion of this instantiation phase is a ready to operate ASA
   (or interacting set of ASAs), then this (or those) ASA(s) can
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   describe themselves by depicting which are the resources they manage
   and what this means in terms of metrics being monitored and in terms
   of actions that can be executed (like modifying the parameters
   values).  A message conveying such a self description is named an
   Instance Manifest.  Instance Manifests are described in the
   requirements part of this document, which lists the needed fields of
   such a message (see Section 6.4 - ASA Instance Manifest).

   Though the operator may well use such a self-description "per se",
   the final goal of such a description is to be shared with other ANIMA
   entities like:

   o  the coordination entities (see [I-D.ciavaglia-anima-coordination]
      - Autonomic Functions Coordination)

   o  collaborative entities in the purpose of establishing knowledge
      exchanges (some ASAs may produce knowledge or even monitor metrics
      that other ASAs cannot make by themselves why those would be
      useful for their execution) (see knowledge exchange items in
      Section 5 - Operation phase)

5.  Operation phase

   Note: This section is to be further developed in future revisions of
   the document.

   During the Operation phase, the operator can:

      Activate/Deactivate ASA: meaning enabling those to execute their
      autonomic loop or not.

      Modify ASAs targets: meaning setting them different objectives.

      Modify ASAs managed resources: by updating the instance mandate
      which would specify different set of resources to manage (only
      applicable to decouples ASAs).

   During the Operation phase, running ASAs can interact the one with
   the other:

      in order to exchange knowledge (e.g. an ASA providing traffic
      predictions to load balancing ASA)

      in order to collaboratively reach an objective (e.g.  ASAs
      pertaining to the same autonomic function targeted to manage a
      network domain, these ASA will collaborate - in the case of a load
      balancing one, by modifying the links metrics according to the
      neighboring resources loads)
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   During the Operation phase, running ASAs are expected to apply
   coordination schemes

      then execute their control loop under coordination supervision/
      instructions

6.  Autonomic Function Agent specifications

6.1.  Life-cycle

   Based on the phases described above, this section defines formally
   the different states experienced by Autonomic Function Agents during
   their complete life-cycle.

   The drawing of the life-cycle presented below shows both the states
   and the events/messages triggering the state changes.  For
   simplification purposes, this sketch does not display the transitory
   states which correspond to the handling of the messages.

   The installation and Instantiation phase will be concluded by ASA
   reaching respectively Installed and Instantiated states.

                             +--------------+
           Undeployed ------>|              |------> Undeployed
                             |  Installed   |
                         +-->|              |---+
                Mandate  |   +--------------+   | Receives a
              is revoked |   +--------------+   |  Mandate
                         +---|              |<--+
                             | Instantiated |
                         +-->|              |---+
                     set |   +--------------+   | set
                    down |   +--------------+   | up
                         +---|              |<--+
                             |  Operational |
                             |              |
                             +--------------+

            Figure 3: Life cycle of an Autonomic Function Agent

   Here are described the successive states of ASA.

   Undeployed -   In this "state", the Autonomic Function Agent is a
      mere piece of software, which may not even be available on any
      host.
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   Installed -   In this state, the Autonomic Function Agent is
      available on a (/multiple) host(s), and after having shared its
      ASA class Manifest (which describes in a generic way independently
      of the deployment how the ASA would work).  In this state the ASA
      is waiting for an ASA Instance Mandate, to determine which
      resources ti manage (when the ASA is strictly coupled to resources
      [e.g. part of a Node OS], there is no need to wait for an instance
      mandate, the target resources being intrinsically known).

   Instantiated -   In this state the Autonomic Function Agent has the
      knowledge of which resources it is meant to manage.  In this state
      the ASA is expecting a set Up message in order to start executing
      its autonomic loop.  From this state on the ASA can share an
      Instance Manifest (which describes how the ASA instance is going
      to work).

   Operational -   In this state, ASAs are executing their autonomic
      loop, hence acting on network, by modifying resources parameters.
      A set down message will turn back the ASA in an Instantiated
      state.

   The messages are described in the following sections.

6.2.  ASA Class Manifest

   An ASA class is a piece of software that contains the computer
   program of an Autonomic Function Agent.

   In order to install and instantiate appropriately an autonomic
   function in its network, the operator needs to know which are the
   characteristics of this piece of software.

   This section details a format for an ASA class manifest, which is (a
   machine-readable) description of both the autonomic function and the
   piece of code that executes the function.

   +--------------+---------------+------------------------------------+
   |  Field Name  |      Type     | Description                        |
   +--------------+---------------+------------------------------------+
   |      ID      |     Struct    | A unique identifier made out of at |
   |              |               | least a Function Name, Version and |
   |              |               | Provider Name (and Release Date).  |
   | Description  |     Struct    | A multi-field description of the   |
   |              |               | function performed by the ASA, it  |
   |              |               | is meant to be read by the         |
   |              |               | operator and can point to URLs,    |
   |              |               | user-guides, feature descriptions. |
   | Installation |   3 Booleans  | Whether the ASA is dynamically     |
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   |  properties  |               | installable, can be decoupled from |
   |              |               | the NE and can manage multiple     |
   |              |               | resources from a single instance   |
   |              |               | (see Section 1 - Problem           |
   |              |               | statement).                        |
   |   Possible   |     OS...     | Lists the OS/Machines on which the |
   |    Hosts     |               | ASA can be executed. [Only if ASA  |
   |              |               | is dynamically installable]        |
   |   Network    | NetSegment... | Lists the network segments on      |
   |   Segment    |               | which the autonomic function is    |
   |              |               | applicable (e.g. IP backbone       |
   |              |               | versus RAN).                       |
   |  Manageable  | Equipments... | Lists the nodes/resources that     |
   |  Equipments  |               | this piece of code can manage      |
   |              |               | (e.g. ALU 77x routers, Cisco CRS-x |
   |              |               | routers, Huawei NEXE routers).     |
   |  Autonomic   |      Enum     | States what is the type of loop    |
   |  Loop Type   |               | MAPE-K and whether this loop can   |
   |              |               | be halted in the course of its     |
   |              |               | execution.                         |
   |   Acquired   |      Raw      | Lists the nature of information    |
   |    Inputs    |  InfoSpec...  | that an ASA agent may acquire from |
   |              |               | the managed resource(s) (e.g. the  |
   |              |               | links load).                       |
   |   External   |      Raw      | Lists the nature of information    |
   |    Inputs    |  InfoSpec...  | that an ASA agent may require/wish |
   |              |               | from other ASA in the ecosystem    |
   |              |               | that could provide such            |
   |              |               | information/knowledge.             |
   |   Possible   |      Raw      | Lists the nature of actions that   |
   |   Actions    |   ActionSpec  | an ASA agent may enforce on ASA    |
   |              |               | the managed resource(s) (e.g.      |
   |              |               | modify the links metrics).         |
   |  Technical   |   Technical   | Lists the type of technical        |
   |  Objectives  |   Objective   | objectives that can be             |
   | Description  |    Spec...    | handled/received by the ASA (e.g.  |
   |              |               | a max load of links).              |
   +--------------+---------------+------------------------------------+

                   Table 1: Fields of ASA class manifest

6.3.  ASA Instance Mandate

   An ASA instance is the ASA agent: a running piece of software of an
   ASA class.  A software agent is a persistent, goal-oriented computer
   program that reacts to its environment and interacts with other
   elements of the network.
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   In order to install and instantiate appropriately an autonomic
   function in its network, the operator may specify to ASA instances
   what they are supposed to do: in term of which resources to manage
   and which objective to reach.

   This section details a format for an ASA Instance Mandate, which is
   (a machine-readable) set of instructions sent to create autonomic
   functions out of ASA.

   +-----------+----------------+--------------------------------------+
   |   Field   |      Type      | Description                          |
   |    Name   |                |                                      |
   +-----------+----------------+--------------------------------------+
   | ASA class |     Struct     | A pattern matching the ID (or part   |
   |  Pattern  |                | of it) of ASAs being the target of   |
   |           |                | the Mandate. This field makes sense  |
   |           |                | only for broadcast mandates (see end |
   |           |                | of this section).                    |
   |  Managed  | ResourcesId... | The list of resources to be managed  |
   | Resources |                | by the ASA (e.g. their IP@ or MAC@   |
   |           |                | or any other relevant ID).           |
   |   ID of   |  Interface Id  | The interface to the coordination    |
   |   Coord   |                | system in charge of this autonomic   |
   |           |                | function.                            |
   | Reporting |     Policy     | A policy describing which entities   |
   |   Policy  |                | expect report from ASA, and which    |
   |           |                | are the conditions of these reports  |
   |           |                | (e.g. time wise and content wise)    |
   +-----------+----------------+--------------------------------------+

                  Table 2: Fields of ASA instance mandate

   An ASA instance mandate could be either:

   sent to a targeted ASA  In which case, the receiving Agent will have
      to manage the specified list of resources,

   broadcast to all ASA  In which case, the ASAs would collectively
      determine which agent would handle which resources from the list,
      and if needed (and feasible) this could also trigger the dynamic
      installation/instantiation of new agents (ACP should be capable of
      bearing such scenarios).

6.4.  ASA Instance Manifest

   Once the ASAs are properly instantiated, the operator and its
   managing system need to know which are the characteristics of these
   ASAs.
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   This section details a format for an ASA instance manifest, which is
   (a machine-readable) description of either an ASA or a set of ASAs
   gathered into an autonomic function.

   +-----------+----------------+--------------------------------------+
   |   Field   |      Type      | Description                          |
   |    Name   |                |                                      |
   +-----------+----------------+--------------------------------------+
   | ASA Class |     Struct     | A unique identifier made out of at   |
   |     ID    |                | least a Function Name, Version and   |
   |           |                | Provider Name (and Release Date).    |
   |    ASA    |      Long      | A unique Id of the ASA instance (if  |
   |  Instance |                | the ASA instance manifest gathers    |
   |     ID    |                | multiple ASAs working together, this |
   |           |                | would be a list).                    |
   |   Hosts   |  Resource ID   | ID of the Machines on which the ASA  |
   |           |                | executes.                            |
   |  Managed  | ResourcesId... | The list of resources effectively    |
   | Resources |                | managed by the ASA (e.g. their IP@   |
   |           |                | or MAC@ or any other relevant ID).   |
   |  Acquired |    Instance    | Lists information that this ASA      |
   |   Inputs  |  InfoSpec...   | agent may acquire from the managed   |
   |           |                | resource(s) (e.g. the links load     |
   |           |                | over links with ID x and y).         |
   |  External |    Instance    | Lists information that this ASA      |
   |   Inputs  |  InfoSpec...   | agent requires from the ecosystem    |
   |           |                | (e.g. the links load prediction over |
   |           |                | links with ID x and y).              |
   |  Possible |    Instance    | Lists actions that this ASA agent    |
   |  Actions  |   ActionSpec   | may enforce on its managed           |
   |           |                | resource(s) (e.g. modify the links   |
   |           |                | metrics over links x and y).         |
   +-----------+----------------+--------------------------------------+

                 Table 3: Fields of ASA instance manifest

7.  Implication for other ANIMA components

7.1.  Additional entities for ANIMA ecosystem

   In the previous parts of this document, we have seen successive
   operations pertaining to the management of autonomic functions.
   These phases involve different entities such as the ASAs, the ASA
   Hosts and the ASA Management function.  This function serves as the
   interface between the network operator and its managed infrastructure
   (i.e. the autonomic network).  The ASA management function
   distributes instructions to the ASAs such as the ASA Instance
   Mandate, ASA set up/set down commands and also trigger the ASA
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   installation inside ASA Hosts.  This function is likely to be co-
   located or integrated with the function responsible for the
   management of the Intents.

   In this first version, we do not prescribe any requirements on the
   way the ASA Management function should be implemented, neither the
   various deployment options of such a function and neither on the way
   ACP or GRASP could be extended to interact with this function.  We
   believe these design and specifications work should be first
   discussed and analyzed by the working group.

7.2.  Requirements for GRASP and ACP messages

   GRASP and ACP seems to be the best (and currently only) candidates to
   convey the following messages between the ASA Management function and
   the ASAs:

      ASA Class Manifest

      ASA Instance Mandate (and Revoke Mandate)

      ASA Instance Manifest

      Set Up and Set Down messages

   These section concludes with requests to GRASP protocol designers in
   order to handle the 3 last messages of the list above.  These 3
   messages form the minimal set of features needed to guarantee some
   control on the behavior of ASAs to network operators.

   A mechanism similar to the bootstrapping one would usefully achieve
   discovery of pre-installed ASAs, and possibly provide those with a
   default Instance Mandate.

   A mechanism to achieve dynamic installation of ASAs compatible with
   ACP and GRASP remains to be identified.

   In the case of decoupled ASAs, even more for the ones supporting
   multiplicity, when a Mandate is broadcast (i.e. requesting the
   Instantiation of an autonomic function to manage a bunch of
   resources), these ASAs require synchronization to determine which
   agent(s) will manage which resources.  Proper ACP/GRASP messages
   supporting such a mechanism have to be identified together with
   protocol authors.
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7.2.1.  Control when an ASA runs

   To control when an ASA runs (and possibly how it runs), the operator
   needs the capacity to start and stop ASAs.  That is why an imperative
   command type of message is requested from GRASP.

   Additionally this type of message could also be used to specify how
   the ASA is meant to run, e.g. whether its control loop is subdued to
   some constraints in terms of pace of execution or rhythm of execution
   (once a second, once a minute, once a day...)

   Below a suggestion for GRASP:

   In fragmentary CDDL, an Imperative message follows the pattern:

   imperative-message = [M_IMPERATIVE, session-id, initiator, objective]

   ...

7.2.2.  Know what an ASA does to the network

   To know what an ASA does to the network, the operator needs to have
   the information of the elements either monitored or modified by the
   ASA, hence this ASA should disclose those.

   The disclosing should take the form of a ASA Instance Manifest (see
   Section 6.4 - ASA Instance Manifest), which could be conveyed inside
   a GRASP discovery message, hence the fields of the ASA Instance
   Manifest would be conveyed inside the objective.

   At this stage there are two options:

      The whole manifest is conveyed as an objective.

      Each field of the manifest is conveyed as an individual objective,
      more precisely, the acquired inputs would appear as discovery
      only, and the modifiable parameters would appear as negotiation
      objective.  The unclear part is the expression of requested fields
      (when the ASA claims being a client for such objective).  Could
      one of the already existing objective options a good match or
      should a new one be created.

   ...
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7.2.3.  Decide which ASA control which equipment

   To determine which ASA controls which equipment (or vice-versa which
   equipments are controlled by which ASAs), the operators needs to be
   able to instruct ASA before the end of their bootstrap procedure.

   These instructions sent to ASA during bootstrapping should take the
   format of an ASA Instance Mandate (see Section 6.3 -
   ASA Instance Mandate).  This ASA Instance Mandate are sorts of
   Intents, and as GRASP is meant to handle Intents in a near future, it
   would be beneficial to already identify which sort of GRASP message
   are meant to be used by Intent in order to already define those.  An
   option could be to reuse the Imperative messages defined above.

   ...

8.  Acknowledgments

   This draft was written using the xml2rfc project.

   This draft content builds upon work achieved during UniverSelf FP7 EU
   project.

9.  IANA Considerations

   This memo includes no request to IANA.

10.  Security Considerations
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