
CoRE Working Group G. Selander
Internet-Draft F. Palombini
Intended status: Informational Ericsson AB
Expires: January 30, 2018 K. Hartke
 Universitaet Bremen TZI
 July 29, 2017

 Requirements for CoAP End-To-End Security
 draft-hartke-core-e2e-security-reqs-03

Abstract

 This document analyses threats to CoAP message exchanges traversing
 proxies and derives security requirements for mitigating those
 threats.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 30, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Selander, et al. Expires January 30, 2018 [Page 1]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

Table of Contents

 1. Introduction . 3
 1.1. Assets and Scope . 4
 1.2. Terminology . 5
 2. Proxying . 6
 2.1. Threats and Security Requirements 7
 2.1.1. Client-side . 7
 2.1.1.1. Threat 1: Spoofing 8
 2.1.1.2. Threat 2: Delaying 9
 2.1.1.3. Threat 3: Withholding 9
 2.1.1.4. Threat 4: Flooding 9
 2.1.1.5. Threat 5: Eavesdropping 9
 2.1.1.6. Threat 6: Traffic Analysis 9
 2.1.2. Server-side . 11
 2.1.2.1. Threat 1: Spoofing 12
 2.1.2.2. Threat 2: Delaying 12
 2.1.2.3. Threat 3: Withholding 12
 2.1.2.4. Threat 4: Flooding 12
 2.1.2.5. Threat 5: Eavesdropping 13
 2.1.2.6. Threat 6: Traffic Analysis 13
 2.2. Solutions . 14
 2.2.1. Forwarding . 15
 2.2.1.1. Examples . 15
 2.2.1.2. Functional Requirements 17
 2.2.1.3. Processing Rules 17
 2.2.1.4. Authenticity 17
 2.2.1.5. Confidentiality 19
 2.2.2. Caching . 19
 2.2.2.1. Examples . 19
 2.2.2.2. Functional Requirements 21
 2.2.2.3. Processing Rules 21
 2.2.2.4. Authenticity 22
 2.2.2.5. Confidentiality 23
 3. Publish-Subscribe . 24
 3.1. Threats and Security Requirements 24
 3.1.1. Subscriber-side 24
 3.1.1.1. Threat 1: Spoofing 26
 3.1.1.2. Threat 2: Delaying 27
 3.1.1.3. Threat 3: Withholding 27
 3.1.1.4. Threat 4: Flooding 27
 3.1.1.5. Threat 5: Eavesdropping 27
 3.1.1.6. Threat 6: Traffic Analysis 27
 3.1.2. Publisher-side 27
 3.2. Solutions . 28
 3.2.1. Brokering . 28
 3.2.1.1. Functional Requirements 30
 3.2.1.2. Processing Rules 30

Selander, et al. Expires January 30, 2018 [Page 2]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 3.2.1.3. Authenticity 30
 3.2.1.4. Confidentiality 30
 4. Security Considerations 30
 5. IANA Considerations . 30
 6. References . 31
 6.1. Normative References 31
 6.2. Informative References 31
 Acknowledgments . 32
 Authors’ Addresses . 32

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] is a Web
 application protocol designed for constrained nodes and networks
 [RFC7228]. CoAP makes use of Datagram Transport Layer Security
 (DTLS) [RFC6347] for security. At the same time, CoAP relies on
 proxies for scalability and efficiency. Proxies reduce response time
 and network bandwidth use by serving responses from a shared cache or
 enable clients to make requests that these otherwise could not make.

 CoAP proxies need to perform a number of operations on requests and
 responses to fulfill their purpose, which requires the DTLS security
 associations to be terminated at each proxy. The proxies therefore
 do not only have access to the data required for performing the
 desired functionality, but are also able to eavesdrop on or
 manipulate any part of the CoAP payload and metadata exchanged
 between client and server, or inject new CoAP messages without being
 protected or detected by DTLS.

 __________ _________ _________ __________
 | | | | | | | |
 | |---->| |---->| |---->| |
 | Client | | Proxy | | Proxy | | Server |
 | |<----| |<----| |<----| |
 |__________| |_________| |_________| |__________|
 : : : : : :
 ’-------------’ ’-----------’ ’-------------’
 Security Security Security
 Association Association Association
 A B C

 Figure 1: Hop-by-Hop Security

 One way to mitigate this threat is to secure CoAP communication at
 the application layer using an object-based security mechanism such
 as CBOR Object Signing and Encryption (COSE) [RFC8152] instead of or
 in addition to the security mechanisms at the network layer or
 transport layer. Such a mechanism can provide "end-to-end security"

Selander, et al. Expires January 30, 2018 [Page 3]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 at the CoAP layer (Figure 2) in contrast to the "hop-by-hop security"
 that DTLS provides at the CoAP layer (Figure 1).

 __________ _________ _________ __________
 | | | | | | | |
 | |---->| |---->| |---->| |
 | Client | | Proxy | | Proxy | | Server |
 | |<----| |<----| |<----| |
 |__________| |_________| |_________| |__________|
 : :
 ’---’
 Security Association

 Figure 2: End-to-End Security

 This document analyses security aspects of sensor and actuator
 communications over CoAP that involve proxies (Section 2) and
 publish-subscribe brokers (Section 3). The analysis is based on the
 identification of assets associated with these communications and
 considering the potential threats posed by proxies to these assets.
 The threat analysis provides the basis for deriving security
 requirements that a solution for CoAP end-to-end security should
 meet.

1.1. Assets and Scope

 In general, there are the following assets that need to be protected:

 o The devices at the two ends and their (often very constrained)
 system resources such as available memory, storage, processing
 power and energy.

 o The physical environment of the devices fitted with sensors and
 actuators. Access to the physical environment is assumed to be
 provided through CoAP resources that allow a remote entity to
 retrieve information about the physical environment (such as the
 current temperature) or to produce an effect on the physical
 environment (such as the activation of a heater).

 o The communication infrastructure linking the two devices, which
 often contains some very constrained networks.

 o The data generated and stored in the involved devices.

 An intermediary can directly interfere with the interactions between
 the two ends and thereby have an impact on all these assets. For
 example, flooding a device with messages has an impact on system
 resources, and the successful manipulation of an actuator command

Selander, et al. Expires January 30, 2018 [Page 4]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 (data generated by an involved device) can have a severe impact on
 the physical environment. An intermediary can also affect the
 communication infrastructure, e.g., by dropping messages.

 Even if an intermediary is trustworthy, it may be an attractive
 target for an attack, since such nodes are aggregation points for
 message flows and may be an easier target from the Internet than the
 sensor and actuator nodes residing behind them. An intermediary may
 become subject to intrusion or be infected by malware and perform the
 attacks of a man-in-the-middle.

 The focus of this document is on threats from intermediaries to
 interactions between two CoAP endpoints. Other types of threats, for
 example, attacks involving physical access to the CoAP-speaking
 devices, are out of scope of this document.

 Since intermediaries may perform a service for the interacting
 endpoints, there is a trade-off between the intermediaries’ desired
 functionality and the ability to mitigate threats to the endpoints
 executed through an intermediary.

1.2. Terminology

 Readers are expected to be familiar with the terms and concepts
 described in [RFC7252] and [RFC7641].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 The key word "NOT REQUIRED" is interpreted as synonymous with the key
 word "OPTIONAL".

Selander, et al. Expires January 30, 2018 [Page 5]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2. Proxying

 To assess what impact various threats have to the assets, we need to
 specify and analyse how the proxies operate.

 _ _ __ ___________ __ _ _
 | Request | | Request |
 Client |---------->| |---------->| Server
 or | | Proxy | | or
 Proxy |<----------| |<----------| Proxy
 _ _ __| Response |___________| Response |__ _ _

 Figure 3: A Proxy

 Generally speaking, the functionality of a proxy is to receive a
 request from a client and to send a response back to that client.
 There are two ways for the proxy to satisfy the request:

 o The proxy constructs and sends a request to the server indicated
 in the client’s request, receives a response from that server and
 uses the received data to construct the response to the client.

 o The proxy uses cached data to construct the response to the
 client.

 In both cases, the proxy needs to read some parts both of the request
 from the client and the response from the server to accomplish its
 task.

 The following subsections analyse the threats posed by a proxy from
 the perspective of the client on the one hand (Section 2.1.1) and the
 perspective of the server on the other hand (Section 2.1.2).
 Section 2.2 then presents the design space for possible security
 solutions to mitigate the threats.

Selander, et al. Expires January 30, 2018 [Page 6]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.1. Threats and Security Requirements

2.1.1. Client-side

 __________ __ _ _
 | | Request |
 | |---------->|
 | Client | | Proxy
 | |<----------|
 |__________| Response |__ _ _

 Figure 4: The Client End

 The client sends a request to the proxy and waits for a response.

 From the perspective of the client, there are three possible flows:

 o The client receives a response.
 Reasons include:

 * The proxy duly processed the request and returns a response
 based on data it obtained from the origin server.

 * The proxy encountered an unexpected condition and returns an
 error response according to specification (e.g., 5.02 Bad
 Gateway or 5.04 Gateway Timeout).

 * (Threat 1:) The proxy spoofs a response. For example, the
 proxy could return a stale or outdated response based on data
 it previously obtained from the server or some fourth party, or
 could craft an illicit response itself.

 * (Threat 2:) The proxy duly processed the request but delays the
 return of the response.

 o The client does not receive a response.
 Reasons include:

 * The client times out too early.

 * (Threat 3:) The proxy withholds the response.

 o The client receives too many responses.
 Reasons include:

 * (Threat 4:) The proxy floods the client with responses.

 Furthermore, there are threats related to privacy:

Selander, et al. Expires January 30, 2018 [Page 7]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 o (Threat 5:) The proxy eavesdrops on the data in the request from
 the client.

 o (Threat 6:) The proxy measures the size, frequency or distribution
 of requests from the client.

 Note that "cache poisoning" -- the case of caching injected incorrect
 responses -- is covered from the point of view of the client: it may
 result in the client receiving a spoofed message or being flooded, or
 affect other nodes such that the client times out too early.

2.1.1.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be
 mitigated by the security solution: the client MUST verify that the
 response is an "authentic response" before processing it.

 The definition of an "authentic response" depends on the desired
 proxy functionality and protection level (see Section 2.2), but
 usually means that the client can obtain proof for some or all of the
 following items:

 o that the requested action was executed by the origin server;

 o that the data originates from the origin server and has not been
 altered on the way;

 o that the data matches the specifications of the request (such as
 the target resource);

 o that the data is fresh (when the data is cacheable);

 o that the data is in sequence (when observing a resource).

 The proof can, for example, involve a message authentication code
 that the proxy obtains from the origin server and includes in the
 response or an additional challenge-response roundtrip.

 Exception: A CoAP proxy is specified to return an error response
 (such as 5.02 Bad Gateway or 5.04 Gateway Timeout) when it
 encounters an error condition. Since the condition occurs at the
 proxy and not at the origin server, the response will not be an
 "authentic response" according to the above definition. (A proxy
 cannot obtain a proof that the server is unreachable from an
 unreachable server.) Thus, a client cannot tell if the proxy
 sends the response according to specification or if it spoofs the
 response. This threat is NOT REQUIRED to be mitigated by the
 security solution.

Selander, et al. Expires January 30, 2018 [Page 8]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.1.1.2. Threat 2: Delaying

 This threat is REQUIRED to be mitigated by the security solution.
 Delay attacks are important to mitigate in certain applications,
 e.g., when using CoAP with actuators. A detailed problem statement
 and candidate solution can be found in
 [I-D.mattsson-core-coap-actuators].

2.1.1.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,
 since a client cannot tell if the proxy does not send a response
 because it is hasn’t received a response from the origin server yet
 or if it intentionally withholds the response.

2.1.1.4. Threat 4: Flooding

 A CoAP client is specified to reject any response that it does not
 expect. This can happen before the client verifies whether the
 response is authentic. Therefore, a flood of responses is primarily
 a threat to the system resources of the client, in particular to its
 energy. This threat is NOT REQUIRED to be mitigated by the security
 solution, but a client SHOULD generally defend against flooding
 attacks.

2.1.1.5. Threat 5: Eavesdropping

 This threat is REQUIRED to be mitigated by the security solution:
 clients MUST confidentiality protect the data in the requests they
 send.

 Note that this requirement is in conflict with the requirement that
 the proxy needs to be able to read some parts of the requests in
 order to accomplish its task. Section 2.2 analyses which parts can
 be encrypted depending on the desired proxy functionality and
 protection level. In general, a security solution SHOULD
 confidentiality protect all data that is not needed by the proxy to
 accomplish its task.

 The keys used for confidentiality protection MUST provide forward
 secrecy.

2.1.1.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution.

 It is RECOMMENDED that applications analyse the risks associated with
 application information leaking from the messages flow and assess the

Selander, et al. Expires January 30, 2018 [Page 9]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 feasibility to protect against various threats, e.g., by obfuscating
 parameters transported in plain text, aligning message flow and
 traffic between the different cases, adding padding so different
 messages become indistinguishable, etc.

Selander, et al. Expires January 30, 2018 [Page 10]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.1.2. Server-side

 _ _ __ __________
 | Request | |
 |---------->| |
 Proxy | | Server |
 |<----------| |
 _ _ __| Response |__________|

 Figure 5: The Server End

 A server listens for a request and returns a response.

 From the perspective of the server, there are three possible flows:

 o The server receives a request.
 Reasons include:

 * The proxy makes a request on behalf of a client according to
 specification.

 * The proxy makes a request (e.g., to validate cached data) on
 its own behalf.

 * (Threat 1:) The proxy spoofs a request.

 * (Threat 2:) The proxy sends a request with delay.

 o The server does not receive a request.
 Reasons include:

 * The proxy does not need to send a request right now.

 * (Threat 3:) The proxy withholds a request.

 o The server receives too many requests.
 Reasons include:

 * (Threat 4:) The proxy floods the server with requests.

 A proxy eavesdropping or inferring information from messages it
 operates on has an impact on a server in the same way as on a client:

 o (Threat 5:) The proxy eavesdrops on the data in the response from
 the server.

 o (Threat 6:) The proxy measures the size, frequency or distribution
 of responses from the server.

Selander, et al. Expires January 30, 2018 [Page 11]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.1.2.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be
 mitigated by the security solution: the server MUST verify that the
 request is an "authentic request" before processing it.

 The definition of an "authentic request" depends on the desired proxy
 functionality and protection level (Section 2.2), but usually means
 that the server can obtain proof for some or all of the following
 items:

 o that the proxy acts on behalf of a client;

 o that the data originates from the client and has not been altered
 on the way;

 o that the request has not been received previously.

 The proof can, for example, involve a message authentication code
 that the proxy obtains from the client and includes in the request or
 a challenge-response roundtrip.

 Exception: A CoAP proxy may make certain requests without acting on
 behalf of a client (e.g., to validate cached data). Since such a
 request does not originate from a client, the server cannot tell
 if the proxy sends the request according to specification or if it
 spoofs the request. It is up to the security solution how this
 issue is addressed.

2.1.2.2. Threat 2: Delaying

 This threat is REQUIRED to be mitigated by the security solution; see
 Section 2.1.1.2.

2.1.2.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,
 since a server cannot tell if the proxy does not send a request
 because it has no work to do or if it intentionally withholds a
 request.

2.1.2.4. Threat 4: Flooding

 This threat is NOT REQUIRED to be mitigated by the security solution
 in particular, but a server SHOULD generally defend against flooding
 attacks.

Selander, et al. Expires January 30, 2018 [Page 12]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.1.2.5. Threat 5: Eavesdropping

 This threat is REQUIRED to be mitigated by the security solution; see
 Section 2.1.1.5.

2.1.2.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution;
 see Section 2.1.1.6.

Selander, et al. Expires January 30, 2018 [Page 13]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.2. Solutions

 A security solution has to find a trade-off between desired proxy
 functionality (such as caching) and the provided level of protection.
 From this trade-off results the definition of what constitutes an
 "authentic request" or "authentic response" and when a request or
 response is considered confidentiality protected.

 This section presents two exemplary choices of trade-offs:

 o The first case focuses on a high protection level by tying
 requests and responses uniquely together and confidentiality
 protecting as much as possible, at the cost of reduced proxy
 functionality.

 o The second case aims to preserve proxy functionality as much as
 possible, at the cost of reduced confidentiality protection.

 For both cases, this section presents an overview of the
 functionality and processing rules of the proxy and analyses the
 required authenticity and confidentiality properties of requests and
 responses. Due to space constraints, the analysis is limited to the
 CoAP header, the request and response options shown in Table 1, and
 the payload.

 +----------------+----------------+
 | Requests | Responses |
 +----------------+----------------+
 | Accept | Content-Format |
 | Content-Format | ETag |
 | ETag | Location-Path |
 | If-Match | Location-Query |
 | If-None-Match | Max-Age |
 | Observe | Observe |
 | Proxy-Scheme | |
 | Proxy-Uri | |
 | Uri-Host | |
 | Uri-Port | |
 | Uri-Path | |
 | Uri-Query | |
 +----------------+----------------+

 Table 1: Analysed CoAP Options

 Note that, since CoAP was not designed with end-to-end security in
 mind, a security solution extends the applicability of CoAP beyond
 its original scope.

Selander, et al. Expires January 30, 2018 [Page 14]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.2.1. Forwarding

 In this case we study the functionality of a CoAP forward proxy and
 assume that caching is disabled. This is applicable to many security
 critical use cases where a response needs to be securely linked to a
 unique request from a client and cannot be re-used with another
 request.

 There may be a unique response for each request (see Figure 6) or
 multiple responses for each request (see Figure 7).

2.2.1.1. Examples

 Examples of the need for unique response for each request include
 alarm status retrieval and actuator command confirmation.

 Client Proxy Server
 | | |
 | Request | Request |
 |-------------->|-------------->|--.
 | | | |
 |<--------------|<--------------|<-’
 | Response | Response |
 | | |

 Figure 6: Message Flow with a Unique Response for Each Request

 Example: Alarm status retrieval

 Figure 6 can be seen as an illustration of a message exchange for
 a client requesting the alarm status (e.g., GET /alarm_status)
 from a server. Since the client wants to ensure that the alarm
 status received is reflecting the current alarm status and not a
 cached or spoofed response to the same resource, it must be able
 to verify that the received response is a response to this
 particular request made by the client. Therefore, the response
 must be securely linked to the request.

 Example: Actuation confirmation

 Another example for which Figure 6 serves as illustration is the
 confirmation of an actuator request. In this case a client, say
 in an industrial control system, requests a server that a valve
 should be turned to a certain level, e.g. PUT /valve_42/level
 with payload "3". In order for the client to correctly evaluate
 the result of a potential changed valve level, it is important
 that the client gets a confirmation how the server responded to
 the requested change, e.g., whether the request was performed or

Selander, et al. Expires January 30, 2018 [Page 15]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 not. Again, the client wants to ensure that the response is
 reflecting the result of this particular actuation request made by
 the client and not a cached or spoofed response. Therefore, the
 response must be securely linked to the request.

 An example of the use of multiple responses for each request is in
 security critical monitoring scenarios where time synchronization
 cannot be guaranteed. By avoiding repeated requests from the same
 client to the same resource, constrained node resources and bandwidth
 is saved.

 Client Proxy Server
 | | |
 | Request | Request |
 |-------------->|-------------->|--.
 | | | |
 |<--------------|<--------------|<-’
 | Notification | Notification |
 | | |
 |<--------------|<--------------|
 | Notification | Notification |
 | | |
 |<--------------|<--------------|
 | Notification | Notification |
 | | |

 Figure 7: Message Flow of Notifications of Linked to a Unique Request

 Example: Secure parameter monitoring

 Figure 7 can be seen as an illustration of a message exchange for
 a client monitoring an important parameter measured by the server,
 e.g., in a medical or process industry application. The client
 makes a subscription request for a resource and the server
 responds with notifications, e.g. providing updates to the
 parameter on regular time intervals.

 The client wants to ensure that the first received notification
 reflects the current parameter value and that subsequent
 notifications are timely updates of the initial request. Since
 notifications may be lost or reordered, the client needs to be
 able to verify the order of the messages, as sent by the server.
 By monitoring the received messages and the time they are
 received, the client can detect missing notifications and take
 appropriate action.

Selander, et al. Expires January 30, 2018 [Page 16]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.2.1.2. Functional Requirements

 FR1.1 The caching functionality MUST be inhibited; the CoAP option
 Max-Age of the responses SHALL be 0 (see Section 5.7.1 of
 [RFC7252]).

 FR1.2 To limit information leaking about the resource (see
 Section 2.2.1.5) the Proxy-Uri does not contain Uri-Path or
 Uri-Query.

2.2.1.3. Processing Rules

 In this case, the desired proxy functionality is to forward a
 translated request to the determined destination. There are two
 modes of operation for requests: Either using the Proxy-Uri option
 (PR1.1) or using the Proxy-Scheme option together with the Uri-Host,
 Uri-Port, Uri-Path and Uri-Query options (PR1.2).

 PR1.1 The Proxy-Uri option contains the request URI including
 request scheme (e.g. "coaps://"); the Proxy-Scheme and Uri-*
 options are not present.

 If the proxy is configured to forward requests to another
 proxy, then it keeps the Proxy-Uri option; otherwise, it
 splits the option into its components, adds the corresponding
 Uri-* options and removes the Proxy-Uri option. Then it makes
 the request using the request scheme indicated in the Proxy-
 Uri.

 PR1.2 The Proxy-Scheme option and the Uri-* options together contain
 the request URI; the Proxy-Uri option is not present.

 If the proxy is configured to forward requests to another
 forwarding proxy, then it keeps the Proxy-Scheme and Uri-*
 options; otherwise, it removes the Proxy-Scheme option. Then
 it makes the request using the request scheme indicated in the
 removed Proxy-Scheme option.

 PR1.3 Responses are forwarded by the proxy, without any
 modification.

2.2.1.4. Authenticity

 A request is considered authentic by the server (Section 2.1.2.1) if
 the server can obtain proof for all of the following items:

 A1.1 that the proxy acts on behalf of a client;

Selander, et al. Expires January 30, 2018 [Page 17]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 A1.2 that the following parts of the request originate from the
 client and have not been altered on the way:

 * the CoAP version,

 * the request method,

 * all options except Proxy-Uri, Proxy-Scheme, Uri-Host, Uri-
 Port, Uri-Path and Uri-Query, and

 * the payload, if any.

 A1.3 that the effective request URI originates from the client and
 has not been altered on the way;

 A1.4 that the request has not been received previously;

 A1.5 that the request from the client to the proxy was sent
 recently.

 A response is considered authentic by the client (Section 2.1.1.1) if
 the client can obtain proof for all of the following items:

 A1.6 that the following parts of the response originate from the
 server and have not been altered on the way:

 * the CoAP version,

 * the response code,

 * all options, and

 * the payload, if any.

 A1.7 that the response corresponds uniquely to the request sent by
 the client.

 A1.8 that the response has not been received previously;

 A1.9 that the response from the server to the proxy was sent
 recently;

 A1.10 that the response is in sequence if there are multiple
 responses.

Selander, et al. Expires January 30, 2018 [Page 18]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

2.2.1.5. Confidentiality

 The following parts of the message are confidentiality protected
 (Section 2.1.1.5):

 o all options except Proxy-Uri, Proxy-Scheme, Uri-Host and Uri-Port;

 o the payload, if any.

2.2.2. Caching

 In this case we study caching: how a proxy may serve the same cached
 response to multiple clients requesting the same resource.

 The caching functionality protects communication-constrained servers
 from repeated requests for the same resources, possibly originating
 from different clients. This saves system resources, bandwidth, and
 round-trip time.

 There may be one response for each request (see Figure 8) or multiple
 responses for each request (see Figure 9).

2.2.2.1. Examples

 The first example is a simple case of caching.

 Client A Proxy Server
 | | |
 | Request | Request |
 |-------------->|-------------->|--.
 | | | |
 |<--------------|<--------------|<-’
 | Response | Response |
 | | |
 | |
 Client B | |
 | | | |
 | Request | |
 |-------------->|--. |
 | | | from cache |
 |<--------------|<-’ |
 | Response | |
 | | |

 Figure 8: Message Flow for Cached Responses

 Example: Caching

Selander, et al. Expires January 30, 2018 [Page 19]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 In Figure 8, client A requests the proxy to make a certain request
 to the server and to return the server’s response. The proxy
 services the request by making a request message to the server
 according to the processing rules. If the server returns a
 cacheable response, then the proxy stores the response in its
 cache, performs any necessary translations, and forwards it to the
 client. Later, client B makes an equivalent request to the proxy
 that the proxy services by returning the response from its cache.
 Both client A and B want to verify that the response is valid.

 In addition to multiple clients’ requests being served by one
 response, each request may result in multiple responses. The
 difference compared to Section 2.2.1 is that in this example multiple
 clients may be served with the same response, further saving server
 resources.

 Client A Proxy Server
 | | |
 | Request | Request |
 |-------------->|-------------->|--.
 | | | |
 |<--------------|<--------------|<-’
 | Notification | Notification |
 | | |
 | |
 Client B | |
 | | | |
 | Request | |
 |-------------->|--. |
 | | | from cache |
 |<--------------|<-’ |
 | Notification | |
 | | |
 |<--------------|<--------------|
 | Notification | Notification |
 | | |
 | |
 Client A | |
 | | |
 |<--------------| |
 | Notification | |
 | | |

 Figure 9: Message Flow for Observe with Multiple Observers

 Example: Observe with caching

Selander, et al. Expires January 30, 2018 [Page 20]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 In Figure 9, the server exposes an observable resource (e.g., the
 current reading of a temperature sensor). Multiple clients are
 interested in the current state of the resource and observe it
 using the CoAP resource observation mechanism [RFC7641]. The goal
 is to keep the state observed by the clients closely in sync with
 the actual state of the resource at the server. Another goal is
 to minimize the burden on the server by moving the task to fan out
 notifications to multiple clients from the server to the proxy.

2.2.2.2. Functional Requirements

 The security solution SHOULD protect requests and responses in a way
 that a proxy can perform the following tasks:

 FR2.1 Storing a cacheable response in a cache. This requires that
 the proxy is able to calculate the cache-key of the request.
 Cacheable responses include 2.05 (Content) responses and all
 error responses.

 FR2.2 Returning a fresh response from its cache without contacting
 the server.

 FR2.3 Performing validation of a response cached by the proxy as
 well as validation of a response cached by the client.

 FR2.4 Observing a resource on behalf of one or more clients.

2.2.2.3. Processing Rules

 The proxy complies with the forwarding rules PR1.1 - 1.3
 (Section 2.2.1.3) and the rules below. The rules below have
 priority.

 PR2.1 If the proxy receives a request where the cache key matches
 that of a cached fresh response, then the proxy with that
 response; otherwise, it makes a request towards the server.

 PR2.2 The proxy caches and forwards cacheable responses. If there
 is already a response in the cache with the cache key of the
 corresponding request, then the old response in the cache is
 marked as stale.

 PR2.3 If the proxy receives a request that contains an ETag option
 and the proxy has a fresh response with the same cache key and
 ETag, then the proxy replies to the request with a 2.03
 (Valid) response without payload, else it forwards a
 translated request.

Selander, et al. Expires January 30, 2018 [Page 21]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 PR2.4 The proxy updates the Max-Age option according to the Max-Age
 associated with the resource representation it receives,
 decreasing its value to reflect the time spent in the cache.

 PR2.5 If the request contains an Accept option and if there is a
 fresh response that matches the cache key for the
 corresponding request except for the Accept option and if the
 Content-Format of the response matches that of the Accept
 option, then the proxy forwards the cached response to the
 requesting client.

2.2.2.4. Authenticity

 A request is considered authentic by the server (Section 2.1.2.1) if
 the server can obtain proof for all of the following items:

 A2.1 that the following parts of the request originate from the
 client and have not been altered on the way:

 * the CoAP version,

 * the request method,

 * all options except ETag, Observe, Proxy-Uri, Proxy-Scheme,
 Uri-Host, Uri-Port, Uri-Path and Uri-Query, and

 * the payload, if any.

 A2.2 that the effective request URI originates from the client and
 has not been altered on the way;

 A response is considered authentic by the client (Section 2.1.1.1) if
 the client can obtain proof for all of the following items:

 A2.3 that the following parts of the response originate from the
 server and have not been altered on the way:

 * the CoAP version,

 * the response code,

 * all options except Max-Age and Observe, and

 * the payload, if any.

 A2.4 that the response matches the specifications of the request;

 A2.5 that the data is fresh (when the response is cacheable);

Selander, et al. Expires January 30, 2018 [Page 22]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 A2.6 that the response is in sequence (when observing a resource).

2.2.2.5. Confidentiality

 No parts of a request are confidentiality protected
 (Section 2.1.2.5).

 A response is considered confidentiality protected (Section 2.1.2.5)
 if the payload of the response is confidentiality protected.

Selander, et al. Expires January 30, 2018 [Page 23]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

3. Publish-Subscribe

 Much of the concerns about proxies as described previously in this
 document also applies to other kinds of intermediary nodes. In this
 section we study brokers in a publish-subscribe setting
 [I-D.ietf-core-coap-pubsub]. The case of combining brokers and
 proxies is out of scope for this version of the document.

 There are different ways for a pub-sub broker to operate. We
 consider the following broker operations:

 o The broker receives a request for a topic from a subscriber.

 o The broker receives a request for a publication to a topic from a
 publisher and forwards the publication to the subscribers of the
 topic.

 We consider the setting where there is a security association between
 publisher and subscriber such that the publications can be protected
 during transfer, see Figure 10.

 ____________ __________ ___________
 | | | | | |
 | |----->| |<------| |
 | Subscriber | | Broker | | Publisher |
 | |<-----| |------>| |
 |____________| |__________| |___________|
 : :
 ’--------------------------------------’
 Security Association

 Figure 10: Publisher-to-Subscriber Security

 Since there is no security association with the broker, we only
 consider the subscribe and publish functionality of the broker. Note
 that the broker needs to read the topic to accomplish this task.

3.1. Threats and Security Requirements

3.1.1. Subscriber-side

Selander, et al. Expires January 30, 2018 [Page 24]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 __________ __ _ _
 | | Request |
 | Sub- |---------->|
 | scriber | | Broker
 | |<----------|
 |__________| Response |__ _ _

 Figure 11: The Subscriber End

 The subscriber sends a subscription request to the broker and waits
 for a response.

 From the perspective of the subscriber, there are three possible
 flows:

 o The subscriber receives a response.
 Reasons include:

 * The broker duly processed the request and returns a response
 based on data it obtained from a publisher.

 * The subscriber made a bad request and the broker returns an
 error response accordingly (e.g., 4.04 Not Found).

 * The broker encountered an unexpected condition and returns an
 error response accordingly (e.g., 5.03 Service Unavailable).

 * (Threat 1:) The broker spoofs a response.

 * (Threat 2:) The broker duly processed the request but delays
 the return of a response.

 o The subscriber does not receive a response.
 Reasons include:

 * The subscriber times out too early.

 * (Threat 3:) The broker withholds a response.

 o The subscriber receives too many responses.
 Reasons include:

 * (Threat 4:) The broker floods the subscriber with responses.

 Furthermore, there are threats related to privacy:

 o (Threat 5:) The broker eavesdrops on the data in the request from
 the subscriber.

Selander, et al. Expires January 30, 2018 [Page 25]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 o (Threat 6:) The broker measures the size, frequency or
 distribution of requests from the subscriber.

 Note that "topic poisoning" -- the case of storing injected incorrect
 publications -- is covered from the point of view of the subscriber:
 it may result in the subscriber receiving a spoofed message, or being
 flooded, or affect other nodes such that the subscriber times out too
 early.

3.1.1.1. Threat 1: Spoofing

 With one exception (see below), this threat is REQUIRED to be
 mitigated by the security solution: the subscriber MUST verify that a
 response is an "authentic publication" before processing it.

 The definition of an "authentic publication" depends on the setting
 (Section 3.2), but usually means that the subscriber can obtain proof
 for some or all of the following items:

 o that the data matches the specifications of the request (such as
 the topic);

 o that the data originates from a publisher that is authorized to
 publish to the topic;

 o that the data has not been altered on the way between publisher
 and subscriber;

 o that the data is fresh (when the data is cacheable);

 o that the data is in sequence (when observing a topic).

 The proof can, for example, include a message authentication code
 that the proxy obtains from the origin server and includes in the
 response or an additional challenge-response roundtrip.

 Exception: A CoAP server like the broker is specified to return an
 error response (such as 4.04 Not Found or 5.03 Service
 Unavailable) when it encounters an error condition. Since the
 condition occurs at the broker and not at the publisher, the
 response will not be an "authentic response" according to the
 above definition. Thus, a subscriber cannot tell if the broker
 sends the error response according to specification or if it
 spoofs the response. This threat is NOT REQUIRED to be mitigated
 by the security solution.

Selander, et al. Expires January 30, 2018 [Page 26]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

3.1.1.2. Threat 2: Delaying

 This threat is NOT REQUIRED to be mitigated by the security solution.

3.1.1.3. Threat 3: Withholding

 This threat is NOT REQUIRED to be mitigated by the security solution,
 since a subscriber cannot tell if the broker does not send a response
 because it is hasn’t received a publication from the publisher yet or
 if it intentionally withholds the response.

3.1.1.4. Threat 4: Flooding

 A CoAP client like the subscriber is specified to reject any response
 that it does not expect. This can happen before the subscriber
 verifies if the response is authentic. Therefore, a flood of
 responses is primarily a threat to the system resources of the
 client, in particular to its energy. This threat is NOT REQUIRED to
 be mitigated by the security solution, but a subscriber SHOULD
 generally defend against flooding attacks.

3.1.1.5. Threat 5: Eavesdropping

 This threat is NOT REQUIRED to be mitigated: The broker needs to read
 all parts of the request from the subscriber to accomplish its task.

 It is RECOMMENDED that applications analyse the risks associated with
 application information leaking from the messages flow and assess the
 feasibility to protect against various threats, e.g., by obfuscating
 topic content.

3.1.1.6. Threat 6: Traffic Analysis

 This threat is NOT REQUIRED to be mitigated by the security solution.

 It is RECOMMENDED that applications analyse the risks associated with
 application information leaking from the messages flow and assess the
 feasibility to protect against various threats, e.g., by obfuscating
 parameters transported in plain text, aligning message flow and
 traffic between the different cases, adding padding so different
 messages become indistinguishable, etc.

3.1.2. Publisher-side

Selander, et al. Expires January 30, 2018 [Page 27]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 _ _ __ __________
 | Request | |
 |<----------| Pub- |
 Broker | | lisher |
 |---------->| |
 _ _ __| Response |__________|

 Figure 12: The Publisher End

 The publisher sends a publication request to the broker and waits for
 a response.

 The threat of the broker eavesdropping on the data in the publication
 request is REQUIRED to be mitigated by the security solution:
 publishers MUST confidentiality protect the data in the requests they
 send. This excludes parts that the broker needs to read to perform
 its job, e.g., the topic.

 The threat of the broker measuring the size, frequency or
 distribution of publication requests is NOT REQUIRED to be mitigated
 by the security solution; see Section 3.1.1.6.

 The broker is in full control of the response and may therefore
 arbitrarily spoof, delay, or withhold it. This threat is NOT
 REQUIRED to be mitigated. For example, a proof that the broker has
 notified all subscribers is NOT REQUIRED.

3.2. Solutions

3.2.1. Brokering

 In this case we study brokering: how a broker may serve the same
 publication to multiple subscribers observing the same topic.

 The brokering functionality protects communication-constrained
 publishers from repeated requests for the same resources, possibly
 originating from different subscribers. This saves system resources,
 bandwidth, and round-trip time.

Selander, et al. Expires January 30, 2018 [Page 28]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

 Subscriber A Broker Publisher
 | | | |
 | | Request |
 | .--|<--------------|
 | | | |
 | ’->|-------------->|
 | | Response |
 | | |
 | Request | |
 |-------------->|--. |
 | | | from store |
 |<--------------|<-’ |
 | Notification | |
 | | |
 | |
 Subscriber B | |
 | | | |
 | Request | |
 |-------------->|--. |
 | | | from store |
 |<--------------|<-’ |
 | Notification | |
 | | |
 | | Request |
 |<--------------|<--------------|
 | Notification | |
 | |-------------->|
 | | Response |
 | |
 Subscriber A | |
 | | |
 |<--------------| |
 | Notification | |
 | | |

 Figure 13: Message Flow for Publish Subscribe

 Example

 In Figure 13, the publisher publishes to a topic (e.g., the
 current reading of a temperature sensor). Multiple subscribers
 are interested in the current state of the topic and observe the
 topic as specified in [I-D.ietf-core-coap-pubsub]. The goal is to
 keep the state observed by the subscribers closely in sync with
 the actual state of the resource at the publisher. Another goal
 is to minimize the burden on the publisher by moving the task to
 fan out notifications to multiple subscribers from the publisher
 to the broker.

Selander, et al. Expires January 30, 2018 [Page 29]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

3.2.1.1. Functional Requirements

 The security solution SHOULD protect subscription and publication
 requests in a way that a broker can perform the following tasks:

 FR3.1 Storing publications. This requires that the broker is able
 to read the topic of the request.

 FR3.2 Returning a stored publication without contacting the
 publisher.

3.2.1.2. Processing Rules

 The broker complies with the following rules:

 PR3.1 If the broker receives a request where the topic matches that
 of a cached publication, then the broker responds with that
 publication.

 PR3.2 The broker caches and forwards publication notifications.

3.2.1.3. Authenticity

 A publication is considered authentic by the subscriber if the
 subscriber can obtain proof for all all of the following items:

 A3.1 that the payload is associated to the topic;

 A3.2 that the payload has not been altered since published;

 A3.3 that the publication is in sequence.

3.2.1.4. Confidentiality

 The payload of a publication request is confidentiality protected.

4. Security Considerations

 This document is about security; as such, there are no additional
 security considerations.

5. IANA Considerations

 This document includes no request to IANA.

Selander, et al. Expires January 30, 2018 [Page 30]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <http://www.rfc-editor.org/info/rfc7641>.

6.2. Informative References

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-02 (work in
 progress), July 2017.

 [I-D.mattsson-core-coap-actuators]
 Mattsson, J., Fornehed, J., Selander, G., and F.
 Palombini, "Controlling Actuators with CoAP", draft-
 mattsson-core-coap-actuators-02 (work in progress),
 November 2016.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <http://www.rfc-editor.org/info/rfc7228>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <http://www.rfc-editor.org/info/rfc8152>.

Selander, et al. Expires January 30, 2018 [Page 31]

Internet-Draft Requirements for CoAP End-To-End Security July 2017

Acknowledgments

 Thanks to Ari Keranen, John Mattsson, Jim Schaad and Ludwig Seitz for
 helpful comments and discussions that have shaped the document.

Authors’ Addresses

 Goeran Selander
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: goran.selander@ericsson.com

 Francesca Palombini
 Ericsson AB
 SE-164 80 Stockholm
 Sweden

 Email: francesca.palombini@ericsson.com

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen 28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

Selander, et al. Expires January 30, 2018 [Page 32]

