
Internet Engineering Task Force M. Veillette, Ed.
Internet-Draft Trilliant Networks Inc.
Intended status: Informational A. Pelov, Ed.
Expires: September 12, 2016 Acklio
 A. Somaraju
 Tridonic GmbH & Co KG
 R. Turner
 Landis+Gyr
 A. Minaburo
 Acklio
 March 11, 2016

 Constrained Objects Language
 draft-veillette-core-cool-01

Abstract

 This document describes a management function set adapted to
 constrained devices and constrained networks (e.g., low-power,
 lossy). CoOL objects (datastores, RPCs, actions and notifications)
 are defined using the YANG modelling language
 [I-D.ietf-netmod-rfc6020bis]. Interactions with these objects are
 performed using the CoAP web transfer protocol [RFC7252]. Payloads
 are encoded using the CBOR data format [RFC7049]. The mapping
 between YANG data models and the CBOR data format is defined in [I-
 D.veillette-core-yang-cbor-mapping].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2016.

Veillette, et al. Expires September 12, 2016 [Page 1]

Internet-Draft Constrained Objects Language March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Notation 3
 3. Architecture . 5
 4. Resources . 5
 5. Operations . 7
 5.1. GET - Retrieving all data nodes of a datastore 7
 5.2. FETCH - Retrieving specific data nodes 8
 5.2.1. Example #1 - Simple data node 9
 5.2.2. Example #2 - Data node instance within a YANG list . 11
 5.2.3. Example #3 - YANG list 11
 5.2.4. Example #4 - YANG list instance 12
 5.2.5. Example #5 - YANG list instance filtering 12
 5.2.6. Example #6 - All instances of a data node within a
 YANG list . 13
 5.3. PUT - Updating all data nodes of a datastore 14
 5.4. PATCH - Updating specific data nodes 15
 5.5. POST - Protocol operation 17
 5.5.1. Example #1 - RPC 17
 5.5.2. Example #2 - Action 18
 5.6. Event stream . 19
 6. CoAP compatibility . 22
 6.1. Working with Uri-Host, Uri-Port, Uri-Path, and Uri-Query 22
 6.2. Working with Location-Path and Location-Query 22
 6.3. Working with Accept 22
 6.4. Working with Max-Age 22
 6.5. Working with Proxy-Uri and Proxy-Scheme 22
 6.6. Working with If-Match, If-None-Match and ETag 23
 6.7. Working with Size1, Size2, Block1 and Block2 23
 6.8. Working with resource discovery 24
 7. Error Handling . 25
 8. Security Considerations 26

Veillette, et al. Expires September 12, 2016 [Page 2]

Internet-Draft Constrained Objects Language March 2016

 9. IANA Considerations . 26
 9.1. "FETCH" CoAP Method Code 26
 9.2. "PATCH" CoAP Method Code 26
 10. Acknowledgments . 26
 11. References . 27
 11.1. Normative References 27
 11.2. Informative References 28
 Appendix A. File "ietf-cool.yang" 29
 Appendix B. File "ietf-cool@2016-01-01.sid" 35
 Authors’ Addresses . 38

1. Introduction

 This document defines a CoAP function set for accessing YANG defined
 resources. YANG data models are encoded in CBOR based on the mapping
 rules defined in [I-D.veillette-core-yang-cbor-mapping]. YANG items
 are identified using a compact identifier called Structured
 Identifiers (SIDs) as defined in [I-D.somaraju-core-sid].

 The resulting protocol based on CoAP, CBOR encoded data and
 structured identifiers (SID) has a low implementation footprint and
 low network bandwidth requirements and is suitable for both
 constrained devices and constrained networks as defined by [RFC7228].
 This protocol is applicable to the different management topology
 options described by [I-D.ersue-constrained-mgmt]; centralized,
 distributed and hierarchical.

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [I-D.ietf-netmod-rfc6020bis]:

 o action

 o data node

 o data tree

 o module

 o notification

 o RPC

 o schema node

Veillette, et al. Expires September 12, 2016 [Page 3]

Internet-Draft Constrained Objects Language March 2016

 o schema tree

 o submodule

 This specification also makes use of the following terminology:

 o candidate configuration datastore: A configuration datastore that
 can be manipulated without impacting the device’s current
 configuration and that can be committed to the running
 configuration datastore. Not all devices support a candidate
 configuration datastore.

 o CoOL client: The originating endpoint of a request, and the
 destination endpoint of a response.

 o CoOL server: The destination endpoint of a request, and the
 originating endpoint of a response.

 o delta: Within a list, a delta represents the different between the
 current SID and the SID of the previous entry within this list.
 Within a collection, a delta represents the difference between the
 SID assigned to the current schema node and the SID assigned to
 the parent. When no previous entry or parent exist, the delta is
 set to the absolute SID value.

 o child: A schema node defined within a collection such as a
 container, a list, a case, a notification, a RPC input, a RPC
 output, an action input, an action output.

 o datastore: Resource used to store and access information.

 o endpoint: An entity participating in the CoOL protocol. Multiple
 CoOL endpoints may be accessible using a single CoAP endpoint. In
 this case, each CoOL endpoint is accessed using a distinct URI.

 o event stream: Resource used to access notifications generated by a
 CoOL server. Events are defined using the YANG notification
 statement.

 o function set: A group of well-known resources that provides a
 particular service.

 o object: Within CoOL, an object is a data node, an RPC or an action
 within a datastore resource or a notification within an event
 stream resource.

 o parent: The collection in which a schema node is defined.

Veillette, et al. Expires September 12, 2016 [Page 4]

Internet-Draft Constrained Objects Language March 2016

 o resource: Content identified by a URI.

 o running configuration datastore: A configuration datastore holding
 the complete configuration currently active on the device. The
 running configuration datastore always exists.

 o Structured IDentifier (SID). Unsigned integer used to identify
 different YANG items.

3. Architecture

 The CoOL protocol is based on the client-server model. The CoOL
 server is the provider of the datastore resource(s) and the event
 stream resource(s). The CoOL client is the requester of these
 resources.

 CoOL objects are defined using the YANG modeling language [RFC6020].
 Interactions with these objects are performed using the Constrained
 Application Protocol (CoAP) [RFC7252]. Payloads are encoded using
 the Concise Binary Object Representation (CBOR) [RFC7049].

 This specification is applicable to any transport and security
 protocols supported by CoAP. Implementers are free to select the
 most appropriate transport for the targeted applications.

 +--------------+ +----------------------------------+
 | CoOL client | | CoOL Server |
 | | | - Datastore resource(s) |
 | | | - Event stream resource(s) |
 +--------------+ +----------------------------------+
 | CoAP client | <-------> | CoAP Server |
 +--------------+ +----------------------------------+
 | | | |
 | Lower layers | | Lower layers |
 | | | |
 +--------------+ +----------------------------------+

4. Resources

 This section lists the URIs recommended for the different CoOL
 resources. A CoOL server MAY implement a different set of URIs. See
 the Resource discovery section (Section 7.15) for more details on how
 a CoOL client can discover the list of URIs supported by a CoOL
 server using the "/.well-known/core" resource.

 o /c - The default datastore resource

 o /c/c - The candidate configuration datastore resource

Veillette, et al. Expires September 12, 2016 [Page 5]

Internet-Draft Constrained Objects Language March 2016

 o /c/r - The running configuration datastore resource

 o /c/b - The backup configuration datastore (use to implement
 rollbacks)

 o /c/e - URI used to access the default event stream for this
 device.

 o /c/e0, /c/e1, ... - URI used to access alternate event streams.

 o /c/0, /c/1, ... - URI used to access a specific endpoint. Each
 end point represents a virtual device which can support any of the
 resources listed above.

 For example:

 o /c/1 is the default datastore resource for endpoint 1

 o /c/1/c is the candidate datastore resource for endpoint 1

 o /c/1/r is the running configuration datastore resource for
 endpoint 1

 o /c/1/b is the backup configuration datastore resource for endpoint
 1

 o /c/1/e is the default event stream resource for endpoint 1

 o /c/1/e0 is an alternate event stream resource for endpoint 1

 All these resources are optional at the exception of the default
 datastore resource. The CoAP response code 4.04 (Not Found) MUST be
 returned when a CoOL client tries to access a resource that is
 unavailable.

 RPCs commit and cancel-commit defined in ietf-cool YANG module are
 available to perform the following operations on datastores:

 o Immediate or differed commit of a candidate or backup datastore.

 o Confirmed commit

 o Cancel of a different or confirmed commit.

Veillette, et al. Expires September 12, 2016 [Page 6]

Internet-Draft Constrained Objects Language March 2016

5. Operations

 This section defines the different interactions supported between a
 CoOL client and a CoOL server.

5.1. GET - Retrieving all data nodes of a datastore

 The GET method is used by CoOL clients to retrieve the entire
 contents of a datastore. Implementation of this function is optional
 and dependent of the capability of the CoOL server to transfer a
 relatively large response.

 To retrieve all instantiated data nodes of a datastore resource, a
 CoOL client sends a CoAP GET request to the URI of the targeted
 datastore. If the request is accepted by the CoOL server, a 2.05
 (Content) response code is returned. The payload of the GET response
 MUST carry a CBOR array containing the contents of the targeted
 datastore. The CBOR array MUST contain a list of pairs of delta and
 associated value. A delta represents the difference between the
 current SID and the SID of the previous pair within the CBOR array.
 Each value is encoded using the rules defined by [I-D.veillette-core-
 yang-cbor-mapping].

 If the request is rejected by the CoOL server, a 5.01 Not implemented
 or 4.13 Request Entity Too Large response code is returned.

 Example:

 In this example, the CoOL server returns a datastore containing the
 following data nodes defined in the YANG module "ietf-system"
 [RFC7317] and YANG module "ietf-interfaces" [RFC7223]:

 o "/interfaces/interface" (SID 1529)

 o "/interfaces/interface/description" (SID 1530)

 o "/interfaces/interface/enabled" (SID 1531)

 o "/interfaces/interface/name" (SID 1533)

 o "/interfaces/interface/type" (SID 1534)

 o "/system-state/clock" (SID 1708)

 o "/system-state/clock/boot-datetime" (SID 1709)

 o "/system-state/clock/current-datetime" (SID 1710)

Veillette, et al. Expires September 12, 2016 [Page 7]

Internet-Draft Constrained Objects Language March 2016

 o "/system/clock/timezone/timezone-utc-offset/timezone-utc-offset"
 (SID 1721)

 CoAP Request:

 GET /c

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 [
 1529,
 {
 4 : "eth0", # name (SID 1533)
 1 : "Ethernet adaptor", # description (SID 1530)
 5 : 1179, # type (SID 1534), identity ethernetCsmacd
 2 : true # enabled (SID 1531)
 },
 179, # clock (SID 1708)
 {
 1 : "2015-02-08T14:10:08Z09:00", # boot-datetime (SID 1709)
 2 : "2015-04-04T09:32:51Z09:00" # current-datetime (SID 1710)
 }
 13, 60 # timezone-utc-offset (SID 1721)
]

5.2. FETCH - Retrieving specific data nodes

 The FETCH method is used by the CoOL client of retrieve a subset of
 the data nodes within a datastore.

 To retrieve a list of data node instances, the CoOL client sends a
 CoAP FETCH request to the URI of the targeted datastore. The payload
 of the FETCH request contains the list of data node(s) instance to be
 retrieved. This list is encoded using a CBOR array, each entry
 containing an "instance-identifier" as defined by [I-D.veillette-
 core-yang-cbor-mapping]. Within each "instance-identifier", data
 nodes are identified using SIDs as defined by [I-D.somaraju-core-
 sid].

 SIDs within the list of "instance-identifier" are encoded using
 delta. A delta represents the different between the current SID and
 the SID of the previous entry within this list. The delta of the
 first entry within the list is set to the absolute SID value (current
 SID minus zero).

 On successful processing of the CoAP request, the CoOL server MUST
 return a CoAP response with a response code 2.05 (Content).

Veillette, et al. Expires September 12, 2016 [Page 8]

Internet-Draft Constrained Objects Language March 2016

 When a single data node is requested, the payload of the GET response
 MUST carry the data node instance requested encoded using the rules
 defined in [I-D.veillette-core-yang-cbor-mapping].

 When a multiple data nodes are requested, the payload of the GET
 response MUST carry a CBOR array containing the data node instance(s)
 requested. Each entry within this array MUST be encoding using the
 rules defined in [I-D.veillette-core-yang-cbor-mapping].

 When a collection is returned (YANG container, YANG list or YANG list
 instance), delta(s) are computed using the requested SID as parent.

 The CBOR value undefined (0xf7) must be returned for each data node
 requested but not currently available.

5.2.1. Example #1 - Simple data node

 In this example, a CoOL client retrieves the leaf "/system-
 state/clock/current-datetime" (SID 1704) and the container "/system/
 clock" (SID 1719) containing the leaf "/system/clock/timezone/
 timezone-utc-offset/timezone-utc-offset" (SID 1721). These data
 nodes are defined in the YANG module "ietf-system" [RFC7317].

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [1704, 15]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 [
 "2015-10-08T14:10:08Z09:00", # current-datetime (SID 1704)
 { # clock (SID 1719)
 2 : 540 # timezone-utc-offset (SID 1721)
 }
]

 CoAP requests and responses MUST be encoded in accordance with
 [RFC7252] or [I-D.ietf-core-coap-tcp-tls]. An encoding example is
 shown below:

 CoAP request:

Veillette, et al. Expires September 12, 2016 [Page 9]

Internet-Draft Constrained Objects Language March 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code (0x01) | Message ID |
 +-+
 | Token (0 to 8 bytes) ...
 +-+
 | Opt Delta (12)| Opt Length (1)| na | Opt Delta (3) |
 +-+
 | Opt Length (2)| ’/’ | ’c’ |1 1 1 1 1 1 1 1|
 +-+
 | 0x82 | 0x19 | 0x06 | 0xa8 |
 +-+
 | 0x0f |
 +-+-+-+-+-+-+-+-+

 CoAP response:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Ver| T | TKL | Code (0x45) | Message ID |
 +-+
 | Token (0 to 8 bytes) ...
 +-+
 | Opt Delta (12)| Opt Length (1)| na |1 1 1 1 1 1 1 1|
 +-+
 | 0xa2 | 0x78 | 0x19 | 0x32 |
 +-+
 | 0x30 | 0x31 | 0x35 | 0x2d |
 +-+
 | 0x31 | 0x30 | 0x2d | 0x30 |
 +-+
 | 0x38 | 0x54 | 0x31 | 0x34 |
 +-+
 | 0x3a | 0x31 | 0x30 | 0x2d |
 +-+
 | 0x30 | 0x38 | 0x5a | 0x30 |
 +-+
 | 0x39 | 0x3a | 0x30 | 0x30 |
 +-+
 | 0xa1 | 0x02 | 0x19 | 0x02 |
 +-+
 | 0x1c |
 +-+-+-+-+-+-+-+-+

Veillette, et al. Expires September 12, 2016 [Page 10]

Internet-Draft Constrained Objects Language March 2016

5.2.2. Example #2 - Data node instance within a YANG list

 The data type "instance-identifier" allows the selection of an
 instance of a specific data node within a list. In this example, a
 CoOL client retrieves the "/interfaces/interface/type" (SID 1529)
 leaf from the "/interfaces/interface" list. The
 "/interfaces/interface/name" associated to this interface is equal to
 "eth0". This example is based on the YANG module "ietf-interfaces"
 [RFC7223].

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [[1529, "eth0"]]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 "Ethernet adaptor"

5.2.3. Example #3 - YANG list

 To retrieve all instances of a list, the CoOL client excludes from
 the "instance-identifier" the key(s) of the targeted list. The list
 returned is encoded using the rules defined in [I-D.veillette-core-
 yang-cbor-mapping] section 4.4.

 In this example, a CoOL client retrieves the list "/interfaces/
 interface" (SID 1529). The response returns contain two instances,
 one for an Ethernet adaptor and one for a WIFI interface.

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [1529]

 CoAP response:

Veillette, et al. Expires September 12, 2016 [Page 11]

Internet-Draft Constrained Objects Language March 2016

 2.05 Content Content-Format(application/cool+cbor)
 [
 {
 4 : "eth0", # name (SID 1533)
 1 : "Ethernet adaptor", # description (SID 1530)
 5 : 1179, # type (SID 1534), identity ethernetCsmacd
 2 : true # enabled (SID 1531)
 },
 {
 4 : "wlan0", # name (SID 1533)
 1 : "WIFI ", # description (SID 1530)
 5 : 1220, # type (SID 1534), identity ieee80211
 2 : false # enabled (SID 1531)
 }
]

5.2.4. Example #4 - YANG list instance

 To retrieve a list instance, the CoOL client MUST use an "instance-
 identifier" with a SID set to the targeted list and the key(s) set to
 the value(s) associated to the targeted instance.

 In this example, the CoOL client requests the instance of the list
 "/interfaces/interface" (SID 1529) associated to the name "eth1".
 The response returned by the CoOL server contains the targeted list
 instance formatted as YANG container.

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [[1529, "eth1"]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 {
 4 : "eth0" # name (SID 1533)
 1 : "Ethernet adaptor" # description (SID 1530)
 5 : 1179 # type (SID 1534), identity ethernetCsmacd
 2 : true # enabled (SID 1531)
 }

5.2.5. Example #5 - YANG list instance filtering

 This "instance-identifier" extension allows the selection of a subset
 of data nodes within a list. This is accomplished by adding an extra
 element to the "instance-identifier". This element contains the
 subset of data nodes to be returned encoded as CBOR array. Each

Veillette, et al. Expires September 12, 2016 [Page 12]

Internet-Draft Constrained Objects Language March 2016

 entry within this CBOR array is set to the delta between the current
 SID and the SID of targeted container as specified in the first entry
 of the "instance-identifier".

 CoOL servers SHOULD implement this "instance-identifier" extension.
 When this extension is not supported, the CoOL server MUST ignore the
 third element of the "instance-identifier" and return the list
 instance as specified by the first two elements of the "instance-
 identifier".

 In this example, a CoOL client retrieves from within the
 "/interfaces/interface" list (SID 1528) the leafs
 "/interfaces/interface/type" (SID 1533) and "/interfaces/interface/
 enabled" (SID 1530). The CoOL client also includes in this request
 the selection of the leaf "/system/hostname" defined in "ietf-system"
 [RFC7317].

 For example:

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [[1528, ["eth0"], [5, 2]], 211]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 [
 {
 5 : 1179, # type (SID 1533), identity ethernetCsmacd
 2 : true # enabled (SID 1530)
 },
 "datatracker.ietf.org", # hostname (SID 1739)
]

5.2.6. Example #6 - All instances of a data node within a YANG list

 This "instance-identifier" extension allows the efficient transfer of
 all instances of a data node within a YANG list. To retrieve all
 instances, the CoOL client excludes form the "instance-identifier"
 the key(s) of the list containing the targeted data node.

 The response MUST be encoded as a CBOR ARRAY containing the available
 instances of the requested data node. This special encoding
 minimizes significantly this commonly used type of request.

 In this example, a CoOL client retrieves all instances of data node
 "/interfaces-state/interface/name" (SID 1532).

Veillette, et al. Expires September 12, 2016 [Page 13]

Internet-Draft Constrained Objects Language March 2016

 Example:

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor)
 [1532]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor)
 ["eth0", "eth1", "wlan0"]

5.3. PUT - Updating all data nodes of a datastore

 The CoAP PUT method is used by CoOL clients to update the content of
 a datastore.

 The URI of the PUT request MUST be set to the URI of the targeted
 datastore.

 The payload of the PUT request MUST carry a CBOR array containing the
 new content of the datastore. The CBOR array MUST contain a list of
 pairs of delta and associated value. A delta represents the
 different between the current SID and the SID of the previous pair
 within the CBOR array. Each value is encoded using the rules defined
 by [I-D.veillette-core-yang-cbor-mapping].

 On successful processing of the CoAP request, the CoOL server MUST
 return a CoAP response with a response code 2.04 (Changed).

 A PUT request MUST be processed as an atomic transaction, if any of
 the data node transferred is rejected for any reason, the entire PUT
 request MUST be rejected and the CoOL server MUST return an
 appropriate error response as defined in section 6.

 Example:

 In this example, a CoOL client sets the default runtime datastore
 with these data nodes:

 o "/system/clock/timezone/timezone-utc-offset/timezone-utc-offset"
 (SID 1721)

 o "/system/ntp/enabled" (SID 1742)

 o "/system/ntp/server" (SID 1743)

 o "/system/ntp/server/name" (SID 1746)

Veillette, et al. Expires September 12, 2016 [Page 14]

Internet-Draft Constrained Objects Language March 2016

 o "/system/ntp/server/prefer" (SID 1747)

 o "/system/ntp/server/transport/udp/udp" (SID 1748)

 o "/system/ntp/server/transport/udp/udp/address" (SID 1749)

 o "/system/ntp/server/transport/udp/udp/port" (SID 1750)

 CoAP request:

 PUT /c/r Content-Format(application/cool+cbor)
 [
 1727, 540, # timezone-utc-offset (SID 1721)
 15, true, # enabled (SID 1742)
 1, [# server (SID 1743)
 {
 3 : "tic.nrc.ca", # name (SID 1746)
 4 : true, # prefer (SID 1747)
 5 : { # udp (SID 1748)
 6 : "132.246.11.231", # address (SID 1749)
 7 : 123 # port (SID 1750)
 }
 },
 {
 3 : "tac.nrc.ca", # name (SID 1746)
 4 : false, # prefer (SID 1747)
 5 : { # udp (SID 1748)
 6 : "132.246.11.232" # address (SID 1749)
 }
 }
]
]

 CoAP response:

 2.04 Changed

5.4. PATCH - Updating specific data nodes

 The PATCH method is used by CoOL clients to modify a subset of a
 datastore.

 To modify a datastore, the CoOL client sends a CoAP PATH request to
 the URI of the targeted datastore. The payload of the FETCH request
 contains the list of data node instance(s) to be updated, inserted or
 deleted. This list is encoded using a CBOR array and contains a
 sequence of pairs of "instance-identifier" and associated values.

Veillette, et al. Expires September 12, 2016 [Page 15]

Internet-Draft Constrained Objects Language March 2016

 Within each "instance-identifier", data nodes are identified using
 SIDs as defined by [I-D.somaraju-core-sid]. SIDs within the list are
 encoded as delta.

 On reception, the list is processed by the CoOL server as follows:

 o If the targeted data instance already exists, this instance is
 replaced by the associated value (not merged). To update only
 some children of a collection, each child data node MUST be
 provided individually.

 o If the targeted data instance doesn’t exist, this instance is
 created.

 o If the targeted data instance already exists but is associated
 with the value "null", this instance is deleted.

 On successful processing of the CoAP request, the CoOL server MUST
 return a CoAP response with a response code 2.05 (Content).

 A PATCH request MUST be processed as an atomic transaction, if any of
 the data nodes transferred is rejected for any reasons, the entire
 PATCH request MUST be rejected and the CoOL server MUST return an
 appropriate error response as defined in section 6.

 Example:

 In this example, a CoOL client performs the following operations:

 o Set "/system/ntp/enabled" to true.

 o Remove the server "tac.nrc.ca" from the"/system/ntp/server" list.

 o Add the server "NTP Pool server 2" to the list "/system/ntp/
 server".

 o Set "prefer" to false for the server "tic.nrc.ca".

 CoAP request:

Veillette, et al. Expires September 12, 2016 [Page 16]

Internet-Draft Constrained Objects Language March 2016

 PATCH /c/r Content-Format(application/cool+cbor)
 [
 1742 , true, # enabled (1742)
 [1, "tac.nrc.ca"], null, # server (SID 1743)
 0, # server (SID 1743)
 {
 3 : "NTP Pool server 2", # name (SID 1746)
 4 : true, # prefer (SID 1747)
 5 : { # udp (SID 1748)
 6 : "2620:10a:800f::11", # address (SID 1749)
 }
 }
 [4, "tic.nrc.ca"], false # prefer (SID 1747)
]

 CoAP response:

 2.04 Changed

5.5. POST - Protocol operation

 Protocol operations are defined using the YANG "rpc" or YANG "action"
 statements.

 To execute a protocol operation, the CoOL client sents a CoAP POST
 request to the URI of the targeted datastore.

 The payload of the POST request carries a CBOR array with up to two
 entries. The first entry carries the instance-identifier identifying
 the targeted protocol operation. The second entry carries the
 protocol operation input(s). Input(s) are present only if defined
 for the invoked protocol operation and used by the CoOL client.
 Input(s) are encoded using the rules defined for a YANG container,
 deltas are relative to the SID assigned to the protocol operation.

 On successful completion on the protocol operation, the CoOL server
 returns a CoAP response with the response code set to 2.05 (Content).
 When output parameters are returned by the CoOL server, these
 parameter(s) are carried in the CoAP response payload. Output(s) are
 encoded using the rules defined for a YANG container, deltas are
 relative to the SID assigned to the protocol operation.

5.5.1. Example #1 - RPC

 This example is based on the "activate-software-image" RPC defined in
 [I-D.ietf-netmod-rfc6020bis], assuming that this RPC is assigned to
 SID 1932, leaf image-name to SID 1933 and leaf status to SID 1934.
 These SIDs are defined strictly for the purpose of this example.

Veillette, et al. Expires September 12, 2016 [Page 17]

Internet-Draft Constrained Objects Language March 2016

 rpc activate-software-image { input { leaf image-name { type string;
 } } output { leaf status { type string; } } }

 CoAP request:

 POST /c Content-Format(application/cool+cbor)
 [
 1932,
 {
 1 : "acmefw-2.3" # image-name (SID 1933)
 }
]

 CoAP response:

 2.05 Content
 {
 2 : "installed" # status (SID 1934)
 }

5.5.2. Example #2 - Action

 This example is based on the "reset" action defined in
 [I-D.ietf-netmod-rfc6020bis] assuming that this action is assigned to
 SID 1902, leaf reset-at to SID 1903 and leaf reset-finished-at to SID
 1904. These SIDs are defined strictly for the purpose of this
 example.

 list server { key name; leaf name { type string; } action reset {
 input { leaf reset-at { type yang:date-and-time; mandatory true; } }
 output { leaf reset-finished-at { type yang:date-and-time; mandatory
 true; } } } }

 CoAP request:

 POST /c Content-Format(application/cool+cbor)
 [
 [1902, "myServer"],
 {
 1 : "2016-02-08T14:10:08Z09:00" # reset-at (SID 1903)
 }
]

 CoAP response:

Veillette, et al. Expires September 12, 2016 [Page 18]

Internet-Draft Constrained Objects Language March 2016

 2.05 Content
 {
 2 : "2016-08T14:10:08Z09:18" # reset-finished-at (SID 1904)
 }

5.6. Event stream

WARNING
This section requires more work to address the following identified issues:

* Retrieval of past events (e.g. start-time, stop-time)
* Retrieval of specific events (e.g. filter)
* Configuration persistence
* Configuration of by a third entity (configuration tool)
* Support of multicast
* Event congestion-avoidance
* Transfer reliability

The current solution based on the observe CoAP option can be augmented
or completely replaced by a future version of this draft.

 Notifications are defined using the YANG "notification" statement.
 Subscriptions to an event stream and notification reporting are
 performed using an event stream resource. When multiple event stream
 resources are supported, the list of notifications associated with
 each stream is either pre-defined or configured in the CoOL server.
 CoOL clients MAY subscribe to one or more event stream resources.

 To subscribe to an event stream resource, a CoOL client MUST send a
 CoAP GET with the Observe CoAP option set to 0. To unsubscribe, a
 CoOL client MAY send a CoAP reset or a CoAP GET with the Observe
 option set to 1. For more information on the observe mechanism, see
 [RFC7641].

 Each notification transferred by a CoOL server to each of the
 registered CoOL clients is carried in a CoAP response with a response
 code set to 2.05 (Content). Each CoAP response MUST carry in its
 payload at least one notification but MAY carry multiple. Each
 notification is carried in a notification-payload defined in ietf-
 cool, see Appendix A. The notification-payload supports different
 meta-data associated to this notification, such as the notification
 identifier, event timestamp, sequence number, severity level and
 facility. All of these meta information are optional with the
 exception of the notification identifier.

 The CoAP response payload is encoded using the rules defined for the
 PUT request. When multiple notifications are reported, the CoAP

Veillette, et al. Expires September 12, 2016 [Page 19]

Internet-Draft Constrained Objects Language March 2016

 response payload carries a CBOR array, with each entry containing a
 notification.

 This example is based on the "link-failure" and "interface-enabled"
 notifications defined in [I-D.ietf-netmod-rfc6020bis] assuming the
 following SID assignment:

 o "/link-failure" (SID 1942)

 o "/link-failure/if-name" (SID 1943)

 o "/link-failure/admin-status" (SID 1944)

 o "/interfaces/interface/interface-enabled" (SID 1538)

 o "/interfaces/interface/interface-enabled/by-user" (SID 1539)

 These SIDs are defined strictly for the purpose of this example.

 notification link-failure {
 leaf if-name {
 type leafref {
 path "/interface/name";
 }
 }
 leaf admin-status {
 type leafref {
 path "/interface[name = current()/../if-name]/admin-status";
 }
 }
 }

 container interfaces {
 list interface {
 key "name";

 leaf name {
 type string;
 }

 notification interface-enabled {
 leaf by-user {
 type string;
 }
 }
 }
 }

Veillette, et al. Expires September 12, 2016 [Page 20]

Internet-Draft Constrained Objects Language March 2016

 In this example, a CoOL client starts by registering to the default
 event stream resource "/c/e".

 CoAP request:

 GET /c/e observe(0) Token(0x9372)

 The CoOL server confirms this registration by returning a first CoAP
 response. The payload of this CoAP response may be empty or may
 carry the last notification reported by this server.

 CoAP response:

 2.05 Content Observe(52) Token(0xD937)

 After detecting an event, the CoOL server sends its first
 notification to the registered CoOL client.

 CoAP response:

 2.05 Content Observe(53) Token(0xD937)
 Content-Format(application/cool+cbor)
 [
 1010 , [1538, "eth0"], # _id (SID 1010)
 1,{ # content (SID 1011)
 1 : "bob" # by-user (SID 1539)
 }
 5 , "2016-03-08T14:10:08Z09:00", # timestamp (SID 1015)
]

 To optimize communications or because of other constraints, the CoOL
 server might transfer multiple notifications in a single CoAP
 response.

 CoAP response:

Veillette, et al. Expires September 12, 2016 [Page 21]

Internet-Draft Constrained Objects Language March 2016

 2.05 Content Observe(52) Token(0xD937)
 Content-Format(application/cool+cbor)
 [
 [
 1010 , [1538, "eth0"], # _id = interface-enabled (SID 1010)
 1,{ # content (SID 1011)
 1 : "jack" # by-user (SID 1539)
 }
 5 , "2016-03-12T15:49:51Z09:00", # timestamp (SID 1015)
],
 [
 1010 , 1942, # _id = link-failure (SID 1010)
 1,{ # content (SID 1011)
 1 : "eth0", # if-name (SID 1943)
 1 : 1 # admin-status = up (SID 1944)
 }
 5 , "2016-03-12T15:50:06Z09:00", # timestamp (SID 1015)
]
]

6. CoAP compatibility

6.1. Working with Uri-Host, Uri-Port, Uri-Path, and Uri-Query

 Uri-Query is not currently used by this protocol. Uri-Host, Uri-Port
 and Uri-Path MUST be used as specified by [RFC6690] to target the
 CoOL resources as defined by section 3.

6.2. Working with Location-Path and Location-Query

 This version of CoOL doesn’t support the creation of resources
 (datastore or event stream). For this reason, the use of Location-
 Path and Location-Query is not required.

6.3. Working with Accept

 This option is not required since this protocol supports a single
 content format, "application/cool+cbor".

6.4. Working with Max-Age

 This option MUST be supported as specified by [RFC6690].

6.5. Working with Proxy-Uri and Proxy-Scheme

 This option MUST be supported as specified by [RFC6690].

Veillette, et al. Expires September 12, 2016 [Page 22]

Internet-Draft Constrained Objects Language March 2016

6.6. Working with If-Match, If-None-Match and ETag

 This option MUST be supported as specified by [RFC6690]. Each ETag
 is associated to all schema nodes within a datastore.

6.7. Working with Size1, Size2, Block1 and Block2

 When the UDP transport is used and a large payload need to be
 transferred, support of the CoAP block transfer as defined by
 [I-D.ietf-core-block] is recommended.

 6.8. Working with Observe

 A CoOL server MAY support state change notifications to some or all
 its leaf data nodes. When supported the CoOL server MUST implement
 the Server-Side requirements defined in [RFC7641] section 3 and the
 CoOL client MUST implement the Client-Side requirements defined in
 [RFC7641] section 4.

 To start observing a leaf data node, a CoOL client MUST send a CoAP
 FETCH with the Observe CoAP option set to 0.

 The payload of the FETCH request carries a CBOR array of instance-
 identifier. The first entry MUST be set to the "instance-identifier"
 of the data node instance observed. The following entries are
 optional and allow the selection of coincidental values, data nodes
 reported at the same time as the observed data node. Coincidental
 values are included in each notification reported, but changes to
 these extra data nodes MUST not trigger notification messages.

 A subscription can be terminated by the CoOL client by returning a
 CoAP Reset message or by sending a GET request with an Observe CoAP
 option set to deregister (1). More details are available in
 [RFC7641].

 Example:

 In this example, a CoOL client subscribes to state changes of the
 data node "/system/ntp/enabled" (SID = 1742) and requests that data
 node "/system/hostname" (SID 1739) is reported as coincidental value.

 A first response is immediately returned by the CoOL server to
 confirm the subscription and to report the current values of the
 requested data nodes.

 Subsequent responses are returned by the CoOL server each time the
 state of data node "/system/ntp/enabled" changes.

Veillette, et al. Expires September 12, 2016 [Page 23]

Internet-Draft Constrained Objects Language March 2016

 CoAP request:

 FETCH /c Content-Format(application/cool+cbor) Observe(0)
 [[1742, "tic.nrc.ca"], -3]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor) Observe(2631)
 [
 false, # enabled (SID 1742)
 "tic" # hostname (SID 1739)
]

 CoAP response:

 2.05 Content Content-Format(application/cool+cbor) Observe(2632)
 [
 true, # enabled (SID 1742)
 "tic" # hostname (SID 1739)
]

6.8. Working with resource discovery

 The "/.well-known/core" resource is used by CoOL clients to discover
 resources implemented by CoOL servers. Each CoOL server MUST have an
 entry in the "/.well-known/core" resource for each datastore resource
 and event stream resource supported.

 Resource discovery can be performed using a CoAP GET request. If
 successful, the CoAP response MUST have a response code set to 2.05
 (Content), a Content-Format set to "application/link-format", and a
 payload containing a list of web links.

 To enable discovery of specific resource types, the CoAP server MUST
 support the query string "rt".

 Link format and the "/.well-known/core" resource are defined in
 [RFC6690].

 Example:

 CoAP request:

 GET /.well-known/core

 CoAP response:

Veillette, et al. Expires September 12, 2016 [Page 24]

Internet-Draft Constrained Objects Language March 2016

 2.05 Content Content-Format(application/link-format)
 </c>;rt="cool.datastore",
 </c/r>;rt="cool.datastore",
 </c/b>;rt="cool.datastore",
 </c/e>;rt="cool.event-stream",

 In this example, a CoOL client retrieves the list of all resources
 available on a CoOL server.

 Alternatively, the CoOL client may query for a specific resource
 type. In this example, the CoOL client queries for resource type
 (rt) "cool.datastore".

 CoAP request:

 GET /.well-known/core?rt=cool.datastore

 CoAP response:

 2.05 Content Content-Format(application/link-format)
 </c>;rt="cool.datastore",

7. Error Handling

 All CoAP response codes defined by [RFC7252] MUST be accepted and
 processed accordingly by CoOL clients. Optionally, client errors
 (CoAP response codes 4.xx) or server errors (CoAP response codes
 5.xx) MAY have a payload providing further information about the
 cause of the error. This payload contains the " error-payload"
 container (SID 1006) defined in the "ietf-cool" YANG module, see
 Appendix A.

 Example:

 CoAP response:

 4.00 Bad Request (Content-Format: application/cool+cbor)
 [
 1006 , {
 1 : 2, # error-code, SID 1007
 2 : "Unknown data node 69687" # error-text, SID 1008
 }
]

Veillette, et al. Expires September 12, 2016 [Page 25]

Internet-Draft Constrained Objects Language March 2016

8. Security Considerations

 This application protocol relies on the lower layers to provide
 confidentiality, integrity, and availability. A typical approach to
 archive these requirements is to implement CoAP using the DTLS
 binding as defined in [RFC7252] section 9. Other approaches are
 possible to fulfill these requirements, such as the use of a network
 layer security mechanism as discussed in
 [I-D.bormann-core-ipsec-for-coap] or a link layer security mechanism
 for exchanges done within a single sub-network.

 In some applications, different access rights to objects (data nodes,
 protocol operations and notifications) need to be granted to
 different CoOL clients. Different solutions are possible, such as
 the implementation of Access Control Lists (ACL) using YANG module(s)
 or the use of an authorization certificate as defined in [RFC5755].
 These access control mechanisms need to be addressed in complementary
 specifications.

 The Security Considerations section of CoAP [RFC7252] is especially
 relevant to this application protocol and should be reviewed
 carefully by implementers.

9. IANA Considerations

9.1. "FETCH" CoAP Method Code

 This draft makes use of the PATCH CoAP method as defined in
 [I-D.bormann-core-coap-fetch]. This method needs to be registered in
 the CoAP Method Codes sub-registry as defined in [RFC7252] section
 12.1.1.

9.2. "PATCH" CoAP Method Code

 This draft makes use of the PATCH CoAP method as defined in
 [I-D.vanderstok-core-patch]. This method needs to be registered in
 the CoAP Method Codes sub-registry as defined in [RFC7252] section
 12.1.1.

10. Acknowledgments

 This document have been largely inspired by the extensive works done
 by Andy Bierman and Peter van der Stok on [I-D.vanderstok-core-comi].
 [I-D.ietf-netconf-restconf] have also been a critical input to this
 work. The authors would like to thank the authors and contributors
 to these two drafts.

Veillette, et al. Expires September 12, 2016 [Page 26]

Internet-Draft Constrained Objects Language March 2016

 The authors would also like to thank Carsten Bormann for his help
 during the development of this document and his useful comments
 during the review process.

11. References

11.1. Normative References

 [I-D.bormann-core-coap-fetch]
 Bormann, C., "CoAP FETCH Method", draft-bormann-core-coap-
 fetch-00 (work in progress), October 2015.

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Block-wise transfers in CoAP",
 draft-ietf-core-block-18 (work in progress), September
 2015.

 [I-D.ietf-netmod-rfc6020bis]
 Bjorklund, M., "The YANG 1.1 Data Modeling Language",
 draft-ietf-netmod-rfc6020bis-11 (work in progress),
 February 2016.

 [I-D.vanderstok-core-patch]
 Stok, P. and A. Sehgal, "Patch Method for Constrained
 Application Protocol (CoAP)", draft-vanderstok-core-
 patch-02 (work in progress), October 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <http://www.rfc-editor.org/info/rfc6690>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <http://www.rfc-editor.org/info/rfc7049>.

Veillette, et al. Expires September 12, 2016 [Page 27]

Internet-Draft Constrained Objects Language March 2016

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <http://www.rfc-editor.org/info/rfc7317>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

11.2. Informative References

 [I-D.bormann-core-ipsec-for-coap]
 Bormann, C., "Using CoAP with IPsec", draft-bormann-core-
 ipsec-for-coap-00 (work in progress), December 2012.

 [I-D.ersue-constrained-mgmt]
 Ersue, M., Romascanu, D., and J. Schoenwaelder,
 "Management of Networks with Constrained Devices: Problem
 Statement, Use Cases and Requirements", draft-ersue-
 constrained-mgmt-03 (work in progress), February 2013.

 [I-D.ietf-core-coap-tcp-tls]
 Bormann, C., Lemay, S., Technologies, Z., and H.
 Tschofenig, "A TCP and TLS Transport for the Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-tcp-
 tls-01 (work in progress), November 2015.

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-09 (work in
 progress), December 2015.

 [I-D.vanderstok-core-comi]
 Stok, P. and A. Bierman, "CoAP Management Interface",
 draft-vanderstok-core-comi-09 (work in progress), March
 2016.

 [RFC5755] Farrell, S., Housley, R., and S. Turner, "An Internet
 Attribute Certificate Profile for Authorization",
 RFC 5755, DOI 10.17487/RFC5755, January 2010,
 <http://www.rfc-editor.org/info/rfc5755>.

Veillette, et al. Expires September 12, 2016 [Page 28]

Internet-Draft Constrained Objects Language March 2016

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
 <http://www.rfc-editor.org/info/rfc7223>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

Appendix A. File "ietf-cool.yang"

 Module containing the different definitions required by the CoOL
 protocol.

 module ietf-cool {
 namespace "urn:ietf:ns:cool";
 prefix cool;

 organization
 "IETF Core Working Group";

 contact
 "Ana Minaburo
 <mailto:ana@ackl.io>

 Abhinav Somaraju
 <mailto:abhinav.somaraju@tridonic.com>

 Alexander Pelov
 <mailto:a@ackl.io>

 Michel Veillette
 <mailto:michel.veillette@trilliantinc.com>

 Randy Turner
 <mailto:Randy.Turner@landisgyr.com>";

 description
 "This module contains the different definitions required
 by the CoOL protocol.";

 revision 2016-01-01 {
 description
 "Initial revision.";
 reference
 "draft-veillette-core-cool";
 }

Veillette, et al. Expires September 12, 2016 [Page 29]

Internet-Draft Constrained Objects Language March 2016

 // List of useful derived YANG data types for constrained devices

 typedef sid {
 type uint32;
 description
 "Structure Identifier value (SID).";
 }

 typedef utc-time {
 type uint32;
 description
 "Unsigned 32-bit value representing the number of seconds
 since 0 hours, 0 minutes, 0 seconds, on the 1st of January,
 2000 UTC (Universal Coordinated Time).";
 }

 // Error payload

 container error-payload {
 description
 "Optional payload of a client error (CoAP response 4.xx)
 or server error (CoAP response 5.xx).";

 leaf error-code {
 mandatory true;
 type enumeration {
 enum ok {
 value 0;
 description
 "The requested edit have been performed successfully.";
 }

 enum error {
 value 1;
 description "Unspecified error.";
 }

 enum malformed {
 value 2;
 description "Malformed CBOR payload.";
 }

 enum invalid {
 value 3;
 description "The value specified in the request can’t be
 apply to the target data node.";
 }

Veillette, et al. Expires September 12, 2016 [Page 30]

Internet-Draft Constrained Objects Language March 2016

 enum doesNotExist {
 value 4;
 description "The target data node instance specified in
 the request doesn’t exist.";
 }

 enum alreadyExist {
 value 5;
 description "The target data node instance specified in
 the request already exists.";
 }

 enum readOnly {
 value 6;
 description "Attempt to update a read-only data node.";
 }
 }
 }

 leaf error-text {
 mandatory false;
 type string;
 description "Textual descriptions of the error.";
 }
 }

 // Notification payload

 identity facility-type {
 description
 "A facility code is used to specify the type of process that
 is logging the message. Notifications from different facilities
 may be handled differently. Other YANG module may add new
 facility type as needed.";
 }

 identity os {
 base facility-type;
 }

 identity protocol-stack {
 base facility-type;
 }

 identity security {
 base facility-type;
 }

Veillette, et al. Expires September 12, 2016 [Page 31]

Internet-Draft Constrained Objects Language March 2016

 identity hardware-monitoring {
 base facility-type;
 }

 identity application {
 base facility-type;
 }

 container notification-payload {
 leaf _id {
 mandatory true;
 type instance-identifier;
 description
 "Identifier associated to the notification reported.";
 }

 leaf timestamp {
 mandatory false;
 type utc-time;
 description
 "Event timestamp. Support of this field is optional
 since its not expected that all implementations have
 implement a real time clock and if so, this clock is
 available at all time.";
 }

 leaf sequence-number {
 mandatory false;
 type uint32;
 description
 "Sequence number associated to each event created by CoOL
 server within a specific event stream.";
 }

 leaf severity-level {
 reference "RFC 5424";
 mandatory false;
 type enumeration {
 enum emergency {
 value 0;
 description
 "System is unusable.";
 }
 enum alert {
 value 1;
 description
 "Should be corrected immediately.";
 }

Veillette, et al. Expires September 12, 2016 [Page 32]

Internet-Draft Constrained Objects Language March 2016

 enum critical {
 value 2;
 description
 "Critical conditions.";
 }
 enum error {
 value 3;
 description
 "Error conditions.";
 }
 enum warning {
 value 4;
 description
 "May indicate that an error will occur if action is
 not taken.";
 }
 enum notice {
 value 5;
 description
 "Events that are unusual, but not error conditions.";
 }
 enum informational {
 value 6;
 description
 "Normal operational messages that require no action.";
 }
 enum debug {
 value 7;
 description
 "Information useful to developers for debugging the
 application.";
 }
 }
 description
 "Severity associated with this event.";
 }

 leaf facility {
 mandatory false;
 type identityref {
 base facility-type;
 }
 description
 "Type of process that is logging the message.";
 reference "RFC 5424";
 }

 leaf content {

Veillette, et al. Expires September 12, 2016 [Page 33]

Internet-Draft Constrained Objects Language March 2016

 mandatory false;
 type anydata;
 description
 "Notification container as defined by the notification YANG
 statement.";
 }
 }

 rpc commit {
 description
 "Used to commit the changes present in a candidate datastore on
 the runtime datastore specify by the URI used to execute this
 operation.";
 input {
 leaf datastore {
 description
 "Path of the datastore resource used as the source of the
 commit operation. When not present, the default candidate
 datastore resource is used.";
 type string;
 mandatory false;
 }

 leaf commit-date-time {
 description
 "When specified, the commit operation is postponed at the
 specified date and time. When not present, the commit is
 performed on reception of this RPC. Supports of this feature
 is optional.";
 type utc-time;
 mandatory false;
 }

 leaf confirm-timeout {
 description
 "When present, a confirming commit MUST be received within
 this period after the start of the commit process.
 A confirming commit is a commit RPC without the
 confirm-timeout field presents. Supports of this feature
 is optional.";
 type string;
 mandatory false;
 }
 }
 }

 rpc cancel-commit {
 description

Veillette, et al. Expires September 12, 2016 [Page 34]

Internet-Draft Constrained Objects Language March 2016

 "Cancels an ongoing scheduled or confirmed commit.";
 }
 }

Appendix B. File "ietf-cool@2016-01-01.sid"

 Following is the ".sid" file generated for the "ietf-cool" YANG
 module. See [I-D.somaraju-core-sid] for more details on SID and
 ".sid" file.

 {
 "assignment-ranges": [
 {
 "entry-point": 1000,
 "size": 100
 }
],
 "module-name": "ietf-cool",
 "module-revision": "2016-01-01",
 "items": [
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:application",
 "sid": 1000
 },
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:facility-type",
 "sid": 1001
 },
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:hardware-monitoring",
 "sid": 1002
 },
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:os",
 "sid": 1003
 },
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:protocol-stack",

Veillette, et al. Expires September 12, 2016 [Page 35]

Internet-Draft Constrained Objects Language March 2016

 "sid": 1004
 },
 {
 "type": "identity",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "ietf-cool:security",
 "sid": 1005
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/error-payload",
 "sid": 1006
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/error-payload/error-code",
 "sid": 1007
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/error-payload/error-text",
 "sid": 1008
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload",
 "sid": 1009
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/_id",
 "sid": 1010
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/content",
 "sid": 1011
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/facility",

Veillette, et al. Expires September 12, 2016 [Page 36]

Internet-Draft Constrained Objects Language March 2016

 "sid": 1012
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/sequence-number",
 "sid": 1013
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/severity-level",
 "sid": 1014
 },
 {
 "type": "node",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/notification-payload/timestamp",
 "sid": 1015
 },
 {
 "type": "rpc",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/cancel-commit",
 "sid": 1016
 },
 {
 "type": "rpc",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/commit",
 "sid": 1017
 },
 {
 "type": "rpc",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/commit/input/commit-date-time",
 "sid": 1018
 },
 {
 "type": "rpc",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/commit/input/confirm-timeout",
 "sid": 1019
 },
 {
 "type": "rpc",
 "assigned": "2016-03-08T21:59:45Z",
 "label": "/commit/input/datastore",

Veillette, et al. Expires September 12, 2016 [Page 37]

Internet-Draft Constrained Objects Language March 2016

 "sid": 1020
 }
]
 }

Authors’ Addresses

 Michel Veillette (editor)
 Trilliant Networks Inc.
 610 Rue du Luxembourg
 Granby, Quebec J2J 2V2
 Canada

 Phone: +14503750556
 Email: michel.veillette@trilliantinc.com

 Alexander Pelov (editor)
 Acklio
 2bis rue de la Chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: a@ackl.io

 Abhinav Somaraju
 Tridonic GmbH & Co KG
 Farbergasse 15
 Dornbirn, Vorarlberg 6850
 Austria

 Phone: +43664808926169
 Email: abhinav.somaraju@tridonic.com

 Randy Turner
 Landis+Gyr
 30000 Mill Creek Ave
 Suite 100
 Alpharetta, GA 30022
 US

 Phone: ++16782581292
 Email: randy.turner@landisgyr.com
 URI: http://www.landisgyr.com/

Veillette, et al. Expires September 12, 2016 [Page 38]

Internet-Draft Constrained Objects Language March 2016

 Ana Minaburo
 Acklio
 2bis rue de la chataigneraie
 Cesson-Sevigne, Bretagne 35510
 France

 Email: ana@ackl.io

Veillette, et al. Expires September 12, 2016 [Page 39]

