
MMUSIC A. Keranen
Internet-Draft Ericsson
Obsoletes: 5245 (if approved) J. Rosenberg
Intended status: Standards Track jdrosen.net
Expires: June 23, 2016 December 21, 2015

 Interactive Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal
 draft-ietf-ice-rfc5245bis-01

Abstract

 This document describes a protocol for Network Address Translator
 (NAT) traversal for UDP-based multimedia. This protocol is called
 Interactive Connectivity Establishment (ICE). ICE makes use of the
 Session Traversal Utilities for NAT (STUN) protocol and its
 extension, Traversal Using Relay NAT (TURN).

 This document obsoletes RFC 5245.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 23, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Keranen & Rosenberg Expires June 23, 2016 [Page 1]

Internet-Draft ICE December 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 5
 2. Overview of ICE . 6
 2.1. Gathering Candidate Addresses 8
 2.2. Connectivity Checks 10
 2.3. Sorting Candidates 11
 2.4. Frozen Candidates . 12
 2.5. Security for Checks 13
 2.6. Concluding ICE . 13
 2.7. Lite Implementations 15
 2.8. Usages of ICE . 15
 3. Terminology . 15
 4. ICE Candidate Gathering and Exchange 19
 4.1. Procedures for Full Implementation 20
 4.1.1. Gathering Candidates 20
 4.1.1.1. Host Candidates 21
 4.1.1.2. Server Reflexive and Relayed Candidates 22
 4.1.1.3. Computing Foundations 24
 4.1.1.4. Keeping Candidates Alive 24
 4.1.2. Prioritizing Candidates 24
 4.1.2.1. Recommended Formula 25
 4.1.2.2. Guidelines for Choosing Type and Local
 Preferences 26
 4.1.3. Eliminating Redundant Candidates 27
 4.2. Lite Implementation Procedures 27
 4.3. Encoding the Candidate Information 28
 5. ICE Candidate Processing 30
 5.1. Procedures for Full Implementation 30
 5.1.1. Verifying ICE Support 30
 5.1.2. Determining Role 31

Keranen & Rosenberg Expires June 23, 2016 [Page 2]

Internet-Draft ICE December 2015

 5.1.3. Forming the Check Lists 32
 5.1.3.1. Forming Candidate Pairs 32
 5.1.3.2. Computing Pair Priority and Ordering Pairs . . . 35
 5.1.3.3. Pruning the Pairs 35
 5.1.3.4. Computing States 35
 5.1.4. Scheduling Checks 38
 5.2. Lite Implementation Procedures 40
 6. Performing Connectivity Checks 40
 6.1. STUN Client Procedures 40
 6.1.1. Creating Permissions for Relayed Candidates 40
 6.1.2. Sending the Request 41
 6.1.2.1. PRIORITY and USE-CANDIDATE 41
 6.1.2.2. ICE-CONTROLLED and ICE-CONTROLLING 41
 6.1.2.3. Forming Credentials 42
 6.1.2.4. DiffServ Treatment 42
 6.1.3. Processing the Response 42
 6.1.3.1. Failure Cases 42
 6.1.3.2. Success Cases 43
 6.1.3.2.1. Discovering Peer Reflexive Candidates 43
 6.1.3.2.2. Constructing a Valid Pair 44
 6.1.3.2.3. Updating Pair States 45
 6.1.3.2.4. Updating the Nominated Flag 46
 6.1.3.3. Check List and Timer State Updates 46
 6.2. STUN Server Procedures 47
 6.2.1. Additional Procedures for Full Implementations . . . 47
 6.2.1.1. Detecting and Repairing Role Conflicts 47
 6.2.1.2. Computing Mapped Address 49
 6.2.1.3. Learning Peer Reflexive Candidates 49
 6.2.1.4. Triggered Checks 49
 6.2.1.5. Updating the Nominated Flag 51
 6.2.2. Additional Procedures for Lite Implementations . . . 51
 7. Concluding ICE Processing 51
 7.1. Procedures for Full Implementations 51
 7.1.1. Nominating Pairs 51
 7.1.1.1. Regular Nomination 52
 7.1.1.2. Aggressive Nomination 52
 7.1.2. Updating States 53
 7.2. Procedures for Lite Implementations 54
 7.2.1. Peer Is Full . 55
 7.2.2. Peer Is Lite . 55
 7.3. Freeing Candidates 56
 7.3.1. Full Implementation Procedures 56
 7.3.2. Lite Implementation Procedures 56
 8. ICE Restarts . 56
 9. Keepalives . 57
 10. Media Handling . 58
 10.1. Sending Media . 58
 10.1.1. Procedures for Full Implementations 58

Keranen & Rosenberg Expires June 23, 2016 [Page 3]

Internet-Draft ICE December 2015

 10.1.2. Procedures for Lite Implementations 59
 10.1.3. Procedures for All Implementations 59
 10.2. Receiving Media . 59
 11. Extensibility Considerations 60
 12. Setting Ta and RTO . 61
 12.1. Real-time Media Streams 61
 12.2. Non-real-time Sessions 63
 13. Example . 63
 14. Security Considerations 68
 14.1. Attacks on Connectivity Checks 68
 14.2. Attacks on Server Reflexive Address Gathering 71
 14.3. Attacks on Relayed Candidate Gathering 72
 14.4. Insider Attacks . 72
 14.4.1. STUN Amplification Attack 72
 15. STUN Extensions . 73
 15.1. New Attributes . 73
 15.2. New Error Response Codes 74
 16. Operational Considerations 74
 16.1. NAT and Firewall Types 74
 16.2. Bandwidth Requirements 74
 16.2.1. STUN and TURN Server Capacity Planning 74
 16.2.2. Gathering and Connectivity Checks 75
 16.2.3. Keepalives . 75
 16.3. ICE and ICE-lite . 76
 16.4. Troubleshooting and Performance Management 76
 16.5. Endpoint Configuration 76
 17. IANA Considerations . 77
 17.1. STUN Attributes . 77
 17.2. STUN Error Responses 77
 18. IAB Considerations . 77
 18.1. Problem Definition 77
 18.2. Exit Strategy . 78
 18.3. Brittleness Introduced by ICE 78
 18.4. Requirements for a Long-Term Solution 79
 18.5. Issues with Existing NAPT Boxes 80
 19. Changes from RFC 5245 . 80
 20. Acknowledgements . 80
 21. References . 81
 21.1. Normative References 81
 21.2. Informative References 81
 Appendix A. Lite and Full Implementations 85
 Appendix B. Design Motivations 86
 B.1. Pacing of STUN Transactions 86
 B.2. Candidates with Multiple Bases 87
 B.3. Purpose of the Related Address and Related Port
 Attributes . 89
 B.4. Importance of the STUN Username 90
 B.5. The Candidate Pair Priority Formula 91

Keranen & Rosenberg Expires June 23, 2016 [Page 4]

Internet-Draft ICE December 2015

 B.6. Why Are Keepalives Needed? 91
 B.7. Why Prefer Peer Reflexive Candidates? 92
 B.8. Why Are Binding Indications Used for Keepalives? 92
 Authors’ Addresses . 92

1. Introduction

 Protocols establishing multimedia sessions between peers typically
 involve exchanging IP addresses and ports for the media sources and
 sinks. However this poses challenges when operated through Network
 Address Translators (NATs) [RFC3235]. These protocols also seek to
 create a media flow directly between participants, so that there is
 no application layer intermediary between them. This is done to
 reduce media latency, decrease packet loss, and reduce the
 operational costs of deploying the application. However, this is
 difficult to accomplish through NAT. A full treatment of the reasons
 for this is beyond the scope of this specification.

 Numerous solutions have been defined for allowing these protocols to
 operate through NAT. These include Application Layer Gateways
 (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
 Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
 Realm Specific IP [RFC3102] [RFC3103] along with session description
 extensions needed to make them work, such as the Session Description
 Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
 (RTCP) [RFC3605]. Unfortunately, these techniques all have pros and
 cons which, make each one optimal in some network topologies, but a
 poor choice in others. The result is that administrators and
 implementors are making assumptions about the topologies of the
 networks in which their solutions will be deployed. This introduces
 complexity and brittleness into the system. What is needed is a
 single solution that is flexible enough to work well in all
 situations.

 This specification defines Interactive Connectivity Establishment
 (ICE) as a technique for NAT traversal for UDP-based media streams
 (though ICE has been extended to handle other transport protocols,
 such as TCP [RFC6544]). ICE works by exchanging a multiplicity of IP
 addresses and ports which are then tested for connectivity by peer-
 to-peer connectivity checks. The IP addresses and ports are
 exchanged via mechanisms (for example, including in a offer/answer
 exchange) and the connectivity checks are performed using Session
 Traversal Utilities for NAT (STUN) specification [RFC5389]. ICE also
 makes use of Traversal Using Relays around NAT (TURN) [RFC5766], an
 extension to STUN. Because ICE exchanges a multiplicity of IP
 addresses and ports for each media stream, it also allows for address
 selection for multihomed and dual-stack hosts, and for this reason it
 deprecates [RFC4091] and [RFC4092].

Keranen & Rosenberg Expires June 23, 2016 [Page 5]

Internet-Draft ICE December 2015

2. Overview of ICE

 In a typical ICE deployment, we have two endpoints (known as ICE
 AGENTS) that want to communicate. They are able to communicate
 indirectly via some signaling protocol (such as SIP), by which they
 can exchange ICE candidates. Note that ICE is not intended for NAT
 traversal for the signaling protocol, which is assumed to be provided
 via another mechanism. At the beginning of the ICE process, the
 agents are ignorant of their own topologies. In particular, they
 might or might not be behind a NAT (or multiple tiers of NATs). ICE
 allows the agents to discover enough information about their
 topologies to potentially find one or more paths by which they can
 communicate.

 Figure 1 shows a typical environment for ICE deployment. The two
 endpoints are labelled L and R (for left and right, which helps
 visualize call flows). Both L and R are behind their own respective
 NATs though they may not be aware of it. The type of NAT and its
 properties are also unknown. Agents L and R are capable of engaging
 in an candidate exchange process, whose purpose is to set up a media
 session between L and R. Typically, this exchange will occur through
 a signaling (e.g., SIP) server.

 In addition to the agents, a signaling server and NATs, ICE is
 typically used in concert with STUN or TURN servers in the network.
 Each agent can have its own STUN or TURN server, or they can be the
 same.

Keranen & Rosenberg Expires June 23, 2016 [Page 6]

Internet-Draft ICE December 2015

 +---------+
 +--------+ |Signaling| +--------+
 | STUN | |Server | | STUN |
 | Server | +---------+ | Server |
 +--------+ / \ +--------+
 / \
 / \
 / <- Signaling -> \
 / \
 +--------+ +--------+
 | NAT | | NAT |
 +--------+ +--------+
 / \
 / \
 +-------+ +-------+
 | Agent | | Agent |
 | L | | R |
 +-------+ +-------+

 Figure 1: ICE Deployment Scenario

 The basic idea behind ICE is as follows: each agent has a variety of
 candidate TRANSPORT ADDRESSES (combination of IP address and port for
 a particular transport protocol, which is always UDP in this
 specification) it could use to communicate with the other agent.
 These might include:

 o A transport address on a directly attached network interface

 o A translated transport address on the public side of a NAT (a
 "server reflexive" address)

 o A transport address allocated from a TURN server (a "relayed
 address")

 Potentially, any of L’s candidate transport addresses can be used to
 communicate with any of R’s candidate transport addresses. In
 practice, however, many combinations will not work. For instance, if
 L and R are both behind NATs, their directly attached interface
 addresses are unlikely to be able to communicate directly (this is
 why ICE is needed, after all!). The purpose of ICE is to discover
 which pairs of addresses will work. The way that ICE does this is to
 systematically try all possible pairs (in a carefully sorted order)
 until it finds one or more that work.

Keranen & Rosenberg Expires June 23, 2016 [Page 7]

Internet-Draft ICE December 2015

2.1. Gathering Candidate Addresses

 In order to execute ICE, an agent has to identify all of its address
 candidates. A CANDIDATE is a transport address -- a combination of
 IP address and port for a particular transport protocol (with only
 UDP specified here). This document defines three types of
 candidates, some derived from physical or logical network interfaces,
 others discoverable via STUN and TURN. Naturally, one viable
 candidate is a transport address obtained directly from a local
 interface. Such a candidate is called a HOST CANDIDATE. The local
 interface could be Ethernet or WiFi, or it could be one that is
 obtained through a tunnel mechanism, such as a Virtual Private
 Network (VPN) or Mobile IP (MIP). In all cases, such a network
 interface appears to the agent as a local interface from which ports
 (and thus candidates) can be allocated.

 If an agent is multihomed, it obtains a candidate from each IP
 address. Depending on the location of the PEER (the other agent in
 the session) on the IP network relative to the agent, the agent may
 be reachable by the peer through one or more of those IP addresses.
 Consider, for example, an agent that has a local IP address on a
 private net 10 network (I1), and a second connected to the public
 Internet (I2). A candidate from I1 will be directly reachable when
 communicating with a peer on the same private net 10 network, while a
 candidate from I2 will be directly reachable when communicating with
 a peer on the public Internet. Rather than trying to guess which IP
 address will work, the initiating sends both the candidates to its
 peer.

 Next, the agent uses STUN or TURN to obtain additional candidates.
 These come in two flavors: translated addresses on the public side of
 a NAT (SERVER REFLEXIVE CANDIDATES) and addresses on TURN servers
 (RELAYED CANDIDATES). When TURN servers are utilized, both types of
 candidates are obtained from the TURN server. If only STUN servers
 are utilized, only server reflexive candidates are obtained from
 them. The relationship of these candidates to the host candidate is
 shown in Figure 2. In this figure, both types of candidates are
 discovered using TURN. In the figure, the notation X:x means IP
 address X and UDP port x.

Keranen & Rosenberg Expires June 23, 2016 [Page 8]

Internet-Draft ICE December 2015

 To Internet

 |
 |
 | /------------ Relayed
 Y:y | / Address
 +--------+
 | |
 | TURN |
 | Server |
 | |
 +--------+
 |
 |
 | /------------ Server
 X1’:x1’|/ Reflexive
 +------------+ Address
 | NAT |
 +------------+
 |
 | /------------ Local
 X:x |/ Address
 +--------+
 | |
 | Agent |
 | |
 +--------+

 Figure 2: Candidate Relationships

 When the agent sends the TURN Allocate request from IP address and
 port X:x, the NAT (assuming there is one) will create a binding
 X1’:x1’, mapping this server reflexive candidate to the host
 candidate X:x. Outgoing packets sent from the host candidate will be
 translated by the NAT to the server reflexive candidate. Incoming
 packets sent to the server reflexive candidate will be translated by
 the NAT to the host candidate and forwarded to the agent. We call
 the host candidate associated with a given server reflexive candidate
 the BASE.

 Note: "Base" refers to the address an agent sends from for a
 particular candidate. Thus, as a degenerate case host candidates
 also have a base, but it’s the same as the host candidate.

 When there are multiple NATs between the agent and the TURN server,
 the TURN request will create a binding on each NAT, but only the
 outermost server reflexive candidate (the one nearest the TURN

Keranen & Rosenberg Expires June 23, 2016 [Page 9]

Internet-Draft ICE December 2015

 server) will be discovered by the agent. If the agent is not behind
 a NAT, then the base candidate will be the same as the server
 reflexive candidate and the server reflexive candidate is redundant
 and will be eliminated.

 The Allocate request then arrives at the TURN server. The TURN
 server allocates a port y from its local IP address Y, and generates
 an Allocate response, informing the agent of this relayed candidate.
 The TURN server also informs the agent of the server reflexive
 candidate, X1’:x1’ by copying the source transport address of the
 Allocate request into the Allocate response. The TURN server acts as
 a packet relay, forwarding traffic between L and R. In order to send
 traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
 server forwards that to X1’:x1’, which passes through the NAT where
 it is mapped to X:x and delivered to L.

 When only STUN servers are utilized, the agent sends a STUN Binding
 request [RFC5389] to its STUN server. The STUN server will inform
 the agent of the server reflexive candidate X1’:x1’ by copying the
 source transport address of the Binding request into the Binding
 response.

2.2. Connectivity Checks

 Once L has gathered all of its candidates, it orders them in highest
 to lowest-priority and sends them to R over the signaling channel.
 When R receives the candidates from L, it performs the same gathering
 process and responds with its own list of candidates. At the end of
 this process, each agent has a complete list of both its candidates
 and its peer’s candidates. It pairs them up, resulting in CANDIDATE
 PAIRS. To see which pairs work, each agent schedules a series of
 CHECKS. Each check is a STUN request/response transaction that the
 client will perform on a particular candidate pair by sending a STUN
 request from the local candidate to the remote candidate.

 The basic principle of the connectivity checks is simple:

 1. Sort the candidate pairs in priority order.

 2. Send checks on each candidate pair in priority order.

 3. Acknowledge checks received from the other agent.

 With both agents performing a check on a candidate pair, the result
 is a 4-way handshake:

Keranen & Rosenberg Expires June 23, 2016 [Page 10]

Internet-Draft ICE December 2015

 L R
 - -
 STUN request -> \ L’s
 <- STUN response / check

 <- STUN request \ R’s
 STUN response -> / check

 Figure 3: Basic Connectivity Check

 It is important to note that the STUN requests are sent to and from
 the exact same IP addresses and ports that will be used for media
 (e.g., RTP and RTCP). Consequently, agents demultiplex STUN and RTP/
 RTCP using contents of the packets, rather than the port on which
 they are received. Fortunately, this demultiplexing is easy to do,
 especially for RTP and RTCP.

 Because a STUN Binding request is used for the connectivity check,
 the STUN Binding response will contain the agent’s translated
 transport address on the public side of any NATs between the agent
 and its peer. If this transport address is different from other
 candidates the agent already learned, it represents a new candidate,
 called a PEER REFLEXIVE CANDIDATE, which then gets tested by ICE just
 the same as any other candidate.

 As an optimization, as soon as R gets L’s check message, R schedules
 a connectivity check message to be sent to L on the same candidate
 pair. This accelerates the process of finding a valid candidate, and
 is called a TRIGGERED CHECK.

 At the end of this handshake, both L and R know that they can send
 (and receive) messages end-to-end in both directions.

2.3. Sorting Candidates

 Because the algorithm above searches all candidate pairs, if a
 working pair exists it will eventually find it no matter what order
 the candidates are tried in. In order to produce faster (and better)
 results, the candidates are sorted in a specified order. The
 resulting list of sorted candidate pairs is called the CHECK LIST.
 The algorithm is described in Section 4.1.2 but follows two general
 principles:

 o Each agent gives its candidates a numeric priority, which is sent
 along with the candidate to the peer.

 o The local and remote priorities are combined so that each agent
 has the same ordering for the candidate pairs.

Keranen & Rosenberg Expires June 23, 2016 [Page 11]

Internet-Draft ICE December 2015

 The second property is important for getting ICE to work when there
 are NATs in front of L and R. Frequently, NATs will not allow
 packets in from a host until the agent behind the NAT has sent a
 packet towards that host. Consequently, ICE checks in each direction
 will not succeed until both sides have sent a check through their
 respective NATs.

 The agent works through this check list by sending a STUN request for
 the next candidate pair on the list periodically. These are called
 ORDINARY CHECKS.

 In general, the priority algorithm is designed so that candidates of
 similar type get similar priorities and so that more direct routes
 (that is, through fewer media relays and through fewer NATs) are
 preferred over indirect ones (ones with more media relays and more
 NATs). Within those guidelines, however, agents have a fair amount
 of discretion about how to tune their algorithms.

2.4. Frozen Candidates

 The previous description only addresses the case where the agents
 wish to establish a media session with one COMPONENT (a piece of a
 media stream requiring a single transport address; a media stream may
 require multiple components, each of which has to work for the media
 stream as a whole to be work). Sometimes (e.g., with RTP and RTCP in
 separate components), the agents actually need to establish
 connectivity for more than one flow.

 The network properties are likely to be very similar for each
 component (especially because RTP and RTCP are sent and received from
 the same IP address). It is usually possible to leverage information
 from one media component in order to determine the best candidates
 for another. ICE does this with a mechanism called "frozen
 candidates".

 Each candidate is associated with a property called its FOUNDATION.
 Two candidates have the same foundation when they are "similar" -- of
 the same type and obtained from the same host candidate and STUN/TURN
 server using the same protocol. Otherwise, their foundation is
 different. A candidate pair has a foundation too, which is just the
 concatenation of the foundations of its two candidates. Initially,
 only the candidate pairs with unique foundations are tested. The
 other candidate pairs are marked "frozen". When the connectivity
 checks for a candidate pair succeed, the other candidate pairs with
 the same foundation are unfrozen. This avoids repeated checking of
 components that are superficially more attractive but in fact are
 likely to fail.

Keranen & Rosenberg Expires June 23, 2016 [Page 12]

Internet-Draft ICE December 2015

 While we’ve described "frozen" here as a separate mechanism for
 expository purposes, in fact it is an integral part of ICE and the
 ICE prioritization algorithm automatically ensures that the right
 candidates are unfrozen and checked in the right order. However, if
 the ICE usage does not utilize multiple components or media streams,
 it does not need to implement this algorithm.

2.5. Security for Checks

 Because ICE is used to discover which addresses can be used to send
 media between two agents, it is important to ensure that the process
 cannot be hijacked to send media to the wrong location. Each STUN
 connectivity check is covered by a message authentication code (MAC)
 computed using a key exchanged in the signaling channel. This MAC
 provides message integrity and data origin authentication, thus
 stopping an attacker from forging or modifying connectivity check
 messages. Furthermore, if for example a SIP [RFC3261] caller is
 using ICE, and their call forks, the ICE exchanges happen
 independently with each forked recipient. In such a case, the keys
 exchanged in the signaling help associate each ICE exchange with each
 forked recipient.

2.6. Concluding ICE

 ICE checks are performed in a specific sequence, so that high-
 priority candidate pairs are checked first, followed by lower-
 priority ones. One way to conclude ICE is to declare victory as soon
 as a check for each component of each media stream completes
 successfully. Indeed, this is a reasonable algorithm, and details
 for it are provided below. However, it is possible that a packet
 loss will cause a higher-priority check to take longer to complete.
 In that case, allowing ICE to run a little longer might produce
 better results. More fundamentally, however, the prioritization
 defined by this specification may not yield "optimal" results. As an
 example, if the aim is to select low-latency media paths, usage of a
 relay is a hint that latencies may be higher, but it is nothing more
 than a hint. An actual round-trip time (RTT) measurement could be
 made, and it might demonstrate that a pair with lower priority is
 actually better than one with higher priority.

 Consequently, ICE assigns one of the agents in the role of the
 CONTROLLING AGENT, and the other of the CONTROLLED AGENT. The
 controlling agent gets to nominate which candidate pairs will get
 used for media amongst the ones that are valid. It can do this in
 one of two ways -- using REGULAR NOMINATION or AGGRESSIVE NOMINATION.

 With regular nomination, the controlling agent lets the checks
 continue until at least one valid candidate pair for each media

Keranen & Rosenberg Expires June 23, 2016 [Page 13]

Internet-Draft ICE December 2015

 stream is found. Then, it picks amongst those that are valid, and
 sends a second STUN request on its NOMINATED candidate pair, but this
 time with a flag set to tell the peer that this pair has been
 nominated for use. This is shown in Figure 4.

 L R
 - -
 STUN request -> \ L’s
 <- STUN response / check

 <- STUN request \ R’s
 STUN response -> / check

 STUN request + flag -> \ L’s
 <- STUN response / check

 Figure 4: Regular Nomination

 Once the STUN transaction with the flag completes, both sides cancel
 any future checks for that media stream. ICE will now send media
 using this pair. The pair an ICE agent is using for media is called
 the SELECTED PAIR.

 In aggressive nomination, the controlling agent puts the flag in
 every connectivity check STUN request it sends. This way, once the
 first check succeeds, ICE processing is complete for that media
 stream and the controlling agent doesn’t have to send a second STUN
 request. The selected pair will be the highest-priority valid pair
 whose check succeeded. Aggressive nomination is faster than regular
 nomination, but gives less flexibility. Aggressive nomination is
 shown in Figure 5.

 L R
 - -
 STUN request + flag -> \ L’s
 <- STUN response / check

 <- STUN request \ R’s
 STUN response -> / check

 Figure 5: Aggressive Nomination

Keranen & Rosenberg Expires June 23, 2016 [Page 14]

Internet-Draft ICE December 2015

 Once ICE is concluded, it can be restarted at any time for one or all
 of the media streams by either agent. This is done by sending an
 updated candidate information indicating a restart.

2.7. Lite Implementations

 In order for ICE to be used in a call, both agents need to support
 it. However, certain agents will always be connected to the public
 Internet and have a public IP address at which it can receive packets
 from any correspondent. To make it easier for these devices to
 support ICE, ICE defines a special type of implementation called LITE
 (in contrast to the normal FULL implementation). A lite
 implementation doesn’t gather candidates; it includes only host
 candidates for any media stream. Lite agents do not generate
 connectivity checks or run the state machines, though they need to be
 able to respond to connectivity checks. When a lite implementation
 connects with a full implementation, the full agent takes the role of
 the controlling agent, and the lite agent takes on the controlled
 role. When two lite implementations connect, no checks are sent.

 For guidance on when a lite implementation is appropriate, see the
 discussion in Appendix A.

 It is important to note that the lite implementation was added to
 this specification to provide a stepping stone to full
 implementation. Even for devices that are always connected to the
 public Internet, a full implementation is preferable if achievable.

2.8. Usages of ICE

 This document specifies generic use of ICE with protocols that
 provide means to exchange candidate information between the ICE
 Peers. The specific details of (i.e how to encode candidate
 information and the actual candidate exchange process) for different
 protocols using ICE are described in separate usage documents. One
 possible way the agents can exchange the candidate information is to
 use [RFC3264] based Offer/Answer semantics as part of the SIP
 [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Readers should be familiar with the terminology defined in the STUN
 [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

Keranen & Rosenberg Expires June 23, 2016 [Page 15]

Internet-Draft ICE December 2015

 This specification makes use of the following additional terminology:

 ICE Agent: An agent is the protocol implementation involved in the
 ICE candidate exchange. There are two agents involved in a
 typical candidate exchange.

 Initiating Peer, Initiating Agent, Initiator: An initiating agent is
 the protocol implementation involved in the ICE candidate exchange
 that initiates the ICE candidate exchange process.

 Responding Peer, Responding Agent, Responder: A receiving agent is
 the protocol implementation involved in the ICE candidate exchange
 that receives and responds to the candidate exchange process
 initiated by the Initiator.

 ICE Candidate Exchange, Candidate Exchange: The process where the
 ICE agents exchange information (e.g., candidates and passwords)
 that is needed to perform ICE. [RFC3264] Offer/Answer with SDP
 encoding is one example of a protocol that can be used for
 exchanging the candidate information.

 Peer: From the perspective of one of the agents in a session, its
 peer is the other agent. Specifically, from the perspective of
 the initiating agent, the peer is the responding agent. From the
 perspective of the responding agent, the peer is the initiating
 agent.

 Transport Address: The combination of an IP address and transport
 protocol (such as UDP or TCP) port.

 Media, Media Stream, Media Session: When ICE is used to setup
 multimedia sessions, the media is usually transported over RTP,
 and a media stream composes of a stream of RTP packets. When ICE
 is used with other than multimedia sessions, the terms "media",
 "media stream", and "media session" are still used in this
 specification to refer to the IP data packets that are exchanged
 between the peers on the path created and tested with ICE.

 Candidate, Candidate Information: A transport address that is a
 potential point of contact for receipt of media. Candidates also
 have properties -- their type (server reflexive, relayed, or
 host), priority,foundation, and base.

 Component: A component is a piece of a media stream requiring a
 single transport address; a media stream may require multiple
 components, each of which has to work for the media stream as a
 whole to work. For media streams based on RTP, unless RTP and

Keranen & Rosenberg Expires June 23, 2016 [Page 16]

Internet-Draft ICE December 2015

 RTCP are multiplexed in the same port, there are two components
 per media stream -- one for RTP, and one for RTCP.

 Host Candidate: A candidate obtained by binding to a specific port
 from an IP address on the host. This includes IP addresses on
 physical interfaces and logical ones, such as ones obtained
 through Virtual Private Networks (VPNs) and Realm Specific IP
 (RSIP) [RFC3102] (which lives at the operating system level).

 Server Reflexive Candidate: A candidate whose IP address and port
 are a binding allocated by a NAT for an agent when it sent a
 packet through the NAT to a server. Server reflexive candidates
 can be learned by STUN servers using the Binding request, or TURN
 servers, which provides both a relayed and server reflexive
 candidate.

 Peer Reflexive Candidate: A candidate whose IP address and port are
 a binding allocated by a NAT for an agent when it sent a STUN
 Binding request through the NAT to its peer.

 Relayed Candidate: A candidate obtained by sending a TURN Allocate
 request from a host candidate to a TURN server. The relayed
 candidate is resident on the TURN server, and the TURN server
 relays packets back towards the agent.

 Base: The base of a server reflexive candidate is the host candidate
 from which it was derived. A host candidate is also said to have
 a base, equal to that candidate itself. Similarly, the base of a
 relayed candidate is that candidate itself.

 Foundation: An arbitrary string that is the same for two candidates
 that have the same type, base IP address, protocol (UDP, TCP,
 etc.), and STUN or TURN server. If any of these are different,
 then the foundation will be different. Two candidate pairs with
 the same foundation pairs are likely to have similar network
 characteristics. Foundations are used in the frozen algorithm.

 Local Candidate: A candidate that an agent has obtained and shared
 with the peer.

 Remote Candidate: A candidate that an agent received from its peer.

 Default Destination/Candidate: The default destination for a
 component of a media stream is the transport address that would be
 used by an agent that is not ICE aware. A default candidate for a
 component is one whose transport address matches the default
 destination for that component.

Keranen & Rosenberg Expires June 23, 2016 [Page 17]

Internet-Draft ICE December 2015

 Candidate Pair: A pairing containing a local candidate and a remote
 candidate.

 Check, Connectivity Check, STUN Check: A STUN Binding request
 transaction for the purposes of verifying connectivity. A check
 is sent from the local candidate to the remote candidate of a
 candidate pair.

 Check List: An ordered set of candidate pairs that an agent will use
 to generate checks.

 Ordinary Check: A connectivity check generated by an agent as a
 consequence of a timer that fires periodically, instructing it to
 send a check.

 Triggered Check: A connectivity check generated as a consequence of
 the receipt of a connectivity check from the peer.

 Valid List: An ordered set of candidate pairs for a media stream
 that have been validated by a successful STUN transaction.

 Full: An ICE implementation that performs the complete set of
 functionality defined by this specification.

 Lite: An ICE implementation that omits certain functions,
 implementing only as much as is necessary for a peer
 implementation that is full to gain the benefits of ICE. Lite
 implementations do not maintain any of the state machines and do
 not generate connectivity checks.

 Controlling Agent: The ICE agent that is responsible for selecting
 the final choice of candidate pairs and signaling them through
 STUN. In any session, one agent is always controlling. The other
 is the controlled agent.

 Controlled Agent: An ICE agent that waits for the controlling agent
 to select the final choice of candidate pairs.

 Regular Nomination: The process of picking a valid candidate pair
 for media traffic by validating the pair with one STUN request,
 and then picking it by sending a second STUN request with a flag
 indicating its nomination.

 Aggressive Nomination: The process of picking a valid candidate pair
 for media traffic by including a flag in every connectivity check
 STUN request, such that the first one to produce a valid candidate
 pair is used for media.

Keranen & Rosenberg Expires June 23, 2016 [Page 18]

Internet-Draft ICE December 2015

 Nominated: If a valid candidate pair has its nominated flag set, it
 means that it may be selected by ICE for sending and receiving
 media.

 Selected Pair, Selected Candidate: The candidate pair selected by
 ICE for sending and receiving media is called the selected pair,
 and each of its candidates is called the selected candidate.

 Using Protocol, ICE Usage: The protocol that uses ICE for NAT
 traversal. A usage specification defines the protocol specific
 details on how the procedures defined here are applied to that
 protocol.

4. ICE Candidate Gathering and Exchange

 As part of ICE processing, both the initiating and responding agents
 exchange encoded candidate information as defined by the Usage
 Protocol (ICE Usage). Specifics of encoding mechanism and the
 semantics of candidate information exchange is out of scope of this
 specification.

 However at a higher level, the below diagram captures ICE processing
 sequence in the agents (initiator and responder) for exchange of
 their respective candidate(s) information.

Keranen & Rosenberg Expires June 23, 2016 [Page 19]

Internet-Draft ICE December 2015

 Initiating Responding
 Agent Agent
 (I) (R)
 Gather, | |
 prioritize, | |
 eliminate | |
 redundant | |
 candidates, | |
 Encode | |
 candidates | |
 | I’s Candidate Information |
 |------------------------------>|
 | | Gather,
 | | prioritize,
 | | eliminate
 | | redundant
 | | candidates,
 | | Encode
 | | candidates
 | R’s Candidate Information |
 |<------------------------------|
 | |

 Figure 6: Candidate Gathering and Exchange Sequence

 As shown, the agents involved in the candidate exchange perform (1)
 candidate gathering, (2) candidate prioritization, (3) eliminating
 redundant candidates, (4) (possibly) choose default candidates, and
 then (5) formulate and send the candidates to the Peer ICE agent.
 All but the last of these five steps differ for full and lite
 implementations.

4.1. Procedures for Full Implementation

4.1.1. Gathering Candidates

 An agent gathers candidates when it believes that communication is
 imminent. An initiating agent can do this based on a user interface
 cue, or based on an explicit request to initiate a session. Every
 candidate is a transport address. It also has a type and a base.
 Four types are defined and gathered by this specification -- host
 candidates, server reflexive candidates, peer reflexive candidates,
 and relayed candidates. The server reflexive candidates are gathered
 using STUN or TURN, and relayed candidates are obtained through TURN.
 Peer reflexive candidates are obtained in later phases of ICE, as a
 consequence of connectivity checks. The base of a candidate is the
 candidate that an agent must send from when using that candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 20]

Internet-Draft ICE December 2015

 The process for gathering candidates at the responding agent is
 identical to the process for the initiating agent. It is RECOMMENDED
 that the responding agent begins this process immediately on receipt
 of the candidate information, prior to alerting the user. Such
 gathering MAY begin when an agent starts.

4.1.1.1. Host Candidates

 The first step is to gather host candidates. Host candidates are
 obtained by binding to ports (typically ephemeral) on a IP address
 attached to an interface (physical or virtual, including VPN
 interfaces) on the host.

 For each UDP media stream the agent wishes to use, the agent SHOULD
 obtain a candidate for each component of the media stream on each IP
 address that the host has, with the exceptions listed below. The
 agent obtains each candidate by binding to a UDP port on the specific
 IP address. A host candidate (and indeed every candidate) is always
 associated with a specific component for which it is a candidate.

 Each component has an ID assigned to it, called the component ID.
 For RTP-based media streams, unless both RTP and RTCP are multiplexed
 in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
 component ID of 1, and RTCP a component ID of 2. In case of RTP/RTCP
 multiplexing, a component ID of 1 is used for both RTP and RTCP.

 When candidates are obtained, unless the agent knows for sure that
 RTP/RTCP multiplexing will be used (i.e. the agent knows that the
 other agent also supports, and is willing to use, RTP/RTCP
 multiplexing), or unless the agent only supports RTP/RTCP
 multiplexing, the agent MUST obtain a separate candidate for RTCP.
 If an agent has obtained a candidate for RTCP, and ends up using RTP/
 RTCP multiplexing, the agent does not need to perform connectivity
 checks on the RTCP candidate.

 If an agent is using separate candidates for RTP and RTCP, it will
 end up with 2*K host candidates if an agent has K IP addresses.

 Note that the responding agent, when obtaining its candidates, will
 typically know if the other agent supports RTP/RTCP multiplexing, in
 which case it will not need to obtain a separate candidate for RTCP.
 However, absence of a component ID 2 as such does not imply use of
 RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

 For other than RTP-based streams, use of multiple components is
 discouraged since using them increases the complexity of ICE
 processing. If multiple components are needed, the component IDs
 SHOULD start with 1 and increase by 1 for each component.

Keranen & Rosenberg Expires June 23, 2016 [Page 21]

Internet-Draft ICE December 2015

 The base for each host candidate is set to the candidate itself.

 The host candidates are gathered from all IP addresses with the
 following exceptions:

 o Addresses from a loopback interface MUST NOT be included in the
 candidate addresses.

 o Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
 local unicast addresses [RFC3879] MUST NOT be included in the
 address candidates.

 o IPv4-mapped IPv6 addresses SHOULD NOT be included in the offered
 candidates unless the application using ICE does not support IPv4
 (i.e., is an IPv6-only application [RFC4038]).

 o If one or more host candidates corresponding to an IPv6 address
 generated using a mechanism that prevents location tracking
 [I-D.ietf-6man-ipv6-address-generation-privacy] are gathered, host
 candidates corresponding to IPv6 addresses that do allow location
 tracking, that are configured on the same interface, and are part
 of the same network prefix MUST NOT be gathered; and host
 candidates corresponding to IPv6 link-local addresses MUST NOT be
 gathered.

4.1.1.2. Server Reflexive and Relayed Candidates

 Agents SHOULD obtain relayed candidates and SHOULD obtain server
 reflexive candidates. These requirements are at SHOULD strength to
 allow for provider variation. Use of STUN and TURN servers may be
 unnecessary in closed networks where agents are never connected to
 the public Internet or to endpoints outside of the closed network.
 In such cases, a full implementation would be used for agents that
 are dual-stack or multihomed, to select a host candidate. Use of
 TURN servers is expensive, and when ICE is being used, they will only
 be utilized when both endpoints are behind NATs that perform address
 and port dependent mapping. Consequently, some deployments might
 consider this use case to be marginal, and elect not to use TURN
 servers. If an agent does not gather server reflexive or relayed
 candidates, it is RECOMMENDED that the functionality be implemented
 and just disabled through configuration, so that it can be re-enabled
 through configuration if conditions change in the future.

 If an agent is gathering both relayed and server reflexive
 candidates, it uses a TURN server. If it is gathering just server
 reflexive candidates, it uses a STUN server.

Keranen & Rosenberg Expires June 23, 2016 [Page 22]

Internet-Draft ICE December 2015

 The agent next pairs each host candidate with the STUN or TURN server
 with which it is configured or has discovered by some means. If a
 STUN or TURN server is configured, it is RECOMMENDED that a domain
 name be configured, and the DNS procedures in [RFC5389] (using SRV
 records with the "stun" service) be used to discover the STUN server,
 and the DNS procedures in [RFC5766] (using SRV records with the
 "turn" service) be used to discover the TURN server.

 This specification only considers usage of a single STUN or TURN
 server. When there are multiple choices for that single STUN or TURN
 server (when, for example, they are learned through DNS records and
 multiple results are returned), an agent SHOULD use a single STUN or
 TURN server (based on its IP address) for all candidates for a
 particular session. This improves the performance of ICE. The
 result is a set of pairs of host candidates with STUN or TURN
 servers. The agent then chooses one pair, and sends a Binding or
 Allocate request to the server from that host candidate. Binding
 requests to a STUN server are not authenticated, and any ALTERNATE-
 SERVER attribute in a response is ignored. Agents MUST support the
 backwards compatibility mode for the Binding request defined in
 [RFC5389]. Allocate requests SHOULD be authenticated using a long-
 term credential obtained by the client through some other means.

 Every Ta milliseconds thereafter, the agent can generate another new
 STUN or TURN transaction. This transaction can either be a retry of
 a previous transaction that failed with a recoverable error (such as
 authentication failure), or a transaction for a new host candidate
 and STUN or TURN server pair. The agent SHOULD NOT generate
 transactions more frequently than one every Ta milliseconds. See
 Section 12 for guidance on how to set Ta and the STUN retransmit
 timer, RTO.

 The agent will receive a Binding or Allocate response. A successful
 Allocate response will provide the agent with a server reflexive
 candidate (obtained from the mapped address) and a relayed candidate
 in the XOR-RELAYED-ADDRESS attribute. If the Allocate request is
 rejected because the server lacks resources to fulfill it, the agent
 SHOULD instead send a Binding request to obtain a server reflexive
 candidate. A Binding response will provide the agent with only a
 server reflexive candidate (also obtained from the mapped address).
 The base of the server reflexive candidate is the host candidate from
 which the Allocate or Binding request was sent. The base of a
 relayed candidate is that candidate itself. If a relayed candidate
 is identical to a host candidate (which can happen in rare cases),
 the relayed candidate MUST be discarded.

 If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
 and DNS64 [RFC6147] technologies, it may gather also IPv4 server

Keranen & Rosenberg Expires June 23, 2016 [Page 23]

Internet-Draft ICE December 2015

 reflexive and/or relayed candidates from IPv4-only STUN or TURN
 servers. IPv6-only agents SHOULD also utilize IPv6 prefix discovery
 [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
 generate server reflexive candidates for each IPv6-only interface
 accordingly. The NAT64 server reflexive candidates are prioritized
 like IPv4 server reflexive candidates.

4.1.1.3. Computing Foundations

 Finally, the agent assigns each candidate a foundation. The
 foundation is an identifier, scoped within a session. Two candidates
 MUST have the same foundation ID when all of the following are true:

 o they are of the same type (host, relayed, server reflexive, or
 peer reflexive)

 o their bases have the same IP address (the ports can be different)

 o for reflexive and relayed candidates, the STUN or TURN servers
 used to obtain them have the same IP address

 o they were obtained using the same transport protocol (TCP, UDP,
 etc.)

 Similarly, two candidates MUST have different foundations if their
 types are different, their bases have different IP addresses, the
 STUN or TURN servers used to obtain them have different IP addresses,
 or their transport protocols are different.

4.1.1.4. Keeping Candidates Alive

 Once server reflexive and relayed candidates are allocated, they MUST
 be kept alive until ICE processing has completed, as described in
 Section 7.3. For server reflexive candidates learned through a
 Binding request, the bindings MUST be kept alive by additional
 Binding requests to the server. Refreshes for allocations are done
 using the Refresh transaction, as described in [RFC5766]. The
 Refresh requests will also refresh the server reflexive candidate.

4.1.2. Prioritizing Candidates

 The prioritization process results in the assignment of a priority to
 each candidate. Each candidate for a media stream MUST have a unique
 priority that MUST be a positive integer between 1 and (2**31 - 1).
 This priority will be used by ICE to determine the order of the
 connectivity checks and the relative preference for candidates.

Keranen & Rosenberg Expires June 23, 2016 [Page 24]

Internet-Draft ICE December 2015

 An agent SHOULD compute this priority using the formula in
 Section 4.1.2.1 and choose its parameters using the guidelines in
 Section 4.1.2.2. If an agent elects to use a different formula, ICE
 will take longer to converge since both agents will not be
 coordinated in their checks.

 The process for prioritizing candidates is common across the
 initiating and the responding agent.

4.1.2.1. Recommended Formula

 When using the formula, an agent computes the priority by determining
 a preference for each type of candidate (server reflexive, peer
 reflexive, relayed, and host), and, when the agent is multihomed,
 choosing a preference for its IP addresses. These two preferences
 are then combined to compute the priority for a candidate. That
 priority is computed using the following formula:

 priority = (2^24)*(type preference) +
 (2^8)*(local preference) +
 (2^0)*(256 - component ID)

 The type preference MUST be an integer from 0 to 126 inclusive, and
 represents the preference for the type of the candidate (where the
 types are local, server reflexive, peer reflexive, and relayed). A
 126 is the highest preference, and a 0 is the lowest. Setting the
 value to a 0 means that candidates of this type will only be used as
 a last resort. The type preference MUST be identical for all
 candidates of the same type and MUST be different for candidates of
 different types. The type preference for peer reflexive candidates
 MUST be higher than that of server reflexive candidates. Note that
 candidates gathered based on the procedures of Section 4.1.1 will
 never be peer reflexive candidates; candidates of these type are
 learned from the connectivity checks performed by ICE.

 The local preference MUST be an integer from 0 to 65535 inclusive.
 It represents a preference for the particular IP address from which
 the candidate was obtained. 65535 represents the highest preference,
 and a zero, the lowest. When there is only a single IP address, this
 value SHOULD be set to 65535. More generally, if there are multiple
 candidates for a particular component for a particular media stream
 that have the same type, the local preference MUST be unique for each
 one. In this specification, this only happens for multihomed hosts
 or if an agent is using multiple TURN servers. If a host is
 multihomed because it is dual-stack, the local preference SHOULD be
 set equal to the precedence value for IP addresses described in RFC

Keranen & Rosenberg Expires June 23, 2016 [Page 25]

Internet-Draft ICE December 2015

 6724 [RFC6724]. If the host operating system provides an API for
 discovering preference among different addresses, those preferences
 SHOULD be used for the local preference to prioritize addresses
 indicated as preferred by the operating system.

 The component ID is the component ID for the candidate, and MUST be
 between 1 and 256 inclusive.

4.1.2.2. Guidelines for Choosing Type and Local Preferences

 One criterion for selection of the type and local preference values
 is the use of a media intermediary, such as a TURN server, VPN
 server, or NAT. With a media intermediary, if media is sent to that
 candidate, it will first transit the media intermediary before being
 received. Relayed candidates are one type of candidate that involves
 a media intermediary. Another are host candidates obtained from a
 VPN interface. When media is transited through a media intermediary,
 it can increase the latency between transmission and reception. It
 can increase the packet losses, because of the additional router hops
 that may be taken. It may increase the cost of providing service,
 since media will be routed in and right back out of a media
 intermediary run by a provider. If these concerns are important, the
 type preference for relayed candidates SHOULD be lower than host
 candidates. The RECOMMENDED values are 126 for host candidates, 100
 for server reflexive candidates, 110 for peer reflexive candidates,
 and 0 for relayed candidates.

 Furthermore, if an agent is multihomed and has multiple IP addresses,
 the local preference for host candidates from a VPN interface SHOULD
 have a priority of 0. If multiple TURN servers are used, local
 priorities for the candidates obtained from the TURN servers are
 chosen in a similar fashion as for multihomed local candidates: the
 local preference value is used to indicate preference among different
 servers but the preference MUST be unique for each one.

 Another criterion for selection of preferences is IP address family.
 ICE works with both IPv4 and IPv6. It therefore provides a
 transition mechanism that allows dual-stack hosts to prefer
 connectivity over IPv6, but to fall back to IPv4 in case the v6
 networks are disconnected (due, for example, to a failure in a 6to4
 relay) [RFC3056]. It can also help with hosts that have both a
 native IPv6 address and a 6to4 address. In such a case, higher local
 preferences could be assigned to the v6 addresses, followed by the
 6to4 addresses, followed by the v4 addresses. This allows a site to
 obtain and begin using native v6 addresses immediately, yet still
 fall back to 6to4 addresses when communicating with agents in other
 sites that do not yet have native v6 connectivity.

Keranen & Rosenberg Expires June 23, 2016 [Page 26]

Internet-Draft ICE December 2015

 Another criterion for selecting preferences is security. If a user
 is a telecommuter, and therefore connected to a corporate network and
 a local home network, the user may prefer their voice traffic to be
 routed over the VPN in order to keep it on the corporate network when
 communicating within the enterprise, but use the local network when
 communicating with users outside of the enterprise. In such a case,
 a VPN address would have a higher local preference than any other
 address.

 Another criterion for selecting preferences is topological awareness.
 This is most useful for candidates that make use of intermediaries.
 In those cases, if an agent has preconfigured or dynamically
 discovered knowledge of the topological proximity of the
 intermediaries to itself, it can use that to assign higher local
 preferences to candidates obtained from closer intermediaries.

4.1.3. Eliminating Redundant Candidates

 Next, the agent eliminates redundant candidates. A candidate is
 redundant if its transport address equals another candidate, and its
 base equals the base of that other candidate. Note that two
 candidates can have the same transport address yet have different
 bases, and these would not be considered redundant. Frequently, a
 server reflexive candidate and a host candidate will be redundant
 when the agent is not behind a NAT. The agent SHOULD eliminate the
 redundant candidate with the lower priority.

 This process is common across the initiating and responding agents.

4.2. Lite Implementation Procedures

 Lite implementations only utilize host candidates. A lite
 implementation MUST, for each component of each media stream,
 allocate zero or one IPv4 candidates. It MAY allocate zero or more
 IPv6 candidates, but no more than one per each IPv6 address utilized
 by the host. Since there can be no more than one IPv4 candidate per
 component of each media stream, if an agent has multiple IPv4
 addresses, it MUST choose one for allocating the candidate. If a
 host is dual-stack, it is RECOMMENDED that it allocate one IPv4
 candidate and one global IPv6 address. With the lite implementation,
 ICE cannot be used to dynamically choose amongst candidates.
 Therefore, including more than one candidate from a particular scope
 is NOT RECOMMENDED, since only a connectivity check can truly
 determine whether to use one address or the other.

 Each component has an ID assigned to it, called the component ID.
 For RTP-based media streams, unless RTCP is multiplexed in the same
 port with RTP, the RTP itself has a component ID of 1, and RTCP a

Keranen & Rosenberg Expires June 23, 2016 [Page 27]

Internet-Draft ICE December 2015

 component ID of 2. If an agent is using RTCP without multiplexing,
 it MUST obtain candidates for it. However, absence of a component ID
 2 as such does not imply use of RTCP/RTP multiplexing, as it could
 also mean that RTCP is not used.

 Each candidate is assigned a foundation. The foundation MUST be
 different for two candidates allocated from different IP addresses,
 and MUST be the same otherwise. A simple integer that increments for
 each IP address will suffice. In addition, each candidate MUST be
 assigned a unique priority amongst all candidates for the same media
 stream. This priority SHOULD be equal to:

 priority = (2^24)*(126) +
 (2^8)*(IP precedence) +
 (2^0)*(256 - component ID)

 If a host is v4-only, it SHOULD set the IP precedence to 65535. If a
 host is v6 or dual-stack, the IP precedence SHOULD be the precedence
 value for IP addresses described in RFC 6724 [RFC6724].

 Next, an agent chooses a default candidate for each component of each
 media stream. If a host is IPv4-only, there would only be one
 candidate for each component of each media stream, and therefore that
 candidate is the default. If a host is IPv6 or dual-stack, the
 selection of default is a matter of local policy. This default
 SHOULD be chosen such that it is the candidate most likely to be used
 with a peer. For IPv6-only hosts, this would typically be a globally
 scoped IPv6 address. For dual-stack hosts, the IPv4 address is
 RECOMMENDED.

 The procedures in this section is common across the initiating and
 responding agents.

4.3. Encoding the Candidate Information

 Regardless of the agent being an Initiator or Responder Agent, the
 following parameters and their data types needs to be conveyed as
 part of the candidate exchange process. The specifics of syntax for
 encoding the candidate information is out of scope of this
 specification.

 Candidate attribute There will be one or more of these for each
 "media stream". Each candidate is composed of:

 Connection Address: The IP address and transport protocol port of
 the candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 28]

Internet-Draft ICE December 2015

 Transport: An indicator of the transport protocol for this
 candidate. This need not be present if the using protocol will
 only ever run over a single transport protocol. If it runs
 over more than one, or if others are anticipated to be used in
 the future, this should be present.

 Foundation: A sequence of up to 32 characters.

 Component-ID: This would be present only if the using protocol
 were utilizing the concept of components. If it is, it would
 be a positive integer that indicates the component ID for which
 this is a candidate.

 Priority: An encoding of the 32-bit priority value.

 Candidate Type: The candidate type, as defined in ICE.

 Related Address and Port: The related IP address and port for
 this candidate, as defined by ICE. These MAY be omitted or set
 to invalid values if the agent does not want to reveal them,
 e.g., for privacy reasons.

 Extensibility Parameters: The using protocol should define some
 means for adding new per-candidate ICE parameters in the
 future.

 Lite Flag: If ICE lite is used by the using protocol, it needs to
 convey a boolean parameter which indicates whether the
 implementation is lite or not.

 Connectivity check pacing value: If an agent wants to use other than
 the default pacing values for the connectivity checks, it MUST
 indicate this in the ICE exchange.

 Username Fragment and Password: The using protocol has to convey a
 username fragment and password. The username fragment MUST
 contain at least 24 bits of randomness, and the password MUST
 contain at least 128 bits of randomness.

 ICE extensions: In addition to the per-candidate extensions above,
 the using protocol should allow for new media-stream or session-
 level attributes (ice-options).

 If the using protocol is using the ICE mismatch feature, a way is
 needed to convey this parameter in answers. It is a boolean flag.

 The exchange of parameters is symmetric; both agents need to send the
 same set of attributes as defined above.

Keranen & Rosenberg Expires June 23, 2016 [Page 29]

Internet-Draft ICE December 2015

 The using protocol may (or may not) need to deal with backwards
 compatibility with older implementations that do not support ICE. If
 the fallback mechanism is being used, then presumably the using
 protocol provides a way of conveying the default candidate (its IP
 address and port) in addition to the ICE parameters.

 STUN connectivity checks between agents are authenticated using the
 short-term credential mechanism defined for STUN [RFC5389]. This
 mechanism relies on a username and password that are exchanged
 through protocol machinery between the client and server. The
 username part of this credential is formed by concatenating a
 username fragment from each agent, separated by a colon. Each agent
 also provides a password, used to compute the message integrity for
 requests it receives. The username fragment and password are
 exchanged between the peers. In addition to providing security, the
 username provides disambiguation and correlation of checks to media
 streams. See Appendix B.4 for motivation.

 If the initiating agent is a lite implementation, it MUST indicate
 this when sending its candidates .

 ICE provides for extensibility by allowing an agent to include a
 series of tokens that identify ICE extensions as part of the
 candidate exchange process.

 Once an agent has sent its candidate information, that agent MUST be
 prepared to receive both STUN and media packets on each candidate.
 As discussed in Section 10.1, media packets can be sent to a
 candidate prior to its appearance as the default destination for
 media.

5. ICE Candidate Processing

 Once an agent has candidates from it’s peer, it will check if the
 peer supports ICE, determine its own role, exchanges candidates
 (Section 4) and for full implementations, forms the check lists and
 begins connectivity checks as explained in this section.

5.1. Procedures for Full Implementation

5.1.1. Verifying ICE Support

 Certain middleboxes, such as ALGs, may alter the ICE candidate
 information that breaks ICE. If the using protocol is vulnerable to
 this kind of changes, called ICE mismatch, the responding agent needs
 to detect this and signal this back to the initiating agent. The
 details on whether this is needed and how it is done is defined by

Keranen & Rosenberg Expires June 23, 2016 [Page 30]

Internet-Draft ICE December 2015

 the usage specifications. One exception to the above is that an
 initiating agent would never indicate ICE mismatch.

5.1.2. Determining Role

 For each session, each agent (Initiating and Responding) takes on a
 role. There are two roles -- controlling and controlled. The
 controlling agent is responsible for the choice of the final
 candidate pairs used for communications. For a full agent, this
 means nominating the candidate pairs that can be used by ICE for each
 media stream, and for updating the peer with the ICE’s selection,
 when needed. The controlled agent is told which candidate pairs to
 use for each media stream, and does not require updating the peer to
 signal this information. The sections below describe in detail the
 actual procedures followed by controlling and controlled nodes.

 The rules for determining the role and the impact on behavior are as
 follows:

 Both agents are full: The Initiating Agent which started the ICE
 processing MUST take the controlling role, and the other MUST take
 the controlled role. Both agents will form check lists, run the
 ICE state machines, and generate connectivity checks. The
 controlling agent will execute the logic in Section 7.1 to
 nominate pairs that will be selected by ICE, and then both agents
 end ICE as described in Section 7.1.2.

 One agent full, one lite: The full agent MUST take the controlling
 role, and the lite agent MUST take the controlled role. The full
 agent will form check lists, run the ICE state machines, and
 generate connectivity checks. That agent will execute the logic
 in Section 7.1 to nominate pairs that will be selected by ICE, and
 use the logic in Section 7.1.2 to end ICE. The lite
 implementation will just listen for connectivity checks, receive
 them and respond to them, and then conclude ICE as described in
 Section 7.2. For the lite implementation, the state of ICE
 processing for each media stream is considered to be Running, and
 the state of ICE overall is Running.

 Both lite: The Initiating Agent which started the ICE processing
 MUST take the controlling role, and the other MUST take the
 controlled role. In this case, no connectivity checks are ever
 sent. Rather, once the candidates are exchanged, each agent
 performs the processing described in Section 7 without
 connectivity checks. It is possible that both agents will believe
 they are controlled or controlling. In the latter case, the
 conflict is resolved through glare detection capabilities in the
 signaling protocol enabling the candidate exchange. The state of

Keranen & Rosenberg Expires June 23, 2016 [Page 31]

Internet-Draft ICE December 2015

 ICE processing for each media stream is considered to be Running,
 and the state of ICE overall is Running.

 Once roles are determined for a session, they persist unless ICE is
 restarted. An ICE restart causes a new selection of roles and tie-
 breakers.

5.1.3. Forming the Check Lists

 There is one check list per in-use media stream resulting from the
 candidate exchange. To form the check list for a media stream, the
 agent forms candidate pairs, computes a candidate pair priority,
 orders the pairs by priority, prunes them, and sets their states.
 These steps are described in this section.

5.1.3.1. Forming Candidate Pairs

 First, the agent takes each of its candidates for a media stream
 (called LOCAL CANDIDATES) and pairs them with the candidates it
 received from its peer (called REMOTE CANDIDATES) for that media
 stream. In order to prevent the attacks described in Section 14.4.1,
 agents MAY limit the number of candidates they’ll accept in an
 candidate exchange process. A local candidate is paired with a
 remote candidate if and only if the two candidates have the same
 component ID and have the same IP address version. It is possible
 that some of the local candidates won’t get paired with remote
 candidates, and some of the remote candidates won’t get paired with
 local candidates. This can happen if one agent doesn’t include
 candidates for the all of the components for a media stream. If this
 happens, the number of components for that media stream is
 effectively reduced, and considered to be equal to the minimum across
 both agents of the maximum component ID provided by each agent across
 all components for the media stream.

 In the case of RTP, this would happen when one agent provides
 candidates for RTCP, and the other does not. As another example, the
 initiating agent can multiplex RTP and RTCP on the same port
 [RFC5761]. However, since the initiating agent doesn’t know if the
 peer agent can perform such multiplexing, it includes candidates for
 RTP and RTCP on separate ports. If the peer agent can perform such
 multiplexing, it would include just a single component for each
 candidate -- for the combined RTP/RTCP mux. ICE would end up acting
 as if there was just a single component for this candidate.

 With IPv6 it is common for a host to have multiple host candidates
 for each interface. To keep the amount of resulting candidate pairs
 reasonable and to avoid candidate pairs that are highly unlikely to

Keranen & Rosenberg Expires June 23, 2016 [Page 32]

Internet-Draft ICE December 2015

 work, IPv6 link-local addresses [RFC4291] MUST NOT be paired with
 other than link-local addresses.

 The candidate pairs whose local and remote candidates are both the
 default candidates for a particular component is called,
 unsurprisingly, the default candidate pair for that component. This
 is the pair that would be used to transmit media if both agents had
 not been ICE aware.

 In order to aid understanding, Figure 7 shows the relationships
 between several key concepts -- transport addresses, candidates,
 candidate pairs, and check lists, in addition to indicating the main
 properties of candidates and candidate pairs.

Keranen & Rosenberg Expires June 23, 2016 [Page 33]

Internet-Draft ICE December 2015

 +--+
 | |
 | +---------------------+ |
 | |+----+ +----+ +----+ | +Type | | | | | | |
 | || IP | |Port| |Tran| | +Priority |
 | ||Addr| | | | | | +Foundation |
 | |+----+ +----+ +----+ | +Component ID |
 | | Transport | +Related Address |
 | | Addr | |
 | +---------------------+ +Base |
 | Candidate |
 +--+
 * *
 * *************************************
 * *
 +-------------------------------+
 .| |
 | Local Remote |
 | +----+ +----+ +default? |
 | |Cand| |Cand| +valid? |
 | +----+ +----+ +nominated?|
 | +State |
 | |
 | |
 | Candidate Pair |
 +-------------------------------+
 * *
 * ************
 * *
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+

 Check
 List

 Figure 7: Conceptual Diagram of a Check List

Keranen & Rosenberg Expires June 23, 2016 [Page 34]

Internet-Draft ICE December 2015

5.1.3.2. Computing Pair Priority and Ordering Pairs

 Once the pairs are formed, a candidate pair priority is computed.
 Let G be the priority for the candidate provided by the controlling
 agent. Let D be the priority for the candidate provided by the
 controlled agent. The priority for a pair is computed as:

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 Where G>D?1:0 is an expression whose value is 1 if G is greater than
 D, and 0 otherwise. Once the priority is assigned, the agent sorts
 the candidate pairs in decreasing order of priority. If two pairs
 have identical priority, the ordering amongst them is arbitrary.

5.1.3.3. Pruning the Pairs

 This sorted list of candidate pairs is used to determine a sequence
 of connectivity checks that will be performed. Each check involves
 sending a request from a local candidate to a remote candidate.
 Since an agent cannot send requests directly from a reflexive
 candidate, but only from its base, the agent next goes through the
 sorted list of candidate pairs. For each pair where the local
 candidate is server reflexive, the server reflexive candidate MUST be
 replaced by its base. Once this has been done, the agent MUST prune
 the list. This is done by removing a pair if its local and remote
 candidates are identical to the local and remote candidates of a pair
 higher up on the priority list. The result is a sequence of ordered
 candidate pairs, called the check list for that media stream.

 In addition, in order to limit the attacks described in
 Section 14.4.1, an agent MUST limit the total number of connectivity
 checks the agent performs across all check lists to a specific value,
 and this value MUST be configurable. A default of 100 is
 RECOMMENDED. This limit is enforced by discarding the lower-priority
 candidate pairs until there are less than 100. It is RECOMMENDED
 that a lower value be utilized when possible, set to the maximum
 number of plausible checks that might be seen in an actual deployment
 configuration. The requirement for configuration is meant to provide
 a tool for fixing this value in the field if, once deployed, it is
 found to be problematic.

5.1.3.4. Computing States

 Each candidate pair in the check list has a foundation and a state.
 The foundation is the combination of the foundations of the local and
 remote candidates in the pair. The state is assigned once the check
 list for each media stream has been computed. There are five
 potential values that the state can have:

Keranen & Rosenberg Expires June 23, 2016 [Page 35]

Internet-Draft ICE December 2015

 Waiting: A check has not been performed for this pair, and can be
 performed as soon as it is the highest-priority Waiting pair on
 the check list.

 In-Progress: A check has been sent for this pair, but the
 transaction is in progress.

 Succeeded: A check for this pair was already done and produced a
 successful result.

 Failed: A check for this pair was already done and failed, either
 never producing any response or producing an unrecoverable failure
 response.

 Frozen: A check for this pair hasn’t been performed, and it can’t
 yet be performed until some other check succeeds, allowing this
 pair to unfreeze and move into the Waiting state.

 As ICE runs, the pairs will move between states as shown in Figure 8.

Keranen & Rosenberg Expires June 23, 2016 [Page 36]

Internet-Draft ICE December 2015

 +-----------+
 | |
 | |
 | Frozen |
 | |
 | |
 +-----------+
 |
 |unfreeze
 |
 V
 +-----------+ +-----------+
 | | | |
 | | perform | |
 | Waiting |-------->|In-Progress|
 | | | |
 | | | |
 +-----------+ +-----------+
 / |
 // |
 // |
 // |
 / |
 // |
 failure // |success
 // |
 / |
 // |
 // |
 // |
 V V
 +-----------+ +-----------+
 | | | |
 | | | |
 | Failed | | Succeeded |
 | | | |
 | | | |
 +-----------+ +-----------+

 Figure 8: Pair State FSM

 The initial states for each pair in a check list are computed by
 performing the following sequence of steps:

 1. The agent sets all of the pairs in each check list to the Frozen
 state.

Keranen & Rosenberg Expires June 23, 2016 [Page 37]

Internet-Draft ICE December 2015

 2. The agent examines the check list for the first media stream.
 For that media stream:

 * For all pairs with the same foundation, it sets the state of
 the pair with the lowest component ID to Waiting. If there is
 more than one such pair, the one with the highest-priority is
 used.

 One of the check lists will have some number of pairs in the Waiting
 state, and the other check lists will have all of their pairs in the
 Frozen state. A check list with at least one pair that is Waiting is
 called an active check list, and a check list with all pairs Frozen
 is called a frozen check list.

 The check list itself is associated with a state, which captures the
 state of ICE checks for that media stream. There are three states:

 Running: In this state, ICE checks are still in progress for this
 media stream.

 Completed: In this state, ICE checks have produced nominated pairs
 for each component of the media stream. Consequently, ICE has
 succeeded and media can be sent.

 Failed: In this state, the ICE checks have not completed
 successfully for this media stream.

 When a check list is first constructed as the consequence of an
 candidate exchange, it is placed in the Running state.

 ICE processing across all media streams also has a state associated
 with it. This state is equal to Running while ICE processing is
 under way. The state is Completed when ICE processing is complete
 and Failed if it failed without success. Rules for transitioning
 between states are described below.

5.1.4. Scheduling Checks

 An agent performs ordinary checks and triggered checks. The
 generation of both checks is governed by a timer that fires
 periodically for each media stream. The agent maintains a FIFO
 queue, called the triggered check queue, which contains candidate
 pairs for which checks are to be sent at the next available
 opportunity. When the timer fires, the agent removes the top pair
 from the triggered check queue, performs a connectivity check on that
 pair, and sets the state of the candidate pair to In-Progress. If
 there are no pairs in the triggered check queue, an ordinary check is
 sent.

Keranen & Rosenberg Expires June 23, 2016 [Page 38]

Internet-Draft ICE December 2015

 Once the agent has computed the check lists as described in
 Section 5.1.3, it sets a timer for each active check list. The timer
 fires every Ta*N seconds, where N is the number of active check lists
 (initially, there is only one active check list). Implementations
 MAY set the timer to fire less frequently than this. Implementations
 SHOULD take care to spread out these timers so that they do not fire
 at the same time for each media stream. Ta and the retransmit timer
 RTO are computed as described in Section 12. Multiplying by N allows
 this aggregate check throughput to be split between all active check
 lists. The first timer fires immediately, so that the agent performs
 a connectivity check the moment the candidate exchange has been done,
 followed by the next check Ta seconds later (since there is only one
 active check list).

 When the timer fires and there is no triggered check to be sent, the
 agent MUST choose an ordinary check as follows:

 o Find the highest-priority pair in that check list that is in the
 Waiting state.

 o If there is such a pair:

 * Send a STUN check from the local candidate of that pair to the
 remote candidate of that pair. The procedures for forming the
 STUN request for this purpose are described in Section 6.1.2.

 * Set the state of the candidate pair to In-Progress.

 o If there is no such pair:

 * Find the highest-priority pair in that check list that is in
 the Frozen state.

 * If there is such a pair:

 + Unfreeze the pair.

 + Perform a check for that pair, causing its state to
 transition to In-Progress.

 * If there is no such pair:

 + Terminate the timer for that check list.

 To compute the message integrity for the check, the agent uses the
 remote username fragment and password learned from the candidate
 information obtained from its peer. The local username fragment is
 known directly by the agent for its own candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 39]

Internet-Draft ICE December 2015

 The Initiator performs the ordinary checks on receiving the candidate
 information from the Peer (responder) and having formed the
 checklists. On the other hand the responding agent either performs
 the triggered or ordinary checks as described above.

5.2. Lite Implementation Procedures

 Lite implementations skips most of the steps in Section 5 except for
 verifying the peer’s ICE support and determining its role in the ICE
 processing.

 On determining the role for a lite implementation being the
 controlling agent means selecting a candidate pair based on the ones
 in the candidate exchange (for IPv4, there is only ever one pair),
 and then updating the peer with the new candidate information
 reflecting that selection, when needed (it is never needed for an
 IPv4-only host). The controlled agent is told which candidate pairs
 to use for each media stream, and no further candidate updates are
 needed to signal this information.

6. Performing Connectivity Checks

 This section describes how connectivity checks are performed. All
 ICE implementations are required to be compliant to [RFC5389], as
 opposed to the older [RFC3489]. However, whereas a full
 implementation will both generate checks (acting as a STUN client)
 and receive them (acting as a STUN server), a lite implementation
 will only receive checks, and thus will only act as a STUN server.

6.1. STUN Client Procedures

 These procedures define how an agent sends a connectivity check,
 whether it is an ordinary or a triggered check. These procedures are
 only applicable to full implementations.

6.1.1. Creating Permissions for Relayed Candidates

 If the connectivity check is being sent using a relayed local
 candidate, the client MUST create a permission first if it has not
 already created one previously. It would have created one previously
 if it had told the TURN server to create a permission for the given
 relayed candidate towards the IP address of the remote candidate. To
 create the permission, the agent follows the procedures defined in
 [RFC5766]. The permission MUST be created towards the IP address of
 the remote candidate. It is RECOMMENDED that the agent defer
 creation of a TURN channel until ICE completes, in which case
 permissions for connectivity checks are normally created using a

Keranen & Rosenberg Expires June 23, 2016 [Page 40]

Internet-Draft ICE December 2015

 CreatePermission request. Once established, the agent MUST keep the
 permission active until ICE concludes.

6.1.2. Sending the Request

 A connectivity check is generated by sending a Binding request from a
 local candidate to a remote candidate. [RFC5389] describes how
 Binding requests are constructed and generated. A connectivity check
 MUST utilize the STUN short-term credential mechanism. Support for
 backwards compatibility with RFC 3489 MUST NOT be used or assumed
 with connectivity checks. The FINGERPRINT mechanism MUST be used for
 connectivity checks.

 ICE extends STUN by defining several new attributes, including
 PRIORITY, USE-CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING. These
 new attributes are formally defined in Section 15.1, and their usage
 is described in the subsections below. These STUN extensions are
 applicable only to connectivity checks used for ICE.

6.1.2.1. PRIORITY and USE-CANDIDATE

 An agent MUST include the PRIORITY attribute in its Binding request.
 The attribute MUST be set equal to the priority that would be
 assigned, based on the algorithm in Section 4.1.2, to a peer
 reflexive candidate, should one be learned as a consequence of this
 check (see Section 6.1.3.2.1 for how peer reflexive candidates are
 learned). This priority value will be computed identically to how
 the priority for the local candidate of the pair was computed, except
 that the type preference is set to the value for peer reflexive
 candidate types.

 The controlling agent MAY include the USE-CANDIDATE attribute in the
 Binding request. The controlled agent MUST NOT include it in its
 Binding request. This attribute signals that the controlling agent
 wishes to cease checks for this component, and use the candidate pair
 resulting from the check for this component. Section 7.1.1 provides
 guidance on determining when to include it.

6.1.2.2. ICE-CONTROLLED and ICE-CONTROLLING

 The agent MUST include the ICE-CONTROLLED attribute in the request if
 it is in the controlled role, and MUST include the ICE-CONTROLLING
 attribute in the request if it is in the controlling role. The
 content of either attribute MUST be the tie-breaker that was
 determined in Section 5.1.2. These attributes are defined fully in
 Section 15.1.

Keranen & Rosenberg Expires June 23, 2016 [Page 41]

Internet-Draft ICE December 2015

6.1.2.3. Forming Credentials

 A Binding request serving as a connectivity check MUST utilize the
 STUN short-term credential mechanism. The username for the
 credential is formed by concatenating the username fragment provided
 by the peer with the username fragment of the agent sending the
 request, separated by a colon (":"). The password is equal to the
 password provided by the peer. For example, consider the case where
 agent L is the initiating , agent and agent R is the responding
 agent. Agent L included a username fragment of LFRAG for its
 candidates and a password of LPASS. Agent R provided a username
 fragment of RFRAG and a password of RPASS. A connectivity check from
 L to R utilizes the username RFRAG:LFRAG and a password of RPASS. A
 connectivity check from R to L utilizes the username LFRAG:RFRAG and
 a password of LPASS. The responses utilize the same usernames and
 passwords as the requests (note that the USERNAME attribute is not
 present in the response).

6.1.2.4. DiffServ Treatment

 If the agent is using Diffserv Codepoint markings [RFC2475] in its
 media packets, it SHOULD apply those same markings to its
 connectivity checks.

6.1.3. Processing the Response

 When a Binding response is received, it is correlated to its Binding
 request using the transaction ID, as defined in [RFC5389], which then
 ties it to the candidate pair for which the Binding request was sent.
 This section defines additional procedures for processing Binding
 responses specific to this usage of STUN.

6.1.3.1. Failure Cases

 If the STUN transaction generates a 487 (Role Conflict) error
 response, the agent checks whether it included the ICE-CONTROLLED or
 ICE-CONTROLLING attribute in the Binding request. If the request
 contained the ICE-CONTROLLED attribute, the agent MUST switch to the
 controlling role if it has not already done so. If the request
 contained the ICE-CONTROLLING attribute, the agent MUST switch to the
 controlled role if it has not already done so. Once it has switched,
 the agent MUST enqueue the candidate pair whose check generated the
 487 into the triggered check queue. The state of that pair is set to
 Waiting. When the triggered check is sent, it will contain an ICE-
 CONTROLLING or ICE-CONTROLLED attribute reflecting its new role.
 Note, however, that the tie-breaker value MUST NOT be reselected.

Keranen & Rosenberg Expires June 23, 2016 [Page 42]

Internet-Draft ICE December 2015

 A change in roles will require an agent to recompute pair priorities
 (Section 5.1.3.2), since those priorities are a function of
 controlling and controlled roles. The change in role will also
 impact whether the agent is responsible for selecting nominated pairs
 and generating updated candidate information for sharing upon
 conclusion of ICE.

 Agents MAY support receipt of ICMP errors for connectivity checks.
 If the STUN transaction generates an ICMP error, the agent sets the
 state of the pair to Failed. If the STUN transaction generates a
 STUN error response that is unrecoverable (as defined in [RFC5389])
 or times out, the agent sets the state of the pair to Failed.

 The agent MUST check that the source IP address and port of the
 response equal the destination IP address and port to which the
 Binding request was sent, and that the destination IP address and
 port of the response match the source IP address and port from which
 the Binding request was sent. In other words, the source and
 destination transport addresses in the request and responses are
 symmetric. If they are not symmetric, the agent sets the state of
 the pair to Failed.

6.1.3.2. Success Cases

 A check is considered to be a success if all of the following are
 true:

 o The STUN transaction generated a success response.

 o The source IP address and port of the response equals the
 destination IP address and port to which the Binding request was
 sent.

 o The destination IP address and port of the response match the
 source IP address and port from which the Binding request was
 sent.

6.1.3.2.1. Discovering Peer Reflexive Candidates

 The agent checks the mapped address from the STUN response. If the
 transport address does not match any of the local candidates that the
 agent knows about, the mapped address represents a new candidate -- a
 peer reflexive candidate. Like other candidates, it has a type,
 base, priority, and foundation. They are computed as follows:

 o Its type is equal to peer reflexive.

Keranen & Rosenberg Expires June 23, 2016 [Page 43]

Internet-Draft ICE December 2015

 o Its base is set equal to the local candidate of the candidate pair
 from which the STUN check was sent.

 o Its priority is set equal to the value of the PRIORITY attribute
 in the Binding request.

 o Its foundation is selected as described in Section 4.1.1.3.

 This peer reflexive candidate is then added to the list of local
 candidates for the media stream. Its username fragment and password
 are the same as all other local candidates for that media stream.
 However, the peer reflexive candidate is not paired with other remote
 candidates. This is not necessary; a valid pair will be generated
 from it momentarily based on the procedures in Section 6.1.3.2.2. If
 an agent wishes to pair the peer reflexive candidate with other
 remote candidates besides the one in the valid pair that will be
 generated, the agent MAY generate an update the peer with the
 candidate information that includes the peer reflexive candidate.
 This will cause it to be paired with all other remote candidates.

6.1.3.2.2. Constructing a Valid Pair

 The agent constructs a candidate pair whose local candidate equals
 the mapped address of the response, and whose remote candidate equals
 the destination address to which the request was sent. This is
 called a valid pair, since it has been validated by a STUN
 connectivity check. The valid pair may equal the pair that generated
 the check, may equal a different pair in the check list, or may be a
 pair not currently on any check list. If the pair equals the pair
 that generated the check or is on a check list currently, it is also
 added to the VALID LIST, which is maintained by the agent for each
 media stream. This list is empty at the start of ICE processing, and
 fills as checks are performed, resulting in valid candidate pairs.

 It will be very common that the pair will not be on any check list.
 Recall that the check list has pairs whose local candidates are never
 server reflexive; those pairs had their local candidates converted to
 the base of the server reflexive candidates, and then pruned if they
 were redundant. When the response to the STUN check arrives, the
 mapped address will be reflexive if there is a NAT between the two.
 In that case, the valid pair will have a local candidate that doesn’t
 match any of the pairs in the check list.

 If the pair is not on any check list, the agent computes the priority
 for the pair based on the priority of each candidate, using the
 algorithm in Section 5.1.3. The priority of the local candidate
 depends on its type. If it is not peer reflexive, it is equal to the
 priority signaled for that candidate in the candidate exchange. If

Keranen & Rosenberg Expires June 23, 2016 [Page 44]

Internet-Draft ICE December 2015

 it is peer reflexive, it is equal to the PRIORITY attribute the agent
 placed in the Binding request that just completed. The priority of
 the remote candidate is taken from the candidate information of the
 peer. If the candidate does not appear there, then the check must
 have been a triggered check to a new remote candidate. In that case,
 the priority is taken as the value of the PRIORITY attribute in the
 Binding request that triggered the check that just completed. The
 pair is then added to the VALID LIST.

6.1.3.2.3. Updating Pair States

 The agent sets the state of the pair that *generated* the check to
 Succeeded. Note that, the pair which *generated* the check may be
 different than the valid pair constructed in Section 6.1.3.2.2 as a
 consequence of the response. The success of this check might also
 cause the state of other checks to change as well. The agent MUST
 perform the following two steps:

 1. The agent changes the states for all other Frozen pairs for the
 same media stream and same foundation to Waiting. Typically, but
 not always, these other pairs will have different component IDs.

 2. If there is a pair in the valid list for every component of this
 media stream (where this is the actual number of components being
 used, in cases where the number of components signaled in the
 candidate exchange differs from initiating to responding agent),
 the success of this check may unfreeze checks for other media
 streams. Note that this step is followed not just the first time
 the valid list under consideration has a pair for every
 component, but every subsequent time a check succeeds and adds
 yet another pair to that valid list. The agent examines the
 check list for each other media stream in turn:

 * If the check list is active, the agent changes the state of
 all Frozen pairs in that check list whose foundation matches a
 pair in the valid list under consideration to Waiting.

 * If the check list is frozen, and there is at least one pair in
 the check list whose foundation matches a pair in the valid
 list under consideration, the state of all pairs in the check
 list whose foundation matches a pair in the valid list under
 consideration is set to Waiting. This will cause the check
 list to become active, and ordinary checks will begin for it,
 as described in Section 5.1.4.

 * If the check list is frozen, and there are no pairs in the
 check list whose foundation matches a pair in the valid list
 under consideration, the agent

Keranen & Rosenberg Expires June 23, 2016 [Page 45]

Internet-Draft ICE December 2015

 + groups together all of the pairs with the same foundation,
 and

 + for each group, sets the state of the pair with the lowest
 component ID to Waiting. If there is more than one such
 pair, the one with the highest-priority is used.

6.1.3.2.4. Updating the Nominated Flag

 If the agent was a controlling agent, and it had included a USE-
 CANDIDATE attribute in the Binding request, the valid pair generated
 from that check has its nominated flag set to true. This flag
 indicates that this valid pair should be used for media if it is the
 highest-priority one amongst those whose nominated flag is set. This
 may conclude ICE processing for this media stream or all media
 streams; see Section 7.

 If the agent is the controlled agent, the response may be the result
 of a triggered check that was sent in response to a request that
 itself had the USE-CANDIDATE attribute. This case is described in
 Section 6.2.1.5, and may now result in setting the nominated flag for
 the pair learned from the original request.

6.1.3.3. Check List and Timer State Updates

 Regardless of whether the check was successful or failed, the
 completion of the transaction may require updating of check list and
 timer states.

 If all of the pairs in the check list are now either in the Failed or
 Succeeded state:

 o If there is not a pair in the valid list for each component of the
 media stream, the state of the check list is set to Failed.

 o For each frozen check list, the agent

 * groups together all of the pairs with the same foundation, and

 * for each group, sets the state of the pair with the lowest
 component ID to Waiting. If there is more than one such pair,
 the one with the highest-priority is used.

 If none of the pairs in the check list are in the Waiting or Frozen
 state, the check list is no longer considered active, and will not
 count towards the value of N in the computation of timers for
 ordinary checks as described in Section 5.1.4.

Keranen & Rosenberg Expires June 23, 2016 [Page 46]

Internet-Draft ICE December 2015

6.2. STUN Server Procedures

 An agent MUST be prepared to receive a Binding request on the base of
 each candidate it included in its most recent candidate exchange.
 This requirement holds even if the peer is a lite implementation.

 The agent MUST use the short-term credential mechanism (i.e., the
 MESSAGE-INTEGRITY attribute) to authenticate the request and perform
 a message integrity check. Likewise, the short-term credential
 mechanism MUST be used for the response. The agent MUST consider the
 username to be valid if it consists of two values separated by a
 colon, where the first value is equal to the username fragment
 generated by the agent in an candidate exchange for a session in-
 progress. It is possible (and in fact very likely) that the
 initiating agent will receive a Binding request prior to receiving
 the candidates from its peer. If this happens, the agent MUST
 immediately generate a response (including computation of the mapped
 address as described in Section 6.2.1.2). The agent has sufficient
 information at this point to generate the response; the password from
 the peer is not required. Once the answer is received, it MUST
 proceed with the remaining steps required, namely, Section 6.2.1.3,
 Section 6.2.1.4, and Section 6.2.1.5 for full implementations. In
 cases where multiple STUN requests are received before the answer,
 this may cause several pairs to be queued up in the triggered check
 queue.

 An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
 NOT support the backwards-compatibility mechanisms to RFC 3489. It
 MUST utilize the FINGERPRINT mechanism.

 If the agent is using Diffserv Codepoint markings [RFC2475] in its
 media packets, it SHOULD apply those same markings to its responses
 to Binding requests. The same would apply to any layer 2 markings
 the endpoint might be applying to media packets.

6.2.1. Additional Procedures for Full Implementations

 This subsection defines the additional server procedures applicable
 to full implementations.

6.2.1.1. Detecting and Repairing Role Conflicts

 Normally, the rules for selection of a role in Section 5.1.2 will
 result in each agent selecting a different role -- one controlling
 and one controlled. However, in unusual call flows, typically
 utilizing third party call control, it is possible for both agents to
 select the same role. This section describes procedures for checking
 for this case and repairing it. These procedures apply only to

Keranen & Rosenberg Expires June 23, 2016 [Page 47]

Internet-Draft ICE December 2015

 usages of ICE that require conflict resolution. The usage document
 MUST specify whether this mechanism is needed.

 An agent MUST examine the Binding request for either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute. It MUST follow these
 procedures:

 o If neither ICE-CONTROLLING nor ICE-CONTROLLED is present in the
 request, the peer agent may have implemented a previous version of
 this specification. There may be a conflict, but it cannot be
 detected.

 o If the agent is in the controlling role, and the ICE-CONTROLLING
 attribute is present in the request:

 * If the agent’s tie-breaker is larger than or equal to the
 contents of the ICE-CONTROLLING attribute, the agent generates
 a Binding error response and includes an ERROR-CODE attribute
 with a value of 487 (Role Conflict) but retains its role.

 * If the agent’s tie-breaker is less than the contents of the
 ICE-CONTROLLING attribute, the agent switches to the controlled
 role.

 o If the agent is in the controlled role, and the ICE-CONTROLLED
 attribute is present in the request:

 * If the agent’s tie-breaker is larger than or equal to the
 contents of the ICE-CONTROLLED attribute, the agent switches to
 the controlling role.

 * If the agent’s tie-breaker is less than the contents of the
 ICE-CONTROLLED attribute, the agent generates a Binding error
 response and includes an ERROR-CODE attribute with a value of
 487 (Role Conflict) but retains its role.

 o If the agent is in the controlled role and the ICE-CONTROLLING
 attribute was present in the request, or the agent was in the
 controlling role and the ICE-CONTROLLED attribute was present in
 the request, there is no conflict.

 A change in roles will require an agent to recompute pair priorities
 (Section 5.1.3.2), since those priorities are a function of
 controlling and controlled roles. The change in role will also
 impact whether the agent is responsible for selecting nominated pairs
 and initiating exchange with updated candidate information upon
 conclusion of ICE.

Keranen & Rosenberg Expires June 23, 2016 [Page 48]

Internet-Draft ICE December 2015

 The remaining sections in Section 6.2.1 are followed if the server
 generated a successful response to the Binding request, even if the
 agent changed roles.

6.2.1.2. Computing Mapped Address

 For requests being received on a relayed candidate, the source
 transport address used for STUN processing (namely, generation of the
 XOR-MAPPED-ADDRESS attribute) is the transport address as seen by the
 TURN server. That source transport address will be present in the
 XOR-PEER-ADDRESS attribute of a Data Indication message, if the
 Binding request was delivered through a Data Indication. If the
 Binding request was delivered through a ChannelData message, the
 source transport address is the one that was bound to the channel.

6.2.1.3. Learning Peer Reflexive Candidates

 If the source transport address of the request does not match any
 existing remote candidates, it represents a new peer reflexive remote
 candidate. This candidate is constructed as follows:

 o The priority of the candidate is set to the PRIORITY attribute
 from the request.

 o The type of the candidate is set to peer reflexive.

 o The foundation of the candidate is set to an arbitrary value,
 different from the foundation for all other remote candidates. If
 any subsequent candidate exchanges contain this peer reflexive
 candidate, it will signal the actual foundation for the candidate.

 o The component ID of this candidate is set to the component ID for
 the local candidate to which the request was sent.

 This candidate is added to the list of remote candidates. However,
 the agent does not pair this candidate with any local candidates.

6.2.1.4. Triggered Checks

 Next, the agent constructs a pair whose local candidate is equal to
 the transport address on which the STUN request was received, and a
 remote candidate equal to the source transport address where the
 request came from (which may be the peer reflexive remote candidate
 that was just learned). The local candidate will either be a host
 candidate (for cases where the request was not received through a
 relay) or a relayed candidate (for cases where it is received through
 a relay). The local candidate can never be a server reflexive
 candidate. Since both candidates are known to the agent, it can

Keranen & Rosenberg Expires June 23, 2016 [Page 49]

Internet-Draft ICE December 2015

 obtain their priorities and compute the candidate pair priority.
 This pair is then looked up in the check list. There can be one of
 several outcomes:

 o If the pair is already on the check list:

 * If the state of that pair is Waiting or Frozen, a check for
 that pair is enqueued into the triggered check queue if not
 already present.

 * If the state of that pair is In-Progress, the agent cancels the
 in-progress transaction. Cancellation means that the agent
 will not retransmit the request, will not treat the lack of
 response to be a failure, but will wait the duration of the
 transaction timeout for a response. In addition, the agent
 MUST create a new connectivity check for that pair
 (representing a new STUN Binding request transaction) by
 enqueueing the pair in the triggered check queue. The state of
 the pair is then changed to Waiting.

 * If the state of the pair is Failed, it is changed to Waiting
 and the agent MUST create a new connectivity check for that
 pair (representing a new STUN Binding request transaction), by
 enqueueing the pair in the triggered check queue.

 * If the state of that pair is Succeeded, nothing further is
 done.

 These steps are done to facilitate rapid completion of ICE when both
 agents are behind NAT.

 o If the pair is not already on the check list:

 * The pair is inserted into the check list based on its priority.

 * Its state is set to Waiting.

 * The pair is enqueued into the triggered check queue.

 When a triggered check is to be sent, it is constructed and processed
 as described in Section 6.1.2. These procedures require the agent to
 know the transport address, username fragment, and password for the
 peer. The username fragment for the remote candidate is equal to the
 part after the colon of the USERNAME in the Binding request that was
 just received. Using that username fragment, the agent can check the
 candidates received from its peer (there may be more than one in
 cases of forking), and find this username fragment. The
 corresponding password is then selected.

Keranen & Rosenberg Expires June 23, 2016 [Page 50]

Internet-Draft ICE December 2015

6.2.1.5. Updating the Nominated Flag

 If the Binding request received by the agent had the USE-CANDIDATE
 attribute set, and the agent is in the controlled role, the agent
 looks at the state of the pair computed in Section 6.2.1.4:

 o If the state of this pair is Succeeded, it means that the check
 generated by this pair produced a successful response. This would
 have caused the agent to construct a valid pair when that success
 response was received (see Section 6.1.3.2.2). The agent now sets
 the nominated flag in the valid pair to true. This may end ICE
 processing for this media stream; see Section 7.

 o If the state of this pair is In-Progress, if its check produces a
 successful result, the resulting valid pair has its nominated flag
 set when the response arrives. This may end ICE processing for
 this media stream when it arrives; see Section 7.

6.2.2. Additional Procedures for Lite Implementations

 If the check that was just received contained a USE-CANDIDATE
 attribute, the agent constructs a candidate pair whose local
 candidate is equal to the transport address on which the request was
 received, and whose remote candidate is equal to the source transport
 address of the request that was received. This candidate pair is
 assigned an arbitrary priority, and placed into a list of valid
 candidates called the valid list. The agent sets the nominated flag
 for that pair to true. ICE processing is considered complete for a
 media stream if the valid list contains a candidate pair for each
 component.

7. Concluding ICE Processing

 This section describes how an agent completes ICE.

7.1. Procedures for Full Implementations

 Concluding ICE involves nominating pairs by the controlling agent and
 updating of state machinery.

7.1.1. Nominating Pairs

 The controlling agent nominates pairs to be selected by ICE by using
 one of two techniques: regular nomination or aggressive nomination.
 If its peer has a lite implementation, an agent MUST use a regular
 nomination algorithm. If its peer is using ICE options (present in
 an ice-options attribute from the peer) that the agent does not
 understand, the agent MUST use a regular nomination algorithm. If

Keranen & Rosenberg Expires June 23, 2016 [Page 51]

Internet-Draft ICE December 2015

 its peer is a full implementation and isn’t using any ICE options or
 is using ICE options understood by the agent, the agent MAY use
 either the aggressive or the regular nomination algorithm. However,
 the regular algorithm is RECOMMENDED since it provides greater
 stability.

7.1.1.1. Regular Nomination

 With regular nomination, the agent lets some number of checks
 complete, each of which omit the USE-CANDIDATE attribute. Once one
 or more checks complete successfully for a component of a media
 stream, valid pairs are generated and added to the valid list. The
 agent lets the checks continue until some stopping criterion is met,
 and then picks amongst the valid pairs based on an evaluation
 criterion. The criteria for stopping the checks and for evaluating
 the valid pairs is entirely a matter of local optimization.

 When the controlling agent selects the valid pair, it repeats the
 check that produced this valid pair (by enqueueing the pair that
 generated the check into the triggered check queue), this time with
 the USE-CANDIDATE attribute. This check should succeed (since the
 previous did), causing the nominated flag of that and only that pair
 to be set. Consequently, there will be only a single nominated pair
 in the valid list for each component, and when the state of the check
 list moves to completed, that exact pair is selected by ICE for
 sending and receiving media for that component.

 Regular nomination provides the most flexibility, since the agent has
 control over the stopping and selection criteria for checks. The
 only requirement is that the agent MUST eventually pick one and only
 one candidate pair and generate a check for that pair with the USE-
 CANDIDATE attribute present. Regular nomination also improves ICE’s
 resilience to variations in implementation (see Section 11). Regular
 nomination is also more stable, allowing both agents to converge on a
 single pair for media without any transient selections, which can
 happen with the aggressive algorithm. The drawback of regular
 nomination is that it is guaranteed to increase latencies because it
 requires an additional check to be done.

7.1.1.2. Aggressive Nomination

 With aggressive nomination, the controlling agent includes the USE-
 CANDIDATE attribute in every check it sends. Once the first check
 for a component succeeds, it will be added to the valid list and have
 its nominated flag set. When all components have a nominated pair in
 the valid list, media can begin to flow using the highest-priority
 nominated pair. However, because the agent included the USE-
 CANDIDATE attribute in all of its checks, another check may yet

Keranen & Rosenberg Expires June 23, 2016 [Page 52]

Internet-Draft ICE December 2015

 complete, causing another valid pair to have its nominated flag set.
 ICE always selects the highest-priority nominated candidate pair from
 the valid list as the one used for media. Consequently, the selected
 pair may actually change briefly as ICE checks complete, resulting in
 a set of transient selections until it stabilizes.

 If certain connectivity check messages are lost, ICE agents using
 aggressive nomination may end up with different views on the selected
 candidate pair. In this case, if a security protocol that is able to
 authenticate the communicating parties (e.g., DTLS) is used, the
 controlled agent may receive valid secured traffic or handshake
 initialization originating from the controlling agent on a candidate
 pair that is different from the one the controlled agent considers as
 the selected pair. If this happens, the controlled agent MUST
 consider the pair with the secured traffic as the correct selected
 pair. If such security protocol is not used, both agents SHOULD
 continue sending connectivity check messages on the selected pair
 even after a pair has already been selected for use. In order to
 prevent the problem described here, at least one check from both
 agents needs to fully succeed on the selected pair.

7.1.2. Updating States

 For both controlling and controlled agents, the state of ICE
 processing depends on the presence of nominated candidate pairs in
 the valid list and on the state of the check list. Note that, at any
 time, more than one of the following cases can apply:

 o If there are no nominated pairs in the valid list for a media
 stream and the state of the check list is Running, ICE processing
 continues.

 o If there is at least one nominated pair in the valid list for a
 media stream and the state of the check list is Running:

 * The agent MUST remove all Waiting and Frozen pairs in the check
 list and triggered check queue for the same component as the
 nominated pairs for that media stream.

 * If an In-Progress pair in the check list is for the same
 component as a nominated pair, the agent SHOULD cease
 retransmissions for its check if its pair priority is lower
 than the lowest-priority nominated pair for that component.

 o Once there is at least one nominated pair in the valid list for
 every component of at least one media stream and the state of the
 check list is Running:

Keranen & Rosenberg Expires June 23, 2016 [Page 53]

Internet-Draft ICE December 2015

 * The agent MUST change the state of processing for its check
 list for that media stream to Completed.

 * The agent MUST continue to respond to any checks it may still
 receive for that media stream, and MUST perform triggered
 checks if required by the processing of Section 6.2.

 * The agent MUST continue retransmitting any In-Progress checks
 for that check list.

 * The agent MAY begin transmitting media for this media stream as
 described in Section 10.1.

 o Once the state of each check list is Completed:

 * The agent sets the state of ICE processing overall to
 Completed.

 * If the controlling agent is using an aggressive nomination
 algorithm, this may result in several updated candidate
 exchanges as the pairs selected for media change. An agent MAY
 delay sending its candidates for a brief interval (one second
 is RECOMMENDED) in order to allow the selected pairs to
 stabilize.

 o If the state of the check list is Failed, ICE has not been able to
 complete for this media stream. The correct behavior depends on
 the state of the check lists for other media streams:

 * If all check lists are Failed, ICE processing overall is
 considered to be in the Failed state, and the agent SHOULD
 consider the session a failure, SHOULD NOT restart ICE, and the
 controlling agent SHOULD terminate the entire session.

 * If at least one of the check lists for other media streams is
 Completed, the controlling agent SHOULD remove the failed media
 stream from the session while sending updated candidate list to
 its peer.

 * If none of the check lists for other media streams are
 Completed, but at least one is Running, the agent SHOULD let
 ICE continue.

7.2. Procedures for Lite Implementations

 Concluding ICE for a lite implementation is relatively
 straightforward. There are two cases to consider:

Keranen & Rosenberg Expires June 23, 2016 [Page 54]

Internet-Draft ICE December 2015

 The implementation is lite, and its peer is full.

 The implementation is lite, and its peer is lite.

 The effect of ICE concluding is that the agent can free any allocated
 host candidates that were not utilized by ICE, as described in
 Section 7.3.

7.2.1. Peer Is Full

 In this case, the agent will receive connectivity checks from its
 peer. When an agent has received a connectivity check that includes
 the USE-CANDIDATE attribute for each component of a media stream, the
 state of ICE processing for that media stream moves from Running to
 Completed. When the state of ICE processing for all media streams is
 Completed, the state of ICE processing overall is Completed.

 The lite implementation will never itself determine that ICE
 processing has failed for a media stream; rather, the full peer will
 make that determination and then remove or restart the failed media
 stream as part of subsequent candidate exchange process.

7.2.2. Peer Is Lite

 Once the candidate exchange has completed, both agents examine their
 candidates and those of its peer. For each media stream, each agent
 pairs up its own candidates with the candidates of its peer for that
 media stream. Two candidates are paired up when they are for the
 same component, utilize the same transport protocol (UDP in this
 specification), and are from the same IP address family (IPv4 or
 IPv6).

 o If there is a single pair per component, that pair is added to the
 Valid list. If all of the components for a media stream had one
 pair, the state of ICE processing for that media stream is set to
 Completed. If all media streams are Completed, the state of ICE
 processing is set to Completed overall. This will always be the
 case for implementations that are IPv4-only.

 o If there is more than one pair per component:

 * The agent MUST select a pair based on local policy. Since this
 case only arises for IPv6, it is RECOMMENDED that an agent
 follow the procedures of RFC 6724 [RFC6724] to select a single
 pair.

 * The agent adds the selected pair for each component to the
 valid list. As described in Section 10.1, this will permit

Keranen & Rosenberg Expires June 23, 2016 [Page 55]

Internet-Draft ICE December 2015

 media to begin flowing. However, it is possible (and in fact
 likely) that both agents have chosen different pairs.

 * To reconcile this, the controlling agent MUST send updated
 candidate list which will include the remote-candidates
 attribute.

 * The agent MUST NOT update the state of ICE processing until
 after the candidate exchange completes. Then the controlling
 agent MUST change the state of ICE processing to Completed for
 all media streams, and the state of ICE processing overall to
 Completed.

7.3. Freeing Candidates

7.3.1. Full Implementation Procedures

 The procedures in Section 7 require that an agent continue to listen
 for STUN requests and continue to generate triggered checks for a
 media stream, even once processing for that stream completes. The
 rules in this section describe when it is safe for an agent to cease
 sending or receiving checks on a candidate that was not selected by
 ICE, and then free the candidate.

7.3.2. Lite Implementation Procedures

 A lite implementation MAY free candidates not selected by ICE as soon
 as ICE processing has reached the Completed state for all peers for
 all media streams using those candidates.

8. ICE Restarts

 An agent MAY restart ICE processing for an existing media stream. An
 ICE restart, as the name implies, will cause all previous states of
 ICE processing to be flushed and checks to start anew. The only
 difference between an ICE restart and a brand new media session is
 that, during the restart, media can continue to be sent to the
 previously validated pair.

 An agent MUST restart ICE for a media stream if:

 o The candidate(s) is being generated for the purposes of changing
 the target of the media stream. In other words, if an agent wants
 to generate an updated candidate information that, had ICE not
 been in use, would result in a new value for the destination of a
 media component.

Keranen & Rosenberg Expires June 23, 2016 [Page 56]

Internet-Draft ICE December 2015

 o An agent is changing its implementation level. This typically
 only happens in third party call control use cases, where the
 entity performing the signaling is not the entity receiving the
 media, and it has changed the target of media mid-session to
 another entity that has a different ICE implementation.

 To restart ICE, an agent MUST change both the password and the user
 name fragment for the media stream when exchanging the candidates.
 The new candidate set MAY include some, none, or all of the previous
 candidates for that stream and MAY include a totally new set of
 candidates.

9. Keepalives

 All endpoints MUST send keepalives for each media session. These
 keepalives serve the purpose of keeping NAT bindings alive for the
 media session. These keepalives MUST be sent even if ICE is not
 being utilized for the session at all. The keepalive SHOULD be sent
 using a format that is supported by its peer. ICE endpoints allow
 for STUN-based keepalives for UDP streams, and as such, STUN
 keepalives MUST be used when an agent is a full ICE implementation
 and is communicating with a peer that supports ICE (lite or full).
 If the peer does not support ICE, the choice of a packet format for
 keepalives is a matter of local implementation. A format that allows
 packets to easily be sent in the absence of actual media content is
 RECOMMENDED. Examples of formats that readily meet this goal are RTP
 No-Op [I-D.ietf-avt-rtp-no-op], and in cases where both sides support
 it, RTP comfort noise [RFC3389]. If the peer doesn’t support any
 formats that are particularly well suited for keepalives, an agent
 SHOULD send RTP packets with an incorrect version number, or some
 other form of error that would cause them to be discarded by the
 peer.

 If there has been no packet sent on the candidate pair ICE is using
 for a media component for Tr seconds (where packets include those
 defined for the component (RTP or RTCP) and previous keepalives), an
 agent MUST generate a keepalive on that pair. Tr SHOULD be
 configurable and SHOULD have a default of 15 seconds. Tr MUST NOT be
 configured to less than 15 seconds. Alternatively, if an agent has a
 dynamic way to discover the binding lifetimes of the intervening
 NATs, it can use that value to determine Tr. Administrators
 deploying ICE in more controlled networking environments SHOULD set
 Tr to the longest duration possible in their environment.

 If STUN is being used for keepalives, a STUN Binding Indication is
 used [RFC5389]. The Indication MUST NOT utilize any authentication
 mechanism. It SHOULD contain the FINGERPRINT attribute to aid in
 demultiplexing, but SHOULD NOT contain any other attributes. It is

Keranen & Rosenberg Expires June 23, 2016 [Page 57]

Internet-Draft ICE December 2015

 used solely to keep the NAT bindings alive. The Binding Indication
 is sent using the same local and remote candidates that are being
 used for media. Though Binding Indications are used for keepalives,
 an agent MUST be prepared to receive a connectivity check as well.
 If a connectivity check is received, a response is generated as
 discussed in [RFC5389], but there is no impact on ICE processing
 otherwise.

 An agent MUST begin the keepalive processing once ICE has selected
 candidates for usage with media, or media begins to flow, whichever
 happens first. Keepalives end once the session terminates or the
 media stream is removed.

10. Media Handling

10.1. Sending Media

 Procedures for sending media differ for full and lite
 implementations.

10.1.1. Procedures for Full Implementations

 Agents always send media using a candidate pair, called the selected
 candidate pair. An agent will send media to the remote candidate in
 the selected pair (setting the destination address and port of the
 packet equal to that remote candidate), and will send it from the
 local candidate of the selected pair. When the local candidate is
 server or peer reflexive, media is originated from the base. Media
 sent from a relayed candidate is sent from the base through that TURN
 server, using procedures defined in [RFC5766].

 If the local candidate is a relayed candidate, it is RECOMMENDED that
 an agent create a channel on the TURN server towards the remote
 candidate. This is done using the procedures for channel creation as
 defined in Section 11 of [RFC5766].

 The selected pair for a component of a media stream is:

 o empty if the state of the check list for that media stream is
 Running, and there is no previous selected pair for that component
 due to an ICE restart

 o equal to the previous selected pair for a component of a media
 stream if the state of the check list for that media stream is
 Running, and there was a previous selected pair for that component
 due to an ICE restart

Keranen & Rosenberg Expires June 23, 2016 [Page 58]

Internet-Draft ICE December 2015

 o equal to the highest-priority nominated pair for that component in
 the valid list if the state of the check list is Completed

 If the selected pair for at least one component of a media stream is
 empty, an agent MUST NOT send media for any component of that media
 stream. If the selected pair for each component of a media stream
 has a value, an agent MAY send media for all components of that media
 stream.

10.1.2. Procedures for Lite Implementations

 A lite implementation MUST NOT send media until it has a Valid list
 that contains a candidate pair for each component of that media
 stream. Once that happens, the agent MAY begin sending media
 packets. To do that, it sends media to the remote candidate in the
 pair (setting the destination address and port of the packet equal to
 that remote candidate), and will send it from the local candidate.

10.1.3. Procedures for All Implementations

 ICE has interactions with jitter buffer adaptation mechanisms. An
 RTP stream can begin using one candidate, and switch to another one,
 though this happens rarely with ICE. The newer candidate may result
 in RTP packets taking a different path through the network -- one
 with different delay characteristics. As discussed below, agents are
 encouraged to re-adjust jitter buffers when there are changes in
 source or destination address of media packets. Furthermore, many
 audio codecs use the marker bit to signal the beginning of a
 talkspurt, for the purposes of jitter buffer adaptation. For such
 codecs, it is RECOMMENDED that the sender set the marker bit
 [RFC3550] when an agent switches transmission of media from one
 candidate pair to another.

10.2. Receiving Media

 ICE implementations MUST be prepared to receive media on each
 component on any candidates provided for that component in the most
 recent candidate exchange (in the case of RTP, this would include
 both RTP and RTCP if candidates were provided for both).

 It is RECOMMENDED that, when an agent receives an RTP packet with a
 new source or destination IP address for a particular media stream,
 that the agent re-adjust its jitter buffers.

 RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
 detecting synchronization source (SSRC) collisions and loops. These
 algorithms are based, in part, on seeing different source transport
 addresses with the same SSRC. However, when ICE is used, such

Keranen & Rosenberg Expires June 23, 2016 [Page 59]

Internet-Draft ICE December 2015

 changes will sometimes occur as the media streams switch between
 candidates. An agent will be able to determine that a media stream
 is from the same peer as a consequence of the STUN exchange that
 proceeds media transmission. Thus, if there is a change in source
 transport address, but the media packets come from the same peer
 agent, this SHOULD NOT be treated as an SSRC collision.

11. Extensibility Considerations

 This specification makes very specific choices about how both agents
 in a session coordinate to arrive at the set of candidate pairs that
 are selected for media. It is anticipated that future specifications
 will want to alter these algorithms, whether they are simple changes
 like timer tweaks or larger changes like a revamp of the priority
 algorithm. When such a change is made, providing interoperability
 between the two agents in a session is critical.

 First, ICE provides the ice-options attribute. Each extension or
 change to ICE is associated with a token. When an agent supporting
 such an extension or change triggers candidate exchange, it MUST
 include the token for that extension in this attribute. This allows
 each side to know what the other side is doing. This attribute MUST
 NOT be present if the agent doesn’t support any ICE extensions or
 changes.

 One of the complications in achieving interoperability is that ICE
 relies on a distributed algorithm running on both agents to converge
 on an agreed set of candidate pairs. If the two agents run different
 algorithms, it can be difficult to guarantee convergence on the same
 candidate pairs. The regular nomination procedure described in
 Section 7 eliminates some of the tight coordination by delegating the
 selection algorithm completely to the controlling agent.
 Consequently, when a controlling agent is communicating with a peer
 that supports options it doesn’t know about, the agent MUST run a
 regular nomination algorithm. When regular nomination is used, ICE
 will converge perfectly even when both agents use different pair
 prioritization algorithms. One of the keys to such convergence is
 triggered checks, which ensure that the nominated pair is validated
 by both agents. Consequently, any future ICE enhancements MUST
 preserve triggered checks.

 ICE is also extensible to other media streams beyond RTP, and for
 transport protocols beyond UDP. Extensions to ICE for non-RTP media
 streams need to specify how many components they utilize, and assign
 component IDs to them, starting at 1 for the most important component
 ID. Specifications for new transport protocols must define how, if
 at all, various steps in the ICE processing differ from UDP.

Keranen & Rosenberg Expires June 23, 2016 [Page 60]

Internet-Draft ICE December 2015

12. Setting Ta and RTO

 During the gathering phase of ICE (Section 4.1.1) and while ICE is
 performing connectivity checks (Section 6), an agent sends STUN and
 TURN transactions. These transactions are paced at a rate of one
 every Ta milliseconds, and utilize a specific RTO. This section
 describes how the values of Ta and RTO are computed. This
 computation depends on whether ICE is being used with a real-time
 media stream (such as RTP) or something else. When ICE is used for a
 stream with a known maximum bandwidth, the computation in
 Section 12.1 MAY be followed to rate-control the ICE exchanges. For
 all other streams, the computation in Section 12.2 MUST be followed.

12.1. Real-time Media Streams

 The values of RTO and Ta change during the lifetime of ICE
 processing. One set of values applies during the gathering phase,
 and the other, for connectivity checks.

 The value of Ta SHOULD be configurable, and SHOULD have a default of:

 For each media stream i:
 Ta_i = (stun_packet_size / rtp_packet_size) * rtp_ptime

 1
 Ta = MAX (20ms, -------------------)
 k

 \ 1
 > ------
 / Ta_i

 i=1

 where k is the number of media streams. During the gathering phase,
 Ta is computed based on the number of media streams the agent has
 indicated in the candidate information, and the RTP packet size and
 RTP ptime are those of the most preferred codec for each media
 stream. Once the candidate exchange is completed, the agent
 recomputes Ta to pace the connectivity checks. In that case, the
 value of Ta is based on the number of media streams that will
 actually be used in the session, and the RTP packet size and RTP
 ptime are those of the most preferred codec with which the agent will
 send.

Keranen & Rosenberg Expires June 23, 2016 [Page 61]

Internet-Draft ICE December 2015

 In addition, the retransmission timer for the STUN transactions, RTO,
 defined in [RFC5389], SHOULD be configurable and during the gathering
 phase, SHOULD have a default of:

 RTO = MAX (100ms, Ta * (number of pairs))

 where the number of pairs refers to the number of pairs of candidates
 with STUN or TURN servers.

 For connectivity checks, RTO SHOULD be configurable and SHOULD have a
 default of:

 RTO = MAX (100ms, Ta*N * (Num-Waiting + Num-In-Progress))

 where Num-Waiting is the number of checks in the check list in the
 Waiting state, and Num-In-Progress is the number of checks in the In-
 Progress state. Note that the RTO will be different for each
 transaction as the number of checks in the Waiting and In-Progress
 states change.

 These formulas are aimed at causing STUN transactions to be paced at
 the same rate as media. This ensures that ICE will work properly
 under the same network conditions needed to support the media as
 well. See Appendix B.1 for additional discussion and motivations.
 Because of this pacing, it will take a certain amount of time to
 obtain all of the server reflexive and relayed candidates.
 Implementations should be aware of the time required to do this, and
 if the application requires a time budget, limit the number of
 candidates that are gathered.

 The formulas result in a behavior whereby an agent will send its
 first packet for every single connectivity check before performing a
 retransmit. This can be seen in the formulas for the RTO (which
 represents the retransmit interval). Those formulas scale with N,
 the number of checks to be performed. As a result of this, ICE
 maintains a nicely constant rate, but becomes more sensitive to
 packet loss. The loss of the first single packet for any
 connectivity check is likely to cause that pair to take a long time
 to be validated, and instead, a lower-priority check (but one for
 which there was no packet loss) is much more likely to complete
 first. This results in ICE performing sub-optimally, choosing lower-
 priority pairs over higher-priority pairs. Implementors should be
 aware of this consequence, but still should utilize the timer values
 described here.

Keranen & Rosenberg Expires June 23, 2016 [Page 62]

Internet-Draft ICE December 2015

12.2. Non-real-time Sessions

 In cases where ICE is used to establish some kind of session that is
 not real time, and has no fixed rate associated with it that is known
 to work on the network in which ICE is deployed, Ta and RTO revert to
 more conservative values. Ta SHOULD be configurable, SHOULD have a
 default of 500 ms, and MUST NOT be configurable to be less than 500
 ms.

 If other Ta value than the default is used, the agent MUST indicate
 the value it prefers to use in the ICE exchange. Both agents MUST
 use the higher out of the two proposed values.

 In addition, the retransmission timer for the STUN transactions, RTO,
 SHOULD be configurable and during the gathering phase, SHOULD have a
 default of:

 RTO = MAX (500ms, Ta * (number of pairs))

 where the number of pairs refers to the number of pairs of candidates
 with STUN or TURN servers.

 For connectivity checks, RTO SHOULD be configurable and SHOULD have a
 default of:

 RTO = MAX (500ms, Ta*N * (Num-Waiting + Num-In-Progress))

13. Example

 The example is based on the simplified topology of Figure 9.

Keranen & Rosenberg Expires June 23, 2016 [Page 63]

Internet-Draft ICE December 2015

 +-------+
 |STUN |
 |Server |
 +-------+
 |
 +---------------------+
 | |
 | Internet |
 | |
 +---------------------+
 | |
 | |
 +---------+ |
 | NAT | |
 +---------+ |
 | |
 | |
 +-----+ +-----+
 | L | | R |
 +-----+ +-----+

 Figure 9: Example Topology

 Two agents, L and R, are using ICE. Both are full-mode ICE
 implementations and use aggressive nomination when they are
 controlling. Both agents have a single IPv4 address. For agent L,
 it is 10.0.1.1 in private address space [RFC1918], and for agent R,
 192.0.2.1 on the public Internet. Both are configured with the same
 STUN server (shown in this example for simplicity, although in
 practice the agents do not need to use the same STUN server), which
 is listening for STUN Binding requests at an IP address of 192.0.2.2
 and port 3478. TURN servers are not used in this example. Agent L
 is behind a NAT, and agent R is on the public Internet. The NAT has
 an endpoint independent mapping property and an address dependent
 filtering property. The public side of the NAT has an IP address of
 192.0.2.3.

 To facilitate understanding, transport addresses are listed using
 variables that have mnemonic names. The format of the name is
 entity-type-seqno, where entity refers to the entity whose IP address
 the transport address is on, and is one of "L", "R", "STUN", or
 "NAT". The type is either "PUB" for transport addresses that are
 public, and "PRIV" for transport addresses that are private.
 Finally, seq-no is a sequence number that is different for each
 transport address of the same type on a particular entity. Each
 variable has an IP address and port, denoted by varname.IP and
 varname.PORT, respectively, where varname is the name of the
 variable.

Keranen & Rosenberg Expires June 23, 2016 [Page 64]

Internet-Draft ICE December 2015

 The STUN server has advertised transport address STUN-PUB-1 (which is
 192.0.2.2:3478).

 In the call flow itself, STUN messages are annotated with several
 attributes. The "S=" attribute indicates the source transport
 address of the message. The "D=" attribute indicates the destination
 transport address of the message. The "MA=" attribute is used in
 STUN Binding response messages and refers to the mapped address.
 "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

 The call flow examples omit STUN authentication operations and RTCP,
 and focus on RTP for a single media stream between two full
 implementations.

 L NAT STUN R
 |RTP STUN alloc. | | |
 |(1) STUN Req | | |
 |S=$L-PRIV-1 | | |
 |D=$STUN-PUB-1 | | |
 |------------->| | |
 | |(2) STUN Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$STUN-PUB-1 | |
 | |------------->| |
 | |(3) STUN Res | |
 | |S=$STUN-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<-------------| |
 |(4) STUN Res | | |
 |S=$STUN-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |(5) L’s Candidate Information| |
 |--->|
 | | | | RTP STUN
 | | | | alloc.
 | | |(6) STUN Req |
 | | |S=$R-PUB-1 |
 | | |D=$STUN-PUB-1 |
 | | |<-------------|
 | | |(7) STUN Res |
 | | |S=$STUN-PUB-1 |
 | | |D=$R-PUB-1 |
 | | |MA=$R-PUB-1 |
 | | |------------->|

Keranen & Rosenberg Expires June 23, 2016 [Page 65]

Internet-Draft ICE December 2015

 |(8) R’s Candidate Information| |
 |<---|
 | |(9) Bind Req | |Begin
 | |S=$R-PUB-1 | |Connectivity
 | |D=L-PRIV-1 | |Checks
 | |<----------------------------| |
 | |Dropped | |
 |(10) Bind Req | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |USE-CAND | | |
 |------------->| | |
 | |(11) Bind Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |USE-CAND | |
 | |---------------------------->|
 | |(12) Bind Res | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<----------------------------|
 |(13) Bind Res | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |RTP flows | | |
 | |(14) Bind Req | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |<----------------------------|
 |(15) Bind Req | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |<-------------| | |
 |(16) Bind Res | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |MA=$R-PUB-1 | | |
 |------------->| | |
 | |(17) Bind Res | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |MA=$R-PUB-1 | |
 | |---------------------------->|
 | | | |RTP flows

Keranen & Rosenberg Expires June 23, 2016 [Page 66]

Internet-Draft ICE December 2015

 Figure 10: Example Flow

 First, agent L obtains a host candidate from its local IP address
 (not shown), and from that, sends a STUN Binding request to the STUN
 server to get a server reflexive candidate (messages 1-4). Recall
 that the NAT has the address and port independent mapping property.
 Here, it creates a binding of NAT-PUB-1 for this UDP request, and
 this becomes the server reflexive candidate for RTP.

 Agent L sets a type preference of 126 for the host candidate and 100
 for the server reflexive. The local preference is 65535. Based on
 this, the priority of the host candidate is 2130706431 and for the
 server reflexive candidate is 1694498815. The host candidate is
 assigned a foundation of 1, and the server reflexive, a foundation of
 2. These are sent to the peer.

 This candidate information is received at agent R. Agent R will
 obtain a host candidate, and from it, obtain a server reflexive
 candidate (messages 6-7). Since R is not behind a NAT, this
 candidate is identical to its host candidate, and they share the same
 base. It therefore discards this redundant candidate and ends up
 with a single host candidate. With identical type and local
 preferences as L, the priority for this candidate is 2130706431. It
 chooses a foundation of 1 for its single candidate. Then R’s
 candidates are then sent to L.

 Since neither side indicated that it is lite, the initiating agent
 that began ICE processing (agent L) becomes the controlling agent.

 Agents L and R both pair up the candidates. They both initially have
 two pairs. However, agent L will prune the pair containing its
 server reflexive candidate, resulting in just one. At agent L, this
 pair has a local candidate of $L_PRIV_1 and remote candidate of
 $R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note that
 an implementation would represent this as a 64-bit integer so as not
 to lose precision). At agent R, there are two pairs. The highest
 priority has a local candidate of $R_PUB_1 and remote candidate of
 $L_PRIV_1 and has a priority of 4.57566E+18, and the second has a
 local candidate of $R_PUB_1 and remote candidate of $NAT_PUB_1 and
 priority 3.63891E+18.

 Agent R begins its connectivity check (message 9) for the first pair
 (between the two host candidates). Since R is the controlled agent
 for this session, the check omits the USE-CANDIDATE attribute. The
 host candidate from agent L is private and behind a NAT, and thus
 this check won’t be successful, because the packet cannot be routed
 from R to L.

Keranen & Rosenberg Expires June 23, 2016 [Page 67]

Internet-Draft ICE December 2015

 When agent L gets the R’s candidates, it performs its one and only
 connectivity check (messages 10-13). It implements the aggressive
 nomination algorithm, and thus includes a USE-CANDIDATE attribute in
 this check. Since the check succeeds, agent L creates a new pair,
 whose local candidate is from the mapped address in the Binding
 response (NAT-PUB-1 from message 13) and whose remote candidate is
 the destination of the request (R-PUB-1 from message 10). This is
 added to the valid list. In addition, it is marked as selected since
 the Binding request contained the USE-CANDIDATE attribute. Since
 there is a selected candidate in the Valid list for the one component
 of this media stream, ICE processing for this stream moves into the
 Completed state. Agent L can now send media if it so chooses.

 Soon after receipt of the STUN Binding request from agent L (message
 11), agent R will generate its triggered check. This check happens
 to match the next one on its check list -- from its host candidate to
 agent L’s server reflexive candidate. This check (messages 14-17)
 will succeed. Consequently, agent R constructs a new candidate pair
 using the mapped address from the response as the local candidate (R-
 PUB-1) and the destination of the request (NAT-PUB-1) as the remote
 candidate. This pair is added to the Valid list for that media
 stream. Since the check was generated in the reverse direction of a
 check that contained the USE-CANDIDATE attribute, the candidate pair
 is marked as selected. Consequently, processing for this stream
 moves into the Completed state, and agent R can also send media.

14. Security Considerations

 There are several types of attacks possible in an ICE system. This
 section considers these attacks and their countermeasures. These
 countermeasures include:

 o Using ICE in conjunction with secure signaling techniques, such as
 SIPS.

 o Limiting the total number of connectivity checks to 100, and
 optionally limiting the number of candidates they’ll accept in an
 candidate exchange.

14.1. Attacks on Connectivity Checks

 An attacker might attempt to disrupt the STUN connectivity checks.
 Ultimately, all of these attacks fool an agent into thinking
 something incorrect about the results of the connectivity checks.
 The possible false conclusions an attacker can try and cause are:

 False Invalid: An attacker can fool a pair of agents into thinking a
 candidate pair is invalid, when it isn’t. This can be used to

Keranen & Rosenberg Expires June 23, 2016 [Page 68]

Internet-Draft ICE December 2015

 cause an agent to prefer a different candidate (such as one
 injected by the attacker) or to disrupt a call by forcing all
 candidates to fail.

 False Valid: An attacker can fool a pair of agents into thinking a
 candidate pair is valid, when it isn’t. This can cause an agent
 to proceed with a session, but then not be able to receive any
 media.

 False Peer Reflexive Candidate: An attacker can cause an agent to
 discover a new peer reflexive candidate, when it shouldn’t have.
 This can be used to redirect media streams to a Denial-of-Service
 (DoS) target or to the attacker, for eavesdropping or other
 purposes.

 False Valid on False Candidate: An attacker has already convinced an
 agent that there is a candidate with an address that doesn’t
 actually route to that agent (for example, by injecting a false
 peer reflexive candidate or false server reflexive candidate). It
 must then launch an attack that forces the agents to believe that
 this candidate is valid.

 If an attacker can cause a false peer reflexive candidate or false
 valid on a false candidate, it can launch any of the attacks
 described in [RFC5389].

 To force the false invalid result, the attacker has to wait for the
 connectivity check from one of the agents to be sent. When it is,
 the attacker needs to inject a fake response with an unrecoverable
 error response, such as a 400. However, since the candidate is, in
 fact, valid, the original request may reach the peer agent, and
 result in a success response. The attacker needs to force this
 packet or its response to be dropped, through a DoS attack, layer 2
 network disruption, or other technique. If it doesn’t do this, the
 success response will also reach the originator, alerting it to a
 possible attack. Fortunately, this attack is mitigated completely
 through the STUN short-term credential mechanism. The attacker needs
 to inject a fake response, and in order for this response to be
 processed, the attacker needs the password. If the candidate
 exchange signaling is secured, the attacker will not have the
 password and its response will be discarded.

 Forcing the fake valid result works in a similar way. The agent
 needs to wait for the Binding request from each agent, and inject a
 fake success response. The attacker won’t need to worry about
 disrupting the actual response since, if the candidate is not valid,
 it presumably wouldn’t be received anyway. However, like the fake

Keranen & Rosenberg Expires June 23, 2016 [Page 69]

Internet-Draft ICE December 2015

 invalid attack, this attack is mitigated by the STUN short-term
 credential mechanism in conjunction with a secure candidate exchange.

 Forcing the false peer reflexive candidate result can be done either
 with fake requests or responses, or with replays. We consider the
 fake requests and responses case first. It requires the attacker to
 send a Binding request to one agent with a source IP address and port
 for the false candidate. In addition, the attacker must wait for a
 Binding request from the other agent, and generate a fake response
 with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
 Like the other attacks described here, this attack is mitigated by
 the STUN message integrity mechanisms and secure candidate exchanges.

 Forcing the false peer reflexive candidate result with packet replays
 is different. The attacker waits until one of the agents sends a
 check. It intercepts this request, and replays it towards the other
 agent with a faked source IP address. It must also prevent the
 original request from reaching the remote agent, either by launching
 a DoS attack to cause the packet to be dropped, or forcing it to be
 dropped using layer 2 mechanisms. The replayed packet is received at
 the other agent, and accepted, since the integrity check passes (the
 integrity check cannot and does not cover the source IP address and
 port). It is then responded to. This response will contain a XOR-
 MAPPED-ADDRESS with the false candidate, and will be sent to that
 false candidate. The attacker must then receive it and relay it
 towards the originator.

 The other agent will then initiate a connectivity check towards that
 false candidate. This validation needs to succeed. This requires
 the attacker to force a false valid on a false candidate. Injecting
 of fake requests or responses to achieve this goal is prevented using
 the integrity mechanisms of STUN and the candidate exchange. Thus,
 this attack can only be launched through replays. To do that, the
 attacker must intercept the check towards this false candidate, and
 replay it towards the other agent. Then, it must intercept the
 response and replay that back as well.

 This attack is very hard to launch unless the attacker is identified
 by the fake candidate. This is because it requires the attacker to
 intercept and replay packets sent by two different hosts. If both
 agents are on different networks (for example, across the public
 Internet), this attack can be hard to coordinate, since it needs to
 occur against two different endpoints on different parts of the
 network at the same time.

 If the attacker itself is identified by the fake candidate, the
 attack is easier to coordinate. However, if the media path is
 secured (e.g., using SRTP [RFC3711]), the attacker will not be able

Keranen & Rosenberg Expires June 23, 2016 [Page 70]

Internet-Draft ICE December 2015

 to play the media packets, but will only be able to discard them,
 effectively disabling the media stream for the call. However, this
 attack requires the agent to disrupt packets in order to block the
 connectivity check from reaching the target. In that case, if the
 goal is to disrupt the media stream, it’s much easier to just disrupt
 it with the same mechanism, rather than attack ICE.

14.2. Attacks on Server Reflexive Address Gathering

 ICE endpoints make use of STUN Binding requests for gathering server
 reflexive candidates from a STUN server. These requests are not
 authenticated in any way. As a consequence, there are numerous
 techniques an attacker can employ to provide the client with a false
 server reflexive candidate:

 o An attacker can compromise the DNS, causing DNS queries to return
 a rogue STUN server address. That server can provide the client
 with fake server reflexive candidates. This attack is mitigated
 by DNS security, though DNS-SEC is not required to address it.

 o An attacker that can observe STUN messages (such as an attacker on
 a shared network segment, like WiFi) can inject a fake response
 that is valid and will be accepted by the client.

 o An attacker can compromise a STUN server by means of a virus, and
 cause it to send responses with incorrect mapped addresses.

 A false mapped address learned by these attacks will be used as a
 server reflexive candidate in the ICE exchange. For this candidate
 to actually be used for media, the attacker must also attack the
 connectivity checks, and in particular, force a false valid on a
 false candidate. This attack is very hard to launch if the false
 address identifies a fourth party (neither the initiator, responder,
 nor attacker), since it requires attacking the checks generated by
 each agent in the session, and is prevented by SRTP if it identifies
 the attacker themself.

 If the attacker elects not to attack the connectivity checks, the
 worst it can do is prevent the server reflexive candidate from being
 used. However, if the peer agent has at least one candidate that is
 reachable by the agent under attack, the STUN connectivity checks
 themselves will provide a peer reflexive candidate that can be used
 for the exchange of media. Peer reflexive candidates are generally
 preferred over server reflexive candidates. As such, an attack
 solely on the STUN address gathering will normally have no impact on
 a session at all.

Keranen & Rosenberg Expires June 23, 2016 [Page 71]

Internet-Draft ICE December 2015

14.3. Attacks on Relayed Candidate Gathering

 An attacker might attempt to disrupt the gathering of relayed
 candidates, forcing the client to believe it has a false relayed
 candidate. Exchanges with the TURN server are authenticated using a
 long-term credential. Consequently, injection of fake responses or
 requests will not work. In addition, unlike Binding requests,
 Allocate requests are not susceptible to replay attacks with modified
 source IP addresses and ports, since the source IP address and port
 are not utilized to provide the client with its relayed candidate.

 However, TURN servers are susceptible to DNS attacks, or to viruses
 aimed at the TURN server, for purposes of turning it into a zombie or
 rogue server. These attacks can be mitigated by DNS-SEC and through
 good box and software security on TURN servers.

 Even if an attacker has caused the client to believe in a false
 relayed candidate, the connectivity checks cause such a candidate to
 be used only if they succeed. Thus, an attacker must launch a false
 valid on a false candidate, per above, which is a very difficult
 attack to coordinate.

14.4. Insider Attacks

 In addition to attacks where the attacker is a third party trying to
 insert fake candidate information or stun messages, there are attacks
 possible with ICE when the attacker is an authenticated and valid
 participant in the ICE exchange.

14.4.1. STUN Amplification Attack

 The STUN amplification attack is similar to the voice hammer.
 However, instead of voice packets being directed to the target, STUN
 connectivity checks are directed to the target. The attacker sends
 an a large number of candidates, say, 50. The responding agent
 receives the candidate information, and starts its checks, which are
 directed at the target, and consequently, never generate a response.
 The answerer will start a new connectivity check every Ta ms (say,
 Ta=20ms). However, the retransmission timers are set to a large
 number due to the large number of candidates. As a consequence,
 packets will be sent at an interval of one every Ta milliseconds, and
 then with increasing intervals after that. Thus, STUN will not send
 packets at a rate faster than media would be sent, and the STUN
 packets persist only briefly, until ICE fails for the session.
 Nonetheless, this is an amplification mechanism.

 It is impossible to eliminate the amplification, but the volume can
 be reduced through a variety of heuristics. Agents SHOULD limit the

Keranen & Rosenberg Expires June 23, 2016 [Page 72]

Internet-Draft ICE December 2015

 total number of connectivity checks they perform to 100.
 Additionally, agents MAY limit the number of candidates they’ll
 accept.

 Frequently, protocols that wish to avoid these kinds of attacks force
 the initiator to wait for a response prior to sending the next
 message. However, in the case of ICE, this is not possible. It is
 not possible to differentiate the following two cases:

 o There was no response because the initiator is being used to
 launch a DoS attack against an unsuspecting target that will not
 respond.

 o There was no response because the IP address and port are not
 reachable by the initiator.

 In the second case, another check should be sent at the next
 opportunity, while in the former case, no further checks should be
 sent.

15. STUN Extensions

15.1. New Attributes

 This specification defines four new attributes, PRIORITY, USE-
 CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

 The PRIORITY attribute indicates the priority that is to be
 associated with a peer reflexive candidate, should one be discovered
 by this check. It is a 32-bit unsigned integer, and has an attribute
 value of 0x0024.

 The USE-CANDIDATE attribute indicates that the candidate pair
 resulting from this check should be used for transmission of media.
 The attribute has no content (the Length field of the attribute is
 zero); it serves as a flag. It has an attribute value of 0x0025.

 The ICE-CONTROLLED attribute is present in a Binding request and
 indicates that the client believes it is currently in the controlled
 role. The content of the attribute is a 64-bit unsigned integer in
 network byte order, which contains a random number used for tie-
 breaking of role conflicts.

 The ICE-CONTROLLING attribute is present in a Binding request and
 indicates that the client believes it is currently in the controlling
 role. The content of the attribute is a 64-bit unsigned integer in
 network byte order, which contains a random number used for tie-
 breaking of role conflicts.

Keranen & Rosenberg Expires June 23, 2016 [Page 73]

Internet-Draft ICE December 2015

15.2. New Error Response Codes

 This specification defines a single error response code:

 487 (Role Conflict): The Binding request contained either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute, indicating a role that
 conflicted with the server. The server ran a tie-breaker based on
 the tie-breaker value in the request and determined that the
 client needs to switch roles.

16. Operational Considerations

 This section discusses issues relevant to network operators looking
 to deploy ICE.

16.1. NAT and Firewall Types

 ICE was designed to work with existing NAT and firewall equipment.
 Consequently, it is not necessary to replace or reconfigure existing
 firewall and NAT equipment in order to facilitate deployment of ICE.
 Indeed, ICE was developed to be deployed in environments where the
 Voice over IP (VoIP) operator has no control over the IP network
 infrastructure, including firewalls and NAT.

 That said, ICE works best in environments where the NAT devices are
 "behave" compliant, meeting the recommendations defined in [RFC4787]
 and [RFC5382]. In networks with behave-compliant NAT, ICE will work
 without the need for a TURN server, thus improving voice quality,
 decreasing call setup times, and reducing the bandwidth demands on
 the network operator.

16.2. Bandwidth Requirements

 Deployment of ICE can have several interactions with available
 network capacity that operators should take into consideration.

16.2.1. STUN and TURN Server Capacity Planning

 First and foremost, ICE makes use of TURN and STUN servers, which
 would typically be located in the network operator’s data centers.
 The STUN servers require relatively little bandwidth. For each
 component of each media stream, there will be one or more STUN
 transactions from each client to the STUN server. In a basic voice-
 only IPv4 VoIP deployment, there will be four transactions per call
 (one for RTP and one for RTCP, for both caller and callee). Each
 transaction is a single request and a single response, the former
 being 20 bytes long, and the latter, 28. Consequently, if a system
 has N users, and each makes four calls in a busy hour, this would

Keranen & Rosenberg Expires June 23, 2016 [Page 74]

Internet-Draft ICE December 2015

 require N*1.7bps. For one million users, this is 1.7 Mbps, a very
 small number (relatively speaking).

 TURN traffic is more substantial. The TURN server will see traffic
 volume equal to the STUN volume (indeed, if TURN servers are
 deployed, there is no need for a separate STUN server), in addition
 to the traffic for the actual media traffic. The amount of calls
 requiring TURN for media relay is highly dependent on network
 topologies, and can and will vary over time. In a network with 100%
 behave-compliant NAT, it is exactly zero. At time of writing, large-
 scale consumer deployments were seeing between 5 and 10 percent of
 calls requiring TURN servers. Considering a voice-only deployment
 using G.711 (so 80 kbps in each direction), with .2 erlangs during
 the busy hour, this is N*3.2 kbps. For a population of one million
 users, this is 3.2 Gbps, assuming a 10% usage of TURN servers.

16.2.2. Gathering and Connectivity Checks

 The process of gathering of candidates and performing of connectivity
 checks can be bandwidth intensive. ICE has been designed to pace
 both of these processes. The gathering phase and the connectivity
 check phase are meant to generate traffic at roughly the same
 bandwidth as the media traffic itself. This was done to ensure that,
 if a network is designed to support multimedia traffic of a certain
 type (voice, video, or just text), it will have sufficient capacity
 to support the ICE checks for that media. Of course, the ICE checks
 will cause a marginal increase in the total utilization; however,
 this will typically be an extremely small increase.

 Congestion due to the gathering and check phases has proven to be a
 problem in deployments that did not utilize pacing. Typically,
 access links became congested as the endpoints flooded the network
 with checks as fast as they can send them. Consequently, network
 operators should make sure that their ICE implementations support the
 pacing feature. Though this pacing does increase call setup times,
 it makes ICE network friendly and easier to deploy.

16.2.3. Keepalives

 STUN keepalives (in the form of STUN Binding Indications) are sent in
 the middle of a media session. However, they are sent only in the
 absence of actual media traffic. In deployments that are not
 utilizing Voice Activity Detection (VAD), the keepalives are never
 used and there is no increase in bandwidth usage. When VAD is being
 used, keepalives will be sent during silence periods. This involves
 a single packet every 15-20 seconds, far less than the packet every
 20-30 ms that is sent when there is voice. Therefore, keepalives
 don’t have any real impact on capacity planning.

Keranen & Rosenberg Expires June 23, 2016 [Page 75]

Internet-Draft ICE December 2015

16.3. ICE and ICE-lite

 Deployments utilizing a mix of ICE and ICE-lite interoperate
 perfectly. They have been explicitly designed to do so, without loss
 of function.

 However, ICE-lite can only be deployed in limited use cases. Those
 cases, and the caveats involved in doing so, are documented in
 Appendix A.

16.4. Troubleshooting and Performance Management

 ICE utilizes end-to-end connectivity checks, and places much of the
 processing in the endpoints. This introduces a challenge to the
 network operator -- how can they troubleshoot ICE deployments? How
 can they know how ICE is performing?

 ICE has built-in features to help deal with these problems. SIP
 servers on the signaling path, typically deployed in the data centers
 of the network operator, will see the contents of the candidate
 exchanges that convey the ICE parameters. These parameters include
 the type of each candidate (host, server reflexive, or relayed),
 along with their related addresses. Once ICE processing has
 completed, an updated candidate exchange takes place, signaling the
 selected address (and its type). This updated re-INVITE is performed
 exactly for the purposes of educating network equipment (such as a
 diagnostic tool attached to a SIP server) about the results of ICE
 processing.

 As a consequence, through the logs generated by the SIP server, a
 network operator can observe what types of candidates are being used
 for each call, and what address was selected by ICE. This is the
 primary information that helps evaluate how ICE is performing.

16.5. Endpoint Configuration

 ICE relies on several pieces of data being configured into the
 endpoints. This configuration data includes timers, credentials for
 TURN servers, and hostnames for STUN and TURN servers. ICE itself
 does not provide a mechanism for this configuration. Instead, it is
 assumed that this information is attached to whatever mechanism is
 used to configure all of the other parameters in the endpoint. For
 SIP phones, standard solutions such as the configuration framework
 [RFC6080] have been defined.

Keranen & Rosenberg Expires June 23, 2016 [Page 76]

Internet-Draft ICE December 2015

17. IANA Considerations

 The original ICE specification registered four new STUN attributes,
 and one new STUN error response. The STUN attributes and error
 response are reproduced here.

17.1. STUN Attributes

 IANA has registered four STUN attributes:

 0x0024 PRIORITY
 0x0025 USE-CANDIDATE
 0x8029 ICE-CONTROLLED
 0x802A ICE-CONTROLLING

17.2. STUN Error Responses

 IANA has registered following STUN error response code:

 487 Role Conflict: The client asserted an ICE role (controlling or
 controlled) that is in conflict with the role of the server.

18. IAB Considerations

 The IAB has studied the problem of "Unilateral Self-Address Fixing",
 which is the general process by which a agent attempts to determine
 its address in another realm on the other side of a NAT through a
 collaborative protocol reflection mechanism [RFC3424]. ICE is an
 example of a protocol that performs this type of function.
 Interestingly, the process for ICE is not unilateral, but bilateral,
 and the difference has a significant impact on the issues raised by
 IAB. Indeed, ICE can be considered a B-SAF (Bilateral Self-Address
 Fixing) protocol, rather than an UNSAF protocol. Regardless, the IAB
 has mandated that any protocols developed for this purpose document a
 specific set of considerations. This section meets those
 requirements.

18.1. Problem Definition

 >From RFC 3424, any UNSAF proposal must provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short-term fix should not be
 generalized to solve other problems; this is why "short-term fixes
 usually aren’t".

Keranen & Rosenberg Expires June 23, 2016 [Page 77]

Internet-Draft ICE December 2015

 The specific problems being solved by ICE are:

 Provide a means for two peers to determine the set of transport
 addresses that can be used for communication.

 Provide a means for a agent to determine an address that is
 reachable by another peer with which it wishes to communicate.

18.2. Exit Strategy

 >From RFC 3424, any UNSAF proposal must provide:

 Description of an exit strategy/transition plan. The better
 short-term fixes are the ones that will naturally see less and
 less use as the appropriate technology is deployed.

 ICE itself doesn’t easily get phased out. However, it is useful even
 in a globally connected Internet, to serve as a means for detecting
 whether a router failure has temporarily disrupted connectivity, for
 example. ICE also helps prevent certain security attacks that have
 nothing to do with NAT. However, what ICE does is help phase out
 other UNSAF mechanisms. ICE effectively selects amongst those
 mechanisms, prioritizing ones that are better, and deprioritizing
 ones that are worse. Local IPv6 addresses can be preferred. As NATs
 begin to dissipate as IPv6 is introduced, server reflexive and
 relayed candidates (both forms of UNSAF addresses) simply never get
 used, because higher-priority connectivity exists to the native host
 candidates. Therefore, the servers get used less and less, and can
 eventually be remove when their usage goes to zero.

 Indeed, ICE can assist in the transition from IPv4 to IPv6. It can
 be used to determine whether to use IPv6 or IPv4 when two dual-stack
 hosts communicate with SIP (IPv6 gets used). It can also allow a
 network with both 6to4 and native v6 connectivity to determine which
 address to use when communicating with a peer.

18.3. Brittleness Introduced by ICE

 >From RFC 3424, any UNSAF proposal must provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 ICE actually removes brittleness from existing UNSAF mechanisms. In
 particular, classic STUN (as described in RFC 3489 [RFC3489]) has
 several points of brittleness. One of them is the discovery process

Keranen & Rosenberg Expires June 23, 2016 [Page 78]

Internet-Draft ICE December 2015

 that requires an agent to try to classify the type of NAT it is
 behind. This process is error-prone. With ICE, that discovery
 process is simply not used. Rather than unilaterally assessing the
 validity of the address, its validity is dynamically determined by
 measuring connectivity to a peer. The process of determining
 connectivity is very robust.

 Another point of brittleness in classic STUN and any other unilateral
 mechanism is its absolute reliance on an additional server. ICE
 makes use of a server for allocating unilateral addresses, but allows
 agents to directly connect if possible. Therefore, in some cases,
 the failure of a STUN server would still allow for a call to progress
 when ICE is used.

 Another point of brittleness in classic STUN is that it assumes that
 the STUN server is on the public Internet. Interestingly, with ICE,
 that is not necessary. There can be a multitude of STUN servers in a
 variety of address realms. ICE will discover the one that has
 provided a usable address.

 The most troubling point of brittleness in classic STUN is that it
 doesn’t work in all network topologies. In cases where there is a
 shared NAT between each agent and the STUN server, traditional STUN
 may not work. With ICE, that restriction is removed.

 Classic STUN also introduces some security considerations.
 Fortunately, those security considerations are also mitigated by ICE.

 Consequently, ICE serves to repair the brittleness introduced in
 classic STUN, and does not introduce any additional brittleness into
 the system.

 The penalty of these improvements is that ICE increases session
 establishment times.

18.4. Requirements for a Long-Term Solution

 From RFC 3424, any UNSAF proposal must provide:

 ... requirements for longer term, sound technical solutions --
 contribute to the process of finding the right longer term
 solution.

 Our conclusions from RFC 3489 remain unchanged. However, we feel ICE
 actually helps because we believe it can be part of the long-term
 solution.

Keranen & Rosenberg Expires June 23, 2016 [Page 79]

Internet-Draft ICE December 2015

18.5. Issues with Existing NAPT Boxes

 From RFC 3424, any UNSAF proposal must provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market that try
 to provide "generic" ALG functionality. These generic ALGs hunt for
 IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This interferes with classic
 STUN. However, the update to STUN [RFC5389] uses an encoding that
 hides these binary addresses from generic ALGs.

 Existing NAPT boxes have non-deterministic and typically short
 expiration times for UDP-based bindings. This requires
 implementations to send periodic keepalives to maintain those
 bindings. ICE uses a default of 15 s, which is a very conservative
 estimate. Eventually, over time, as NAT boxes become compliant to
 behave [RFC4787], this minimum keepalive will become deterministic
 and well-known, and the ICE timers can be adjusted. Having a way to
 discover and control the minimum keepalive interval would be far
 better still.

19. Changes from RFC 5245

 Following is the list of changes from RFC 5245

 o The specification was generalized to be more usable with any
 protocol and the parts that are specific to SIP and SDP were moved
 to a SIP/SDP usage document [I-D.ietf-mmusic-ice-sip-sdp].

 o Default candidates, multiple components, ICE mismatch detection,
 subsequent offer/answer, and role conflict resolution were made
 optional since they are not needed with every protocol using ICE.

 o With IPv6, the precedence rules of RFC 6724 are used instead of
 the obsoleted RFC 3483 and using address preferences provided by
 the host operating system is recommended.

 o Candidate gathering rules regarding loopback addresses and IPv6
 addresses were clarified.

20. Acknowledgements

 Most of the text in this document comes from the original ICE
 specification, RFC 5245. The authors would like to thank everyone
 who has contributed to that document. For additional contributions

Keranen & Rosenberg Expires June 23, 2016 [Page 80]

Internet-Draft ICE December 2015

 to this revision of the specification we would like to thank Christer
 Holmberg, Emil Ivov, Paul Kyzivat, Pal-Erik Martinsen, Simon
 Perrault, Eric Rescorla, Thomas Stach, Peter Thatcher, Martin
 Thomson, Justin Uberti, and Suhas Nandakumar.

21. References

21.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010,
 <http://www.rfc-editor.org/info/rfc5766>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <http://www.rfc-editor.org/info/rfc6724>.

21.2. Informative References

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605,
 DOI 10.17487/RFC3605, October 2003,
 <http://www.rfc-editor.org/info/rfc3605>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <http://www.rfc-editor.org/info/rfc3261>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002,
 <http://www.rfc-editor.org/info/rfc3264>.

Keranen & Rosenberg Expires June 23, 2016 [Page 81]

Internet-Draft ICE December 2015

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 DOI 10.17487/RFC3489, March 2003,
 <http://www.rfc-editor.org/info/rfc3489>.

 [RFC3235] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235,
 DOI 10.17487/RFC3235, January 2002,
 <http://www.rfc-editor.org/info/rfc3235>.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, DOI 10.17487/RFC3303, August 2002,
 <http://www.rfc-editor.org/info/rfc3303>.

 [RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
 "Realm Specific IP: Framework", RFC 3102,
 DOI 10.17487/RFC3102, October 2001,
 <http://www.rfc-editor.org/info/rfc3102>.

 [RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
 "Realm Specific IP: Protocol Specification", RFC 3103,
 DOI 10.17487/RFC3103, October 2001,
 <http://www.rfc-editor.org/info/rfc3103>.

 [RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across Network
 Address Translation", RFC 3424, DOI 10.17487/RFC3424,
 November 2002, <http://www.rfc-editor.org/info/rfc3424>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <http://www.rfc-editor.org/info/rfc3711>.

 [RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
 via IPv4 Clouds", RFC 3056, DOI 10.17487/RFC3056, February
 2001, <http://www.rfc-editor.org/info/rfc3056>.

 [RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, DOI 10.17487/RFC3389,
 September 2002, <http://www.rfc-editor.org/info/rfc3389>.

Keranen & Rosenberg Expires June 23, 2016 [Page 82]

Internet-Draft ICE December 2015

 [RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
 Addresses", RFC 3879, DOI 10.17487/RFC3879, September
 2004, <http://www.rfc-editor.org/info/rfc3879>.

 [RFC4038] Shin, M-K., Ed., Hong, Y-G., Hagino, J., Savola, P., and
 E. Castro, "Application Aspects of IPv6 Transition",
 RFC 4038, DOI 10.17487/RFC4038, March 2005,
 <http://www.rfc-editor.org/info/rfc4038>.

 [RFC4091] Camarillo, G. and J. Rosenberg, "The Alternative Network
 Address Types (ANAT) Semantics for the Session Description
 Protocol (SDP) Grouping Framework", RFC 4091,
 DOI 10.17487/RFC4091, June 2005,
 <http://www.rfc-editor.org/info/rfc4091>.

 [RFC4092] Camarillo, G. and J. Rosenberg, "Usage of the Session
 Description Protocol (SDP) Alternative Network Address
 Types (ANAT) Semantics in the Session Initiation Protocol
 (SIP)", RFC 4092, DOI 10.17487/RFC4092, June 2005,
 <http://www.rfc-editor.org/info/rfc4092>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <http://www.rfc-editor.org/info/rfc4566>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <http://www.rfc-editor.org/info/rfc2475>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <http://www.rfc-editor.org/info/rfc4787>.

 [I-D.ietf-avt-rtp-no-op]
 Andreasen, F., "A No-Op Payload Format for RTP", draft-
 ietf-avt-rtp-no-op-04 (work in progress), May 2007.

Keranen & Rosenberg Expires June 23, 2016 [Page 83]

Internet-Draft ICE December 2015

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761,
 DOI 10.17487/RFC5761, April 2010,
 <http://www.rfc-editor.org/info/rfc5761>.

 [RFC4103] Hellstrom, G. and P. Jones, "RTP Payload for Text
 Conversation", RFC 4103, DOI 10.17487/RFC4103, June 2005,
 <http://www.rfc-editor.org/info/rfc4103>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <http://www.rfc-editor.org/info/rfc5382>.

 [RFC6080] Petrie, D. and S. Channabasappa, Ed., "A Framework for
 Session Initiation Protocol User Agent Profile Delivery",
 RFC 6080, DOI 10.17487/RFC6080, March 2011,
 <http://www.rfc-editor.org/info/rfc6080>.

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <http://www.rfc-editor.org/info/rfc6146>.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 DOI 10.17487/RFC6147, April 2011,
 <http://www.rfc-editor.org/info/rfc6147>.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
 March 2012, <http://www.rfc-editor.org/info/rfc6544>.

 [RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
 the IPv6 Prefix Used for IPv6 Address Synthesis",
 RFC 7050, DOI 10.17487/RFC7050, November 2013,
 <http://www.rfc-editor.org/info/rfc7050>.

Keranen & Rosenberg Expires June 23, 2016 [Page 84]

Internet-Draft ICE December 2015

 [I-D.ietf-mmusic-ice-sip-sdp]
 Petit-Huguenin, M., Keranen, A., and S. Nandakumar, "Using
 Interactive Connectivity Establishment (ICE) with Session
 Description Protocol (SDP) offer/answer and Session
 Initiation Protocol (SIP)", draft-ietf-mmusic-ice-sip-
 sdp-07 (work in progress), October 2015.

 [I-D.ietf-6man-ipv6-address-generation-privacy]
 Cooper, A., Gont, F., and D. Thaler, "Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 draft-ietf-6man-ipv6-address-generation-privacy-08 (work
 in progress), September 2015.

Appendix A. Lite and Full Implementations

 ICE allows for two types of implementations. A full implementation
 supports the controlling and controlled roles in a session, and can
 also perform address gathering. In contrast, a lite implementation
 is a minimalist implementation that does little but respond to STUN
 checks.

 Because ICE requires both endpoints to support it in order to bring
 benefits to either endpoint, incremental deployment of ICE in a
 network is more complicated. Many sessions involve an endpoint that
 is, by itself, not behind a NAT and not one that would worry about
 NAT traversal. A very common case is to have one endpoint that
 requires NAT traversal (such as a VoIP hard phone or soft phone) make
 a call to one of these devices. Even if the phone supports a full
 ICE implementation, ICE won’t be used at all if the other device
 doesn’t support it. The lite implementation allows for a low-cost
 entry point for these devices. Once they support the lite
 implementation, full implementations can connect to them and get the
 full benefits of ICE.

 Consequently, a lite implementation is only appropriate for devices
 that will *always* be connected to the public Internet and have a
 public IP address at which it can receive packets from any
 correspondent. ICE will not function when a lite implementation is
 placed behind a NAT.

 ICE allows a lite implementation to have a single IPv4 host candidate
 and several IPv6 addresses. In that case, candidate pairs are
 selected by the controlling agent using a static algorithm, such as
 the one in RFC 6724, which is recommended by this specification.
 However, static mechanisms for address selection are always prone to
 error, since they cannot ever reflect the actual topology and can
 never provide actual guarantees on connectivity. They are always
 heuristics. Consequently, if an agent is implementing ICE just to

Keranen & Rosenberg Expires June 23, 2016 [Page 85]

Internet-Draft ICE December 2015

 select between its IPv4 and IPv6 addresses, and none of its IP
 addresses are behind NAT, usage of full ICE is still RECOMMENDED in
 order to provide the most robust form of address selection possible.

 It is important to note that the lite implementation was added to
 this specification to provide a stepping stone to full
 implementation. Even for devices that are always connected to the
 public Internet with just a single IPv4 address, a full
 implementation is preferable if achievable. A full implementation
 will reduce call setup times, since ICE’s aggressive mode can be
 used. Full implementations also obtain the security benefits of ICE
 unrelated to NAT traversal; in particular, the voice hammer attack
 described in Section 14 is prevented only for full implementations,
 not lite. Finally, it is often the case that a device that finds
 itself with a public address today will be placed in a network
 tomorrow where it will be behind a NAT. It is difficult to
 definitively know, over the lifetime of a device or product, that it
 will always be used on the public Internet. Full implementation
 provides assurance that communications will always work.

Appendix B. Design Motivations

 ICE contains a number of normative behaviors that may themselves be
 simple, but derive from complicated or non-obvious thinking or use
 cases that merit further discussion. Since these design motivations
 are not necessary to understand for purposes of implementation, they
 are discussed here in an appendix to the specification. This section
 is non-normative.

B.1. Pacing of STUN Transactions

 STUN transactions used to gather candidates and to verify
 connectivity are paced out at an approximate rate of one new
 transaction every Ta milliseconds. Each transaction, in turn, has a
 retransmission timer RTO that is a function of Ta as well. Why are
 these transactions paced, and why are these formulas used?

 Sending of these STUN requests will often have the effect of creating
 bindings on NAT devices between the client and the STUN servers.
 Experience has shown that many NAT devices have upper limits on the
 rate at which they will create new bindings. Experiments have shown
 that once every 20 ms is well supported, but not much lower than
 that. This is why Ta has a lower bound of 20 ms. Furthermore,
 transmission of these packets on the network makes use of bandwidth
 and needs to be rate limited by the agent. Deployments based on
 earlier draft versions of [RFC5245] tended to overload rate-
 constrained access links and perform poorly overall, in addition to
 negatively impacting the network. As a consequence, the pacing

Keranen & Rosenberg Expires June 23, 2016 [Page 86]

Internet-Draft ICE December 2015

 ensures that the NAT device does not get overloaded and that traffic
 is kept at a reasonable rate.

 The definition of a "reasonable" rate is that STUN should not use
 more bandwidth than the RTP itself will use, once media starts
 flowing. The formula for Ta is designed so that, if a STUN packet
 were sent every Ta seconds, it would consume the same amount of
 bandwidth as RTP packets, summed across all media streams. Of
 course, STUN has retransmits, and the desire is to pace those as
 well. For this reason, RTO is set such that the first retransmit on
 the first transaction happens just as the first STUN request on the
 last transaction occurs. Pictorially:

 First Packets Retransmits

 | |
 | |
 -------+------ -------+------
 / \ / \
 / \ / \

 +--+ +--+ +--+ +--+ +--+ +--+
 |A1| |B1| |C1| |A2| |B2| |C2|
 +--+ +--+ +--+ +--+ +--+ +--+

 ---+-------+-------+-------+-------+-------+------------ Time
 0 Ta 2Ta 3Ta 4Ta 5Ta

 In this picture, there are three transactions that will be sent (for
 example, in the case of candidate gathering, there are three host
 candidate/STUN server pairs). These are transactions A, B, and C.
 The retransmit timer is set so that the first retransmission on the
 first transaction (packet A2) is sent at time 3Ta.

 Subsequent retransmits after the first will occur even less
 frequently than Ta milliseconds apart, since STUN uses an exponential
 back-off on its retransmissions.

B.2. Candidates with Multiple Bases

 Section 4.1.3 talks about eliminating candidates that have the same
 transport address and base. However, candidates with the same
 transport addresses but different bases are not redundant. When can

Keranen & Rosenberg Expires June 23, 2016 [Page 87]

Internet-Draft ICE December 2015

 an agent have two candidates that have the same IP address and port,
 but different bases? Consider the topology of Figure 11:

 +----------+
 | STUN Srvr|
 +----------+
 |
 |

 // \\
 | |
 | B:net10 |
 | |
 \\ //

 |
 |
 +----------+
 | NAT |
 +----------+
 |
 |

 // \\
 | A |
 |192.168/16 |
 | |
 \\ //

 |
 |
 |192.168.1.100 -----
 +----------+ // \\ +----------+
 | | | | | |
 | Initiator|---------| C:net10 |-----------| Responder|
 | |10.0.1.100| | 10.0.1.101 | |
 +----------+ \\ // +----------+

 Figure 11: Identical Candidates with Different Bases

 In this case, the initiating agent is multihomed. It has one IP
 address, 10.0.1.100, on network C, which is a net 10 private network.
 The responding agent is on this same network. The initiating agent

Keranen & Rosenberg Expires June 23, 2016 [Page 88]

Internet-Draft ICE December 2015

 is also connected to network A, which is 192.168/16 and has an IP
 address of 192.168.1.100 on this network. There is a NAT on this
 network, natting into network B, which is another net 10 private
 network, but not connected to network C. There is a STUN server on
 network B.

 The initiating agent obtains a host candidate on its IP address on
 network C (10.0.1.100:2498) and a host candidate on its IP address on
 network A (192.168.1.100:3344). It performs a STUN query to its
 configured STUN server from 192.168.1.100:3344. This query passes
 through the NAT, which happens to assign the binding 10.0.1.100:2498.
 The STUN server reflects this in the STUN Binding response. Now, the
 initiating agent has obtained a server reflexive candidate with a
 transport address that is identical to a host candidate
 (10.0.1.100:2498). However, the server reflexive candidate has a
 base of 192.168.1.100:3344, and the host candidate has a base of
 10.0.1.100:2498.

B.3. Purpose of the Related Address and Related Port Attributes

 The candidate attribute contains two values that are not used at all
 by ICE itself -- related address and related port. Why are they
 present?

 There are two motivations for its inclusion. The first is
 diagnostic. It is very useful to know the relationship between the
 different types of candidates. By including it, an agent can know
 which relayed candidate is associated with which reflexive candidate,
 which in turn is associated with a specific host candidate. When
 checks for one candidate succeed and not for others, this provides
 useful diagnostics on what is going on in the network.

 The second reason has to do with off-path Quality of Service (QoS)
 mechanisms. When ICE is used in environments such as PacketCable
 2.0, proxies will, in addition to performing normal SIP operations,
 inspect the SDP in SIP messages, and extract the IP address and port
 for media traffic. They can then interact, through policy servers,
 with access routers in the network, to establish guaranteed QoS for
 the media flows. This QoS is provided by classifying the RTP traffic
 based on 5-tuple, and then providing it a guaranteed rate, or marking
 its Diffserv codepoints appropriately. When a residential NAT is
 present, and a relayed candidate gets selected for media, this
 relayed candidate will be a transport address on an actual TURN
 server. That address says nothing about the actual transport address
 in the access router that would be used to classify packets for QoS
 treatment. Rather, the server reflexive candidate towards the TURN
 server is needed. By carrying the translation in the SDP, the proxy
 can use that transport address to request QoS from the access router.

Keranen & Rosenberg Expires June 23, 2016 [Page 89]

Internet-Draft ICE December 2015

B.4. Importance of the STUN Username

 ICE requires the usage of message integrity with STUN using its
 short-term credential functionality. The actual short-term
 credential is formed by exchanging username fragments in the
 candidate exchange. The need for this mechanism goes beyond just
 security; it is actually required for correct operation of ICE in the
 first place.

 Consider agents L, R, and Z. L and R are within private enterprise
 1, which is using 10.0.0.0/8. Z is within private enterprise 2,
 which is also using 10.0.0.0/8. As it turns out, R and Z both have
 IP address 10.0.1.1. L sends candidates to Z. Z, in responds L with
 its host candidates. In this case, those candidates are
 10.0.1.1:8866 and 10.0.1.1:8877. As it turns out, R is in a session
 at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
 as host candidates. This means that R is prepared to accept STUN
 messages on those ports, just as Z is. L will send a STUN request to
 10.0.1.1:8866 and another to 10.0.1.1:8877. However, these do not go
 to Z as expected. Instead, they go to R! If R just replied to them,
 L would believe it has connectivity to Z, when in fact it has
 connectivity to a completely different user, R. To fix this, the
 STUN short-term credential mechanisms are used. The username
 fragments are sufficiently random that it is highly unlikely that R
 would be using the same values as Z. Consequently, R would reject
 the STUN request since the credentials were invalid. In essence, the
 STUN username fragments provide a form of transient host identifiers,
 bound to a particular session established as part of the candidate
 exchange.

 An unfortunate consequence of the non-uniqueness of IP addresses is
 that, in the above example, R might not even be an ICE agent. It
 could be any host, and the port to which the STUN packet is directed
 could be any ephemeral port on that host. If there is an application
 listening on this socket for packets, and it is not prepared to
 handle malformed packets for whatever protocol is in use, the
 operation of that application could be affected. Fortunately, since
 the ports exchanged are ephemeral and usually drawn from the dynamic
 or registered range, the odds are good that the port is not used to
 run a server on host R, but rather is the agent side of some
 protocol. This decreases the probability of hitting an allocated
 port, due to the transient nature of port usage in this range.
 However, the possibility of a problem does exist, and network
 deployers should be prepared for it. Note that this is not a problem
 specific to ICE; stray packets can arrive at a port at any time for
 any type of protocol, especially ones on the public Internet. As
 such, this requirement is just restating a general design guideline

Keranen & Rosenberg Expires June 23, 2016 [Page 90]

Internet-Draft ICE December 2015

 for Internet applications -- be prepared for unknown packets on any
 port.

B.5. The Candidate Pair Priority Formula

 The priority for a candidate pair has an odd form. It is:

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 Why is this? When the candidate pairs are sorted based on this
 value, the resulting sorting has the MAX/MIN property. This means
 that the pairs are first sorted based on decreasing value of the
 minimum of the two priorities. For pairs that have the same value of
 the minimum priority, the maximum priority is used to sort amongst
 them. If the max and the min priorities are the same, the
 controlling agent’s priority is used as the tie-breaker in the last
 part of the expression. The factor of 2*32 is used since the
 priority of a single candidate is always less than 2*32, resulting in
 the pair priority being a "concatenation" of the two component
 priorities. This creates the MAX/MIN sorting. MAX/MIN ensures that,
 for a particular agent, a lower-priority candidate is never used
 until all higher-priority candidates have been tried.

B.6. Why Are Keepalives Needed?

 Once media begins flowing on a candidate pair, it is still necessary
 to keep the bindings alive at intermediate NATs for the duration of
 the session. Normally, the media stream packets themselves (e.g.,
 RTP) meet this objective. However, several cases merit further
 discussion. Firstly, in some RTP usages, such as SIP, the media
 streams can be "put on hold". This is accomplished by using the SDP
 "sendonly" or "inactive" attributes, as defined in RFC 3264
 [RFC3264]. RFC 3264 directs implementations to cease transmission of
 media in these cases. However, doing so may cause NAT bindings to
 timeout, and media won’t be able to come off hold.

 Secondly, some RTP payload formats, such as the payload format for
 text conversation [RFC4103], may send packets so infrequently that
 the interval exceeds the NAT binding timeouts.

 Thirdly, if silence suppression is in use, long periods of silence
 may cause media transmission to cease sufficiently long for NAT
 bindings to time out.

 For these reasons, the media packets themselves cannot be relied
 upon. ICE defines a simple periodic keepalive utilizing STUN Binding
 indications. This makes its bandwidth requirements highly
 predictable, and thus amenable to QoS reservations.

Keranen & Rosenberg Expires June 23, 2016 [Page 91]

Internet-Draft ICE December 2015

B.7. Why Prefer Peer Reflexive Candidates?

 Section 4.1.2 describes procedures for computing the priority of
 candidate based on its type and local preferences. That section
 requires that the type preference for peer reflexive candidates
 always be higher than server reflexive. Why is that? The reason has
 to do with the security considerations in Section 14. It is much
 easier for an attacker to cause an agent to use a false server
 reflexive candidate than it is for an attacker to cause an agent to
 use a false peer reflexive candidate. Consequently, attacks against
 address gathering with Binding requests are thwarted by ICE by
 preferring the peer reflexive candidates.

B.8. Why Are Binding Indications Used for Keepalives?

 Media keepalives are described in Section 9. These keepalives make
 use of STUN when both endpoints are ICE capable. However, rather
 than using a Binding request transaction (which generates a
 response), the keepalives use an Indication. Why is that?

 The primary reason has to do with network QoS mechanisms. Once media
 begins flowing, network elements will assume that the media stream
 has a fairly regular structure, making use of periodic packets at
 fixed intervals, with the possibility of jitter. If an agent is
 sending media packets, and then receives a Binding request, it would
 need to generate a response packet along with its media packets.
 This will increase the actual bandwidth requirements for the 5-tuple
 carrying the media packets, and introduce jitter in the delivery of
 those packets. Analysis has shown that this is a concern in certain
 layer 2 access networks that use fairly tight packet schedulers for
 media.

 Additionally, using a Binding Indication allows integrity to be
 disabled, allowing for better performance. This is useful for large-
 scale endpoints, such as PSTN gateways and SBCs.

Authors’ Addresses

 Ari Keranen
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 Email: ari.keranen@ericsson.com

Keranen & Rosenberg Expires June 23, 2016 [Page 92]

Internet-Draft ICE December 2015

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 US

 Email: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

Keranen & Rosenberg Expires June 23, 2016 [Page 93]

ICE A. Keranen
Internet-Draft C. Holmberg
Obsoletes: 5245 (if approved) Ericsson
Intended status: Standards Track J. Rosenberg
Expires: September 9, 2018 jdrosen.net
 March 8, 2018

 Interactive Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal
 draft-ietf-ice-rfc5245bis-20

Abstract

 This document describes a protocol for Network Address Translator
 (NAT) traversal for UDP-based communication. This protocol is called
 Interactive Connectivity Establishment (ICE). ICE makes use of the
 Session Traversal Utilities for NAT (STUN) protocol and its
 extension, Traversal Using Relay NAT (TURN).

 This document obsoletes RFC 5245.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 9, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Keranen, et al. Expires September 9, 2018 [Page 1]

Internet-Draft ICE March 2018

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 5
 2. Overview of ICE . 6
 2.1. Gathering Candidates 8
 2.2. Connectivity Checks 10
 2.3. Nominating Candidate Pairs And Concluding ICE 12
 2.4. ICE Restart . 13
 2.5. Lite Implementations 13
 3. ICE Usage . 13
 4. Terminology . 13
 5. ICE Candidate Gathering and Exchange 17
 5.1. Full Implementation 17
 5.1.1. Gathering Candidates 17
 5.1.1.1. Host Candidates 18
 5.1.1.2. Server Reflexive and Relayed Candidates 19
 5.1.1.3. Computing Foundations 21
 5.1.1.4. Keeping Candidates Alive 21
 5.1.2. Prioritizing Candidates 22
 5.1.2.1. Recommended Formula 22
 5.1.2.2. Guidelines for Choosing Type and Local
 Preferences 23
 5.1.3. Eliminating Redundant Candidates 23
 5.2. Lite Implementation Procedures 23
 5.3. Exchanging Candidate Information 24
 5.4. ICE Mismatch . 26
 6. ICE Candidate Processing 26
 6.1. Procedures for Full Implementation 26
 6.1.1. Determining Role 26
 6.1.2. Forming the Check Lists 28

Keranen, et al. Expires September 9, 2018 [Page 2]

Internet-Draft ICE March 2018

 6.1.2.1. Check List State 28
 6.1.2.2. Forming Candidate Pairs 28
 6.1.2.3. Computing Pair Priority and Ordering Pairs . . . 31
 6.1.2.4. Pruning the Pairs 31
 6.1.2.5. Removing lower-priority Pairs 31
 6.1.2.6. Computing Candidate Pair States 32
 6.1.3. ICE State . 35
 6.1.4. Scheduling Checks 35
 6.1.4.1. Triggered Check Queue 35
 6.1.4.2. Performing Connectivity Checks 36
 6.2. Lite Implementation Procedures 37
 7. Performing Connectivity Checks 37
 7.1. STUN Extensions . 37
 7.1.1. PRIORITY . 38
 7.1.2. USE-CANDIDATE . 38
 7.1.3. ICE-CONTROLLED and ICE-CONTROLLING 38
 7.2. STUN Client Procedures 38
 7.2.1. Creating Permissions for Relayed Candidates 38
 7.2.2. Forming Credentials 38
 7.2.3. DiffServ Treatment 39
 7.2.4. Sending the Request 39
 7.2.5. Processing the Response 39
 7.2.5.1. Role Conflict 40
 7.2.5.2. Failure . 40
 7.2.5.2.1. Non-Symmetric Transport Addresses 40
 7.2.5.2.2. ICMP Error 41
 7.2.5.2.3. Timeout 41
 7.2.5.2.4. Unrecoverable STUN Response 41
 7.2.5.3. Success . 41
 7.2.5.3.1. Discovering Peer Reflexive Candidates 41
 7.2.5.3.2. Constructing a Valid Pair 42
 7.2.5.3.3. Updating Candidate Pair States 43
 7.2.5.3.4. Updating the Nominated Flag 43
 7.2.5.4. Check List State Updates 44
 7.3. STUN Server Procedures 44
 7.3.1. Additional Procedures for Full Implementations . . . 45
 7.3.1.1. Detecting and Repairing Role Conflicts 45
 7.3.1.2. Computing Mapped Address 46
 7.3.1.3. Learning Peer Reflexive Candidates 46
 7.3.1.4. Triggered Checks 47
 7.3.1.5. Updating the Nominated Flag 48
 7.3.2. Additional Procedures for Lite Implementations . . . 48
 8. Concluding ICE Processing 49
 8.1. Procedures for Full Implementations 49
 8.1.1. Nominating Pairs 49
 8.1.2. Updating Check List and ICE States 50
 8.2. Procedures for Lite Implementations 51
 8.3. Freeing Candidates 52

Keranen, et al. Expires September 9, 2018 [Page 3]

Internet-Draft ICE March 2018

 8.3.1. Full Implementation Procedures 52
 8.3.2. Lite Implementation Procedures 52
 9. ICE Restarts . 52
 10. ICE Option . 53
 11. Keepalives . 53
 12. Data Handling . 54
 12.1. Sending Data . 54
 12.1.1. Procedures for Lite Implementations 55
 12.2. Receiving Data . 55
 13. Extensibility Considerations 56
 14. Setting Ta and RTO . 57
 14.1. General . 57
 14.2. Ta . 57
 14.3. RTO . 58
 15. Examples . 58
 15.1. Example with IPv4 Addresses 59
 15.2. Example with IPv6 Addresses 65
 16. STUN Extensions . 69
 16.1. New Attributes . 69
 16.2. New Error Response Codes 69
 17. Operational Considerations 70
 17.1. NAT and Firewall Types 70
 17.2. Bandwidth Requirements 70
 17.2.1. STUN and TURN Server Capacity Planning 70
 17.2.2. Gathering and Connectivity Checks 71
 17.2.3. Keepalives . 71
 17.3. ICE and ICE-lite . 72
 17.4. Troubleshooting and Performance Management 72
 17.5. Endpoint Configuration 72
 18. IAB Considerations . 72
 18.1. Problem Definition 73
 18.2. Exit Strategy . 73
 18.3. Brittleness Introduced by ICE 74
 18.4. Requirements for a Long-Term Solution 75
 18.5. Issues with Existing NAPT Boxes 75
 19. Security Considerations 75
 19.1. IP Address Privacy 76
 19.2. Attacks on Connectivity Checks 76
 19.3. Attacks on Server Reflexive Address Gathering 79
 19.4. Attacks on Relayed Candidate Gathering 80
 19.5. Insider Attacks . 80
 19.5.1. STUN Amplification Attack 80
 20. IANA Considerations . 81
 20.1. STUN Attributes . 81
 20.2. STUN Error Responses 82
 20.3. ICE Options . 82
 21. Changes from RFC 5245 . 83
 22. Acknowledgements . 84

Keranen, et al. Expires September 9, 2018 [Page 4]

Internet-Draft ICE March 2018

 23. References . 84
 23.1. Normative References 84
 23.2. Informative References 85
 Appendix A. Lite and Full Implementations 89
 Appendix B. Design Motivations 90
 B.1. Pacing of STUN Transactions 90
 B.2. Candidates with Multiple Bases 92
 B.3. Purpose of the Related Address and Related Port
 Attributes . 94
 B.4. Importance of the STUN Username 94
 B.5. The Candidate Pair Priority Formula 96
 B.6. Why Are Keepalives Needed? 96
 B.7. Why Prefer Peer Reflexive Candidates? 97
 B.8. Why Are Binding Indications Used for Keepalives? 97
 B.9. Selecting Candidate Type Preference 97
 Appendix C. Connectivity Check Bandwidth 98
 Authors’ Addresses . 99

1. Introduction

 Protocols establishing communication sessions between peers typically
 involve exchanging IP addresses and ports for the data sources and
 sinks. However, this poses challenges when operated through Network
 Address Translators (NATs) [RFC3235]. These protocols also seek to
 create a data flow directly between participants, so that there is no
 application layer intermediary between them. This is done to reduce
 data latency, decrease packet loss, and reduce the operational costs
 of deploying the application. However, this is difficult to
 accomplish through NATs. A full treatment of the reasons for this is
 beyond the scope of this specification.

 Numerous solutions have been defined for allowing these protocols to
 operate through NATs. These include Application Layer Gateways
 (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
 Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
 Realm Specific IP [RFC3102] [RFC3103] along with session description
 extensions needed to make them work, such as the Session Description
 Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
 (RTCP) [RFC3605]. Unfortunately, these techniques all have pros and
 cons that make each one optimal in some network topologies, but a
 poor choice in others. The result is that administrators and
 implementers are making assumptions about the topologies of the
 networks in which their solutions will be deployed. This introduces
 complexity and brittleness into the system.

 This specification defines Interactive Connectivity Establishment
 (ICE) as a technique for NAT traversal for UDP-based data streams
 (though ICE has been extended to handle other transport protocols,

Keranen, et al. Expires September 9, 2018 [Page 5]

Internet-Draft ICE March 2018

 such as TCP [RFC6544]). ICE works by exchanging a multiplicity of IP
 addresses and ports which are then tested for connectivity by peer-
 to-peer connectivity checks. The IP addresses and ports are
 exchanged using ICE usage-specific mechanisms (e.g., including in a
 offer/answer exchange) and the connectivity checks are performed
 using STUN [RFC5389]. ICE also makes use of Traversal Using Relays
 around NAT (TURN) [RFC5766], an extension to STUN. Because ICE
 exchanges a multiplicity of IP addresses and ports for each media
 stream, it also allows for address selection for multihomed and dual-
 stack hosts. For this reason, RFC 5245 [RFC5245] deprecated the
 solutions previously defined in RFC 4091 [RFC4091] and RFC 4092
 [RFC4092].

 Appendix B provides background information and motivations regarding
 the design decisions that were made when designing ICE.

2. Overview of ICE

 In a typical ICE deployment, there are two endpoints (ICE agents)
 that want to communicate. Note that ICE is not intended for NAT
 traversal for the signaling protocol, which is assumed to be provided
 via another mechanism. ICE assumes that the agents are able to
 establish a signaling connection between each other.

 Initially, the agents are ignorant of their own topologies. In
 particular, the agents may or may not be behind NATs (or multiple
 tiers of NATs). ICE allows the agents to discover enough information
 about their topologies to potentially find one or more paths by which
 they can establish a data session.

 Figure 1 shows a typical ICE deployment. The agents are labelled L
 and R. Both L and R are behind their own respective NATs though they
 may not be aware of it. The type of NAT and its properties are also
 unknown. L and R are capable of engaging in a candidate exchange
 process, whose purpose is to set up a data session between L and R.
 Typically, this exchange will occur through a signaling server (e.g.,
 SIP proxy).

 In addition to the agents, a signaling server, and NATs, ICE is
 typically used in concert with STUN or TURN servers in the network.
 Each agent can have its own STUN or TURN server, or they can be the
 same.

Keranen, et al. Expires September 9, 2018 [Page 6]

Internet-Draft ICE March 2018

 +---------+
 +--------+ |Signaling| +--------+
 | STUN | |Server | | STUN |
 | Server | +---------+ | Server |
 +--------+ / \ +--------+
 / \
 / \
 / <- Signaling -> \
 / \
 +--------+ +--------+
 | NAT | | NAT |
 +--------+ +--------+
 / \
 / \
 +-------+ +-------+
 | Agent | | Agent |
 | L | | R |
 +-------+ +-------+

 Figure 1: ICE Deployment Scenario

 The basic idea behind ICE is as follows: each agent has a variety of
 candidate transport addresses (combination of IP address and port for
 a particular transport protocol, which is always UDP in this
 specification) it could use to communicate with the other agent.
 These might include:

 o A transport address on a directly attached network interface

 o A translated transport address on the public side of a NAT (a
 "server reflexive" address)

 o A transport address allocated from a TURN server (a "relayed
 address")

 Potentially, any of L’s candidate transport addresses can be used to
 communicate with any of R’s candidate transport addresses. In
 practice, however, many combinations will not work. For instance, if
 L and R are both behind NATs, their directly attached interface
 addresses are unlikely to be able to communicate directly (this is
 why ICE is needed, after all!). The purpose of ICE is to discover
 which pairs of addresses will work. The way that ICE does this is to
 systematically try all possible pairs (in a carefully sorted order)
 until it finds one or more that work.

Keranen, et al. Expires September 9, 2018 [Page 7]

Internet-Draft ICE March 2018

2.1. Gathering Candidates

 In order to execute ICE, an ICE agent identifies and gathers one or
 more address candidates. A candidate has a transport address -- a
 combination of IP address and port for a particular transport
 protocol (with only UDP specified here). There are different types
 of candidates, some derived from physical or logical network
 interfaces, others discoverable via STUN and TURN.

 The first category of candidates are those with a transport address
 obtained directly from a local interface. Such a candidate is called
 a host candidate. The local interface could be Ethernet or WiFi, or
 it could be one that is obtained through a tunnel mechanism, such as
 a Virtual Private Network (VPN) or Mobile IP (MIP). In all cases,
 such a network interface appears to the agent as a local interface
 from which ports (and thus candidates) can be allocated.

 Next, the agent uses STUN or TURN to obtain additional candidates.
 These come in two flavors: translated addresses on the public side of
 a NAT (server reflexive candidates) and addresses on TURN servers
 (relayed candidates). When TURN servers are utilized, both types of
 candidates are obtained from the TURN server. If only STUN servers
 are utilized, only server reflexive candidates are obtained from
 them. The relationship of these candidates to the host candidate is
 shown in Figure 2. In this figure, both types of candidates are
 discovered using TURN. In the figure, the notation X:x means IP
 address X and UDP port x.

Keranen, et al. Expires September 9, 2018 [Page 8]

Internet-Draft ICE March 2018

 To Internet

 |
 |
 | /------------ Relayed
 Y:y | / Address
 +--------+
 | |
 | TURN |
 | Server |
 | |
 +--------+
 |
 |
 | /------------ Server
 X1’:x1’|/ Reflexive
 +------------+ Address
 | NAT |
 +------------+
 |
 | /------------ Local
 X:x |/ Address
 +--------+
 | |
 | Agent |
 | |
 +--------+

 Figure 2: Candidate Relationships

 When the agent sends a TURN Allocate request from IP address and port
 X:x, the NAT (assuming there is one) will create a binding X1’:x1’,
 mapping this server reflexive candidate to the host candidate X:x.
 Outgoing packets sent from the host candidate will be translated by
 the NAT to the server reflexive candidate. Incoming packets sent to
 the server reflexive candidate will be translated by the NAT to the
 host candidate and forwarded to the agent. The host candidate
 associated with a given server reflexive candidate is the BASE.

 Note: "Base" refers to the address an agent sends from for a
 particular candidate. Thus, as a degenerate case, host candidates
 also have a base, but it’s the same as the host candidate.

 When there are multiple NATs between the agent and the TURN server,
 the TURN request will create a binding on each NAT, but only the
 outermost server reflexive candidate (the one nearest the TURN
 server) will be discovered by the agent. If the agent is not behind

Keranen, et al. Expires September 9, 2018 [Page 9]

Internet-Draft ICE March 2018

 a NAT, then the base candidate will be the same as the server
 reflexive candidate and the server reflexive candidate is redundant
 and will be eliminated.

 The Allocate request then arrives at the TURN server. The TURN
 server allocates a port y from its local IP address Y, and generates
 an Allocate response, informing the agent of this relayed candidate.
 The TURN server also informs the agent of the server reflexive
 candidate, X1’:x1’ by copying the source transport address of the
 Allocate request into the Allocate response. The TURN server acts as
 a packet relay, forwarding traffic between L and R. In order to send
 traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
 server forwards that to X1’:x1’, which passes through the NAT where
 it is mapped to X:x and delivered to L.

 When only STUN servers are utilized, the agent sends a STUN Binding
 request [RFC5389] to its STUN server. The STUN server will inform
 the agent of the server reflexive candidate X1’:x1’ by copying the
 source transport address of the Binding request into the Binding
 response.

2.2. Connectivity Checks

 Once L has gathered all of its candidates, it orders them in highest
 to lowest-priority and sends them to R over the signaling channel.
 When R receives the candidates from L, it performs the same gathering
 process and responds with its own list of candidates. At the end of
 this process, each ICE agent has a complete list of both its
 candidates and its peer’s candidates. It pairs them up, resulting in
 candidate pairs. To see which pairs work, each agent schedules a
 series of connectivity checks. Each check is a STUN request/response
 transaction that the client will perform on a particular candidate
 pair by sending a STUN request from the local candidate to the remote
 candidate.

 The basic principle of the connectivity checks is simple:

 1. Sort the candidate pairs in priority order.

 2. Send checks on each candidate pair in priority order.

 3. Acknowledge checks received from the other agent.

 With both agents performing a check on a candidate pair, the result
 is a 4-way handshake:

Keranen, et al. Expires September 9, 2018 [Page 10]

Internet-Draft ICE March 2018

 L R
 - -
 STUN request -> \ L’s
 <- STUN response / check

 <- STUN request \ R’s
 STUN response -> / check

 Figure 3: Basic Connectivity Check

 It is important to note that the STUN requests are sent to and from
 the exact same IP addresses and ports that will be used for data
 (e.g., RTP, RTCP, or other protocols). Consequently, agents
 demultiplex STUN and data using the contents of the packets, rather
 than the port on which they are received.

 Because a STUN Binding request is used for the connectivity check,
 the STUN Binding response will contain the agent’s translated
 transport address on the public side of any NATs between the agent
 and its peer. If this transport address is different from that of
 other candidates the agent already learned, it represents a new
 candidate (peer reflexive candidate), which then gets tested by ICE
 just the same as any other candidate.

 Because the algorithm above searches all candidate pairs, if a
 working pair exists it will eventually find it no matter what order
 the candidates are tried in. In order to produce faster (and better)
 results, the candidates are sorted in a specified order. The
 resulting list of sorted candidate pairs is called the check list.

 The agent works through the check list by sending a STUN request for
 the next candidate pair on the list periodically. These are called
 "ordinary checks". When a STUN transaction succeeds, one or more
 candidate pairs will become so called valid pairs, and will be added
 to a candidate pair list called the valid list.

 As an optimization, as soon as R gets L’s check message, R schedules
 a connectivity check message to be sent to L on the same candidate
 pair. This is called a "triggered check", and accelerates the
 process of finding valid pairs.

 At the end of this handshake, both L and R know that they can send
 (and receive) messages end-to-end in both directions.

 In general, the priority algorithm is designed so that candidates of
 similar type get similar priorities and so that more direct routes
 (that is, routes without data relays or NATs) are preferred over
 indirect routes (routes with data relays or NATs). Within those

Keranen, et al. Expires September 9, 2018 [Page 11]

Internet-Draft ICE March 2018

 guidelines, however, agents have a fair amount of discretion about
 how to tune their algorithms.

 A data stream might consist of multiple components (pieces of a data
 stream that require their own set of candidates, e.g., RTP and RTCP).

2.3. Nominating Candidate Pairs And Concluding ICE

 ICE assigns one of the ICE agents in the role of the controlling
 agent, and the other of the controlled agent. For each component of
 a data stream, the controlling agent nominates a valid pair (from the
 valid list) to be used for data. The exact timing of the nomination
 is based on local policy.

 When nominating, the controlling agent lets the checks continue until
 at least one valid pair for each component of a data stream is found
 and then picks a valid pair and sends a STUN request on the valid
 pair, using an attribute to indicate to the controlled peer that it
 has nominated the pair. This is shown in Figure 4.

 L R
 - -
 STUN request -> \ L’s
 <- STUN response / check

 <- STUN request \ R’s
 STUN response -> / check

 STUN request + attribute -> \ L’s
 <- STUN response / check

 Figure 4: Nomination

 Once the controlled agent receives the STUN request with the
 attribute, it will check (unless the check has already been done) the
 same pair. If the transactions above succeed, the agents will set
 the nominated flag for the pairs, and will cancel any future checks
 for that component of the data stream. Once an agent has set the
 nominated flag for each component of a data stream, the pairs become
 the selected pairs. After that, only the selected pairs will be used
 for sending and receiving data associated with that data stream.

Keranen, et al. Expires September 9, 2018 [Page 12]

Internet-Draft ICE March 2018

2.4. ICE Restart

 Once ICE is concluded, it can be restarted at any time for one or all
 of the data streams by either ICE agent. This is done by sending
 updated candidate information indicating a restart.

2.5. Lite Implementations

 Certain ICE agents will always be connected to the public Internet
 and have a public IP address at which it can receive packets from any
 correspondent. To make it easier for these devices to support ICE,
 ICE defines a special type of implementation called lite (in contrast
 to the normal full implementation). Lite agents only use host
 candidates and do not generate connectivity checks or run the state
 machines, though they need to be able to respond to connectivity
 checks.

3. ICE Usage

 This document specifies generic use of ICE with protocols that
 provide means to exchange candidate information between the ICE
 agents. The specific details (i.e., how to encode candidate
 information and the actual candidate exchange process) for different
 protocols using ICE (referred to as "using protocol") are described
 in separate usage documents.

 One mechanism for agents to exchange the candidate information by
 using [RFC3264] based Offer/Answer semantics as part of the SIP
 [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

 [RFC7825] defines an ICE usage for the Real-Time Streaming Protocol
 (RTSP). Note, however, that the ICE usage is based on RFC 5245.

4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC
 2119 [RFC2119].

 Readers need to be familiar with the terminology defined in
 [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

 This specification makes use of the following additional terminology:

 ICE Session: An ICE session consists of all ICE-related actions
 starting with the candidate gathering, followed by the
 interactions (candidate exchange, connectivity checks, nominations

Keranen, et al. Expires September 9, 2018 [Page 13]

Internet-Draft ICE March 2018

 and keepalives) between the ICE agents until all the candidates
 are released or ICE restart is triggered.

 ICE Agent, Agent: An ICE agent (sometimes simply referred to as an
 agent) is the protocol implementation involved in the ICE
 candidate exchange. There are two agents involved in a typical
 candidate exchange.

 Initiating Peer, Initiating Agent, Initiator: An initiating agent is
 an ICE agent that initiates the ICE candidate exchange process.

 Responding Peer, Responding Agent, Responder: A responding agent is
 an ICE agent that receives and responds to the candidate exchange
 process initiated by the initiating agent.

 ICE Candidate Exchange, Candidate Exchange: The process where the
 ICE agents exchange information (e.g., candidates and passwords)
 that is needed to perform ICE. [RFC3264] Offer/Answer with SDP
 encoding is one example of a protocol that can be used for
 exchanging the candidate information.

 Peer: From the perspective of one of the ICE agents in a session,
 its peer is the other agent. Specifically, from the perspective
 of the initiating agent, the peer is the responding agent. From
 the perspective of the responding agent, the peer is the
 initiating agent.

 Transport Address: The combination of an IP address and transport
 protocol (such as UDP or TCP) port.

 Data, Data Stream, Data Session: When ICE is used to setup data
 sessions, the data is transported using some protocol. Media is
 usually transported over RTP, composed of a stream of RTP packets.
 Data session refers to data packets that are exchanged between the
 peer on the path created and tested with ICE.

 Candidate, Candidate Information: A transport address that is a
 potential point of contact for receipt of data. Candidates also
 have properties -- their type (server reflexive, relayed, or
 host), priority, foundation, and base.

 Component: A component is a piece of a data stream. A data stream
 may require multiple components, each of which has to work in
 order for the data stream as a whole to work. For RTP/RTCP data
 streams, unless RTP and RTCP are multiplexed in the same port,
 there are two components per data stream -- one for RTP, and one
 for RTCP. A component has a candidate pair, which cannot be used
 by other components.

Keranen, et al. Expires September 9, 2018 [Page 14]

Internet-Draft ICE March 2018

 Host Candidate: A candidate obtained by binding to a specific port
 from an IP address on the host. This includes IP addresses on
 physical interfaces and logical ones, such as ones obtained
 through Virtual Private Networks (VPNs).

 Server Reflexive Candidate: A candidate whose IP address and port
 are a binding allocated by a NAT for an ICE agent when it sent a
 packet through the NAT to a server, such as a STUN server.

 Peer Reflexive Candidate: A candidate whose IP address and port are
 a binding allocated by a NAT for an ICE agent when it sent a
 packet through the NAT to its peer.

 Relayed Candidate: A candidate obtained from a relay server, such as
 a TURN server.

 Base: The transport address that an ICE agent sends from for a
 particular candidate. For host, server reflexive and peer
 reflexive candidates the base is the same as the host candidate.
 For relayed candidates the base is the same as the relayed
 candidate (i.e., the transport address used by the TURN server to
 send from).

 Related Address and Port: A transport address related to a
 candidate, useful for diagnostics and other purposes. If a
 candidate is server or peer reflexive, the related address and
 port is equal to the base for that server or peer reflexive
 candidate. If the candidate is relayed, the related address and
 port is equal to the mapped address in the Allocate response that
 provided the client with that relayed candidate. If the candidate
 is a host candidate, the related address and port is identical to
 the host candidate.

 Foundation: An arbitrary string used in the freezing algorithm to
 group similar candidates. Is the same for two candidates that
 have the same type, base IP address, protocol (UDP, TCP, etc.),
 and STUN or TURN server. If any of these are different, then the
 foundation will be different.

 Local Candidate: A candidate that an ICE agent has obtained and may
 send to its peer.

 Remote Candidate: A candidate that an ICE agent received from its
 peer.

 Default Destination/Candidate: The default destination for a
 component of a data stream is the transport address that would be
 used by an ICE agent that is not ICE-aware. A default candidate

Keranen, et al. Expires September 9, 2018 [Page 15]

Internet-Draft ICE March 2018

 for a component is one whose transport address matches the default
 destination for that component.

 Candidate Pair: A pair of a local candidate and a remote candidate.

 Check, Connectivity Check, STUN Check: A STUN Binding request for
 the purposes of verifying connectivity. A check is sent from the
 base of the local candidate to the remote candidate of a candidate
 pair.

 Check List: An ordered set of candidate pairs that an ICE agent will
 use to generate checks.

 Ordinary Check: A connectivity check generated by an ICE agent as a
 consequence of a timer that fires periodically, instructing it to
 send a check.

 Triggered Check: A connectivity check generated as a consequence of
 the receipt of a connectivity check from the peer.

 Valid Pair: A candidate pair whose local candidate equals the mapped
 address of a successful connectivity check response, and whose
 remote candidate equals the destination address to which the
 connectivity check request was sent.

 Valid List: An ordered set of candidate pairs for a data stream that
 have been validated by a successful STUN transaction.

 Check List Set: The ordered list of all check lists. The order is
 determined by each ICE usage.

 Full Implementation: An ICE implementation that performs the
 complete set of functionality defined by this specification.

 Lite Implementation: An ICE implementation that omits certain
 functions, implementing only as much as is necessary for a peer
 implementation that is full to gain the benefits of ICE. Lite
 implementations do not maintain any of the state machines and do
 not generate connectivity checks.

 Controlling Agent: The ICE agent that nominates a candidate pair.
 In any session, one agent is always controlling. The other is the
 controlled agent.

 Controlled Agent: The ICE agent that waits for the controlling agent
 to nominate a candidate pair.

Keranen, et al. Expires September 9, 2018 [Page 16]

Internet-Draft ICE March 2018

 Nomination: The process of the controlling agent indicating to the
 controlled agent which candidate pair the ICE agents will use for
 sending and receiving data. The nomination process defined in
 this specification was referred to "regular nomination" in RFC
 5245. The nomination process that was referred to "aggressive
 nomination" in RFC 5245 has been deprecated in this specification.

 Nominated, Nominated Flag: Once the nomination of a candidate pair
 has succeeded, the candidate pair has become nominated, and the
 value of its nominated flag is set to true.

 Selected Pair, Selected Candidate Pair: The candidate pair used for
 sending and receiving data for a component of a data stream is
 referred to as the selected pair. Before selected pairs have been
 produced for a data stream, any valid pair associated with a
 component of a data stream can be used for sending and receiving
 data for the component. Once there are nominated pairs for each
 component of a data stream, the nominated pairs become the
 selected pairs for the data stream. The candidates associated
 with the selected pairs are referred to as selected candidates.

 Using Protocol, ICE Usage: The protocol that uses ICE for NAT
 traversal. A usage specification defines the protocol-specific
 details on how the procedures defined here are applied to that
 protocol.

 Timer Ta: The timer for generating new STUN or TURN transactions.

 Timer RTO (Retransmission Timout): The retransmission timer for a
 given STUN or TURN transaction.

5. ICE Candidate Gathering and Exchange

 As part of ICE processing, both the initiating and responding agents
 gather candidates, prioritize and eliminate redundant candidates, and
 exchange candidate information with the peer as defined by the Usage
 Protocol (ICE Usage). Specifics of the candidate encoding mechanism
 and the semantics of candidate information exchange is out of scope
 of this specification.

5.1. Full Implementation

5.1.1. Gathering Candidates

 An ICE agent gathers candidates when it believes that communication
 is imminent. An initiating agent can do this based on a user
 interface cue, or based on an explicit request to initiate a session.
 Every candidate has a transport address. It also has a type and a

Keranen, et al. Expires September 9, 2018 [Page 17]

Internet-Draft ICE March 2018

 base. Four types are defined and gathered by this specification --
 host candidates, server reflexive candidates, peer reflexive
 candidates, and relayed candidates. The server reflexive candidates
 are gathered using STUN or TURN, and relayed candidates are obtained
 through TURN. Peer reflexive candidates are obtained in later phases
 of ICE, as a consequence of connectivity checks.

 The process for gathering candidates at the responding agent is
 identical to the process for the initiating agent. It is RECOMMENDED
 that the responding agent begins this process immediately on receipt
 of the candidate information, prior to alerting the user of the
 application associated with the ICE session.

5.1.1.1. Host Candidates

 Host candidates are obtained by binding to ports on an IP address
 attached to an interface (physical or virtual, including VPN
 interfaces) on the host.

 For each component of each data stream the ICE agent wishes to use,
 the agent SHOULD obtain a candidate on each IP address that the host
 has, with the exceptions listed below. The agent obtains each
 candidate by binding to a UDP port on the specific IP address. A
 host candidate (and indeed every candidate) is always associated with
 a specific component for which it is a candidate.

 Each component has an ID assigned to it, called the component ID.
 For RTP/RTCP data streams, unless both RTP and RTCP are multiplexed
 in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
 component ID of 1, and RTCP a component ID of 2. In case of RTP/RTCP
 multiplexing, a component ID of 1 is used for both RTP and RTCP.

 When candidates are obtained, unless the agent knows for sure that
 RTP/RTCP multiplexing will be used (i.e., the agent knows that the
 other agent also supports, and is willing to use, RTP/RTCP
 multiplexing), or unless the agent only supports RTP/RTCP
 multiplexing, the agent MUST obtain a separate candidate for RTCP.
 If an agent has obtained a candidate for RTCP, and ends up using RTP/
 RTCP multiplexing, the agent does not need to perform connectivity
 checks on the RTCP candidate. Absence of a component ID 2 as such
 does not imply use of RTCP/RTP multiplexing, as it could also mean
 that RTCP is not used.

 If an agent is using separate candidates for RTP and RTCP, it will
 end up with 2*K host candidates if an agent has K IP addresses.

 Note that the responding agent, when obtaining its candidates, will
 typically know if the other agent supports RTP/RTCP multiplexing, in

Keranen, et al. Expires September 9, 2018 [Page 18]

Internet-Draft ICE March 2018

 which case it will not need to obtain a separate candidate for RTCP.
 However, absence of a component ID 2 as such does not imply use of
 RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

 For uses other than RTP/RTCP streams, use of multiple components is
 discouraged, since using them increases the complexity of ICE
 processing. If multiple components are needed, the component IDs
 SHOULD start with 1 and increase by 1 for each component.

 The base for each host candidate is set to the candidate itself.

 The host candidates are gathered from all IP addresses with the
 following exceptions:

 o Addresses from a loopback interface MUST NOT be included in the
 candidate addresses.

 o Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
 local unicast addresses [RFC3879] MUST NOT be included in the
 address candidates.

 o IPv4-mapped IPv6 addresses SHOULD NOT be included in the address
 candidates unless the application using ICE does not support IPv4
 (i.e., is an IPv6-only application [RFC4038]).

 o If one or more host candidates corresponding to an IPv6 address
 generated using a mechanism that prevents location tracking
 [RFC7721] are gathered, host candidates corresponding to IPv6
 addresses that do allow location tracking that are configured on
 the same interface and are part of the same network prefix MUST
 NOT be gathered. Similarly, when host candidates corresponding to
 an IPv6 address generated using a mechanism that prevents location
 tracking are gathered, then host candidates corresponding to IPv6
 link-local addresses [RFC4291] MUST NOT be gathered.

 The IPv6 default address selection specification [RFC6724] specifies
 that temporary addresses [RFC4941] are to be preferred over permanent
 addresses.

5.1.1.2. Server Reflexive and Relayed Candidates

 An ICE agent SHOULD gather server reflexive and relayed candidates.
 However, use of STUN and TURN servers may be unnecessary in certain
 networks and use of TURN servers may be expensive, so some
 deployments may elect not to use them. If an agent does not gather
 server reflexive or relayed candidates, it is RECOMMENDED that the
 functionality be implemented and just disabled through configuration,

Keranen, et al. Expires September 9, 2018 [Page 19]

Internet-Draft ICE March 2018

 so that it can be re-enabled through configuration if conditions
 change in the future.

 The agent pairs each host candidate with the STUN or TURN servers
 with which it is configured or has discovered by some means. It is
 RECOMMENDED that a domain name be configured, and the DNS procedures
 in [RFC5389] (using SRV records with the "stun" service) be used to
 discover the STUN server, and the DNS procedures in [RFC5766] (using
 SRV records with the "turn" service) be used to discover the TURN
 server.

 When multiple STUN or TURN servers are available (or when they are
 learned through DNS records and multiple results are returned), the
 agent MAY gather candidates for all of them and SHOULD gather
 candidates for at least one of them (one STUN server and one TURN
 server). It does so by pairing host candidates with STUN or TURN
 servers and, for each pair, the agent sends a Binding or Allocate
 request to the server from the host candidate. Binding requests to a
 STUN server are not authenticated, and any ALTERNATE-SERVER attribute
 in a response is ignored. Agents MUST support the backwards
 compatibility mode for the Binding request defined in [RFC5389].
 Allocate requests SHOULD be authenticated using a long-term
 credential obtained by the client through some other means.

 The gathering process is controlled using a timer, Ta. Every time Ta
 expires the agent can generate another new STUN or TURN transaction.
 This transaction can either be a retry of a previous transaction that
 failed with a recoverable error (such as authentication failure), or
 a transaction for a new host candidate and STUN or TURN server pair.
 The agent SHOULD NOT generate transactions more frequently than one
 every time Ta expires. See Section 14 for guidance on how to set Ta
 and the STUN retransmit timer, RTO.

 The agent will receive a Binding or Allocate response. A successful
 Allocate response will provide the agent with a server reflexive
 candidate (obtained from the mapped address) and a relayed candidate
 in the XOR-RELAYED-ADDRESS attribute. If the Allocate request is
 rejected because the server lacks resources to fulfill it, the agent
 SHOULD instead send a Binding request to obtain a server reflexive
 candidate. A Binding response will provide the agent with only a
 server reflexive candidate (also obtained from the mapped address).
 The base of the server reflexive candidate is the host candidate from
 which the Allocate or Binding request was sent. The base of a
 relayed candidate is that candidate itself. If a relayed candidate
 is identical to a host candidate (which can happen in rare cases),
 the relayed candidate MUST be discarded.

Keranen, et al. Expires September 9, 2018 [Page 20]

Internet-Draft ICE March 2018

 If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
 and DNS64 [RFC6147] technologies, it may also gather IPv4 server
 reflexive and/or relayed candidates from IPv4-only STUN or TURN
 servers. IPv6-only agents SHOULD also utilize IPv6 prefix discovery
 [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
 generate server reflexive candidates for each IPv6-only interface
 accordingly. The NAT64 server reflexive candidates are prioritized
 like IPv4 server reflexive candidates.

5.1.1.3. Computing Foundations

 The ICE agent assigns each candidate a foundation. Two candidates
 have the same foundation when all of the following are true:

 o They have the same type (host, relayed, server reflexive, or peer
 reflexive).

 o Their bases have the same IP address (the ports can be different).

 o For reflexive and relayed candidates, the STUN or TURN servers
 used to obtain them have the same IP address (the IP address used
 by the agent to contact the STUN or TURN server).

 o They were obtained using the same transport protocol (TCP, UDP).

 Similarly, two candidates have different foundations if their types
 are different, their bases have different IP addresses, the STUN or
 TURN servers used to obtain them have different IP addresses (the IP
 addresses used by the agent to contact the STUN or TURN server), or
 their transport protocols are different.

5.1.1.4. Keeping Candidates Alive

 Once server reflexive and relayed candidates are allocated, they MUST
 be kept alive until ICE processing has completed, as described in
 Section 8.3. For server reflexive candidates learned through a
 Binding request, the bindings MUST be kept alive by additional
 Binding requests to the server. Refreshes for allocations are done
 using the Refresh transaction, as described in [RFC5766]. The
 Refresh requests will also refresh the server reflexive candidate.

 Host candidates do not time out, but the candidate addresses may
 change or disappear for a number of reasons. An ICE agent SHOULD
 monitor the interfaces it uses, invalidate candidates whose base has
 gone away, and acquire new candidates as appropriate when new IP
 addresses (on new or currently used interfaces) appear.

Keranen, et al. Expires September 9, 2018 [Page 21]

Internet-Draft ICE March 2018

5.1.2. Prioritizing Candidates

 The prioritization process results in the assignment of a priority to
 each candidate. Each candidate for a data stream MUST have a unique
 priority that MUST be a positive integer between 1 and (2**31 - 1).
 This priority will be used by ICE to determine the order of the
 connectivity checks and the relative preference for candidates.
 Higher priority values give more priority over lower values.

 An ICE agent SHOULD compute this priority using the formula in
 Section 5.1.2.1 and choose its parameters using the guidelines in
 Section 5.1.2.2. If an agent elects to use a different formula, ICE
 may take longer to converge since the agents will not be coordinated
 in their checks.

 The process for prioritizing candidates is common across the
 initiating and the responding agent.

5.1.2.1. Recommended Formula

 The recommended formula combines a preference for the candidate type
 (server reflexive, peer reflexive, relayed, and host), a preference
 for the IP address for which the candidate was obtained, and
 component ID using the following formula:

 priority = (2^24)*(type preference) +
 (2^8)*(local preference) +
 (2^0)*(256 - component ID)

 The type preference MUST be an integer from 0 (lowest preference) to
 126 (highest preference) inclusive and MUST be identical for all
 candidates of the same type and MUST be different for candidates of
 different types. The type preference for peer reflexive candidates
 MUST be higher than that of server reflexive candidates. Setting the
 value to 0 means that candidates of this type will only be used as a
 last resort. Note that candidates gathered based on the procedures
 of Section 5.1.1 will never be peer reflexive candidates; candidates
 of these type are learned from the connectivity checks performed by
 ICE.

 The local preference MUST be an integer from 0 (lowest preference) to
 65535 (highest preference) inclusive. When there is only a single IP
 address, this value SHOULD be set to 65535. If there are multiple
 candidates for a particular component for a particular data stream
 that have the same type, the local preference MUST be unique for each
 one. If an ICE agent is dual-stack, the local preference SHOULD be

Keranen, et al. Expires September 9, 2018 [Page 22]

Internet-Draft ICE March 2018

 set according to the current best practice described in
 [I-D.ietf-ice-dualstack-fairness].

 The component ID MUST be an integer between 1 and 256 inclusive.

5.1.2.2. Guidelines for Choosing Type and Local Preferences

 The RECOMMENDED values for type preferences are 126 for host
 candidates, 110 for peer reflexive candidates, 100 for server
 reflexive candidates, and 0 for relayed candidates.

 If an ICE agent is multihomed and has multiple IP addresses, the
 recommendations in [I-D.ietf-ice-dualstack-fairness] SHOULD be
 followed. If multiple TURN servers are used, local priorities for
 the candidates obtained from the TURN servers are chosen in a similar
 fashion as for multihomed local candidates: the local preference
 value is used to indicate a preference among different servers but
 the preference MUST be unique for each one.

 When choosing type preferences, agents may take into account factors
 such as latency, packet loss, cost, network topology, security,
 privacy, and others.

5.1.3. Eliminating Redundant Candidates

 Next, the ICE agents (initiating and responding) eliminate redundant
 candidates. Two candidates can have the same transport address yet
 have different bases, and these would not be considered redundant.
 Frequently, a server reflexive candidate and a host candidate will be
 redundant when the agent is not behind a NAT. A candidate is
 redundant if and only if its transport address and base equal those
 of another candidate. The agent SHOULD eliminate the redundant
 candidate with the lower priority.

5.2. Lite Implementation Procedures

 Lite implementations only utilize host candidates. For each IP
 address, independent of IP address family, there MUST be zero or one
 candidate. With the lite implementation, ICE cannot be used to
 dynamically choose amongst candidates. Therefore, including more
 than one candidate from a particular IP address family is NOT
 RECOMMENDED, since only a connectivity check can truly determine
 whether to use one address or the other. Instead agents that have
 multiple public IP addresses are RECOMMENDED to run full ICE
 implementations to ensure the best usage of its addresses.

 Each component has an ID assigned to it, called the component ID.
 For RTP/RTCP data streams, unless RTCP is multiplexed in the same

Keranen, et al. Expires September 9, 2018 [Page 23]

Internet-Draft ICE March 2018

 port with RTP, the RTP itself has a component ID of 1, and RTCP a
 component ID of 2. If an agent is using RTCP without multiplexing,
 it MUST obtain candidates for it. However, absence of a component ID
 2 as such does not imply use of RTCP/RTP multiplexing, as it could
 also mean that RTCP is not used.

 Each candidate is assigned a foundation. The foundation MUST be
 different for two candidates allocated from different IP addresses,
 and MUST be the same otherwise. A simple integer that increments for
 each IP address will suffice. In addition, each candidate MUST be
 assigned a unique priority amongst all candidates for the same data
 stream. If the formula in Section 5.1.2.1 is used to calculate the
 priority, the type preference value SHOULD be set to 126. If a host
 is v4-only, the local preference value SHOULD be set to 65535. If a
 host is v6 or dual-stack, the local preference value SHOULD be set to
 the precedence value for IP addresses described in RFC 6724
 [RFC6724].

 Next, an agent chooses a default candidate for each component of each
 data stream. If a host is IPv4-only, there would only be one
 candidate for each component of each data stream, and therefore that
 candidate is the default. If a host is IPv6-only, the default
 candidate would typically be a globally scoped IPv6 address. Dual-
 stack hosts SHOULD allow configuration of whether IPv4 or IPv6 is
 used for the default candidate, and the configuration needs to be
 based on which one its administrator believes has a higher chance of
 success in the current network environment.

 The procedures in this section are common across the initiating and
 responding agents.

5.3. Exchanging Candidate Information

 ICE agents (initiating and responding) need the following information
 about candidates to be exchanged. Each ICE usage MUST define how the
 information is exchanged with the using protocol. This section
 describes the information that needs to be exchanged.

 Candidates: One or more candidates. For each candidate:

 Address: The IP address and transport protocol port of the
 candidate.

 Transport: The transport protocol of the candidate. This MAY be
 omitted if the using protocol only runs over a single transport
 protocol.

Keranen, et al. Expires September 9, 2018 [Page 24]

Internet-Draft ICE March 2018

 Foundation: A sequence of up to 32 characters.

 Component ID: The component ID of the candidate. This MAY be
 omitted if the using protocol does not use the concept of
 components.

 Priority: The 32-bit priority of the candidate.

 Type: The type of the candidate.

 Related Address and Port: The related IP address and port of the
 candidate. These MAY be omitted or set to invalid values if
 the agent does not want to reveal them, e.g., for privacy
 reasons.

 Extensibility Parameters: The using protocol might define means
 for adding new per-candidate ICE parameters in the future.

 Lite or Full: Whether the agent is a lite agent or full agent.

 Connectivity check pacing value: The pacing value for connectivity
 checks that the agent wishes to use. This MAY be omitted if the
 agent wishes to use a defined default value.

 Username Fragment and Password: Values used to perform connectivity
 checks. The values MUST be unguessable, with at least 128 bits of
 random number generator output used to generate the password, and
 at least 24 bits output to generate the username fragment.

 Extensions: New media-stream or session-level attributes (ice-
 options).

 If the using protocol is vulnerable to, and able to detect, ICE
 mismatch (Section 5.4), a way is needed for the detecting agent to
 convey this information to its peer. It is a boolean flag.

 The using protocol may (or may not) need to deal with backwards
 compatibility with older implementations that do not support ICE. If
 a fallback mechanism to non-ICE is supported is being used, then
 presumably the using protocol provides a way of conveying the default
 candidate (its IP address and port) in addition to the ICE
 parameters.

 Once an agent has sent its candidate information, it MUST be prepared
 to receive both STUN and data packets on each candidate. As
 discussed in Section 12.1, data packets can be sent to a candidate
 prior to its appearance as the default destination for data.

Keranen, et al. Expires September 9, 2018 [Page 25]

Internet-Draft ICE March 2018

5.4. ICE Mismatch

 Certain middleboxes, such as ALGs, can alter signaling information in
 ways that break ICE (e.g., by rewriting IP addresses in SDP). This
 is referred to as ICE mismatch. If the using protocol is vulnerable
 to ICE mismatch, the responding agent needs to be able to detect it
 and inform the peer ICE agent about the ICE mismatch.

 Each using protocol needs to define whether the using protocol is
 vulnerable to ICE mismatch, how ICE mismatch is detected, and whether
 specific actions need to be taken when ICE mismatch is detected.

6. ICE Candidate Processing

 Once an ICE agent has gathered its candidates and exchanged
 candidates with its peer (Section 5), it will determine its own role.
 In addition, full implementations will form check lists, and begin
 performing connectivity checks with the peer.

6.1. Procedures for Full Implementation

6.1.1. Determining Role

 For each session, each ICE agent (Initiating and Responding) takes on
 a role. There are two roles -- controlling and controlled. The
 controlling agent is responsible for the choice of the final
 candidate pairs used for communications. The sections below describe
 in detail the actual procedures followed by controlling and
 controlled agents.

 The rules for determining the role and the impact on behavior are as
 follows:

 Both agents are full: The initiating agent that started the ICE
 processing MUST take the controlling role, and the other MUST take
 the controlled role. Both agents will form check lists, run the
 ICE state machines, and generate connectivity checks. The
 controlling agent will execute the logic in Section 8.1 to
 nominate pairs that will become (if the connectivity checks
 associated with the nominations succeed) the selected pairs, and
 then both agents end ICE as described in Section 8.1.2.

 One agent full, one lite: The full agent MUST take the controlling
 role, and the lite agent MUST take the controlled role. The full
 agent will form check lists, run the ICE state machines, and
 generate connectivity checks. That agent will execute the logic
 in Section 8.1 to nominate pairs that will become (if the
 connectivity checks associated with the nominations succeed) the

Keranen, et al. Expires September 9, 2018 [Page 26]

Internet-Draft ICE March 2018

 selected pairs, and use the logic in Section 8.1.2 to end ICE.
 The lite implementation will just listen for connectivity checks,
 receive them and respond to them, and then conclude ICE as
 described in Section 8.2. For the lite implementation, the state
 of ICE processing for each data stream is considered to be
 Running, and the state of ICE overall is Running.

 Both lite: The initiating agent that started the ICE processing MUST
 take the controlling role, and the other MUST take the controlled
 role. In this case, no connectivity checks are ever sent.
 Rather, once the candidates are exchanged, each agent performs the
 processing described in Section 8 without connectivity checks. It
 is possible that both agents will believe they are controlled or
 controlling. In the latter case, the conflict is resolved through
 glare detection capabilities in the signaling protocol enabling
 the candidate exchange. The state of ICE processing for each data
 stream is considered to be Running, and the state of ICE overall
 is Running.

 Once the roles are determined for a session, they persist throughout
 the lifetime of the session. The roles can be re-determined as part
 of an ICE restart (Section 9), but an ICE agent MUST NOT re-determine
 the role as part of an ICE restart unless one or more of the
 following criteria is fulfilled:

 Full becomes lite: If the controlling agent is full, and switches to
 lite, the roles MUST be re-determined if the peer agent is also
 full.

 Role conflict: If the ICE restart causes a role conflict, the roles
 might be re-determined due to the role conflict procedures in
 Section 7.3.1.1.

 NOTE: There are certain 3PCC (third party call control) [RFC3725]
 scenarios where an ICE restart might cause a role conflict.

 NOTE: The agents needs to inform each other whether they are full or
 lite before the roles are determined. The mechanism for that is
 signalling protocol specific, and outside the scope of the document.

 An agent MUST accept if the peer initiates a re-determination of the
 roles even if the criteria for doing so are not fulfilled. This can
 happen if the peer is compliant with RFC 5245.

Keranen, et al. Expires September 9, 2018 [Page 27]

Internet-Draft ICE March 2018

6.1.2. Forming the Check Lists

 There is one check list for each data stream. To form a check list,
 initiating and responding ICE agents form candidate pairs, compute
 pair priorities, order pairs by priority, prune pairs, remove lower-
 priority pairs, and set check list states. If candidates are added
 to a check list (e.g., due to detection of peer reflexive
 candidates), the agent will re-perform these steps for the updated
 check list.

6.1.2.1. Check List State

 Each check list has a state, which captures the state of ICE checks
 for the data stream associated with the check list. The states are:

 Running: The check list is neither Completed nor Failed yet. Check
 lists are initially set to the Running state.

 Completed: The check list contains a nominated pair for each
 component of the data stream.

 Failed: The check list does not have a valid pair for each component
 of the data stream and all of the candidate pairs in the check
 list are in either the Failed or Succeeded state. In other words,
 at least one component of the check list has candidate pairs that
 are all in the Failed state, which means the component has failed,
 which means the check list has failed.

6.1.2.2. Forming Candidate Pairs

 The ICE agent pairs each local candidate with each remote candidate
 for the same component of the same data stream with the same IP
 address family. It is possible that some of the local candidates
 won’t get paired with remote candidates, and some of the remote
 candidates won’t get paired with local candidates. This can happen
 if one agent doesn’t include candidates for the all of the components
 for a data stream. If this happens, the number of components for
 that data stream is effectively reduced, and considered to be equal
 to the minimum across both agents of the maximum component ID
 provided by each agent across all components for the data stream.

 In the case of RTP, this would happen when one agent provides
 candidates for RTCP, and the other does not. As another example, the
 initiating agent can multiplex RTP and RTCP on the same port
 [RFC5761]. However, since the initiating agent doesn’t know if the
 peer agent can perform such multiplexing, it includes candidates for
 RTP and RTCP on separate ports. If the peer agent can perform such
 multiplexing, it would include just a single component for each

Keranen, et al. Expires September 9, 2018 [Page 28]

Internet-Draft ICE March 2018

 candidate -- for the combined RTP/RTCP mux. ICE would end up acting
 as if there was just a single component for this candidate.

 With IPv6 it is common for a host to have multiple host candidates
 for each interface. To keep the amount of resulting candidate pairs
 reasonable and to avoid candidate pairs that are highly unlikely to
 work, IPv6 link-local addresses MUST NOT be paired with other than
 link-local addresses.

 The candidate pairs whose local and remote candidates are both the
 default candidates for a particular component is called the default
 candidate pair for that component. This is the pair that would be
 used to transmit data if both agents had not been ICE aware.

 Figure 5 shows the properties of and relationships between transport
 addresses, candidates, candidate pairs, and check lists.

Keranen, et al. Expires September 9, 2018 [Page 29]

Internet-Draft ICE March 2018

 +--+
 | |
 | +---------------------+ |
 | |+----+ +----+ +----+ | +Type | | | | | | |
 | || IP | |Port| |Tran| | +Priority |
 | ||Addr| | | | | | +Foundation |
 | |+----+ +----+ +----+ | +Component ID |
 | | Transport | +Related Address |
 | | Addr | |
 | +---------------------+ +Base |
 | Candidate |
 +--+
 * *
 * *************************************
 * *
 +-------------------------------+
 .| |
 | Local Remote |
 | +----+ +----+ +default? |
 | |Cand| |Cand| +valid? |
 | +----+ +----+ +nominated?|
 | +State |
 | |
 | |
 | Candidate Pair |
 +-------------------------------+
 * *
 * ************
 * *
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+
 +------------------+
 | Candidate Pair |
 +------------------+

 Check
 List

 Figure 5: Conceptual Diagram of a Check List

Keranen, et al. Expires September 9, 2018 [Page 30]

Internet-Draft ICE March 2018

6.1.2.3. Computing Pair Priority and Ordering Pairs

 The ICE agent computes a priority for each candidate pair. Let G be
 the priority for the candidate provided by the controlling agent.
 Let D be the priority for the candidate provided by the controlled
 agent. The priority for a pair is computed as follows:

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 The agent sorts each check list in decreasing order of candidate pair
 priority. If two pairs have identical priority, the ordering amongst
 them is arbitrary.

6.1.2.4. Pruning the Pairs

 This sorted list of candidate pairs is used to determine a sequence
 of connectivity checks that will be performed. Each check involves
 sending a request from a local candidate to a remote candidate.
 Since an ICE agent cannot send requests directly from a reflexive
 candidate (server reflexive or peer reflexive), but only from its
 base, the agent next goes through the sorted list of candidate pairs.
 For each pair where the local candidate is reflexive, the candidate
 MUST be replaced by its base.

 The agent prunes each check list. This is done by removing a
 candidate pair if it is redundant with a higher priority candidate
 pair in the same check list. Two candidate pairs are redundant if
 their local candidates have the same base and their remote candidates
 are identical. The result is a sequence of ordered candidate pairs,
 called the check list for that data stream.

6.1.2.5. Removing lower-priority Pairs

 In order to limit the attacks described in Section 19.5.1, an ICE
 agent MUST limit the total number of connectivity checks the agent
 performs across all check lists in the check list set. This is done
 by limiting the total number of candidate pairs in the check list
 set. The default limit of candidate pairs for the check list set is
 100, but the value MUST be configurable. The limit is enforced by,
 within in each check list, discarding lower-priority candidate pairs
 until the total number of candidate pairs in the check list set is
 smaller than the limit value. The discarding SHOULD be done evenly
 so that the number of candidate pairs in each check list is reduced
 the same amount.

 It is RECOMMENDED that a lower limit value than the default is picked
 when possible, and that the value is set to the maximum number of
 plausible candidate pairs that might be created in an actual

Keranen, et al. Expires September 9, 2018 [Page 31]

Internet-Draft ICE March 2018

 deployment configuration. The requirement for configuration is meant
 to provide a tool for fixing this value in the field if, once
 deployed, it is found to be problematic.

6.1.2.6. Computing Candidate Pair States

 Each candidate pair in the check list has a foundation (the
 combination of the foundations of the local and remote candidates in
 the pair) and one of the following states:

 Waiting: A check has not been sent for this pair, but the pair is
 not Frozen.

 In-Progress: A check has been sent for this pair, but the
 transaction is in progress.

 Succeeded: A check has been sent for this pair, and produced a
 successful result.

 Failed: A check has been sent for this pair, and failed (a response
 to the check was never received, or a failure response was
 received).

 Frozen: A check for this pair has not been sent, and it can not be
 sent until the pair is unfrozen and moved into the Waiting state.

 Pairs move between states as shown in Figure 6.

Keranen, et al. Expires September 9, 2018 [Page 32]

Internet-Draft ICE March 2018

 +-----------+
 | |
 | |
 | Frozen |
 | |
 | |
 +-----------+
 |
 |unfreeze
 |
 V
 +-----------+ +-----------+
 | | | |
 | | perform | |
 | Waiting |-------->|In-Progress|
 | | | |
 | | | |
 +-----------+ +-----------+
 / |
 // |
 // |
 // |
 / |
 // |
 failure // |success
 // |
 / |
 // |
 // |
 // |
 V V
 +-----------+ +-----------+
 | | | |
 | | | |
 | Failed | | Succeeded |
 | | | |
 | | | |
 +-----------+ +-----------+

 Figure 6: Pair State FSM

 1. The initial states for each pair in a check list are computed by
 performing the following sequence of steps:

 2. The check lists are placed in an ordered list (the order is
 determined by each ICE usage), called the check list set.

Keranen, et al. Expires September 9, 2018 [Page 33]

Internet-Draft ICE March 2018

 3. The ICE agent initially places all candidate pairs in the Frozen
 state.

 4. The agent sets all of the check lists in the check list set to
 the Running state.

 5. For each foundation, the agent sets the state of exactly one
 candidate pair to the Waiting state (unfreezing it). The
 candidate pair to unfreeze is chosen by finding the first
 candidate pair (ordered by lowest component ID and then highest
 priority if component IDs are equal) in the first check list
 (according to the usage-defined check list set order) that has
 that foundation.

 NOTE: The procedures above are different from RFC 5245, where only
 candidate pairs in the first check list of were initially placed in
 the Waiting state. Now it applies to candidate pairs in the the
 first check list which have that foundation, even if the first check
 list to have that foundation is not the first check list in the check
 list set.

 The table below illustrates an example.

 Table legend:

 Each row (m1, m2,...) represents a check list associated with a data
 stream. m1 represents the first check list in the check list set.

 Each column (f1, f2,...) represents a foundation. Every candidate pair
 within a given column share the same foundation.

 f-cp represents a candidate pair in the Frozen state.

 w-cp represents a candidate pair in the Waiting state.

 1. The agent sets all of the pairs in the check list set to the Frozen
 state.

 f1 f2 f3 f4 f5

 m1 | f-cp f-cp f-cp
 |
 m2 | f-cp f-cp f-cp f-cp
 |
 m3 | f-cp f-cp

Keranen, et al. Expires September 9, 2018 [Page 34]

Internet-Draft ICE March 2018

 2. For each foundation, the candidate pair with the lowest component ID
 is placed in the Waiting state, unless a candidate pair associated with
 the same foundation has already been put in the Waiting state in one of
 the other examined check lists in the check list set.

 f1 f2 f3 f4 f5

 m1 | w-cp w-cp w-cp
 |
 m2 | f-cp f-cp f-cp w-cp
 |
 m3 | f-cp w-cp

 In the first check list (m1) the candidate pair for each foundation is
 placed in the Waiting state, as no pairs for the same foundations have
 yet been placed in the Waiting state.

 In the second check list (m2) the candidate pair for foundation f4 is
 placed in the Waiting state. The candidate pair for foundations f1, f2
 and f3 are kept in the Frozen state, as candidate pairs for those
 foundations have already been placed in the Waiting state (within check
 list m1).

 In the third check list (m3) the candidate pair for foundation f5 is
 placed in the Waiting state. The candidate pair for foundation f1 is
 kept in the Frozen state, as a candidate pair for that foundation have
 already been placed in the Waiting state (within check list m1).

 Once each check list have been processed, one candidate pair for each
 foundation in the check list set has been placed in the Waiting state.

6.1.3. ICE State

 The ICE agent has a state determined by the state of the check lists.
 The state is Completed if all check lists are Completed, Failed if
 all check lists are Failed, and Running otherwise.

6.1.4. Scheduling Checks

6.1.4.1. Triggered Check Queue

 Once the ICE agent has computed the check lists and created the check
 list set, as described in Section 6.1.2, the agent will begin
 performing connectivity checks (ordinary and triggered). For
 triggered connectivity checks, the agent maintains a FIFO queue for
 each check list, referred to as the triggered check queue, which

Keranen, et al. Expires September 9, 2018 [Page 35]

Internet-Draft ICE March 2018

 contains candidate pairs for which checks are to be sent at the next
 available opportunity. The triggered check queue is initially empty.

6.1.4.2. Performing Connectivity Checks

 The generation of ordinary and triggered connectivity checks is
 governed by timer Ta. As soon as the initial states for the
 candidate pairs in the check list set have been set, a check is
 performed for a candidate pair within the first check list in the
 Running state, following the procedures in Section 7. After that,
 whenever Ta fires the next check list in the Running state in the
 check list set is picked, and a check is performed for a candidate
 within that check list. After the last check list in the Running
 state in the check list set has been processed, the first check list
 is picked again, etc.

 Whenever Ta fires, the ICE agent will perform a check for a candidate
 pair within the picked check list by performing the following steps:

 1. If the triggered check queue associated with the check list
 contains one or more candidate pairs, the agent removes the top
 pair from the queue, performs a connectivity check on that pair,
 puts the candidate pair state to In-Progress, and aborts the
 subsequent steps.

 2. If there is no candidate pair in the Waiting state, and if there
 are one or more pairs in the Frozen state, for each pair in the
 Frozen state the agent checks the foundation associated with the
 pair. For a given foundation, if there is no pair (in any check
 list in the check list set) in the Waiting or In-Progress state,
 the agent puts the candidate pair state to Waiting and continues
 with the next step.

 3. If there are one or more candidate pairs in the Waiting state,
 the agent picks the highest-priority candidate pair (if there are
 multiple pairs with the same priority, the pair with the lowest
 component ID is picked) in the Waiting state, performs a
 connectivity check on that pair, puts the candidate pair par
 state to In-Progress, and abort the subsequent steps.

 4. If this step is reached, no check could be performed for the
 picked check list. So, without waiting for timer Ta to expire
 again, select the next check list in the Running state and return
 to step #1. If this happens for every single check list in the
 Running state, meaning there are no remaining candidate pairs to
 perform connectivity checks for, abort these steps.

Keranen, et al. Expires September 9, 2018 [Page 36]

Internet-Draft ICE March 2018

 Once the agent has picked a candidate pair for which a connectivity
 check is to be performed, the agent starts a check and sends the
 Binding request from the base associated with the local candidate of
 the pair to the remote candidate of the pair, as described in
 Section 7.2.4.

 Based on local policy, an agent MAY choose to terminate performing
 the connectivity checks for one or more checks lists in the check
 list set at any time. However, only the controlling agent is allowed
 to conclude ICE (Section 8).

 To compute the message integrity for the check, the agent uses the
 remote username fragment and password learned from the candidate
 information obtained from its peer. The local username fragment is
 known directly by the agent for its own candidate.

6.2. Lite Implementation Procedures

 Lite implementations skip most of the steps in Section 6 except for
 verifying the peer’s ICE support and determining its role in the ICE
 processing.

 If the lite implementation is the controlling agent (which will only
 happen if the peer ICE agent is also a lite implementation), it
 selects a candidate pair based on the ones in the candidate exchange
 (for IPv4, there is only ever one pair), and then updating the peer
 with the new candidate information reflecting that selection, if
 needed (it is never needed for an IPv4-only host).

7. Performing Connectivity Checks

 This section describes how connectivity checks are performed.

 An ICE agent MUST be compliant to [RFC5389]. A full implementation
 acts both as a STUN client and a STUN server, while a lite
 implementation only acts as a STUN server (as it does not generate
 connectivity checks).

7.1. STUN Extensions

 ICE extends STUN by defining new attributes: PRIORITY, USE-CANDIDATE,
 ICE-CONTROLLED, and ICE-CONTROLLING. The new attributes are formally
 defined in Section 16.1. This section describes the usage of the new
 attributes.

 The new attributes are only applicable to ICE connectivity checks.

Keranen, et al. Expires September 9, 2018 [Page 37]

Internet-Draft ICE March 2018

7.1.1. PRIORITY

 The priority attribute MUST be included in a Binding request and be
 set to the value computed by the algorithm in Section 5.1.2 for the
 local candidate, but with the candidate type preference of peer
 reflexive candidates.

7.1.2. USE-CANDIDATE

 The controlling agent MUST include the USE-CANDIDATE attribute in
 order to nominate a candidate pair (Section 8.1.1). The controlled
 agent MUST NOT include the USE-CANDIDATE attribute in a Binding
 request.

7.1.3. ICE-CONTROLLED and ICE-CONTROLLING

 The controlling agent MUST include the ICE-CONTROLLING attribute in a
 Binding request. The controlled agent MUST include the ICE-
 CONTROLLED attribute in a Binding request.

 The content of either attribute are used as tie-breaker values when
 an ICE role conflict occurs (Section 7.3.1.1).

7.2. STUN Client Procedures

7.2.1. Creating Permissions for Relayed Candidates

 If the connectivity check is being sent using a relayed local
 candidate, the client MUST create a permission first if it has not
 already created one previously. It would have created one previously
 if it had told the TURN server to create a permission for the given
 relayed candidate towards the IP address of the remote candidate. To
 create the permission, the ICE agent follows the procedures defined
 in [RFC5766]. The permission MUST be created towards the IP address
 of the remote candidate. It is RECOMMENDED that the agent defer
 creation of a TURN channel until ICE completes, in which case
 permissions for connectivity checks are normally created using a
 CreatePermission request. Once established, the agent MUST keep the
 permission active until ICE concludes.

7.2.2. Forming Credentials

 A connectivity check Binding request MUST utilize the STUN short-term
 credential mechanism.

 The username for the credential is formed by concatenating the
 username fragment provided by the peer with the username fragment of
 the ICE agent sending the request, separated by a colon (":").

Keranen, et al. Expires September 9, 2018 [Page 38]

Internet-Draft ICE March 2018

 The password is equal to the password provided by the peer.

 For example, consider the case where ICE agent L is the Initiating
 agent and ICE agent R is the Responding agent. Agent L included a
 username fragment of LFRAG for its candidates and a password of
 LPASS. Agent R provided a username fragment of RFRAG and a password
 of RPASS. A connectivity check from L to R utilizes the username
 RFRAG:LFRAG and a password of RPASS. A connectivity check from R to
 L utilizes the username LFRAG:RFRAG and a password of LPASS. The
 responses utilize the same usernames and passwords as the requests
 (note that the USERNAME attribute is not present in the response).

7.2.3. DiffServ Treatment

 If the agent is using Diffserv Codepoint markings [RFC2475] in data
 packets that it will send, the agent SHOULD apply the same markings
 to Binding requests and responses that it will send.

 If multiple DSCP markings are used on the data packets, the agent
 SHOULD choose one of them for use with the connectivity check.

7.2.4. Sending the Request

 A connectivity check is generated by sending a Binding request from
 the base associated with a local candidate to a remote candidate.
 [RFC5389] describes how Binding requests are constructed and
 generated.

 Support for backwards compatibility with RFC 3489 MUST NOT be assumed
 when performing connectivity checks. The FINGERPRINT mechanism MUST
 be used for connectivity checks.

7.2.5. Processing the Response

 This section defines additional procedures for processing Binding
 responses specific to ICE connectivity checks.

 When a Binding response is received, it is correlated to the
 corresponding Binding request using the transaction ID [RFC5389],
 which then associates the response with the candidate pair for which
 the Binding request was sent. After that, the response is processed
 according to the procedures for a role conflict, a failure, or a
 success, according to the procedures below.

Keranen, et al. Expires September 9, 2018 [Page 39]

Internet-Draft ICE March 2018

7.2.5.1. Role Conflict

 If the Binding request generates a 487 (Role Conflict) error response
 (Section 7.3.1.1), and if the ICE agent included an ICE-CONTROLLED
 attribute in the request, the agent MUST switch to the controlling
 role. If the agent included an ICE-CONTROLLING attribute in the
 request, the agent MUST switch to the controlled role.

 Once the agent has switched its role, the agent MUST add the
 candidate pair whose check generated the 487 error response to the
 triggered check queue associated with the check list to which the
 pair belongs, and set the candidate pair state to Waiting. When the
 triggered connectivity check is later performed, the ICE-CONTROLLING/
 ICE-CONTROLLED attribute of the Binding request will indicate the
 agent’s new role. The agent MUST change the tie-breaker value.

 NOTE: A role switch requires an agent to recompute pair priorities
 (Section 6.1.2.3), since the priority values depend on the role.

 NOTE: A role switch will also impact whether the agent is responsible
 for nominating candidate pairs, and whether the agent is responsible
 for initiating the exchange of the updated candidate information with
 the peer once ICE is concluded.

7.2.5.2. Failure

 This section describes cases when the candidate pair state is set to
 Failed.

 NOTE: When the ICE agent sets the candidate pair state to Failed as a
 result of a connectivity check error, the agent does not change the
 states of other candidate pairs with the same foundation.

7.2.5.2.1. Non-Symmetric Transport Addresses

 The ICE agent MUST check that the source and destination transport
 addresses in the Binding request and response are symmetric. I.e.,
 the source IP address and port of the response MUST be equal to the
 destination IP address and port to which the Binding request was
 sent, and that the destination IP address and port of the response
 MUST be equal to the source IP address and port from which the
 Binding request was sent. If the addresses are not symmetric, the
 agent MUST set the candidate pair state to Failed.

Keranen, et al. Expires September 9, 2018 [Page 40]

Internet-Draft ICE March 2018

7.2.5.2.2. ICMP Error

 An ICE agent MAY support processing of ICMP errors for connectivity
 checks. If the agent supports processing of ICMP errors, and if a
 Binding request generates a hard ICMP error, the agent SHOULD set the
 state of the candidate pair to Failed. Implementers need to be aware
 that ICMP errors can be used as a method for denial of service
 attacks when making a decision on how and if to process ICMP errors.

7.2.5.2.3. Timeout

 If the Binding request transaction times out, the ICE agent MUST set
 the candidate pair state to Failed.

7.2.5.2.4. Unrecoverable STUN Response

 If the Binding request generates a STUN error response that is
 unrecoverable [RFC5389] the ICE agent SHOULD set the candidate pair
 state to Failed.

7.2.5.3. Success

 A connectivity check is considered a success if each of the following
 criteria is true:

 o The Binding request generated a success response; and

 o The source and destination transport addresses in the Binding
 request and response are symmetric.

 If a check is considered a success, the ICE agent performs (in order)
 the actions described in the following sections.

7.2.5.3.1. Discovering Peer Reflexive Candidates

 The ICE agent MUST check the mapped address from the STUN response.
 If the transport address does not match any of the local candidates
 that the agent knows about, the mapped address represents a new
 candidate: a peer reflexive candidate. Like other candidates, a peer
 reflexive candidate has a type, base, priority, and foundation. They
 are computed as follows:

 o The type is peer reflexive.

 o The base is the local candidate of the candidate pair from which
 the Binding request was sent.

Keranen, et al. Expires September 9, 2018 [Page 41]

Internet-Draft ICE March 2018

 o The priority is the value of the PRIORITY attribute in the Binding
 request.

 o The foundation is described in Section 5.1.1.3.

 The peer reflexive candidate is then added to the list of local
 candidates for the data stream. The username fragment and password
 are the same as for all other local candidates for that data stream.

 The ICE agent does not need to pair the peer reflexive candidate with
 remote candidates, as a valid pair will be created due to the
 procedures in Section 7.2.5.3.2. If an agent wishes to pair the peer
 reflexive candidate with remote candidates other than the one in the
 valid pair that will be generated, the agent MAY provide updated
 candidate information to the peer that includes the peer reflexive
 candidate. This will cause the peer reflexive candidate to be paired
 with all other remote candidates.

7.2.5.3.2. Constructing a Valid Pair

 The ICE agent constructs a candidate pair whose local candidate
 equals the mapped address of the response, and whose remote candidate
 equals the destination address to which the request was sent. This
 is called a valid pair.

 The valid pair might equal the pair that generated the connectivity
 check, a different pair in the check list, or a pair currently not in
 the check list.

 The agent maintains a separate list, referred to as the valid list.
 There is a valid list for each check list in the check list set. The
 valid list will contain valid pairs. Initially each valid list is
 empty.

 Each valid pair within the valid list has a flag, called the
 nominated flag. When a valid pair is added to a valid list, the flag
 value is set to ’false’.

 The valid pair will be added to a valid list as follows:

 1. If the valid pair equals the pair that generated the check, the
 pair is added to the valid list associated with the check list to
 which the pair belongs; or

 2. If the valid pair equals another pair in a check list, that pair
 is added to the valid list associated with the check list of that
 pair. The pair that generated the check is not added to a valid
 list; or

Keranen, et al. Expires September 9, 2018 [Page 42]

Internet-Draft ICE March 2018

 3. If the valid pair is not in any check list, the agent computes
 the priority for the pair based on the priority of each
 candidate, using the algorithm in Section 6.1.2. The priority of
 the local candidate depends on its type. Unless the type is peer
 reflexive, the priority is equal to the priority signaled for
 that candidate in the candidate exchange. If the type is peer
 reflexive, it is equal to the PRIORITY attribute the agent placed
 in the Binding request that just completed. The priority of the
 remote candidate is taken from the candidate information of the
 peer. If the candidate does not appear there, then the check has
 been a triggered check to a new remote candidate. In that case,
 the priority is taken as the value of the PRIORITY attribute in
 the Binding request that triggered the check that just completed.
 The pair is then added to the valid list.

 NOTE: It will be very common that the valid pair will not be in any
 check list. Recall that the check list has pairs whose local
 candidates are never reflexive; those pairs had their local
 candidates converted to the base of the reflexive candidates, and
 then pruned if they were redundant. When the response to the Binding
 request arrives, the mapped address will be reflexive if there is a
 NAT between the two. In that case, the valid pair will have a local
 candidate that doesn’t match any of the pairs in the check list.

7.2.5.3.3. Updating Candidate Pair States

 The ICE agent sets the states of both the candidate pair that
 generated the check and the constructed valid pair (which may be
 different) to Succeeded.

 The agent MUST set the states for all other Frozen candidate pairs in
 all check lists with the same foundation to Waiting.

 NOTE: Within a given check list, candidate pairs with the same
 foundations will typically have different component ID values.

7.2.5.3.4. Updating the Nominated Flag

 If the controlling agent sends a Binding request with the USE-
 CANDIDATE attribute set, and if the ICE agent receives a successful
 response to the request, the agent sets the nominated flag of the
 pair to true. If the request fails (Section 7.2.5.2), the agent MUST
 remove the candidate pair from the valid list, set the candidate pair
 state to Failed and set the check list state to Failed.

 If the controlled agent receives a successful response to a Binding
 request sent by the agent, and that Binding request was triggered by
 a received Binding request with the USE-CANDIDATE attribute set

Keranen, et al. Expires September 9, 2018 [Page 43]

Internet-Draft ICE March 2018

 (Section 7.3.1.4), the agent sets the nominated flag of the pair to
 true. If the triggered request fails, the agent MUST remove the
 candidate pair from the valid list, set the candidate pair state to
 Failed and set the check list state to Failed.

 Once the nominated flag is set for a component of a data stream, it
 concludes the ICE processing for that component (Section 8).

7.2.5.4. Check List State Updates

 Regardless of whether a connectivity check was successful or failed,
 the completion of the check may require updating of check list
 states. For each check list in the check list set, if all of the
 candidate pairs are in either Failed or Succeeded state, and if there
 is not a valid pair in the valid list for each component of the data
 stream associated with the check list, the state of the check list is
 set to Failed. If there is a valid pair for each component in the
 valid list, the state of the check list is set to Succeeded.

7.3. STUN Server Procedures

 An ICE agent (lite or full) MUST be prepared to receive Binding
 requests on the base of each candidate it included in its most recent
 candidate exchange.

 The agent MUST use the short-term credential mechanism (i.e., the
 MESSAGE-INTEGRITY attribute) to authenticate the request and perform
 a message integrity check. Likewise, the short-term credential
 mechanism MUST be used for the response. The agent MUST consider the
 username to be valid if it consists of two values separated by a
 colon, where the first value is equal to the username fragment
 generated by the agent in a candidate exchange for a session in-
 progress. It is possible (and in fact very likely) that the
 initiating agent will receive a Binding request prior to receiving
 the candidates from its peer. If this happens, the agent MUST
 immediately generate a response (including computation of the mapped
 address as described in Section 7.3.1.2). The agent has sufficient
 information at this point to generate the response; the password from
 the peer is not required. Once the answer is received, it MUST
 proceed with the remaining steps required, namely, Section 7.3.1.3,
 Section 7.3.1.4, and Section 7.3.1.5 for full implementations. In
 cases where multiple STUN requests are received before the answer,
 this may cause several pairs to be queued up in the triggered check
 queue.

 An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
 NOT support the backwards-compatibility mechanisms to RFC 3489. It
 MUST utilize the FINGERPRINT mechanism.

Keranen, et al. Expires September 9, 2018 [Page 44]

Internet-Draft ICE March 2018

 If the agent is using Diffserv Codepoint markings [RFC2475] in its
 data packets, it SHOULD apply the same markings to Binding responses.
 The same would apply to any layer 2 markings the endpoint might be
 applying to data packets.

7.3.1. Additional Procedures for Full Implementations

 This subsection defines the additional server procedures applicable
 to full implementations, when the full implementation accepts the
 Binding request.

7.3.1.1. Detecting and Repairing Role Conflicts

 In certain usages of ICE (such as 3PCC), both ICE agents may end up
 choosing the same role, resulting in a role conflict. The section
 describes a mechanism for detecting and repairing role conflicts.
 The usage document MUST specify whether this mechanism is needed.

 An agent MUST examine the Binding request for either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute. It MUST follow these
 procedures:

 o If the agent is in the controlling role, and the ICE-CONTROLLING
 attribute is present in the request:

 * If the agent’s tie-breaker value is larger than or equal to the
 contents of the ICE-CONTROLLING attribute, the agent generates
 a Binding error response and includes an ERROR-CODE attribute
 with a value of 487 (Role Conflict) but retains its role.

 * If the agent’s tie-breaker value is less than the contents of
 the ICE-CONTROLLING attribute, the agent switches to the
 controlled role.

 o If the agent is in the controlled role, and the ICE-CONTROLLED
 attribute is present in the request:

 * If the agent’s tie-breaker value is larger than or equal to the
 contents of the ICE-CONTROLLED attribute, the agent switches to
 the controlling role.

 * If the agent’s tie-breaker value is less than the contents of
 the ICE-CONTROLLED attribute, the agent generates a Binding
 error response and includes an ERROR-CODE attribute with a
 value of 487 (Role Conflict) but retains its role.

 o If the agent is in the controlled role and the ICE-CONTROLLING
 attribute was present in the request, or the agent was in the

Keranen, et al. Expires September 9, 2018 [Page 45]

Internet-Draft ICE March 2018

 controlling role and the ICE-CONTROLLED attribute was present in
 the request, there is no conflict.

 A change in roles will require an agent to recompute pair priorities
 (Section 6.1.2.3), since those priorities are a function of role.
 The change in role will also impact whether the agent is responsible
 for selecting nominated pairs and initiating exchange with updated
 candidate information upon conclusion of ICE.

 The remaining sections in Section 7.3.1 are followed if the agent
 generated a successful response to the Binding request, even if the
 agent changed roles.

7.3.1.2. Computing Mapped Address

 For requests received on a relayed candidate, the source transport
 address used for STUN processing (namely, generation of the XOR-
 MAPPED-ADDRESS attribute) is the transport address as seen by the
 TURN server. That source transport address will be present in the
 XOR-PEER-ADDRESS attribute of a Data Indication message, if the
 Binding request was delivered through a Data Indication. If the
 Binding request was delivered through a ChannelData message, the
 source transport address is the one that was bound to the channel.

7.3.1.3. Learning Peer Reflexive Candidates

 If the source transport address of the request does not match any
 existing remote candidates, it represents a new peer reflexive remote
 candidate. This candidate is constructed as follows:

 o The type is peer reflexive.

 o The priority is the value of the PRIORITY attribute in the Binding
 request.

 o The foundation is an arbitrary value, different from the
 foundations of all other remote candidates. If any subsequent
 candidate exchanges contain this peer reflexive candidate, it will
 signal the actual foundation for the candidate.

 o The component ID is the component ID of the local candidate to
 which the request was sent.

 This candidate is added to the list of remote candidates. However,
 the ICE agent does not pair this candidate with any local candidates.

Keranen, et al. Expires September 9, 2018 [Page 46]

Internet-Draft ICE March 2018

7.3.1.4. Triggered Checks

 Next, the agent constructs a pair whose local candidate has the
 transport address (as seen by the agent) on which the STUN request
 was received, and a remote candidate equal to the source transport
 address where the request came from (which may be the peer reflexive
 remote candidate that was just learned). The local candidate will
 either be a host candidate (for cases where the request was not
 received through a relay) or a relayed candidate (for cases where it
 is received through a relay). The local candidate can never be a
 server reflexive candidate. Since both candidates are known to the
 agent, it can obtain their priorities and compute the candidate pair
 priority. This pair is then looked up in the check list. There can
 be one of several outcomes:

 o If the pair is already on the check list:

 * If the state of that pair is Succeeded, nothing further is
 done.

 * If the state of that pair is In-Progress, the agent cancels the
 In-Progress transaction. Cancellation means that the agent
 will not retransmit the Binding requests associated with the
 connectivity check transaction, will not treat the lack of
 response to be a failure, but will wait the duration of the
 transaction timeout for a response. In addition, the agent
 MUST add enqueue the pair in the triggered check list
 associated with the check list, and set the state of the pair
 to Waiting, in order to trigger a new connectivity check of the
 pair. Creating a new connectivity check enables validating In-
 Progress pairs as soon as possible, without having to wait for
 retransmissions of the Binding requests associated with the
 original connectivity check transaction.

 * If the state of that pair is Waiting, Frozen or Failed, the
 agent MUST enqueue the pair in the triggered check list
 associated with the check list (if not already present), and
 set the state of the pair to Waiting, in order to trigger a new
 connectivity check of the pair. Note that a state change of
 the pair from Failed to Waiting might also trigger a state
 change of the associated check list.

 These steps are done to facilitate rapid completion of ICE when both
 agents are behind NAT.

 o If the pair is not already on the check list:

 * The pair is inserted into the check list based on its priority.

Keranen, et al. Expires September 9, 2018 [Page 47]

Internet-Draft ICE March 2018

 * Its state is set to Waiting.

 * The pair is enqueued into the triggered check queue.

 When a triggered check is to be sent, it is constructed and processed
 as described in Section 7.2.4. These procedures require the agent to
 know the transport address, username fragment, and password for the
 peer. The username fragment for the remote candidate is equal to the
 part after the colon of the USERNAME in the Binding request that was
 just received. Using that username fragment, the agent can check the
 candidates received from its peer (there may be more than one in
 cases of forking), and find this username fragment. The
 corresponding password is then picked.

7.3.1.5. Updating the Nominated Flag

 If the controlled agent receives a Binding request with the USE-
 CANDIDATE attribute set, and if the ICE agent accepts the request,
 the following action is based on the state of the pair computed in
 Section 7.3.1.4:

 o If the state of this pair is Succeeded, it means that the check
 previously sent by this pair produced a successful response, and
 generated a valid pair (Section 7.2.5.3.2). The agent sets the
 nominated flag value of the valid pair to true.

 o If the received Binding request triggered a new check to be enqued
 in the triggered check queue (Section 7.3.1.4), once the check is
 sent and if it generates a successful response, and generates a
 valid pair, the agent sets the nominated flag of the pair to true.
 If the request fails (Section 7.2.5.2), the agent MUST remove the
 candidate pair from the valid list, set the candidate pair state
 to Failed and set the check list state to Failed.

 If the controlled agent does not accept the request from the
 controlling agent, the controlled agent MUST reject the nomination
 request with an appropriate error code response (e.g., 400)
 [RFC5389].

 Once the nominated flag is set for a component of a data stream, it
 concludes the ICE processing for that component. See Section 8.

7.3.2. Additional Procedures for Lite Implementations

 If the controlled agent receives a Binding request with the USE-
 CANDIDATE attribute set, and if the ICE agent accepts the request,
 the agent constructs a candidate pair whose local candidate has the
 transport address on which the request was received, and whose remote

Keranen, et al. Expires September 9, 2018 [Page 48]

Internet-Draft ICE March 2018

 candidate is equal to the source transport address of the request
 that was received. This candidate pair is assigned an arbitrary
 priority, and placed into the valid list of the associated check
 list. The agent sets the nominated flag for that pair to true.

 Once the nominated flag is set for a component of a data stream, it
 concludes the ICE processing for that component. See Section 8.

8. Concluding ICE Processing

 This section describes how an ICE agent completes ICE.

8.1. Procedures for Full Implementations

 Concluding ICE involves nominating pairs by the controlling agent and
 updating of state machinery.

8.1.1. Nominating Pairs

 Prior to nominating, the controlling agent let connectivity checks
 continue until some stopping criterion is met. After that, based on
 an evaluation criterion, the controlling agent picks a pair among the
 valid pairs in the valid list for nomination.

 Once the controlling agent has picked a valid pair for nomination, it
 repeats the connectivity check that produced this valid pair (by
 enqueueing the pair that generated the check into the triggered check
 queue), this time with the USE-CANDIDATE attribute
 (Section 7.2.5.3.4). The procdures for the controlled agent are
 described in Section 7.3.1.5.

 Eventually, if the nominations succeed, both the controlling and
 controlled agents will have a single nominated pair in the valid list
 for each component of the data stream. Once an ICE agent sets the
 state of the check list to Completed (when there is a nominated pair
 for each component of the data stream), that pair becomes the
 selected pair for that agent, and is used for sending and receiving
 data for that component of the data stream.

 If an agent is not able to produce selected pairs for each component
 of a data stream, the agent MUST take proper actions for informing
 the other agent, and e.g., removing the stream. The exact actions
 are outside the scope of this specification.

 The criteria for stopping the connectivity checks and for picking a
 pair for nomination, are outside the scope of this specification.
 They are a matter of local optimization. The only requirement is
 that the agent MUST eventually pick one and only one candidate pair

Keranen, et al. Expires September 9, 2018 [Page 49]

Internet-Draft ICE March 2018

 and generate a check for that pair with the USE-CANDIDATE attribute
 set.

 Once the controlling agent has successfully nominated a candidate
 pair (Section 7.2.5.3.4), the agent MUST NOT nominate another pair
 for same same component of the data stream within the ICE session.
 Doing so requires an ICE restart.

 A controlling agent that does not support this specification (i.e.,
 it is implemented according to RFC 5245) might nominate more than one
 candidate pair. This was referred to as "aggressive nomination" in
 RFC 5245. If more than one candidate pair is nominated by the
 controlling agent, and if the controlled agent accepts multiple
 nominations requests, the agents MUST produce the selected pairs
 using the pairs with the highest priority.

 The usage of the ’ice2’ ice option (Section 10) by endpoints
 supporting this specification is supposed to prevent controlling
 agents implemented according to RFC 5245 from using aggressive
 nomination.

 NOTE: In RFC 5245, usage of "aggressive nomination" allowed agents to
 continuously nominate pairs, before a pair was eventually selected,
 in order to allow sending of data on those pairs. In this
 specification, data can always be sent on any valid pair, without
 nomination. Hence, there is no longer a need for aggressive
 nomination.

8.1.2. Updating Check List and ICE States

 For both a controlling and a controlled agent, when a candidate pair
 for a component of a data stream gets nominated, it might impact
 other pairs in the check list associated with the data stream. It
 might also impact the state of the check list:

 o Once a candidate pair for a component of a data stream has been
 nominated, and the state of the check list associated with the
 data stream is Running, the ICE agent MUST remove all candidate
 pairs for the same component from the check list and from the
 triggered check queue. If the state of a pair is In-Progress
 pair, the agent cancels the In-Progress transaction. Cancellation
 means that the agent will not retransmit the Binding requests
 associated with the connectivity check transaction, will not treat
 the lack of response to be a failure, but will wait the duration
 of the transaction timeout for a response.

 o Once candidate pairs for each component of a data stream have been
 nominated, and the state of the check list associated with the

Keranen, et al. Expires September 9, 2018 [Page 50]

Internet-Draft ICE March 2018

 data stream is Running, the ICE agent sets the state of the check
 list to Completed.

 o Once a candidate pair for a component of a data stream has been
 nominated, an agent MUST continue to respond to any Binding
 request it might still receive for the nominated pair, and for any
 remaining candidate pairs in the check list associated with the
 data stream. As defined in Section 7.3.1.4, as the state a pair
 is Succeeded, an agent will no longer generate triggered checks
 when receiving a Binding request for the pair.

 Once the state of each check list in the check list set is Completed,
 the agent sets the state of the ICE session to Completed.

 If the state of a check list is Failed, ICE has not been able to
 complete for the data stream associated with the check list. The
 correct behavior depends on the state of the check lists in the check
 list set. If the controlling agent wants to continue the session
 without the data stream associated with the Failed check list, and if
 there are still one or more check lists in Running or Completed mode,
 the agent can let the ICE processing continue. The agent MUST take
 proper actions for removing the failed data stream. If the
 controlling agent does not want to continue the session and MUST
 terminate the session. The state of the ICE session is set to
 Failed.

 If the state of each check list in the check list set is Failed, the
 state of the ICE session is set to Failed. Unless the controlling
 agent wants to continue the session without the data streams, it MUST
 terminate the session.

8.2. Procedures for Lite Implementations

 When ICE concludes, a lite ICE agent can free host candidates that
 were not used by ICE, as described in Section 8.3.

 If the peer is a full agent, once the lite agent accepts a nomination
 request for a candidate pair, the lite agent considers the pair
 nominated. Once there are nominated pairs for each component of a
 data stream, the pairs become the selected pairs for the components
 of the data stream. Once the lite agent has produced selected pairs
 for all components of all data streams, the ICE session state is set
 to Completed.

 If the peer is a lite agent, the agent pairs local candidates with
 remote candidates that are for the same data stream and have the same
 component, transport protocol, and IP address family. For each
 component of each data stream, if there is only one candidate pair,

Keranen, et al. Expires September 9, 2018 [Page 51]

Internet-Draft ICE March 2018

 that pair is added to the valid list. If there is more than one
 pair, it is RECOMMENDED that an agent follow the procedures of RFC
 6724 [RFC6724] to select a pair and add it to the valid list.

 If all of the components for all data streams had one pair, the state
 of ICE processing is Completed. Otherwise, the controlling agent
 MUST send an updated candidate list to reconcile different agents
 selecting different candidate pairs. ICE processing is complete
 after and only after the updated candidate exchange is complete.

8.3. Freeing Candidates

8.3.1. Full Implementation Procedures

 The rules in this section describe when it is safe for an agent to
 cease sending or receiving checks on a candidate that did not become
 a selected candidate (is not associated with a selected pair), and
 then free the candidate.

 Once a check list has reached the Completed state, the agent SHOULD
 wait an additional three seconds, and then it can cease responding to
 checks or generating triggered checks on all local candidates other
 than the ones that became selected candidates. Once all ICE sessions
 have ceased using a given local candidate (a candidate may be used by
 multiple ICE sessions, e.g., in forking scenarios), the agent can
 free that candidate. The three-second delay handles cases when
 aggressive nomination is used, and the selected pairs can quickly
 change after ICE has completed.

 Freeing of server reflexive candidates is never explicit; it happens
 by lack of a keepalive.

8.3.2. Lite Implementation Procedures

 A lite implementation can free candidates that did not become
 selected candidates as soon as ICE processing has reached the
 Completed state for all ICE sessions using those candidates.

9. ICE Restarts

 An ICE agent MAY restart ICE for existing data streams. An ICE
 restart causes all previous state of the data streams, excluding the
 roles of the agents, to be flushed. The only difference between an
 ICE restart and a brand new data session is that during the restart,
 data can continue to be sent using existing data sessions, and that a
 new data session always requires the roles to be determined.

Keranen, et al. Expires September 9, 2018 [Page 52]

Internet-Draft ICE March 2018

 The following actions can be accomplished only using an ICE restart
 (the agent MUST use ICE restarts to do so):

 o Change the destinations of data streams.

 o Change from a lite implementation to a full implementation.

 o Change from a full implementation to a lite implementation.

 To restart ICE, an agent MUST change both the password and the
 username fragment for the data stream(s) being restarted.

 When the ICE is restarted, the candidate set for the new ICE session
 might include some, none, or all of the candidates used in the
 current ICE session.

 As described in Section 6.1.1, agents MUST NOT re-determine the roles
 as part as an ICE restart, unless certain criteria that require the
 roles to be re-determined are fulfilled.

10. ICE Option

 This section defines a new ICE option, ’ice2’. The ICE option
 indicates that the ICE agent that includes it in a candidate exchange
 is compliant to this specification. For example, the agent will not
 use the aggressive nomination procedure defined in RFC 5245. In
 addition, it will ensure that an RFC 5245-compliant peer does not use
 aggressive nomination either, as required by Section 14 of RFC 5245
 for peers which receive unknown ICE options.

 An agent compliant to this specification MUST inform the peer about
 the compliance using the ’ice2’ option.

 NOTE: The encoding of the ’ice2’ ICE option, and the message(s) used
 to carry it to the peer, are protocol specific. The encoding for the
 Session Description Protocol (SDP) [RFC4566] is defined in
 [I-D.ietf-mmusic-ice-sip-sdp].

11. Keepalives

 All endpoints MUST send keepalives for each data session. These
 keepalives serve the purpose of keeping NAT bindings alive for the
 data session. The keepalives SHOULD be sent using a format that is
 supported by its peer. ICE endpoints allow for STUN-based keepalives
 for UDP streams, and as such, STUN keepalives MUST be used when an
 ICE agent is a full ICE implementation and is communicating with a
 peer that supports ICE (lite or full).

Keranen, et al. Expires September 9, 2018 [Page 53]

Internet-Draft ICE March 2018

 For each candidate pair that an agent is using to send data, if no
 packet has been sent on that pair in the last Tr seconds, an agent
 MUST send a keepalive on that pair. Agents SHOULD use a Tr value of
 15 seconds. Agents MAY use a bigger value, but MUST NOT use a value
 smaller than 15 seconds.

 Once selected pairs have been produced for a data stream, keepalives
 are only sent on those pairs.

 An agent MUST stop sending keepalives on a data stream if the data
 stream is removed. If the ICE session is terminated, an agent MUST
 stop sending keepalives on all data streams.

 An agent MAY use another value for Tr, e.g. based on configuration or
 network/NAT characteristics. For example, if an agent has a dynamic
 way to discover the binding lifetimes of the intervening NATs, it can
 use that value to determine Tr. Administrators deploying ICE in more
 controlled networking environments SHOULD set Tr to the longest
 duration possible in their environment.

 When STUN is being used for keepalives, a STUN Binding Indication is
 used [RFC5389]. The Indication MUST NOT utilize any authentication
 mechanism. It SHOULD contain the FINGERPRINT attribute to aid in
 demultiplexing, but SHOULD NOT contain any other attributes. It is
 used solely to keep the NAT bindings alive. The Binding Indication
 is sent using the same local and remote candidates that are being
 used for data. Though Binding Indications are used for keepalives,
 an agent MUST be prepared to receive a connectivity check as well.
 If a connectivity check is received, a response is generated as
 discussed in [RFC5389], but there is no impact on ICE processing
 otherwise.

 Agents MUST by default use STUN keepalives. Individual ICE usages
 and ICE extensions MAY specify usage/extension-specific keepalives.

12. Data Handling

12.1. Sending Data

 An ICE agent MAY send data on any valid pair before selected pairs
 have been produced for the data stream.

 Once selected pairs have been produced for a data stream, an agent
 MUST send data on those pairs only.

 An agent sends data from the base of the local candidate to the
 remote candidate. In the case of a local relayed candidate, data is

Keranen, et al. Expires September 9, 2018 [Page 54]

Internet-Draft ICE March 2018

 forwarded through the base (located in the TURN server), using the
 procedures defined in [RFC5766].

 If the local candidate is a relayed candidate, it is RECOMMENDED that
 an agent creates a channel on the TURN server towards the remote
 candidate. This is done using the procedures for channel creation as
 defined in Section 11 of [RFC5766].

 The selected pair for a component of a data stream is:

 o empty if the state of the check list for that data stream is
 Running, and there is no previous selected pair for that component
 due to an ICE restart

 o equal to the previous selected pair for a component of a data
 stream if the state of the check list for that data stream is
 Running, and there was a previous selected pair for that component
 due to an ICE restart

 Unless an agent is able to produce a selected pair for each component
 associated with a data stream, the agent MUST NOT continue sending
 data for any component associated with that data stream.

12.1.1. Procedures for Lite Implementations

 A lite implementation MUST NOT send data until it has a valid list
 that contains a candidate pair for each component of that data
 stream. Once that happens, the ICE agent MAY begin sending data
 packets. To do that, it sends data to the remote candidate in the
 pair (setting the destination address and port of the packet equal to
 that remote candidate), and will send it from the base associated
 with the candidate pair used for sending data. In case of a relayed
 candidate, data is sent from the agent and forwarded through the base
 (located in the TURN server), using the procedures defined in
 [RFC5766].

12.2. Receiving Data

 Even though ICE agents are only allowed to send data using valid
 candidate pairs (and, once selected pairs have been produced, only on
 the selected pairs) ICE implementations SHOULD by default be prepared
 to receive data on any of the candidates provided in the most recent
 candidate exchange with the peer. ICE usages MAY define rules that
 differ from this, e.g., by defining that data will not be sent until
 selected pairs have been produced for a data stream.

Keranen, et al. Expires September 9, 2018 [Page 55]

Internet-Draft ICE March 2018

 It is RECOMMENDED that, when an agent receives an RTP packet with a
 new source or destination IP address for a particular RTP/RTCP data
 stream, that the agent re-adjust its jitter buffers.

 RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
 detecting synchronization source (SSRC) collisions and loops. These
 algorithms are based, in part, on seeing different source transport
 addresses with the same SSRC. However, when ICE is used, such
 changes will sometimes occur as the data streams switch between
 candidates. An agent will be able to determine that a data stream is
 from the same peer as a consequence of the STUN exchange that
 proceeds media data transmission. Thus, if there is a change in
 source transport address, but the media data packets come from the
 same peer agent, this MUST NOT be treated as an SSRC collision.

13. Extensibility Considerations

 This specification makes very specific choices about how both ICE
 agents in a session coordinate to arrive at the set of candidate
 pairs that are selected for data. It is anticipated that future
 specifications will want to alter these algorithms, whether they are
 simple changes like timer tweaks or larger changes like a revamp of
 the priority algorithm. When such a change is made, providing
 interoperability between the two agents in a session is critical.

 First, ICE provides the ICE option concept. Each extension or change
 to ICE is associated with an ICE option. When an agent supports such
 an extension or change, it provides the ICE option to the peer agent
 as part of the candidate exchange.

 One of the complications in achieving interoperability is that ICE
 relies on a distributed algorithm running on both agents to converge
 on an agreed set of candidate pairs. If the two agents run different
 algorithms, it can be difficult to guarantee convergence on the same
 candidate pairs. The nomination procedure described in Section 8
 eliminates some of the need for tight coordination by delegating the
 selection algorithm completely to the controlling agent, and ICE will
 converge perfectly even when both agents use different pair
 prioritization algorithms. One of the keys to such convergence is
 triggered checks, which ensure that the nominated pair is validated
 by both agents.

 ICE is also extensible to other data streams beyond RTP, and for
 transport protocols beyond UDP. Extensions to ICE for non-RTP data
 streams need to specify how many components they utilize, and assign
 component IDs to them, starting at 1 for the most important component
 ID. Specifications for new transport protocols MUST define how, if
 at all, various steps in the ICE processing differ from UDP.

Keranen, et al. Expires September 9, 2018 [Page 56]

Internet-Draft ICE March 2018

14. Setting Ta and RTO

14.1. General

 During the ICE gathering phase (Section 5.1.1) and while ICE is
 performing connectivity checks (Section 7), an ICE agent triggers
 STUN and TURN transactions. These transactions are paced at a rate
 indicated by Ta, and the retransmission interval for each transaction
 is calculated based on the the retransmission timer for the STUN
 transactions (RTO) [RFC5389].

 This section describes how the Ta and RTO values are computed during
 the ICE gathering phase and while ICE is performing connectivity
 checks.

 NOTE: Previously, in RFC 5245, different formulas were defined for
 computing Ta and RTO, depending on whether ICE was used for a real-
 time data stream (e.g., RTP) or not.

 The formulas below result in a behavior whereby an agent will send
 its first packet for every single connectivity check before
 performing a retransmit. This can be seen in the formulas for the
 RTO (which represents the retransmit interval). Those formulas scale
 with N, the number of checks to be performed. As a result of this,
 ICE maintains a nicely constant rate, but becomes more sensitive to
 packet loss. The loss of the first single packet for any
 connectivity check is likely to cause that pair to take a long time
 to be validated, and instead, a lower-priority check (but one for
 which there was no packet loss) is much more likely to complete
 first. This results in ICE performing sub-optimally, choosing lower-
 priority pairs over higher-priority pairs.

14.2. Ta

 ICE agents SHOULD use a default Ta value, 50 ms, but MAY use another
 value based on the characteristics of the associated data.

 If an agent wants to use another Ta value than the default value, the
 agent MUST indicate the proposed value to its peer during the
 establishment of the ICE session. Both agents MUST use the higher
 value of the proposed values. If an agent does not propose a value,
 the default value is used for that agent when comparing which value
 is higher.

 Regardless of the Ta value chosen for each agent, the combination of
 all transactions from all agents (if a given implementation runs
 several concurrent agents) MUST NOT be sent more often than once
 every 5ms (as though there were one global Ta value for pacing all

Keranen, et al. Expires September 9, 2018 [Page 57]

Internet-Draft ICE March 2018

 agents). See Appendix B.1 for the background of using a value of 5ms
 with ICE.

 NOTE: Appendix C shows examples of required bandwidth, using
 different Ta values.

14.3. RTO

 During the ICE gathering phase, ICE agents SHOULD calculate the RTO
 value using the following formula:

 RTO = MAX (500ms, Ta * (Num-Of-Cands))

 Num-Of-Cands: the number of server-reflexive and relay candidates

 For connectivity checks, agents SHOULD calculate the RTO value using
 the following formula:

 RTO = MAX (500ms, Ta * N * (Num-Waiting + Num-In-Progress))

 N: the total number of connectivity checks to be performed.

 Num-Waiting: the number of checks in the check list set in the
 Waiting state.

 Num-In-Progress: the number of checks in the check list set in the
 In-Progress state.

 Note that the RTO will be different for each transaction as the
 number of checks in the Waiting and In-Progress states change.

 Agents MAY calculate the RTO value using other mechanisms than those
 described above. Agents MUST NOT use a RTO value smaller than 500
 ms.

15. Examples

 This section shows two ICE examples: one using IPv4 addresses, and
 one using IPv6 addresses.

Keranen, et al. Expires September 9, 2018 [Page 58]

Internet-Draft ICE March 2018

 To facilitate understanding, transport addresses are listed using
 variables that have mnemonic names. The format of the name is
 entity-type-seqno, where entity refers to the entity whose IP address
 the transport address is on, and is one of "L", "R", "STUN", or
 "NAT". The type is either "PUB" for transport addresses that are
 public, and "PRIV" for transport addresses that are private
 [RFC1918]. Finally, seq-no is a sequence number that is different
 for each transport address of the same type on a particular entity.
 Each variable has an IP address and port, denoted by varname.IP and
 varname.PORT, respectively, where varname is the name of the
 variable.

 In the call flow itself, STUN messages are annotated with several
 attributes. The "S=" attribute indicates the source transport
 address of the message. The "D=" attribute indicates the destination
 transport address of the message. The "MA=" attribute is used in
 STUN Binding response messages and refers to the mapped address.
 "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

 The call flow examples omit STUN authentication operations, and focus
 on a single data stream between two full implementations.

15.1. Example with IPv4 Addresses

 The example is using the topology shown in Figure 7.

Keranen, et al. Expires September 9, 2018 [Page 59]

Internet-Draft ICE March 2018

 +-------+
 |STUN |
 |Server |
 +-------+
 |
 +---------------------+
 | |
 | Internet |
 | |
 +---------------------+
 | |
 | |
 +---------+ |
 | NAT | |
 +---------+ |
 | |
 | |
 +-----+ +-----+
 | L | | R |
 +-----+ +-----+

 Figure 7: Example Topology

 In the example, ICE agents L and R are full ICE implementations.
 Both agents have a single IPv4 address. Both are configured with the
 same STUN server. The NAT has an endpoint independent mapping
 property and an address dependent filtering property. The IP
 addresses of the ICE agents, the STUN server and the NAT are shown
 below;

 ENTITY IP Address mnemonic name
 --
 ICE Agent L: 10.0.1.1 L-PRIV-1
 ICE Agent R: 192.0.2.1 R-PUB-1
 STUN Server: 192.0.2.2 STUN-PUB-1
 NAT (Public): 192.0.2.3 NAT-PUB-1

 L NAT STUN R
 |STUN alloc. | | |
 |(1) STUN Req | | |
 |S=$L-PRIV-1 | | |
 |D=$STUN-PUB-1 | | |
 |------------->| | |
 | |(2) STUN Req | |

Keranen, et al. Expires September 9, 2018 [Page 60]

Internet-Draft ICE March 2018

 | |S=$NAT-PUB-1 | |
 | |D=$STUN-PUB-1 | |
 | |------------->| |
 | |(3) STUN Res | |
 | |S=$STUN-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<-------------| |
 |(4) STUN Res | | |
 |S=$STUN-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |(5) L’s Candidate Information| |
 |--->|
 | | | | STUN
 | | | | alloc.
 | | |(6) STUN Req |
 | | |S=$R-PUB-1 |
 | | |D=$STUN-PUB-1 |
 | | |<-------------|
 | | |(7) STUN Res |
 | | |S=$STUN-PUB-1 |
 | | |D=$R-PUB-1 |
 | | |MA=$R-PUB-1 |
 | | |------------->|
 |(8) R’s Candidate Information| |
 |<---|
 | | (9) Bind Req |Begin
 | | S=$R-PUB-1 |Connectivity
 | | D=$L-PRIV-1 |Checks
 | | <-------------------| |
 | | Dropped |
 |(10) Bind Req | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |------------->| | |
 | |(11) Bind Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |---------------------------->|
 | |(12) Bind Res | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<----------------------------|
 |(13) Bind Res | | |
 |S=$R-PUB-1 | | |

Keranen, et al. Expires September 9, 2018 [Page 61]

Internet-Draft ICE March 2018

 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |
 |<-------------| | |
 |Data | | |
 |===>|
 | | | |
 | |(14) Bind Req | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |<----------------------------|
 |(15) Bind Req | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |<-------------| | |
 |(16) Bind Res | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |MA=$R-PUB-1 | | |
 |------------->| | |
 | |(17) Bind Res | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |MA=$R-PUB-1 | |
 | |---------------------------->|
 |Data | | |
 |<===|
 | | | |

 | | | |
 |(18) Bind Req | | |
 |S=$L-PRIV-1 | | |
 |D=$R-PUB-1 | | |
 |USE-CAND | | |
 |------------->| | |
 | |(19) Bind Req | |
 | |S=$NAT-PUB-1 | |
 | |D=$R-PUB-1 | |
 | |USE-CAND | |
 | |---------------------------->|
 | |(20) Bind Res | |
 | |S=$R-PUB-1 | |
 | |D=$NAT-PUB-1 | |
 | |MA=$NAT-PUB-1 | |
 | |<----------------------------|
 |(21) Bind Res | | |
 |S=$R-PUB-1 | | |
 |D=$L-PRIV-1 | | |
 |MA=$NAT-PUB-1 | | |

Keranen, et al. Expires September 9, 2018 [Page 62]

Internet-Draft ICE March 2018

 |<-------------| | |
 | | | |

 Figure 8: Example Flow

 Messages 1-4: Agent L gathers a host candidate from its local IP
 address, and from that sends a STUN Binding request to the STUN
 Server. The request creates a NAT binding. The NAT public IP
 address of the binding becomes agent L’s server reflexive candidate.

 Message 5: Agent L sends its local candidate information to agent R,
 using the signalling protocol associated with the ICE usage.

 Messages 6-7: Agent R gathers a host candidate from its local IP
 address, and from that sends a STUN Binding request to the STUN
 Server. Since agent R is not behind a NAT, R’s server reflexive
 candidate will be identical to the host candidate.

 Message 8: Agent R sends its local candidate information to agent L,
 using the signalling protocol associated with the ICE usage.

 Since both agents are full ICE implementations, the initiating agent
 (agent L) becomes the controlling agent.

 Agents L and R both pair up the candidates. Both agents initially
 have two pairs. However, agent L will prune the pair containing its
 server reflexive candidate, resulting in just one (L1). At agent L,
 this pair has a local candidate of $L_PRIV_1 and remote candidate of
 $R_PUB_1. At agent R, there are two pairs. The highest priority
 pair (R1) has a local candidate of $R_PUB_1 and remote candidate of
 $L_PRIV_1, and the second pair (R2) has a local candidate of $R_PUB_1
 and remote candidate of $NAT_PUB_1. The pairs are shown below (the
 pair numbers are for reference purpose only):

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PRIV_1 R_PUB_1 L1

 ICE Agent R: R_PUB_1 L_PRIV_1 R1
 R_PUB_1 NAT_PUB_1 R2

Keranen, et al. Expires September 9, 2018 [Page 63]

Internet-Draft ICE March 2018

 Message 9: Agent R initiates a connectivity check for pair #2. As
 the remote candidate of the pair is the private address of agent L,
 the check will not be successful, as the request cannot be routed
 from R to L, and will be dropped by the network.

 Messages 10-13: Agent L initiates a connectivity check for pair L1.
 The check succeeds, and L creates a new pair (L2). The local
 candidate of the new pair is $NAT_PUB_1 and the remote candidate is
 $R_PUB_1. The pair (L2) is added to the valid list of agent L.
 Agent L can now send and receive data on the pair (L2) if it wishes.

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PRIV_1 R_PUB_1 L1
 NAT_PUB_1 R_PUB_1 L2 X

 ICE Agent R: R_PUB_1 L_PRIV_1 R1
 R_PUB_1 NAT_PUB_1 R2

 Messages 14-17: When agent R receives the Binding request from agent
 L (message 11) it will initiate a triggered connectivity check. The
 pair matches one of agent R’s existing pairs (R2). The check
 succeeds, and the pair (R2) is added to the valid list of agent R.
 Agent R can now send and receive data on the pair (R2) if it wishes.

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PRIV_1 R_PUB_1 L1
 NAT_PUB_1 R_PUB_1 L2 X

 ICE Agent R: R_PUB_1 L_PRIV_1 R1
 R_PUB_1 NAT_PUB_1 R2 X

 Messages 18-21: At some point, the controlling agent (agent L)
 decides to nominate a pair (L2) in the valid list. It performs a
 connectivity check on the pair (L2), and includes the USE-CANDIDATE
 attribute in the Binding request. As the check succeeds, agent L
 sets the nominated flag value of the pair (L2) to ’true’. Agent R
 sets the nominated flag value of the matching pair (R2) to ’true’.
 As there are no more components associated with the stream, the

Keranen, et al. Expires September 9, 2018 [Page 64]

Internet-Draft ICE March 2018

 nominated pairs become the selected pairs. Consequently, processing
 for this stream moves into the Completed state. The ICE process also
 moves into the Completed state.

15.2. Example with IPv6 Addresses

 The example is using the topology shown in Figure 9.

 +-------+
 |STUN |
 |Server |
 +-------+
 |
 +---------------------+
 | |
 | Internet |
 | |
 +---------------------+
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 +-----+ +-----+
 | L | | R |
 +-----+ +-----+

 Figure 9: Example Topology

 In the example, ICE agents L and R are full ICE implementations.
 Both agents have a single IPv6 address. Both are configured with the
 same STUN server. The IP addresses of the ICE agents and the STUN
 server are shown below;

 ENTITY IP Address mnemonic name
 --
 ICE Agent L: 2001:db8::3 L-PUB-1
 ICE Agent R: 2001:db8::5 R-PUB-1
 STUN Server: 2001:db8::9 STUN-PUB-1

 L STUN R

Keranen, et al. Expires September 9, 2018 [Page 65]

Internet-Draft ICE March 2018

 |STUN alloc. | |
 |(1) STUN Req | |
 |S=$L-PUB-1 | |
 |D=$STUN-PUB-1 | |
 |---------------------------->| |
 |(2) STUN Res | |
 | S=$STUN-PUB-1 | |
 | D=$L-PUB-1 | |
 | MA=$L-PUB-1 | |
 |<----------------------------| |
 |(3) L’s Candidate Information| |
 |--->|
 | | | STUN
 | | | alloc.
 | |(4) STUN Req |
 | |S=$R-PUB-1 |
 | |D=$STUN-PUB-1 |
 | |<-------------|
 | |(5) STUN Res |
 | |S=$STUN-PUB-1 |
 | |D=$R-PUB-1 |
 | |MA=$R-PUB-1 |
 | |------------->|
 |(6) R’s Candidate Information| |
 |<---|
 |(7) Bind Req | |
 |S=$L-PUB-1 | |
 |D=$R-PUB-1 | |
 |--->|
 |(8) Bind Res | |
 |S=$R-PUB-1 | |
 |D=$L-PUB-1 | |
 |MA=$L-PUB-1 | |
 |<---|
 |Data | |
 |===>|
 | | |
 |(9) Bind Req | |
 |S=$R-PUB-1 | |
 |D=$L-PUB-1 | |
 |<---|
 |(10) Bind Res | |
 |S=$L-PUB-1 | |
 |D=$R-PUB-1 | |
 |MA=$R-PUB-1 | |
 |--->|
 |Data | |
 |<===|

Keranen, et al. Expires September 9, 2018 [Page 66]

Internet-Draft ICE March 2018

 | | |

 | | |
 |(11) Bind Req | |
 |S=$L-PUB-1 | |
 |D=$R-PUB-1 | |
 |USE-CAND | |
 |--->|
 |(12) Bind Res | |
 |S=$R-PUB-1 | |
 |D=$L-PUB-1 | |
 |MA=$L-PUB-1 | |
 |<---|
 | | | |

 Figure 10: Example Flow

 Messages 1-2: Agent L gathers a host candidate from its local IP
 address, and from that sends a STUN Binding request to the STUN
 Server. Since agent L is not behind a NAT, L’s server reflexive
 candidate will be identical to the host candidate.

 Message 3: Agent L sends its local candidate information to agent R,
 using the signalling protocol associated with the ICE usage.

 Messages 4-5: Agent R gathers a host candidate from its local IP
 address, and from that sends a STUN Binding request to the STUN
 Server. Since agent R is not behind a NAT, R’s server reflexive
 candidate will be identical to the host candidate.

 Message 6: Agent R sends its local candidate information to agent L,
 using the signalling protocol associated with the ICE usage.

 Since both agents are full ICE implementations, the initiating agent
 (agent L) becomes the controlling agent.

 Agents L and R both pair up the candidates. Both agents initially
 have one pair each. At agent L, the pair (L1) has a local candidate
 of $L_PUB_1 and remote candidate of $R_PUB_1. At agent R, the pair
 (R1) has a local candidate of $R_PUB_1 and remote candidate of
 $L_PUB_1. The pairs are shown below (the pair numbers are for
 reference purpose only):

Keranen, et al. Expires September 9, 2018 [Page 67]

Internet-Draft ICE March 2018

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PUB_1 R_PUB_1 L1

 ICE Agent R: R_PUB_1 L_PUB_1 R1

 Messages 7-8: Agent L initiates a connectivity check for pair L1.
 The check succeeds, and the pair (L1) is added to the valid list of
 agent L. Agent L can now send and receive data on the pair (L1) if
 it wishes.

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PUB_1 R_PUB_1 L1 X

 ICE Agent R: R_PUB_1 L_PUB_1 R1

 Messages 9-10: When agent R receives the Binding request from agent L
 (message 7) it will initiate a triggered connectivity check. The
 pair matches agent R’s existing pair (R1). The check succeeds, and
 the pair (R1) is added to the valid list of agent R. Agent R can now
 send and receive data on the pair (R1) if it wishes.

 Pairs
 ENTITY Local Remote Pair # Valid
 --
 ICE Agent L: L_PUB_1 R_PUB_1 L1 X

 ICE Agent R: R_PUB_1 L_PUB_1 R1 X

 Messages 11-12: At some point, the controlling agent (agent L)
 decides to nominate a pair (L1) in the valid list. It performs a
 connectivity check on the pair (L1), and includes the USE-CANDIDATE
 attribute in the Binding request. As the check succeeds, agent L
 sets the nominated flag value of the pair (L1) to ’true’. Agent R
 sets the nominated flag value of the matching pair (R1) to ’true’.
 As there are no more components associated with the stream, the
 nominated pairs become the selected pairs. Consequently, processing

Keranen, et al. Expires September 9, 2018 [Page 68]

Internet-Draft ICE March 2018

 for this stream moves into the Completed state. The ICE process also
 moves into the Completed state.

16. STUN Extensions

16.1. New Attributes

 This specification defines four STUN attributes: PRIORITY, USE-
 CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

 The PRIORITY attribute indicates the priority that is to be
 associated with a peer reflexive candidate, if one will be discovered
 by this check. It is a 32-bit unsigned integer, and has an attribute
 value of 0x0024.

 The USE-CANDIDATE attribute indicates that the candidate pair
 resulting from this check will be used for transmission of data. The
 attribute has no content (the Length field of the attribute is zero);
 it serves as a flag. It has an attribute value of 0x0025.

 The ICE-CONTROLLED attribute is present in a Binding request. The
 attribute indicates that the client believes it is currently in the
 controlled role. The content of the attribute is a 64-bit unsigned
 integer in network byte order, which contains a random number. The
 number is used for solving role conflicts, when it is referred to as
 the tie-breaker value. An ICE agent MUST use the same number for all
 Binding requests, for all streams, within an ICE session, unless it
 has received a 487 response, in which case it MUST change the number
 (Section 7.2.5.1). The agent MAY change the number when an ICE
 restart occurs.

 The ICE-CONTROLLING attribute is present in a Binding request. The
 attribute indicates that the client believes it is currently in the
 controlling role. The content of the attribute is a 64-bit unsigned
 integer in network byte order, which contains a random number. As
 for the ICE-CONTROLLED attribute, the number is used for solving role
 conflicts. An agent MUST use the same number for all Binding
 requests, for all streams, within an ICE session, unless it has
 received a 487 response, in which case it MUST change the number
 (Section 7.2.5.1). The agent MAY change the number when an ICE
 restart occurs.

16.2. New Error Response Codes

 This specification defines a single error response code:

 487 (Role Conflict): The Binding request contained either the ICE-
 CONTROLLING or ICE-CONTROLLED attribute, indicating an ICE role

Keranen, et al. Expires September 9, 2018 [Page 69]

Internet-Draft ICE March 2018

 that conflicted with the server. The remote server compared the
 tie-breaker values of the client and the server and determined
 that the client needs to switch roles.

17. Operational Considerations

 This section discusses issues relevant to operators operating
 networks where ICE will be used by endpoints.

17.1. NAT and Firewall Types

 ICE was designed to work with existing NAT and firewall equipment.
 Consequently, it is not necessary to replace or reconfigure existing
 firewall and NAT equipment in order to facilitate deployment of ICE.
 Indeed, ICE was developed to be deployed in environments where the
 Voice over IP (VoIP) operator has no control over the IP network
 infrastructure, including firewalls and NATs.

 That said, ICE works best in environments where the NAT devices are
 "behave" compliant, meeting the recommendations defined in [RFC4787]
 and [RFC5382]. In networks with behave-compliant NAT, ICE will work
 without the need for a TURN server, thus improving voice quality,
 decreasing call setup times, and reducing the bandwidth demands on
 the network operator.

17.2. Bandwidth Requirements

 Deployment of ICE can have several interactions with available
 network capacity that operators need to take into consideration.

17.2.1. STUN and TURN Server Capacity Planning

 First and foremost, ICE makes use of TURN and STUN servers, which
 would typically be located in data centers. The STUN servers require
 relatively little bandwidth. For each component of each data stream,
 there will be one or more STUN transactions from each client to the
 STUN server. In a basic voice-only IPv4 VoIP deployment, there will
 be four transactions per call (one for RTP and one for RTCP, for both
 caller and callee). Each transaction is a single request and a
 single response, the former being 20 bytes long, and the latter, 28.
 Consequently, if a system has N users, and each makes four calls in a
 busy hour, this would require N*1.7bps. For one million users, this
 is 1.7 Mbps, a very small number (relatively speaking).

 TURN traffic is more substantial. The TURN server will see traffic
 volume equal to the STUN volume (indeed, if TURN servers are
 deployed, there is no need for a separate STUN server), in addition
 to the traffic for the actual data. The amount of calls requiring

Keranen, et al. Expires September 9, 2018 [Page 70]

Internet-Draft ICE March 2018

 TURN for data relay is highly dependent on network topologies, and
 can and will vary over time. In a network with 100% behave-compliant
 NATs, it is exactly zero.

 The planning considerations above become more significant in multi-
 media scenarios (e.g., audio and video conferences), and when the
 numbers of participants in a session grow.

17.2.2. Gathering and Connectivity Checks

 The process of gathering of candidates and performing of connectivity
 checks can be bandwidth intensive. ICE has been designed to pace
 both of these processes. The gathering phase and the connectivity
 check phase are meant to generate traffic at roughly the same
 bandwidth as the data traffic itself will consume once the ICE
 process conclude. This was done to ensure that, if a network is
 designed to support communication traffic of a certain type (voice,
 video, or just text), it will have sufficient capacity to support the
 ICE checks for that data. Once ICE has concluded, the subsequent ICE
 keepalives will later cause a marginal increase in the total
 bandwidth utilization; however, this will typically be an extremely
 small increase.

 Congestion due to the gathering and check phases has proven to be a
 problem in deployments that did not utilize pacing. Typically,
 access links became congested as the endpoints flooded the network
 with checks as fast as they can send them. Consequently, network
 operators need to ensure that their ICE implementations support the
 pacing feature. Though this pacing does increase call setup times,
 it makes ICE network friendly and easier to deploy.

17.2.3. Keepalives

 STUN keepalives (in the form of STUN Binding Indications) are sent in
 the middle of a data session. However, they are sent only in the
 absence of actual data traffic. In deployments with continuous media
 and without utilizing Voice Activity Detection (VAD), or deployments
 where VAD is utilized together with short interval (max 1 second)
 comfort noise, the keepalives are never used and there is no increase
 in bandwidth usage. When VAD is being used without comfort noise,
 keepalives will be sent during silence periods. This involves a
 single packet every 15-20 seconds, far less than the packet every
 20-30 ms that is sent when there is voice. Therefore, keepalives do
 not have any real impact on capacity planning.

Keranen, et al. Expires September 9, 2018 [Page 71]

Internet-Draft ICE March 2018

17.3. ICE and ICE-lite

 Deployments utilizing a mix of ICE and ICE-lite interoperate with
 each other. They have been explicitly designed to do so.

 However, ICE-lite can only be deployed in limited use cases. Those
 cases, and the caveats involved in doing so, are documented in
 Appendix A.

17.4. Troubleshooting and Performance Management

 ICE utilizes end-to-end connectivity checks, and places much of the
 processing in the endpoints. This introduces a challenge to the
 network operator -- how can they troubleshoot ICE deployments? How
 can they know how ICE is performing?

 ICE has built-in features to help deal with these problems.
 Signaling servers, typically deployed in data centers of the network
 operator, will see the contents of the candidate exchanges that
 convey the ICE parameters. These parameters include the type of each
 candidate (host, server reflexive, or relayed), along with their
 related addresses. Once ICE processing has completed, an updated
 candidate exchange takes place, signaling the selected address (and
 its type). This updated signaling is performed exactly for the
 purposes of educating network equipment (such as a diagnostic tool
 attached to a signaling) about the results of ICE processing.

 As a consequence, through the logs generated by a signaling server, a
 network operator can observe what types of candidates are being used
 for each call, and what address were selected by ICE. This is the
 primary information that helps evaluate how ICE is performing.

17.5. Endpoint Configuration

 ICE relies on several pieces of data being configured into the
 endpoints. This configuration data includes timers, credentials for
 TURN servers, and hostnames for STUN and TURN servers. ICE itself
 does not provide a mechanism for this configuration. Instead, it is
 assumed that this information is attached to whatever mechanism is
 used to configure all of the other parameters in the endpoint. For
 SIP phones, standard solutions such as the configuration framework
 [RFC6080] have been defined.

18. IAB Considerations

 The IAB has studied the problem of "Unilateral Self-Address Fixing"
 (UNSAF), which is the general process by which an ICE agent attempts
 to determine its address in another realm on the other side of a NAT

Keranen, et al. Expires September 9, 2018 [Page 72]

Internet-Draft ICE March 2018

 through a collaborative protocol reflection mechanism [RFC3424]. ICE
 is an example of a protocol that performs this type of function.
 Interestingly, the process for ICE is not unilateral, but bilateral,
 and the difference has a significant impact on the issues raised by
 the IAB. Indeed, ICE can be considered a B-SAF (Bilateral Self-
 Address Fixing) protocol, rather than an UNSAF protocol. Regardless,
 the IAB has mandated that any protocols developed for this purpose
 document a specific set of considerations. This section meets those
 requirements.

18.1. Problem Definition

 From RFC 3424, any UNSAF proposal needs to provide:

 Precise definition of a specific, limited-scope problem that is to
 be solved with the UNSAF proposal. A short-term fix will not be
 generalized in order to solve other problems; this is why "short-
 term fixes usually aren’t".

 The specific problems being solved by ICE are:

 Provide a means for two peers to determine the set of transport
 addresses that can be used for communication.

 Provide a means for a agent to determine an address that is
 reachable by another peer with which it wishes to communicate.

18.2. Exit Strategy

 From RFC 3424, any UNSAF proposal needs to provide:

 Description of an exit strategy/transition plan. The better
 short-term fixes are the ones that will naturally see less and
 less use as the appropriate technology is deployed.

 ICE itself doesn’t easily get phased out. However, it is useful even
 in a globally connected Internet, to serve as a means for detecting
 whether a router failure has temporarily disrupted connectivity, for
 example. ICE also helps prevent certain security attacks that have
 nothing to do with NAT. However, what ICE does is help phase out
 other UNSAF mechanisms. ICE effectively picks amongst those
 mechanisms, prioritizing ones that are better, and deprioritizing
 ones that are worse. As NATs begin to dissipate as IPv6 is
 introduced, server reflexive and relayed candidates (both forms of
 UNSAF addresses) simply never get used, because higher-priority
 connectivity exists to the native host candidates. Therefore, the
 servers get used less and less, and can eventually be removed when
 their usage goes to zero.

Keranen, et al. Expires September 9, 2018 [Page 73]

Internet-Draft ICE March 2018

 Indeed, ICE can assist in the transition from IPv4 to IPv6. It can
 be used to determine whether to use IPv6 or IPv4 when two dual-stack
 hosts communicate with SIP (IPv6 gets used). It can also allow a
 network with both 6to4 and native v6 connectivity to determine which
 address to use when communicating with a peer.

18.3. Brittleness Introduced by ICE

 From RFC 3424, any UNSAF proposal needs to provide:

 Discussion of specific issues that may render systems more
 "brittle". For example, approaches that involve using data at
 multiple network layers create more dependencies, increase
 debugging challenges, and make it harder to transition.

 ICE actually removes brittleness from existing UNSAF mechanisms. In
 particular, classic STUN (as described in RFC 3489 [RFC3489]) has
 several points of brittleness. One of them is the discovery process
 that requires an ICE agent to try to classify the type of NAT it is
 behind. This process is error-prone. With ICE, that discovery
 process is simply not used. Rather than unilaterally assessing the
 validity of the address, its validity is dynamically determined by
 measuring connectivity to a peer. The process of determining
 connectivity is very robust.

 Another point of brittleness in classic STUN and any other unilateral
 mechanism is its absolute reliance on an additional server. ICE
 makes use of a server for allocating unilateral addresses, but allows
 agents to directly connect if possible. Therefore, in some cases,
 the failure of a STUN server would still allow for a call to progress
 when ICE is used.

 Another point of brittleness in classic STUN is that it assumes that
 the STUN server is on the public Internet. Interestingly, with ICE,
 that is not necessary. There can be a multitude of STUN servers in a
 variety of address realms. ICE will discover the one that has
 provided a usable address.

 The most troubling point of brittleness in classic STUN is that it
 doesn’t work in all network topologies. In cases where there is a
 shared NAT between each agent and the STUN server, traditional STUN
 may not work. With ICE, that restriction is removed.

 Classic STUN also introduces some security considerations.
 Fortunately, those security considerations are also mitigated by ICE.

Keranen, et al. Expires September 9, 2018 [Page 74]

Internet-Draft ICE March 2018

 Consequently, ICE serves to repair the brittleness introduced in
 classic STUN, and does not introduce any additional brittleness into
 the system.

 The penalty of these improvements is that ICE increases session
 establishment times.

18.4. Requirements for a Long-Term Solution

 From RFC 3424, any UNSAF proposal needs to provide:

 ... requirements for longer term, sound technical solutions --
 contribute to the process of finding the right longer term
 solution.

 Our conclusions from RFC 3489 remain unchanged. However, we feel ICE
 actually helps because we believe it can be part of the long-term
 solution.

18.5. Issues with Existing NAPT Boxes

 From RFC 3424, any UNSAF proposal needs to provide:

 Discussion of the impact of the noted practical issues with
 existing, deployed NA[P]Ts and experience reports.

 A number of NAT boxes are now being deployed into the market that try
 to provide "generic" ALG functionality. These generic ALGs hunt for
 IP addresses, either in text or binary form within a packet, and
 rewrite them if they match a binding. This interferes with classic
 STUN. However, the update to STUN [RFC5389] uses an encoding that
 hides these binary addresses from generic ALGs.

 Existing NAPT boxes have non-deterministic and typically short
 expiration times for UDP-based bindings. This requires
 implementations to send periodic keepalives to maintain those
 bindings. ICE uses a default of 15 s, which is a very conservative
 estimate. Eventually, over time, as NAT boxes become compliant to
 behave [RFC4787], this minimum keepalive will become deterministic
 and well-known, and the ICE timers can be adjusted. Having a way to
 discover and control the minimum keepalive interval would be far
 better still.

19. Security Considerations

Keranen, et al. Expires September 9, 2018 [Page 75]

Internet-Draft ICE March 2018

19.1. IP Address Privacy

 The process of probing for candidates reveals the source addresses of
 the client and its peer to any on-network listening attacker, and the
 process of exchanging candidates reveals the addresses to any
 attacker that is able to see the negotiation. Some addresses, such
 as the server reflexive addresses gathered through the local
 interface of VPN users, may be sensitive information. If these
 potential attacks can not be mitigated, ICE usages can define
 mechanisms for controlling which addresses are revealed to the
 negotiation and/or probing process. Individual implementations may
 also have implementation-specific rules for controlling which
 addresses are revealed. For example, [I-D.ietf-rtcweb-ip-handling]
 provides additional information about the privacy aspects of
 revealing IP addresses via ICE for WebRTC applications. ICE
 implementations where such issues can arise are RECOMMENDED to
 provide a programmatic or user interface that provides control over
 which network interfaces are used to generate candidates.

 Based on the types of candidates provided by the peer, and the
 results of the connectivity tests performed against those candidates,
 the peer might be able to determine characteristics of the local
 network, e.g. if different timings are apparent to the peer. In the
 limit the peer might be able to probe the local network.

 There are several types of attacks possible in an ICE system. The
 subsections consider these attacks and their countermeasures.

19.2. Attacks on Connectivity Checks

 An attacker might attempt to disrupt the STUN connectivity checks.
 Ultimately, all of these attacks fool an ICE agent into thinking
 something incorrect about the results of the connectivity checks.
 Depending on the type of attack, the attacker needs to have different
 capabilities. In some cases the attacker needs to be on the path of
 the connectivity checks. In other cases the attacker does not need
 to be on the path, as long as it is able to generate STUN
 connectivity checks. While attacks on connectivity checks are
 typically performed by network entities, if an attacker is able to
 control an endpoint it might be able to trigger connectivity check
 attacks. The possible false conclusions an attacker can try and
 cause are:

 False Invalid: An attacker can fool a pair of agents into thinking a
 candidate pair is invalid, when it isn’t. This can be used to
 cause an agent to prefer a different candidate (such as one
 injected by the attacker) or to disrupt a call by forcing all
 candidates to fail.

Keranen, et al. Expires September 9, 2018 [Page 76]

Internet-Draft ICE March 2018

 False Valid: An attacker can fool a pair of agents into thinking a
 candidate pair is valid, when it isn’t. This can cause an agent
 to proceed with a session, but then not be able to receive any
 data.

 False Peer Reflexive Candidate: An attacker can cause an agent to
 discover a new peer reflexive candidate when it is not expected
 to. This can be used to redirect data streams to a Denial-of-
 Service (DoS) target or to the attacker, for eavesdropping or
 other purposes.

 False Valid on False Candidate: An attacker has already convinced an
 agent that there is a candidate with an address that does not
 actually route to that agent (e.g., by injecting a false peer
 reflexive candidate or false server reflexive candidate). The
 attacker then launches an attack that forces the agents to believe
 that this candidate is valid.

 If an attacker can cause a false peer reflexive candidate or false
 valid on a false candidate, it can launch any of the attacks
 described in [RFC5389].

 To force the false invalid result, the attacker has to wait for the
 connectivity check from one of the agents to be sent. When it is,
 the attacker needs to inject a fake response with an unrecoverable
 error response (such as a 400), or drop the response so that it never
 reaches the agent. However, since the candidate is, in fact, valid,
 the original request may reach the peer agent, and result in a
 success response. The attacker needs to force this packet or its
 response to be dropped, through a DoS attack, layer 2 network
 disruption, or other technique. If it doesn’t do this, the success
 response will also reach the originator, alerting it to a possible
 attack. The ability for the attacker to generate a fake response is
 mitigated through the STUN short-term credential mechanism. In order
 for this response to be processed, the attacker needs the password.
 If the candidate exchange signaling is secured, the attacker will not
 have the password and its response will be discarded.

 Spoofed ICMP Hard Errors (Type 3, codes 2-4) can also be used to
 create false invalid results. If an ICE agent implements a response
 to these ICMP errors, and the attacker is capable of generating an
 ICMP message that is delivered to the agent sending the connectivity
 check. The validation of the ICMP error message by the agent is its
 only defence. For Type 3 code=4 the outer IP header provides no
 validation, unless the connectivity check was sent with DF=0. For
 code 2 or 3, which are originated by the host, the address is
 expected to be any of the remote agents host, reflexive, or relay
 candidates IP addresses. The ICMP message include the IP header and

Keranen, et al. Expires September 9, 2018 [Page 77]

Internet-Draft ICE March 2018

 UDP header of the message triggering the error. These fields also
 need to be validated. The IP destination and UDP destination port
 need to match either the targeted candidate address and port, or the
 candidate’s base address. The source IP address and port can be any
 candidate for the same base address of the agent sending the
 connectivity check. Thus any attacker having access to the exchange
 of the candidates will have the necessary information. Thus the
 validation is a weak defence, and the sending of spoofed ICMP attacks
 is possible also for off-path attackers from a node in a network
 without source address validation.

 Forcing the fake valid result works in a similar way. The attacker
 needs to wait for the Binding request from each agent, and inject a
 fake success response. Again, due to the STUN short-term credential
 mechanism, in order for the attacker to inject a valid success
 response, the attacker needs the password. Alternatively, the
 attacker can route (e.g., using a tunnelling mechanism) a valid
 success response, that normally would be dropped or rejected by the
 network, to the agent.

 Forcing the false peer reflexive candidate result can be done either
 with fake requests or responses, or with replays. We consider the
 fake requests and responses case first. It requires the attacker to
 send a Binding request to one agent with a source IP address and port
 for the false candidate. In addition, the attacker needs to wait for
 a Binding request from the other agent, and generate a fake response
 with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
 Like the other attacks described here, this attack is mitigated by
 the STUN message integrity mechanisms and secure candidate exchanges.

 Forcing the false peer reflexive candidate result with packet replays
 is different. The attacker waits until one of the agents sends a
 check. It intercepts this request, and replays it towards the other
 agent with a faked source IP address. It also needs to prevent the
 original request from reaching the remote agent, either by launching
 a DoS attack to cause the packet to be dropped, or forcing it to be
 dropped using layer 2 mechanisms. The replayed packet is received at
 the other agent, and accepted, since the integrity check passes (the
 integrity check cannot and does not cover the source IP address and
 port). It is then responded to. This response will contain a XOR-
 MAPPED-ADDRESS with the false candidate, and will be sent to that
 false candidate. The attacker then needs to receive it and relay it
 towards the originator.

 The other agent will then initiate a connectivity check towards that
 false candidate. This validation needs to succeed. This requires
 the attacker to force a false valid on a false candidate. Injecting
 of fake requests or responses to achieve this goal is prevented using

Keranen, et al. Expires September 9, 2018 [Page 78]

Internet-Draft ICE March 2018

 the integrity mechanisms of STUN and the candidate exchange. Thus,
 this attack can only be launched through replays. To do that, the
 attacker needs to intercept the check towards this false candidate,
 and replay it towards the other agent. Then, it needs to intercept
 the response and replay that back as well.

 This attack is very hard to launch unless the attacker is identified
 by the fake candidate. This is because it requires the attacker to
 intercept and replay packets sent by two different hosts. If both
 agents are on different networks (e.g., across the public Internet),
 this attack can be hard to coordinate, since it needs to occur
 against two different endpoints on different parts of the network at
 the same time.

 If the attacker itself is identified by the fake candidate, the
 attack is easier to coordinate. However, if the data path is secured
 (e.g., using SRTP [RFC3711]), the attacker will not be able to
 process the data packets, but will only be able to discard them,
 effectively disabling the data stream. However, this attack requires
 the agent to disrupt packets in order to block the connectivity check
 from reaching the target. In that case, if the goal is to disrupt
 the data stream, it’s much easier to just disrupt it with the same
 mechanism, rather than attack ICE.

19.3. Attacks on Server Reflexive Address Gathering

 ICE endpoints make use of STUN Binding requests for gathering server
 reflexive candidates from a STUN server. These requests are not
 authenticated in any way. As a consequence, there are numerous
 techniques an attacker can employ to provide the client with a false
 server reflexive candidate:

 o An attacker can compromise the DNS, causing DNS queries to return
 a rogue STUN server address. That server can provide the client
 with fake server reflexive candidates. This attack is mitigated
 by DNS security, though DNSSEC is not required to address it.

 o An attacker that can observe STUN messages (such as an attacker on
 a shared network segment, like WiFi) can inject a fake response
 that is valid and will be accepted by the client.

 o An attacker can compromise a STUN server, and cause it to send
 responses with incorrect mapped addresses.

 A false mapped address learned by these attacks will be used as a
 server reflexive candidate in the establishment of the ICE session.
 For this candidate to actually be used for data, the attacker also
 needs to attack the connectivity checks, and in particular, force a

Keranen, et al. Expires September 9, 2018 [Page 79]

Internet-Draft ICE March 2018

 false valid on a false candidate. This attack is very hard to launch
 if the false address identifies a fourth party (neither the
 initiator, responder, nor attacker), since it requires attacking the
 checks generated by each ICE agent in the session, and is prevented
 by SRTP if it identifies the attacker itself.

 If the attacker elects not to attack the connectivity checks, the
 worst it can do is prevent the server reflexive candidate from being
 used. However, if the peer agent has at least one candidate that is
 reachable by the agent under attack, the STUN connectivity checks
 themselves will provide a peer reflexive candidate that can be used
 for the exchange of data. Peer reflexive candidates are generally
 preferred over server reflexive candidates. As such, an attack
 solely on the STUN address gathering will normally have no impact on
 a session at all.

19.4. Attacks on Relayed Candidate Gathering

 An attacker might attempt to disrupt the gathering of relayed
 candidates, forcing the client to believe it has a false relayed
 candidate. Exchanges with the TURN server are authenticated using a
 long-term credential. Consequently, injection of fake responses or
 requests will not work. In addition, unlike Binding requests,
 Allocate requests are not susceptible to replay attacks with modified
 source IP addresses and ports, since the source IP address and port
 are not utilized to provide the client with its relayed candidate.

 Even if an attacker has caused the client to believe in a false
 relayed candidate, the connectivity checks cause such a candidate to
 be used only if they succeed. Thus, an attacker needs to launch a
 false valid on a false candidate, per above, which is a very
 difficult attack to coordinate.

19.5. Insider Attacks

 In addition to attacks where the attacker is a third party trying to
 insert fake candidate information or STUN messages, there are attacks
 possible with ICE when the attacker is an authenticated and valid
 participant in the ICE exchange.

19.5.1. STUN Amplification Attack

 The STUN amplification attack is similar to a "voice hammer" attack,
 where the attacker causes other agents to direct voice packets to the
 attack target. However, instead of voice packets being directed to
 the target, STUN connectivity checks are directed to the target. The
 attacker sends an a large number of candidates, say, 50. The
 responding agent receives the candidate information, and starts its

Keranen, et al. Expires September 9, 2018 [Page 80]

Internet-Draft ICE March 2018

 checks, which are directed at the target, and consequently, never
 generate a response. In the case of WebRTC the user might not even
 be aware that this attack is ongoing, since it might be triggered in
 the background by malicious JavaScript code that the user has
 fetched. The answerer will start a new connectivity check every Ta
 ms (say, Ta=50ms). However, the retransmission timers are set to a
 large number due to the large number of candidates. As a
 consequence, packets will be sent at an interval of one every Ta
 milliseconds, and then with increasing intervals after that. Thus,
 STUN will not send packets at a rate faster than data would be sent,
 and the STUN packets persist only briefly, until ICE fails for the
 session. Nonetheless, this is an amplification mechanism.

 It is impossible to eliminate the amplification, but the volume can
 be reduced through a variety of heuristics. ICE agents SHOULD limit
 the total number of connectivity checks they perform to 100.
 Additionally, agents MAY limit the number of candidates they will
 accept.

 Frequently, protocols that wish to avoid these kinds of attacks force
 the initiator to wait for a response prior to sending the next
 message. However, in the case of ICE, this is not possible. It is
 not possible to differentiate the following two cases:

 o There was no response because the initiator is being used to
 launch a DoS attack against an unsuspecting target that will not
 respond.

 o There was no response because the IP address and port are not
 reachable by the initiator.

 In the second case, another check will be sent at the next
 opportunity, while in the former case, no further checks will be
 sent.

20. IANA Considerations

 The original ICE specification registered four STUN attributes, and
 one new STUN error response. The STUN attributes and error response
 are reproduced here. In addition, this specification registers a new
 ICE option.

20.1. STUN Attributes

 IANA has registered four STUN attributes:

Keranen, et al. Expires September 9, 2018 [Page 81]

Internet-Draft ICE March 2018

 0x0024 PRIORITY
 0x0025 USE-CANDIDATE
 0x8029 ICE-CONTROLLED
 0x802A ICE-CONTROLLING

 NOTE TO IANA: Please replace the reference to RFC 5245 in the
 registry with a reference to this specification.

20.2. STUN Error Responses

 IANA has registered following STUN error response code:

 487 Role Conflict: The client asserted an ICE role (controlling or
 controlled) that is in conflict with the role of the server.

 NOTE TO IANA: Please replace the reference to RFC 5245 in the
 registry with a reference to this specification.

20.3. ICE Options

 IANA is requested to register the following ICE option in the "ICE
 Options" sub-registry of the "Interactive Connectivity Establishment
 (ICE) registry", following the procedures defined in [RFC6336].

Keranen, et al. Expires September 9, 2018 [Page 82]

Internet-Draft ICE March 2018

 ICE Option name:

 ice2

 Contact:

 Name: IESG
 E-mail: iesg@ietf.org

 Change control:

 IESG

 Description:

 The ICE option indicates that the ICE agent using the ICE option
 is implemented according to RFC XXXX.

 Reference:

 RFC XXXX

21. Changes from RFC 5245

 The purpose of this updated ICE specification is to:

 o Clarify procedures in RFC 5245.

 o Make technical changes, due to discovered flaws in RFC 5245 and
 based on feedback from the community that has implemented and
 deployed ICE applications based on RFC 5245.

 o Make the procedures signaling protocol independent, by removing
 the SIP and SDP procedures. Procedures specific to a signaling
 protocol will be defined in separate usage documents.
 [I-D.ietf-mmusic-ice-sip-sdp] defines the ICE usage with SIP and
 SDP.

 The following technical changes have been done:

 o Aggressive nomination removed.

 o The procedures for calculating candidate pair states and
 scheduling connectivity checks modified.

 o Procedures for calculation of Ta and RTO modified.

Keranen, et al. Expires September 9, 2018 [Page 83]

Internet-Draft ICE March 2018

 o Active check list and frozen check list definitions removed.

 o ’ice2’ ice option added.

 o IPv6 considerations modified.

 o Usage with no-op for keepalives, and keepalives with non-ICE
 peers, removed.

22. Acknowledgements

 Most of the text in this document comes from the original ICE
 specification, RFC 5245. The authors would like to thank everyone
 who has contributed to that document. For additional contributions
 to this revision of the specification we would like to thank Emil
 Ivov, Paul Kyzivat, Pal-Erik Martinsen, Simon Perrault, Eric
 Rescorla, Thomas Stach, Peter Thatcher, Martin Thomson, Justin
 Uberti, Suhas Nandakumar, Taylor Brandstetter, Peter Saint-Andre,
 Harald Alvestrand and Roman Shpount. Ben Campbell did the AD review.
 Stephen Farrell did the sec-dir review. Stewart Bryant did the gen-
 art review. Qin We did the ops-dir review. Magnus Westerlund did
 the tsv-art review.

23. References

23.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008, <https://www.rfc-
 editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010, <https://www.rfc-
 editor.org/info/rfc5766>.

Keranen, et al. Expires September 9, 2018 [Page 84]

Internet-Draft ICE March 2018

 [RFC6336] Westerlund, M. and C. Perkins, "IANA Registry for
 Interactive Connectivity Establishment (ICE) Options",
 RFC 6336, DOI 10.17487/RFC6336, July 2011,
 <https://www.rfc-editor.org/info/rfc6336>.

 [RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
 "Default Address Selection for Internet Protocol Version 6
 (IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
 <https://www.rfc-editor.org/info/rfc6724>.

23.2. Informative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
 in Session Description Protocol (SDP)", RFC 3605,
 DOI 10.17487/RFC3605, October 2003, <https://www.rfc-
 editor.org/info/rfc3605>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002, <https://www.rfc-
 editor.org/info/rfc3261>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002, <https://www.rfc-
 editor.org/info/rfc3264>.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 DOI 10.17487/RFC3489, March 2003, <https://www.rfc-
 editor.org/info/rfc3489>.

 [RFC3235] Senie, D., "Network Address Translator (NAT)-Friendly
 Application Design Guidelines", RFC 3235,
 DOI 10.17487/RFC3235, January 2002, <https://www.rfc-
 editor.org/info/rfc3235>.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, DOI 10.17487/RFC3303, August 2002,
 <https://www.rfc-editor.org/info/rfc3303>.

Keranen, et al. Expires September 9, 2018 [Page 85]

Internet-Draft ICE March 2018

 [RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
 "Realm Specific IP: Framework", RFC 3102,
 DOI 10.17487/RFC3102, October 2001, <https://www.rfc-
 editor.org/info/rfc3102>.

 [RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
 "Realm Specific IP: Protocol Specification", RFC 3103,
 DOI 10.17487/RFC3103, October 2001, <https://www.rfc-
 editor.org/info/rfc3103>.

 [RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
 UNilateral Self-Address Fixing (UNSAF) Across Network
 Address Translation", RFC 3424, DOI 10.17487/RFC3424,
 November 2002, <https://www.rfc-editor.org/info/rfc3424>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <https://www.rfc-editor.org/info/rfc3550>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",
 RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC3725] Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
 Camarillo, "Best Current Practices for Third Party Call
 Control (3pcc) in the Session Initiation Protocol (SIP)",
 BCP 85, RFC 3725, DOI 10.17487/RFC3725, April 2004,
 <https://www.rfc-editor.org/info/rfc3725>.

 [RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
 Addresses", RFC 3879, DOI 10.17487/RFC3879, September
 2004, <https://www.rfc-editor.org/info/rfc3879>.

 [RFC4038] Shin, M-K., Ed., Hong, Y-G., Hagino, J., Savola, P., and
 E. Castro, "Application Aspects of IPv6 Transition",
 RFC 4038, DOI 10.17487/RFC4038, March 2005,
 <https://www.rfc-editor.org/info/rfc4038>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

Keranen, et al. Expires September 9, 2018 [Page 86]

Internet-Draft ICE March 2018

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
 Control Packets on a Single Port", RFC 5761,
 DOI 10.17487/RFC5761, April 2010, <https://www.rfc-
 editor.org/info/rfc5761>.

 [RFC4103] Hellstrom, G. and P. Jones, "RTP Payload for Text
 Conversation", RFC 4103, DOI 10.17487/RFC4103, June 2005,
 <https://www.rfc-editor.org/info/rfc4103>.

 [RFC4091] Camarillo, G. and J. Rosenberg, "The Alternative Network
 Address Types (ANAT) Semantics for the Session Description
 Protocol (SDP) Grouping Framework", RFC 4091,
 DOI 10.17487/RFC4091, June 2005, <https://www.rfc-
 editor.org/info/rfc4091>.

 [RFC4092] Camarillo, G. and J. Rosenberg, "Usage of the Session
 Description Protocol (SDP) Alternative Network Address
 Types (ANAT) Semantics in the Session Initiation Protocol
 (SIP)", RFC 4092, DOI 10.17487/RFC4092, June 2005,
 <https://www.rfc-editor.org/info/rfc4092>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010, <https://www.rfc-
 editor.org/info/rfc5245>.

 [RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
 Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
 RFC 5382, DOI 10.17487/RFC5382, October 2008,
 <https://www.rfc-editor.org/info/rfc5382>.

 [RFC6080] Petrie, D. and S. Channabasappa, Ed., "A Framework for
 Session Initiation Protocol User Agent Profile Delivery",
 RFC 6080, DOI 10.17487/RFC6080, March 2011,
 <https://www.rfc-editor.org/info/rfc6080>.

Keranen, et al. Expires September 9, 2018 [Page 87]

Internet-Draft ICE March 2018

 [RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
 NAT64: Network Address and Protocol Translation from IPv6
 Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
 April 2011, <https://www.rfc-editor.org/info/rfc6146>.

 [RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
 Beijnum, "DNS64: DNS Extensions for Network Address
 Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
 DOI 10.17487/RFC6147, April 2011, <https://www.rfc-
 editor.org/info/rfc6147>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011, <https://www.rfc-
 editor.org/info/rfc6298>.

 [RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
 "TCP Candidates with Interactive Connectivity
 Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
 March 2012, <https://www.rfc-editor.org/info/rfc6544>.

 [RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
 "Increasing TCP’s Initial Window", RFC 6928,
 DOI 10.17487/RFC6928, April 2013, <https://www.rfc-
 editor.org/info/rfc6928>.

 [RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
 the IPv6 Prefix Used for IPv6 Address Synthesis",
 RFC 7050, DOI 10.17487/RFC7050, November 2013,
 <https://www.rfc-editor.org/info/rfc7050>.

 [RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
 Considerations for IPv6 Address Generation Mechanisms",
 RFC 7721, DOI 10.17487/RFC7721, March 2016,
 <https://www.rfc-editor.org/info/rfc7721>.

 [RFC7825] Goldberg, J., Westerlund, M., and T. Zeng, "A Network
 Address Translator (NAT) Traversal Mechanism for Media
 Controlled by the Real-Time Streaming Protocol (RTSP)",
 RFC 7825, DOI 10.17487/RFC7825, December 2016,
 <https://www.rfc-editor.org/info/rfc7825>.

 [I-D.ietf-mmusic-ice-sip-sdp]
 Petit-Huguenin, M., Keranen, A., and S. Nandakumar,
 "Session Description Protocol (SDP) Offer/Answer
 procedures for Interactive Connectivity Establishment
 (ICE)", draft-ietf-mmusic-ice-sip-sdp-16 (work in
 progress), November 2017.

Keranen, et al. Expires September 9, 2018 [Page 88]

Internet-Draft ICE March 2018

 [I-D.ietf-ice-dualstack-fairness]
 Martinsen, P., Reddy, T., and P. Patil, "ICE Multihomed
 and IPv4/IPv6 Dual Stack Guidelines", draft-ietf-ice-
 dualstack-fairness-07 (work in progress), November 2016.

 [I-D.ietf-rtcweb-ip-handling]
 Uberti, J. and G. Shieh, "WebRTC IP Address Handling
 Requirements", draft-ietf-rtcweb-ip-handling-06 (work in
 progress), March 2018.

Appendix A. Lite and Full Implementations

 ICE allows for two types of implementations. A full implementation
 supports the controlling and controlled roles in a session, and can
 also perform address gathering. In contrast, a lite implementation
 is a minimalist implementation that does little but respond to STUN
 checks, and only supports the controlled role in a session.

 Because ICE requires both endpoints to support it in order to bring
 benefits to either endpoint, incremental deployment of ICE in a
 network is more complicated. Many sessions involve an endpoint that
 is, by itself, not behind a NAT and not one that would worry about
 NAT traversal. A very common case is to have one endpoint that
 requires NAT traversal (such as a VoIP hard phone or soft phone) make
 a call to one of these devices. Even if the phone supports a full
 ICE implementation, ICE won’t be used at all if the other device
 doesn’t support it. The lite implementation allows for a low-cost
 entry point for these devices. Once they support the lite
 implementation, full implementations can connect to them and get the
 full benefits of ICE.

 Consequently, a lite implementation is only appropriate for devices
 that will *always* be connected to the public Internet and have a
 public IP address at which it can receive packets from any
 correspondent. ICE will not function when a lite implementation is
 placed behind a NAT.

 ICE allows a lite implementation to have a single IPv4 host candidate
 and several IPv6 addresses. In that case, candidate pairs are
 selected by the controlling agent using a static algorithm, such as
 the one in RFC 6724, which is recommended by this specification.
 However, static mechanisms for address selection are always prone to
 error, since they cannot ever reflect the actual topology and can
 never provide actual guarantees on connectivity. They are always
 heuristics. Consequently, if an ICE agent is implementing ICE just
 to select between its IPv4 and IPv6 addresses, and none of its IP
 addresses are behind NAT, usage of full ICE is still RECOMMENDED in
 order to provide the most robust form of address selection possible.

Keranen, et al. Expires September 9, 2018 [Page 89]

Internet-Draft ICE March 2018

 It is important to note that the lite implementation was added to
 this specification to provide a stepping stone to full
 implementation. Even for devices that are always connected to the
 public Internet with just a single IPv4 address, a full
 implementation is preferable if achievable. Full implementations
 also obtain the security benefits of ICE unrelated to NAT traversal.
 Finally, it is often the case that a device that finds itself with a
 public address today will be placed in a network tomorrow where it
 will be behind a NAT. It is difficult to definitively know, over the
 lifetime of a device or product, that it will always be used on the
 public Internet. Full implementation provides assurance that
 communications will always work.

Appendix B. Design Motivations

 ICE contains a number of normative behaviors that may themselves be
 simple, but derive from complicated or non-obvious thinking or use
 cases that merit further discussion. Since these design motivations
 are not necessary to understand for purposes of implementation, they
 are discussed here in an appendix to the specification. This section
 is non-normative.

B.1. Pacing of STUN Transactions

 STUN transactions used to gather candidates and to verify
 connectivity are paced out at an approximate rate of one new
 transaction every Ta milliseconds. Each transaction, in turn, has a
 retransmission timer RTO that is a function of Ta as well. Why are
 these transactions paced, and why are these formulas used?

 Sending of these STUN requests will often have the effect of creating
 bindings on NAT devices between the client and the STUN servers.
 Experience has shown that many NAT devices have upper limits on the
 rate at which they will create new bindings. Discussions in the IETF
 ICE WG during the work on this specification concluded that, that
 once every 5 ms is well supported. This is why Ta has a lower bound
 of 5 ms. Furthermore, transmission of these packets on the network
 makes use of bandwidth and needs to be rate limited by the ICE agent.
 Deployments based on earlier draft versions of [RFC5245] tended to
 overload rate-constrained access links and perform poorly overall, in
 addition to negatively impacting the network. As a consequence, the
 pacing ensures that the NAT device does not get overloaded and that
 traffic is kept at a reasonable rate.

 The definition of a "reasonable" rate is that STUN MUST NOT use more
 bandwidth than the RTP itself will use, once data starts flowing.
 The formula for Ta is designed so that, if a STUN packet were sent
 every Ta seconds, it would consume the same amount of bandwidth as

Keranen, et al. Expires September 9, 2018 [Page 90]

Internet-Draft ICE March 2018

 RTP packets, summed across all data streams. Of course, STUN has
 retransmits, and the desire is to pace those as well. For this
 reason, RTO is set such that the first retransmit on the first
 transaction happens just as the first STUN request on the last
 transaction occurs. Pictorially:

 First Packets Retransmits

 | |
 | |
 -------+------ -------+------
 / \ / \
 / \ / \

 +--+ +--+ +--+ +--+ +--+ +--+
 |A1| |B1| |C1| |A2| |B2| |C2|
 +--+ +--+ +--+ +--+ +--+ +--+

 ---+-------+-------+-------+-------+-------+------------ Time
 0 Ta 2Ta 3Ta 4Ta 5Ta

 In this picture, there are three transactions that will be sent (for
 example, in the case of candidate gathering, there are three host
 candidate/STUN server pairs). These are transactions A, B, and C.
 The retransmit timer is set so that the first retransmission on the
 first transaction (packet A2) is sent at time 3Ta.

 Subsequent retransmits after the first will occur even less
 frequently than Ta milliseconds apart, since STUN uses an exponential
 back-off on its retransmissions.

 This mechanism of a global minimum pacing interval of 5ms is not
 generally applicable to transport protocols, but is applicable to ICE
 based on the following reasoning.

 o Start with the following rules which would be generally applicable
 to transport protocols:

 1. Let MaxBytes be the maximum number of bytes allowed to be
 outstanding in the network at start-up, which SHOULD be 14600,
 as defined in Section 2 of [RFC6928].

 2. Let HTO be the transaction timeout, which SHOULD be 2*RTT if
 RTT is known and 500ms otherwise. This is based on the RTO

Keranen, et al. Expires September 9, 2018 [Page 91]

Internet-Draft ICE March 2018

 for STUN messages from [RFC5389] and the the TCP initial RTO,
 which is 1 sec in [RFC6298].

 3. Let MinPacing be the minimum pacing interval between
 transactions, which is 5ms (see above).

 o Observe that agents typically do not know the RTT for ICE
 transactions (connectivity checks in particular), meaning that HTO
 will almost always be 500ms.

 o Observe that a MinPacing of 5ms and HTO of 500ms gives at most 100
 packets/HTO, which for a typical ICE check of less than 120 bytes
 means a maximum of 12000 outstanding bytes in the network, which
 is less than the maximum expressed by rule 1.

 o Thus, for ICE, the rule set reduces down to just the MinPacing
 rule, which is equivalent to having a global Ta value.

B.2. Candidates with Multiple Bases

 Section 5.1.3 talks about eliminating candidates that have the same
 transport address and base. However, candidates with the same
 transport addresses but different bases are not redundant. When can
 an ICE agent have two candidates that have the same IP address and
 port, but different bases? Consider the topology of Figure 11:

Keranen, et al. Expires September 9, 2018 [Page 92]

Internet-Draft ICE March 2018

 +----------+
 | STUN Srvr|
 +----------+
 |
 |

 // \\
 | |
 | B:net10 |
 | |
 \\ //

 |
 |
 +----------+
 | NAT |
 +----------+
 |
 |

 // \\
 | A |
 |192.168/16 |
 | |
 \\ //

 |
 |
 |192.168.1.100 -----
 +----------+ // \\ +----------+
 | | | | | |
 | Initiator|---------| C:net10 |-----------| Responder|
 | |10.0.1.100| | 10.0.1.101 | |
 +----------+ \\ // +----------+

 Figure 11: Identical Candidates with Different Bases

 In this case, the initiating agent is multihomed. It has one IP
 address, 10.0.1.100, on network C, which is a net 10 private network.
 The responding agent is on this same network. The initiating agent
 is also connected to network A, which is 192.168/16 and has an IP
 address of 192.168.1.100 on this network. There is a NAT on this
 network, natting into network B, which is another net 10 private
 network, but not connected to network C. There is a STUN server on
 network B.

Keranen, et al. Expires September 9, 2018 [Page 93]

Internet-Draft ICE March 2018

 The initiating agent obtains a host candidate on its IP address on
 network C (10.0.1.100:2498) and a host candidate on its IP address on
 network A (192.168.1.100:3344). It performs a STUN query to its
 configured STUN server from 192.168.1.100:3344. This query passes
 through the NAT, which happens to assign the binding 10.0.1.100:2498.
 The STUN server reflects this in the STUN Binding response. Now, the
 initiating agent has obtained a server reflexive candidate with a
 transport address that is identical to a host candidate
 (10.0.1.100:2498). However, the server reflexive candidate has a
 base of 192.168.1.100:3344, and the host candidate has a base of
 10.0.1.100:2498.

B.3. Purpose of the Related Address and Related Port Attributes

 The candidate attribute contains two values that are not used at all
 by ICE itself -- related address and related port. Why are they
 present?

 There are two motivations for its inclusion. The first is
 diagnostic. It is very useful to know the relationship between the
 different types of candidates. By including it, an ICE agent can
 know which relayed candidate is associated with which reflexive
 candidate, which in turn is associated with a specific host
 candidate. When checks for one candidate succeed and not for others,
 this provides useful diagnostics on what is going on in the network.

 The second reason has to do with off-path Quality of Service (QoS)
 mechanisms. When ICE is used in environments such as PacketCable
 2.0, proxies will, in addition to performing normal SIP operations,
 inspect the SDP in SIP messages, and extract the IP address and port
 for data traffic. They can then interact, through policy servers,
 with access routers in the network, to establish guaranteed QoS for
 the data flows. This QoS is provided by classifying the RTP traffic
 based on 5-tuple, and then providing it a guaranteed rate, or marking
 its Diffserv codepoints appropriately. When a residential NAT is
 present, and a relayed candidate gets selected for data, this relayed
 candidate will be a transport address on an actual TURN server. That
 address says nothing about the actual transport address in the access
 router that would be used to classify packets for QoS treatment.
 Rather, the server reflexive candidate towards the TURN server is
 needed. By carrying the translation in the SDP, the proxy can use
 that transport address to request QoS from the access router.

B.4. Importance of the STUN Username

 ICE requires the usage of message integrity with STUN using its
 short-term credential functionality. The actual short-term
 credential is formed by exchanging username fragments in the

Keranen, et al. Expires September 9, 2018 [Page 94]

Internet-Draft ICE March 2018

 candidate exchange. The need for this mechanism goes beyond just
 security; it is actually required for correct operation of ICE in the
 first place.

 Consider ICE agents L, R, and Z. L and R are within private
 enterprise 1, which is using 10.0.0.0/8. Z is within private
 enterprise 2, which is also using 10.0.0.0/8. As it turns out, R and
 Z both have IP address 10.0.1.1. L sends candidates to Z. Z, in
 responds L with its host candidates. In this case, those candidates
 are 10.0.1.1:8866 and 10.0.1.1:8877. As it turns out, R is in a
 session at that same time, and is also using 10.0.1.1:8866 and
 10.0.1.1:8877 as host candidates. This means that R is prepared to
 accept STUN messages on those ports, just as Z is. L will send a
 STUN request to 10.0.1.1:8866 and another to 10.0.1.1:8877. However,
 these do not go to Z as expected. Instead, they go to R! If R just
 replied to them, L would believe it has connectivity to Z, when in
 fact it has connectivity to a completely different user, R. To fix
 this, the STUN short-term credential mechanisms are used. The
 username fragments are sufficiently random that it is highly unlikely
 that R would be using the same values as Z. Consequently, R would
 reject the STUN request since the credentials were invalid. In
 essence, the STUN username fragments provide a form of transient host
 identifiers, bound to a particular session established as part of the
 candidate exchange.

 An unfortunate consequence of the non-uniqueness of IP addresses is
 that, in the above example, R might not even be an ICE agent. It
 could be any host, and the port to which the STUN packet is directed
 could be any ephemeral port on that host. If there is an application
 listening on this socket for packets, and it is not prepared to
 handle malformed packets for whatever protocol is in use, the
 operation of that application could be affected. Fortunately, since
 the ports exchanged are ephemeral and usually drawn from the dynamic
 or registered range, the odds are good that the port is not used to
 run a server on host R, but rather is the agent side of some
 protocol. This decreases the probability of hitting an allocated
 port, due to the transient nature of port usage in this range.
 However, the possibility of a problem does exist, and network
 deployers need to be prepared for it. Note that this is not a
 problem specific to ICE; stray packets can arrive at a port at any
 time for any type of protocol, especially ones on the public
 Internet. As such, this requirement is just restating a general
 design guideline for Internet applications -- be prepared for unknown
 packets on any port.

Keranen, et al. Expires September 9, 2018 [Page 95]

Internet-Draft ICE March 2018

B.5. The Candidate Pair Priority Formula

 The priority for a candidate pair has an odd form. It is:

 pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

 Why is this? When the candidate pairs are sorted based on this
 value, the resulting sorting has the MAX/MIN property. This means
 that the pairs are first sorted based on decreasing value of the
 minimum of the two priorities. For pairs that have the same value of
 the minimum priority, the maximum priority is used to sort amongst
 them. If the max and the min priorities are the same, the
 controlling agent’s priority is used as the tie-breaker in the last
 part of the expression. The factor of 2*32 is used since the
 priority of a single candidate is always less than 2*32, resulting in
 the pair priority being a "concatenation" of the two component
 priorities. This creates the MAX/MIN sorting. MAX/MIN ensures that,
 for a particular ICE agent, a lower-priority candidate is never used
 until all higher-priority candidates have been tried.

B.6. Why Are Keepalives Needed?

 Once data begins flowing on a candidate pair, it is still necessary
 to keep the bindings alive at intermediate NATs for the duration of
 the session. Normally, the data stream packets themselves (e.g.,
 RTP) meet this objective. However, several cases merit further
 discussion. Firstly, in some RTP usages, such as SIP, the data
 streams can be "put on hold". This is accomplished by using the SDP
 "sendonly" or "inactive" attributes, as defined in RFC 3264
 [RFC3264]. RFC 3264 directs implementations to cease transmission of
 data in these cases. However, doing so may cause NAT bindings to
 timeout, and data won’t be able to come off hold.

 Secondly, some RTP payload formats, such as the payload format for
 text conversation [RFC4103], may send packets so infrequently that
 the interval exceeds the NAT binding timeouts.

 Thirdly, if silence suppression is in use, long periods of silence
 may cause data transmission to cease sufficiently long for NAT
 bindings to time out.

 For these reasons, the data packets themselves cannot be relied upon.
 ICE defines a simple periodic keepalive utilizing STUN Binding
 indications. This makes its bandwidth requirements highly
 predictable, and thus amenable to QoS reservations.

Keranen, et al. Expires September 9, 2018 [Page 96]

Internet-Draft ICE March 2018

B.7. Why Prefer Peer Reflexive Candidates?

 Section 5.1.2 describes procedures for computing the priority of
 candidate based on its type and local preferences. That section
 requires that the type preference for peer reflexive candidates
 always be higher than server reflexive. Why is that? The reason has
 to do with the security considerations in Section 19. It is much
 easier for an attacker to cause an ICE agent to use a false server
 reflexive candidate than it is for an attacker to cause an agent to
 use a false peer reflexive candidate. Consequently, attacks against
 address gathering with Binding requests are thwarted by ICE by
 preferring the peer reflexive candidates.

B.8. Why Are Binding Indications Used for Keepalives?

 Data keepalives are described in Section 11. These keepalives make
 use of STUN when both endpoints are ICE capable. However, rather
 than using a Binding request transaction (which generates a
 response), the keepalives use an Indication. Why is that?

 The primary reason has to do with network QoS mechanisms. Once data
 begins flowing, network elements will assume that the data stream has
 a fairly regular structure, making use of periodic packets at fixed
 intervals, with the possibility of jitter. If an ICE agent is
 sending data packets, and then receives a Binding request, it would
 need to generate a response packet along with its data packets. This
 will increase the actual bandwidth requirements for the 5-tuple
 carrying the data packets, and introduce jitter in the delivery of
 those packets. Analysis has shown that this is a concern in certain
 layer 2 access networks that use fairly tight packet schedulers for
 data.

 Additionally, using a Binding Indication allows integrity to be
 disabled, allowing for better performance. This is useful for large-
 scale endpoints, such as Public Switched Telephone Network (PSTN)
 gateways and Session Border Controllers (SBCs).

B.9. Selecting Candidate Type Preference

 One criterion for selection of the type and local preference values
 is the use of a data intermediary, such as a TURN server, a tunnel
 service such as VPN server, or NAT. With a data intermediary, if
 data is sent to that candidate, it will first transit the data
 intermediary before being received. Relayed candidates are one type
 of candidate that involves a data intermediary. Another are host
 candidates obtained from a VPN interface. When data is transited
 through a data intermediary, it can have a positive or negative
 effect on the latency between transmission and reception. It may or

Keranen, et al. Expires September 9, 2018 [Page 97]

Internet-Draft ICE March 2018

 may not increase the packet losses, because of the additional router
 hops that may be taken. It may increase the cost of providing
 service, since data will be routed in and right back out of a data
 intermediary run by a provider. If these concerns are important, the
 type preference for relayed candidates needs to be carefully chosen.

 Another criterion for selection of preferences is IP address family.
 ICE works with both IPv4 and IPv6. It provides a transition
 mechanism that allows dual-stack hosts to prefer connectivity over
 IPv6, but to fall back to IPv4 in case the v6 networks are
 disconnected. Implementation SHOULD follow the guidelines from
 [I-D.ietf-ice-dualstack-fairness] to avoid excessive delays in the
 connectivity check phase if broken paths exist.

 Another criterion for selecting preferences is topological awareness.
 This is most useful for candidates that make use of intermediaries.
 In those cases, if an ICE agent has preconfigured or dynamically
 discovered knowledge of the topological proximity of the
 intermediaries to itself, it can use that to assign higher local
 preferences to candidates obtained from closer intermediaries.

 Another criterion for selecting preferences might be security or
 privacy. If a user is a telecommuter, and therefore connected to a
 corporate network and a local home network, the user may prefer their
 voice traffic to be routed over the VPN or similar tunnel in order to
 keep it on the corporate network when communicating within the
 enterprise, but use the local network when communicating with users
 outside of the enterprise. In such a case, a VPN address would have
 a higher local preference than any other address.

Appendix C. Connectivity Check Bandwidth

 The tables below show, for IPv4 and IPv6, the bandwidth required for
 performing connectivity checks, using different Ta values (given in
 ms) and different ufrag sizes (given in bytes).

 The results were provided by Jusin Uberti (Google) 11th April 2016.

Keranen, et al. Expires September 9, 2018 [Page 98]

Internet-Draft ICE March 2018

 IP version: IPv4
 Packet len (bytes): 108 + ufrag
 |
 ms | 4 8 12 16
 -----|------------------------
 500 | 1.86k 1.98k 2.11k 2.24k
 200 | 4.64k 4.96k 5.28k 5.6k
 100 | 9.28k 9.92k 10.6k 11.2k
 50 | 18.6k 19.8k 21.1k 22.4k
 20 | 46.4k 49.6k 52.8k 56.0k
 10 | 92.8k 99.2k 105k 112k
 5 | 185k 198k 211k 224k
 2 | 464k 496k 528k 560k
 1 | 928k 992k 1.06M 1.12M

 IP version: IPv6
 Packet len (bytes): 128 + ufrag
 |
 ms | 4 8 12 16
 -----|------------------------
 500 | 2.18k 2.3k 2.43k 2.56k
 200 | 5.44k 5.76k 6.08k 6.4k
 100 | 10.9k 11.5k 12.2k 12.8k
 50 | 21.8k 23.0k 24.3k 25.6k
 20 | 54.4k 57.6k 60.8k 64.0k
 10 | 108k 115k 121k 128k
 5 | 217k 230k 243k 256k
 2 | 544k 576k 608k 640k
 1 | 1.09M 1.15M 1.22M 1.28M

 Figure 12: Connectivity Check Bandwidth

Authors’ Addresses

 Ari Keranen
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 Email: ari.keranen@ericsson.com

Keranen, et al. Expires September 9, 2018 [Page 99]

Internet-Draft ICE March 2018

 Christer Holmberg
 Ericsson
 Hirsalantie 11
 02420 Jorvas
 Finland

 Email: christer.holmberg@ericsson.com

 Jonathan Rosenberg
 jdrosen.net
 Monmouth, NJ
 US

 Email: jdrosen@jdrosen.net
 URI: http://www.jdrosen.net

Keranen, et al. Expires September 9, 2018 [Page 100]

Network Working Group E. Ivov
Internet-Draft Jitsi
Intended status: Standards Track E. Rescorla
Expires: June 12, 2016 RTFM, Inc.
 J. Uberti
 Google
 P. Saint-Andre
 &yet
 December 10, 2015

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol
 draft-ietf-ice-trickle-01

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) protocol that enables ICE agents to send and
 receive candidates incrementally rather than exchanging complete
 lists. With such incremental provisioning, ICE agents can begin
 connectivity checks while they are still gathering candidates and
 considerably shorten the time necessary for ICE processing to
 complete. This mechanism is called "trickle ICE".

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 12, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ivov, et al. Expires June 12, 2016 [Page 1]

Internet-Draft Trickle ICE December 2015

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Determining Support for Trickle ICE 5
 4. Sending the Initial Offer 6
 5. Receiving the Initial Offer 6
 5.1. Sending the Initial Answer 7
 5.2. Forming Check Lists and Beginning Connectivity
 Checks . 7
 6. Receiving the Initial Answer 8
 7. Performing Connectivity Checks 8
 7.1. Scheduling Checks . 8
 7.2. Check List and Timer State Updates 9
 8. Discovering and Sending Additional Local Candidates 9
 8.1. Pairing Newly Learned Candidates and Updating
 Check Lists . 11
 8.2. Announcing End of Candidates 12
 9. Receiving Additional Remote Candidates 14
 10. Receiving an End-Of-Candidates Notification 14
 11. Trickle ICE and Peer Reflexive Candidates 14
 12. Concluding ICE Processing 15
 13. Subsequent Offer/Answer Exchanges 15
 14. Unilateral Use of Trickle ICE (Half Trickle) 15
 15. Example Flow . 16
 16. IANA Considerations . 17
 17. Security Considerations 17
 18. Acknowledgements . 17
 19. References . 17
 19.1. Normative References 17
 19.2. Informative References 18
 Appendix A. Interaction with ICE 19
 Appendix B. Interaction with ICE Lite 20
 Appendix C. Changes from Earlier Versions 21
 C.1. Changes from draft-ietf-ice-trickle-00 21
 C.2. Changes from draft-mmusic-trickle-ice-02 22
 C.3. Changes from draft-ivov-01 and draft-mmusic-00 22
 C.4. Changes from draft-ivov-00 22

Ivov, et al. Expires June 12, 2016 [Page 2]

Internet-Draft Trickle ICE December 2015

 C.5. Changes from draft-rescorla-01 23
 C.6. Changes from draft-rescorla-00 24
 Authors’ Addresses . 24

1. Introduction

 The Interactive Connectivity Establishment (ICE) protocol
 [rfc5245bis] describes mechanisms for gathering candidates,
 prioritizing them, choosing default ones, exchanging them with the
 remote party, pairing them, and ordering them into check lists. Once
 all of these actions have been completed (and only then), the
 participating agents can begin a phase of connectivity checks and
 eventually select the pair of candidates that will be used in a media
 session.

 Although the sequence described above has the advantage of being
 relatively straightforward to implement and debug once deployed, it
 can also be rather lengthy. Candidate gathering often involves
 things like querying STUN [RFC5389] servers, discovering UPnP
 devices, and allocating relayed candidates at TURN [RFC5766] servers.
 All of these actions can be delayed for a noticeable amount of time;
 although they can be run in parallel, they still need to respect the
 pacing requirements from [rfc5245bis], which is likely to delay them
 even further. Some or all of these actions also need be completed by
 the remote agent. Both agents would next perform connectivity checks
 and only then would they be ready to begin streaming media.

 These factors can lead to relatively lengthy session establishment
 times and degraded user experience.

 This document defines an alternative mode of operation for ICE
 implementations, known as "Trickle ICE", in which candidates can be
 exchanged incrementally. This enables ICE agents to exchange
 candidates as soon as a session has been initiated. Connectivity
 checks for a media stream can also start as soon as the first
 candidates for that stream become available.

 Trickle ICE can reduce session establishment times in cases where
 connectivity is confirmed for the first exchanged candidates (e.g.,
 where the host candidates for one of the agents are directly
 reachable from the second agent, such as host candidates at a media
 relay). Even when this is not the case, running candidate gathering
 for both agents and connectivity checks in parallel can considerably
 shorten ICE processing times.

 It is worth noting that there is quite a bit of operational
 experience with the Trickle ICE technique, going back as far as 2005
 (when the XMPP Jingle extension defined a "dribble mode" as specified

Ivov, et al. Expires June 12, 2016 [Page 3]

Internet-Draft Trickle ICE December 2015

 in [XEP-0176]); this document incorporates feedback from those who
 have implemented and deployed the technique.

 In addition to the basics of Trickle ICE, this document also
 describes how to discover support for Trickle ICE, how regular ICE
 processing needs to be modified when building and updating check
 lists, and how Trickle ICE implementations interoperate with agents
 that only implement so-called "Vanilla ICE" processing as defined in
 [rfc5245bis].

 This specification does not define the usage of Trickle ICE with any
 specific signalling protocol (however, see
 [I-D.ietf-mmusic-trickle-ice-sip] for usage with SIP [RFC3261]).
 Similarly, it does not define Trickle ICE in terms of the Session
 Description Protocol (SDP) [RFC4566] or the offer/answer model
 [RFC3264] because the technique can be and already is used in
 application protocols that are not tied to SDP or to offer/answer
 semantics.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined for
 Interactive Connectivity Establishment in [rfc5245bis].

 Vanilla ICE: The Interactive Connectivity Establishment protocol as
 defined in [rfc5245bis].

 Candidate Harvester: A module used by an ICE agent to obtain local
 candidates. Candidate gatherers use different mechanisms for
 discovering local candidates. Some of them would typically make
 use of protocols such as STUN or TURN. Others may also employ
 techniques that are not referenced within [rfc5245bis] (e.g., UPnP
 based port allocation or XMPP Jingle Relay Nodes [XEP-0278]).

 Trickled Candidates: Candidates that a Trickle ICE agent sends after
 an offer or answer but within the same context. Trickled
 candidates can be sent in parallel with candidate gathering and
 connectivity checks.

 Trickling/Trickle (v.): The act of sending trickled candidates.

 Half Trickle: A Trickle ICE mode of operation where the offerer
 gathers its first generation of candidates strictly before
 creating and sending the offer. Once sent, that offer can be

Ivov, et al. Expires June 12, 2016 [Page 4]

Internet-Draft Trickle ICE December 2015

 processed by Vanilla ICE agents and does not require support for
 this specification. It also allows Trickle ICE capable answerers
 to still gather candidates and perform connectivity checks in a
 non-blocking way, thus roughly offering "half" the advantages of
 Trickle ICE. The mechanism is mostly meant for use in cases where
 support for trickle ICE cannot be confirmed prior to sending a
 initial offer.

 Full Trickle: The regular mode of operation for Trickle ICE agents,
 in which an initial offer can include any number of candidates
 (even zero candidates) and does not need to include the entire
 first generation of candidates as in half trickle.

3. Determining Support for Trickle ICE

 Application protocols that use Trickle ICE should do one of the
 following:

 o Provide a way for agents to verify support of Trickle ICE prior to
 initiating a session (XMPP’s Service Discovery [XEP-0030] is one
 such mechanism).

 o Make support for Trickle ICE mandatory so that user agents can
 assume support.

 Alternately, for cases where a protocol provides neither of the
 foregoing methods, agents may rely on provisioning/configuration or
 use the half trickle procedure described in Section 14.

 Prior to sending an initial offer, agents using signaling protocols
 that support capabilities discovery can attempt to verify whether or
 not the remote party supports Trickle ICE. If an agent determines
 that the remote party does not support Trickle ICE, it MUST fall back
 to using Vanilla ICE or abandon the entire session.

 In application protocols that use SDP, a user agent supporting
 Trickle ICE MUST include a token of "trickle" in the ice-options
 attribute every time it generates an offer or an answer. This
 enables an agent that receives offers or answers to verify support by
 checking for presence of the token.

 Dedicated discovery semantics and half trickle are needed only prior
 to session initiation (e.g., when sending the initial offer). After
 a session is established and Trickle ICE support is confirmed for
 both parties, either agent can use full trickle for subsequent
 offers.

Ivov, et al. Expires June 12, 2016 [Page 5]

Internet-Draft Trickle ICE December 2015

4. Sending the Initial Offer

 An agent starts gathering candidates as soon as it has an indication
 that communication is imminent (e.g., a user interface cue or an
 explicit request to initiate a session). Contrary to Vanilla ICE,
 implementations of Trickle ICE do not need to gather candidates in a
 blocking manner. Therefore, unless half trickle is being used,
 agents SHOULD generate and transmit their initial offer as early as
 possible, in order to allow the remote party to start gathering and
 trickling candidates.

 Trickle ICE agents MAY include any set of candidates in an offer.
 This includes the possibility of sending an offer that contains all
 the candidates that the agent plans to use (as in half trickle mode),
 sending an offer that contains only a publically-reachable IP address
 (e.g., a host candidate at a media relay that is known to not be
 behind a firewall), or sending an offer with no candidates at all (in
 which case the offerer can receive the answerer’s initial candidate
 list sooner and the answerer can begin candidate gathering more
 quickly).

 For optimal performance, it is RECOMMENDED that the candidates in an
 initial offer (if any) be host candidates only. This would allow
 both agents to start gathering server reflexive, relayed, and other
 non-host candidates simultaneously, and it would also enable them to
 begin connectivity checks.

 If the privacy implications of revealing host addresses on an
 endpoint device are a concern, agents can generate an offer that
 contains no candidates and then only trickle candidates that do not
 reveal host addresses (e.g., relayed candidates).

 Methods for calculating priorities and foundations, as well as
 determining redundancy of candidates, work just as with vanilla ICE.

5. Receiving the Initial Offer

 When an agent receives an initial offer, it will first check if the
 offer or offerer indicates support for Trickle ICE as explained in
 Section 3. If this is not the case, the agent MUST process the offer
 according to Vanilla ICE procedures [rfc5245bis] or offer/answer
 processing rules [RFC3264] if no ICE support is detected at all.

 If support for Trickle ICE is confirmed, an agent will automatically
 assume support for Vanilla ICE as well even if the support
 verification procedure in [rfc5245bis] indicates otherwise.
 Specifically, the rules from [rfc5245bis] would imply that ICE itself
 is not supported if the initial offer includes no candidates in the

Ivov, et al. Expires June 12, 2016 [Page 6]

Internet-Draft Trickle ICE December 2015

 offer; however, such a conclusion is not warranted if the answerer
 can confirm that the offerer supports Trickle ICE and thus fallback
 to [RFC3264] is not necessary.

 If the offer does indicate support for Trickle ICE, the agent will
 determine its role, start gathering and prioritizing candidates and
 while doing so it will also respond by sending its own answer, so
 that both agents can start forming check lists and begin connectivity
 checks.

5.1. Sending the Initial Answer

 An agent can respond to an initial offer at any point while gathering
 candidates. The answer can again contain any set of candidates,
 including all candidates or no candidates. (The benefit of including
 no candidates is to send the answer as quickly as possible, so that
 both parties can consider the overall session to be under active
 negotiation as soon as possible.) Unless the answering agent is
 protecting host addresses for privacy reasons, it would typically
 construct this initial answer including only host addresses, thus
 enabling the remote party to also start forming check lists and
 performing connectivity checks.

 In application protocols that use SDP, the answer MUST indicate
 support for Trickle ICE as described in Section 3.

5.2. Forming Check Lists and Beginning Connectivity Checks

 After exchanging the offer and answer, and as soon as they have
 obtained local and remote candidates, agents begin forming candidate
 pairs, computing candidate pair priorities and ordering candidate
 pairs, pruning duplicate pairs, and creating check lists according to
 the Vanilla ICE procedures described in [rfc5245bis].

 According to those procedures, in order for candidate pairing to be
 possible and for duplicate candidates to be pruned, the candidates
 would need to be provided in both the offer and the answer. Under
 Trickle ICE, check lists can be empty until candidate pairs are sent
 or received. Therefore Trickle ICE agents handle check lists and
 candidate pairing in a slightly different way: the agents still
 create the check lists, but they only populate the check lists after
 they actually have the candidate pairs.

 Note: According to [rfc5245bis], "A check list with at least one
 pair that is Waiting is called an active check list, and a check
 list with all pairs Frozen is called a frozen check list."
 Formally speaking an active check list does not have a state of
 Active and a frozen check list does not have a state of Frozen,

Ivov, et al. Expires June 12, 2016 [Page 7]

Internet-Draft Trickle ICE December 2015

 because the only check list states are Running, Completed, and
 Failed.

 A Trickle ICE agent MUST initially consider all check lists to be
 frozen. It then inspects the first check list and attempts to
 unfreeze all candidates belonging to the first component on the first
 media stream (i.e., the first media stream that was reported to the
 ICE implementation from the using application). However, if this
 check list is still empty, an agent delays further processing until
 the check list is non-empty.

 With regard to pruning of duplicate candidate pairs, a Trickle ICE
 agent SHOULD follow a policy of "first one wins" and not re-apply the
 pruning procedure if a higher-priority candidate pair is received
 from the remote agent.

 Respecting the order in which check lists have been reported to an
 ICE implementation is crucial to the frozen candidates algorithm, so
 that connectivity checks are performed simultaneously by both agents.

6. Receiving the Initial Answer

 When receiving an answer, agents follow Vanilla ICE procedures to
 determine their role, after which they form check lists (as described
 in Section 5.2) and begin connectivity checks.

7. Performing Connectivity Checks

 For the most part, Trickle ICE agents perform connectivity checks
 following Vanilla ICE procedures. However, the asynchronous nature
 of gathering and communicating candidates in Trickle ICE impose a
 number of changes described as described in the following sections.

7.1. Scheduling Checks

 The ICE specification [rfc5245bis], Section 5.8, requires that agents
 terminate the timer for a triggered check in relation to an active
 check list once the agent has exhausted all frozen pairs in check
 list. This will not work with Trickle ICE, because more pairs will
 be added to the check list incrementally.

 Therefore, a Trickle ICE agent SHOULD NOT terminate the timer until
 the state of the check list is Completed or Failed as specified
 herein (see Section 8.2).

Ivov, et al. Expires June 12, 2016 [Page 8]

Internet-Draft Trickle ICE December 2015

7.2. Check List and Timer State Updates

 The ICE specification [rfc5245bis], Section 7.1.3.3, requires that
 agents update check lists and timer states upon completing a
 connectivity check transaction. During such an update, Vanilla ICE
 agents would set the state of a check list to Failed if both of the
 following two conditions are satisfied:

 o all of the pairs in the check list are either in the Failed or
 Succeeded state; and

 o there is not a pair in the valid list for each component of the
 media stream.

 With Trickle ICE, the above situation would often occur when
 candidate gathering and trickling are still in progress, even though
 it is quite possible that future checks will succeed. For this
 reason, Trickle ICE agents add the following conditions to the above
 list:

 o all candidate gatherers have completed and the agent is not
 expecting to discover any new local candidates;

 o the remote agent has sent an end-of-candidates indication for that
 check list as described in Section 8.2.

 Vanilla ICE requires that agents then update all other check lists,
 placing one pair from each of them into the Waiting state,
 effectively unfreezing all remaining check lists. However, under
 Trickle ICE other check lists might still be empty at that point.
 Therefore a Trickle ICE agent SHOULD monitor whether a check list is
 active or frozen independently of the state of the candidate pairs
 that the check list contains. A Trickle ICE agent SHOULD consider a
 check list to be active either when unfreezing the first candidate
 pair in the check list or when there is no candidate pair in the
 check list (i.e., when the check list is empty).

8. Discovering and Sending Additional Local Candidates

 After an offer or an answer has been sent, agents will most likely
 continue discovering new local candidates as STUN, TURN, and other
 non-host candidate gathering mechanisms begin to yield results.
 Whenever an agent discovers such a new candidate it will compute its
 priority, type, foundation and component ID according to normal
 Vanilla ICE procedures.

 The new candidate is then checked for redundancy against the existing
 list of local candidates. If its transport address and base match

Ivov, et al. Expires June 12, 2016 [Page 9]

Internet-Draft Trickle ICE December 2015

 those of an existing candidate, it will be considered redundant and
 will be ignored. This would often happen for server reflexive
 candidates that match the host addresses they were obtained from
 (e.g., when the latter are public IPv4 addresses). Contrary to
 Vanilla ICE, Trickle ICE agents will consider the new candidate
 redundant regardless of its priority.

 Next the agent sends (i.e., trickles) the newly discovered
 candidate(s) to the remote agent. The actual delivery of the new
 candidates are specified by using protocols such as SIP or XMPP.
 Trickle ICE imposes no restrictions on the way this is done or
 whether it is done at all. For example, some applications may choose
 not to send trickle updates for server reflexive candidates and rely
 on the discovery of peer reflexive ones instead.

 When trickle updates are sent, each candidate MUST be delivered to
 the receiving Trickle ICE implementation not more than once and in
 the same order that they were sent. In other words, if there are any
 candidate retransmissions, they must be hidden from the ICE
 implementation.

 Also, candidate trickling needs to be correlated to a specific ICE
 negotiation session, so that if there is an ICE restart, any delayed
 updates for a previous session can be recognized as such and ignored
 by the receiving party.

 One important aspect of Vanilla ICE is that connectivity checks for a
 specific foundation and component are attempted simultaneously by
 both agents, so that any firewalls or NATs fronting the agents would
 whitelist both endpoints and allow all except for the first
 ("suicide") packets to go through. This is also crucial to
 unfreezing candidates in the right time.

 In order to preserve this feature in Trickle ICE, when trickling
 candidates agents MUST respect the order of the components as they
 appear (implicitly or explicitly) in the offer/answer descriptions.
 Therefore a candidate for a specific component MUST NOT be sent prior
 to candidates for other components within the same foundation.

 For example, the following SDP description contains two components
 (RTP and RTCP) and two foundations (host and server reflexive):

Ivov, et al. Expires June 12, 2016 [Page 10]

Internet-Draft Trickle ICE December 2015

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
 s=
 c=IN IP4 10.0.1.1
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 5000 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host
 a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host
 a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
 raddr 10.0.1.1 rport 8998
 a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
 raddr 10.0.1.1 rport 8998

 For this description the RTCP host candidate MUST NOT be sent prior
 to the RTP host candidate. Similarly the RTP server reflexive
 candidate MUST be sent together with or prior to the RTCP server
 reflexive candidate.

 Note that the order restriction only applies among candidates that
 belong to the same foundation.

 It is also equally important to preserve this order across media
 streams, which is covered by the requirement to always start
 unfreezing candidates starting from the first media stream as
 described under Section 5.2.

 Once the candidate has been sent to the remote party, the agent
 checks if any remote candidates are currently known for this same
 stream. If not, the new candidate will simply be added to the list
 of local candidates.

 Otherwise, if the agent has already learned of one or more remote
 candidates for this stream and component, it will begin pairing the
 new local candidates with them and adding the pairs to the existing
 check lists according to their priority.

8.1. Pairing Newly Learned Candidates and Updating Check Lists

 Forming candidate pairs works the way it is described by the ICE
 specification [rfc5245bis]. However, actually adding the new pair to
 a check list happens according to the rules described below.

Ivov, et al. Expires June 12, 2016 [Page 11]

Internet-Draft Trickle ICE December 2015

 If the check list where the pair is to be added already contains the
 maximum number of candidate pairs (100 by default as per
 [rfc5245bis]), the new pair is discarded.

 If the new pair’s local candidate is server reflexive, the server
 reflexive candidate MUST be replaced by its base before adding the
 pair to the list. Once this is done, the agent examines the check
 list looking for another pair that would be redundant with the new
 one. If such a pair exists, the newly formed pair is ignored.

 For all other pairs, including those with a server reflexive local
 candidate that were not found to be redundant:

 o if this check list is frozen then the new pair will be assigned a
 state of Frozen.

 o else if the check list is active and it is either empty or
 contains only candidates in the Succeeded and Failed states, then
 the new pair’s state is set to Waiting.

 o else if the check list is non-empty and active, then the state of
 the new pair will be set to

 Frozen: if there is at least one pair in the check list whose
 foundation matches the one in the new pair and whose state is
 neither Succeeded nor Failed (eventually the new pair will get
 unfrozen after the ongoing check for the existing pair
 concludes);

 Waiting: if the list contains no pairs with the same foundation
 as the new one, or, in case such pairs exist but they are all
 in either the Succeeded or Failed states.

8.2. Announcing End of Candidates

 Once all candidate gathering is completed or expires for a specific
 media stream, the agents will generate an "end-of-candidates"
 indication for that stream and send it to the remote agent via the
 signalling channel. The exact form of the indication depends on the
 application protocol. The indication can be sent in the following
 ways:

 o As part of an offer (which would typically be the case with half
 trickle initial offers)

 o Along with the last candidate an agent can send for a stream

Ivov, et al. Expires June 12, 2016 [Page 12]

Internet-Draft Trickle ICE December 2015

 o As a standalone notification (e.g., after STUN Binding requests or
 TURN Allocate requests to a server timeout and the agent has no
 other active gatherers)

 A controlled Trickle ICE agent SHOULD send end-of-candidates
 indications after gathering for a media stream has completed, unless
 ICE processing terminates before the agent has had a chance to do so.
 Sending the indication is necessary in order to avoid ambiguities and
 speed up the conclusion of ICE processing. On the other hand, a
 controlling agent MAY conclude ICE processing prior to sending end-
 of-candidates indications for all streams. This would typically be
 the case with aggressive nomination. However, it is RECOMMENDED that
 controlling agents do send such indications whenever possible for the
 sake of consistency and to keep middle boxes and controlled agents
 up-to-date on the state of ICE processing.

 When sending an end-of-candidate indication during trickling (rather
 than as a part of an offer or an answer), it is the responsibility of
 the using protocol to define methods for relating the indication to
 one or more specific media streams.

 Receiving an end-of-candidates indication enables an agent to update
 check list states and, in case valid pairs do not exist for every
 component in every media stream, determine that ICE processing has
 failed. It also enables agents to speed up the conclusion of ICE
 processing when a candidate pair has been validated but it involves
 the use of lower-preference transports such as TURN. In such
 situations, an implementations may choose to wait and see if higher-
 priority candidates are received; in this case the end-of-candidates
 indication provides a notificaiton that such candidates are not
 forthcoming.

 An agent MAY also choose to generate an end-of-candidates indication
 before candidate gathering has actually completed, if the agent
 determines that gathering has continued for more than an acceptable
 period of time. However, an agent MUST NOT send any more candidates
 after it has send an end-of-candidates indication.

 When performing half trickle, an agent SHOULD send an end-of-
 candidates indication together with its initial offer unless it is
 planning to potentially send additional candidates (e.g., in case the
 remote party turns out to support Trickle ICE).

 When an end-of-candidates indication is sent as part of an offer or
 an answer, it can be considered to apply to the session as a whole,
 which is equivalent to having it apply to all media streams.

Ivov, et al. Expires June 12, 2016 [Page 13]

Internet-Draft Trickle ICE December 2015

 After an agent sends the end-of-candidates indication, it will update
 the state of the corresponding check list as explained in
 Section 7.2. Past that point, an agent MUST NOT send any new
 candidates within this ICE session. After an agent has received an
 end-of-candidates indication, it MUST also ignore any newly received
 candidates for that media stream or media session. Therefore, adding
 new candidates to the negotiation is possible only through an ICE
 restart.

 This specification does not override Vanilla ICE semantics for
 concluding ICE processing. Therefore even if end-of-candidates
 indications are sent agents will still have to go through pair
 nomination. Also, if pairs have been nominated for components and
 media streams, ICE processing will still conclude even if end-of-
 candidate indications have not been received for all streams.

9. Receiving Additional Remote Candidates

 At any point of ICE processing, a Trickle ICE agent may receive new
 candidates from the remote agent. When this happens and no local
 candidates are currently known for this same stream, the new remote
 candidates are simply added to the list of remote candidates.

 Otherwise, the new candidates are used for forming candidate pairs
 with the pool of local candidates and they are added to the local
 check lists as described in Section 8.1.

 Once the remote agent has completed candidate gathering, it will send
 an end-of-candidates indication. Upon receiving such an indication,
 the local agent MUST update check list states as per Section 7.2.
 This may lead to some check lists being marked as Failed.

10. Receiving an End-Of-Candidates Notification

 When an agent receives an end-of-candidates indication for a specific
 check list, it will update the state of the check list as per
 Section 7.2. If the check list is still active state after the
 update, the agent will persist the the fact that an end-of-candidates
 indication has been received and take it into account in future
 updates to the check list.

11. Trickle ICE and Peer Reflexive Candidates

 Even though Trickle ICE does not explicitly modify the procedures for
 handling peer reflexive candidates, their processing could be
 impacted in implementations. With Trickle ICE, it is possible that
 server reflexive candidates can be discovered as peer reflexive in

Ivov, et al. Expires June 12, 2016 [Page 14]

Internet-Draft Trickle ICE December 2015

 cases where incoming connectivity checks are received from these
 candidates before the trickle updates that carry them.

 While this would certainly increase the number of cases where ICE
 processing nominates and selects candidates discovered as peer-
 reflexive, it does not require any change in processing.

 It is also likely that some applications would prefer not to trickle
 server reflexive candidates to entities that are known to be publicly
 accessible and where sending a direct STUN binding request is likely
 to reach the destination faster than the trickle update that travels
 through the signalling path.

12. Concluding ICE Processing

 This specification does not directly modify the procedures ending ICE
 processing described in Section 8 of [rfc5245bis], and Trickle ICE
 implementations will follow the same rules.

13. Subsequent Offer/Answer Exchanges

 Either agent MAY generate a subsequent offer at any time allowed by
 [RFC3264]. When this happens agents will use [rfc5245bis] semantics
 to determine whether or not the new offer requires an ICE restart.
 If this is the case then agents would perform Trickle ICE as they
 would in an initial offer/answer exchange.

 The only differences between an ICE restart and a brand new media
 session are that:

 o during the restart, media can continue to be sent to the
 previously validated pair.

 o both agents are already aware whether or not their peer supports
 Trickle ICE, and there is no longer need for performing half
 trickle or confirming support with other mechanisms.

14. Unilateral Use of Trickle ICE (Half Trickle)

 In half trickle mode, the offerer sends a regular, Vanilla ICE offer,
 with a complete set of candidates. This ensures that the offer can
 be processed by a Vanilla ICE answerer and is mostly meant for use in
 cases where support for Trickle ICE cannot be confirmed prior to
 sending an initial offer. The initial offer indicates support for
 Trickle ICE, so that the answerer can respond with an incomplete set
 of candidates and continue trickling the rest. Half trickle offers
 typically contain an end-of-candidates indication, although this is
 not mandatory because if trickle support is confirmed then the

Ivov, et al. Expires June 12, 2016 [Page 15]

Internet-Draft Trickle ICE December 2015

 offerer can choose to trickle additional candidates before it sends
 an end-of-candidates indication.

 The half trickle mechanism can be used in cases where there is no way
 for an agent to verify in advance whether a remote party supports
 Trickle ICE. Because the initial offer contains a full set of
 candidates, it can thus be handled by a regular Vanilla ICE agent,
 while still allowing a Trickle ICE agent to use the optimization
 defined in this specification. This prevents negotiation from
 failing in the former case while still giving roughly half the
 Trickle ICE benefits in the latter (hence the name of the mechanism).

 Use of half trickle is only necessary during an initial offer/answer
 exchange. After both parties have received a session description
 from their peer, they can each reliably determine Trickle ICE support
 and use it for all subsequent offer/answer exchanges.

 In some instances, using half trickle might bring more than just half
 the improvement in terms of user experience. This can happen when an
 agent starts gathering candidates upon user interface cues that the
 user will soon be initiating an offer, such as activity on a keypad
 or the phone going off hook. This would mean that some or all of the
 candidate gathering could be completed before the agent actually
 needs to send the offer. Because the answerer will be able to
 trickle candidates, both agents will be able to start connectivity
 checks and complete ICE processing earlier than with Vanilla ICE and
 potentially even as early as with full trickle.

 However, such anticipation is not always possible. For example, a
 multipurpose user agent or a WebRTC web page where communication is a
 non-central feature (e.g., calling a support line in case of a
 problem with the main features) would not necessarily have a way of
 distinguishing between call intentions and other user activity. In
 such cases, using full trickle is most likely to result in an ideal
 user experience. Even so, using half trickle would be an improvement
 over vanilla ICE because it would result in a better experience for
 answerers.

15. Example Flow

 A typical successful Trickle ICE exchange with an Offer/Answer
 protocol would look this way:

Ivov, et al. Expires June 12, 2016 [Page 16]

Internet-Draft Trickle ICE December 2015

 Alice Bob
 | Offer |
 |-->|
 | Additional Candidates |
 |-->|
 | |
 | Answer |
 |<--|
 | Additional Candidates |
 |<--|
 | |
 | Additional Candidates and Connectivity Checks |
 |<--->|
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 1: Example

16. IANA Considerations

 This specification requests no actions from IANA.

17. Security Considerations

 This specification inherits most of its semantics from [rfc5245bis]
 and as a result all security considerations described there remain
 the same.

18. Acknowledgements

 The authors would like to thank Bernard Aboba, Flemming Andreasen,
 Rajmohan Banavi, Christer Holmberg, Jonathan Lennox, Enrico Marocco,
 Pal Martinsen, Martin Thomson, Dale R. Worley, and Brandon Williams
 for their reviews and suggestions on improving this document.

19. References

19.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264, June
 2002.

Ivov, et al. Expires June 12, 2016 [Page 17]

Internet-Draft Trickle ICE December 2015

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [rfc5245bis]
 Keranen, A. and J. Rosenberg, "Interactive Connectivity
 Establishment (ICE): A Protocol for Network Address
 Translator (NAT) Traversal", draft-ietf-ice-rfc5245bis-00
 (work in progress), October 2015.

19.2. Informative References

 [I-D.ietf-mmusic-trickle-ice-sip]
 Ivov, E., Thomas, T., Marocco, E., and C. Holmberg, "A
 Session Initiation Protocol (SIP) usage for Trickle ICE",
 draft-ietf-mmusic-trickle-ice-sip-03 (work in progress),
 October 2015.

 [I-D.keranen-mmusic-ice-address-selection]
 Keraenen, A. and J. Arkko, "Update on Candidate Address
 Selection for Interactive Connectivity Establishment
 (ICE)", draft-keranen-mmusic-ice-address-selection-01
 (work in progress), July 2012.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <http://www.rfc-editor.org/info/rfc4787>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

Ivov, et al. Expires June 12, 2016 [Page 18]

Internet-Draft Trickle ICE December 2015

 [XEP-0030]
 Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
 Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
 2008.

 [XEP-0176]
 Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
 Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
 Transport Method", XEP XEP-0176, June 2009.

 [XEP-0278]
 Camargo, T., "XEP-0278: Jingle Relay Nodes", XEP XEP-0278,
 June 2011.

Appendix A. Interaction with ICE

 The ICE protocol was designed to be flexible enough to work in and
 adapt to as many network environments as possible. Despite that
 flexibility, ICE as specified in [rfc5245bis] does not by itself
 support trickle ICE. This section describes how trickling of
 candidates interacts with ICE.

 [rfc5245bis] describes the conditions required to update check lists
 and timer states while an ICE agent is in the Running state. These
 conditions are verified upon transaction completion and one of them
 stipulates that:

 If there is not a pair in the valid list for each component of the
 media stream, the state of the check list is set to Failed.

 This could be a problem and cause ICE processing to fail prematurely
 in a number of scenarios. Consider the following case:

 1. Alice and Bob are both located in different networks with Network
 Address Translation (NAT). Alice and Bob themselves have
 different address but both networks use the same [RFC1918] block.

 2. Alice sends Bob the candidate 10.0.0.10 which also happens to
 correspond to an existing host on Bob’s network.

 3. Bob creates a check list consisting solely of 10.0.0.10 and
 starts checks.

 4. These checks reach the host at 10.0.0.10 in Bob’s network, which
 responds with an ICMP "port unreachable" error and per
 [rfc5245bis] Bob marks the transaction as Failed.

Ivov, et al. Expires June 12, 2016 [Page 19]

Internet-Draft Trickle ICE December 2015

 At this point the check list only contains Failed candidates and the
 valid list is empty. This causes the media stream and potentially
 all ICE processing to Fail.

 A similar race condition would occur if the initial offer from Alice
 only contains candidates that can be determined as unreachable (per
 [I-D.keranen-mmusic-ice-address-selection]) from any of the
 candidates that Bob has gathered. This would be the case if Bob’s
 candidates only contain IPv4 addresses and the first candidate that
 he receives from Alice is an IPv6 one.

 Another potential problem could arise when a non-trickle ICE
 implementation sends an offer to a trickle one. Consider the
 following case:

 1. Alice’s client has a non-Trickle ICE implementation

 2. Bob’s client has support for Trickle ICE.

 3. Alice and Bob are behind NATs with address-dependent filtering
 [RFC4787].

 4. Bob has two STUN servers but one of them is currently unreachable

 After Bob’s agent receives Alice’s offer it would immediately start
 connectivity checks. It would also start gathering candidates, which
 would take a long time because of the unreachable STUN server. By
 the time Bob’s answer is ready and sent to Alice, Bob’s connectivity
 checks may well have failed: until Alice gets Bob’s answer, she won’t
 be able to start connectivity checks and punch holes in her NAT. The
 NAT would hence be filtering Bob’s checks as originating from an
 unknown endpoint.

Appendix B. Interaction with ICE Lite

 The behavior of ICE lite agents that are capable of Trickle ICE does
 not require any particular rules other than those already defined in
 this specification and [rfc5245bis]. This section is hence provided
 only for informational purposes.

 Such an agent would generate offers or answers as per [rfc5245bis].
 Both its offers and answers will indicate support for Trickle ICE.
 Given that they will contain a complete set of candidates (the
 agent’s host candidates), these offers and answers would also be
 accompanied with an end-of-candidates indication.

 When performing full trickle, a full ICE implementation could send an
 offer or an answer with no candidates. After receiving an answer

Ivov, et al. Expires June 12, 2016 [Page 20]

Internet-Draft Trickle ICE December 2015

 that identifies the remote agent as an ICE lite implementation, the
 offerer may choose to not send any additional candidates. The same
 is also true in the case when the ICE lite agent is making the offer
 and the full ICE one is answering. In these cases the connectivity
 checks would be enough for the ICE lite implementation to discover
 all potentially useful candidates as peer reflexive. The following
 example illustrates one such ICE session using SDP syntax:

 ICE Lite Bob
 Agent
 | Offer (a=ice-lite a=ice-options:trickle) |
 |-->|
 | |no cand
 | Answer (a=ice-options:trickle) |trickling
 |<--|
 | Connectivity Checks |
 |<--->|
 peer rflx| |
 cand disco| |
 | |
 |<=============== MEDIA FLOWS =================>|

 Figure 2: Example

 In addition to reducing signaling traffic this approach also removes
 the need to discover STUN bindings, or to make TURN or UPnP
 allocations, which may considerably lighten ICE processing.

Appendix C. Changes from Earlier Versions

 Note to the RFC-Editor: please remove this section prior to
 publication as an RFC.

C.1. Changes from draft-ietf-ice-trickle-00

 o Removed dependency on SDP (which is to be provided in a separate
 specification).

 o Clarified text about the fact that a check list can be empty if no
 candidates have been sent or received yet.

 o Clarified wording about check list states so as not to define new
 states for "Active" and "Frozen" because those states are not
 defined for check lists (only for candidate pairs) in ICE core.

Ivov, et al. Expires June 12, 2016 [Page 21]

Internet-Draft Trickle ICE December 2015

 o Removed open issues list because it was out of date.

 o Completed a thorough copy edit.

C.2. Changes from draft-mmusic-trickle-ice-02

 o Addressed feedback from Rajmohan Banavi and Brandon Williams.

 o Clarified text about determining support and about how to proceed
 if it can be determined that the answering agent does not support
 Trickle ICE.

 o Clarified text about check list and timer updates.

 o Clarified when it is appropriate to use half trickle or to send no
 candidates in an offer or answer.

 o Updated the list of open issues.

C.3. Changes from draft-ivov-01 and draft-mmusic-00

 o Added a requirement to trickle candidates by order of components
 to avoid deadlocks in the unfreezing algorithm.

 o Added an informative note on peer-reflexive candidates explaining
 that nothing changes for them semantically but they do become a
 more likely occurrence for Trickle ICE.

 o Limit the number of pairs to 100 to comply with 5245.

 o Added clarifications on the non-importance of how newly discovered
 candidates are trickled/sent to the remote party or if this is
 done at all.

 o Added transport expectations for trickled candidates as per Dale
 Worley’s recommendation.

C.4. Changes from draft-ivov-00

 o Specified that end-of-candidates is a media level attribute which
 can of course appear as session level, which is equivalent to
 having it appear in all m-lines. Also made end-of-candidates
 optional for cases such as aggressive nomination for controlled
 agents.

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

Ivov, et al. Expires June 12, 2016 [Page 22]

Internet-Draft Trickle ICE December 2015

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

 o Added wording that explicitly states ICE lite agents have to be
 prepared to receive no candidates over signalling and that they
 should not freak out if this happens. (Closed the corresponding
 open issue).

 o It is now mandatory to use MID when trickling candidates and using
 m-line indexes is no longer allowed.

 o Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
 issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
 hold operation. Also changed the port number here from 1 to 9
 since it already has a more appropriate meaning. (Port change
 suggested by Jonathan Lennox).

 o Closed the Open Issue about use about what to do with cands
 received after end-of-cands. Solution: ignore, do an ICE restart
 if you want to add something.

 o Added more terminology, including trickling, trickled candidates,
 half trickle, full trickle,

 o Added a reference to the SIP usage for Trickle ICE as requested at
 the Boston interim.

C.5. Changes from draft-rescorla-01

 o Brought back explicit use of Offer/Answer. There are no more
 attempts to try to do this in an O/A independent way. Also
 removed the use of ICE Descriptions.

 o Added SDP specification for trickled candidates, the trickle
 option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

 o Support and Discovery. Changed that section to be less abstract.
 As discussed in IETF85, the draft now says implementations and
 usages need to either determine support in advance and directly
 use trickle, or do half trickle. Removed suggestion about use of
 discovery in SIP or about letting implementing protocols do what
 they want.

 o Defined Half Trickle. Added a section that says how it works.
 Mentioned that it only needs to happen in the first o/a (not
 necessary in updates), and added Jonathan’s comment about how it
 could, in some cases, offer more than half the improvement if you

Ivov, et al. Expires June 12, 2016 [Page 23]

Internet-Draft Trickle ICE December 2015

 can pre-gather part or all of your candidates before the user
 actually presses the call button.

 o Added a short section about subsequent offer/answer exchanges.

 o Added a short section about interactions with ICE Lite
 implementations.

 o Added two new entries to the open issues section.

C.6. Changes from draft-rescorla-00

 o Relaxed requirements about verifying support following a
 discussion on MMUSIC.

 o Introduced ICE descriptions in order to remove ambiguous use of
 3264 language and inappropriate references to offers and answers.

 o Removed inappropriate assumption of adoption by RTCWEB pointed out
 by Martin Thomson.

Authors’ Addresses

 Emil Ivov
 Jitsi
 Strasbourg 67000
 France

 Phone: +33 6 72 81 15 55
 Email: emcho@jitsi.org

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

Ivov, et al. Expires June 12, 2016 [Page 24]

Internet-Draft Trickle ICE December 2015

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Phone: +1 857 288 8888
 Email: justin@uberti.name

 Peter Saint-Andre
 &yet

 Email: peter@andyet.com
 URI: https://andyet.com/

Ivov, et al. Expires June 12, 2016 [Page 25]

Network Working Group E. Ivov
Internet-Draft Atlassian
Intended status: Standards Track E. Rescorla
Expires: October 17, 2018 RTFM, Inc.
 J. Uberti
 Google
 P. Saint-Andre
 Mozilla
 April 15, 2018

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
 Connectivity Establishment (ICE) Protocol
 draft-ietf-ice-trickle-21

Abstract

 This document describes "Trickle ICE", an extension to the
 Interactive Connectivity Establishment (ICE) protocol that enables
 ICE agents to begin connectivity checks while they are still
 gathering candidates, by incrementally exchanging candidates over
 time instead of all at once. This method can considerably accelerate
 the process of establishing a communication session.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Ivov, et al. Expires October 17, 2018 [Page 1]

Internet-Draft Trickle ICE April 2018

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Determining Support for Trickle ICE 6
 4. Generating the Initial ICE Description 7
 5. Handling the Initial ICE Description and Generating the
 Initial ICE Response . 7
 6. Handling the Initial ICE Response 8
 7. Forming Check Lists . 8
 8. Performing Connectivity Checks 8
 9. Gathering and Conveying Newly Gathered Local Candidates . . . 9
 10. Pairing Newly Gathered Local Candidates 10
 11. Receiving Trickled Candidates 11
 12. Inserting Trickled Candidate Pairs into a Check List 12
 13. Generating an End-of-Candidates Indication 16
 14. Receiving an End-of-Candidates Indication 17
 15. Subsequent Exchanges and ICE Restarts 18
 16. Half Trickle . 18
 17. Preserving Candidate Order while Trickling 19
 18. Requirements for Using Protocols 20
 19. IANA Considerations . 21
 20. Security Considerations 21
 21. Acknowledgements . 21
 22. References . 22
 22.1. Normative References 22
 22.2. Informative References 22
 Appendix A. Interaction with Regular ICE 23
 Appendix B. Interaction with ICE Lite 25
 Appendix C. Changes from Earlier Versions 26
 C.1. Changes from draft-ietf-ice-trickle-20 26
 C.2. Changes from draft-ietf-ice-trickle-19 26
 C.3. Changes from draft-ietf-ice-trickle-18 26
 C.4. Changes from draft-ietf-ice-trickle-17 27
 C.5. Changes from draft-ietf-ice-trickle-16 27
 C.6. Changes from draft-ietf-ice-trickle-15 27
 C.7. Changes from draft-ietf-ice-trickle-14 27
 C.8. Changes from draft-ietf-ice-trickle-13 27
 C.9. Changes from draft-ietf-ice-trickle-12 27
 C.10. Changes from draft-ietf-ice-trickle-11 28

Ivov, et al. Expires October 17, 2018 [Page 2]

Internet-Draft Trickle ICE April 2018

 C.11. Changes from draft-ietf-ice-trickle-10 28
 C.12. Changes from draft-ietf-ice-trickle-09 28
 C.13. Changes from draft-ietf-ice-trickle-08 28
 C.14. Changes from draft-ietf-ice-trickle-07 28
 C.15. Changes from draft-ietf-ice-trickle-06 28
 C.16. Changes from draft-ietf-ice-trickle-05 28
 C.17. Changes from draft-ietf-ice-trickle-04 29
 C.18. Changes from draft-ietf-ice-trickle-03 29
 C.19. Changes from draft-ietf-ice-trickle-02 29
 C.20. Changes from draft-ietf-ice-trickle-01 29
 C.21. Changes from draft-ietf-ice-trickle-00 29
 C.22. Changes from draft-mmusic-trickle-ice-02 29
 C.23. Changes from draft-ivov-01 and draft-mmusic-00 30
 C.24. Changes from draft-ivov-00 30
 C.25. Changes from draft-rescorla-01 31
 C.26. Changes from draft-rescorla-00 32
 Authors’ Addresses . 32

1. Introduction

 The Interactive Connectivity Establishment (ICE) protocol
 [rfc5245bis] describes how an ICE agent gathers candidates, exchanges
 candidates with a peer ICE agent, and creates candidate pairs. Once
 the pairs have been gathered, the ICE agent will perform connectivity
 checks, and eventually nominate and select pairs that will be used
 for sending and receiving data within a communication session.

 Following the procedures in [rfc5245bis] can lead to somewhat lengthy
 establishment times for communication sessions, because candidate
 gathering often involves querying STUN servers [RFC5389] and
 allocating relayed candidates using TURN servers [RFC5766]. Although
 many ICE procedures can be completed in parallel, the pacing
 requirements from [rfc5245bis] still need to be followed.

 This document defines "Trickle ICE", a supplementary mode of ICE
 operation in which candidates can be exchanged incrementally as soon
 as they become available (and simultaneously with the gathering of
 other candidates). Connectivity checks can also start as soon as
 candidate pairs have been created. Because Trickle ICE enables
 candidate gathering and connectivity checks to be done in parallel,
 the method can considerably accelerate the process of establishing a
 communication session.

 This document also defines how to discover support for Trickle ICE,
 how the procedures in [rfc5245bis] are modified or supplemented when
 using Trickle ICE, and how a Trickle ICE agent can interoperate with
 an ICE agent compliant to [rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 3]

Internet-Draft Trickle ICE April 2018

 This document does not define any protocol-specific usage of Trickle
 ICE. Instead, protocol-specific details for Trickle ICE are defined
 in separate usage documents. Examples of such documents are
 [I-D.ietf-mmusic-trickle-ice-sip] (which defines usage with the
 Session Initiation Protocol (SIP) [RFC3261] and the Session
 Description Protocol [RFC3261]) and [XEP-0176] (which defines usage
 with XMPP [RFC6120]). However, some of the examples in the document
 use SDP and the offer/answer model [RFC3264] to explain the
 underlying concepts.

 The following diagram illustrates a successful Trickle ICE exchange
 with a using protocol that follows the offer/answer model:

 Alice Bob
 | Offer |
 |-->|
 | Additional Candidates |
 |-->|
 | Answer |
 |<--|
 | Additional Candidates |
 |<--|
 | Additional Candidates and Connectivity Checks |
 |<--->|
 |<========== CONNECTION ESTABLISHED ===========>|

 Figure 1: Flow

 The main body of this document is structured to describe the behavior
 of Trickle ICE agents in roughly the order of operations and
 interactions during an ICE session:

 1. Determining support for trickle ICE

 2. Generating the initial ICE description

 3. Handling the initial ICE description and generating the initial
 ICE response

 4. Handling the initial ICE response

 5. Forming check lists, pruning candidates, performing connectivity
 checks, etc.

Ivov, et al. Expires October 17, 2018 [Page 4]

Internet-Draft Trickle ICE April 2018

 6. Gathering and conveying candidates after the initial ICE
 description and response

 7. Handling inbound trickled candidates

 8. Generating and handling the end-of-candidates indication

 9. Handling ICE restarts

 There is quite a bit of operational experience with the technique
 behind Trickle ICE, going back as far as 2005 (when the XMPP Jingle
 extension defined a "dribble mode" as specified in [XEP-0176]); this
 document incorporates feedback from those who have implemented and
 deployed the technique over the years.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined for
 Interactive Connectivity Establishment in [rfc5245bis]. In addition,
 it defines the following terms:

 Full Trickle: The typical mode of operation for Trickle ICE agents,
 in which the initial ICE description can include any number of
 candidates (even zero candidates) and does not need to include a
 full generation of candidates as in half trickle.

 Generation: All of the candidates conveyed within an ICE session.

 Half Trickle: A Trickle ICE mode of operation in which the initiator
 gathers a full generation of candidates strictly before creating
 and conveying the initial ICE description. Once conveyed, this
 candidate information can be processed by regular ICE agents,
 which do not require support for Trickle ICE. It also allows
 Trickle ICE capable responders to still gather candidates and
 perform connectivity checks in a non-blocking way, thus providing
 roughly "half" the advantages of Trickle ICE. The half trickle
 mechanism is mostly meant for use when the responder’s support for
 Trickle ICE cannot be confirmed prior to conveying the initial ICE
 description.

 ICE Description: Any attributes related to the ICE session (not
 candidates) required to configure an ICE agent. These include but
 are not limited to the username fragment, password, and other
 attributes.

Ivov, et al. Expires October 17, 2018 [Page 5]

Internet-Draft Trickle ICE April 2018

 Trickled Candidates: Candidates that a Trickle ICE agent conveys
 after conveying the initial ICE description or responding to the
 initial ICE description, but within the same ICE session.
 Trickled candidates can be conveyed in parallel with candidate
 gathering and connectivity checks.

 Trickling: The act of incrementally conveying trickled candidates.

 Empty Check List: A check list that initially does not contain any
 candidate pairs because they will be incrementally added as they
 are trickled. (This scenario does not arise with a regular ICE
 agent, because all candidate pairs are known when the agent
 creates the check list set).

3. Determining Support for Trickle ICE

 To fully support Trickle ICE, using protocols SHOULD incorporate one
 of the following mechanisms so that implementations can determine
 whether Trickle ICE is supported:

 1. Provide a capabilities discovery method so that agents can verify
 support of Trickle ICE prior to initiating a session (XMPP’s
 Service Discovery [XEP-0030] is one such mechanism).

 2. Make support for Trickle ICE mandatory so that user agents can
 assume support.

 If a using protocol does not provide a method of determining ahead of
 time whether Trickle ICE is supported, agents can make use of the
 half trickle procedure described in Section 16.

 Prior to conveying the initial ICE description, agents that implement
 using protocols that support capabilities discovery can attempt to
 verify whether or not the remote party supports Trickle ICE. If an
 agent determines that the remote party does not support Trickle ICE,
 it MUST fall back to using regular ICE or abandon the entire session.

 Even if a using protocol does not include a capabilities discovery
 method, a user agent can provide an indication within the ICE
 description that it supports Trickle ICE by communicating an ICE
 option of ’trickle’. This token MUST be provided either at the
 session level or, if at the data stream level, for every data stream
 (an agent MUST NOT specify Trickle ICE support for some data streams
 but not others). Note: The encoding of the ’trickle’ ICE option, and
 the message(s) used to carry it to the peer, are protocol specific;
 for instance, the encoding for the Session Description Protocol (SDP)
 [RFC4566] is defined in [I-D.ietf-mmusic-trickle-ice-sip].

Ivov, et al. Expires October 17, 2018 [Page 6]

Internet-Draft Trickle ICE April 2018

 Dedicated discovery semantics and half trickle are needed only prior
 to initiation of an ICE session. After an ICE session is established
 and Trickle ICE support is confirmed for both parties, either agent
 can use full trickle for subsequent exchanges (see also Section 15).

4. Generating the Initial ICE Description

 An ICE agent can start gathering candidates as soon as it has an
 indication that communication is imminent (e.g., a user interface cue
 or an explicit request to initiate a communication session). Unlike
 in regular ICE, in Trickle ICE implementations do not need to gather
 candidates in a blocking manner. Therefore, unless half trickle is
 being used, the user experience is improved if the initiating agent
 generates and transmits its initial ICE description as early as
 possible (thus enabling the remote party to start gathering and
 trickling candidates).

 An initiator MAY include any mix of candidates when conveying the
 initial ICE description. This includes the possibility of conveying
 all the candidates the initiator plans to use (as in half trickle),
 conveying only a publicly-reachable IP address (e.g., a candidate at
 a data relay that is known to not be behind a firewall), or conveying
 no candidates at all (in which case the initiator can obtain the
 responder’s initial candidate list sooner and the responder can begin
 candidate gathering more quickly).

 For candidates included in the initial ICE description, the methods
 for calculating priorities and foundations, determining redundancy of
 candidates, and the like work just as in regular ICE [rfc5245bis].

5. Handling the Initial ICE Description and Generating the Initial ICE
 Response

 When a responder receives the initial ICE description, it will first
 check if the ICE description or initiator indicates support for
 Trickle ICE as explained in Section 3. If not, the responder MUST
 process the initial ICE description according to regular ICE
 procedures [rfc5245bis] (or, if no ICE support is detected at all,
 according to relevant processing rules for the using protocol, such
 as offer/answer processing rules [RFC3264]). However, if support for
 Trickle ICE is confirmed, a responder will automatically assume
 support for regular ICE as well.

 If the initial ICE description indicates support for Trickle ICE, the
 responder will determine its role and start gathering and
 prioritizing candidates; while doing so, it will also respond by
 conveying an initial ICE response, so that both the initiator and the
 responder can form check lists and begin connectivity checks.

Ivov, et al. Expires October 17, 2018 [Page 7]

Internet-Draft Trickle ICE April 2018

 A responder can respond to the initial ICE description at any point
 while gathering candidates. The initial ICE response MAY contain any
 set of candidates, including all candidates or no candidates. (The
 benefit of including no candidates is to convey the initial ICE
 response as quickly as possible, so that both parties can consider
 the ICE session to be under active negotiation as soon as possible.)

 As noted in Section 3, in using protocols that use SDP the initial
 ICE response can indicate support for Trickle ICE by including a
 token of "trickle" in the ice-options attribute.

6. Handling the Initial ICE Response

 When processing the initial ICE response, the initiator follows
 regular ICE procedures to determine its role, after which it forms
 check lists (Section 7) and performs connectivity checks (Section 8).

7. Forming Check Lists

 According to regular ICE procedures [rfc5245bis], in order for
 candidate pairing to be possible and for redundant candidates to be
 pruned, the candidates would need to be provided in the initial ICE
 description and initial ICE response. By contrast, under Trickle ICE
 check lists can be empty until candidates are conveyed or received.
 Therefore a Trickle ICE agent handles check list formation and
 candidate pairing in a slightly different way than a regular ICE
 agent: the agent still forms the check lists, but it populates a
 given check list only after it actually has candidate pairs for that
 check list. Every check list is initially placed in the Running
 state, even if the check list is empty (this is consistent with
 Section 6.1.2.1 of [rfc5245bis]).

8. Performing Connectivity Checks

 As specified in [rfc5245bis], whenever timer Ta fires, only check
 lists in the Running state will be picked when scheduling
 connectivity checks for candidate pairs. Therefore, a Trickle ICE
 agent MUST keep each check list in the Running state as long as it
 expects candidate pairs to be incrementally added to the check list.
 After that, the check list state is set according to the procedures
 in [rfc5245bis].

 Whenever timer Ta fires and an empty check list is picked, no action
 is performed for the list. Without waiting for timer Ta to expire
 again, the agent selects the next check list in the Running state, in
 accordance with Section 6.1.4.2 of [rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 8]

Internet-Draft Trickle ICE April 2018

 Section 7.2.5.3.3 of [rfc5245bis] requires that agents update check
 lists and timer states upon completing a connectivity check
 transaction. During such an update, regular ICE agents would set the
 state of a check list to Failed if both of the following two
 conditions are satisfied:

 o all of the pairs in the check list are either in the Failed state
 or Succeeded state; and

 o there is not a pair in the valid list for each component of the
 data stream.

 With Trickle ICE, the above situation would often occur when
 candidate gathering and trickling are still in progress, even though
 it is quite possible that future checks will succeed. For this
 reason, Trickle ICE agents add the following conditions to the above
 list:

 o all candidate gathering has completed and the agent is not
 expecting to discover any new local candidates; and

 o the remote agent has conveyed an end-of-candidates indication for
 that check list as described in Section 13.

9. Gathering and Conveying Newly Gathered Local Candidates

 After Trickle ICE agents have conveyed initial ICE descriptions and
 initial ICE responses, they will most likely continue gathering new
 local candidates as STUN, TURN, and other non-host candidate
 gathering mechanisms begin to yield results. Whenever an agent
 discovers such a new candidate it will compute its priority, type,
 foundation, and component ID according to regular ICE procedures.

 The new candidate is then checked for redundancy against the existing
 list of local candidates. If its transport address and base match
 those of an existing candidate, it will be considered redundant and
 will be ignored. This would often happen for server reflexive
 candidates that match the host addresses they were obtained from
 (e.g., when the latter are public IPv4 addresses). Contrary to
 regular ICE, Trickle ICE agents will consider the new candidate
 redundant regardless of its priority.

 Next the agent "trickles" the newly discovered candidate(s) to the
 remote agent. The actual delivery of the new candidates is handled
 by a using protocol such as SIP or XMPP. Trickle ICE imposes no
 restrictions on the way this is done (e.g., some using protocols
 might choose not to trickle updates for server reflexive candidates
 and instead rely on the discovery of peer reflexive ones).

Ivov, et al. Expires October 17, 2018 [Page 9]

Internet-Draft Trickle ICE April 2018

 When candidates are trickled, the using protocol MUST deliver each
 candidate (and any end-of-candidates indication as described in
 Section 13) to the receiving Trickle ICE implementation exactly once
 and in the same order it was conveyed. If the using protocol
 provides any candidate retransmissions, they need to be hidden from
 the ICE implementation.

 Also, candidate trickling needs to be correlated to a specific ICE
 session, so that if there is an ICE restart, any delayed updates for
 a previous session can be recognized as such and ignored by the
 receiving party. For example, using protocols that signal candidates
 via SDP might include a Username Fragment value in the corresponding
 a=candidate line, such as:

 a=candidate:1 1 UDP 2130706431 2001:db8::1 5000 typ host ufrag 8hhY

 Or, as another example, WebRTC implementations might include a
 Username Fragment in the JavaScript objects that represent
 candidates.

 Note: The using protocol needs to provide a mechanism for both
 parties to indicate and agree on the ICE session in force (as
 identified by the Username Fragment and Password combination) so that
 they have a consistent view of which candidates are to be paired.
 This is especially important in the case of ICE restarts (see
 Section 15).

 Note: A using protocol might prefer not to trickle server reflexive
 candidates to entities that are known to be publicly accessible and
 where sending a direct STUN binding request is likely to reach the
 destination faster than the trickle update that travels through the
 signaling path.

10. Pairing Newly Gathered Local Candidates

 As a Trickle ICE agent gathers local candidates, it needs to form
 candidate pairs; this works as described in the ICE specification
 [rfc5245bis], with the following provisos:

 1. A Trickle ICE agent MUST NOT pair a local candidate until it has
 been trickled to the remote party.

 2. Once the agent has conveyed the local candidate to the remote
 party, the agent checks if any remote candidates are currently
 known for this same stream and component. If not, the agent

Ivov, et al. Expires October 17, 2018 [Page 10]

Internet-Draft Trickle ICE April 2018

 merely adds the new candidate to the list of local candidates
 (without pairing it).

 3. Otherwise, if the agent has already learned of one or more remote
 candidates for this stream and component, it attempts to pair the
 new local candidate as described in the ICE specification
 [rfc5245bis].

 4. If a newly formed pair has a local candidate whose type is server
 reflexive, the agent MUST replace the local candidate with its
 base before completing the relevant redundancy tests.

 5. The agent prunes redundant pairs by following the rules in
 Section 6.1.2.4 of [rfc5245bis], but checks existing pairs only
 if they have a state of Waiting or Frozen; this avoids removal of
 pairs for which connectivity checks are in flight (a state of In-
 Progress) or for which connectivity checks have already yielded a
 definitive result (a state of Succeeded or Failed).

 6. If after the relevant redundancy tests the check list where the
 pair is to be added already contains the maximum number of
 candidate pairs (100 by default as per [rfc5245bis]), the agent
 SHOULD discard any pairs in the Failed state to make room for the
 new pair. If there are no such pairs, the agent SHOULD discard a
 pair with a lower priority than the new pair in order to make
 room for the new pair, until the number of pairs is equal to the
 maximum number of pairs. This processing is consistent with
 Section 6.1.2.5 of [rfc5245bis].

11. Receiving Trickled Candidates

 At any time during an ICE session, a Trickle ICE agent might receive
 new candidates from the remote agent, from which it will attempt to
 form a candidate pair; this works as described in the ICE
 specification [rfc5245bis], with the following provisos:

 1. The agent checks if any local candidates are currently known for
 this same stream and component. If not, the agent merely adds
 the new candidate to the list of remote candidates (without
 pairing it).

 2. Otherwise, if the agent has already gathered one or more local
 candidates for this stream and component, it attempts to pair the
 new remote candidate as described in the ICE specification
 [rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 11]

Internet-Draft Trickle ICE April 2018

 3. If a newly formed pair has a local candidate whose type is server
 reflexive, the agent MUST replace the local candidate with its
 base before completing the redundancy check in the next step.

 4. The agent prunes redundant pairs as described below, but checks
 existing pairs only if they have a state of Waiting or Frozen;
 this avoids removal of pairs for which connectivity checks are in
 flight (a state of In-Progress) or for which connectivity checks
 have already yielded a definitive result (a state of Succeeded or
 Failed).

 A. If the agent finds a redundancy between two pairs and one of
 those pairs contains a newly received remote candidate whose
 type is peer reflexive, the agent SHOULD discard the pair
 containing that candidate, set the priority of the existing
 pair to the priority of the discarded pair, and re-sort the
 check list. (This policy helps to eliminate problems with
 remote peer reflexive candidates for which a STUN binding
 request is received before signaling of the candidate is
 trickled to the receiving agent, such as a different view of
 pair priorities between the local agent and the remote agent,
 since the same candidate could be perceived as peer reflexive
 by one agent and as server reflexive by the other agent.)

 B. The agent then applies the rules defined in Section 6.1.2.4
 of [rfc5245bis].

 5. If after the relevant redundancy tests the check list where the
 pair is to be added already contains the maximum number of
 candidate pairs (100 by default as per [rfc5245bis]), the agent
 SHOULD discard any pairs in the Failed state to make room for the
 new pair. If there are no such pairs, the agent SHOULD discard a
 pair with a lower priority than the new pair in order to make
 room for the new pair, until the number of pairs is equal to the
 maximum number of pairs. This processing is consistent with
 Section 6.1.2.5 of [rfc5245bis].

12. Inserting Trickled Candidate Pairs into a Check List

 After a local agent has trickled a candidate and formed a candidate
 pair from that local candidate (Section 9), or after a remote agent
 has received a trickled candidate and formed a candidate pair from
 that remote candidate (Section 11), a Trickle ICE agent adds the new
 candidate pair to a check list as defined in this section.

 As an aid to understanding the procedures defined in this section,
 consider the following tabular representation of all check lists in

Ivov, et al. Expires October 17, 2018 [Page 12]

Internet-Draft Trickle ICE April 2018

 an agent (note that initially for one of the foundations, i.e., f5,
 there are no candidate pairs):

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | F | F | F | | |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | F | F | F | F | |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | F | | | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | F | | | | |
 +-----------------+------+------+------+------+------+

 Figure 2: Example of Check List State

 Each row in the table represents a component for a given data stream
 (e.g., s1 and s2 might be the RTP and RTCP components for audio) and
 thus a single check list in the check list set. Each column
 represents one foundation. Each cell represents one candidate pair.
 In the tables shown in this section, "F" stands for "frozen", "W"
 stands for "waiting", and "S" stands for "succeeded"; in addition,
 "^^" is used to notate newly-added candidate pairs.

 When an agent commences ICE processing, in accordance with
 Section 6.1.2.6 of [rfc5245bis], for each foundation it will unfreeze
 the pair with the lowest component ID and, if the component IDs are
 equal, with the highest priority (this is the topmost candidate pair
 in every column). This initial state is shown in the following
 table.

Ivov, et al. Expires October 17, 2018 [Page 13]

Internet-Draft Trickle ICE April 2018

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | W | W | W | | |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | F | F | F | W | |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | F | | | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | F | | | | |
 +-----------------+------+------+------+------+------+

 Figure 3: Initial Check List State

 Then, as the checks proceed (see Section 7.2.5.4 of [rfc5245bis]),
 for each pair that enters the Succeeded state (denoted here by "S"),
 the agent will unfreeze all pairs for all data streams with the same
 foundation (e.g., if the pair in column 1, row 1 succeeds then the
 agent will unfreeze the pair in column 1, rows 2, 3, and 4).

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | S | W | W | | |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | W | F | F | W | |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | W | | | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | W | | | | |
 +-----------------+------+------+------+------+------+

 Figure 4: Check List State with Succeeded Candidate Pair

 Trickle ICE preserves all of these rules as they apply to "static"
 check list sets. This implies that if a Trickle ICE agent were to
 begin connectivity checks with all of its pairs already present, the
 way that pair states change is indistinguishable from that of a
 regular ICE agent.

 Of course, the major difference with Trickle ICE is that check list
 sets can be dynamically updated because candidates can arrive after
 connectivity checks have started. When this happens, an agent sets
 the state of the newly formed pair as described below.

Ivov, et al. Expires October 17, 2018 [Page 14]

Internet-Draft Trickle ICE April 2018

 Rule 1: If the newly formed pair has the lowest component ID and, if
 the component IDs are equal, the highest priority of any candidate
 pair for this foundation (i.e., if it is the topmost pair in the
 column), set the state to Waiting. For example, this would be the
 case if the newly formed pair were placed in column 5, row 1. This
 rule is consistent with Section 6.1.2.6 of [rfc5245bis].

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | S | W | W | | ^W^ |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | W | F | F | W | |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | W | | | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | W | | | | |
 +-----------------+------+------+------+------+------+

 Figure 5: Check List State with Newly Formed Pair, Rule 1

 Rule 2: If there is at least one pair in the Succeeded state for this
 foundation, set the state to Waiting. For example, this would be the
 case if the pair in column 5, row 1 succeeded and the newly formed
 pair were placed in column 5, row 2. This rule is consistent with
 Section 7.2.5.3.3 of [rfc5245bis].

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | S | W | W | | S |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | W | F | F | W | ^W^ |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | W | | | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | W | | | | |
 +-----------------+------+------+------+------+------+

 Figure 6: Check List State with Newly Formed Pair, Rule 2

 Rule 3: In all other cases, set the state to Frozen. For example,
 this would be the case if the newly formed pair were placed in column
 3, row 3.

Ivov, et al. Expires October 17, 2018 [Page 15]

Internet-Draft Trickle ICE April 2018

 +-----------------+------+------+------+------+------+
 | | f1 | f2 | f3 | f4 | f5 |
 +-----------------+------+------+------+------+------+
 | s1 (Audio.RTP) | S | W | W | | S |
 +-----------------+------+------+------+------+------+
 | s2 (Audio.RTCP) | W | F | F | W | W |
 +-----------------+------+------+------+------+------+
 | s3 (Video.RTP) | W | | ^F^ | | |
 +-----------------+------+------+------+------+------+
 | s4 (Video.RTCP) | W | | | | |
 +-----------------+------+------+------+------+------+

 Figure 7: Check List State with Newly Formed Pair, Rule 3

13. Generating an End-of-Candidates Indication

 Once all candidate gathering is completed or expires for an ICE
 session associated with a specific data stream, the agent will
 generate an "end-of-candidates" indication for that session and
 convey it to the remote agent via the signaling channel. Although
 the exact form of the indication depends on the using protocol, the
 indication MUST specify the generation (Username Fragment and
 Password combination) so that an agent can correlate the end-of-
 candidates indication with a particular ICE session. The indication
 can be conveyed in the following ways:

 o As part of an initiation request (which would typically be the
 case with the initial ICE description for half trickle)

 o Along with the last candidate an agent can send for a stream

 o As a standalone notification (e.g., after STUN Binding requests or
 TURN Allocate requests to a server time out and the agent is no
 longer actively gathering candidates)

 Conveying an end-of-candidates indication in a timely manner is
 important in order to avoid ambiguities and speed up the conclusion
 of ICE processing. In particular:

 o A controlled Trickle ICE agent SHOULD convey an end-of-candidates
 indication after it has completed gathering for a data stream,
 unless ICE processing terminates before the agent has had a chance
 to complete gathering.

 o A controlling agent MAY conclude ICE processing prior to conveying
 end-of-candidates indications for all streams. However, it is
 RECOMMENDED for a controlling agent to convey end-of-candidates

Ivov, et al. Expires October 17, 2018 [Page 16]

Internet-Draft Trickle ICE April 2018

 indications whenever possible for the sake of consistency and to
 keep middleboxes and controlled agents up-to-date on the state of
 ICE processing.

 When conveying an end-of-candidates indication during trickling
 (rather than as a part of the initial ICE description or a response
 thereto), it is the responsibility of the using protocol to define
 methods for associating the indication with one or more specific data
 streams.

 An agent MAY also choose to generate an end-of-candidates indication
 before candidate gathering has actually completed, if the agent
 determines that gathering has continued for more than an acceptable
 period of time. However, an agent MUST NOT convey any more
 candidates after it has conveyed an end-of-candidates indication.

 When performing half trickle, an agent SHOULD convey an end-of-
 candidates indication together with its initial ICE description
 unless it is planning to potentially trickle additional candidates
 (e.g., in case the remote party turns out to support Trickle ICE).

 After an agent conveys the end-of-candidates indication, it will
 update the state of the corresponding check list as explained in
 Section 8. Past that point, an agent MUST NOT trickle any new
 candidates within this ICE session. Therefore, adding new candidates
 to the negotiation is possible only through an ICE restart (see
 Section 15).

 This specification does not override regular ICE semantics for
 concluding ICE processing. Therefore, even if end-of-candidates
 indications are conveyed, an agent will still need to go through pair
 nomination. Also, if pairs have been nominated for components and
 data streams, ICE processing MAY still conclude even if end-of-
 candidates indications have not been received for all streams. In
 all cases, an agent MUST NOT trickle any new candidates within an ICE
 session after nomination of a candidate pair as described in
 Section 8.1.1 of [rfc5245bis].

14. Receiving an End-of-Candidates Indication

 Receiving an end-of-candidates indication enables an agent to update
 check list states and, in case valid pairs do not exist for every
 component in every data stream, determine that ICE processing has
 failed. It also enables an agent to speed up the conclusion of ICE
 processing when a candidate pair has been validated but it involves
 the use of lower-preference transports such as TURN. In such
 situations, an implementation MAY choose to wait and see if higher-
 priority candidates are received; in this case the end-of-candidates

Ivov, et al. Expires October 17, 2018 [Page 17]

Internet-Draft Trickle ICE April 2018

 indication provides a notification that such candidates are not
 forthcoming.

 When an agent receives an end-of-candidates indication for a specific
 data stream, it will update the state of the relevant check list as
 per Section 8 (which might lead to some check lists being marked as
 Failed). If the check list is still in the Running state after the
 update, the agent will persist the fact that an end-of-candidates
 indication has been received and take it into account in future
 updates to the check list.

 After an agent has received an end-of-candidates indication, it MUST
 ignore any newly received candidates for that data stream or data
 session.

15. Subsequent Exchanges and ICE Restarts

 Before conveying an end-of-candidates indication, either agent MAY
 convey subsequent candidate information at any time allowed by the
 using protocol. When this happens, agents will use [rfc5245bis]
 semantics (e.g., checking of the Username Fragment and Password
 combination) to determine whether or not the new candidate
 information requires an ICE restart.

 If an ICE restart occurs, the agents can assume that Trickle ICE is
 still supported if support was determined previously, and thus can
 engage in Trickle ICE behavior as they would in an initial exchange
 of ICE descriptions where support was determined through a
 capabilities discovery method.

16. Half Trickle

 In half trickle, the initiator conveys the initial ICE description
 with a usable but not necessarily full generation of candidates.
 This ensures that the ICE description can be processed by a regular
 ICE responder and is mostly meant for use in cases where support for
 Trickle ICE cannot be confirmed prior to conveying the initial ICE
 description. The initial ICE description indicates support for
 Trickle ICE, so that the responder can respond with something less
 than a full generation of candidates and then trickle the rest. The
 initial ICE description for half trickle can contain an end-of-
 candidates indication, although this is not mandatory because if
 trickle support is confirmed then the initiator can choose to trickle
 additional candidates before it conveys an end-of-candidates
 indication.

 The half trickle mechanism can be used in cases where there is no way
 for an agent to verify in advance whether a remote party supports

Ivov, et al. Expires October 17, 2018 [Page 18]

Internet-Draft Trickle ICE April 2018

 Trickle ICE. Because the initial ICE description contain a full
 generation of candidates, it can thus be handled by a regular ICE
 agent, while still allowing a Trickle ICE agent to use the
 optimization defined in this specification. This prevents
 negotiation from failing in the former case while still giving
 roughly half the Trickle ICE benefits in the latter.

 Use of half trickle is only necessary during an initial exchange of
 ICE descriptions. After both parties have received an ICE
 description from their peer, they can each reliably determine Trickle
 ICE support and use it for all subsequent exchanges (see Section 15).

 In some instances, using half trickle might bring more than just half
 the improvement in terms of user experience. This can happen when an
 agent starts gathering candidates upon user interface cues that the
 user will soon be initiating an interaction, such as activity on a
 keypad or the phone going off hook. This would mean that some or all
 of the candidate gathering could be completed before the agent
 actually needs to convey the candidate information. Because the
 responder will be able to trickle candidates, both agents will be
 able to start connectivity checks and complete ICE processing earlier
 than with regular ICE and potentially even as early as with full
 trickle.

 However, such anticipation is not always possible. For example, a
 multipurpose user agent or a WebRTC web page where communication is a
 non-central feature (e.g., calling a support line in case of a
 problem with the main features) would not necessarily have a way of
 distinguishing between call intentions and other user activity. In
 such cases, using full trickle is most likely to result in an ideal
 user experience. Even so, using half trickle would be an improvement
 over regular ICE because it would result in a better experience for
 responders.

17. Preserving Candidate Order while Trickling

 One important aspect of regular ICE is that connectivity checks for a
 specific foundation and component are attempted simultaneously by
 both agents, so that any firewalls or NATs fronting the agents would
 whitelist both endpoints and allow all except for the first
 ("suicide") packets to go through. This is also important to
 unfreezing candidates at the right time. While not crucial,
 preserving this behavior in Trickle ICE is likely to improve ICE
 performance.

 To achieve this, when trickling candidates, agents SHOULD respect the
 order of components as reflected by their component IDs; that is,
 candidates for a given component SHOULD NOT be conveyed prior to

Ivov, et al. Expires October 17, 2018 [Page 19]

Internet-Draft Trickle ICE April 2018

 candidates for a component with a lower ID number within the same
 foundation. In addition, candidates SHOULD be paired, following the
 procedures in Section 12, in the same order they are conveyed.

 For example, the following SDP description contains two components
 (RTP and RTCP) and two foundations (host and server reflexive):

 v=0
 o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
 s=
 c=IN IP4 10.0.1.1
 t=0 0
 a=ice-pwd:asd88fgpdd777uzjYhagZg
 a=ice-ufrag:8hhY
 m=audio 5000 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host
 a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host
 a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
 raddr 10.0.1.1 rport 8998
 a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
 raddr 10.0.1.1 rport 8998

 For this candidate information the RTCP host candidate would not be
 conveyed prior to the RTP host candidate. Similarly the RTP server
 reflexive candidate would be conveyed together with or prior to the
 RTCP server reflexive candidate.

18. Requirements for Using Protocols

 In order to fully enable the use of Trickle ICE, this specification
 defines the following requirements for using protocols.

 o A using protocol SHOULD provide a way for parties to advertise and
 discover support for Trickle ICE before an ICE session begins (see
 Section 3).

 o A using protocol MUST provide methods for incrementally conveying
 (i.e., "trickling") additional candidates after conveying the
 initial ICE description (see Section 9).

 o A using protocol MUST deliver each trickled candidate or end-of-
 candidates indication exactly once and in the same order it was
 conveyed (see Section 9).

Ivov, et al. Expires October 17, 2018 [Page 20]

Internet-Draft Trickle ICE April 2018

 o A using protocol MUST provide a mechanism for both parties to
 indicate and agree on the ICE session in force (see Section 9).

 o A using protocol MUST provide a way for parties to communicate the
 end-of-candidates indication, which MUST specify the particular
 ICE session to which the indication applies (see Section 13).

19. IANA Considerations

 IANA is requested to register the following ICE option in the "ICE
 Options" sub-registry of the "Interactive Connectivity Establishment
 (ICE) registry", following the procedures defined in [RFC6336].

 ICE Option: trickle

 Contact: IESG, iesg@ietf.org

 Change control: IESG

 Description: An ICE option of "trickle" indicates support for
 incremental communication of ICE candidates.

 Reference: RFC XXXX

20. Security Considerations

 This specification inherits most of its semantics from [rfc5245bis]
 and as a result all security considerations described there apply to
 Trickle ICE.

 If the privacy implications of revealing host addresses on an
 endpoint device are a concern (see for example the discussion in
 [I-D.ietf-rtcweb-ip-handling] and in Section 19 of [rfc5245bis]),
 agents can generate ICE descriptions that contain no candidates and
 then only trickle candidates that do not reveal host addresses (e.g.,
 relayed candidates).

21. Acknowledgements

 The authors would like to thank Bernard Aboba, Flemming Andreasen,
 Rajmohan Banavi, Taylor Brandstetter, Philipp Hancke, Christer
 Holmberg, Ari Keranen, Paul Kyzivat, Jonathan Lennox, Enrico Marocco,
 Pal Martinsen, Nils Ohlmeier, Thomas Stach, Peter Thatcher, Martin
 Thomson, Brandon Williams, and Dale Worley for their reviews and
 suggestions on improving this document. Sarah Banks, Roni Even, and
 David Mandelberg completed opsdir, genart, and security reviews,
 respectively. Thanks also to Ari Keranen and Peter Thatcher in their

Ivov, et al. Expires October 17, 2018 [Page 21]

Internet-Draft Trickle ICE April 2018

 role as chairs, and Ben Campbell in his role as responsible Area
 Director.

22. References

22.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [rfc5245bis]
 Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", draft-ietf-ice-
 rfc5245bis-20 (work in progress), March 2018.

22.2. Informative References

 [I-D.ietf-mmusic-trickle-ice-sip]
 Ivov, E., Stach, T., Marocco, E., and C. Holmberg, "A
 Session Initiation Protocol (SIP) usage for Trickle ICE",
 draft-ietf-mmusic-trickle-ice-sip-14 (work in progress),
 February 2018.

 [I-D.ietf-rtcweb-ip-handling]
 Uberti, J. and G. Shieh, "WebRTC IP Address Handling
 Requirements", draft-ietf-rtcweb-ip-handling-06 (work in
 progress), March 2018.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002, <https://www.rfc-
 editor.org/info/rfc3261>.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 DOI 10.17487/RFC3264, June 2002, <https://www.rfc-
 editor.org/info/rfc3264>.

Ivov, et al. Expires October 17, 2018 [Page 22]

Internet-Draft Trickle ICE April 2018

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, DOI 10.17487/RFC4566,
 July 2006, <https://www.rfc-editor.org/info/rfc4566>.

 [RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
 Translation (NAT) Behavioral Requirements for Unicast
 UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
 2007, <https://www.rfc-editor.org/info/rfc4787>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008, <https://www.rfc-
 editor.org/info/rfc5389>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010, <https://www.rfc-
 editor.org/info/rfc5766>.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC6336] Westerlund, M. and C. Perkins, "IANA Registry for
 Interactive Connectivity Establishment (ICE) Options",
 RFC 6336, DOI 10.17487/RFC6336, July 2011,
 <https://www.rfc-editor.org/info/rfc6336>.

 [XEP-0030]
 Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
 Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
 2008.

 [XEP-0176]
 Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
 Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
 Transport Method", XEP XEP-0176, June 2009.

Appendix A. Interaction with Regular ICE

 The ICE protocol was designed to be flexible enough to work in and
 adapt to as many network environments as possible. Despite that
 flexibility, ICE as specified in [rfc5245bis] does not by itself
 support trickle ICE. This section describes how trickling of
 candidates interacts with ICE.

Ivov, et al. Expires October 17, 2018 [Page 23]

Internet-Draft Trickle ICE April 2018

 [rfc5245bis] describes the conditions required to update check lists
 and timer states while an ICE agent is in the Running state. These
 conditions are verified upon transaction completion and one of them
 stipulates that:

 If there is not a pair in the valid list for each component of the
 data stream, the state of the check list is set to Failed.

 This could be a problem and cause ICE processing to fail prematurely
 in a number of scenarios. Consider the following case:

 1. Alice and Bob are both located in different networks with Network
 Address Translation (NAT). Alice and Bob themselves have
 different address but both networks use the same private internet
 block (e.g., the "20-bit block" 172.16/12 specified in
 [RFC1918]).

 2. Alice conveys to Bob the candidate 172.16.0.1 which also happens
 to correspond to an existing host on Bob’s network.

 3. Bob creates a check list consisting solely of 172.16.0.1 and
 starts checks.

 4. These checks reach the host at 172.16.0.1 in Bob’s network, which
 responds with an ICMP "port unreachable" error; per [rfc5245bis]
 Bob marks the transaction as Failed.

 At this point the check list only contains Failed candidates and the
 valid list is empty. This causes the data stream and potentially all
 ICE processing to fail, even though if Trickle ICE agents could
 subsequently convey candidates that would cause previously empty
 check lists to become non-empty.

 A similar race condition would occur if the initial ICE description
 from Alice contain only candidates that can be determined as
 unreachable from any of the candidates that Bob has gathered (e.g.,
 this would be the case if Bob’s candidates only contain IPv4
 addresses and the first candidate that he receives from Alice is an
 IPv6 one).

 Another potential problem could arise when a non-trickle ICE
 implementation initiates an interaction with a Trickle ICE
 implementation. Consider the following case:

 1. Alice’s client has a non-Trickle ICE implementation.

 2. Bob’s client has support for Trickle ICE.

Ivov, et al. Expires October 17, 2018 [Page 24]

Internet-Draft Trickle ICE April 2018

 3. Alice and Bob are behind NATs with address-dependent filtering
 [RFC4787].

 4. Bob has two STUN servers but one of them is currently
 unreachable.

 After Bob’s agent receives Alice’s initial ICE description it would
 immediately start connectivity checks. It would also start gathering
 candidates, which would take a long time because of the unreachable
 STUN server. By the time Bob’s answer is ready and conveyed to
 Alice, Bob’s connectivity checks might have failed: until Alice gets
 Bob’s answer, she won’t be able to start connectivity checks and
 punch holes in her NAT. The NAT would hence be filtering Bob’s
 checks as originating from an unknown endpoint.

Appendix B. Interaction with ICE Lite

 The behavior of ICE lite agents that are capable of Trickle ICE does
 not require any particular rules other than those already defined in
 this specification and [rfc5245bis]. This section is hence provided
 only for informational purposes.

 An ICE lite agent would generate candidate information as per
 [rfc5245bis] and would indicate support for Trickle ICE. Given that
 the candidate information will contain a full generation of
 candidates, it would also be accompanied by an end-of-candidates
 indication.

 When performing full trickle, a full ICE implementation could convey
 the initial ICE description or response thereto with no candidates.
 After receiving a response that identifies the remote agent as an ICE
 lite implementation, the initiator can choose to not trickle any
 additional candidates. The same is also true in the case when the
 ICE lite agent initiates the interaction and the full ICE agent is
 the responder. In these cases the connectivity checks would be
 enough for the ICE lite implementation to discover all potentially
 useful candidates as peer reflexive. The following example
 illustrates one such ICE session using SDP syntax:

Ivov, et al. Expires October 17, 2018 [Page 25]

Internet-Draft Trickle ICE April 2018

 ICE Lite Bob
 Agent
 | Offer (a=ice-lite a=ice-options:trickle) |
 |-->|
 | |no cand
 | Answer (a=ice-options:trickle) |trickling
 |<--|
 | Connectivity Checks |
 |<--->|
 peer rflx| |
 cand disco| |
 |<========== CONNECTION ESTABLISHED ===========>|

 Figure 8: Example

 In addition to reducing signaling traffic this approach also removes
 the need to discover STUN bindings or make TURN allocations, which
 can considerably lighten ICE processing.

Appendix C. Changes from Earlier Versions

 Note to the RFC Editor: please remove this section prior to
 publication as an RFC.

C.1. Changes from draft-ietf-ice-trickle-20

 o Slight corrections to hanlding of peer reflexive candidates.

 o Wordsmithing in a few sections.

C.2. Changes from draft-ietf-ice-trickle-19

 o Further clarified handling of remote peer reflexive candidates.

 o To improve readibility, renamed and restructured some sections and
 subsections, and modified some wording.

C.3. Changes from draft-ietf-ice-trickle-18

 o Cleaned up pairing and redundancy checking rules for newly
 discovered candidates per IESG feedback and WG discussion.

 o Improved wording in half trickle section.

 o Changed "not more than once" to "exactly once".

Ivov, et al. Expires October 17, 2018 [Page 26]

Internet-Draft Trickle ICE April 2018

 o Changed NAT examples back to IPv4.

C.4. Changes from draft-ietf-ice-trickle-17

 o Simplified the rules for inserting a new pair in a check list.

 o Clarified it is not allowed to nominate a candidate pair after a
 pair has already been nominated (a.k.a. renomination or
 continuous nomination).

 o Removed some text that referenced older versions of rfc5245bis.

 o Removed some text that duplicated concepts and procedures
 specified in rfc5245bis.

 o Removed the ill-defined concept of stream order.

 o Shortened the introduction.

C.5. Changes from draft-ietf-ice-trickle-16

 o Made "ufrag" terminology consistent with 5245bis.

 o Applied in-order delivery rule to end-of-candidates indication.

C.6. Changes from draft-ietf-ice-trickle-15

 o Adjustments to address AD review feedback.

C.7. Changes from draft-ietf-ice-trickle-14

 o Minor modifications to track changes to ICE core.

C.8. Changes from draft-ietf-ice-trickle-13

 o Removed independent monitoring of check list "states" of frozen or
 active, since this is handled by placing a check list in the
 Running state defined in ICE core.

C.9. Changes from draft-ietf-ice-trickle-12

 o Specified that the end-of-candidates indication must include the
 generation (ufrag/pwd) to enable association with a particular ICE
 session.

 o Further editorial fixes to address WGLC feedback.

Ivov, et al. Expires October 17, 2018 [Page 27]

Internet-Draft Trickle ICE April 2018

C.10. Changes from draft-ietf-ice-trickle-11

 o Editorial and terminological fixes to address WGLC feedback.

C.11. Changes from draft-ietf-ice-trickle-10

 o Minor editorial fixes.

C.12. Changes from draft-ietf-ice-trickle-09

 o Removed immediate unfreeze upon Fail.

 o Specified MUST NOT regarding ice-options.

 o Changed terminology regarding initial ICE parameters to avoid
 implementer confusion.

C.13. Changes from draft-ietf-ice-trickle-08

 o Reinstated text about in-order processing of messages as a
 requirement for signaling protocols.

 o Added IANA registration template for ICE option.

 o Corrected Case 3 rule in Section 8.1.1 to ensure consistency with
 regular ICE rules.

 o Added tabular representations to Section 8.1.1 in order to
 illustrate the new pair rules.

C.14. Changes from draft-ietf-ice-trickle-07

 o Changed "ICE description" to "candidate information" for
 consistency with 5245bis.

C.15. Changes from draft-ietf-ice-trickle-06

 o Addressed editorial feedback from chairs’ review.

 o Clarified terminology regarding generations.

C.16. Changes from draft-ietf-ice-trickle-05

 o Rewrote the text on inserting a new pair into a check list.

Ivov, et al. Expires October 17, 2018 [Page 28]

Internet-Draft Trickle ICE April 2018

C.17. Changes from draft-ietf-ice-trickle-04

 o Removed dependency on SDP and offer/answer model.

 o Removed mentions of aggressive nomination, since it is deprecated
 in 5245bis.

 o Added section on requirements for signaling protocols.

 o Clarified terminology.

 o Addressed various WG feedback.

C.18. Changes from draft-ietf-ice-trickle-03

 o Provided more detailed description of unfreezing behavior,
 specifically how to replace pre-existing peer-reflexive candidates
 with higher-priority ones received via trickling.

C.19. Changes from draft-ietf-ice-trickle-02

 o Adjusted unfreezing behavior when there are disparate foundations.

C.20. Changes from draft-ietf-ice-trickle-01

 o Changed examples to use IPv6.

C.21. Changes from draft-ietf-ice-trickle-00

 o Removed dependency on SDP (which is to be provided in a separate
 specification).

 o Clarified text about the fact that a check list can be empty if no
 candidates have been sent or received yet.

 o Clarified wording about check list states so as not to define new
 states for "Active" and "Frozen" because those states are not
 defined for check lists (only for candidate pairs) in ICE core.

 o Removed open issues list because it was out of date.

 o Completed a thorough copy edit.

C.22. Changes from draft-mmusic-trickle-ice-02

 o Addressed feedback from Rajmohan Banavi and Brandon Williams.

Ivov, et al. Expires October 17, 2018 [Page 29]

Internet-Draft Trickle ICE April 2018

 o Clarified text about determining support and about how to proceed
 if it can be determined that the answering agent does not support
 Trickle ICE.

 o Clarified text about check list and timer updates.

 o Clarified when it is appropriate to use half trickle or to send no
 candidates in an offer or answer.

 o Updated the list of open issues.

C.23. Changes from draft-ivov-01 and draft-mmusic-00

 o Added a requirement to trickle candidates by order of components
 to avoid deadlocks in the unfreezing algorithm.

 o Added an informative note on peer-reflexive candidates explaining
 that nothing changes for them semantically but they do become a
 more likely occurrence for Trickle ICE.

 o Limit the number of pairs to 100 to comply with 5245.

 o Added clarifications on the non-importance of how newly discovered
 candidates are trickled/sent to the remote party or if this is
 done at all.

 o Added transport expectations for trickled candidates as per Dale
 Worley’s recommendation.

C.24. Changes from draft-ivov-00

 o Specified that end-of-candidates is a media level attribute which
 can of course appear as session level, which is equivalent to
 having it appear in all m-lines. Also made end-of-candidates
 optional for cases such as aggressive nomination for controlled
 agents.

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

 o Added an example for ICE lite and Trickle ICE to illustrate how,
 when talking to an ICE lite agent doesn’t need to send or even
 discover any candidates.

 o Added wording that explicitly states ICE lite agents have to be
 prepared to receive no candidates over signaling and that they

Ivov, et al. Expires October 17, 2018 [Page 30]

Internet-Draft Trickle ICE April 2018

 should not freak out if this happens. (Closed the corresponding
 open issue).

 o It is now mandatory to use MID when trickling candidates and using
 m-line indexes is no longer allowed.

 o Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
 issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
 hold operation. Also changed the port number here from 1 to 9
 since it already has a more appropriate meaning. (Port change
 suggested by Jonathan Lennox).

 o Closed the Open Issue about use about what to do with cands
 received after end-of-cands. Solution: ignore, do an ICE restart
 if you want to add something.

 o Added more terminology, including trickling, trickled candidates,
 half trickle, full trickle,

 o Added a reference to the SIP usage for Trickle ICE as requested at
 the Boston interim.

C.25. Changes from draft-rescorla-01

 o Brought back explicit use of Offer/Answer. There are no more
 attempts to try to do this in an O/A independent way. Also
 removed the use of ICE Descriptions.

 o Added SDP specification for trickled candidates, the trickle
 option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

 o Support and Discovery. Changed that section to be less abstract.
 As discussed in IETF85, the draft now says implementations and
 usages need to either determine support in advance and directly
 use trickle, or do half trickle. Removed suggestion about use of
 discovery in SIP or about letting implementing protocols do what
 they want.

 o Defined Half Trickle. Added a section that says how it works.
 Mentioned that it only needs to happen in the first o/a (not
 necessary in updates), and added Jonathan’s comment about how it
 could, in some cases, offer more than half the improvement if you
 can pre-gather part or all of your candidates before the user
 actually presses the call button.

 o Added a short section about subsequent offer/answer exchanges.

Ivov, et al. Expires October 17, 2018 [Page 31]

Internet-Draft Trickle ICE April 2018

 o Added a short section about interactions with ICE Lite
 implementations.

 o Added two new entries to the open issues section.

C.26. Changes from draft-rescorla-00

 o Relaxed requirements about verifying support following a
 discussion on MMUSIC.

 o Introduced ICE descriptions in order to remove ambiguous use of
 3264 language and inappropriate references to offers and answers.

 o Removed inappropriate assumption of adoption by RTCWEB pointed out
 by Martin Thomson.

Authors’ Addresses

 Emil Ivov
 Atlassian
 303 Colorado Street, #1600
 Austin, TX 78701
 USA

 Phone: +1-512-640-3000
 Email: eivov@atlassian.com

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

 Justin Uberti
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Phone: +1 857 288 8888
 Email: justin@uberti.name

Ivov, et al. Expires October 17, 2018 [Page 32]

Internet-Draft Trickle ICE April 2018

 Peter Saint-Andre
 Mozilla
 P.O. Box 787
 Parker, CO 80134
 USA

 Phone: +1 720 256 6756
 Email: stpeter@mozilla.com
 URI: https://www.mozilla.com/

Ivov, et al. Expires October 17, 2018 [Page 33]

Network Working Group P. Thatcher
Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: September 22, 2016 Google
 March 21, 2016

 ICE Network Cost: Dynamically selecting ICE candidate pairs based on
 relative cost of network interfaces
 draft-thatcher-ice-network-cost-00

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) that enables ICE agents to exchange information
 about the relative cost of network interfaces and dynamically choose
 the selected ICE candidate pair based on the cost of both the local
 and remote network interfaces. For example, if a cellular network
 interface has a higher cost than a Wi-Fi network interface, the ICE
 agents can use that information to prefer candidate pairs with Wi-Fi
 rather than cellular when possible, and only use cellular when
 necessary.

 This document additionally describes a second piece of information,
 network ID, that goes along with the network cost and can be used to
 know when a network interface has changed, even if two network
 interfaces have the same network cost.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Thatcher, et al. Expires September 22, 2016 [Page 1]

Internet-Draft ICE Network Cost March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Choosing a value for network cost and network ID 3
 4. Signaling network cost and network ID 4
 5. STUN attribute for network cost and network ID 4
 6. Interpreting network cost and network ID 4
 7. IANA Considerations . 5
 8. Security Considerations 5
 9. Acknowledgements . 5
 10. Normative References . 5
 Authors’ Addresses . 5

1. Introduction

 In certain network conditions, ICE agents may prefer to use a network
 interface with a lower cost (for a definition of cost chosen by the
 ICE agent, which need not be directly related to monetary costs). If
 the controlling side has such a preference, it can unilaterally
 nominate a candidate pair with the network interface with lower cost,
 but if either the controlling side has no such preference, or it
 would like to take the controlled side’s preference into account, it
 cannot do so unless the controlled side provides information about
 its network cost.

 Additionally, if the network interface of the controlled side changes
 (such as by using TURN mobility), the controlling side needs updated
 information from the controlled side.

 The controlling side may also wish to select candidate pairs not only
 based on the relative cost between candidate pairs, but also the cost
 relative to the quality of the network path. For example, if Wi-Fi

Thatcher, et al. Expires September 22, 2016 [Page 2]

Internet-Draft ICE Network Cost March 2016

 has a much higher cost, but cellular is much higher quality, the
 controlling side may select cellular even though it’s higher cost.
 To do so, the controlled side must provide information about the
 network cost relative to the network quality. For example, if a
 network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
 0 and RTT 150ms will have equal preference to a cellular with cost 10
 and RTT 50ms.

 Although the controlled side already communicates an ICE candidate
 priority, that candidate attribute doesn’t meet the needs of this
 situation for the following reasons:

 o Candidate priority affects ICE check ordering as well as candidate
 pair preference, which is undesirable in this situation, where the
 ICE check order should be maintained, but the candidate pair
 preference should be changed.

 o Candidate priority cannot change when the network interface
 changes (such as by using TURN mobility)

 o Candidate priority is only defined relative to other priorities,
 and can’t be compared against network quality in a meaningful way.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined by the
 protocol for Interactive Connectivity Establishment in [RFC5245].

 Network Cost A value indicating how much an ICE agent would prefer
 to not use a given network interface. This may be, but need not
 be related to monetary costs of using the network interface.

 Network ID An ID that uniquely identifies a network interface.

3. Choosing a value for network cost and network ID

 Network cost is an integer in the range 0-999, where larger values
 indicate a stronger preference for not using that network interface.

 Each network interface SHOULD have a unique network ID, in the range
 of 0 to (2^16)-1.

Thatcher, et al. Expires September 22, 2016 [Page 3]

Internet-Draft ICE Network Cost March 2016

4. Signaling network cost and network ID

 ICE agents MUST signal network cost on each ICE candidate if the cost
 is non-zero. ICE agents MUST signal network ID on each ICE
 candidate.

 For example, in an SDP candidate line, the attributes could be
 signaled as "network-cost 100 network-id 1".

5. STUN attribute for network cost and network ID

 To communicate a change in network cost or to communicate network
 cost for peer reflexive candidates, the following STUN attribute is
 defined:

 A 32-bit integer where the first 16 bits are the network ID and the
 second 16 bits are network cost:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Network ID | Network Cost |

 In the initial ICE checks, ICE agents MUST communicate a network cost
 and network ID if either is non-zero. The ICE agent MUST communicate
 new values in subsequent ICE checks if the network cost or network ID
 changes.

6. Interpreting network cost and network ID

 If network cost is communicated via either signaling or STUN
 attribute, the controlling side SHOULD use the network cost of the
 controlled side as part of the criteria to determine which candidate
 pair to select. It SHOULD use network cost before using candidate
 priorities (network cost takes precedence over candidate priority),
 and it SHOULD NOT change the ICE check order based on network cost.

 If the controlling side chooses to balance network cost against
 network quality, it is RECOMMENDED to treat a difference in network
 cost of 10 as equivalent of a change in network RTT of 100ms.

 Any time the controlling side sees a change in the network cost from
 the controlled side, it MUST recalculate which candidate pair to
 select and nominate the newly selected candidate pair, if it has
 changed.

Thatcher, et al. Expires September 22, 2016 [Page 4]

Internet-Draft ICE Network Cost March 2016

7. IANA Considerations

 This specification requests no actions from IANA.

8. Security Considerations

 TODO

9. Acknowledgements

 TODO

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

 Peter Thatcher
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: pthatcher@google.com

 Honghai Zhang
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: honghaiz@google.com

Thatcher, et al. Expires September 22, 2016 [Page 5]

Internet-Draft ICE Network Cost March 2016

 Taylor Brandstetter
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: deadbeef@google.com

Thatcher, et al. Expires September 22, 2016 [Page 6]

Network Working Group P. Thatcher
Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: March 23, 2017 Google
 September 19, 2016

 ICE Network Cost: Dynamically selecting ICE candidate pairs based on
 relative cost of network interfaces
 draft-thatcher-ice-network-cost-01

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) that enables ICE agents to exchange information
 about the relative cost of network interfaces and dynamically choose
 the selected ICE candidate pair based on the cost of both the local
 and remote network interfaces. For example, if a cellular network
 interface has a higher cost than a Wi-Fi network interface, the ICE
 agents can use that information to prefer candidate pairs with Wi-Fi
 rather than cellular when possible, and only use cellular when
 necessary.

 This document additionally describes a second piece of information,
 network ID, that goes along with the network cost and can be used to
 know when a network interface has changed, even if two network
 interfaces have the same network cost.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 23, 2017.

Thatcher, et al. Expires March 23, 2017 [Page 1]

Internet-Draft ICE Network Cost September 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Choosing a value for network cost and network ID 3
 4. Signaling network cost and network ID 4
 5. STUN attribute for network cost and network ID 4
 6. Interpreting network cost and network ID 4
 7. IANA Considerations . 5
 8. Security Considerations 5
 9. Acknowledgements . 5
 10. Normative References . 5
 Authors’ Addresses . 5

1. Introduction

 In certain network conditions, ICE agents may prefer to use a network
 interface with a lower cost (for a definition of cost chosen by the
 ICE agent, which need not be directly related to monetary costs). If
 the controlling side has such a preference, it can unilaterally
 nominate a candidate pair with the network interface with lower cost,
 but if either the controlling side has no such preference, or it
 would like to take the controlled side’s preference into account, it
 cannot do so unless the controlled side provides information about
 its network cost.

 Additionally, if the network interface of the controlled side changes
 (such as by using TURN mobility), the controlling side needs updated
 information from the controlled side.

 The controlling side may also wish to select candidate pairs not only
 based on the relative cost between candidate pairs, but also the cost
 relative to the quality of the network path. For example, if Wi-Fi

Thatcher, et al. Expires March 23, 2017 [Page 2]

Internet-Draft ICE Network Cost September 2016

 has a much higher cost, but cellular is much higher quality, the
 controlling side may select cellular even though it’s higher cost.
 To do so, the controlled side must provide information about the
 network cost relative to the network quality. For example, if a
 network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
 0 and RTT 150ms will have equal preference to a cellular with cost 10
 and RTT 50ms.

 Although the controlled side already communicates an ICE candidate
 priority, that candidate attribute doesn’t meet the needs of this
 situation for the following reasons:

 o Candidate priority affects ICE check ordering as well as candidate
 pair preference, which is undesirable in this situation, where the
 ICE check order should be maintained, but the candidate pair
 preference should be changed.

 o Candidate priority cannot change when the network interface
 changes (such as by using TURN mobility)

 o Candidate priority is only defined relative to other priorities,
 and can’t be compared against network quality in a meaningful way.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This specification makes use of all terminology defined by the
 protocol for Interactive Connectivity Establishment in [RFC5245].

 Network Cost A value indicating how much an ICE agent would prefer
 to not use a given network interface. This may be, but need not
 be related to monetary costs of using the network interface.

 Network ID An ID that uniquely identifies a network interface.

3. Choosing a value for network cost and network ID

 Network cost is an integer in the range 0-999, where larger values
 indicate a stronger preference for not using that network interface.

 Each network interface SHOULD have a unique network ID, in the range
 of 0 to (2^16)-1.

Thatcher, et al. Expires March 23, 2017 [Page 3]

Internet-Draft ICE Network Cost September 2016

4. Signaling network cost and network ID

 ICE agents MUST signal network cost on each ICE candidate if the cost
 is non-zero. ICE agents MUST signal network ID on each ICE
 candidate.

 For example, in an SDP candidate line, the attributes could be
 signaled as "network-cost 100 network-id 1".

5. STUN attribute for network cost and network ID

 To communicate a change in network cost or to communicate network
 cost for peer reflexive candidates, the following STUN attribute is
 defined:

 A 32-bit integer where the first 16 bits are the network ID and the
 second 16 bits are network cost:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Network ID | Network Cost |

 In the initial ICE checks, ICE agents MUST communicate a network cost
 and network ID if either is non-zero. The ICE agent MUST communicate
 new values in subsequent ICE checks if the network cost or network ID
 changes.

6. Interpreting network cost and network ID

 If network cost is communicated via either signaling or STUN
 attribute, the controlling side SHOULD use the network cost of the
 controlled side as part of the criteria to determine which candidate
 pair to select. It SHOULD use network cost before using candidate
 priorities (network cost takes precedence over candidate priority),
 and it SHOULD NOT change the ICE check order based on network cost.

 If the controlling side chooses to balance network cost against
 network quality, it is RECOMMENDED to treat a difference in network
 cost of 10 as equivalent of a change in network RTT of 100ms.

 Any time the controlling side sees a change in the network cost from
 the controlled side, it MUST recalculate which candidate pair to
 select and nominate the newly selected candidate pair, if it has
 changed.

Thatcher, et al. Expires March 23, 2017 [Page 4]

Internet-Draft ICE Network Cost September 2016

7. IANA Considerations

 This specification requests no actions from IANA.

8. Security Considerations

 TODO

9. Acknowledgements

 TODO

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

 Peter Thatcher
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: pthatcher@google.com

 Honghai Zhang
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: honghaiz@google.com

Thatcher, et al. Expires March 23, 2017 [Page 5]

Internet-Draft ICE Network Cost September 2016

 Taylor Brandstetter
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: deadbeef@google.com

Thatcher, et al. Expires March 23, 2017 [Page 6]

Network Working Group P. Thatcher
Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: September 22, 2016 Google
 March 21, 2016

 ICE Renomination: Dynamically selecting ICE candidate pairs
 draft-thatcher-ice-renomination-00

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) that enables ICE agents to dynamically change the
 selected candidate pair of the controlled side by allowing the
 controlling side to nominate different candidate pairs over time as
 network conditions change.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Thatcher, et al. Expires September 22, 2016 [Page 1]

Internet-Draft ICE Renomination March 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 2
 3. Renomination . 2
 4. "Nomination" attribute 3
 5. IANA Considerations . 3
 6. Security Considerations 3
 7. Acknowledgements . 3
 8. Normative References . 3
 Authors’ Addresses . 3

1. Introduction

 ICE agents are either controlling or controlled. The controlling ICE
 agent can unilaterally select a given candidate pair at any time.
 But it cannot control what candidate pair the controlled ICE agent
 selects once the controlling ICE agent has nominated a candidate pair
 (with passive nomination) or nominated many candidate pairs (with
 aggressive nomination), with the exception that it may nominate a
 higher priority candidate pair with aggressive nomination. This
 greatly limits the controlling side’s options.

 For example, if an ICE agent selects and nominates a candidate pair
 over a cellular network, and then later connects to a Wi-Fi network
 and trickles ICE candidates for the Wi-Fi network, it may wish to
 select and nominate a candidate pair using Wi-Fi. If soon thereafter
 the Wi-Fi network disconnects and the ICE agent wishes to select and
 nominate the cellular candidate pair again, it would be unable to do
 with either passive or aggressive nomination.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Renomination

 We define a new ICE option called "renomination". When renomination
 is signaled, aggressive nomination is disabled, and the controlled
 side follows a rule of "last nomination wins". This allows the
 controlling side to send nominations for new candidate pairs at any
 time. The controlling side SHOULD send the new nomination until the
 STUN packet is acked to ensure that the renomination was received.

Thatcher, et al. Expires September 22, 2016 [Page 2]

Internet-Draft ICE Renomination March 2016

 If one side signals "renomination" and the other does not understand
 it, then according to the rules of ICE, aggressive nomination is
 disabled and passive nomination is used, and the controlling side
 MUST NOT send more than one nomination.

4. "Nomination" attribute

 To deal with out-of-order delivery of nominations, we define a new
 STUN attribute: "nomination" which includes a 24-bit integer in the 3
 least significant bytes of the attribute.

 The controlling side MAY include such an attribute when renominating.
 The controlled side MUST select the nomination with the largest value
 contained in the "nomination" attribute. Any value included takes
 precedence over the lack of a value.

5. IANA Considerations

 This specification requests no actions from IANA.

6. Security Considerations

 TODO

7. Acknowledgements

 TODO

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Thatcher, et al. Expires September 22, 2016 [Page 3]

Internet-Draft ICE Renomination March 2016

 Peter Thatcher
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: pthatcher@google.com

 Honghai Zhang
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: honghaiz@google.com

 Taylor Brandstetter
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: deadbeef@google.com

Thatcher, et al. Expires September 22, 2016 [Page 4]

Network Working Group P. Thatcher
Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: March 23, 2017 Google
 September 19, 2016

 ICE Renomination: Dynamically selecting ICE candidate pairs
 draft-thatcher-ice-renomination-01

Abstract

 This document describes an extension to the Interactive Connectivity
 Establishment (ICE) that enables ICE agents to dynamically change the
 selected candidate pair of the controlled side by allowing the
 controlling side to nominate different candidate pairs over time as
 network conditions change.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 23, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Thatcher, et al. Expires March 23, 2017 [Page 1]

Internet-Draft ICE Renomination September 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 2
 3. Renomination . 2
 4. "Nomination" attribute 3
 5. IANA Considerations . 3
 6. Security Considerations 3
 7. Acknowledgements . 3
 8. Normative References . 3
 Authors’ Addresses . 3

1. Introduction

 ICE agents are either controlling or controlled. The controlling ICE
 agent can unilaterally select a given candidate pair at any time.
 But it cannot control what candidate pair the controlled ICE agent
 selects once the controlling ICE agent has nominated a candidate pair
 (with passive nomination) or nominated many candidate pairs (with
 aggressive nomination), with the exception that it may nominate a
 higher priority candidate pair with aggressive nomination. This
 greatly limits the controlling side’s options.

 For example, if an ICE agent selects and nominates a candidate pair
 over a cellular network, and then later connects to a Wi-Fi network
 and trickles ICE candidates for the Wi-Fi network, it may wish to
 select and nominate a candidate pair using Wi-Fi. If soon thereafter
 the Wi-Fi network disconnects and the ICE agent wishes to select and
 nominate the cellular candidate pair again, it would be unable to do
 with either passive or aggressive nomination.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Renomination

 We define a new ICE option called "renomination". When renomination
 is signaled, aggressive nomination is disabled, and the controlled
 side follows a rule of "last nomination wins". This allows the
 controlling side to send nominations for new candidate pairs at any
 time. The controlling side SHOULD send the new nomination until the
 STUN packet is acked to ensure that the renomination was received.

Thatcher, et al. Expires March 23, 2017 [Page 2]

Internet-Draft ICE Renomination September 2016

 If one side signals "renomination" and the other does not understand
 it, then according to the rules of ICE, aggressive nomination is
 disabled and passive nomination is used, and the controlling side
 MUST NOT send more than one nomination.

4. "Nomination" attribute

 To deal with out-of-order delivery of nominations, we define a new
 STUN attribute: "nomination" which includes a 24-bit integer in the 3
 least significant bytes of the attribute.

 The controlling side MAY include such an attribute when renominating.
 The controlled side MUST select the nomination with the largest value
 contained in the "nomination" attribute. Any value included takes
 precedence over the lack of a value.

5. IANA Considerations

 This specification requests no actions from IANA.

6. Security Considerations

 TODO

7. Acknowledgements

 TODO

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 DOI 10.17487/RFC5245, April 2010,
 <http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Thatcher, et al. Expires March 23, 2017 [Page 3]

Internet-Draft ICE Renomination September 2016

 Peter Thatcher
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: pthatcher@google.com

 Honghai Zhang
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: honghaiz@google.com

 Taylor Brandstetter
 Google
 747 6th St S
 Kirkland, WA 98033
 USA

 Email: deadbeef@google.com

Thatcher, et al. Expires March 23, 2017 [Page 4]

	draft-ietf-ice-rfc5245bis-01
	draft-ietf-ice-rfc5245bis-20
	draft-ietf-ice-trickle-01
	draft-ietf-ice-trickle-21
	draft-thatcher-ice-network-cost-00
	draft-thatcher-ice-network-cost-01
	draft-thatcher-ice-renomination-00
	draft-thatcher-ice-renomination-01

