
MMUSIC                                                        A. Keranen
Internet-Draft                                                  Ericsson
Obsoletes: 5245 (if approved)                               J. Rosenberg
Intended status: Standards Track                             jdrosen.net
Expires: June 23, 2016                                 December 21, 2015

  Interactive Connectivity Establishment (ICE): A Protocol for Network
                   Address Translator (NAT) Traversal
                      draft-ietf-ice-rfc5245bis-01

Abstract

   This document describes a protocol for Network Address Translator
   (NAT) traversal for UDP-based multimedia.  This protocol is called
   Interactive Connectivity Establishment (ICE).  ICE makes use of the
   Session Traversal Utilities for NAT (STUN) protocol and its
   extension, Traversal Using Relay NAT (TURN).

   This document obsoletes RFC 5245.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on June 23, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

   This document may contain material from IETF Documents or IETF
   Contributions published or made publicly available before November
   10, 2008.  The person(s) controlling the copyright in some of this
   material may not have granted the IETF Trust the right to allow
   modifications of such material outside the IETF Standards Process.
   Without obtaining an adequate license from the person(s) controlling
   the copyright in such materials, this document may not be modified
   outside the IETF Standards Process, and derivative works of it may
   not be created outside the IETF Standards Process, except to format
   it for publication as an RFC or to translate it into languages other
   than English.
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1.  Introduction

   Protocols establishing multimedia sessions between peers typically
   involve exchanging IP addresses and ports for the media sources and
   sinks.  However this poses challenges when operated through Network
   Address Translators (NATs) [RFC3235].  These protocols also seek to
   create a media flow directly between participants, so that there is
   no application layer intermediary between them.  This is done to
   reduce media latency, decrease packet loss, and reduce the
   operational costs of deploying the application.  However, this is
   difficult to accomplish through NAT.  A full treatment of the reasons
   for this is beyond the scope of this specification.

   Numerous solutions have been defined for allowing these protocols to
   operate through NAT.  These include Application Layer Gateways
   (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
   Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
   Realm Specific IP [RFC3102] [RFC3103] along with session description
   extensions needed to make them work, such as the Session Description
   Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
   (RTCP) [RFC3605].  Unfortunately, these techniques all have pros and
   cons which, make each one optimal in some network topologies, but a
   poor choice in others.  The result is that administrators and
   implementors are making assumptions about the topologies of the
   networks in which their solutions will be deployed.  This introduces
   complexity and brittleness into the system.  What is needed is a
   single solution that is flexible enough to work well in all
   situations.

   This specification defines Interactive Connectivity Establishment
   (ICE) as a technique for NAT traversal for UDP-based media streams
   (though ICE has been extended to handle other transport protocols,
   such as TCP [RFC6544]).  ICE works by exchanging a multiplicity of IP
   addresses and ports which are then tested for connectivity by peer-
   to-peer connectivity checks.  The IP addresses and ports are
   exchanged via mechanisms (for example, including in a offer/answer
   exchange) and the connectivity checks are performed using Session
   Traversal Utilities for NAT (STUN) specification [RFC5389].  ICE also
   makes use of Traversal Using Relays around NAT (TURN) [RFC5766], an
   extension to STUN.  Because ICE exchanges a multiplicity of IP
   addresses and ports for each media stream, it also allows for address
   selection for multihomed and dual-stack hosts, and for this reason it
   deprecates [RFC4091] and [RFC4092].
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2.  Overview of ICE

   In a typical ICE deployment, we have two endpoints (known as ICE
   AGENTS) that want to communicate.  They are able to communicate
   indirectly via some signaling protocol (such as SIP), by which they
   can exchange ICE candidates.  Note that ICE is not intended for NAT
   traversal for the signaling protocol, which is assumed to be provided
   via another mechanism.  At the beginning of the ICE process, the
   agents are ignorant of their own topologies.  In particular, they
   might or might not be behind a NAT (or multiple tiers of NATs).  ICE
   allows the agents to discover enough information about their
   topologies to potentially find one or more paths by which they can
   communicate.

   Figure 1 shows a typical environment for ICE deployment.  The two
   endpoints are labelled L and R (for left and right, which helps
   visualize call flows).  Both L and R are behind their own respective
   NATs though they may not be aware of it.  The type of NAT and its
   properties are also unknown.  Agents L and R are capable of engaging
   in an candidate exchange process, whose purpose is to set up a media
   session between L and R.  Typically, this exchange will occur through
   a signaling (e.g., SIP) server.

   In addition to the agents, a signaling server and NATs, ICE is
   typically used in concert with STUN or TURN servers in the network.
   Each agent can have its own STUN or TURN server, or they can be the
   same.
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                     +---------+
   +--------+        |Signaling|         +--------+
   | STUN   |        |Server   |         | STUN   |
   | Server |        +---------+         | Server |
   +--------+       /           \        +--------+
                   /             \
                  /               \
                 / <- Signaling -> \
                /                   \
         +--------+               +--------+
         |  NAT   |               |  NAT   |
         +--------+               +--------+
           /                             \
          /                               \
      +-------+                       +-------+
      | Agent |                       | Agent |
      |   L   |                       |   R   |
      +-------+                       +-------+

                     Figure 1: ICE Deployment Scenario

   The basic idea behind ICE is as follows: each agent has a variety of
   candidate TRANSPORT ADDRESSES (combination of IP address and port for
   a particular transport protocol, which is always UDP in this
   specification) it could use to communicate with the other agent.
   These might include:

   o  A transport address on a directly attached network interface

   o  A translated transport address on the public side of a NAT (a
      "server reflexive" address)

   o  A transport address allocated from a TURN server (a "relayed
      address")

   Potentially, any of L’s candidate transport addresses can be used to
   communicate with any of R’s candidate transport addresses.  In
   practice, however, many combinations will not work.  For instance, if
   L and R are both behind NATs, their directly attached interface
   addresses are unlikely to be able to communicate directly (this is
   why ICE is needed, after all!).  The purpose of ICE is to discover
   which pairs of addresses will work.  The way that ICE does this is to
   systematically try all possible pairs (in a carefully sorted order)
   until it finds one or more that work.
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2.1.  Gathering Candidate Addresses

   In order to execute ICE, an agent has to identify all of its address
   candidates.  A CANDIDATE is a transport address -- a combination of
   IP address and port for a particular transport protocol (with only
   UDP specified here).  This document defines three types of
   candidates, some derived from physical or logical network interfaces,
   others discoverable via STUN and TURN.  Naturally, one viable
   candidate is a transport address obtained directly from a local
   interface.  Such a candidate is called a HOST CANDIDATE.  The local
   interface could be Ethernet or WiFi, or it could be one that is
   obtained through a tunnel mechanism, such as a Virtual Private
   Network (VPN) or Mobile IP (MIP).  In all cases, such a network
   interface appears to the agent as a local interface from which ports
   (and thus candidates) can be allocated.

   If an agent is multihomed, it obtains a candidate from each IP
   address.  Depending on the location of the PEER (the other agent in
   the session) on the IP network relative to the agent, the agent may
   be reachable by the peer through one or more of those IP addresses.
   Consider, for example, an agent that has a local IP address on a
   private net 10 network (I1), and a second connected to the public
   Internet (I2).  A candidate from I1 will be directly reachable when
   communicating with a peer on the same private net 10 network, while a
   candidate from I2 will be directly reachable when communicating with
   a peer on the public Internet.  Rather than trying to guess which IP
   address will work, the initiating sends both the candidates to its
   peer.

   Next, the agent uses STUN or TURN to obtain additional candidates.
   These come in two flavors: translated addresses on the public side of
   a NAT (SERVER REFLEXIVE CANDIDATES) and addresses on TURN servers
   (RELAYED CANDIDATES).  When TURN servers are utilized, both types of
   candidates are obtained from the TURN server.  If only STUN servers
   are utilized, only server reflexive candidates are obtained from
   them.  The relationship of these candidates to the host candidate is
   shown in Figure 2.  In this figure, both types of candidates are
   discovered using TURN.  In the figure, the notation X:x means IP
   address X and UDP port x.
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                 To Internet

                     |
                     |
                     |  /------------  Relayed
                 Y:y | /               Address
                 +--------+
                 |        |
                 |  TURN  |
                 | Server |
                 |        |
                 +--------+
                     |
                     |
                     | /------------  Server
              X1’:x1’|/               Reflexive
               +------------+         Address
               |    NAT     |
               +------------+
                     |
                     | /------------  Local
                 X:x |/               Address
                 +--------+
                 |        |
                 | Agent  |
                 |        |
                 +--------+

                     Figure 2: Candidate Relationships

   When the agent sends the TURN Allocate request from IP address and
   port X:x, the NAT (assuming there is one) will create a binding
   X1’:x1’, mapping this server reflexive candidate to the host
   candidate X:x.  Outgoing packets sent from the host candidate will be
   translated by the NAT to the server reflexive candidate.  Incoming
   packets sent to the server reflexive candidate will be translated by
   the NAT to the host candidate and forwarded to the agent.  We call
   the host candidate associated with a given server reflexive candidate
   the BASE.

      Note: "Base" refers to the address an agent sends from for a
      particular candidate.  Thus, as a degenerate case host candidates
      also have a base, but it’s the same as the host candidate.

   When there are multiple NATs between the agent and the TURN server,
   the TURN request will create a binding on each NAT, but only the
   outermost server reflexive candidate (the one nearest the TURN
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   server) will be discovered by the agent.  If the agent is not behind
   a NAT, then the base candidate will be the same as the server
   reflexive candidate and the server reflexive candidate is redundant
   and will be eliminated.

   The Allocate request then arrives at the TURN server.  The TURN
   server allocates a port y from its local IP address Y, and generates
   an Allocate response, informing the agent of this relayed candidate.
   The TURN server also informs the agent of the server reflexive
   candidate, X1’:x1’ by copying the source transport address of the
   Allocate request into the Allocate response.  The TURN server acts as
   a packet relay, forwarding traffic between L and R.  In order to send
   traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
   server forwards that to X1’:x1’, which passes through the NAT where
   it is mapped to X:x and delivered to L.

   When only STUN servers are utilized, the agent sends a STUN Binding
   request [RFC5389] to its STUN server.  The STUN server will inform
   the agent of the server reflexive candidate X1’:x1’ by copying the
   source transport address of the Binding request into the Binding
   response.

2.2.  Connectivity Checks

   Once L has gathered all of its candidates, it orders them in highest
   to lowest-priority and sends them to R over the signaling channel.
   When R receives the candidates from L, it performs the same gathering
   process and responds with its own list of candidates.  At the end of
   this process, each agent has a complete list of both its candidates
   and its peer’s candidates.  It pairs them up, resulting in CANDIDATE
   PAIRS.  To see which pairs work, each agent schedules a series of
   CHECKS.  Each check is a STUN request/response transaction that the
   client will perform on a particular candidate pair by sending a STUN
   request from the local candidate to the remote candidate.

   The basic principle of the connectivity checks is simple:

   1.  Sort the candidate pairs in priority order.

   2.  Send checks on each candidate pair in priority order.

   3.  Acknowledge checks received from the other agent.

   With both agents performing a check on a candidate pair, the result
   is a 4-way handshake:
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   L                        R
   -                        -
   STUN request ->             \  L’s
             <- STUN response  /  check

              <- STUN request  \  R’s
   STUN response ->            /  check

                    Figure 3: Basic Connectivity Check

   It is important to note that the STUN requests are sent to and from
   the exact same IP addresses and ports that will be used for media
   (e.g., RTP and RTCP).  Consequently, agents demultiplex STUN and RTP/
   RTCP using contents of the packets, rather than the port on which
   they are received.  Fortunately, this demultiplexing is easy to do,
   especially for RTP and RTCP.

   Because a STUN Binding request is used for the connectivity check,
   the STUN Binding response will contain the agent’s translated
   transport address on the public side of any NATs between the agent
   and its peer.  If this transport address is different from other
   candidates the agent already learned, it represents a new candidate,
   called a PEER REFLEXIVE CANDIDATE, which then gets tested by ICE just
   the same as any other candidate.

   As an optimization, as soon as R gets L’s check message, R schedules
   a connectivity check message to be sent to L on the same candidate
   pair.  This accelerates the process of finding a valid candidate, and
   is called a TRIGGERED CHECK.

   At the end of this handshake, both L and R know that they can send
   (and receive) messages end-to-end in both directions.

2.3.  Sorting Candidates

   Because the algorithm above searches all candidate pairs, if a
   working pair exists it will eventually find it no matter what order
   the candidates are tried in.  In order to produce faster (and better)
   results, the candidates are sorted in a specified order.  The
   resulting list of sorted candidate pairs is called the CHECK LIST.
   The algorithm is described in Section 4.1.2 but follows two general
   principles:

   o  Each agent gives its candidates a numeric priority, which is sent
      along with the candidate to the peer.

   o  The local and remote priorities are combined so that each agent
      has the same ordering for the candidate pairs.
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   The second property is important for getting ICE to work when there
   are NATs in front of L and R.  Frequently, NATs will not allow
   packets in from a host until the agent behind the NAT has sent a
   packet towards that host.  Consequently, ICE checks in each direction
   will not succeed until both sides have sent a check through their
   respective NATs.

   The agent works through this check list by sending a STUN request for
   the next candidate pair on the list periodically.  These are called
   ORDINARY CHECKS.

   In general, the priority algorithm is designed so that candidates of
   similar type get similar priorities and so that more direct routes
   (that is, through fewer media relays and through fewer NATs) are
   preferred over indirect ones (ones with more media relays and more
   NATs).  Within those guidelines, however, agents have a fair amount
   of discretion about how to tune their algorithms.

2.4.  Frozen Candidates

   The previous description only addresses the case where the agents
   wish to establish a media session with one COMPONENT (a piece of a
   media stream requiring a single transport address; a media stream may
   require multiple components, each of which has to work for the media
   stream as a whole to be work).  Sometimes (e.g., with RTP and RTCP in
   separate components), the agents actually need to establish
   connectivity for more than one flow.

   The network properties are likely to be very similar for each
   component (especially because RTP and RTCP are sent and received from
   the same IP address).  It is usually possible to leverage information
   from one media component in order to determine the best candidates
   for another.  ICE does this with a mechanism called "frozen
   candidates".

   Each candidate is associated with a property called its FOUNDATION.
   Two candidates have the same foundation when they are "similar" -- of
   the same type and obtained from the same host candidate and STUN/TURN
   server using the same protocol.  Otherwise, their foundation is
   different.  A candidate pair has a foundation too, which is just the
   concatenation of the foundations of its two candidates.  Initially,
   only the candidate pairs with unique foundations are tested.  The
   other candidate pairs are marked "frozen".  When the connectivity
   checks for a candidate pair succeed, the other candidate pairs with
   the same foundation are unfrozen.  This avoids repeated checking of
   components that are superficially more attractive but in fact are
   likely to fail.
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   While we’ve described "frozen" here as a separate mechanism for
   expository purposes, in fact it is an integral part of ICE and the
   ICE prioritization algorithm automatically ensures that the right
   candidates are unfrozen and checked in the right order.  However, if
   the ICE usage does not utilize multiple components or media streams,
   it does not need to implement this algorithm.

2.5.  Security for Checks

   Because ICE is used to discover which addresses can be used to send
   media between two agents, it is important to ensure that the process
   cannot be hijacked to send media to the wrong location.  Each STUN
   connectivity check is covered by a message authentication code (MAC)
   computed using a key exchanged in the signaling channel.  This MAC
   provides message integrity and data origin authentication, thus
   stopping an attacker from forging or modifying connectivity check
   messages.  Furthermore, if for example a SIP [RFC3261] caller is
   using ICE, and their call forks, the ICE exchanges happen
   independently with each forked recipient.  In such a case, the keys
   exchanged in the signaling help associate each ICE exchange with each
   forked recipient.

2.6.  Concluding ICE

   ICE checks are performed in a specific sequence, so that high-
   priority candidate pairs are checked first, followed by lower-
   priority ones.  One way to conclude ICE is to declare victory as soon
   as a check for each component of each media stream completes
   successfully.  Indeed, this is a reasonable algorithm, and details
   for it are provided below.  However, it is possible that a packet
   loss will cause a higher-priority check to take longer to complete.
   In that case, allowing ICE to run a little longer might produce
   better results.  More fundamentally, however, the prioritization
   defined by this specification may not yield "optimal" results.  As an
   example, if the aim is to select low-latency media paths, usage of a
   relay is a hint that latencies may be higher, but it is nothing more
   than a hint.  An actual round-trip time (RTT) measurement could be
   made, and it might demonstrate that a pair with lower priority is
   actually better than one with higher priority.

   Consequently, ICE assigns one of the agents in the role of the
   CONTROLLING AGENT, and the other of the CONTROLLED AGENT.  The
   controlling agent gets to nominate which candidate pairs will get
   used for media amongst the ones that are valid.  It can do this in
   one of two ways -- using REGULAR NOMINATION or AGGRESSIVE NOMINATION.

   With regular nomination, the controlling agent lets the checks
   continue until at least one valid candidate pair for each media
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   stream is found.  Then, it picks amongst those that are valid, and
   sends a second STUN request on its NOMINATED candidate pair, but this
   time with a flag set to tell the peer that this pair has been
   nominated for use.  This is shown in Figure 4.

   L                        R
   -                        -
   STUN request ->             \  L’s
             <- STUN response  /  check

              <- STUN request  \  R’s
   STUN response ->            /  check

   STUN request + flag ->      \  L’s
             <- STUN response  /  check

                       Figure 4: Regular Nomination

   Once the STUN transaction with the flag completes, both sides cancel
   any future checks for that media stream.  ICE will now send media
   using this pair.  The pair an ICE agent is using for media is called
   the SELECTED PAIR.

   In aggressive nomination, the controlling agent puts the flag in
   every connectivity check STUN request it sends.  This way, once the
   first check succeeds, ICE processing is complete for that media
   stream and the controlling agent doesn’t have to send a second STUN
   request.  The selected pair will be the highest-priority valid pair
   whose check succeeded.  Aggressive nomination is faster than regular
   nomination, but gives less flexibility.  Aggressive nomination is
   shown in Figure 5.

   L                        R
   -                        -
   STUN request + flag ->      \  L’s
             <- STUN response  /  check

              <- STUN request  \  R’s
   STUN response ->            /  check

                      Figure 5: Aggressive Nomination
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   Once ICE is concluded, it can be restarted at any time for one or all
   of the media streams by either agent.  This is done by sending an
   updated candidate information indicating a restart.

2.7.  Lite Implementations

   In order for ICE to be used in a call, both agents need to support
   it.  However, certain agents will always be connected to the public
   Internet and have a public IP address at which it can receive packets
   from any correspondent.  To make it easier for these devices to
   support ICE, ICE defines a special type of implementation called LITE
   (in contrast to the normal FULL implementation).  A lite
   implementation doesn’t gather candidates; it includes only host
   candidates for any media stream.  Lite agents do not generate
   connectivity checks or run the state machines, though they need to be
   able to respond to connectivity checks.  When a lite implementation
   connects with a full implementation, the full agent takes the role of
   the controlling agent, and the lite agent takes on the controlled
   role.  When two lite implementations connect, no checks are sent.

   For guidance on when a lite implementation is appropriate, see the
   discussion in Appendix A.

   It is important to note that the lite implementation was added to
   this specification to provide a stepping stone to full
   implementation.  Even for devices that are always connected to the
   public Internet, a full implementation is preferable if achievable.

2.8.  Usages of ICE

   This document specifies generic use of ICE with protocols that
   provide means to exchange candidate information between the ICE
   Peers.  The specific details of (i.e how to encode candidate
   information and the actual candidate exchange process) for different
   protocols using ICE are described in separate usage documents.  One
   possible way the agents can exchange the candidate information is to
   use [RFC3264] based Offer/Answer semantics as part of the SIP
   [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

3.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

   Readers should be familiar with the terminology defined in the STUN
   [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].
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   This specification makes use of the following additional terminology:

   ICE Agent:  An agent is the protocol implementation involved in the
      ICE candidate exchange.  There are two agents involved in a
      typical candidate exchange.

   Initiating Peer, Initiating Agent, Initiator:  An initiating agent is
      the protocol implementation involved in the ICE candidate exchange
      that initiates the ICE candidate exchange process.

   Responding Peer, Responding Agent, Responder:  A receiving agent is
      the protocol implementation involved in the ICE candidate exchange
      that receives and responds to the candidate exchange process
      initiated by the Initiator.

   ICE Candidate Exchange, Candidate Exchange:  The process where the
      ICE agents exchange information (e.g., candidates and passwords)
      that is needed to perform ICE.  [RFC3264] Offer/Answer with SDP
      encoding is one example of a protocol that can be used for
      exchanging the candidate information.

   Peer:  From the perspective of one of the agents in a session, its
      peer is the other agent.  Specifically, from the perspective of
      the initiating agent, the peer is the responding agent.  From the
      perspective of the responding agent, the peer is the initiating
      agent.

   Transport Address:  The combination of an IP address and transport
      protocol (such as UDP or TCP) port.

   Media, Media Stream, Media Session:  When ICE is used to setup
      multimedia sessions, the media is usually transported over RTP,
      and a media stream composes of a stream of RTP packets.  When ICE
      is used with other than multimedia sessions, the terms "media",
      "media stream", and "media session" are still used in this
      specification to refer to the IP data packets that are exchanged
      between the peers on the path created and tested with ICE.

   Candidate, Candidate Information:  A transport address that is a
      potential point of contact for receipt of media.  Candidates also
      have properties -- their type (server reflexive, relayed, or
      host), priority,foundation, and base.

   Component:  A component is a piece of a media stream requiring a
      single transport address; a media stream may require multiple
      components, each of which has to work for the media stream as a
      whole to work.  For media streams based on RTP, unless RTP and
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      RTCP are multiplexed in the same port, there are two components
      per media stream -- one for RTP, and one for RTCP.

   Host Candidate:  A candidate obtained by binding to a specific port
      from an IP address on the host.  This includes IP addresses on
      physical interfaces and logical ones, such as ones obtained
      through Virtual Private Networks (VPNs) and Realm Specific IP
      (RSIP) [RFC3102] (which lives at the operating system level).

   Server Reflexive Candidate:  A candidate whose IP address and port
      are a binding allocated by a NAT for an agent when it sent a
      packet through the NAT to a server.  Server reflexive candidates
      can be learned by STUN servers using the Binding request, or TURN
      servers, which provides both a relayed and server reflexive
      candidate.

   Peer Reflexive Candidate:  A candidate whose IP address and port are
      a binding allocated by a NAT for an agent when it sent a STUN
      Binding request through the NAT to its peer.

   Relayed Candidate:  A candidate obtained by sending a TURN Allocate
      request from a host candidate to a TURN server.  The relayed
      candidate is resident on the TURN server, and the TURN server
      relays packets back towards the agent.

   Base:  The base of a server reflexive candidate is the host candidate
      from which it was derived.  A host candidate is also said to have
      a base, equal to that candidate itself.  Similarly, the base of a
      relayed candidate is that candidate itself.

   Foundation:  An arbitrary string that is the same for two candidates
      that have the same type, base IP address, protocol (UDP, TCP,
      etc.), and STUN or TURN server.  If any of these are different,
      then the foundation will be different.  Two candidate pairs with
      the same foundation pairs are likely to have similar network
      characteristics.  Foundations are used in the frozen algorithm.

   Local Candidate:  A candidate that an agent has obtained and shared
      with the peer.

   Remote Candidate:  A candidate that an agent received from its peer.

   Default Destination/Candidate:  The default destination for a
      component of a media stream is the transport address that would be
      used by an agent that is not ICE aware.  A default candidate for a
      component is one whose transport address matches the default
      destination for that component.

Keranen & Rosenberg       Expires June 23, 2016                [Page 17]



Internet-Draft                     ICE                     December 2015

   Candidate Pair:  A pairing containing a local candidate and a remote
      candidate.

   Check, Connectivity Check, STUN Check:  A STUN Binding request
      transaction for the purposes of verifying connectivity.  A check
      is sent from the local candidate to the remote candidate of a
      candidate pair.

   Check List:  An ordered set of candidate pairs that an agent will use
      to generate checks.

   Ordinary Check:  A connectivity check generated by an agent as a
      consequence of a timer that fires periodically, instructing it to
      send a check.

   Triggered Check:  A connectivity check generated as a consequence of
      the receipt of a connectivity check from the peer.

   Valid List:  An ordered set of candidate pairs for a media stream
      that have been validated by a successful STUN transaction.

   Full:  An ICE implementation that performs the complete set of
      functionality defined by this specification.

   Lite:  An ICE implementation that omits certain functions,
      implementing only as much as is necessary for a peer
      implementation that is full to gain the benefits of ICE.  Lite
      implementations do not maintain any of the state machines and do
      not generate connectivity checks.

   Controlling Agent:  The ICE agent that is responsible for selecting
      the final choice of candidate pairs and signaling them through
      STUN.  In any session, one agent is always controlling.  The other
      is the controlled agent.

   Controlled Agent:  An ICE agent that waits for the controlling agent
      to select the final choice of candidate pairs.

   Regular Nomination:  The process of picking a valid candidate pair
      for media traffic by validating the pair with one STUN request,
      and then picking it by sending a second STUN request with a flag
      indicating its nomination.

   Aggressive Nomination:  The process of picking a valid candidate pair
      for media traffic by including a flag in every connectivity check
      STUN request, such that the first one to produce a valid candidate
      pair is used for media.
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   Nominated:  If a valid candidate pair has its nominated flag set, it
      means that it may be selected by ICE for sending and receiving
      media.

   Selected Pair, Selected Candidate:  The candidate pair selected by
      ICE for sending and receiving media is called the selected pair,
      and each of its candidates is called the selected candidate.

   Using Protocol, ICE Usage:  The protocol that uses ICE for NAT
      traversal.  A usage specification defines the protocol specific
      details on how the procedures defined here are applied to that
      protocol.

4.  ICE Candidate Gathering and Exchange

   As part of ICE processing, both the initiating and responding agents
   exchange encoded candidate information as defined by the Usage
   Protocol (ICE Usage).  Specifics of encoding mechanism and the
   semantics of candidate information exchange is out of scope of this
   specification.

   However at a higher level, the below diagram captures ICE processing
   sequence in the agents (initiator and responder) for exchange of
   their respective candidate(s) information.

Keranen & Rosenberg       Expires June 23, 2016                [Page 19]



Internet-Draft                     ICE                     December 2015

             Initiating                      Responding
               Agent                           Agent
               (I)                             (R)
   Gather,      |                               |
   prioritize,  |                               |
   eliminate    |                               |
   redundant    |                               |
   candidates,  |                               |
   Encode       |                               |
   candidates   |                               |
                |   I’s Candidate Information   |
                |------------------------------>|
                |                               | Gather,
                |                               | prioritize,
                |                               | eliminate
                |                               | redundant
                |                               | candidates,
                |                               | Encode
                |                               | candidates
                |   R’s Candidate Information   |
                |<------------------------------|
                |                               |

            Figure 6: Candidate Gathering and Exchange Sequence

   As shown, the agents involved in the candidate exchange perform (1)
   candidate gathering, (2) candidate prioritization, (3) eliminating
   redundant candidates, (4) (possibly) choose default candidates, and
   then (5) formulate and send the candidates to the Peer ICE agent.
   All but the last of these five steps differ for full and lite
   implementations.

4.1.  Procedures for Full Implementation

4.1.1.  Gathering Candidates

   An agent gathers candidates when it believes that communication is
   imminent.  An initiating agent can do this based on a user interface
   cue, or based on an explicit request to initiate a session.  Every
   candidate is a transport address.  It also has a type and a base.
   Four types are defined and gathered by this specification -- host
   candidates, server reflexive candidates, peer reflexive candidates,
   and relayed candidates.  The server reflexive candidates are gathered
   using STUN or TURN, and relayed candidates are obtained through TURN.
   Peer reflexive candidates are obtained in later phases of ICE, as a
   consequence of connectivity checks.  The base of a candidate is the
   candidate that an agent must send from when using that candidate.
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   The process for gathering candidates at the responding agent is
   identical to the process for the initiating agent.  It is RECOMMENDED
   that the responding agent begins this process immediately on receipt
   of the candidate information, prior to alerting the user.  Such
   gathering MAY begin when an agent starts.

4.1.1.1.  Host Candidates

   The first step is to gather host candidates.  Host candidates are
   obtained by binding to ports (typically ephemeral) on a IP address
   attached to an interface (physical or virtual, including VPN
   interfaces) on the host.

   For each UDP media stream the agent wishes to use, the agent SHOULD
   obtain a candidate for each component of the media stream on each IP
   address that the host has, with the exceptions listed below.  The
   agent obtains each candidate by binding to a UDP port on the specific
   IP address.  A host candidate (and indeed every candidate) is always
   associated with a specific component for which it is a candidate.

   Each component has an ID assigned to it, called the component ID.
   For RTP-based media streams, unless both RTP and RTCP are multiplexed
   in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
   component ID of 1, and RTCP a component ID of 2.  In case of RTP/RTCP
   multiplexing, a component ID of 1 is used for both RTP and RTCP.

   When candidates are obtained, unless the agent knows for sure that
   RTP/RTCP multiplexing will be used (i.e. the agent knows that the
   other agent also supports, and is willing to use, RTP/RTCP
   multiplexing), or unless the agent only supports RTP/RTCP
   multiplexing, the agent MUST obtain a separate candidate for RTCP.
   If an agent has obtained a candidate for RTCP, and ends up using RTP/
   RTCP multiplexing, the agent does not need to perform connectivity
   checks on the RTCP candidate.

   If an agent is using separate candidates for RTP and RTCP, it will
   end up with 2*K host candidates if an agent has K IP addresses.

   Note that the responding agent, when obtaining its candidates, will
   typically know if the other agent supports RTP/RTCP multiplexing, in
   which case it will not need to obtain a separate candidate for RTCP.
   However, absence of a component ID 2 as such does not imply use of
   RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

   For other than RTP-based streams, use of multiple components is
   discouraged since using them increases the complexity of ICE
   processing.  If multiple components are needed, the component IDs
   SHOULD start with 1 and increase by 1 for each component.
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   The base for each host candidate is set to the candidate itself.

   The host candidates are gathered from all IP addresses with the
   following exceptions:

   o  Addresses from a loopback interface MUST NOT be included in the
      candidate addresses.

   o  Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
      local unicast addresses [RFC3879] MUST NOT be included in the
      address candidates.

   o  IPv4-mapped IPv6 addresses SHOULD NOT be included in the offered
      candidates unless the application using ICE does not support IPv4
      (i.e., is an IPv6-only application [RFC4038]).

   o  If one or more host candidates corresponding to an IPv6 address
      generated using a mechanism that prevents location tracking
      [I-D.ietf-6man-ipv6-address-generation-privacy] are gathered, host
      candidates corresponding to IPv6 addresses that do allow location
      tracking, that are configured on the same interface, and are part
      of the same network prefix MUST NOT be gathered; and host
      candidates corresponding to IPv6 link-local addresses MUST NOT be
      gathered.

4.1.1.2.  Server Reflexive and Relayed Candidates

   Agents SHOULD obtain relayed candidates and SHOULD obtain server
   reflexive candidates.  These requirements are at SHOULD strength to
   allow for provider variation.  Use of STUN and TURN servers may be
   unnecessary in closed networks where agents are never connected to
   the public Internet or to endpoints outside of the closed network.
   In such cases, a full implementation would be used for agents that
   are dual-stack or multihomed, to select a host candidate.  Use of
   TURN servers is expensive, and when ICE is being used, they will only
   be utilized when both endpoints are behind NATs that perform address
   and port dependent mapping.  Consequently, some deployments might
   consider this use case to be marginal, and elect not to use TURN
   servers.  If an agent does not gather server reflexive or relayed
   candidates, it is RECOMMENDED that the functionality be implemented
   and just disabled through configuration, so that it can be re-enabled
   through configuration if conditions change in the future.

   If an agent is gathering both relayed and server reflexive
   candidates, it uses a TURN server.  If it is gathering just server
   reflexive candidates, it uses a STUN server.
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   The agent next pairs each host candidate with the STUN or TURN server
   with which it is configured or has discovered by some means.  If a
   STUN or TURN server is configured, it is RECOMMENDED that a domain
   name be configured, and the DNS procedures in [RFC5389] (using SRV
   records with the "stun" service) be used to discover the STUN server,
   and the DNS procedures in [RFC5766] (using SRV records with the
   "turn" service) be used to discover the TURN server.

   This specification only considers usage of a single STUN or TURN
   server.  When there are multiple choices for that single STUN or TURN
   server (when, for example, they are learned through DNS records and
   multiple results are returned), an agent SHOULD use a single STUN or
   TURN server (based on its IP address) for all candidates for a
   particular session.  This improves the performance of ICE.  The
   result is a set of pairs of host candidates with STUN or TURN
   servers.  The agent then chooses one pair, and sends a Binding or
   Allocate request to the server from that host candidate.  Binding
   requests to a STUN server are not authenticated, and any ALTERNATE-
   SERVER attribute in a response is ignored.  Agents MUST support the
   backwards compatibility mode for the Binding request defined in
   [RFC5389].  Allocate requests SHOULD be authenticated using a long-
   term credential obtained by the client through some other means.

   Every Ta milliseconds thereafter, the agent can generate another new
   STUN or TURN transaction.  This transaction can either be a retry of
   a previous transaction that failed with a recoverable error (such as
   authentication failure), or a transaction for a new host candidate
   and STUN or TURN server pair.  The agent SHOULD NOT generate
   transactions more frequently than one every Ta milliseconds.  See
   Section 12 for guidance on how to set Ta and the STUN retransmit
   timer, RTO.

   The agent will receive a Binding or Allocate response.  A successful
   Allocate response will provide the agent with a server reflexive
   candidate (obtained from the mapped address) and a relayed candidate
   in the XOR-RELAYED-ADDRESS attribute.  If the Allocate request is
   rejected because the server lacks resources to fulfill it, the agent
   SHOULD instead send a Binding request to obtain a server reflexive
   candidate.  A Binding response will provide the agent with only a
   server reflexive candidate (also obtained from the mapped address).
   The base of the server reflexive candidate is the host candidate from
   which the Allocate or Binding request was sent.  The base of a
   relayed candidate is that candidate itself.  If a relayed candidate
   is identical to a host candidate (which can happen in rare cases),
   the relayed candidate MUST be discarded.

   If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
   and DNS64 [RFC6147] technologies, it may gather also IPv4 server
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   reflexive and/or relayed candidates from IPv4-only STUN or TURN
   servers.  IPv6-only agents SHOULD also utilize IPv6 prefix discovery
   [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
   generate server reflexive candidates for each IPv6-only interface
   accordingly.  The NAT64 server reflexive candidates are prioritized
   like IPv4 server reflexive candidates.

4.1.1.3.  Computing Foundations

   Finally, the agent assigns each candidate a foundation.  The
   foundation is an identifier, scoped within a session.  Two candidates
   MUST have the same foundation ID when all of the following are true:

   o  they are of the same type (host, relayed, server reflexive, or
      peer reflexive)

   o  their bases have the same IP address (the ports can be different)

   o  for reflexive and relayed candidates, the STUN or TURN servers
      used to obtain them have the same IP address

   o  they were obtained using the same transport protocol (TCP, UDP,
      etc.)

   Similarly, two candidates MUST have different foundations if their
   types are different, their bases have different IP addresses, the
   STUN or TURN servers used to obtain them have different IP addresses,
   or their transport protocols are different.

4.1.1.4.  Keeping Candidates Alive

   Once server reflexive and relayed candidates are allocated, they MUST
   be kept alive until ICE processing has completed, as described in
   Section 7.3.  For server reflexive candidates learned through a
   Binding request, the bindings MUST be kept alive by additional
   Binding requests to the server.  Refreshes for allocations are done
   using the Refresh transaction, as described in [RFC5766].  The
   Refresh requests will also refresh the server reflexive candidate.

4.1.2.  Prioritizing Candidates

   The prioritization process results in the assignment of a priority to
   each candidate.  Each candidate for a media stream MUST have a unique
   priority that MUST be a positive integer between 1 and (2**31 - 1).
   This priority will be used by ICE to determine the order of the
   connectivity checks and the relative preference for candidates.
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   An agent SHOULD compute this priority using the formula in
   Section 4.1.2.1 and choose its parameters using the guidelines in
   Section 4.1.2.2.  If an agent elects to use a different formula, ICE
   will take longer to converge since both agents will not be
   coordinated in their checks.

   The process for prioritizing candidates is common across the
   initiating and the responding agent.

4.1.2.1.  Recommended Formula

   When using the formula, an agent computes the priority by determining
   a preference for each type of candidate (server reflexive, peer
   reflexive, relayed, and host), and, when the agent is multihomed,
   choosing a preference for its IP addresses.  These two preferences
   are then combined to compute the priority for a candidate.  That
   priority is computed using the following formula:

   priority = (2^24)*(type preference) +
              (2^8)*(local preference) +
              (2^0)*(256 - component ID)

   The type preference MUST be an integer from 0 to 126 inclusive, and
   represents the preference for the type of the candidate (where the
   types are local, server reflexive, peer reflexive, and relayed).  A
   126 is the highest preference, and a 0 is the lowest.  Setting the
   value to a 0 means that candidates of this type will only be used as
   a last resort.  The type preference MUST be identical for all
   candidates of the same type and MUST be different for candidates of
   different types.  The type preference for peer reflexive candidates
   MUST be higher than that of server reflexive candidates.  Note that
   candidates gathered based on the procedures of Section 4.1.1 will
   never be peer reflexive candidates; candidates of these type are
   learned from the connectivity checks performed by ICE.

   The local preference MUST be an integer from 0 to 65535 inclusive.
   It represents a preference for the particular IP address from which
   the candidate was obtained. 65535 represents the highest preference,
   and a zero, the lowest.  When there is only a single IP address, this
   value SHOULD be set to 65535.  More generally, if there are multiple
   candidates for a particular component for a particular media stream
   that have the same type, the local preference MUST be unique for each
   one.  In this specification, this only happens for multihomed hosts
   or if an agent is using multiple TURN servers.  If a host is
   multihomed because it is dual-stack, the local preference SHOULD be
   set equal to the precedence value for IP addresses described in RFC
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   6724 [RFC6724].  If the host operating system provides an API for
   discovering preference among different addresses, those preferences
   SHOULD be used for the local preference to prioritize addresses
   indicated as preferred by the operating system.

   The component ID is the component ID for the candidate, and MUST be
   between 1 and 256 inclusive.

4.1.2.2.  Guidelines for Choosing Type and Local Preferences

   One criterion for selection of the type and local preference values
   is the use of a media intermediary, such as a TURN server, VPN
   server, or NAT.  With a media intermediary, if media is sent to that
   candidate, it will first transit the media intermediary before being
   received.  Relayed candidates are one type of candidate that involves
   a media intermediary.  Another are host candidates obtained from a
   VPN interface.  When media is transited through a media intermediary,
   it can increase the latency between transmission and reception.  It
   can increase the packet losses, because of the additional router hops
   that may be taken.  It may increase the cost of providing service,
   since media will be routed in and right back out of a media
   intermediary run by a provider.  If these concerns are important, the
   type preference for relayed candidates SHOULD be lower than host
   candidates.  The RECOMMENDED values are 126 for host candidates, 100
   for server reflexive candidates, 110 for peer reflexive candidates,
   and 0 for relayed candidates.

   Furthermore, if an agent is multihomed and has multiple IP addresses,
   the local preference for host candidates from a VPN interface SHOULD
   have a priority of 0.  If multiple TURN servers are used, local
   priorities for the candidates obtained from the TURN servers are
   chosen in a similar fashion as for multihomed local candidates: the
   local preference value is used to indicate preference among different
   servers but the preference MUST be unique for each one.

   Another criterion for selection of preferences is IP address family.
   ICE works with both IPv4 and IPv6.  It therefore provides a
   transition mechanism that allows dual-stack hosts to prefer
   connectivity over IPv6, but to fall back to IPv4 in case the v6
   networks are disconnected (due, for example, to a failure in a 6to4
   relay) [RFC3056].  It can also help with hosts that have both a
   native IPv6 address and a 6to4 address.  In such a case, higher local
   preferences could be assigned to the v6 addresses, followed by the
   6to4 addresses, followed by the v4 addresses.  This allows a site to
   obtain and begin using native v6 addresses immediately, yet still
   fall back to 6to4 addresses when communicating with agents in other
   sites that do not yet have native v6 connectivity.
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   Another criterion for selecting preferences is security.  If a user
   is a telecommuter, and therefore connected to a corporate network and
   a local home network, the user may prefer their voice traffic to be
   routed over the VPN in order to keep it on the corporate network when
   communicating within the enterprise, but use the local network when
   communicating with users outside of the enterprise.  In such a case,
   a VPN address would have a higher local preference than any other
   address.

   Another criterion for selecting preferences is topological awareness.
   This is most useful for candidates that make use of intermediaries.
   In those cases, if an agent has preconfigured or dynamically
   discovered knowledge of the topological proximity of the
   intermediaries to itself, it can use that to assign higher local
   preferences to candidates obtained from closer intermediaries.

4.1.3.  Eliminating Redundant Candidates

   Next, the agent eliminates redundant candidates.  A candidate is
   redundant if its transport address equals another candidate, and its
   base equals the base of that other candidate.  Note that two
   candidates can have the same transport address yet have different
   bases, and these would not be considered redundant.  Frequently, a
   server reflexive candidate and a host candidate will be redundant
   when the agent is not behind a NAT.  The agent SHOULD eliminate the
   redundant candidate with the lower priority.

   This process is common across the initiating and responding agents.

4.2.  Lite Implementation Procedures

   Lite implementations only utilize host candidates.  A lite
   implementation MUST, for each component of each media stream,
   allocate zero or one IPv4 candidates.  It MAY allocate zero or more
   IPv6 candidates, but no more than one per each IPv6 address utilized
   by the host.  Since there can be no more than one IPv4 candidate per
   component of each media stream, if an agent has multiple IPv4
   addresses, it MUST choose one for allocating the candidate.  If a
   host is dual-stack, it is RECOMMENDED that it allocate one IPv4
   candidate and one global IPv6 address.  With the lite implementation,
   ICE cannot be used to dynamically choose amongst candidates.
   Therefore, including more than one candidate from a particular scope
   is NOT RECOMMENDED, since only a connectivity check can truly
   determine whether to use one address or the other.

   Each component has an ID assigned to it, called the component ID.
   For RTP-based media streams, unless RTCP is multiplexed in the same
   port with RTP, the RTP itself has a component ID of 1, and RTCP a
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   component ID of 2.  If an agent is using RTCP without multiplexing,
   it MUST obtain candidates for it.  However, absence of a component ID
   2 as such does not imply use of RTCP/RTP multiplexing, as it could
   also mean that RTCP is not used.

   Each candidate is assigned a foundation.  The foundation MUST be
   different for two candidates allocated from different IP addresses,
   and MUST be the same otherwise.  A simple integer that increments for
   each IP address will suffice.  In addition, each candidate MUST be
   assigned a unique priority amongst all candidates for the same media
   stream.  This priority SHOULD be equal to:

   priority = (2^24)*(126) +
              (2^8)*(IP precedence) +
              (2^0)*(256 - component ID)

   If a host is v4-only, it SHOULD set the IP precedence to 65535.  If a
   host is v6 or dual-stack, the IP precedence SHOULD be the precedence
   value for IP addresses described in RFC 6724 [RFC6724].

   Next, an agent chooses a default candidate for each component of each
   media stream.  If a host is IPv4-only, there would only be one
   candidate for each component of each media stream, and therefore that
   candidate is the default.  If a host is IPv6 or dual-stack, the
   selection of default is a matter of local policy.  This default
   SHOULD be chosen such that it is the candidate most likely to be used
   with a peer.  For IPv6-only hosts, this would typically be a globally
   scoped IPv6 address.  For dual-stack hosts, the IPv4 address is
   RECOMMENDED.

   The procedures in this section is common across the initiating and
   responding agents.

4.3.  Encoding the Candidate Information

   Regardless of the agent being an Initiator or Responder Agent, the
   following parameters and their data types needs to be conveyed as
   part of the candidate exchange process.  The specifics of syntax for
   encoding the candidate information is out of scope of this
   specification.

   Candidate attribute  There will be one or more of these for each
      "media stream".  Each candidate is composed of:

      Connection Address:  The IP address and transport protocol port of
         the candidate.
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      Transport:  An indicator of the transport protocol for this
         candidate.  This need not be present if the using protocol will
         only ever run over a single transport protocol.  If it runs
         over more than one, or if others are anticipated to be used in
         the future, this should be present.

      Foundation:  A sequence of up to 32 characters.

      Component-ID:  This would be present only if the using protocol
         were utilizing the concept of components.  If it is, it would
         be a positive integer that indicates the component ID for which
         this is a candidate.

      Priority:  An encoding of the 32-bit priority value.

      Candidate Type:  The candidate type, as defined in ICE.

      Related Address and Port:  The related IP address and port for
         this candidate, as defined by ICE.  These MAY be omitted or set
         to invalid values if the agent does not want to reveal them,
         e.g., for privacy reasons.

      Extensibility Parameters:  The using protocol should define some
         means for adding new per-candidate ICE parameters in the
         future.

   Lite Flag:  If ICE lite is used by the using protocol, it needs to
      convey a boolean parameter which indicates whether the
      implementation is lite or not.

   Connectivity check pacing value:  If an agent wants to use other than
      the default pacing values for the connectivity checks, it MUST
      indicate this in the ICE exchange.

   Username Fragment and Password:  The using protocol has to convey a
      username fragment and password.  The username fragment MUST
      contain at least 24 bits of randomness, and the password MUST
      contain at least 128 bits of randomness.

   ICE extensions:  In addition to the per-candidate extensions above,
      the using protocol should allow for new media-stream or session-
      level attributes (ice-options).

   If the using protocol is using the ICE mismatch feature, a way is
   needed to convey this parameter in answers.  It is a boolean flag.

   The exchange of parameters is symmetric; both agents need to send the
   same set of attributes as defined above.

Keranen & Rosenberg       Expires June 23, 2016                [Page 29]



Internet-Draft                     ICE                     December 2015

   The using protocol may (or may not) need to deal with backwards
   compatibility with older implementations that do not support ICE.  If
   the fallback mechanism is being used, then presumably the using
   protocol provides a way of conveying the default candidate (its IP
   address and port) in addition to the ICE parameters.

   STUN connectivity checks between agents are authenticated using the
   short-term credential mechanism defined for STUN [RFC5389].  This
   mechanism relies on a username and password that are exchanged
   through protocol machinery between the client and server.  The
   username part of this credential is formed by concatenating a
   username fragment from each agent, separated by a colon.  Each agent
   also provides a password, used to compute the message integrity for
   requests it receives.  The username fragment and password are
   exchanged between the peers.  In addition to providing security, the
   username provides disambiguation and correlation of checks to media
   streams.  See Appendix B.4 for motivation.

   If the initiating agent is a lite implementation, it MUST indicate
   this when sending its candidates .

   ICE provides for extensibility by allowing an agent to include a
   series of tokens that identify ICE extensions as part of the
   candidate exchange process.

   Once an agent has sent its candidate information, that agent MUST be
   prepared to receive both STUN and media packets on each candidate.
   As discussed in Section 10.1, media packets can be sent to a
   candidate prior to its appearance as the default destination for
   media.

5.  ICE Candidate Processing

   Once an agent has candidates from it’s peer, it will check if the
   peer supports ICE, determine its own role, exchanges candidates
   (Section 4) and for full implementations, forms the check lists and
   begins connectivity checks as explained in this section.

5.1.  Procedures for Full Implementation

5.1.1.  Verifying ICE Support

   Certain middleboxes, such as ALGs, may alter the ICE candidate
   information that breaks ICE.  If the using protocol is vulnerable to
   this kind of changes, called ICE mismatch, the responding agent needs
   to detect this and signal this back to the initiating agent.  The
   details on whether this is needed and how it is done is defined by
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   the usage specifications.  One exception to the above is that an
   initiating agent would never indicate ICE mismatch.

5.1.2.  Determining Role

   For each session, each agent (Initiating and Responding) takes on a
   role.  There are two roles -- controlling and controlled.  The
   controlling agent is responsible for the choice of the final
   candidate pairs used for communications.  For a full agent, this
   means nominating the candidate pairs that can be used by ICE for each
   media stream, and for updating the peer with the ICE’s selection,
   when needed.  The controlled agent is told which candidate pairs to
   use for each media stream, and does not require updating the peer to
   signal this information.  The sections below describe in detail the
   actual procedures followed by controlling and controlled nodes.

   The rules for determining the role and the impact on behavior are as
   follows:

   Both agents are full:  The Initiating Agent which started the ICE
      processing MUST take the controlling role, and the other MUST take
      the controlled role.  Both agents will form check lists, run the
      ICE state machines, and generate connectivity checks.  The
      controlling agent will execute the logic in Section 7.1 to
      nominate pairs that will be selected by ICE, and then both agents
      end ICE as described in Section 7.1.2.

   One agent full, one lite:  The full agent MUST take the controlling
      role, and the lite agent MUST take the controlled role.  The full
      agent will form check lists, run the ICE state machines, and
      generate connectivity checks.  That agent will execute the logic
      in Section 7.1 to nominate pairs that will be selected by ICE, and
      use the logic in Section 7.1.2 to end ICE.  The lite
      implementation will just listen for connectivity checks, receive
      them and respond to them, and then conclude ICE as described in
      Section 7.2.  For the lite implementation, the state of ICE
      processing for each media stream is considered to be Running, and
      the state of ICE overall is Running.

   Both lite:  The Initiating Agent which started the ICE processing
      MUST take the controlling role, and the other MUST take the
      controlled role.  In this case, no connectivity checks are ever
      sent.  Rather, once the candidates are exchanged, each agent
      performs the processing described in Section 7 without
      connectivity checks.  It is possible that both agents will believe
      they are controlled or controlling.  In the latter case, the
      conflict is resolved through glare detection capabilities in the
      signaling protocol enabling the candidate exchange.  The state of
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      ICE processing for each media stream is considered to be Running,
      and the state of ICE overall is Running.

   Once roles are determined for a session, they persist unless ICE is
   restarted.  An ICE restart causes a new selection of roles and tie-
   breakers.

5.1.3.  Forming the Check Lists

   There is one check list per in-use media stream resulting from the
   candidate exchange.  To form the check list for a media stream, the
   agent forms candidate pairs, computes a candidate pair priority,
   orders the pairs by priority, prunes them, and sets their states.
   These steps are described in this section.

5.1.3.1.  Forming Candidate Pairs

   First, the agent takes each of its candidates for a media stream
   (called LOCAL CANDIDATES) and pairs them with the candidates it
   received from its peer (called REMOTE CANDIDATES) for that media
   stream.  In order to prevent the attacks described in Section 14.4.1,
   agents MAY limit the number of candidates they’ll accept in an
   candidate exchange process.  A local candidate is paired with a
   remote candidate if and only if the two candidates have the same
   component ID and have the same IP address version.  It is possible
   that some of the local candidates won’t get paired with remote
   candidates, and some of the remote candidates won’t get paired with
   local candidates.  This can happen if one agent doesn’t include
   candidates for the all of the components for a media stream.  If this
   happens, the number of components for that media stream is
   effectively reduced, and considered to be equal to the minimum across
   both agents of the maximum component ID provided by each agent across
   all components for the media stream.

   In the case of RTP, this would happen when one agent provides
   candidates for RTCP, and the other does not.  As another example, the
   initiating agent can multiplex RTP and RTCP on the same port
   [RFC5761].  However, since the initiating agent doesn’t know if the
   peer agent can perform such multiplexing, it includes candidates for
   RTP and RTCP on separate ports.  If the peer agent can perform such
   multiplexing, it would include just a single component for each
   candidate -- for the combined RTP/RTCP mux.  ICE would end up acting
   as if there was just a single component for this candidate.

   With IPv6 it is common for a host to have multiple host candidates
   for each interface.  To keep the amount of resulting candidate pairs
   reasonable and to avoid candidate pairs that are highly unlikely to
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   work, IPv6 link-local addresses [RFC4291] MUST NOT be paired with
   other than link-local addresses.

   The candidate pairs whose local and remote candidates are both the
   default candidates for a particular component is called,
   unsurprisingly, the default candidate pair for that component.  This
   is the pair that would be used to transmit media if both agents had
   not been ICE aware.

   In order to aid understanding, Figure 7 shows the relationships
   between several key concepts -- transport addresses, candidates,
   candidate pairs, and check lists, in addition to indicating the main
   properties of candidates and candidate pairs.
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       +--------------------------------------------+
       |                                            |
       | +---------------------+                    |
       | |+----+ +----+ +----+ |   +Type            |
       | || IP | |Port| |Tran| |   +Priority        |
       | ||Addr| |    | |    | |   +Foundation      |
       | |+----+ +----+ +----+ |   +Component ID    |
       | |      Transport      |   +Related Address |
       | |        Addr         |                    |
       | +---------------------+   +Base            |
       |             Candidate                      |
       +--------------------------------------------+
       *                                         *
       *    *************************************
       *    *
     +-------------------------------+
    .|                               |
     | Local     Remote              |
     | +----+    +----+   +default?  |
     | |Cand|    |Cand|   +valid?    |
     | +----+    +----+   +nominated?|
     |                    +State     |
     |                               |
     |                               |
     |          Candidate Pair       |
     +-------------------------------+
     *                              *
     *                  ************
     *                  *
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+

            Check
            List

               Figure 7: Conceptual Diagram of a Check List
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5.1.3.2.  Computing Pair Priority and Ordering Pairs

   Once the pairs are formed, a candidate pair priority is computed.
   Let G be the priority for the candidate provided by the controlling
   agent.  Let D be the priority for the candidate provided by the
   controlled agent.  The priority for a pair is computed as:

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   Where G>D?1:0 is an expression whose value is 1 if G is greater than
   D, and 0 otherwise.  Once the priority is assigned, the agent sorts
   the candidate pairs in decreasing order of priority.  If two pairs
   have identical priority, the ordering amongst them is arbitrary.

5.1.3.3.  Pruning the Pairs

   This sorted list of candidate pairs is used to determine a sequence
   of connectivity checks that will be performed.  Each check involves
   sending a request from a local candidate to a remote candidate.
   Since an agent cannot send requests directly from a reflexive
   candidate, but only from its base, the agent next goes through the
   sorted list of candidate pairs.  For each pair where the local
   candidate is server reflexive, the server reflexive candidate MUST be
   replaced by its base.  Once this has been done, the agent MUST prune
   the list.  This is done by removing a pair if its local and remote
   candidates are identical to the local and remote candidates of a pair
   higher up on the priority list.  The result is a sequence of ordered
   candidate pairs, called the check list for that media stream.

   In addition, in order to limit the attacks described in
   Section 14.4.1, an agent MUST limit the total number of connectivity
   checks the agent performs across all check lists to a specific value,
   and this value MUST be configurable.  A default of 100 is
   RECOMMENDED.  This limit is enforced by discarding the lower-priority
   candidate pairs until there are less than 100.  It is RECOMMENDED
   that a lower value be utilized when possible, set to the maximum
   number of plausible checks that might be seen in an actual deployment
   configuration.  The requirement for configuration is meant to provide
   a tool for fixing this value in the field if, once deployed, it is
   found to be problematic.

5.1.3.4.  Computing States

   Each candidate pair in the check list has a foundation and a state.
   The foundation is the combination of the foundations of the local and
   remote candidates in the pair.  The state is assigned once the check
   list for each media stream has been computed.  There are five
   potential values that the state can have:
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   Waiting:  A check has not been performed for this pair, and can be
      performed as soon as it is the highest-priority Waiting pair on
      the check list.

   In-Progress:  A check has been sent for this pair, but the
      transaction is in progress.

   Succeeded:  A check for this pair was already done and produced a
      successful result.

   Failed:  A check for this pair was already done and failed, either
      never producing any response or producing an unrecoverable failure
      response.

   Frozen:  A check for this pair hasn’t been performed, and it can’t
      yet be performed until some other check succeeds, allowing this
      pair to unfreeze and move into the Waiting state.

   As ICE runs, the pairs will move between states as shown in Figure 8.
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      +-----------+
      |           |
      |           |
      |  Frozen   |
      |           |
      |           |
      +-----------+
            |
            |unfreeze
            |
            V
      +-----------+         +-----------+
      |           |         |           |
      |           | perform |           |
      |  Waiting  |-------->|In-Progress|
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+
                                  / |
                                //  |
                              //    |
                            //      |
                           /        |
                         //         |
               failure //           |success
                     //             |
                    /               |
                  //                |
                //                  |
              //                    |
             V                      V
      +-----------+         +-----------+
      |           |         |           |
      |           |         |           |
      |   Failed  |         | Succeeded |
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+

                         Figure 8: Pair State FSM

   The initial states for each pair in a check list are computed by
   performing the following sequence of steps:

   1.  The agent sets all of the pairs in each check list to the Frozen
       state.
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   2.  The agent examines the check list for the first media stream.
       For that media stream:

       *  For all pairs with the same foundation, it sets the state of
          the pair with the lowest component ID to Waiting.  If there is
          more than one such pair, the one with the highest-priority is
          used.

   One of the check lists will have some number of pairs in the Waiting
   state, and the other check lists will have all of their pairs in the
   Frozen state.  A check list with at least one pair that is Waiting is
   called an active check list, and a check list with all pairs Frozen
   is called a frozen check list.

   The check list itself is associated with a state, which captures the
   state of ICE checks for that media stream.  There are three states:

   Running:  In this state, ICE checks are still in progress for this
      media stream.

   Completed:  In this state, ICE checks have produced nominated pairs
      for each component of the media stream.  Consequently, ICE has
      succeeded and media can be sent.

   Failed:  In this state, the ICE checks have not completed
      successfully for this media stream.

   When a check list is first constructed as the consequence of an
   candidate exchange, it is placed in the Running state.

   ICE processing across all media streams also has a state associated
   with it.  This state is equal to Running while ICE processing is
   under way.  The state is Completed when ICE processing is complete
   and Failed if it failed without success.  Rules for transitioning
   between states are described below.

5.1.4.  Scheduling Checks

   An agent performs ordinary checks and triggered checks.  The
   generation of both checks is governed by a timer that fires
   periodically for each media stream.  The agent maintains a FIFO
   queue, called the triggered check queue, which contains candidate
   pairs for which checks are to be sent at the next available
   opportunity.  When the timer fires, the agent removes the top pair
   from the triggered check queue, performs a connectivity check on that
   pair, and sets the state of the candidate pair to In-Progress.  If
   there are no pairs in the triggered check queue, an ordinary check is
   sent.
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   Once the agent has computed the check lists as described in
   Section 5.1.3, it sets a timer for each active check list.  The timer
   fires every Ta*N seconds, where N is the number of active check lists
   (initially, there is only one active check list).  Implementations
   MAY set the timer to fire less frequently than this.  Implementations
   SHOULD take care to spread out these timers so that they do not fire
   at the same time for each media stream.  Ta and the retransmit timer
   RTO are computed as described in Section 12.  Multiplying by N allows
   this aggregate check throughput to be split between all active check
   lists.  The first timer fires immediately, so that the agent performs
   a connectivity check the moment the candidate exchange has been done,
   followed by the next check Ta seconds later (since there is only one
   active check list).

   When the timer fires and there is no triggered check to be sent, the
   agent MUST choose an ordinary check as follows:

   o  Find the highest-priority pair in that check list that is in the
      Waiting state.

   o  If there is such a pair:

      *  Send a STUN check from the local candidate of that pair to the
         remote candidate of that pair.  The procedures for forming the
         STUN request for this purpose are described in Section 6.1.2.

      *  Set the state of the candidate pair to In-Progress.

   o  If there is no such pair:

      *  Find the highest-priority pair in that check list that is in
         the Frozen state.

      *  If there is such a pair:

         +  Unfreeze the pair.

         +  Perform a check for that pair, causing its state to
            transition to In-Progress.

      *  If there is no such pair:

         +  Terminate the timer for that check list.

   To compute the message integrity for the check, the agent uses the
   remote username fragment and password learned from the candidate
   information obtained from its peer.  The local username fragment is
   known directly by the agent for its own candidate.
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   The Initiator performs the ordinary checks on receiving the candidate
   information from the Peer (responder) and having formed the
   checklists.  On the other hand the responding agent either performs
   the triggered or ordinary checks as described above.

5.2.  Lite Implementation Procedures

   Lite implementations skips most of the steps in Section 5 except for
   verifying the peer’s ICE support and determining its role in the ICE
   processing.

   On determining the role for a lite implementation being the
   controlling agent means selecting a candidate pair based on the ones
   in the candidate exchange (for IPv4, there is only ever one pair),
   and then updating the peer with the new candidate information
   reflecting that selection, when needed (it is never needed for an
   IPv4-only host).  The controlled agent is told which candidate pairs
   to use for each media stream, and no further candidate updates are
   needed to signal this information.

6.  Performing Connectivity Checks

   This section describes how connectivity checks are performed.  All
   ICE implementations are required to be compliant to [RFC5389], as
   opposed to the older [RFC3489].  However, whereas a full
   implementation will both generate checks (acting as a STUN client)
   and receive them (acting as a STUN server), a lite implementation
   will only receive checks, and thus will only act as a STUN server.

6.1.  STUN Client Procedures

   These procedures define how an agent sends a connectivity check,
   whether it is an ordinary or a triggered check.  These procedures are
   only applicable to full implementations.

6.1.1.  Creating Permissions for Relayed Candidates

   If the connectivity check is being sent using a relayed local
   candidate, the client MUST create a permission first if it has not
   already created one previously.  It would have created one previously
   if it had told the TURN server to create a permission for the given
   relayed candidate towards the IP address of the remote candidate.  To
   create the permission, the agent follows the procedures defined in
   [RFC5766].  The permission MUST be created towards the IP address of
   the remote candidate.  It is RECOMMENDED that the agent defer
   creation of a TURN channel until ICE completes, in which case
   permissions for connectivity checks are normally created using a

Keranen & Rosenberg       Expires June 23, 2016                [Page 40]



Internet-Draft                     ICE                     December 2015

   CreatePermission request.  Once established, the agent MUST keep the
   permission active until ICE concludes.

6.1.2.  Sending the Request

   A connectivity check is generated by sending a Binding request from a
   local candidate to a remote candidate.  [RFC5389] describes how
   Binding requests are constructed and generated.  A connectivity check
   MUST utilize the STUN short-term credential mechanism.  Support for
   backwards compatibility with RFC 3489 MUST NOT be used or assumed
   with connectivity checks.  The FINGERPRINT mechanism MUST be used for
   connectivity checks.

   ICE extends STUN by defining several new attributes, including
   PRIORITY, USE-CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.  These
   new attributes are formally defined in Section 15.1, and their usage
   is described in the subsections below.  These STUN extensions are
   applicable only to connectivity checks used for ICE.

6.1.2.1.  PRIORITY and USE-CANDIDATE

   An agent MUST include the PRIORITY attribute in its Binding request.
   The attribute MUST be set equal to the priority that would be
   assigned, based on the algorithm in Section 4.1.2, to a peer
   reflexive candidate, should one be learned as a consequence of this
   check (see Section 6.1.3.2.1 for how peer reflexive candidates are
   learned).  This priority value will be computed identically to how
   the priority for the local candidate of the pair was computed, except
   that the type preference is set to the value for peer reflexive
   candidate types.

   The controlling agent MAY include the USE-CANDIDATE attribute in the
   Binding request.  The controlled agent MUST NOT include it in its
   Binding request.  This attribute signals that the controlling agent
   wishes to cease checks for this component, and use the candidate pair
   resulting from the check for this component.  Section 7.1.1 provides
   guidance on determining when to include it.

6.1.2.2.  ICE-CONTROLLED and ICE-CONTROLLING

   The agent MUST include the ICE-CONTROLLED attribute in the request if
   it is in the controlled role, and MUST include the ICE-CONTROLLING
   attribute in the request if it is in the controlling role.  The
   content of either attribute MUST be the tie-breaker that was
   determined in Section 5.1.2.  These attributes are defined fully in
   Section 15.1.
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6.1.2.3.  Forming Credentials

   A Binding request serving as a connectivity check MUST utilize the
   STUN short-term credential mechanism.  The username for the
   credential is formed by concatenating the username fragment provided
   by the peer with the username fragment of the agent sending the
   request, separated by a colon (":").  The password is equal to the
   password provided by the peer.  For example, consider the case where
   agent L is the initiating , agent and agent R is the responding
   agent.  Agent L included a username fragment of LFRAG for its
   candidates and a password of LPASS.  Agent R provided a username
   fragment of RFRAG and a password of RPASS.  A connectivity check from
   L to R utilizes the username RFRAG:LFRAG and a password of RPASS.  A
   connectivity check from R to L utilizes the username LFRAG:RFRAG and
   a password of LPASS.  The responses utilize the same usernames and
   passwords as the requests (note that the USERNAME attribute is not
   present in the response).

6.1.2.4.  DiffServ Treatment

   If the agent is using Diffserv Codepoint markings [RFC2475] in its
   media packets, it SHOULD apply those same markings to its
   connectivity checks.

6.1.3.  Processing the Response

   When a Binding response is received, it is correlated to its Binding
   request using the transaction ID, as defined in [RFC5389], which then
   ties it to the candidate pair for which the Binding request was sent.
   This section defines additional procedures for processing Binding
   responses specific to this usage of STUN.

6.1.3.1.  Failure Cases

   If the STUN transaction generates a 487 (Role Conflict) error
   response, the agent checks whether it included the ICE-CONTROLLED or
   ICE-CONTROLLING attribute in the Binding request.  If the request
   contained the ICE-CONTROLLED attribute, the agent MUST switch to the
   controlling role if it has not already done so.  If the request
   contained the ICE-CONTROLLING attribute, the agent MUST switch to the
   controlled role if it has not already done so.  Once it has switched,
   the agent MUST enqueue the candidate pair whose check generated the
   487 into the triggered check queue.  The state of that pair is set to
   Waiting.  When the triggered check is sent, it will contain an ICE-
   CONTROLLING or ICE-CONTROLLED attribute reflecting its new role.
   Note, however, that the tie-breaker value MUST NOT be reselected.
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   A change in roles will require an agent to recompute pair priorities
   (Section 5.1.3.2), since those priorities are a function of
   controlling and controlled roles.  The change in role will also
   impact whether the agent is responsible for selecting nominated pairs
   and generating updated candidate information for sharing upon
   conclusion of ICE.

   Agents MAY support receipt of ICMP errors for connectivity checks.
   If the STUN transaction generates an ICMP error, the agent sets the
   state of the pair to Failed.  If the STUN transaction generates a
   STUN error response that is unrecoverable (as defined in [RFC5389])
   or times out, the agent sets the state of the pair to Failed.

   The agent MUST check that the source IP address and port of the
   response equal the destination IP address and port to which the
   Binding request was sent, and that the destination IP address and
   port of the response match the source IP address and port from which
   the Binding request was sent.  In other words, the source and
   destination transport addresses in the request and responses are
   symmetric.  If they are not symmetric, the agent sets the state of
   the pair to Failed.

6.1.3.2.  Success Cases

   A check is considered to be a success if all of the following are
   true:

   o  The STUN transaction generated a success response.

   o  The source IP address and port of the response equals the
      destination IP address and port to which the Binding request was
      sent.

   o  The destination IP address and port of the response match the
      source IP address and port from which the Binding request was
      sent.

6.1.3.2.1.  Discovering Peer Reflexive Candidates

   The agent checks the mapped address from the STUN response.  If the
   transport address does not match any of the local candidates that the
   agent knows about, the mapped address represents a new candidate -- a
   peer reflexive candidate.  Like other candidates, it has a type,
   base, priority, and foundation.  They are computed as follows:

   o  Its type is equal to peer reflexive.
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   o  Its base is set equal to the local candidate of the candidate pair
      from which the STUN check was sent.

   o  Its priority is set equal to the value of the PRIORITY attribute
      in the Binding request.

   o  Its foundation is selected as described in Section 4.1.1.3.

   This peer reflexive candidate is then added to the list of local
   candidates for the media stream.  Its username fragment and password
   are the same as all other local candidates for that media stream.
   However, the peer reflexive candidate is not paired with other remote
   candidates.  This is not necessary; a valid pair will be generated
   from it momentarily based on the procedures in Section 6.1.3.2.2.  If
   an agent wishes to pair the peer reflexive candidate with other
   remote candidates besides the one in the valid pair that will be
   generated, the agent MAY generate an update the peer with the
   candidate information that includes the peer reflexive candidate.
   This will cause it to be paired with all other remote candidates.

6.1.3.2.2.  Constructing a Valid Pair

   The agent constructs a candidate pair whose local candidate equals
   the mapped address of the response, and whose remote candidate equals
   the destination address to which the request was sent.  This is
   called a valid pair, since it has been validated by a STUN
   connectivity check.  The valid pair may equal the pair that generated
   the check, may equal a different pair in the check list, or may be a
   pair not currently on any check list.  If the pair equals the pair
   that generated the check or is on a check list currently, it is also
   added to the VALID LIST, which is maintained by the agent for each
   media stream.  This list is empty at the start of ICE processing, and
   fills as checks are performed, resulting in valid candidate pairs.

   It will be very common that the pair will not be on any check list.
   Recall that the check list has pairs whose local candidates are never
   server reflexive; those pairs had their local candidates converted to
   the base of the server reflexive candidates, and then pruned if they
   were redundant.  When the response to the STUN check arrives, the
   mapped address will be reflexive if there is a NAT between the two.
   In that case, the valid pair will have a local candidate that doesn’t
   match any of the pairs in the check list.

   If the pair is not on any check list, the agent computes the priority
   for the pair based on the priority of each candidate, using the
   algorithm in Section 5.1.3.  The priority of the local candidate
   depends on its type.  If it is not peer reflexive, it is equal to the
   priority signaled for that candidate in the candidate exchange.  If
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   it is peer reflexive, it is equal to the PRIORITY attribute the agent
   placed in the Binding request that just completed.  The priority of
   the remote candidate is taken from the candidate information of the
   peer.  If the candidate does not appear there, then the check must
   have been a triggered check to a new remote candidate.  In that case,
   the priority is taken as the value of the PRIORITY attribute in the
   Binding request that triggered the check that just completed.  The
   pair is then added to the VALID LIST.

6.1.3.2.3.  Updating Pair States

   The agent sets the state of the pair that *generated* the check to
   Succeeded.  Note that, the pair which *generated* the check may be
   different than the valid pair constructed in Section 6.1.3.2.2 as a
   consequence of the response.  The success of this check might also
   cause the state of other checks to change as well.  The agent MUST
   perform the following two steps:

   1.  The agent changes the states for all other Frozen pairs for the
       same media stream and same foundation to Waiting.  Typically, but
       not always, these other pairs will have different component IDs.

   2.  If there is a pair in the valid list for every component of this
       media stream (where this is the actual number of components being
       used, in cases where the number of components signaled in the
       candidate exchange differs from initiating to responding agent),
       the success of this check may unfreeze checks for other media
       streams.  Note that this step is followed not just the first time
       the valid list under consideration has a pair for every
       component, but every subsequent time a check succeeds and adds
       yet another pair to that valid list.  The agent examines the
       check list for each other media stream in turn:

       *  If the check list is active, the agent changes the state of
          all Frozen pairs in that check list whose foundation matches a
          pair in the valid list under consideration to Waiting.

       *  If the check list is frozen, and there is at least one pair in
          the check list whose foundation matches a pair in the valid
          list under consideration, the state of all pairs in the check
          list whose foundation matches a pair in the valid list under
          consideration is set to Waiting.  This will cause the check
          list to become active, and ordinary checks will begin for it,
          as described in Section 5.1.4.

       *  If the check list is frozen, and there are no pairs in the
          check list whose foundation matches a pair in the valid list
          under consideration, the agent
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          +  groups together all of the pairs with the same foundation,
             and

          +  for each group, sets the state of the pair with the lowest
             component ID to Waiting.  If there is more than one such
             pair, the one with the highest-priority is used.

6.1.3.2.4.  Updating the Nominated Flag

   If the agent was a controlling agent, and it had included a USE-
   CANDIDATE attribute in the Binding request, the valid pair generated
   from that check has its nominated flag set to true.  This flag
   indicates that this valid pair should be used for media if it is the
   highest-priority one amongst those whose nominated flag is set.  This
   may conclude ICE processing for this media stream or all media
   streams; see Section 7.

   If the agent is the controlled agent, the response may be the result
   of a triggered check that was sent in response to a request that
   itself had the USE-CANDIDATE attribute.  This case is described in
   Section 6.2.1.5, and may now result in setting the nominated flag for
   the pair learned from the original request.

6.1.3.3.  Check List and Timer State Updates

   Regardless of whether the check was successful or failed, the
   completion of the transaction may require updating of check list and
   timer states.

   If all of the pairs in the check list are now either in the Failed or
   Succeeded state:

   o  If there is not a pair in the valid list for each component of the
      media stream, the state of the check list is set to Failed.

   o  For each frozen check list, the agent

      *  groups together all of the pairs with the same foundation, and

      *  for each group, sets the state of the pair with the lowest
         component ID to Waiting.  If there is more than one such pair,
         the one with the highest-priority is used.

   If none of the pairs in the check list are in the Waiting or Frozen
   state, the check list is no longer considered active, and will not
   count towards the value of N in the computation of timers for
   ordinary checks as described in Section 5.1.4.
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6.2.  STUN Server Procedures

   An agent MUST be prepared to receive a Binding request on the base of
   each candidate it included in its most recent candidate exchange.
   This requirement holds even if the peer is a lite implementation.

   The agent MUST use the short-term credential mechanism (i.e., the
   MESSAGE-INTEGRITY attribute) to authenticate the request and perform
   a message integrity check.  Likewise, the short-term credential
   mechanism MUST be used for the response.  The agent MUST consider the
   username to be valid if it consists of two values separated by a
   colon, where the first value is equal to the username fragment
   generated by the agent in an candidate exchange for a session in-
   progress.  It is possible (and in fact very likely) that the
   initiating agent will receive a Binding request prior to receiving
   the candidates from its peer.  If this happens, the agent MUST
   immediately generate a response (including computation of the mapped
   address as described in Section 6.2.1.2).  The agent has sufficient
   information at this point to generate the response; the password from
   the peer is not required.  Once the answer is received, it MUST
   proceed with the remaining steps required, namely, Section 6.2.1.3,
   Section 6.2.1.4, and Section 6.2.1.5 for full implementations.  In
   cases where multiple STUN requests are received before the answer,
   this may cause several pairs to be queued up in the triggered check
   queue.

   An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
   NOT support the backwards-compatibility mechanisms to RFC 3489.  It
   MUST utilize the FINGERPRINT mechanism.

   If the agent is using Diffserv Codepoint markings [RFC2475] in its
   media packets, it SHOULD apply those same markings to its responses
   to Binding requests.  The same would apply to any layer 2 markings
   the endpoint might be applying to media packets.

6.2.1.  Additional Procedures for Full Implementations

   This subsection defines the additional server procedures applicable
   to full implementations.

6.2.1.1.  Detecting and Repairing Role Conflicts

   Normally, the rules for selection of a role in Section 5.1.2 will
   result in each agent selecting a different role -- one controlling
   and one controlled.  However, in unusual call flows, typically
   utilizing third party call control, it is possible for both agents to
   select the same role.  This section describes procedures for checking
   for this case and repairing it.  These procedures apply only to
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   usages of ICE that require conflict resolution.  The usage document
   MUST specify whether this mechanism is needed.

   An agent MUST examine the Binding request for either the ICE-
   CONTROLLING or ICE-CONTROLLED attribute.  It MUST follow these
   procedures:

   o  If neither ICE-CONTROLLING nor ICE-CONTROLLED is present in the
      request, the peer agent may have implemented a previous version of
      this specification.  There may be a conflict, but it cannot be
      detected.

   o  If the agent is in the controlling role, and the ICE-CONTROLLING
      attribute is present in the request:

      *  If the agent’s tie-breaker is larger than or equal to the
         contents of the ICE-CONTROLLING attribute, the agent generates
         a Binding error response and includes an ERROR-CODE attribute
         with a value of 487 (Role Conflict) but retains its role.

      *  If the agent’s tie-breaker is less than the contents of the
         ICE-CONTROLLING attribute, the agent switches to the controlled
         role.

   o  If the agent is in the controlled role, and the ICE-CONTROLLED
      attribute is present in the request:

      *  If the agent’s tie-breaker is larger than or equal to the
         contents of the ICE-CONTROLLED attribute, the agent switches to
         the controlling role.

      *  If the agent’s tie-breaker is less than the contents of the
         ICE-CONTROLLED attribute, the agent generates a Binding error
         response and includes an ERROR-CODE attribute with a value of
         487 (Role Conflict) but retains its role.

   o  If the agent is in the controlled role and the ICE-CONTROLLING
      attribute was present in the request, or the agent was in the
      controlling role and the ICE-CONTROLLED attribute was present in
      the request, there is no conflict.

   A change in roles will require an agent to recompute pair priorities
   (Section 5.1.3.2), since those priorities are a function of
   controlling and controlled roles.  The change in role will also
   impact whether the agent is responsible for selecting nominated pairs
   and initiating exchange with updated candidate information upon
   conclusion of ICE.
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   The remaining sections in Section 6.2.1 are followed if the server
   generated a successful response to the Binding request, even if the
   agent changed roles.

6.2.1.2.  Computing Mapped Address

   For requests being received on a relayed candidate, the source
   transport address used for STUN processing (namely, generation of the
   XOR-MAPPED-ADDRESS attribute) is the transport address as seen by the
   TURN server.  That source transport address will be present in the
   XOR-PEER-ADDRESS attribute of a Data Indication message, if the
   Binding request was delivered through a Data Indication.  If the
   Binding request was delivered through a ChannelData message, the
   source transport address is the one that was bound to the channel.

6.2.1.3.  Learning Peer Reflexive Candidates

   If the source transport address of the request does not match any
   existing remote candidates, it represents a new peer reflexive remote
   candidate.  This candidate is constructed as follows:

   o  The priority of the candidate is set to the PRIORITY attribute
      from the request.

   o  The type of the candidate is set to peer reflexive.

   o  The foundation of the candidate is set to an arbitrary value,
      different from the foundation for all other remote candidates.  If
      any subsequent candidate exchanges contain this peer reflexive
      candidate, it will signal the actual foundation for the candidate.

   o  The component ID of this candidate is set to the component ID for
      the local candidate to which the request was sent.

   This candidate is added to the list of remote candidates.  However,
   the agent does not pair this candidate with any local candidates.

6.2.1.4.  Triggered Checks

   Next, the agent constructs a pair whose local candidate is equal to
   the transport address on which the STUN request was received, and a
   remote candidate equal to the source transport address where the
   request came from (which may be the peer reflexive remote candidate
   that was just learned).  The local candidate will either be a host
   candidate (for cases where the request was not received through a
   relay) or a relayed candidate (for cases where it is received through
   a relay).  The local candidate can never be a server reflexive
   candidate.  Since both candidates are known to the agent, it can
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   obtain their priorities and compute the candidate pair priority.
   This pair is then looked up in the check list.  There can be one of
   several outcomes:

   o  If the pair is already on the check list:

      *  If the state of that pair is Waiting or Frozen, a check for
         that pair is enqueued into the triggered check queue if not
         already present.

      *  If the state of that pair is In-Progress, the agent cancels the
         in-progress transaction.  Cancellation means that the agent
         will not retransmit the request, will not treat the lack of
         response to be a failure, but will wait the duration of the
         transaction timeout for a response.  In addition, the agent
         MUST create a new connectivity check for that pair
         (representing a new STUN Binding request transaction) by
         enqueueing the pair in the triggered check queue.  The state of
         the pair is then changed to Waiting.

      *  If the state of the pair is Failed, it is changed to Waiting
         and the agent MUST create a new connectivity check for that
         pair (representing a new STUN Binding request transaction), by
         enqueueing the pair in the triggered check queue.

      *  If the state of that pair is Succeeded, nothing further is
         done.

   These steps are done to facilitate rapid completion of ICE when both
   agents are behind NAT.

   o  If the pair is not already on the check list:

      *  The pair is inserted into the check list based on its priority.

      *  Its state is set to Waiting.

      *  The pair is enqueued into the triggered check queue.

   When a triggered check is to be sent, it is constructed and processed
   as described in Section 6.1.2.  These procedures require the agent to
   know the transport address, username fragment, and password for the
   peer.  The username fragment for the remote candidate is equal to the
   part after the colon of the USERNAME in the Binding request that was
   just received.  Using that username fragment, the agent can check the
   candidates received from its peer (there may be more than one in
   cases of forking), and find this username fragment.  The
   corresponding password is then selected.

Keranen & Rosenberg       Expires June 23, 2016                [Page 50]



Internet-Draft                     ICE                     December 2015

6.2.1.5.  Updating the Nominated Flag

   If the Binding request received by the agent had the USE-CANDIDATE
   attribute set, and the agent is in the controlled role, the agent
   looks at the state of the pair computed in Section 6.2.1.4:

   o  If the state of this pair is Succeeded, it means that the check
      generated by this pair produced a successful response.  This would
      have caused the agent to construct a valid pair when that success
      response was received (see Section 6.1.3.2.2).  The agent now sets
      the nominated flag in the valid pair to true.  This may end ICE
      processing for this media stream; see Section 7.

   o  If the state of this pair is In-Progress, if its check produces a
      successful result, the resulting valid pair has its nominated flag
      set when the response arrives.  This may end ICE processing for
      this media stream when it arrives; see Section 7.

6.2.2.  Additional Procedures for Lite Implementations

   If the check that was just received contained a USE-CANDIDATE
   attribute, the agent constructs a candidate pair whose local
   candidate is equal to the transport address on which the request was
   received, and whose remote candidate is equal to the source transport
   address of the request that was received.  This candidate pair is
   assigned an arbitrary priority, and placed into a list of valid
   candidates called the valid list.  The agent sets the nominated flag
   for that pair to true.  ICE processing is considered complete for a
   media stream if the valid list contains a candidate pair for each
   component.

7.  Concluding ICE Processing

   This section describes how an agent completes ICE.

7.1.  Procedures for Full Implementations

   Concluding ICE involves nominating pairs by the controlling agent and
   updating of state machinery.

7.1.1.  Nominating Pairs

   The controlling agent nominates pairs to be selected by ICE by using
   one of two techniques: regular nomination or aggressive nomination.
   If its peer has a lite implementation, an agent MUST use a regular
   nomination algorithm.  If its peer is using ICE options (present in
   an ice-options attribute from the peer) that the agent does not
   understand, the agent MUST use a regular nomination algorithm.  If
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   its peer is a full implementation and isn’t using any ICE options or
   is using ICE options understood by the agent, the agent MAY use
   either the aggressive or the regular nomination algorithm.  However,
   the regular algorithm is RECOMMENDED since it provides greater
   stability.

7.1.1.1.  Regular Nomination

   With regular nomination, the agent lets some number of checks
   complete, each of which omit the USE-CANDIDATE attribute.  Once one
   or more checks complete successfully for a component of a media
   stream, valid pairs are generated and added to the valid list.  The
   agent lets the checks continue until some stopping criterion is met,
   and then picks amongst the valid pairs based on an evaluation
   criterion.  The criteria for stopping the checks and for evaluating
   the valid pairs is entirely a matter of local optimization.

   When the controlling agent selects the valid pair, it repeats the
   check that produced this valid pair (by enqueueing the pair that
   generated the check into the triggered check queue), this time with
   the USE-CANDIDATE attribute.  This check should succeed (since the
   previous did), causing the nominated flag of that and only that pair
   to be set.  Consequently, there will be only a single nominated pair
   in the valid list for each component, and when the state of the check
   list moves to completed, that exact pair is selected by ICE for
   sending and receiving media for that component.

   Regular nomination provides the most flexibility, since the agent has
   control over the stopping and selection criteria for checks.  The
   only requirement is that the agent MUST eventually pick one and only
   one candidate pair and generate a check for that pair with the USE-
   CANDIDATE attribute present.  Regular nomination also improves ICE’s
   resilience to variations in implementation (see Section 11).  Regular
   nomination is also more stable, allowing both agents to converge on a
   single pair for media without any transient selections, which can
   happen with the aggressive algorithm.  The drawback of regular
   nomination is that it is guaranteed to increase latencies because it
   requires an additional check to be done.

7.1.1.2.  Aggressive Nomination

   With aggressive nomination, the controlling agent includes the USE-
   CANDIDATE attribute in every check it sends.  Once the first check
   for a component succeeds, it will be added to the valid list and have
   its nominated flag set.  When all components have a nominated pair in
   the valid list, media can begin to flow using the highest-priority
   nominated pair.  However, because the agent included the USE-
   CANDIDATE attribute in all of its checks, another check may yet
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   complete, causing another valid pair to have its nominated flag set.
   ICE always selects the highest-priority nominated candidate pair from
   the valid list as the one used for media.  Consequently, the selected
   pair may actually change briefly as ICE checks complete, resulting in
   a set of transient selections until it stabilizes.

   If certain connectivity check messages are lost, ICE agents using
   aggressive nomination may end up with different views on the selected
   candidate pair.  In this case, if a security protocol that is able to
   authenticate the communicating parties (e.g., DTLS) is used, the
   controlled agent may receive valid secured traffic or handshake
   initialization originating from the controlling agent on a candidate
   pair that is different from the one the controlled agent considers as
   the selected pair.  If this happens, the controlled agent MUST
   consider the pair with the secured traffic as the correct selected
   pair.  If such security protocol is not used, both agents SHOULD
   continue sending connectivity check messages on the selected pair
   even after a pair has already been selected for use.  In order to
   prevent the problem described here, at least one check from both
   agents needs to fully succeed on the selected pair.

7.1.2.  Updating States

   For both controlling and controlled agents, the state of ICE
   processing depends on the presence of nominated candidate pairs in
   the valid list and on the state of the check list.  Note that, at any
   time, more than one of the following cases can apply:

   o  If there are no nominated pairs in the valid list for a media
      stream and the state of the check list is Running, ICE processing
      continues.

   o  If there is at least one nominated pair in the valid list for a
      media stream and the state of the check list is Running:

      *  The agent MUST remove all Waiting and Frozen pairs in the check
         list and triggered check queue for the same component as the
         nominated pairs for that media stream.

      *  If an In-Progress pair in the check list is for the same
         component as a nominated pair, the agent SHOULD cease
         retransmissions for its check if its pair priority is lower
         than the lowest-priority nominated pair for that component.

   o  Once there is at least one nominated pair in the valid list for
      every component of at least one media stream and the state of the
      check list is Running:
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      *  The agent MUST change the state of processing for its check
         list for that media stream to Completed.

      *  The agent MUST continue to respond to any checks it may still
         receive for that media stream, and MUST perform triggered
         checks if required by the processing of Section 6.2.

      *  The agent MUST continue retransmitting any In-Progress checks
         for that check list.

      *  The agent MAY begin transmitting media for this media stream as
         described in Section 10.1.

   o  Once the state of each check list is Completed:

      *  The agent sets the state of ICE processing overall to
         Completed.

      *  If the controlling agent is using an aggressive nomination
         algorithm, this may result in several updated candidate
         exchanges as the pairs selected for media change.  An agent MAY
         delay sending its candidates for a brief interval (one second
         is RECOMMENDED) in order to allow the selected pairs to
         stabilize.

   o  If the state of the check list is Failed, ICE has not been able to
      complete for this media stream.  The correct behavior depends on
      the state of the check lists for other media streams:

      *  If all check lists are Failed, ICE processing overall is
         considered to be in the Failed state, and the agent SHOULD
         consider the session a failure, SHOULD NOT restart ICE, and the
         controlling agent SHOULD terminate the entire session.

      *  If at least one of the check lists for other media streams is
         Completed, the controlling agent SHOULD remove the failed media
         stream from the session while sending updated candidate list to
         its peer.

      *  If none of the check lists for other media streams are
         Completed, but at least one is Running, the agent SHOULD let
         ICE continue.

7.2.  Procedures for Lite Implementations

   Concluding ICE for a lite implementation is relatively
   straightforward.  There are two cases to consider:
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      The implementation is lite, and its peer is full.

      The implementation is lite, and its peer is lite.

   The effect of ICE concluding is that the agent can free any allocated
   host candidates that were not utilized by ICE, as described in
   Section 7.3.

7.2.1.  Peer Is Full

   In this case, the agent will receive connectivity checks from its
   peer.  When an agent has received a connectivity check that includes
   the USE-CANDIDATE attribute for each component of a media stream, the
   state of ICE processing for that media stream moves from Running to
   Completed.  When the state of ICE processing for all media streams is
   Completed, the state of ICE processing overall is Completed.

   The lite implementation will never itself determine that ICE
   processing has failed for a media stream; rather, the full peer will
   make that determination and then remove or restart the failed media
   stream as part of subsequent candidate exchange process.

7.2.2.  Peer Is Lite

   Once the candidate exchange has completed, both agents examine their
   candidates and those of its peer.  For each media stream, each agent
   pairs up its own candidates with the candidates of its peer for that
   media stream.  Two candidates are paired up when they are for the
   same component, utilize the same transport protocol (UDP in this
   specification), and are from the same IP address family (IPv4 or
   IPv6).

   o  If there is a single pair per component, that pair is added to the
      Valid list.  If all of the components for a media stream had one
      pair, the state of ICE processing for that media stream is set to
      Completed.  If all media streams are Completed, the state of ICE
      processing is set to Completed overall.  This will always be the
      case for implementations that are IPv4-only.

   o  If there is more than one pair per component:

      *  The agent MUST select a pair based on local policy.  Since this
         case only arises for IPv6, it is RECOMMENDED that an agent
         follow the procedures of RFC 6724 [RFC6724] to select a single
         pair.

      *  The agent adds the selected pair for each component to the
         valid list.  As described in Section 10.1, this will permit
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         media to begin flowing.  However, it is possible (and in fact
         likely) that both agents have chosen different pairs.

      *  To reconcile this, the controlling agent MUST send updated
         candidate list which will include the remote-candidates
         attribute.

      *  The agent MUST NOT update the state of ICE processing until
         after the candidate exchange completes.  Then the controlling
         agent MUST change the state of ICE processing to Completed for
         all media streams, and the state of ICE processing overall to
         Completed.

7.3.  Freeing Candidates

7.3.1.  Full Implementation Procedures

   The procedures in Section 7 require that an agent continue to listen
   for STUN requests and continue to generate triggered checks for a
   media stream, even once processing for that stream completes.  The
   rules in this section describe when it is safe for an agent to cease
   sending or receiving checks on a candidate that was not selected by
   ICE, and then free the candidate.

7.3.2.  Lite Implementation Procedures

   A lite implementation MAY free candidates not selected by ICE as soon
   as ICE processing has reached the Completed state for all peers for
   all media streams using those candidates.

8.  ICE Restarts

   An agent MAY restart ICE processing for an existing media stream.  An
   ICE restart, as the name implies, will cause all previous states of
   ICE processing to be flushed and checks to start anew.  The only
   difference between an ICE restart and a brand new media session is
   that, during the restart, media can continue to be sent to the
   previously validated pair.

   An agent MUST restart ICE for a media stream if:

   o  The candidate(s) is being generated for the purposes of changing
      the target of the media stream.  In other words, if an agent wants
      to generate an updated candidate information that, had ICE not
      been in use, would result in a new value for the destination of a
      media component.
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   o  An agent is changing its implementation level.  This typically
      only happens in third party call control use cases, where the
      entity performing the signaling is not the entity receiving the
      media, and it has changed the target of media mid-session to
      another entity that has a different ICE implementation.

   To restart ICE, an agent MUST change both the password and the user
   name fragment for the media stream when exchanging the candidates.
   The new candidate set MAY include some, none, or all of the previous
   candidates for that stream and MAY include a totally new set of
   candidates.

9.  Keepalives

   All endpoints MUST send keepalives for each media session.  These
   keepalives serve the purpose of keeping NAT bindings alive for the
   media session.  These keepalives MUST be sent even if ICE is not
   being utilized for the session at all.  The keepalive SHOULD be sent
   using a format that is supported by its peer.  ICE endpoints allow
   for STUN-based keepalives for UDP streams, and as such, STUN
   keepalives MUST be used when an agent is a full ICE implementation
   and is communicating with a peer that supports ICE (lite or full).
   If the peer does not support ICE, the choice of a packet format for
   keepalives is a matter of local implementation.  A format that allows
   packets to easily be sent in the absence of actual media content is
   RECOMMENDED.  Examples of formats that readily meet this goal are RTP
   No-Op [I-D.ietf-avt-rtp-no-op], and in cases where both sides support
   it, RTP comfort noise [RFC3389].  If the peer doesn’t support any
   formats that are particularly well suited for keepalives, an agent
   SHOULD send RTP packets with an incorrect version number, or some
   other form of error that would cause them to be discarded by the
   peer.

   If there has been no packet sent on the candidate pair ICE is using
   for a media component for Tr seconds (where packets include those
   defined for the component (RTP or RTCP) and previous keepalives), an
   agent MUST generate a keepalive on that pair.  Tr SHOULD be
   configurable and SHOULD have a default of 15 seconds.  Tr MUST NOT be
   configured to less than 15 seconds.  Alternatively, if an agent has a
   dynamic way to discover the binding lifetimes of the intervening
   NATs, it can use that value to determine Tr.  Administrators
   deploying ICE in more controlled networking environments SHOULD set
   Tr to the longest duration possible in their environment.

   If STUN is being used for keepalives, a STUN Binding Indication is
   used [RFC5389].  The Indication MUST NOT utilize any authentication
   mechanism.  It SHOULD contain the FINGERPRINT attribute to aid in
   demultiplexing, but SHOULD NOT contain any other attributes.  It is
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   used solely to keep the NAT bindings alive.  The Binding Indication
   is sent using the same local and remote candidates that are being
   used for media.  Though Binding Indications are used for keepalives,
   an agent MUST be prepared to receive a connectivity check as well.
   If a connectivity check is received, a response is generated as
   discussed in [RFC5389], but there is no impact on ICE processing
   otherwise.

   An agent MUST begin the keepalive processing once ICE has selected
   candidates for usage with media, or media begins to flow, whichever
   happens first.  Keepalives end once the session terminates or the
   media stream is removed.

10.  Media Handling

10.1.  Sending Media

   Procedures for sending media differ for full and lite
   implementations.

10.1.1.  Procedures for Full Implementations

   Agents always send media using a candidate pair, called the selected
   candidate pair.  An agent will send media to the remote candidate in
   the selected pair (setting the destination address and port of the
   packet equal to that remote candidate), and will send it from the
   local candidate of the selected pair.  When the local candidate is
   server or peer reflexive, media is originated from the base.  Media
   sent from a relayed candidate is sent from the base through that TURN
   server, using procedures defined in [RFC5766].

   If the local candidate is a relayed candidate, it is RECOMMENDED that
   an agent create a channel on the TURN server towards the remote
   candidate.  This is done using the procedures for channel creation as
   defined in Section 11 of [RFC5766].

   The selected pair for a component of a media stream is:

   o  empty if the state of the check list for that media stream is
      Running, and there is no previous selected pair for that component
      due to an ICE restart

   o  equal to the previous selected pair for a component of a media
      stream if the state of the check list for that media stream is
      Running, and there was a previous selected pair for that component
      due to an ICE restart
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   o  equal to the highest-priority nominated pair for that component in
      the valid list if the state of the check list is Completed

   If the selected pair for at least one component of a media stream is
   empty, an agent MUST NOT send media for any component of that media
   stream.  If the selected pair for each component of a media stream
   has a value, an agent MAY send media for all components of that media
   stream.

10.1.2.  Procedures for Lite Implementations

   A lite implementation MUST NOT send media until it has a Valid list
   that contains a candidate pair for each component of that media
   stream.  Once that happens, the agent MAY begin sending media
   packets.  To do that, it sends media to the remote candidate in the
   pair (setting the destination address and port of the packet equal to
   that remote candidate), and will send it from the local candidate.

10.1.3.  Procedures for All Implementations

   ICE has interactions with jitter buffer adaptation mechanisms.  An
   RTP stream can begin using one candidate, and switch to another one,
   though this happens rarely with ICE.  The newer candidate may result
   in RTP packets taking a different path through the network -- one
   with different delay characteristics.  As discussed below, agents are
   encouraged to re-adjust jitter buffers when there are changes in
   source or destination address of media packets.  Furthermore, many
   audio codecs use the marker bit to signal the beginning of a
   talkspurt, for the purposes of jitter buffer adaptation.  For such
   codecs, it is RECOMMENDED that the sender set the marker bit
   [RFC3550] when an agent switches transmission of media from one
   candidate pair to another.

10.2.  Receiving Media

   ICE implementations MUST be prepared to receive media on each
   component on any candidates provided for that component in the most
   recent candidate exchange (in the case of RTP, this would include
   both RTP and RTCP if candidates were provided for both).

   It is RECOMMENDED that, when an agent receives an RTP packet with a
   new source or destination IP address for a particular media stream,
   that the agent re-adjust its jitter buffers.

   RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
   detecting synchronization source (SSRC) collisions and loops.  These
   algorithms are based, in part, on seeing different source transport
   addresses with the same SSRC.  However, when ICE is used, such
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   changes will sometimes occur as the media streams switch between
   candidates.  An agent will be able to determine that a media stream
   is from the same peer as a consequence of the STUN exchange that
   proceeds media transmission.  Thus, if there is a change in source
   transport address, but the media packets come from the same peer
   agent, this SHOULD NOT be treated as an SSRC collision.

11.  Extensibility Considerations

   This specification makes very specific choices about how both agents
   in a session coordinate to arrive at the set of candidate pairs that
   are selected for media.  It is anticipated that future specifications
   will want to alter these algorithms, whether they are simple changes
   like timer tweaks or larger changes like a revamp of the priority
   algorithm.  When such a change is made, providing interoperability
   between the two agents in a session is critical.

   First, ICE provides the ice-options attribute.  Each extension or
   change to ICE is associated with a token.  When an agent supporting
   such an extension or change triggers candidate exchange, it MUST
   include the token for that extension in this attribute.  This allows
   each side to know what the other side is doing.  This attribute MUST
   NOT be present if the agent doesn’t support any ICE extensions or
   changes.

   One of the complications in achieving interoperability is that ICE
   relies on a distributed algorithm running on both agents to converge
   on an agreed set of candidate pairs.  If the two agents run different
   algorithms, it can be difficult to guarantee convergence on the same
   candidate pairs.  The regular nomination procedure described in
   Section 7 eliminates some of the tight coordination by delegating the
   selection algorithm completely to the controlling agent.
   Consequently, when a controlling agent is communicating with a peer
   that supports options it doesn’t know about, the agent MUST run a
   regular nomination algorithm.  When regular nomination is used, ICE
   will converge perfectly even when both agents use different pair
   prioritization algorithms.  One of the keys to such convergence is
   triggered checks, which ensure that the nominated pair is validated
   by both agents.  Consequently, any future ICE enhancements MUST
   preserve triggered checks.

   ICE is also extensible to other media streams beyond RTP, and for
   transport protocols beyond UDP.  Extensions to ICE for non-RTP media
   streams need to specify how many components they utilize, and assign
   component IDs to them, starting at 1 for the most important component
   ID.  Specifications for new transport protocols must define how, if
   at all, various steps in the ICE processing differ from UDP.
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12.  Setting Ta and RTO

   During the gathering phase of ICE (Section 4.1.1) and while ICE is
   performing connectivity checks (Section 6), an agent sends STUN and
   TURN transactions.  These transactions are paced at a rate of one
   every Ta milliseconds, and utilize a specific RTO.  This section
   describes how the values of Ta and RTO are computed.  This
   computation depends on whether ICE is being used with a real-time
   media stream (such as RTP) or something else.  When ICE is used for a
   stream with a known maximum bandwidth, the computation in
   Section 12.1 MAY be followed to rate-control the ICE exchanges.  For
   all other streams, the computation in Section 12.2 MUST be followed.

12.1.  Real-time Media Streams

   The values of RTO and Ta change during the lifetime of ICE
   processing.  One set of values applies during the gathering phase,
   and the other, for connectivity checks.

   The value of Ta SHOULD be configurable, and SHOULD have a default of:

   For each media stream i:
    Ta_i = (stun_packet_size / rtp_packet_size) * rtp_ptime

                           1
     Ta = MAX (20ms, ------------------- )
                           k
                         ----
                         \        1
                          >    ------
                         /       Ta_i
                         ----
                          i=1

   where k is the number of media streams.  During the gathering phase,
   Ta is computed based on the number of media streams the agent has
   indicated in the candidate information, and the RTP packet size and
   RTP ptime are those of the most preferred codec for each media
   stream.  Once the candidate exchange is completed, the agent
   recomputes Ta to pace the connectivity checks.  In that case, the
   value of Ta is based on the number of media streams that will
   actually be used in the session, and the RTP packet size and RTP
   ptime are those of the most preferred codec with which the agent will
   send.
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   In addition, the retransmission timer for the STUN transactions, RTO,
   defined in [RFC5389], SHOULD be configurable and during the gathering
   phase, SHOULD have a default of:

     RTO = MAX (100ms, Ta * (number of pairs))

   where the number of pairs refers to the number of pairs of candidates
   with STUN or TURN servers.

   For connectivity checks, RTO SHOULD be configurable and SHOULD have a
   default of:

     RTO = MAX (100ms, Ta*N * (Num-Waiting + Num-In-Progress))

   where Num-Waiting is the number of checks in the check list in the
   Waiting state, and Num-In-Progress is the number of checks in the In-
   Progress state.  Note that the RTO will be different for each
   transaction as the number of checks in the Waiting and In-Progress
   states change.

   These formulas are aimed at causing STUN transactions to be paced at
   the same rate as media.  This ensures that ICE will work properly
   under the same network conditions needed to support the media as
   well.  See Appendix B.1 for additional discussion and motivations.
   Because of this pacing, it will take a certain amount of time to
   obtain all of the server reflexive and relayed candidates.
   Implementations should be aware of the time required to do this, and
   if the application requires a time budget, limit the number of
   candidates that are gathered.

   The formulas result in a behavior whereby an agent will send its
   first packet for every single connectivity check before performing a
   retransmit.  This can be seen in the formulas for the RTO (which
   represents the retransmit interval).  Those formulas scale with N,
   the number of checks to be performed.  As a result of this, ICE
   maintains a nicely constant rate, but becomes more sensitive to
   packet loss.  The loss of the first single packet for any
   connectivity check is likely to cause that pair to take a long time
   to be validated, and instead, a lower-priority check (but one for
   which there was no packet loss) is much more likely to complete
   first.  This results in ICE performing sub-optimally, choosing lower-
   priority pairs over higher-priority pairs.  Implementors should be
   aware of this consequence, but still should utilize the timer values
   described here.
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12.2.  Non-real-time Sessions

   In cases where ICE is used to establish some kind of session that is
   not real time, and has no fixed rate associated with it that is known
   to work on the network in which ICE is deployed, Ta and RTO revert to
   more conservative values.  Ta SHOULD be configurable, SHOULD have a
   default of 500 ms, and MUST NOT be configurable to be less than 500
   ms.

   If other Ta value than the default is used, the agent MUST indicate
   the value it prefers to use in the ICE exchange.  Both agents MUST
   use the higher out of the two proposed values.

   In addition, the retransmission timer for the STUN transactions, RTO,
   SHOULD be configurable and during the gathering phase, SHOULD have a
   default of:

     RTO = MAX (500ms, Ta * (number of pairs))

   where the number of pairs refers to the number of pairs of candidates
   with STUN or TURN servers.

   For connectivity checks, RTO SHOULD be configurable and SHOULD have a
   default of:

     RTO = MAX (500ms, Ta*N * (Num-Waiting + Num-In-Progress))

13.  Example

   The example is based on the simplified topology of Figure 9.
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                            +-------+
                            |STUN   |
                            |Server |
                            +-------+
                                |
                     +---------------------+
                     |                     |
                     |      Internet       |
                     |                     |
                     +---------------------+
                       |                |
                       |                |
                +---------+             |
                |   NAT   |             |
                +---------+             |
                     |                  |
                     |                  |
                  +-----+            +-----+
                  |  L  |            |  R  |
                  +-----+            +-----+

                        Figure 9: Example Topology

   Two agents, L and R, are using ICE.  Both are full-mode ICE
   implementations and use aggressive nomination when they are
   controlling.  Both agents have a single IPv4 address.  For agent L,
   it is 10.0.1.1 in private address space [RFC1918], and for agent R,
   192.0.2.1 on the public Internet.  Both are configured with the same
   STUN server (shown in this example for simplicity, although in
   practice the agents do not need to use the same STUN server), which
   is listening for STUN Binding requests at an IP address of 192.0.2.2
   and port 3478.  TURN servers are not used in this example.  Agent L
   is behind a NAT, and agent R is on the public Internet.  The NAT has
   an endpoint independent mapping property and an address dependent
   filtering property.  The public side of the NAT has an IP address of
   192.0.2.3.

   To facilitate understanding, transport addresses are listed using
   variables that have mnemonic names.  The format of the name is
   entity-type-seqno, where entity refers to the entity whose IP address
   the transport address is on, and is one of "L", "R", "STUN", or
   "NAT".  The type is either "PUB" for transport addresses that are
   public, and "PRIV" for transport addresses that are private.
   Finally, seq-no is a sequence number that is different for each
   transport address of the same type on a particular entity.  Each
   variable has an IP address and port, denoted by varname.IP and
   varname.PORT, respectively, where varname is the name of the
   variable.
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   The STUN server has advertised transport address STUN-PUB-1 (which is
   192.0.2.2:3478).

   In the call flow itself, STUN messages are annotated with several
   attributes.  The "S=" attribute indicates the source transport
   address of the message.  The "D=" attribute indicates the destination
   transport address of the message.  The "MA=" attribute is used in
   STUN Binding response messages and refers to the mapped address.
   "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

   The call flow examples omit STUN authentication operations and RTCP,
   and focus on RTP for a single media stream between two full
   implementations.

             L             NAT           STUN             R
             |RTP STUN alloc.              |              |
             |(1) STUN Req  |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$STUN-PUB-1 |              |              |
             |------------->|              |              |
             |              |(2) STUN Req  |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$STUN-PUB-1 |              |
             |              |------------->|              |
             |              |(3) STUN Res  |              |
             |              |S=$STUN-PUB-1 |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<-------------|              |
             |(4) STUN Res  |              |              |
             |S=$STUN-PUB-1 |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |(5) L’s Candidate Information|              |
             |------------------------------------------->|
             |              |              |              | RTP STUN
             |              |              |              | alloc.
             |              |              |(6) STUN Req  |
             |              |              |S=$R-PUB-1    |
             |              |              |D=$STUN-PUB-1 |
             |              |              |<-------------|
             |              |              |(7) STUN Res  |
             |              |              |S=$STUN-PUB-1 |
             |              |              |D=$R-PUB-1    |
             |              |              |MA=$R-PUB-1   |
             |              |              |------------->|
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             |(8) R’s Candidate Information|              |
             |<-------------------------------------------|
             |              |(9) Bind Req  |              |Begin
             |              |S=$R-PUB-1    |              |Connectivity
             |              |D=L-PRIV-1    |              |Checks
             |              |<----------------------------|
             |              |Dropped       |              |
             |(10) Bind Req |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |USE-CAND      |              |              |
             |------------->|              |              |
             |              |(11) Bind Req |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |USE-CAND      |              |
             |              |---------------------------->|
             |              |(12) Bind Res |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<----------------------------|
             |(13) Bind Res |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |RTP flows     |              |              |
             |              |(14) Bind Req |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |<----------------------------|
             |(15) Bind Req |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |<-------------|              |              |
             |(16) Bind Res |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |MA=$R-PUB-1   |              |              |
             |------------->|              |              |
             |              |(17) Bind Res |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |MA=$R-PUB-1   |              |
             |              |---------------------------->|
             |              |              |              |RTP flows
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                          Figure 10: Example Flow

   First, agent L obtains a host candidate from its local IP address
   (not shown), and from that, sends a STUN Binding request to the STUN
   server to get a server reflexive candidate (messages 1-4).  Recall
   that the NAT has the address and port independent mapping property.
   Here, it creates a binding of NAT-PUB-1 for this UDP request, and
   this becomes the server reflexive candidate for RTP.

   Agent L sets a type preference of 126 for the host candidate and 100
   for the server reflexive.  The local preference is 65535.  Based on
   this, the priority of the host candidate is 2130706431 and for the
   server reflexive candidate is 1694498815.  The host candidate is
   assigned a foundation of 1, and the server reflexive, a foundation of
   2.  These are sent to the peer.

   This candidate information is received at agent R.  Agent R will
   obtain a host candidate, and from it, obtain a server reflexive
   candidate (messages 6-7).  Since R is not behind a NAT, this
   candidate is identical to its host candidate, and they share the same
   base.  It therefore discards this redundant candidate and ends up
   with a single host candidate.  With identical type and local
   preferences as L, the priority for this candidate is 2130706431.  It
   chooses a foundation of 1 for its single candidate.  Then R’s
   candidates are then sent to L.

   Since neither side indicated that it is lite, the initiating agent
   that began ICE processing (agent L) becomes the controlling agent.

   Agents L and R both pair up the candidates.  They both initially have
   two pairs.  However, agent L will prune the pair containing its
   server reflexive candidate, resulting in just one.  At agent L, this
   pair has a local candidate of $L_PRIV_1 and remote candidate of
   $R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note that
   an implementation would represent this as a 64-bit integer so as not
   to lose precision).  At agent R, there are two pairs.  The highest
   priority has a local candidate of $R_PUB_1 and remote candidate of
   $L_PRIV_1 and has a priority of 4.57566E+18, and the second has a
   local candidate of $R_PUB_1 and remote candidate of $NAT_PUB_1 and
   priority 3.63891E+18.

   Agent R begins its connectivity check (message 9) for the first pair
   (between the two host candidates).  Since R is the controlled agent
   for this session, the check omits the USE-CANDIDATE attribute.  The
   host candidate from agent L is private and behind a NAT, and thus
   this check won’t be successful, because the packet cannot be routed
   from R to L.
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   When agent L gets the R’s candidates, it performs its one and only
   connectivity check (messages 10-13).  It implements the aggressive
   nomination algorithm, and thus includes a USE-CANDIDATE attribute in
   this check.  Since the check succeeds, agent L creates a new pair,
   whose local candidate is from the mapped address in the Binding
   response (NAT-PUB-1 from message 13) and whose remote candidate is
   the destination of the request (R-PUB-1 from message 10).  This is
   added to the valid list.  In addition, it is marked as selected since
   the Binding request contained the USE-CANDIDATE attribute.  Since
   there is a selected candidate in the Valid list for the one component
   of this media stream, ICE processing for this stream moves into the
   Completed state.  Agent L can now send media if it so chooses.

   Soon after receipt of the STUN Binding request from agent L (message
   11), agent R will generate its triggered check.  This check happens
   to match the next one on its check list -- from its host candidate to
   agent L’s server reflexive candidate.  This check (messages 14-17)
   will succeed.  Consequently, agent R constructs a new candidate pair
   using the mapped address from the response as the local candidate (R-
   PUB-1) and the destination of the request (NAT-PUB-1) as the remote
   candidate.  This pair is added to the Valid list for that media
   stream.  Since the check was generated in the reverse direction of a
   check that contained the USE-CANDIDATE attribute, the candidate pair
   is marked as selected.  Consequently, processing for this stream
   moves into the Completed state, and agent R can also send media.

14.  Security Considerations

   There are several types of attacks possible in an ICE system.  This
   section considers these attacks and their countermeasures.  These
   countermeasures include:

   o  Using ICE in conjunction with secure signaling techniques, such as
      SIPS.

   o  Limiting the total number of connectivity checks to 100, and
      optionally limiting the number of candidates they’ll accept in an
      candidate exchange.

14.1.  Attacks on Connectivity Checks

   An attacker might attempt to disrupt the STUN connectivity checks.
   Ultimately, all of these attacks fool an agent into thinking
   something incorrect about the results of the connectivity checks.
   The possible false conclusions an attacker can try and cause are:

   False Invalid:  An attacker can fool a pair of agents into thinking a
      candidate pair is invalid, when it isn’t.  This can be used to
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      cause an agent to prefer a different candidate (such as one
      injected by the attacker) or to disrupt a call by forcing all
      candidates to fail.

   False Valid:  An attacker can fool a pair of agents into thinking a
      candidate pair is valid, when it isn’t.  This can cause an agent
      to proceed with a session, but then not be able to receive any
      media.

   False Peer Reflexive Candidate:  An attacker can cause an agent to
      discover a new peer reflexive candidate, when it shouldn’t have.
      This can be used to redirect media streams to a Denial-of-Service
      (DoS) target or to the attacker, for eavesdropping or other
      purposes.

   False Valid on False Candidate:  An attacker has already convinced an
      agent that there is a candidate with an address that doesn’t
      actually route to that agent (for example, by injecting a false
      peer reflexive candidate or false server reflexive candidate).  It
      must then launch an attack that forces the agents to believe that
      this candidate is valid.

      If an attacker can cause a false peer reflexive candidate or false
      valid on a false candidate, it can launch any of the attacks
      described in [RFC5389].

   To force the false invalid result, the attacker has to wait for the
   connectivity check from one of the agents to be sent.  When it is,
   the attacker needs to inject a fake response with an unrecoverable
   error response, such as a 400.  However, since the candidate is, in
   fact, valid, the original request may reach the peer agent, and
   result in a success response.  The attacker needs to force this
   packet or its response to be dropped, through a DoS attack, layer 2
   network disruption, or other technique.  If it doesn’t do this, the
   success response will also reach the originator, alerting it to a
   possible attack.  Fortunately, this attack is mitigated completely
   through the STUN short-term credential mechanism.  The attacker needs
   to inject a fake response, and in order for this response to be
   processed, the attacker needs the password.  If the candidate
   exchange signaling is secured, the attacker will not have the
   password and its response will be discarded.

   Forcing the fake valid result works in a similar way.  The agent
   needs to wait for the Binding request from each agent, and inject a
   fake success response.  The attacker won’t need to worry about
   disrupting the actual response since, if the candidate is not valid,
   it presumably wouldn’t be received anyway.  However, like the fake
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   invalid attack, this attack is mitigated by the STUN short-term
   credential mechanism in conjunction with a secure candidate exchange.

   Forcing the false peer reflexive candidate result can be done either
   with fake requests or responses, or with replays.  We consider the
   fake requests and responses case first.  It requires the attacker to
   send a Binding request to one agent with a source IP address and port
   for the false candidate.  In addition, the attacker must wait for a
   Binding request from the other agent, and generate a fake response
   with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
   Like the other attacks described here, this attack is mitigated by
   the STUN message integrity mechanisms and secure candidate exchanges.

   Forcing the false peer reflexive candidate result with packet replays
   is different.  The attacker waits until one of the agents sends a
   check.  It intercepts this request, and replays it towards the other
   agent with a faked source IP address.  It must also prevent the
   original request from reaching the remote agent, either by launching
   a DoS attack to cause the packet to be dropped, or forcing it to be
   dropped using layer 2 mechanisms.  The replayed packet is received at
   the other agent, and accepted, since the integrity check passes (the
   integrity check cannot and does not cover the source IP address and
   port).  It is then responded to.  This response will contain a XOR-
   MAPPED-ADDRESS with the false candidate, and will be sent to that
   false candidate.  The attacker must then receive it and relay it
   towards the originator.

   The other agent will then initiate a connectivity check towards that
   false candidate.  This validation needs to succeed.  This requires
   the attacker to force a false valid on a false candidate.  Injecting
   of fake requests or responses to achieve this goal is prevented using
   the integrity mechanisms of STUN and the candidate exchange.  Thus,
   this attack can only be launched through replays.  To do that, the
   attacker must intercept the check towards this false candidate, and
   replay it towards the other agent.  Then, it must intercept the
   response and replay that back as well.

   This attack is very hard to launch unless the attacker is identified
   by the fake candidate.  This is because it requires the attacker to
   intercept and replay packets sent by two different hosts.  If both
   agents are on different networks (for example, across the public
   Internet), this attack can be hard to coordinate, since it needs to
   occur against two different endpoints on different parts of the
   network at the same time.

   If the attacker itself is identified by the fake candidate, the
   attack is easier to coordinate.  However, if the media path is
   secured (e.g., using SRTP [RFC3711]), the attacker will not be able
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   to play the media packets, but will only be able to discard them,
   effectively disabling the media stream for the call.  However, this
   attack requires the agent to disrupt packets in order to block the
   connectivity check from reaching the target.  In that case, if the
   goal is to disrupt the media stream, it’s much easier to just disrupt
   it with the same mechanism, rather than attack ICE.

14.2.  Attacks on Server Reflexive Address Gathering

   ICE endpoints make use of STUN Binding requests for gathering server
   reflexive candidates from a STUN server.  These requests are not
   authenticated in any way.  As a consequence, there are numerous
   techniques an attacker can employ to provide the client with a false
   server reflexive candidate:

   o  An attacker can compromise the DNS, causing DNS queries to return
      a rogue STUN server address.  That server can provide the client
      with fake server reflexive candidates.  This attack is mitigated
      by DNS security, though DNS-SEC is not required to address it.

   o  An attacker that can observe STUN messages (such as an attacker on
      a shared network segment, like WiFi) can inject a fake response
      that is valid and will be accepted by the client.

   o  An attacker can compromise a STUN server by means of a virus, and
      cause it to send responses with incorrect mapped addresses.

   A false mapped address learned by these attacks will be used as a
   server reflexive candidate in the ICE exchange.  For this candidate
   to actually be used for media, the attacker must also attack the
   connectivity checks, and in particular, force a false valid on a
   false candidate.  This attack is very hard to launch if the false
   address identifies a fourth party (neither the initiator, responder,
   nor attacker), since it requires attacking the checks generated by
   each agent in the session, and is prevented by SRTP if it identifies
   the attacker themself.

   If the attacker elects not to attack the connectivity checks, the
   worst it can do is prevent the server reflexive candidate from being
   used.  However, if the peer agent has at least one candidate that is
   reachable by the agent under attack, the STUN connectivity checks
   themselves will provide a peer reflexive candidate that can be used
   for the exchange of media.  Peer reflexive candidates are generally
   preferred over server reflexive candidates.  As such, an attack
   solely on the STUN address gathering will normally have no impact on
   a session at all.
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14.3.  Attacks on Relayed Candidate Gathering

   An attacker might attempt to disrupt the gathering of relayed
   candidates, forcing the client to believe it has a false relayed
   candidate.  Exchanges with the TURN server are authenticated using a
   long-term credential.  Consequently, injection of fake responses or
   requests will not work.  In addition, unlike Binding requests,
   Allocate requests are not susceptible to replay attacks with modified
   source IP addresses and ports, since the source IP address and port
   are not utilized to provide the client with its relayed candidate.

   However, TURN servers are susceptible to DNS attacks, or to viruses
   aimed at the TURN server, for purposes of turning it into a zombie or
   rogue server.  These attacks can be mitigated by DNS-SEC and through
   good box and software security on TURN servers.

   Even if an attacker has caused the client to believe in a false
   relayed candidate, the connectivity checks cause such a candidate to
   be used only if they succeed.  Thus, an attacker must launch a false
   valid on a false candidate, per above, which is a very difficult
   attack to coordinate.

14.4.  Insider Attacks

   In addition to attacks where the attacker is a third party trying to
   insert fake candidate information or stun messages, there are attacks
   possible with ICE when the attacker is an authenticated and valid
   participant in the ICE exchange.

14.4.1.  STUN Amplification Attack

   The STUN amplification attack is similar to the voice hammer.
   However, instead of voice packets being directed to the target, STUN
   connectivity checks are directed to the target.  The attacker sends
   an a large number of candidates, say, 50.  The responding agent
   receives the candidate information, and starts its checks, which are
   directed at the target, and consequently, never generate a response.
   The answerer will start a new connectivity check every Ta ms (say,
   Ta=20ms).  However, the retransmission timers are set to a large
   number due to the large number of candidates.  As a consequence,
   packets will be sent at an interval of one every Ta milliseconds, and
   then with increasing intervals after that.  Thus, STUN will not send
   packets at a rate faster than media would be sent, and the STUN
   packets persist only briefly, until ICE fails for the session.
   Nonetheless, this is an amplification mechanism.

   It is impossible to eliminate the amplification, but the volume can
   be reduced through a variety of heuristics.  Agents SHOULD limit the
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   total number of connectivity checks they perform to 100.
   Additionally, agents MAY limit the number of candidates they’ll
   accept.

   Frequently, protocols that wish to avoid these kinds of attacks force
   the initiator to wait for a response prior to sending the next
   message.  However, in the case of ICE, this is not possible.  It is
   not possible to differentiate the following two cases:

   o  There was no response because the initiator is being used to
      launch a DoS attack against an unsuspecting target that will not
      respond.

   o  There was no response because the IP address and port are not
      reachable by the initiator.

   In the second case, another check should be sent at the next
   opportunity, while in the former case, no further checks should be
   sent.

15.  STUN Extensions

15.1.  New Attributes

   This specification defines four new attributes, PRIORITY, USE-
   CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

   The PRIORITY attribute indicates the priority that is to be
   associated with a peer reflexive candidate, should one be discovered
   by this check.  It is a 32-bit unsigned integer, and has an attribute
   value of 0x0024.

   The USE-CANDIDATE attribute indicates that the candidate pair
   resulting from this check should be used for transmission of media.
   The attribute has no content (the Length field of the attribute is
   zero); it serves as a flag.  It has an attribute value of 0x0025.

   The ICE-CONTROLLED attribute is present in a Binding request and
   indicates that the client believes it is currently in the controlled
   role.  The content of the attribute is a 64-bit unsigned integer in
   network byte order, which contains a random number used for tie-
   breaking of role conflicts.

   The ICE-CONTROLLING attribute is present in a Binding request and
   indicates that the client believes it is currently in the controlling
   role.  The content of the attribute is a 64-bit unsigned integer in
   network byte order, which contains a random number used for tie-
   breaking of role conflicts.
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15.2.  New Error Response Codes

   This specification defines a single error response code:

   487 (Role Conflict):  The Binding request contained either the ICE-
      CONTROLLING or ICE-CONTROLLED attribute, indicating a role that
      conflicted with the server.  The server ran a tie-breaker based on
      the tie-breaker value in the request and determined that the
      client needs to switch roles.

16.  Operational Considerations

   This section discusses issues relevant to network operators looking
   to deploy ICE.

16.1.  NAT and Firewall Types

   ICE was designed to work with existing NAT and firewall equipment.
   Consequently, it is not necessary to replace or reconfigure existing
   firewall and NAT equipment in order to facilitate deployment of ICE.
   Indeed, ICE was developed to be deployed in environments where the
   Voice over IP (VoIP) operator has no control over the IP network
   infrastructure, including firewalls and NAT.

   That said, ICE works best in environments where the NAT devices are
   "behave" compliant, meeting the recommendations defined in [RFC4787]
   and [RFC5382].  In networks with behave-compliant NAT, ICE will work
   without the need for a TURN server, thus improving voice quality,
   decreasing call setup times, and reducing the bandwidth demands on
   the network operator.

16.2.  Bandwidth Requirements

   Deployment of ICE can have several interactions with available
   network capacity that operators should take into consideration.

16.2.1.  STUN and TURN Server Capacity Planning

   First and foremost, ICE makes use of TURN and STUN servers, which
   would typically be located in the network operator’s data centers.
   The STUN servers require relatively little bandwidth.  For each
   component of each media stream, there will be one or more STUN
   transactions from each client to the STUN server.  In a basic voice-
   only IPv4 VoIP deployment, there will be four transactions per call
   (one for RTP and one for RTCP, for both caller and callee).  Each
   transaction is a single request and a single response, the former
   being 20 bytes long, and the latter, 28.  Consequently, if a system
   has N users, and each makes four calls in a busy hour, this would
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   require N*1.7bps.  For one million users, this is 1.7 Mbps, a very
   small number (relatively speaking).

   TURN traffic is more substantial.  The TURN server will see traffic
   volume equal to the STUN volume (indeed, if TURN servers are
   deployed, there is no need for a separate STUN server), in addition
   to the traffic for the actual media traffic.  The amount of calls
   requiring TURN for media relay is highly dependent on network
   topologies, and can and will vary over time.  In a network with 100%
   behave-compliant NAT, it is exactly zero.  At time of writing, large-
   scale consumer deployments were seeing between 5 and 10 percent of
   calls requiring TURN servers.  Considering a voice-only deployment
   using G.711 (so 80 kbps in each direction), with .2 erlangs during
   the busy hour, this is N*3.2 kbps.  For a population of one million
   users, this is 3.2 Gbps, assuming a 10% usage of TURN servers.

16.2.2.  Gathering and Connectivity Checks

   The process of gathering of candidates and performing of connectivity
   checks can be bandwidth intensive.  ICE has been designed to pace
   both of these processes.  The gathering phase and the connectivity
   check phase are meant to generate traffic at roughly the same
   bandwidth as the media traffic itself.  This was done to ensure that,
   if a network is designed to support multimedia traffic of a certain
   type (voice, video, or just text), it will have sufficient capacity
   to support the ICE checks for that media.  Of course, the ICE checks
   will cause a marginal increase in the total utilization; however,
   this will typically be an extremely small increase.

   Congestion due to the gathering and check phases has proven to be a
   problem in deployments that did not utilize pacing.  Typically,
   access links became congested as the endpoints flooded the network
   with checks as fast as they can send them.  Consequently, network
   operators should make sure that their ICE implementations support the
   pacing feature.  Though this pacing does increase call setup times,
   it makes ICE network friendly and easier to deploy.

16.2.3.  Keepalives

   STUN keepalives (in the form of STUN Binding Indications) are sent in
   the middle of a media session.  However, they are sent only in the
   absence of actual media traffic.  In deployments that are not
   utilizing Voice Activity Detection (VAD), the keepalives are never
   used and there is no increase in bandwidth usage.  When VAD is being
   used, keepalives will be sent during silence periods.  This involves
   a single packet every 15-20 seconds, far less than the packet every
   20-30 ms that is sent when there is voice.  Therefore, keepalives
   don’t have any real impact on capacity planning.
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16.3.  ICE and ICE-lite

   Deployments utilizing a mix of ICE and ICE-lite interoperate
   perfectly.  They have been explicitly designed to do so, without loss
   of function.

   However, ICE-lite can only be deployed in limited use cases.  Those
   cases, and the caveats involved in doing so, are documented in
   Appendix A.

16.4.  Troubleshooting and Performance Management

   ICE utilizes end-to-end connectivity checks, and places much of the
   processing in the endpoints.  This introduces a challenge to the
   network operator -- how can they troubleshoot ICE deployments?  How
   can they know how ICE is performing?

   ICE has built-in features to help deal with these problems.  SIP
   servers on the signaling path, typically deployed in the data centers
   of the network operator, will see the contents of the candidate
   exchanges that convey the ICE parameters.  These parameters include
   the type of each candidate (host, server reflexive, or relayed),
   along with their related addresses.  Once ICE processing has
   completed, an updated candidate exchange takes place, signaling the
   selected address (and its type).  This updated re-INVITE is performed
   exactly for the purposes of educating network equipment (such as a
   diagnostic tool attached to a SIP server) about the results of ICE
   processing.

   As a consequence, through the logs generated by the SIP server, a
   network operator can observe what types of candidates are being used
   for each call, and what address was selected by ICE.  This is the
   primary information that helps evaluate how ICE is performing.

16.5.  Endpoint Configuration

   ICE relies on several pieces of data being configured into the
   endpoints.  This configuration data includes timers, credentials for
   TURN servers, and hostnames for STUN and TURN servers.  ICE itself
   does not provide a mechanism for this configuration.  Instead, it is
   assumed that this information is attached to whatever mechanism is
   used to configure all of the other parameters in the endpoint.  For
   SIP phones, standard solutions such as the configuration framework
   [RFC6080] have been defined.
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17.  IANA Considerations

   The original ICE specification registered four new STUN attributes,
   and one new STUN error response.  The STUN attributes and error
   response are reproduced here.

17.1.  STUN Attributes

   IANA has registered four STUN attributes:

      0x0024 PRIORITY
      0x0025 USE-CANDIDATE
      0x8029 ICE-CONTROLLED
      0x802A ICE-CONTROLLING

17.2.  STUN Error Responses

   IANA has registered following STUN error response code:

    487   Role Conflict: The client asserted an ICE role (controlling or
          controlled) that is in conflict with the role of the server.

18.  IAB Considerations

   The IAB has studied the problem of "Unilateral Self-Address Fixing",
   which is the general process by which a agent attempts to determine
   its address in another realm on the other side of a NAT through a
   collaborative protocol reflection mechanism [RFC3424].  ICE is an
   example of a protocol that performs this type of function.
   Interestingly, the process for ICE is not unilateral, but bilateral,
   and the difference has a significant impact on the issues raised by
   IAB.  Indeed, ICE can be considered a B-SAF (Bilateral Self-Address
   Fixing) protocol, rather than an UNSAF protocol.  Regardless, the IAB
   has mandated that any protocols developed for this purpose document a
   specific set of considerations.  This section meets those
   requirements.

18.1.  Problem Definition

   >From RFC 3424, any UNSAF proposal must provide:

      Precise definition of a specific, limited-scope problem that is to
      be solved with the UNSAF proposal.  A short-term fix should not be
      generalized to solve other problems; this is why "short-term fixes
      usually aren’t".
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   The specific problems being solved by ICE are:

      Provide a means for two peers to determine the set of transport
      addresses that can be used for communication.

      Provide a means for a agent to determine an address that is
      reachable by another peer with which it wishes to communicate.

18.2.  Exit Strategy

   >From RFC 3424, any UNSAF proposal must provide:

      Description of an exit strategy/transition plan.  The better
      short-term fixes are the ones that will naturally see less and
      less use as the appropriate technology is deployed.

   ICE itself doesn’t easily get phased out.  However, it is useful even
   in a globally connected Internet, to serve as a means for detecting
   whether a router failure has temporarily disrupted connectivity, for
   example.  ICE also helps prevent certain security attacks that have
   nothing to do with NAT.  However, what ICE does is help phase out
   other UNSAF mechanisms.  ICE effectively selects amongst those
   mechanisms, prioritizing ones that are better, and deprioritizing
   ones that are worse.  Local IPv6 addresses can be preferred.  As NATs
   begin to dissipate as IPv6 is introduced, server reflexive and
   relayed candidates (both forms of UNSAF addresses) simply never get
   used, because higher-priority connectivity exists to the native host
   candidates.  Therefore, the servers get used less and less, and can
   eventually be remove when their usage goes to zero.

   Indeed, ICE can assist in the transition from IPv4 to IPv6.  It can
   be used to determine whether to use IPv6 or IPv4 when two dual-stack
   hosts communicate with SIP (IPv6 gets used).  It can also allow a
   network with both 6to4 and native v6 connectivity to determine which
   address to use when communicating with a peer.

18.3.  Brittleness Introduced by ICE

   >From RFC 3424, any UNSAF proposal must provide:

      Discussion of specific issues that may render systems more
      "brittle".  For example, approaches that involve using data at
      multiple network layers create more dependencies, increase
      debugging challenges, and make it harder to transition.

   ICE actually removes brittleness from existing UNSAF mechanisms.  In
   particular, classic STUN (as described in RFC 3489 [RFC3489]) has
   several points of brittleness.  One of them is the discovery process
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   that requires an agent to try to classify the type of NAT it is
   behind.  This process is error-prone.  With ICE, that discovery
   process is simply not used.  Rather than unilaterally assessing the
   validity of the address, its validity is dynamically determined by
   measuring connectivity to a peer.  The process of determining
   connectivity is very robust.

   Another point of brittleness in classic STUN and any other unilateral
   mechanism is its absolute reliance on an additional server.  ICE
   makes use of a server for allocating unilateral addresses, but allows
   agents to directly connect if possible.  Therefore, in some cases,
   the failure of a STUN server would still allow for a call to progress
   when ICE is used.

   Another point of brittleness in classic STUN is that it assumes that
   the STUN server is on the public Internet.  Interestingly, with ICE,
   that is not necessary.  There can be a multitude of STUN servers in a
   variety of address realms.  ICE will discover the one that has
   provided a usable address.

   The most troubling point of brittleness in classic STUN is that it
   doesn’t work in all network topologies.  In cases where there is a
   shared NAT between each agent and the STUN server, traditional STUN
   may not work.  With ICE, that restriction is removed.

   Classic STUN also introduces some security considerations.
   Fortunately, those security considerations are also mitigated by ICE.

   Consequently, ICE serves to repair the brittleness introduced in
   classic STUN, and does not introduce any additional brittleness into
   the system.

   The penalty of these improvements is that ICE increases session
   establishment times.

18.4.  Requirements for a Long-Term Solution

   From RFC 3424, any UNSAF proposal must provide:

      ... requirements for longer term, sound technical solutions --
      contribute to the process of finding the right longer term
      solution.

   Our conclusions from RFC 3489 remain unchanged.  However, we feel ICE
   actually helps because we believe it can be part of the long-term
   solution.
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18.5.  Issues with Existing NAPT Boxes

   From RFC 3424, any UNSAF proposal must provide:

      Discussion of the impact of the noted practical issues with
      existing, deployed NA[P]Ts and experience reports.

   A number of NAT boxes are now being deployed into the market that try
   to provide "generic" ALG functionality.  These generic ALGs hunt for
   IP addresses, either in text or binary form within a packet, and
   rewrite them if they match a binding.  This interferes with classic
   STUN.  However, the update to STUN [RFC5389] uses an encoding that
   hides these binary addresses from generic ALGs.

   Existing NAPT boxes have non-deterministic and typically short
   expiration times for UDP-based bindings.  This requires
   implementations to send periodic keepalives to maintain those
   bindings.  ICE uses a default of 15 s, which is a very conservative
   estimate.  Eventually, over time, as NAT boxes become compliant to
   behave [RFC4787], this minimum keepalive will become deterministic
   and well-known, and the ICE timers can be adjusted.  Having a way to
   discover and control the minimum keepalive interval would be far
   better still.

19.  Changes from RFC 5245

   Following is the list of changes from RFC 5245

   o  The specification was generalized to be more usable with any
      protocol and the parts that are specific to SIP and SDP were moved
      to a SIP/SDP usage document [I-D.ietf-mmusic-ice-sip-sdp].

   o  Default candidates, multiple components, ICE mismatch detection,
      subsequent offer/answer, and role conflict resolution were made
      optional since they are not needed with every protocol using ICE.

   o  With IPv6, the precedence rules of RFC 6724 are used instead of
      the obsoleted RFC 3483 and using address preferences provided by
      the host operating system is recommended.

   o  Candidate gathering rules regarding loopback addresses and IPv6
      addresses were clarified.
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Appendix A.  Lite and Full Implementations

   ICE allows for two types of implementations.  A full implementation
   supports the controlling and controlled roles in a session, and can
   also perform address gathering.  In contrast, a lite implementation
   is a minimalist implementation that does little but respond to STUN
   checks.

   Because ICE requires both endpoints to support it in order to bring
   benefits to either endpoint, incremental deployment of ICE in a
   network is more complicated.  Many sessions involve an endpoint that
   is, by itself, not behind a NAT and not one that would worry about
   NAT traversal.  A very common case is to have one endpoint that
   requires NAT traversal (such as a VoIP hard phone or soft phone) make
   a call to one of these devices.  Even if the phone supports a full
   ICE implementation, ICE won’t be used at all if the other device
   doesn’t support it.  The lite implementation allows for a low-cost
   entry point for these devices.  Once they support the lite
   implementation, full implementations can connect to them and get the
   full benefits of ICE.

   Consequently, a lite implementation is only appropriate for devices
   that will *always* be connected to the public Internet and have a
   public IP address at which it can receive packets from any
   correspondent.  ICE will not function when a lite implementation is
   placed behind a NAT.

   ICE allows a lite implementation to have a single IPv4 host candidate
   and several IPv6 addresses.  In that case, candidate pairs are
   selected by the controlling agent using a static algorithm, such as
   the one in RFC 6724, which is recommended by this specification.
   However, static mechanisms for address selection are always prone to
   error, since they cannot ever reflect the actual topology and can
   never provide actual guarantees on connectivity.  They are always
   heuristics.  Consequently, if an agent is implementing ICE just to
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   select between its IPv4 and IPv6 addresses, and none of its IP
   addresses are behind NAT, usage of full ICE is still RECOMMENDED in
   order to provide the most robust form of address selection possible.

   It is important to note that the lite implementation was added to
   this specification to provide a stepping stone to full
   implementation.  Even for devices that are always connected to the
   public Internet with just a single IPv4 address, a full
   implementation is preferable if achievable.  A full implementation
   will reduce call setup times, since ICE’s aggressive mode can be
   used.  Full implementations also obtain the security benefits of ICE
   unrelated to NAT traversal; in particular, the voice hammer attack
   described in Section 14 is prevented only for full implementations,
   not lite.  Finally, it is often the case that a device that finds
   itself with a public address today will be placed in a network
   tomorrow where it will be behind a NAT.  It is difficult to
   definitively know, over the lifetime of a device or product, that it
   will always be used on the public Internet.  Full implementation
   provides assurance that communications will always work.

Appendix B.  Design Motivations

   ICE contains a number of normative behaviors that may themselves be
   simple, but derive from complicated or non-obvious thinking or use
   cases that merit further discussion.  Since these design motivations
   are not necessary to understand for purposes of implementation, they
   are discussed here in an appendix to the specification.  This section
   is non-normative.

B.1.  Pacing of STUN Transactions

   STUN transactions used to gather candidates and to verify
   connectivity are paced out at an approximate rate of one new
   transaction every Ta milliseconds.  Each transaction, in turn, has a
   retransmission timer RTO that is a function of Ta as well.  Why are
   these transactions paced, and why are these formulas used?

   Sending of these STUN requests will often have the effect of creating
   bindings on NAT devices between the client and the STUN servers.
   Experience has shown that many NAT devices have upper limits on the
   rate at which they will create new bindings.  Experiments have shown
   that once every 20 ms is well supported, but not much lower than
   that.  This is why Ta has a lower bound of 20 ms.  Furthermore,
   transmission of these packets on the network makes use of bandwidth
   and needs to be rate limited by the agent.  Deployments based on
   earlier draft versions of [RFC5245] tended to overload rate-
   constrained access links and perform poorly overall, in addition to
   negatively impacting the network.  As a consequence, the pacing
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   ensures that the NAT device does not get overloaded and that traffic
   is kept at a reasonable rate.

   The definition of a "reasonable" rate is that STUN should not use
   more bandwidth than the RTP itself will use, once media starts
   flowing.  The formula for Ta is designed so that, if a STUN packet
   were sent every Ta seconds, it would consume the same amount of
   bandwidth as RTP packets, summed across all media streams.  Of
   course, STUN has retransmits, and the desire is to pace those as
   well.  For this reason, RTO is set such that the first retransmit on
   the first transaction happens just as the first STUN request on the
   last transaction occurs.  Pictorially:

              First Packets              Retransmits

                    |                        |
                    |                        |
             -------+------           -------+------
            /               \        /               \
           /                 \      /                 \

           +--+    +--+    +--+    +--+    +--+    +--+
           |A1|    |B1|    |C1|    |A2|    |B2|    |C2|
           +--+    +--+    +--+    +--+    +--+    +--+

        ---+-------+-------+-------+-------+-------+------------ Time
           0       Ta      2Ta     3Ta     4Ta     5Ta

   In this picture, there are three transactions that will be sent (for
   example, in the case of candidate gathering, there are three host
   candidate/STUN server pairs).  These are transactions A, B, and C.
   The retransmit timer is set so that the first retransmission on the
   first transaction (packet A2) is sent at time 3Ta.

   Subsequent retransmits after the first will occur even less
   frequently than Ta milliseconds apart, since STUN uses an exponential
   back-off on its retransmissions.

B.2.  Candidates with Multiple Bases

   Section 4.1.3 talks about eliminating candidates that have the same
   transport address and base.  However, candidates with the same
   transport addresses but different bases are not redundant.  When can
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   an agent have two candidates that have the same IP address and port,
   but different bases?  Consider the topology of Figure 11:

          +----------+
          | STUN Srvr|
          +----------+
               |
               |
             -----
           //     \\
          |         |
         |  B:net10  |
          |         |
           \\     //
             -----
               |
               |
          +----------+
          |   NAT    |
          +----------+
               |
               |
             -----
           //     \\
          |    A    |
         |192.168/16 |
          |         |
           \\     //
             -----
               |
               |
               |192.168.1.100      -----
          +----------+           //     \\             +----------+
          |          |          |         |            |          |
          | Initiator|---------|  C:net10  |-----------| Responder|
          |          |10.0.1.100|         | 10.0.1.101 |          |
          +----------+           \\     //             +----------+
                                   -----

           Figure 11: Identical Candidates with Different Bases

   In this case, the initiating agent is multihomed.  It has one IP
   address, 10.0.1.100, on network C, which is a net 10 private network.
   The responding agent is on this same network.  The initiating agent

Keranen & Rosenberg       Expires June 23, 2016                [Page 88]



Internet-Draft                     ICE                     December 2015

   is also connected to network A, which is 192.168/16 and has an IP
   address of 192.168.1.100 on this network.  There is a NAT on this
   network, natting into network B, which is another net 10 private
   network, but not connected to network C.  There is a STUN server on
   network B.

   The initiating agent obtains a host candidate on its IP address on
   network C (10.0.1.100:2498) and a host candidate on its IP address on
   network A (192.168.1.100:3344).  It performs a STUN query to its
   configured STUN server from 192.168.1.100:3344.  This query passes
   through the NAT, which happens to assign the binding 10.0.1.100:2498.
   The STUN server reflects this in the STUN Binding response.  Now, the
   initiating agent has obtained a server reflexive candidate with a
   transport address that is identical to a host candidate
   (10.0.1.100:2498).  However, the server reflexive candidate has a
   base of 192.168.1.100:3344, and the host candidate has a base of
   10.0.1.100:2498.

B.3.  Purpose of the Related Address and Related Port Attributes

   The candidate attribute contains two values that are not used at all
   by ICE itself -- related address and related port.  Why are they
   present?

   There are two motivations for its inclusion.  The first is
   diagnostic.  It is very useful to know the relationship between the
   different types of candidates.  By including it, an agent can know
   which relayed candidate is associated with which reflexive candidate,
   which in turn is associated with a specific host candidate.  When
   checks for one candidate succeed and not for others, this provides
   useful diagnostics on what is going on in the network.

   The second reason has to do with off-path Quality of Service (QoS)
   mechanisms.  When ICE is used in environments such as PacketCable
   2.0, proxies will, in addition to performing normal SIP operations,
   inspect the SDP in SIP messages, and extract the IP address and port
   for media traffic.  They can then interact, through policy servers,
   with access routers in the network, to establish guaranteed QoS for
   the media flows.  This QoS is provided by classifying the RTP traffic
   based on 5-tuple, and then providing it a guaranteed rate, or marking
   its Diffserv codepoints appropriately.  When a residential NAT is
   present, and a relayed candidate gets selected for media, this
   relayed candidate will be a transport address on an actual TURN
   server.  That address says nothing about the actual transport address
   in the access router that would be used to classify packets for QoS
   treatment.  Rather, the server reflexive candidate towards the TURN
   server is needed.  By carrying the translation in the SDP, the proxy
   can use that transport address to request QoS from the access router.
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B.4.  Importance of the STUN Username

   ICE requires the usage of message integrity with STUN using its
   short-term credential functionality.  The actual short-term
   credential is formed by exchanging username fragments in the
   candidate exchange.  The need for this mechanism goes beyond just
   security; it is actually required for correct operation of ICE in the
   first place.

   Consider agents L, R, and Z.  L and R are within private enterprise
   1, which is using 10.0.0.0/8.  Z is within private enterprise 2,
   which is also using 10.0.0.0/8.  As it turns out, R and Z both have
   IP address 10.0.1.1.  L sends candidates to Z.  Z, in responds L with
   its host candidates.  In this case, those candidates are
   10.0.1.1:8866 and 10.0.1.1:8877.  As it turns out, R is in a session
   at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
   as host candidates.  This means that R is prepared to accept STUN
   messages on those ports, just as Z is.  L will send a STUN request to
   10.0.1.1:8866 and another to 10.0.1.1:8877.  However, these do not go
   to Z as expected.  Instead, they go to R!  If R just replied to them,
   L would believe it has connectivity to Z, when in fact it has
   connectivity to a completely different user, R.  To fix this, the
   STUN short-term credential mechanisms are used.  The username
   fragments are sufficiently random that it is highly unlikely that R
   would be using the same values as Z.  Consequently, R would reject
   the STUN request since the credentials were invalid.  In essence, the
   STUN username fragments provide a form of transient host identifiers,
   bound to a particular session established as part of the candidate
   exchange.

   An unfortunate consequence of the non-uniqueness of IP addresses is
   that, in the above example, R might not even be an ICE agent.  It
   could be any host, and the port to which the STUN packet is directed
   could be any ephemeral port on that host.  If there is an application
   listening on this socket for packets, and it is not prepared to
   handle malformed packets for whatever protocol is in use, the
   operation of that application could be affected.  Fortunately, since
   the ports exchanged are ephemeral and usually drawn from the dynamic
   or registered range, the odds are good that the port is not used to
   run a server on host R, but rather is the agent side of some
   protocol.  This decreases the probability of hitting an allocated
   port, due to the transient nature of port usage in this range.
   However, the possibility of a problem does exist, and network
   deployers should be prepared for it.  Note that this is not a problem
   specific to ICE; stray packets can arrive at a port at any time for
   any type of protocol, especially ones on the public Internet.  As
   such, this requirement is just restating a general design guideline
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   for Internet applications -- be prepared for unknown packets on any
   port.

B.5.  The Candidate Pair Priority Formula

   The priority for a candidate pair has an odd form.  It is:

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   Why is this?  When the candidate pairs are sorted based on this
   value, the resulting sorting has the MAX/MIN property.  This means
   that the pairs are first sorted based on decreasing value of the
   minimum of the two priorities.  For pairs that have the same value of
   the minimum priority, the maximum priority is used to sort amongst
   them.  If the max and the min priorities are the same, the
   controlling agent’s priority is used as the tie-breaker in the last
   part of the expression.  The factor of 2*32 is used since the
   priority of a single candidate is always less than 2*32, resulting in
   the pair priority being a "concatenation" of the two component
   priorities.  This creates the MAX/MIN sorting.  MAX/MIN ensures that,
   for a particular agent, a lower-priority candidate is never used
   until all higher-priority candidates have been tried.

B.6.  Why Are Keepalives Needed?

   Once media begins flowing on a candidate pair, it is still necessary
   to keep the bindings alive at intermediate NATs for the duration of
   the session.  Normally, the media stream packets themselves (e.g.,
   RTP) meet this objective.  However, several cases merit further
   discussion.  Firstly, in some RTP usages, such as SIP, the media
   streams can be "put on hold".  This is accomplished by using the SDP
   "sendonly" or "inactive" attributes, as defined in RFC 3264
   [RFC3264].  RFC 3264 directs implementations to cease transmission of
   media in these cases.  However, doing so may cause NAT bindings to
   timeout, and media won’t be able to come off hold.

   Secondly, some RTP payload formats, such as the payload format for
   text conversation [RFC4103], may send packets so infrequently that
   the interval exceeds the NAT binding timeouts.

   Thirdly, if silence suppression is in use, long periods of silence
   may cause media transmission to cease sufficiently long for NAT
   bindings to time out.

   For these reasons, the media packets themselves cannot be relied
   upon.  ICE defines a simple periodic keepalive utilizing STUN Binding
   indications.  This makes its bandwidth requirements highly
   predictable, and thus amenable to QoS reservations.
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B.7.  Why Prefer Peer Reflexive Candidates?

   Section 4.1.2 describes procedures for computing the priority of
   candidate based on its type and local preferences.  That section
   requires that the type preference for peer reflexive candidates
   always be higher than server reflexive.  Why is that?  The reason has
   to do with the security considerations in Section 14.  It is much
   easier for an attacker to cause an agent to use a false server
   reflexive candidate than it is for an attacker to cause an agent to
   use a false peer reflexive candidate.  Consequently, attacks against
   address gathering with Binding requests are thwarted by ICE by
   preferring the peer reflexive candidates.

B.8.  Why Are Binding Indications Used for Keepalives?

   Media keepalives are described in Section 9.  These keepalives make
   use of STUN when both endpoints are ICE capable.  However, rather
   than using a Binding request transaction (which generates a
   response), the keepalives use an Indication.  Why is that?

   The primary reason has to do with network QoS mechanisms.  Once media
   begins flowing, network elements will assume that the media stream
   has a fairly regular structure, making use of periodic packets at
   fixed intervals, with the possibility of jitter.  If an agent is
   sending media packets, and then receives a Binding request, it would
   need to generate a response packet along with its media packets.
   This will increase the actual bandwidth requirements for the 5-tuple
   carrying the media packets, and introduce jitter in the delivery of
   those packets.  Analysis has shown that this is a concern in certain
   layer 2 access networks that use fairly tight packet schedulers for
   media.

   Additionally, using a Binding Indication allows integrity to be
   disabled, allowing for better performance.  This is useful for large-
   scale endpoints, such as PSTN gateways and SBCs.
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1.  Introduction

   Protocols establishing communication sessions between peers typically
   involve exchanging IP addresses and ports for the data sources and
   sinks.  However, this poses challenges when operated through Network
   Address Translators (NATs) [RFC3235].  These protocols also seek to
   create a data flow directly between participants, so that there is no
   application layer intermediary between them.  This is done to reduce
   data latency, decrease packet loss, and reduce the operational costs
   of deploying the application.  However, this is difficult to
   accomplish through NATs.  A full treatment of the reasons for this is
   beyond the scope of this specification.

   Numerous solutions have been defined for allowing these protocols to
   operate through NATs.  These include Application Layer Gateways
   (ALGs), the Middlebox Control Protocol [RFC3303], the original Simple
   Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
   Realm Specific IP [RFC3102] [RFC3103] along with session description
   extensions needed to make them work, such as the Session Description
   Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
   (RTCP) [RFC3605].  Unfortunately, these techniques all have pros and
   cons that make each one optimal in some network topologies, but a
   poor choice in others.  The result is that administrators and
   implementers are making assumptions about the topologies of the
   networks in which their solutions will be deployed.  This introduces
   complexity and brittleness into the system.

   This specification defines Interactive Connectivity Establishment
   (ICE) as a technique for NAT traversal for UDP-based data streams
   (though ICE has been extended to handle other transport protocols,
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   such as TCP [RFC6544]).  ICE works by exchanging a multiplicity of IP
   addresses and ports which are then tested for connectivity by peer-
   to-peer connectivity checks.  The IP addresses and ports are
   exchanged using ICE usage-specific mechanisms (e.g., including in a
   offer/answer exchange) and the connectivity checks are performed
   using STUN [RFC5389].  ICE also makes use of Traversal Using Relays
   around NAT (TURN) [RFC5766], an extension to STUN.  Because ICE
   exchanges a multiplicity of IP addresses and ports for each media
   stream, it also allows for address selection for multihomed and dual-
   stack hosts.  For this reason, RFC 5245 [RFC5245] deprecated the
   solutions previously defined in RFC 4091 [RFC4091] and RFC 4092
   [RFC4092].

   Appendix B provides background information and motivations regarding
   the design decisions that were made when designing ICE.

2.  Overview of ICE

   In a typical ICE deployment, there are two endpoints (ICE agents)
   that want to communicate.  Note that ICE is not intended for NAT
   traversal for the signaling protocol, which is assumed to be provided
   via another mechanism.  ICE assumes that the agents are able to
   establish a signaling connection between each other.

   Initially, the agents are ignorant of their own topologies.  In
   particular, the agents may or may not be behind NATs (or multiple
   tiers of NATs).  ICE allows the agents to discover enough information
   about their topologies to potentially find one or more paths by which
   they can establish a data session.

   Figure 1 shows a typical ICE deployment.  The agents are labelled L
   and R.  Both L and R are behind their own respective NATs though they
   may not be aware of it.  The type of NAT and its properties are also
   unknown.  L and R are capable of engaging in a candidate exchange
   process, whose purpose is to set up a data session between L and R.
   Typically, this exchange will occur through a signaling server (e.g.,
   SIP proxy).

   In addition to the agents, a signaling server, and NATs, ICE is
   typically used in concert with STUN or TURN servers in the network.
   Each agent can have its own STUN or TURN server, or they can be the
   same.
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                     +---------+
   +--------+        |Signaling|         +--------+
   | STUN   |        |Server   |         | STUN   |
   | Server |        +---------+         | Server |
   +--------+       /           \        +--------+
                   /             \
                  /               \
                 / <- Signaling -> \
                /                   \
         +--------+               +--------+
         |  NAT   |               |  NAT   |
         +--------+               +--------+
           /                             \
          /                               \
      +-------+                       +-------+
      | Agent |                       | Agent |
      |   L   |                       |   R   |
      +-------+                       +-------+

                     Figure 1: ICE Deployment Scenario

   The basic idea behind ICE is as follows: each agent has a variety of
   candidate transport addresses (combination of IP address and port for
   a particular transport protocol, which is always UDP in this
   specification) it could use to communicate with the other agent.
   These might include:

   o  A transport address on a directly attached network interface

   o  A translated transport address on the public side of a NAT (a
      "server reflexive" address)

   o  A transport address allocated from a TURN server (a "relayed
      address")

   Potentially, any of L’s candidate transport addresses can be used to
   communicate with any of R’s candidate transport addresses.  In
   practice, however, many combinations will not work.  For instance, if
   L and R are both behind NATs, their directly attached interface
   addresses are unlikely to be able to communicate directly (this is
   why ICE is needed, after all!).  The purpose of ICE is to discover
   which pairs of addresses will work.  The way that ICE does this is to
   systematically try all possible pairs (in a carefully sorted order)
   until it finds one or more that work.
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2.1.  Gathering Candidates

   In order to execute ICE, an ICE agent identifies and gathers one or
   more address candidates.  A candidate has a transport address -- a
   combination of IP address and port for a particular transport
   protocol (with only UDP specified here).  There are different types
   of candidates, some derived from physical or logical network
   interfaces, others discoverable via STUN and TURN.

   The first category of candidates are those with a transport address
   obtained directly from a local interface.  Such a candidate is called
   a host candidate.  The local interface could be Ethernet or WiFi, or
   it could be one that is obtained through a tunnel mechanism, such as
   a Virtual Private Network (VPN) or Mobile IP (MIP).  In all cases,
   such a network interface appears to the agent as a local interface
   from which ports (and thus candidates) can be allocated.

   Next, the agent uses STUN or TURN to obtain additional candidates.
   These come in two flavors: translated addresses on the public side of
   a NAT (server reflexive candidates) and addresses on TURN servers
   (relayed candidates).  When TURN servers are utilized, both types of
   candidates are obtained from the TURN server.  If only STUN servers
   are utilized, only server reflexive candidates are obtained from
   them.  The relationship of these candidates to the host candidate is
   shown in Figure 2.  In this figure, both types of candidates are
   discovered using TURN.  In the figure, the notation X:x means IP
   address X and UDP port x.

Keranen, et al.         Expires September 9, 2018               [Page 8]



Internet-Draft                     ICE                        March 2018

                 To Internet

                     |
                     |
                     |  /------------  Relayed
                 Y:y | /               Address
                 +--------+
                 |        |
                 |  TURN  |
                 | Server |
                 |        |
                 +--------+
                     |
                     |
                     | /------------  Server
              X1’:x1’|/               Reflexive
               +------------+         Address
               |    NAT     |
               +------------+
                     |
                     | /------------  Local
                 X:x |/               Address
                 +--------+
                 |        |
                 | Agent  |
                 |        |
                 +--------+

                     Figure 2: Candidate Relationships

   When the agent sends a TURN Allocate request from IP address and port
   X:x, the NAT (assuming there is one) will create a binding X1’:x1’,
   mapping this server reflexive candidate to the host candidate X:x.
   Outgoing packets sent from the host candidate will be translated by
   the NAT to the server reflexive candidate.  Incoming packets sent to
   the server reflexive candidate will be translated by the NAT to the
   host candidate and forwarded to the agent.  The host candidate
   associated with a given server reflexive candidate is the BASE.

      Note: "Base" refers to the address an agent sends from for a
      particular candidate.  Thus, as a degenerate case, host candidates
      also have a base, but it’s the same as the host candidate.

   When there are multiple NATs between the agent and the TURN server,
   the TURN request will create a binding on each NAT, but only the
   outermost server reflexive candidate (the one nearest the TURN
   server) will be discovered by the agent.  If the agent is not behind
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   a NAT, then the base candidate will be the same as the server
   reflexive candidate and the server reflexive candidate is redundant
   and will be eliminated.

   The Allocate request then arrives at the TURN server.  The TURN
   server allocates a port y from its local IP address Y, and generates
   an Allocate response, informing the agent of this relayed candidate.
   The TURN server also informs the agent of the server reflexive
   candidate, X1’:x1’ by copying the source transport address of the
   Allocate request into the Allocate response.  The TURN server acts as
   a packet relay, forwarding traffic between L and R.  In order to send
   traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
   server forwards that to X1’:x1’, which passes through the NAT where
   it is mapped to X:x and delivered to L.

   When only STUN servers are utilized, the agent sends a STUN Binding
   request [RFC5389] to its STUN server.  The STUN server will inform
   the agent of the server reflexive candidate X1’:x1’ by copying the
   source transport address of the Binding request into the Binding
   response.

2.2.  Connectivity Checks

   Once L has gathered all of its candidates, it orders them in highest
   to lowest-priority and sends them to R over the signaling channel.
   When R receives the candidates from L, it performs the same gathering
   process and responds with its own list of candidates.  At the end of
   this process, each ICE agent has a complete list of both its
   candidates and its peer’s candidates.  It pairs them up, resulting in
   candidate pairs.  To see which pairs work, each agent schedules a
   series of connectivity checks.  Each check is a STUN request/response
   transaction that the client will perform on a particular candidate
   pair by sending a STUN request from the local candidate to the remote
   candidate.

   The basic principle of the connectivity checks is simple:

   1.  Sort the candidate pairs in priority order.

   2.  Send checks on each candidate pair in priority order.

   3.  Acknowledge checks received from the other agent.

   With both agents performing a check on a candidate pair, the result
   is a 4-way handshake:
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   L                        R
   -                        -
   STUN request ->             \  L’s
             <- STUN response  /  check

              <- STUN request  \  R’s
   STUN response ->            /  check

                    Figure 3: Basic Connectivity Check

   It is important to note that the STUN requests are sent to and from
   the exact same IP addresses and ports that will be used for data
   (e.g., RTP, RTCP, or other protocols).  Consequently, agents
   demultiplex STUN and data using the contents of the packets, rather
   than the port on which they are received.

   Because a STUN Binding request is used for the connectivity check,
   the STUN Binding response will contain the agent’s translated
   transport address on the public side of any NATs between the agent
   and its peer.  If this transport address is different from that of
   other candidates the agent already learned, it represents a new
   candidate (peer reflexive candidate), which then gets tested by ICE
   just the same as any other candidate.

   Because the algorithm above searches all candidate pairs, if a
   working pair exists it will eventually find it no matter what order
   the candidates are tried in.  In order to produce faster (and better)
   results, the candidates are sorted in a specified order.  The
   resulting list of sorted candidate pairs is called the check list.

   The agent works through the check list by sending a STUN request for
   the next candidate pair on the list periodically.  These are called
   "ordinary checks".  When a STUN transaction succeeds, one or more
   candidate pairs will become so called valid pairs, and will be added
   to a candidate pair list called the valid list.

   As an optimization, as soon as R gets L’s check message, R schedules
   a connectivity check message to be sent to L on the same candidate
   pair.  This is called a "triggered check", and accelerates the
   process of finding valid pairs.

   At the end of this handshake, both L and R know that they can send
   (and receive) messages end-to-end in both directions.

   In general, the priority algorithm is designed so that candidates of
   similar type get similar priorities and so that more direct routes
   (that is, routes without data relays or NATs) are preferred over
   indirect routes (routes with data relays or NATs).  Within those
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   guidelines, however, agents have a fair amount of discretion about
   how to tune their algorithms.

   A data stream might consist of multiple components (pieces of a data
   stream that require their own set of candidates, e.g., RTP and RTCP).

2.3.  Nominating Candidate Pairs And Concluding ICE

   ICE assigns one of the ICE agents in the role of the controlling
   agent, and the other of the controlled agent.  For each component of
   a data stream, the controlling agent nominates a valid pair (from the
   valid list) to be used for data.  The exact timing of the nomination
   is based on local policy.

   When nominating, the controlling agent lets the checks continue until
   at least one valid pair for each component of a data stream is found
   and then picks a valid pair and sends a STUN request on the valid
   pair, using an attribute to indicate to the controlled peer that it
   has nominated the pair.  This is shown in Figure 4.

   L                        R
   -                        -
   STUN request ->             \  L’s
             <- STUN response  /  check

              <- STUN request  \  R’s
   STUN response ->            /  check

   STUN request + attribute -> \  L’s
             <- STUN response  /  check

                           Figure 4: Nomination

   Once the controlled agent receives the STUN request with the
   attribute, it will check (unless the check has already been done) the
   same pair.  If the transactions above succeed, the agents will set
   the nominated flag for the pairs, and will cancel any future checks
   for that component of the data stream.  Once an agent has set the
   nominated flag for each component of a data stream, the pairs become
   the selected pairs.  After that, only the selected pairs will be used
   for sending and receiving data associated with that data stream.
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2.4.  ICE Restart

   Once ICE is concluded, it can be restarted at any time for one or all
   of the data streams by either ICE agent.  This is done by sending
   updated candidate information indicating a restart.

2.5.  Lite Implementations

   Certain ICE agents will always be connected to the public Internet
   and have a public IP address at which it can receive packets from any
   correspondent.  To make it easier for these devices to support ICE,
   ICE defines a special type of implementation called lite (in contrast
   to the normal full implementation).  Lite agents only use host
   candidates and do not generate connectivity checks or run the state
   machines, though they need to be able to respond to connectivity
   checks.

3.  ICE Usage

   This document specifies generic use of ICE with protocols that
   provide means to exchange candidate information between the ICE
   agents.  The specific details (i.e., how to encode candidate
   information and the actual candidate exchange process) for different
   protocols using ICE (referred to as "using protocol") are described
   in separate usage documents.

   One mechanism for agents to exchange the candidate information by
   using [RFC3264] based Offer/Answer semantics as part of the SIP
   [RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

   [RFC7825] defines an ICE usage for the Real-Time Streaming Protocol
   (RTSP).  Note, however, that the ICE usage is based on RFC 5245.

4.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in RFC
   2119 [RFC2119].

   Readers need to be familiar with the terminology defined in
   [RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

   This specification makes use of the following additional terminology:

   ICE Session:  An ICE session consists of all ICE-related actions
      starting with the candidate gathering, followed by the
      interactions (candidate exchange, connectivity checks, nominations
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      and keepalives) between the ICE agents until all the candidates
      are released or ICE restart is triggered.

   ICE Agent, Agent:  An ICE agent (sometimes simply referred to as an
      agent) is the protocol implementation involved in the ICE
      candidate exchange.  There are two agents involved in a typical
      candidate exchange.

   Initiating Peer, Initiating Agent, Initiator:  An initiating agent is
      an ICE agent that initiates the ICE candidate exchange process.

   Responding Peer, Responding Agent, Responder:  A responding agent is
      an ICE agent that receives and responds to the candidate exchange
      process initiated by the initiating agent.

   ICE Candidate Exchange, Candidate Exchange:  The process where the
      ICE agents exchange information (e.g., candidates and passwords)
      that is needed to perform ICE.  [RFC3264] Offer/Answer with SDP
      encoding is one example of a protocol that can be used for
      exchanging the candidate information.

   Peer:  From the perspective of one of the ICE agents in a session,
      its peer is the other agent.  Specifically, from the perspective
      of the initiating agent, the peer is the responding agent.  From
      the perspective of the responding agent, the peer is the
      initiating agent.

   Transport Address:  The combination of an IP address and transport
      protocol (such as UDP or TCP) port.

   Data, Data Stream, Data Session:  When ICE is used to setup data
      sessions, the data is transported using some protocol.  Media is
      usually transported over RTP, composed of a stream of RTP packets.
      Data session refers to data packets that are exchanged between the
      peer on the path created and tested with ICE.

   Candidate, Candidate Information:  A transport address that is a
      potential point of contact for receipt of data.  Candidates also
      have properties -- their type (server reflexive, relayed, or
      host), priority, foundation, and base.

   Component:  A component is a piece of a data stream.  A data stream
      may require multiple components, each of which has to work in
      order for the data stream as a whole to work.  For RTP/RTCP data
      streams, unless RTP and RTCP are multiplexed in the same port,
      there are two components per data stream -- one for RTP, and one
      for RTCP.  A component has a candidate pair, which cannot be used
      by other components.
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   Host Candidate:  A candidate obtained by binding to a specific port
      from an IP address on the host.  This includes IP addresses on
      physical interfaces and logical ones, such as ones obtained
      through Virtual Private Networks (VPNs).

   Server Reflexive Candidate:  A candidate whose IP address and port
      are a binding allocated by a NAT for an ICE agent when it sent a
      packet through the NAT to a server, such as a STUN server.

   Peer Reflexive Candidate:  A candidate whose IP address and port are
      a binding allocated by a NAT for an ICE agent when it sent a
      packet through the NAT to its peer.

   Relayed Candidate:  A candidate obtained from a relay server, such as
      a TURN server.

   Base:  The transport address that an ICE agent sends from for a
      particular candidate.  For host, server reflexive and peer
      reflexive candidates the base is the same as the host candidate.
      For relayed candidates the base is the same as the relayed
      candidate (i.e., the transport address used by the TURN server to
      send from).

   Related Address and Port:  A transport address related to a
      candidate, useful for diagnostics and other purposes.  If a
      candidate is server or peer reflexive, the related address and
      port is equal to the base for that server or peer reflexive
      candidate.  If the candidate is relayed, the related address and
      port is equal to the mapped address in the Allocate response that
      provided the client with that relayed candidate.  If the candidate
      is a host candidate, the related address and port is identical to
      the host candidate.

   Foundation:  An arbitrary string used in the freezing algorithm to
      group similar candidates.  Is the same for two candidates that
      have the same type, base IP address, protocol (UDP, TCP, etc.),
      and STUN or TURN server.  If any of these are different, then the
      foundation will be different.

   Local Candidate:  A candidate that an ICE agent has obtained and may
      send to its peer.

   Remote Candidate:  A candidate that an ICE agent received from its
      peer.

   Default Destination/Candidate:  The default destination for a
      component of a data stream is the transport address that would be
      used by an ICE agent that is not ICE-aware.  A default candidate
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      for a component is one whose transport address matches the default
      destination for that component.

   Candidate Pair:  A pair of a local candidate and a remote candidate.

   Check, Connectivity Check, STUN Check:  A STUN Binding request for
      the purposes of verifying connectivity.  A check is sent from the
      base of the local candidate to the remote candidate of a candidate
      pair.

   Check List:  An ordered set of candidate pairs that an ICE agent will
      use to generate checks.

   Ordinary Check:  A connectivity check generated by an ICE agent as a
      consequence of a timer that fires periodically, instructing it to
      send a check.

   Triggered Check:  A connectivity check generated as a consequence of
      the receipt of a connectivity check from the peer.

   Valid Pair:  A candidate pair whose local candidate equals the mapped
      address of a successful connectivity check response, and whose
      remote candidate equals the destination address to which the
      connectivity check request was sent.

   Valid List:  An ordered set of candidate pairs for a data stream that
      have been validated by a successful STUN transaction.

   Check List Set:  The ordered list of all check lists.  The order is
      determined by each ICE usage.

   Full Implementation:  An ICE implementation that performs the
      complete set of functionality defined by this specification.

   Lite Implementation:  An ICE implementation that omits certain
      functions, implementing only as much as is necessary for a peer
      implementation that is full to gain the benefits of ICE.  Lite
      implementations do not maintain any of the state machines and do
      not generate connectivity checks.

   Controlling Agent:  The ICE agent that nominates a candidate pair.
      In any session, one agent is always controlling.  The other is the
      controlled agent.

   Controlled Agent:  The ICE agent that waits for the controlling agent
      to nominate a candidate pair.
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   Nomination:  The process of the controlling agent indicating to the
      controlled agent which candidate pair the ICE agents will use for
      sending and receiving data.  The nomination process defined in
      this specification was referred to "regular nomination" in RFC
      5245.  The nomination process that was referred to "aggressive
      nomination" in RFC 5245 has been deprecated in this specification.

   Nominated, Nominated Flag:  Once the nomination of a candidate pair
      has succeeded, the candidate pair has become nominated, and the
      value of its nominated flag is set to true.

   Selected Pair, Selected Candidate Pair:  The candidate pair used for
      sending and receiving data for a component of a data stream is
      referred to as the selected pair.  Before selected pairs have been
      produced for a data stream, any valid pair associated with a
      component of a data stream can be used for sending and receiving
      data for the component.  Once there are nominated pairs for each
      component of a data stream, the nominated pairs become the
      selected pairs for the data stream.  The candidates associated
      with the selected pairs are referred to as selected candidates.

   Using Protocol, ICE Usage:  The protocol that uses ICE for NAT
      traversal.  A usage specification defines the protocol-specific
      details on how the procedures defined here are applied to that
      protocol.

   Timer Ta:  The timer for generating new STUN or TURN transactions.

   Timer RTO (Retransmission Timout):  The retransmission timer for a
      given STUN or TURN transaction.

5.  ICE Candidate Gathering and Exchange

   As part of ICE processing, both the initiating and responding agents
   gather candidates, prioritize and eliminate redundant candidates, and
   exchange candidate information with the peer as defined by the Usage
   Protocol (ICE Usage).  Specifics of the candidate encoding mechanism
   and the semantics of candidate information exchange is out of scope
   of this specification.

5.1.  Full Implementation

5.1.1.  Gathering Candidates

   An ICE agent gathers candidates when it believes that communication
   is imminent.  An initiating agent can do this based on a user
   interface cue, or based on an explicit request to initiate a session.
   Every candidate has a transport address.  It also has a type and a
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   base.  Four types are defined and gathered by this specification --
   host candidates, server reflexive candidates, peer reflexive
   candidates, and relayed candidates.  The server reflexive candidates
   are gathered using STUN or TURN, and relayed candidates are obtained
   through TURN.  Peer reflexive candidates are obtained in later phases
   of ICE, as a consequence of connectivity checks.

   The process for gathering candidates at the responding agent is
   identical to the process for the initiating agent.  It is RECOMMENDED
   that the responding agent begins this process immediately on receipt
   of the candidate information, prior to alerting the user of the
   application associated with the ICE session.

5.1.1.1.  Host Candidates

   Host candidates are obtained by binding to ports on an IP address
   attached to an interface (physical or virtual, including VPN
   interfaces) on the host.

   For each component of each data stream the ICE agent wishes to use,
   the agent SHOULD obtain a candidate on each IP address that the host
   has, with the exceptions listed below.  The agent obtains each
   candidate by binding to a UDP port on the specific IP address.  A
   host candidate (and indeed every candidate) is always associated with
   a specific component for which it is a candidate.

   Each component has an ID assigned to it, called the component ID.
   For RTP/RTCP data streams, unless both RTP and RTCP are multiplexed
   in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
   component ID of 1, and RTCP a component ID of 2.  In case of RTP/RTCP
   multiplexing, a component ID of 1 is used for both RTP and RTCP.

   When candidates are obtained, unless the agent knows for sure that
   RTP/RTCP multiplexing will be used (i.e., the agent knows that the
   other agent also supports, and is willing to use, RTP/RTCP
   multiplexing), or unless the agent only supports RTP/RTCP
   multiplexing, the agent MUST obtain a separate candidate for RTCP.
   If an agent has obtained a candidate for RTCP, and ends up using RTP/
   RTCP multiplexing, the agent does not need to perform connectivity
   checks on the RTCP candidate.  Absence of a component ID 2 as such
   does not imply use of RTCP/RTP multiplexing, as it could also mean
   that RTCP is not used.

   If an agent is using separate candidates for RTP and RTCP, it will
   end up with 2*K host candidates if an agent has K IP addresses.

   Note that the responding agent, when obtaining its candidates, will
   typically know if the other agent supports RTP/RTCP multiplexing, in
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   which case it will not need to obtain a separate candidate for RTCP.
   However, absence of a component ID 2 as such does not imply use of
   RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

   For uses other than RTP/RTCP streams, use of multiple components is
   discouraged, since using them increases the complexity of ICE
   processing.  If multiple components are needed, the component IDs
   SHOULD start with 1 and increase by 1 for each component.

   The base for each host candidate is set to the candidate itself.

   The host candidates are gathered from all IP addresses with the
   following exceptions:

   o  Addresses from a loopback interface MUST NOT be included in the
      candidate addresses.

   o  Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
      local unicast addresses [RFC3879] MUST NOT be included in the
      address candidates.

   o  IPv4-mapped IPv6 addresses SHOULD NOT be included in the address
      candidates unless the application using ICE does not support IPv4
      (i.e., is an IPv6-only application [RFC4038]).

   o  If one or more host candidates corresponding to an IPv6 address
      generated using a mechanism that prevents location tracking
      [RFC7721] are gathered, host candidates corresponding to IPv6
      addresses that do allow location tracking that are configured on
      the same interface and are part of the same network prefix MUST
      NOT be gathered.  Similarly, when host candidates corresponding to
      an IPv6 address generated using a mechanism that prevents location
      tracking are gathered, then host candidates corresponding to IPv6
      link-local addresses [RFC4291] MUST NOT be gathered.

   The IPv6 default address selection specification [RFC6724] specifies
   that temporary addresses [RFC4941] are to be preferred over permanent
   addresses.

5.1.1.2.  Server Reflexive and Relayed Candidates

   An ICE agent SHOULD gather server reflexive and relayed candidates.
   However, use of STUN and TURN servers may be unnecessary in certain
   networks and use of TURN servers may be expensive, so some
   deployments may elect not to use them.  If an agent does not gather
   server reflexive or relayed candidates, it is RECOMMENDED that the
   functionality be implemented and just disabled through configuration,
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   so that it can be re-enabled through configuration if conditions
   change in the future.

   The agent pairs each host candidate with the STUN or TURN servers
   with which it is configured or has discovered by some means.  It is
   RECOMMENDED that a domain name be configured, and the DNS procedures
   in [RFC5389] (using SRV records with the "stun" service) be used to
   discover the STUN server, and the DNS procedures in [RFC5766] (using
   SRV records with the "turn" service) be used to discover the TURN
   server.

   When multiple STUN or TURN servers are available (or when they are
   learned through DNS records and multiple results are returned), the
   agent MAY gather candidates for all of them and SHOULD gather
   candidates for at least one of them (one STUN server and one TURN
   server).  It does so by pairing host candidates with STUN or TURN
   servers and, for each pair, the agent sends a Binding or Allocate
   request to the server from the host candidate.  Binding requests to a
   STUN server are not authenticated, and any ALTERNATE-SERVER attribute
   in a response is ignored.  Agents MUST support the backwards
   compatibility mode for the Binding request defined in [RFC5389].
   Allocate requests SHOULD be authenticated using a long-term
   credential obtained by the client through some other means.

   The gathering process is controlled using a timer, Ta.  Every time Ta
   expires the agent can generate another new STUN or TURN transaction.
   This transaction can either be a retry of a previous transaction that
   failed with a recoverable error (such as authentication failure), or
   a transaction for a new host candidate and STUN or TURN server pair.
   The agent SHOULD NOT generate transactions more frequently than one
   every time Ta expires.  See Section 14 for guidance on how to set Ta
   and the STUN retransmit timer, RTO.

   The agent will receive a Binding or Allocate response.  A successful
   Allocate response will provide the agent with a server reflexive
   candidate (obtained from the mapped address) and a relayed candidate
   in the XOR-RELAYED-ADDRESS attribute.  If the Allocate request is
   rejected because the server lacks resources to fulfill it, the agent
   SHOULD instead send a Binding request to obtain a server reflexive
   candidate.  A Binding response will provide the agent with only a
   server reflexive candidate (also obtained from the mapped address).
   The base of the server reflexive candidate is the host candidate from
   which the Allocate or Binding request was sent.  The base of a
   relayed candidate is that candidate itself.  If a relayed candidate
   is identical to a host candidate (which can happen in rare cases),
   the relayed candidate MUST be discarded.
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   If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
   and DNS64 [RFC6147] technologies, it may also gather IPv4 server
   reflexive and/or relayed candidates from IPv4-only STUN or TURN
   servers.  IPv6-only agents SHOULD also utilize IPv6 prefix discovery
   [RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
   generate server reflexive candidates for each IPv6-only interface
   accordingly.  The NAT64 server reflexive candidates are prioritized
   like IPv4 server reflexive candidates.

5.1.1.3.  Computing Foundations

   The ICE agent assigns each candidate a foundation.  Two candidates
   have the same foundation when all of the following are true:

   o  They have the same type (host, relayed, server reflexive, or peer
      reflexive).

   o  Their bases have the same IP address (the ports can be different).

   o  For reflexive and relayed candidates, the STUN or TURN servers
      used to obtain them have the same IP address (the IP address used
      by the agent to contact the STUN or TURN server).

   o  They were obtained using the same transport protocol (TCP, UDP).

   Similarly, two candidates have different foundations if their types
   are different, their bases have different IP addresses, the STUN or
   TURN servers used to obtain them have different IP addresses (the IP
   addresses used by the agent to contact the STUN or TURN server), or
   their transport protocols are different.

5.1.1.4.  Keeping Candidates Alive

   Once server reflexive and relayed candidates are allocated, they MUST
   be kept alive until ICE processing has completed, as described in
   Section 8.3.  For server reflexive candidates learned through a
   Binding request, the bindings MUST be kept alive by additional
   Binding requests to the server.  Refreshes for allocations are done
   using the Refresh transaction, as described in [RFC5766].  The
   Refresh requests will also refresh the server reflexive candidate.

   Host candidates do not time out, but the candidate addresses may
   change or disappear for a number of reasons.  An ICE agent SHOULD
   monitor the interfaces it uses, invalidate candidates whose base has
   gone away, and acquire new candidates as appropriate when new IP
   addresses (on new or currently used interfaces) appear.
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5.1.2.  Prioritizing Candidates

   The prioritization process results in the assignment of a priority to
   each candidate.  Each candidate for a data stream MUST have a unique
   priority that MUST be a positive integer between 1 and (2**31 - 1).
   This priority will be used by ICE to determine the order of the
   connectivity checks and the relative preference for candidates.
   Higher priority values give more priority over lower values.

   An ICE agent SHOULD compute this priority using the formula in
   Section 5.1.2.1 and choose its parameters using the guidelines in
   Section 5.1.2.2.  If an agent elects to use a different formula, ICE
   may take longer to converge since the agents will not be coordinated
   in their checks.

   The process for prioritizing candidates is common across the
   initiating and the responding agent.

5.1.2.1.  Recommended Formula

   The recommended formula combines a preference for the candidate type
   (server reflexive, peer reflexive, relayed, and host), a preference
   for the IP address for which the candidate was obtained, and
   component ID using the following formula:

   priority = (2^24)*(type preference) +
              (2^8)*(local preference) +
              (2^0)*(256 - component ID)

   The type preference MUST be an integer from 0 (lowest preference) to
   126 (highest preference) inclusive and MUST be identical for all
   candidates of the same type and MUST be different for candidates of
   different types.  The type preference for peer reflexive candidates
   MUST be higher than that of server reflexive candidates.  Setting the
   value to 0 means that candidates of this type will only be used as a
   last resort.  Note that candidates gathered based on the procedures
   of Section 5.1.1 will never be peer reflexive candidates; candidates
   of these type are learned from the connectivity checks performed by
   ICE.

   The local preference MUST be an integer from 0 (lowest preference) to
   65535 (highest preference) inclusive.  When there is only a single IP
   address, this value SHOULD be set to 65535.  If there are multiple
   candidates for a particular component for a particular data stream
   that have the same type, the local preference MUST be unique for each
   one.  If an ICE agent is dual-stack, the local preference SHOULD be
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   set according to the current best practice described in
   [I-D.ietf-ice-dualstack-fairness].

   The component ID MUST be an integer between 1 and 256 inclusive.

5.1.2.2.  Guidelines for Choosing Type and Local Preferences

   The RECOMMENDED values for type preferences are 126 for host
   candidates, 110 for peer reflexive candidates, 100 for server
   reflexive candidates, and 0 for relayed candidates.

   If an ICE agent is multihomed and has multiple IP addresses, the
   recommendations in [I-D.ietf-ice-dualstack-fairness] SHOULD be
   followed.  If multiple TURN servers are used, local priorities for
   the candidates obtained from the TURN servers are chosen in a similar
   fashion as for multihomed local candidates: the local preference
   value is used to indicate a preference among different servers but
   the preference MUST be unique for each one.

   When choosing type preferences, agents may take into account factors
   such as latency, packet loss, cost, network topology, security,
   privacy, and others.

5.1.3.  Eliminating Redundant Candidates

   Next, the ICE agents (initiating and responding) eliminate redundant
   candidates.  Two candidates can have the same transport address yet
   have different bases, and these would not be considered redundant.
   Frequently, a server reflexive candidate and a host candidate will be
   redundant when the agent is not behind a NAT.  A candidate is
   redundant if and only if its transport address and base equal those
   of another candidate.  The agent SHOULD eliminate the redundant
   candidate with the lower priority.

5.2.  Lite Implementation Procedures

   Lite implementations only utilize host candidates.  For each IP
   address, independent of IP address family, there MUST be zero or one
   candidate.  With the lite implementation, ICE cannot be used to
   dynamically choose amongst candidates.  Therefore, including more
   than one candidate from a particular IP address family is NOT
   RECOMMENDED, since only a connectivity check can truly determine
   whether to use one address or the other.  Instead agents that have
   multiple public IP addresses are RECOMMENDED to run full ICE
   implementations to ensure the best usage of its addresses.

   Each component has an ID assigned to it, called the component ID.
   For RTP/RTCP data streams, unless RTCP is multiplexed in the same
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   port with RTP, the RTP itself has a component ID of 1, and RTCP a
   component ID of 2.  If an agent is using RTCP without multiplexing,
   it MUST obtain candidates for it.  However, absence of a component ID
   2 as such does not imply use of RTCP/RTP multiplexing, as it could
   also mean that RTCP is not used.

   Each candidate is assigned a foundation.  The foundation MUST be
   different for two candidates allocated from different IP addresses,
   and MUST be the same otherwise.  A simple integer that increments for
   each IP address will suffice.  In addition, each candidate MUST be
   assigned a unique priority amongst all candidates for the same data
   stream.  If the formula in Section 5.1.2.1 is used to calculate the
   priority, the type preference value SHOULD be set to 126.  If a host
   is v4-only, the local preference value SHOULD be set to 65535.  If a
   host is v6 or dual-stack, the local preference value SHOULD be set to
   the precedence value for IP addresses described in RFC 6724
   [RFC6724].

   Next, an agent chooses a default candidate for each component of each
   data stream.  If a host is IPv4-only, there would only be one
   candidate for each component of each data stream, and therefore that
   candidate is the default.  If a host is IPv6-only, the default
   candidate would typically be a globally scoped IPv6 address.  Dual-
   stack hosts SHOULD allow configuration of whether IPv4 or IPv6 is
   used for the default candidate, and the configuration needs to be
   based on which one its administrator believes has a higher chance of
   success in the current network environment.

   The procedures in this section are common across the initiating and
   responding agents.

5.3.  Exchanging Candidate Information

   ICE agents (initiating and responding) need the following information
   about candidates to be exchanged.  Each ICE usage MUST define how the
   information is exchanged with the using protocol.  This section
   describes the information that needs to be exchanged.

   Candidates:   One or more candidates.  For each candidate:

      Address:  The IP address and transport protocol port of the
         candidate.

      Transport:  The transport protocol of the candidate.  This MAY be
         omitted if the using protocol only runs over a single transport
         protocol.
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      Foundation:  A sequence of up to 32 characters.

      Component ID:  The component ID of the candidate.  This MAY be
         omitted if the using protocol does not use the concept of
         components.

      Priority:  The 32-bit priority of the candidate.

      Type:  The type of the candidate.

      Related Address and Port:  The related IP address and port of the
         candidate.  These MAY be omitted or set to invalid values if
         the agent does not want to reveal them, e.g., for privacy
         reasons.

      Extensibility Parameters:  The using protocol might define means
         for adding new per-candidate ICE parameters in the future.

   Lite or Full:   Whether the agent is a lite agent or full agent.

   Connectivity check pacing value:  The pacing value for connectivity
      checks that the agent wishes to use.  This MAY be omitted if the
      agent wishes to use a defined default value.

   Username Fragment and Password:  Values used to perform connectivity
      checks.  The values MUST be unguessable, with at least 128 bits of
      random number generator output used to generate the password, and
      at least 24 bits output to generate the username fragment.

   Extensions:  New media-stream or session-level attributes (ice-
      options).

   If the using protocol is vulnerable to, and able to detect, ICE
   mismatch (Section 5.4), a way is needed for the detecting agent to
   convey this information to its peer.  It is a boolean flag.

   The using protocol may (or may not) need to deal with backwards
   compatibility with older implementations that do not support ICE.  If
   a fallback mechanism to non-ICE is supported is being used, then
   presumably the using protocol provides a way of conveying the default
   candidate (its IP address and port) in addition to the ICE
   parameters.

   Once an agent has sent its candidate information, it MUST be prepared
   to receive both STUN and data packets on each candidate.  As
   discussed in Section 12.1, data packets can be sent to a candidate
   prior to its appearance as the default destination for data.
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5.4.  ICE Mismatch

   Certain middleboxes, such as ALGs, can alter signaling information in
   ways that break ICE (e.g., by rewriting IP addresses in SDP).  This
   is referred to as ICE mismatch.  If the using protocol is vulnerable
   to ICE mismatch, the responding agent needs to be able to detect it
   and inform the peer ICE agent about the ICE mismatch.

   Each using protocol needs to define whether the using protocol is
   vulnerable to ICE mismatch, how ICE mismatch is detected, and whether
   specific actions need to be taken when ICE mismatch is detected.

6.  ICE Candidate Processing

   Once an ICE agent has gathered its candidates and exchanged
   candidates with its peer (Section 5), it will determine its own role.
   In addition, full implementations will form check lists, and begin
   performing connectivity checks with the peer.

6.1.  Procedures for Full Implementation

6.1.1.  Determining Role

   For each session, each ICE agent (Initiating and Responding) takes on
   a role.  There are two roles -- controlling and controlled.  The
   controlling agent is responsible for the choice of the final
   candidate pairs used for communications.  The sections below describe
   in detail the actual procedures followed by controlling and
   controlled agents.

   The rules for determining the role and the impact on behavior are as
   follows:

   Both agents are full:  The initiating agent that started the ICE
      processing MUST take the controlling role, and the other MUST take
      the controlled role.  Both agents will form check lists, run the
      ICE state machines, and generate connectivity checks.  The
      controlling agent will execute the logic in Section 8.1 to
      nominate pairs that will become (if the connectivity checks
      associated with the nominations succeed) the selected pairs, and
      then both agents end ICE as described in Section 8.1.2.

   One agent full, one lite:  The full agent MUST take the controlling
      role, and the lite agent MUST take the controlled role.  The full
      agent will form check lists, run the ICE state machines, and
      generate connectivity checks.  That agent will execute the logic
      in Section 8.1 to nominate pairs that will become (if the
      connectivity checks associated with the nominations succeed) the
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      selected pairs, and use the logic in Section 8.1.2 to end ICE.
      The lite implementation will just listen for connectivity checks,
      receive them and respond to them, and then conclude ICE as
      described in Section 8.2.  For the lite implementation, the state
      of ICE processing for each data stream is considered to be
      Running, and the state of ICE overall is Running.

   Both lite:  The initiating agent that started the ICE processing MUST
      take the controlling role, and the other MUST take the controlled
      role.  In this case, no connectivity checks are ever sent.
      Rather, once the candidates are exchanged, each agent performs the
      processing described in Section 8 without connectivity checks.  It
      is possible that both agents will believe they are controlled or
      controlling.  In the latter case, the conflict is resolved through
      glare detection capabilities in the signaling protocol enabling
      the candidate exchange.  The state of ICE processing for each data
      stream is considered to be Running, and the state of ICE overall
      is Running.

   Once the roles are determined for a session, they persist throughout
   the lifetime of the session.  The roles can be re-determined as part
   of an ICE restart (Section 9), but an ICE agent MUST NOT re-determine
   the role as part of an ICE restart unless one or more of the
   following criteria is fulfilled:

   Full becomes lite:  If the controlling agent is full, and switches to
      lite, the roles MUST be re-determined if the peer agent is also
      full.

   Role conflict:  If the ICE restart causes a role conflict, the roles
      might be re-determined due to the role conflict procedures in
      Section 7.3.1.1.

   NOTE: There are certain 3PCC (third party call control) [RFC3725]
   scenarios where an ICE restart might cause a role conflict.

   NOTE: The agents needs to inform each other whether they are full or
   lite before the roles are determined.  The mechanism for that is
   signalling protocol specific, and outside the scope of the document.

   An agent MUST accept if the peer initiates a re-determination of the
   roles even if the criteria for doing so are not fulfilled.  This can
   happen if the peer is compliant with RFC 5245.
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6.1.2.  Forming the Check Lists

   There is one check list for each data stream.  To form a check list,
   initiating and responding ICE agents form candidate pairs, compute
   pair priorities, order pairs by priority, prune pairs, remove lower-
   priority pairs, and set check list states.  If candidates are added
   to a check list (e.g., due to detection of peer reflexive
   candidates), the agent will re-perform these steps for the updated
   check list.

6.1.2.1.  Check List State

   Each check list has a state, which captures the state of ICE checks
   for the data stream associated with the check list.  The states are:

   Running:  The check list is neither Completed nor Failed yet.  Check
      lists are initially set to the Running state.

   Completed:  The check list contains a nominated pair for each
      component of the data stream.

   Failed:  The check list does not have a valid pair for each component
      of the data stream and all of the candidate pairs in the check
      list are in either the Failed or Succeeded state.  In other words,
      at least one component of the check list has candidate pairs that
      are all in the Failed state, which means the component has failed,
      which means the check list has failed.

6.1.2.2.  Forming Candidate Pairs

   The ICE agent pairs each local candidate with each remote candidate
   for the same component of the same data stream with the same IP
   address family.  It is possible that some of the local candidates
   won’t get paired with remote candidates, and some of the remote
   candidates won’t get paired with local candidates.  This can happen
   if one agent doesn’t include candidates for the all of the components
   for a data stream.  If this happens, the number of components for
   that data stream is effectively reduced, and considered to be equal
   to the minimum across both agents of the maximum component ID
   provided by each agent across all components for the data stream.

   In the case of RTP, this would happen when one agent provides
   candidates for RTCP, and the other does not.  As another example, the
   initiating agent can multiplex RTP and RTCP on the same port
   [RFC5761].  However, since the initiating agent doesn’t know if the
   peer agent can perform such multiplexing, it includes candidates for
   RTP and RTCP on separate ports.  If the peer agent can perform such
   multiplexing, it would include just a single component for each

Keranen, et al.         Expires September 9, 2018              [Page 28]



Internet-Draft                     ICE                        March 2018

   candidate -- for the combined RTP/RTCP mux.  ICE would end up acting
   as if there was just a single component for this candidate.

   With IPv6 it is common for a host to have multiple host candidates
   for each interface.  To keep the amount of resulting candidate pairs
   reasonable and to avoid candidate pairs that are highly unlikely to
   work, IPv6 link-local addresses MUST NOT be paired with other than
   link-local addresses.

   The candidate pairs whose local and remote candidates are both the
   default candidates for a particular component is called the default
   candidate pair for that component.  This is the pair that would be
   used to transmit data if both agents had not been ICE aware.

   Figure 5 shows the properties of and relationships between transport
   addresses, candidates, candidate pairs, and check lists.
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       +--------------------------------------------+
       |                                            |
       | +---------------------+                    |
       | |+----+ +----+ +----+ |   +Type            |
       | || IP | |Port| |Tran| |   +Priority        |
       | ||Addr| |    | |    | |   +Foundation      |
       | |+----+ +----+ +----+ |   +Component ID    |
       | |      Transport      |   +Related Address |
       | |        Addr         |                    |
       | +---------------------+   +Base            |
       |             Candidate                      |
       +--------------------------------------------+
       *                                         *
       *    *************************************
       *    *
     +-------------------------------+
    .|                               |
     | Local     Remote              |
     | +----+    +----+   +default?  |
     | |Cand|    |Cand|   +valid?    |
     | +----+    +----+   +nominated?|
     |                    +State     |
     |                               |
     |                               |
     |          Candidate Pair       |
     +-------------------------------+
     *                              *
     *                  ************
     *                  *
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+
     +------------------+
     |  Candidate Pair  |
     +------------------+

            Check
            List

               Figure 5: Conceptual Diagram of a Check List
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6.1.2.3.  Computing Pair Priority and Ordering Pairs

   The ICE agent computes a priority for each candidate pair.  Let G be
   the priority for the candidate provided by the controlling agent.
   Let D be the priority for the candidate provided by the controlled
   agent.  The priority for a pair is computed as follows:

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   The agent sorts each check list in decreasing order of candidate pair
   priority.  If two pairs have identical priority, the ordering amongst
   them is arbitrary.

6.1.2.4.  Pruning the Pairs

   This sorted list of candidate pairs is used to determine a sequence
   of connectivity checks that will be performed.  Each check involves
   sending a request from a local candidate to a remote candidate.
   Since an ICE agent cannot send requests directly from a reflexive
   candidate (server reflexive or peer reflexive), but only from its
   base, the agent next goes through the sorted list of candidate pairs.
   For each pair where the local candidate is reflexive, the candidate
   MUST be replaced by its base.

   The agent prunes each check list.  This is done by removing a
   candidate pair if it is redundant with a higher priority candidate
   pair in the same check list.  Two candidate pairs are redundant if
   their local candidates have the same base and their remote candidates
   are identical.  The result is a sequence of ordered candidate pairs,
   called the check list for that data stream.

6.1.2.5.  Removing lower-priority Pairs

   In order to limit the attacks described in Section 19.5.1, an ICE
   agent MUST limit the total number of connectivity checks the agent
   performs across all check lists in the check list set.  This is done
   by limiting the total number of candidate pairs in the check list
   set.  The default limit of candidate pairs for the check list set is
   100, but the value MUST be configurable.  The limit is enforced by,
   within in each check list, discarding lower-priority candidate pairs
   until the total number of candidate pairs in the check list set is
   smaller than the limit value.  The discarding SHOULD be done evenly
   so that the number of candidate pairs in each check list is reduced
   the same amount.

   It is RECOMMENDED that a lower limit value than the default is picked
   when possible, and that the value is set to the maximum number of
   plausible candidate pairs that might be created in an actual
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   deployment configuration.  The requirement for configuration is meant
   to provide a tool for fixing this value in the field if, once
   deployed, it is found to be problematic.

6.1.2.6.  Computing Candidate Pair States

   Each candidate pair in the check list has a foundation (the
   combination of the foundations of the local and remote candidates in
   the pair) and one of the following states:

   Waiting:  A check has not been sent for this pair, but the pair is
      not Frozen.

   In-Progress:  A check has been sent for this pair, but the
      transaction is in progress.

   Succeeded:  A check has been sent for this pair, and produced a
      successful result.

   Failed:  A check has been sent for this pair, and failed (a response
      to the check was never received, or a failure response was
      received).

   Frozen:  A check for this pair has not been sent, and it can not be
      sent until the pair is unfrozen and moved into the Waiting state.

   Pairs move between states as shown in Figure 6.
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      +-----------+
      |           |
      |           |
      |  Frozen   |
      |           |
      |           |
      +-----------+
            |
            |unfreeze
            |
            V
      +-----------+         +-----------+
      |           |         |           |
      |           | perform |           |
      |  Waiting  |-------->|In-Progress|
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+
                                  / |
                                //  |
                              //    |
                            //      |
                           /        |
                         //         |
               failure //           |success
                     //             |
                    /               |
                  //                |
                //                  |
              //                    |
             V                      V
      +-----------+         +-----------+
      |           |         |           |
      |           |         |           |
      |   Failed  |         | Succeeded |
      |           |         |           |
      |           |         |           |
      +-----------+         +-----------+

                         Figure 6: Pair State FSM

   1.  The initial states for each pair in a check list are computed by
       performing the following sequence of steps:

   2.  The check lists are placed in an ordered list (the order is
       determined by each ICE usage), called the check list set.
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   3.  The ICE agent initially places all candidate pairs in the Frozen
       state.

   4.  The agent sets all of the check lists in the check list set to
       the Running state.

   5.  For each foundation, the agent sets the state of exactly one
       candidate pair to the Waiting state (unfreezing it).  The
       candidate pair to unfreeze is chosen by finding the first
       candidate pair (ordered by lowest component ID and then highest
       priority if component IDs are equal) in the first check list
       (according to the usage-defined check list set order) that has
       that foundation.

   NOTE: The procedures above are different from RFC 5245, where only
   candidate pairs in the first check list of were initially placed in
   the Waiting state.  Now it applies to candidate pairs in the the
   first check list which have that foundation, even if the first check
   list to have that foundation is not the first check list in the check
   list set.

   The table below illustrates an example.

 Table legend:

 Each row (m1, m2,...) represents a check list associated with a data
 stream. m1 represents the first check list in the check list set.

 Each column (f1, f2,...) represents a foundation. Every candidate pair
 within a given column share the same foundation.

 f-cp represents a candidate pair in the Frozen state.

 w-cp represents a candidate pair in the Waiting state.

 1. The agent sets all of the pairs in the check list set to the Frozen
 state.

       f1    f2    f3    f4    f5
     -----------------------------
 m1 | f-cp  f-cp  f-cp
    |
 m2 | f-cp  f-cp  f-cp  f-cp
    |
 m3 | f-cp                    f-cp
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 2. For each foundation, the candidate pair with the lowest component ID
 is placed in the Waiting state, unless a candidate pair associated with
 the same foundation has already been put in the Waiting state in one of
 the other examined check lists in the check list set.

       f1    f2    f3    f4    f5
     -----------------------------
 m1 | w-cp  w-cp  w-cp
    |
 m2 | f-cp  f-cp  f-cp  w-cp
    |
 m3 | f-cp                    w-cp

 In the first check list (m1) the candidate pair for each foundation is
 placed in the Waiting state, as no pairs for the same foundations have
 yet been placed in the Waiting state.

 In the second check list (m2) the candidate pair for foundation f4 is
 placed in the Waiting state. The candidate pair for foundations f1, f2
 and f3 are kept in the Frozen state, as candidate pairs for those
 foundations have already been placed in the Waiting state (within check
 list m1).

 In the third check list (m3) the candidate pair for foundation f5 is
 placed in the Waiting state. The candidate pair for foundation f1 is
 kept in the Frozen state, as a candidate pair for that foundation have
 already been placed in the Waiting state (within check list m1).

 Once each check list have been processed, one candidate pair for each
 foundation in the check list set has been placed in the Waiting state.

6.1.3.  ICE State

   The ICE agent has a state determined by the state of the check lists.
   The state is Completed if all check lists are Completed, Failed if
   all check lists are Failed, and Running otherwise.

6.1.4.  Scheduling Checks

6.1.4.1.  Triggered Check Queue

   Once the ICE agent has computed the check lists and created the check
   list set, as described in Section 6.1.2, the agent will begin
   performing connectivity checks (ordinary and triggered).  For
   triggered connectivity checks, the agent maintains a FIFO queue for
   each check list, referred to as the triggered check queue, which
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   contains candidate pairs for which checks are to be sent at the next
   available opportunity.  The triggered check queue is initially empty.

6.1.4.2.  Performing Connectivity Checks

   The generation of ordinary and triggered connectivity checks is
   governed by timer Ta.  As soon as the initial states for the
   candidate pairs in the check list set have been set, a check is
   performed for a candidate pair within the first check list in the
   Running state, following the procedures in Section 7.  After that,
   whenever Ta fires the next check list in the Running state in the
   check list set is picked, and a check is performed for a candidate
   within that check list.  After the last check list in the Running
   state in the check list set has been processed, the first check list
   is picked again, etc.

   Whenever Ta fires, the ICE agent will perform a check for a candidate
   pair within the picked check list by performing the following steps:

   1.  If the triggered check queue associated with the check list
       contains one or more candidate pairs, the agent removes the top
       pair from the queue, performs a connectivity check on that pair,
       puts the candidate pair state to In-Progress, and aborts the
       subsequent steps.

   2.  If there is no candidate pair in the Waiting state, and if there
       are one or more pairs in the Frozen state, for each pair in the
       Frozen state the agent checks the foundation associated with the
       pair.  For a given foundation, if there is no pair (in any check
       list in the check list set) in the Waiting or In-Progress state,
       the agent puts the candidate pair state to Waiting and continues
       with the next step.

   3.  If there are one or more candidate pairs in the Waiting state,
       the agent picks the highest-priority candidate pair (if there are
       multiple pairs with the same priority, the pair with the lowest
       component ID is picked) in the Waiting state, performs a
       connectivity check on that pair, puts the candidate pair par
       state to In-Progress, and abort the subsequent steps.

   4.  If this step is reached, no check could be performed for the
       picked check list.  So, without waiting for timer Ta to expire
       again, select the next check list in the Running state and return
       to step #1.  If this happens for every single check list in the
       Running state, meaning there are no remaining candidate pairs to
       perform connectivity checks for, abort these steps.
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   Once the agent has picked a candidate pair for which a connectivity
   check is to be performed, the agent starts a check and sends the
   Binding request from the base associated with the local candidate of
   the pair to the remote candidate of the pair, as described in
   Section 7.2.4.

   Based on local policy, an agent MAY choose to terminate performing
   the connectivity checks for one or more checks lists in the check
   list set at any time.  However, only the controlling agent is allowed
   to conclude ICE (Section 8).

   To compute the message integrity for the check, the agent uses the
   remote username fragment and password learned from the candidate
   information obtained from its peer.  The local username fragment is
   known directly by the agent for its own candidate.

6.2.  Lite Implementation Procedures

   Lite implementations skip most of the steps in Section 6 except for
   verifying the peer’s ICE support and determining its role in the ICE
   processing.

   If the lite implementation is the controlling agent (which will only
   happen if the peer ICE agent is also a lite implementation), it
   selects a candidate pair based on the ones in the candidate exchange
   (for IPv4, there is only ever one pair), and then updating the peer
   with the new candidate information reflecting that selection, if
   needed (it is never needed for an IPv4-only host).

7.  Performing Connectivity Checks

   This section describes how connectivity checks are performed.

   An ICE agent MUST be compliant to [RFC5389].  A full implementation
   acts both as a STUN client and a STUN server, while a lite
   implementation only acts as a STUN server (as it does not generate
   connectivity checks).

7.1.  STUN Extensions

   ICE extends STUN by defining new attributes: PRIORITY, USE-CANDIDATE,
   ICE-CONTROLLED, and ICE-CONTROLLING.  The new attributes are formally
   defined in Section 16.1.  This section describes the usage of the new
   attributes.

   The new attributes are only applicable to ICE connectivity checks.
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7.1.1.  PRIORITY

   The priority attribute MUST be included in a Binding request and be
   set to the value computed by the algorithm in Section 5.1.2 for the
   local candidate, but with the candidate type preference of peer
   reflexive candidates.

7.1.2.  USE-CANDIDATE

   The controlling agent MUST include the USE-CANDIDATE attribute in
   order to nominate a candidate pair (Section 8.1.1).  The controlled
   agent MUST NOT include the USE-CANDIDATE attribute in a Binding
   request.

7.1.3.  ICE-CONTROLLED and ICE-CONTROLLING

   The controlling agent MUST include the ICE-CONTROLLING attribute in a
   Binding request.  The controlled agent MUST include the ICE-
   CONTROLLED attribute in a Binding request.

   The content of either attribute are used as tie-breaker values when
   an ICE role conflict occurs (Section 7.3.1.1).

7.2.  STUN Client Procedures

7.2.1.  Creating Permissions for Relayed Candidates

   If the connectivity check is being sent using a relayed local
   candidate, the client MUST create a permission first if it has not
   already created one previously.  It would have created one previously
   if it had told the TURN server to create a permission for the given
   relayed candidate towards the IP address of the remote candidate.  To
   create the permission, the ICE agent follows the procedures defined
   in [RFC5766].  The permission MUST be created towards the IP address
   of the remote candidate.  It is RECOMMENDED that the agent defer
   creation of a TURN channel until ICE completes, in which case
   permissions for connectivity checks are normally created using a
   CreatePermission request.  Once established, the agent MUST keep the
   permission active until ICE concludes.

7.2.2.  Forming Credentials

   A connectivity check Binding request MUST utilize the STUN short-term
   credential mechanism.

   The username for the credential is formed by concatenating the
   username fragment provided by the peer with the username fragment of
   the ICE agent sending the request, separated by a colon (":").
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   The password is equal to the password provided by the peer.

   For example, consider the case where ICE agent L is the Initiating
   agent and ICE agent R is the Responding agent.  Agent L included a
   username fragment of LFRAG for its candidates and a password of
   LPASS.  Agent R provided a username fragment of RFRAG and a password
   of RPASS.  A connectivity check from L to R utilizes the username
   RFRAG:LFRAG and a password of RPASS.  A connectivity check from R to
   L utilizes the username LFRAG:RFRAG and a password of LPASS.  The
   responses utilize the same usernames and passwords as the requests
   (note that the USERNAME attribute is not present in the response).

7.2.3.  DiffServ Treatment

   If the agent is using Diffserv Codepoint markings [RFC2475] in data
   packets that it will send, the agent SHOULD apply the same markings
   to Binding requests and responses that it will send.

   If multiple DSCP markings are used on the data packets, the agent
   SHOULD choose one of them for use with the connectivity check.

7.2.4.  Sending the Request

   A connectivity check is generated by sending a Binding request from
   the base associated with a local candidate to a remote candidate.
   [RFC5389] describes how Binding requests are constructed and
   generated.

   Support for backwards compatibility with RFC 3489 MUST NOT be assumed
   when performing connectivity checks.  The FINGERPRINT mechanism MUST
   be used for connectivity checks.

7.2.5.  Processing the Response

   This section defines additional procedures for processing Binding
   responses specific to ICE connectivity checks.

   When a Binding response is received, it is correlated to the
   corresponding Binding request using the transaction ID [RFC5389],
   which then associates the response with the candidate pair for which
   the Binding request was sent.  After that, the response is processed
   according to the procedures for a role conflict, a failure, or a
   success, according to the procedures below.
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7.2.5.1.  Role Conflict

   If the Binding request generates a 487 (Role Conflict) error response
   (Section 7.3.1.1), and if the ICE agent included an ICE-CONTROLLED
   attribute in the request, the agent MUST switch to the controlling
   role.  If the agent included an ICE-CONTROLLING attribute in the
   request, the agent MUST switch to the controlled role.

   Once the agent has switched its role, the agent MUST add the
   candidate pair whose check generated the 487 error response to the
   triggered check queue associated with the check list to which the
   pair belongs, and set the candidate pair state to Waiting.  When the
   triggered connectivity check is later performed, the ICE-CONTROLLING/
   ICE-CONTROLLED attribute of the Binding request will indicate the
   agent’s new role.  The agent MUST change the tie-breaker value.

   NOTE: A role switch requires an agent to recompute pair priorities
   (Section 6.1.2.3), since the priority values depend on the role.

   NOTE: A role switch will also impact whether the agent is responsible
   for nominating candidate pairs, and whether the agent is responsible
   for initiating the exchange of the updated candidate information with
   the peer once ICE is concluded.

7.2.5.2.  Failure

   This section describes cases when the candidate pair state is set to
   Failed.

   NOTE: When the ICE agent sets the candidate pair state to Failed as a
   result of a connectivity check error, the agent does not change the
   states of other candidate pairs with the same foundation.

7.2.5.2.1.  Non-Symmetric Transport Addresses

   The ICE agent MUST check that the source and destination transport
   addresses in the Binding request and response are symmetric.  I.e.,
   the source IP address and port of the response MUST be equal to the
   destination IP address and port to which the Binding request was
   sent, and that the destination IP address and port of the response
   MUST be equal to the source IP address and port from which the
   Binding request was sent.  If the addresses are not symmetric, the
   agent MUST set the candidate pair state to Failed.
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7.2.5.2.2.  ICMP Error

   An ICE agent MAY support processing of ICMP errors for connectivity
   checks.  If the agent supports processing of ICMP errors, and if a
   Binding request generates a hard ICMP error, the agent SHOULD set the
   state of the candidate pair to Failed.  Implementers need to be aware
   that ICMP errors can be used as a method for denial of service
   attacks when making a decision on how and if to process ICMP errors.

7.2.5.2.3.  Timeout

   If the Binding request transaction times out, the ICE agent MUST set
   the candidate pair state to Failed.

7.2.5.2.4.  Unrecoverable STUN Response

   If the Binding request generates a STUN error response that is
   unrecoverable [RFC5389] the ICE agent SHOULD set the candidate pair
   state to Failed.

7.2.5.3.  Success

   A connectivity check is considered a success if each of the following
   criteria is true:

   o  The Binding request generated a success response; and

   o  The source and destination transport addresses in the Binding
      request and response are symmetric.

   If a check is considered a success, the ICE agent performs (in order)
   the actions described in the following sections.

7.2.5.3.1.  Discovering Peer Reflexive Candidates

   The ICE agent MUST check the mapped address from the STUN response.
   If the transport address does not match any of the local candidates
   that the agent knows about, the mapped address represents a new
   candidate: a peer reflexive candidate.  Like other candidates, a peer
   reflexive candidate has a type, base, priority, and foundation.  They
   are computed as follows:

   o  The type is peer reflexive.

   o  The base is the local candidate of the candidate pair from which
      the Binding request was sent.
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   o  The priority is the value of the PRIORITY attribute in the Binding
      request.

   o  The foundation is described in Section 5.1.1.3.

   The peer reflexive candidate is then added to the list of local
   candidates for the data stream.  The username fragment and password
   are the same as for all other local candidates for that data stream.

   The ICE agent does not need to pair the peer reflexive candidate with
   remote candidates, as a valid pair will be created due to the
   procedures in Section 7.2.5.3.2.  If an agent wishes to pair the peer
   reflexive candidate with remote candidates other than the one in the
   valid pair that will be generated, the agent MAY provide updated
   candidate information to the peer that includes the peer reflexive
   candidate.  This will cause the peer reflexive candidate to be paired
   with all other remote candidates.

7.2.5.3.2.  Constructing a Valid Pair

   The ICE agent constructs a candidate pair whose local candidate
   equals the mapped address of the response, and whose remote candidate
   equals the destination address to which the request was sent.  This
   is called a valid pair.

   The valid pair might equal the pair that generated the connectivity
   check, a different pair in the check list, or a pair currently not in
   the check list.

   The agent maintains a separate list, referred to as the valid list.
   There is a valid list for each check list in the check list set.  The
   valid list will contain valid pairs.  Initially each valid list is
   empty.

   Each valid pair within the valid list has a flag, called the
   nominated flag.  When a valid pair is added to a valid list, the flag
   value is set to ’false’.

   The valid pair will be added to a valid list as follows:

   1.  If the valid pair equals the pair that generated the check, the
       pair is added to the valid list associated with the check list to
       which the pair belongs; or

   2.  If the valid pair equals another pair in a check list, that pair
       is added to the valid list associated with the check list of that
       pair.  The pair that generated the check is not added to a valid
       list; or
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   3.  If the valid pair is not in any check list, the agent computes
       the priority for the pair based on the priority of each
       candidate, using the algorithm in Section 6.1.2.  The priority of
       the local candidate depends on its type.  Unless the type is peer
       reflexive, the priority is equal to the priority signaled for
       that candidate in the candidate exchange.  If the type is peer
       reflexive, it is equal to the PRIORITY attribute the agent placed
       in the Binding request that just completed.  The priority of the
       remote candidate is taken from the candidate information of the
       peer.  If the candidate does not appear there, then the check has
       been a triggered check to a new remote candidate.  In that case,
       the priority is taken as the value of the PRIORITY attribute in
       the Binding request that triggered the check that just completed.
       The pair is then added to the valid list.

   NOTE: It will be very common that the valid pair will not be in any
   check list.  Recall that the check list has pairs whose local
   candidates are never reflexive; those pairs had their local
   candidates converted to the base of the reflexive candidates, and
   then pruned if they were redundant.  When the response to the Binding
   request arrives, the mapped address will be reflexive if there is a
   NAT between the two.  In that case, the valid pair will have a local
   candidate that doesn’t match any of the pairs in the check list.

7.2.5.3.3.  Updating Candidate Pair States

   The ICE agent sets the states of both the candidate pair that
   generated the check and the constructed valid pair (which may be
   different) to Succeeded.

   The agent MUST set the states for all other Frozen candidate pairs in
   all check lists with the same foundation to Waiting.

   NOTE: Within a given check list, candidate pairs with the same
   foundations will typically have different component ID values.

7.2.5.3.4.  Updating the Nominated Flag

   If the controlling agent sends a Binding request with the USE-
   CANDIDATE attribute set, and if the ICE agent receives a successful
   response to the request, the agent sets the nominated flag of the
   pair to true.  If the request fails (Section 7.2.5.2), the agent MUST
   remove the candidate pair from the valid list, set the candidate pair
   state to Failed and set the check list state to Failed.

   If the controlled agent receives a successful response to a Binding
   request sent by the agent, and that Binding request was triggered by
   a received Binding request with the USE-CANDIDATE attribute set
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   (Section 7.3.1.4), the agent sets the nominated flag of the pair to
   true.  If the triggered request fails, the agent MUST remove the
   candidate pair from the valid list, set the candidate pair state to
   Failed and set the check list state to Failed.

   Once the nominated flag is set for a component of a data stream, it
   concludes the ICE processing for that component (Section 8).

7.2.5.4.  Check List State Updates

   Regardless of whether a connectivity check was successful or failed,
   the completion of the check may require updating of check list
   states.  For each check list in the check list set, if all of the
   candidate pairs are in either Failed or Succeeded state, and if there
   is not a valid pair in the valid list for each component of the data
   stream associated with the check list, the state of the check list is
   set to Failed.  If there is a valid pair for each component in the
   valid list, the state of the check list is set to Succeeded.

7.3.  STUN Server Procedures

   An ICE agent (lite or full) MUST be prepared to receive Binding
   requests on the base of each candidate it included in its most recent
   candidate exchange.

   The agent MUST use the short-term credential mechanism (i.e., the
   MESSAGE-INTEGRITY attribute) to authenticate the request and perform
   a message integrity check.  Likewise, the short-term credential
   mechanism MUST be used for the response.  The agent MUST consider the
   username to be valid if it consists of two values separated by a
   colon, where the first value is equal to the username fragment
   generated by the agent in a candidate exchange for a session in-
   progress.  It is possible (and in fact very likely) that the
   initiating agent will receive a Binding request prior to receiving
   the candidates from its peer.  If this happens, the agent MUST
   immediately generate a response (including computation of the mapped
   address as described in Section 7.3.1.2).  The agent has sufficient
   information at this point to generate the response; the password from
   the peer is not required.  Once the answer is received, it MUST
   proceed with the remaining steps required, namely, Section 7.3.1.3,
   Section 7.3.1.4, and Section 7.3.1.5 for full implementations.  In
   cases where multiple STUN requests are received before the answer,
   this may cause several pairs to be queued up in the triggered check
   queue.

   An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
   NOT support the backwards-compatibility mechanisms to RFC 3489.  It
   MUST utilize the FINGERPRINT mechanism.
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   If the agent is using Diffserv Codepoint markings [RFC2475] in its
   data packets, it SHOULD apply the same markings to Binding responses.
   The same would apply to any layer 2 markings the endpoint might be
   applying to data packets.

7.3.1.  Additional Procedures for Full Implementations

   This subsection defines the additional server procedures applicable
   to full implementations, when the full implementation accepts the
   Binding request.

7.3.1.1.  Detecting and Repairing Role Conflicts

   In certain usages of ICE (such as 3PCC), both ICE agents may end up
   choosing the same role, resulting in a role conflict.  The section
   describes a mechanism for detecting and repairing role conflicts.
   The usage document MUST specify whether this mechanism is needed.

   An agent MUST examine the Binding request for either the ICE-
   CONTROLLING or ICE-CONTROLLED attribute.  It MUST follow these
   procedures:

   o  If the agent is in the controlling role, and the ICE-CONTROLLING
      attribute is present in the request:

      *  If the agent’s tie-breaker value is larger than or equal to the
         contents of the ICE-CONTROLLING attribute, the agent generates
         a Binding error response and includes an ERROR-CODE attribute
         with a value of 487 (Role Conflict) but retains its role.

      *  If the agent’s tie-breaker value is less than the contents of
         the ICE-CONTROLLING attribute, the agent switches to the
         controlled role.

   o  If the agent is in the controlled role, and the ICE-CONTROLLED
      attribute is present in the request:

      *  If the agent’s tie-breaker value is larger than or equal to the
         contents of the ICE-CONTROLLED attribute, the agent switches to
         the controlling role.

      *  If the agent’s tie-breaker value is less than the contents of
         the ICE-CONTROLLED attribute, the agent generates a Binding
         error response and includes an ERROR-CODE attribute with a
         value of 487 (Role Conflict) but retains its role.

   o  If the agent is in the controlled role and the ICE-CONTROLLING
      attribute was present in the request, or the agent was in the
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      controlling role and the ICE-CONTROLLED attribute was present in
      the request, there is no conflict.

   A change in roles will require an agent to recompute pair priorities
   (Section 6.1.2.3), since those priorities are a function of role.
   The change in role will also impact whether the agent is responsible
   for selecting nominated pairs and initiating exchange with updated
   candidate information upon conclusion of ICE.

   The remaining sections in Section 7.3.1 are followed if the agent
   generated a successful response to the Binding request, even if the
   agent changed roles.

7.3.1.2.  Computing Mapped Address

   For requests received on a relayed candidate, the source transport
   address used for STUN processing (namely, generation of the XOR-
   MAPPED-ADDRESS attribute) is the transport address as seen by the
   TURN server.  That source transport address will be present in the
   XOR-PEER-ADDRESS attribute of a Data Indication message, if the
   Binding request was delivered through a Data Indication.  If the
   Binding request was delivered through a ChannelData message, the
   source transport address is the one that was bound to the channel.

7.3.1.3.  Learning Peer Reflexive Candidates

   If the source transport address of the request does not match any
   existing remote candidates, it represents a new peer reflexive remote
   candidate.  This candidate is constructed as follows:

   o  The type is peer reflexive.

   o  The priority is the value of the PRIORITY attribute in the Binding
      request.

   o  The foundation is an arbitrary value, different from the
      foundations of all other remote candidates.  If any subsequent
      candidate exchanges contain this peer reflexive candidate, it will
      signal the actual foundation for the candidate.

   o  The component ID is the component ID of the local candidate to
      which the request was sent.

   This candidate is added to the list of remote candidates.  However,
   the ICE agent does not pair this candidate with any local candidates.
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7.3.1.4.  Triggered Checks

   Next, the agent constructs a pair whose local candidate has the
   transport address (as seen by the agent) on which the STUN request
   was received, and a remote candidate equal to the source transport
   address where the request came from (which may be the peer reflexive
   remote candidate that was just learned).  The local candidate will
   either be a host candidate (for cases where the request was not
   received through a relay) or a relayed candidate (for cases where it
   is received through a relay).  The local candidate can never be a
   server reflexive candidate.  Since both candidates are known to the
   agent, it can obtain their priorities and compute the candidate pair
   priority.  This pair is then looked up in the check list.  There can
   be one of several outcomes:

   o  If the pair is already on the check list:

      *  If the state of that pair is Succeeded, nothing further is
         done.

      *  If the state of that pair is In-Progress, the agent cancels the
         In-Progress transaction.  Cancellation means that the agent
         will not retransmit the Binding requests associated with the
         connectivity check transaction, will not treat the lack of
         response to be a failure, but will wait the duration of the
         transaction timeout for a response.  In addition, the agent
         MUST add enqueue the pair in the triggered check list
         associated with the check list, and set the state of the pair
         to Waiting, in order to trigger a new connectivity check of the
         pair.  Creating a new connectivity check enables validating In-
         Progress pairs as soon as possible, without having to wait for
         retransmissions of the Binding requests associated with the
         original connectivity check transaction.

      *  If the state of that pair is Waiting, Frozen or Failed, the
         agent MUST enqueue the pair in the triggered check list
         associated with the check list (if not already present), and
         set the state of the pair to Waiting, in order to trigger a new
         connectivity check of the pair.  Note that a state change of
         the pair from Failed to Waiting might also trigger a state
         change of the associated check list.

   These steps are done to facilitate rapid completion of ICE when both
   agents are behind NAT.

   o  If the pair is not already on the check list:

      *  The pair is inserted into the check list based on its priority.
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      *  Its state is set to Waiting.

      *  The pair is enqueued into the triggered check queue.

   When a triggered check is to be sent, it is constructed and processed
   as described in Section 7.2.4.  These procedures require the agent to
   know the transport address, username fragment, and password for the
   peer.  The username fragment for the remote candidate is equal to the
   part after the colon of the USERNAME in the Binding request that was
   just received.  Using that username fragment, the agent can check the
   candidates received from its peer (there may be more than one in
   cases of forking), and find this username fragment.  The
   corresponding password is then picked.

7.3.1.5.  Updating the Nominated Flag

   If the controlled agent receives a Binding request with the USE-
   CANDIDATE attribute set, and if the ICE agent accepts the request,
   the following action is based on the state of the pair computed in
   Section 7.3.1.4:

   o  If the state of this pair is Succeeded, it means that the check
      previously sent by this pair produced a successful response, and
      generated a valid pair (Section 7.2.5.3.2).  The agent sets the
      nominated flag value of the valid pair to true.

   o  If the received Binding request triggered a new check to be enqued
      in the triggered check queue (Section 7.3.1.4), once the check is
      sent and if it generates a successful response, and generates a
      valid pair, the agent sets the nominated flag of the pair to true.
      If the request fails (Section 7.2.5.2), the agent MUST remove the
      candidate pair from the valid list, set the candidate pair state
      to Failed and set the check list state to Failed.

   If the controlled agent does not accept the request from the
   controlling agent, the controlled agent MUST reject the nomination
   request with an appropriate error code response (e.g., 400)
   [RFC5389].

   Once the nominated flag is set for a component of a data stream, it
   concludes the ICE processing for that component.  See Section 8.

7.3.2.  Additional Procedures for Lite Implementations

   If the controlled agent receives a Binding request with the USE-
   CANDIDATE attribute set, and if the ICE agent accepts the request,
   the agent constructs a candidate pair whose local candidate has the
   transport address on which the request was received, and whose remote
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   candidate is equal to the source transport address of the request
   that was received.  This candidate pair is assigned an arbitrary
   priority, and placed into the valid list of the associated check
   list.  The agent sets the nominated flag for that pair to true.

   Once the nominated flag is set for a component of a data stream, it
   concludes the ICE processing for that component.  See Section 8.

8.  Concluding ICE Processing

   This section describes how an ICE agent completes ICE.

8.1.  Procedures for Full Implementations

   Concluding ICE involves nominating pairs by the controlling agent and
   updating of state machinery.

8.1.1.  Nominating Pairs

   Prior to nominating, the controlling agent let connectivity checks
   continue until some stopping criterion is met.  After that, based on
   an evaluation criterion, the controlling agent picks a pair among the
   valid pairs in the valid list for nomination.

   Once the controlling agent has picked a valid pair for nomination, it
   repeats the connectivity check that produced this valid pair (by
   enqueueing the pair that generated the check into the triggered check
   queue), this time with the USE-CANDIDATE attribute
   (Section 7.2.5.3.4).  The procdures for the controlled agent are
   described in Section 7.3.1.5.

   Eventually, if the nominations succeed, both the controlling and
   controlled agents will have a single nominated pair in the valid list
   for each component of the data stream.  Once an ICE agent sets the
   state of the check list to Completed (when there is a nominated pair
   for each component of the data stream), that pair becomes the
   selected pair for that agent, and is used for sending and receiving
   data for that component of the data stream.

   If an agent is not able to produce selected pairs for each component
   of a data stream, the agent MUST take proper actions for informing
   the other agent, and e.g., removing the stream.  The exact actions
   are outside the scope of this specification.

   The criteria for stopping the connectivity checks and for picking a
   pair for nomination, are outside the scope of this specification.
   They are a matter of local optimization.  The only requirement is
   that the agent MUST eventually pick one and only one candidate pair
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   and generate a check for that pair with the USE-CANDIDATE attribute
   set.

   Once the controlling agent has successfully nominated a candidate
   pair (Section 7.2.5.3.4), the agent MUST NOT nominate another pair
   for same same component of the data stream within the ICE session.
   Doing so requires an ICE restart.

   A controlling agent that does not support this specification (i.e.,
   it is implemented according to RFC 5245) might nominate more than one
   candidate pair.  This was referred to as "aggressive nomination" in
   RFC 5245.  If more than one candidate pair is nominated by the
   controlling agent, and if the controlled agent accepts multiple
   nominations requests, the agents MUST produce the selected pairs
   using the pairs with the highest priority.

   The usage of the ’ice2’ ice option (Section 10) by endpoints
   supporting this specification is supposed to prevent controlling
   agents implemented according to RFC 5245 from using aggressive
   nomination.

   NOTE: In RFC 5245, usage of "aggressive nomination" allowed agents to
   continuously nominate pairs, before a pair was eventually selected,
   in order to allow sending of data on those pairs.  In this
   specification, data can always be sent on any valid pair, without
   nomination.  Hence, there is no longer a need for aggressive
   nomination.

8.1.2.  Updating Check List and ICE States

   For both a controlling and a controlled agent, when a candidate pair
   for a component of a data stream gets nominated, it might impact
   other pairs in the check list associated with the data stream.  It
   might also impact the state of the check list:

   o  Once a candidate pair for a component of a data stream has been
      nominated, and the state of the check list associated with the
      data stream is Running, the ICE agent MUST remove all candidate
      pairs for the same component from the check list and from the
      triggered check queue.  If the state of a pair is In-Progress
      pair, the agent cancels the In-Progress transaction.  Cancellation
      means that the agent will not retransmit the Binding requests
      associated with the connectivity check transaction, will not treat
      the lack of response to be a failure, but will wait the duration
      of the transaction timeout for a response.

   o  Once candidate pairs for each component of a data stream have been
      nominated, and the state of the check list associated with the

Keranen, et al.         Expires September 9, 2018              [Page 50]



Internet-Draft                     ICE                        March 2018

      data stream is Running, the ICE agent sets the state of the check
      list to Completed.

   o  Once a candidate pair for a component of a data stream has been
      nominated, an agent MUST continue to respond to any Binding
      request it might still receive for the nominated pair, and for any
      remaining candidate pairs in the check list associated with the
      data stream.  As defined in Section 7.3.1.4, as the state a pair
      is Succeeded, an agent will no longer generate triggered checks
      when receiving a Binding request for the pair.

   Once the state of each check list in the check list set is Completed,
   the agent sets the state of the ICE session to Completed.

   If the state of a check list is Failed, ICE has not been able to
   complete for the data stream associated with the check list.  The
   correct behavior depends on the state of the check lists in the check
   list set.  If the controlling agent wants to continue the session
   without the data stream associated with the Failed check list, and if
   there are still one or more check lists in Running or Completed mode,
   the agent can let the ICE processing continue.  The agent MUST take
   proper actions for removing the failed data stream.  If the
   controlling agent does not want to continue the session and MUST
   terminate the session.  The state of the ICE session is set to
   Failed.

   If the state of each check list in the check list set is Failed, the
   state of the ICE session is set to Failed.  Unless the controlling
   agent wants to continue the session without the data streams, it MUST
   terminate the session.

8.2.  Procedures for Lite Implementations

   When ICE concludes, a lite ICE agent can free host candidates that
   were not used by ICE, as described in Section 8.3.

   If the peer is a full agent, once the lite agent accepts a nomination
   request for a candidate pair, the lite agent considers the pair
   nominated.  Once there are nominated pairs for each component of a
   data stream, the pairs become the selected pairs for the components
   of the data stream.  Once the lite agent has produced selected pairs
   for all components of all data streams, the ICE session state is set
   to Completed.

   If the peer is a lite agent, the agent pairs local candidates with
   remote candidates that are for the same data stream and have the same
   component, transport protocol, and IP address family.  For each
   component of each data stream, if there is only one candidate pair,

Keranen, et al.         Expires September 9, 2018              [Page 51]



Internet-Draft                     ICE                        March 2018

   that pair is added to the valid list.  If there is more than one
   pair, it is RECOMMENDED that an agent follow the procedures of RFC
   6724 [RFC6724] to select a pair and add it to the valid list.

   If all of the components for all data streams had one pair, the state
   of ICE processing is Completed.  Otherwise, the controlling agent
   MUST send an updated candidate list to reconcile different agents
   selecting different candidate pairs.  ICE processing is complete
   after and only after the updated candidate exchange is complete.

8.3.  Freeing Candidates

8.3.1.  Full Implementation Procedures

   The rules in this section describe when it is safe for an agent to
   cease sending or receiving checks on a candidate that did not become
   a selected candidate (is not associated with a selected pair), and
   then free the candidate.

   Once a check list has reached the Completed state, the agent SHOULD
   wait an additional three seconds, and then it can cease responding to
   checks or generating triggered checks on all local candidates other
   than the ones that became selected candidates.  Once all ICE sessions
   have ceased using a given local candidate (a candidate may be used by
   multiple ICE sessions, e.g., in forking scenarios), the agent can
   free that candidate.  The three-second delay handles cases when
   aggressive nomination is used, and the selected pairs can quickly
   change after ICE has completed.

   Freeing of server reflexive candidates is never explicit; it happens
   by lack of a keepalive.

8.3.2.  Lite Implementation Procedures

   A lite implementation can free candidates that did not become
   selected candidates as soon as ICE processing has reached the
   Completed state for all ICE sessions using those candidates.

9.  ICE Restarts

   An ICE agent MAY restart ICE for existing data streams.  An ICE
   restart causes all previous state of the data streams, excluding the
   roles of the agents, to be flushed.  The only difference between an
   ICE restart and a brand new data session is that during the restart,
   data can continue to be sent using existing data sessions, and that a
   new data session always requires the roles to be determined.
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   The following actions can be accomplished only using an ICE restart
   (the agent MUST use ICE restarts to do so):

   o  Change the destinations of data streams.

   o  Change from a lite implementation to a full implementation.

   o  Change from a full implementation to a lite implementation.

   To restart ICE, an agent MUST change both the password and the
   username fragment for the data stream(s) being restarted.

   When the ICE is restarted, the candidate set for the new ICE session
   might include some, none, or all of the candidates used in the
   current ICE session.

   As described in Section 6.1.1, agents MUST NOT re-determine the roles
   as part as an ICE restart, unless certain criteria that require the
   roles to be re-determined are fulfilled.

10.  ICE Option

   This section defines a new ICE option, ’ice2’.  The ICE option
   indicates that the ICE agent that includes it in a candidate exchange
   is compliant to this specification.  For example, the agent will not
   use the aggressive nomination procedure defined in RFC 5245.  In
   addition, it will ensure that an RFC 5245-compliant peer does not use
   aggressive nomination either, as required by Section 14 of RFC 5245
   for peers which receive unknown ICE options.

   An agent compliant to this specification MUST inform the peer about
   the compliance using the ’ice2’ option.

   NOTE: The encoding of the ’ice2’ ICE option, and the message(s) used
   to carry it to the peer, are protocol specific.  The encoding for the
   Session Description Protocol (SDP) [RFC4566] is defined in
   [I-D.ietf-mmusic-ice-sip-sdp].

11.  Keepalives

   All endpoints MUST send keepalives for each data session.  These
   keepalives serve the purpose of keeping NAT bindings alive for the
   data session.  The keepalives SHOULD be sent using a format that is
   supported by its peer.  ICE endpoints allow for STUN-based keepalives
   for UDP streams, and as such, STUN keepalives MUST be used when an
   ICE agent is a full ICE implementation and is communicating with a
   peer that supports ICE (lite or full).
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   For each candidate pair that an agent is using to send data, if no
   packet has been sent on that pair in the last Tr seconds, an agent
   MUST send a keepalive on that pair.  Agents SHOULD use a Tr value of
   15 seconds.  Agents MAY use a bigger value, but MUST NOT use a value
   smaller than 15 seconds.

   Once selected pairs have been produced for a data stream, keepalives
   are only sent on those pairs.

   An agent MUST stop sending keepalives on a data stream if the data
   stream is removed.  If the ICE session is terminated, an agent MUST
   stop sending keepalives on all data streams.

   An agent MAY use another value for Tr, e.g. based on configuration or
   network/NAT characteristics.  For example, if an agent has a dynamic
   way to discover the binding lifetimes of the intervening NATs, it can
   use that value to determine Tr.  Administrators deploying ICE in more
   controlled networking environments SHOULD set Tr to the longest
   duration possible in their environment.

   When STUN is being used for keepalives, a STUN Binding Indication is
   used [RFC5389].  The Indication MUST NOT utilize any authentication
   mechanism.  It SHOULD contain the FINGERPRINT attribute to aid in
   demultiplexing, but SHOULD NOT contain any other attributes.  It is
   used solely to keep the NAT bindings alive.  The Binding Indication
   is sent using the same local and remote candidates that are being
   used for data.  Though Binding Indications are used for keepalives,
   an agent MUST be prepared to receive a connectivity check as well.
   If a connectivity check is received, a response is generated as
   discussed in [RFC5389], but there is no impact on ICE processing
   otherwise.

   Agents MUST by default use STUN keepalives.  Individual ICE usages
   and ICE extensions MAY specify usage/extension-specific keepalives.

12.  Data Handling

12.1.  Sending Data

   An ICE agent MAY send data on any valid pair before selected pairs
   have been produced for the data stream.

   Once selected pairs have been produced for a data stream, an agent
   MUST send data on those pairs only.

   An agent sends data from the base of the local candidate to the
   remote candidate.  In the case of a local relayed candidate, data is
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   forwarded through the base (located in the TURN server), using the
   procedures defined in [RFC5766].

   If the local candidate is a relayed candidate, it is RECOMMENDED that
   an agent creates a channel on the TURN server towards the remote
   candidate.  This is done using the procedures for channel creation as
   defined in Section 11 of [RFC5766].

   The selected pair for a component of a data stream is:

   o  empty if the state of the check list for that data stream is
      Running, and there is no previous selected pair for that component
      due to an ICE restart

   o  equal to the previous selected pair for a component of a data
      stream if the state of the check list for that data stream is
      Running, and there was a previous selected pair for that component
      due to an ICE restart

   Unless an agent is able to produce a selected pair for each component
   associated with a data stream, the agent MUST NOT continue sending
   data for any component associated with that data stream.

12.1.1.  Procedures for Lite Implementations

   A lite implementation MUST NOT send data until it has a valid list
   that contains a candidate pair for each component of that data
   stream.  Once that happens, the ICE agent MAY begin sending data
   packets.  To do that, it sends data to the remote candidate in the
   pair (setting the destination address and port of the packet equal to
   that remote candidate), and will send it from the base associated
   with the candidate pair used for sending data.  In case of a relayed
   candidate, data is sent from the agent and forwarded through the base
   (located in the TURN server), using the procedures defined in
   [RFC5766].

12.2.  Receiving Data

   Even though ICE agents are only allowed to send data using valid
   candidate pairs (and, once selected pairs have been produced, only on
   the selected pairs) ICE implementations SHOULD by default be prepared
   to receive data on any of the candidates provided in the most recent
   candidate exchange with the peer.  ICE usages MAY define rules that
   differ from this, e.g., by defining that data will not be sent until
   selected pairs have been produced for a data stream.
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   It is RECOMMENDED that, when an agent receives an RTP packet with a
   new source or destination IP address for a particular RTP/RTCP data
   stream, that the agent re-adjust its jitter buffers.

   RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
   detecting synchronization source (SSRC) collisions and loops.  These
   algorithms are based, in part, on seeing different source transport
   addresses with the same SSRC.  However, when ICE is used, such
   changes will sometimes occur as the data streams switch between
   candidates.  An agent will be able to determine that a data stream is
   from the same peer as a consequence of the STUN exchange that
   proceeds media data transmission.  Thus, if there is a change in
   source transport address, but the media data packets come from the
   same peer agent, this MUST NOT be treated as an SSRC collision.

13.  Extensibility Considerations

   This specification makes very specific choices about how both ICE
   agents in a session coordinate to arrive at the set of candidate
   pairs that are selected for data.  It is anticipated that future
   specifications will want to alter these algorithms, whether they are
   simple changes like timer tweaks or larger changes like a revamp of
   the priority algorithm.  When such a change is made, providing
   interoperability between the two agents in a session is critical.

   First, ICE provides the ICE option concept.  Each extension or change
   to ICE is associated with an ICE option.  When an agent supports such
   an extension or change, it provides the ICE option to the peer agent
   as part of the candidate exchange.

   One of the complications in achieving interoperability is that ICE
   relies on a distributed algorithm running on both agents to converge
   on an agreed set of candidate pairs.  If the two agents run different
   algorithms, it can be difficult to guarantee convergence on the same
   candidate pairs.  The nomination procedure described in Section 8
   eliminates some of the need for tight coordination by delegating the
   selection algorithm completely to the controlling agent, and ICE will
   converge perfectly even when both agents use different pair
   prioritization algorithms.  One of the keys to such convergence is
   triggered checks, which ensure that the nominated pair is validated
   by both agents.

   ICE is also extensible to other data streams beyond RTP, and for
   transport protocols beyond UDP.  Extensions to ICE for non-RTP data
   streams need to specify how many components they utilize, and assign
   component IDs to them, starting at 1 for the most important component
   ID.  Specifications for new transport protocols MUST define how, if
   at all, various steps in the ICE processing differ from UDP.
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14.  Setting Ta and RTO

14.1.  General

   During the ICE gathering phase (Section 5.1.1) and while ICE is
   performing connectivity checks (Section 7), an ICE agent triggers
   STUN and TURN transactions.  These transactions are paced at a rate
   indicated by Ta, and the retransmission interval for each transaction
   is calculated based on the the retransmission timer for the STUN
   transactions (RTO) [RFC5389].

   This section describes how the Ta and RTO values are computed during
   the ICE gathering phase and while ICE is performing connectivity
   checks.

   NOTE: Previously, in RFC 5245, different formulas were defined for
   computing Ta and RTO, depending on whether ICE was used for a real-
   time data stream (e.g., RTP) or not.

   The formulas below result in a behavior whereby an agent will send
   its first packet for every single connectivity check before
   performing a retransmit.  This can be seen in the formulas for the
   RTO (which represents the retransmit interval).  Those formulas scale
   with N, the number of checks to be performed.  As a result of this,
   ICE maintains a nicely constant rate, but becomes more sensitive to
   packet loss.  The loss of the first single packet for any
   connectivity check is likely to cause that pair to take a long time
   to be validated, and instead, a lower-priority check (but one for
   which there was no packet loss) is much more likely to complete
   first.  This results in ICE performing sub-optimally, choosing lower-
   priority pairs over higher-priority pairs.

14.2.  Ta

   ICE agents SHOULD use a default Ta value, 50 ms, but MAY use another
   value based on the characteristics of the associated data.

   If an agent wants to use another Ta value than the default value, the
   agent MUST indicate the proposed value to its peer during the
   establishment of the ICE session.  Both agents MUST use the higher
   value of the proposed values.  If an agent does not propose a value,
   the default value is used for that agent when comparing which value
   is higher.

   Regardless of the Ta value chosen for each agent, the combination of
   all transactions from all agents (if a given implementation runs
   several concurrent agents) MUST NOT be sent more often than once
   every 5ms (as though there were one global Ta value for pacing all
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   agents).  See Appendix B.1 for the background of using a value of 5ms
   with ICE.

   NOTE: Appendix C shows examples of required bandwidth, using
   different Ta values.

14.3.  RTO

   During the ICE gathering phase, ICE agents SHOULD calculate the RTO
   value using the following formula:

     RTO = MAX (500ms, Ta * (Num-Of-Cands))

     Num-Of-Cands: the number of server-reflexive and relay candidates

   For connectivity checks, agents SHOULD calculate the RTO value using
   the following formula:

     RTO = MAX (500ms, Ta * N * (Num-Waiting + Num-In-Progress))

     N: the total number of connectivity checks to be performed.

     Num-Waiting: the number of checks in the check list set in the
     Waiting state.

     Num-In-Progress: the number of checks in the check list set in the
     In-Progress state.

     Note that the RTO will be different for each transaction as the
     number of checks in the Waiting and In-Progress states change.

   Agents MAY calculate the RTO value using other mechanisms than those
   described above.  Agents MUST NOT use a RTO value smaller than 500
   ms.

15.  Examples

   This section shows two ICE examples: one using IPv4 addresses, and
   one using IPv6 addresses.
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   To facilitate understanding, transport addresses are listed using
   variables that have mnemonic names.  The format of the name is
   entity-type-seqno, where entity refers to the entity whose IP address
   the transport address is on, and is one of "L", "R", "STUN", or
   "NAT".  The type is either "PUB" for transport addresses that are
   public, and "PRIV" for transport addresses that are private
   [RFC1918].  Finally, seq-no is a sequence number that is different
   for each transport address of the same type on a particular entity.
   Each variable has an IP address and port, denoted by varname.IP and
   varname.PORT, respectively, where varname is the name of the
   variable.

   In the call flow itself, STUN messages are annotated with several
   attributes.  The "S=" attribute indicates the source transport
   address of the message.  The "D=" attribute indicates the destination
   transport address of the message.  The "MA=" attribute is used in
   STUN Binding response messages and refers to the mapped address.
   "USE-CAND" implies the presence of the USE-CANDIDATE attribute.

   The call flow examples omit STUN authentication operations, and focus
   on a single data stream between two full implementations.

15.1.  Example with IPv4 Addresses

   The example is using the topology shown in Figure 7.
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                            +-------+
                            |STUN   |
                            |Server |
                            +-------+
                                |
                     +---------------------+
                     |                     |
                     |      Internet       |
                     |                     |
                     +---------------------+
                       |                |
                       |                |
                +---------+             |
                |   NAT   |             |
                +---------+             |
                     |                  |
                     |                  |
                  +-----+            +-----+
                  |  L  |            |  R  |
                  +-----+            +-----+

                        Figure 7: Example Topology

   In the example, ICE agents L and R are full ICE implementations.
   Both agents have a single IPv4 address.  Both are configured with the
   same STUN server.  The NAT has an endpoint independent mapping
   property and an address dependent filtering property.  The IP
   addresses of the ICE agents, the STUN server and the NAT are shown
   below;

   ENTITY                   IP Address  mnemonic name
   --------------------------------------------------
   ICE Agent L:             10.0.1.1    L-PRIV-1
   ICE Agent R:             192.0.2.1   R-PUB-1
   STUN Server:             192.0.2.2   STUN-PUB-1
   NAT (Public):            192.0.2.3   NAT-PUB-1

             L             NAT           STUN             R
             |STUN alloc.   |              |              |
             |(1) STUN Req  |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$STUN-PUB-1 |              |              |
             |------------->|              |              |
             |              |(2) STUN Req  |              |
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             |              |S=$NAT-PUB-1  |              |
             |              |D=$STUN-PUB-1 |              |
             |              |------------->|              |
             |              |(3) STUN Res  |              |
             |              |S=$STUN-PUB-1 |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<-------------|              |
             |(4) STUN Res  |              |              |
             |S=$STUN-PUB-1 |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |(5) L’s Candidate Information|              |
             |------------------------------------------->|
             |              |              |              | STUN
             |              |              |              | alloc.
             |              |              |(6) STUN Req  |
             |              |              |S=$R-PUB-1    |
             |              |              |D=$STUN-PUB-1 |
             |              |              |<-------------|
             |              |              |(7) STUN Res  |
             |              |              |S=$STUN-PUB-1 |
             |              |              |D=$R-PUB-1    |
             |              |              |MA=$R-PUB-1   |
             |              |              |------------->|
             |(8) R’s Candidate Information|              |
             |<-------------------------------------------|
             |              |         (9) Bind Req        |Begin
             |              |         S=$R-PUB-1          |Connectivity
             |              |         D=$L-PRIV-1         |Checks
             |              |         <-------------------|
             |              |         Dropped             |
             |(10) Bind Req |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |------------->|              |              |
             |              |(11) Bind Req |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |---------------------------->|
             |              |(12) Bind Res |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<----------------------------|
             |(13) Bind Res |              |              |
             |S=$R-PUB-1    |              |              |
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             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
             |<-------------|              |              |
             |Data          |              |              |
             |===========================================>|
             |              |              |              |
             |              |(14) Bind Req |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |<----------------------------|
             |(15) Bind Req |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |<-------------|              |              |
             |(16) Bind Res |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |MA=$R-PUB-1   |              |              |
             |------------->|              |              |
             |              |(17) Bind Res |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |MA=$R-PUB-1   |              |
             |              |---------------------------->|
             |Data          |              |              |
             |<===========================================|
             |              |              |              |
                                .......
             |              |              |              |
             |(18) Bind Req |              |              |
             |S=$L-PRIV-1   |              |              |
             |D=$R-PUB-1    |              |              |
             |USE-CAND      |              |              |
             |------------->|              |              |
             |              |(19) Bind Req |              |
             |              |S=$NAT-PUB-1  |              |
             |              |D=$R-PUB-1    |              |
             |              |USE-CAND      |              |
             |              |---------------------------->|
             |              |(20) Bind Res |              |
             |              |S=$R-PUB-1    |              |
             |              |D=$NAT-PUB-1  |              |
             |              |MA=$NAT-PUB-1 |              |
             |              |<----------------------------|
             |(21) Bind Res |              |              |
             |S=$R-PUB-1    |              |              |
             |D=$L-PRIV-1   |              |              |
             |MA=$NAT-PUB-1 |              |              |
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             |<-------------|              |              |
             |              |              |              |

                          Figure 8: Example Flow

   Messages 1-4: Agent L gathers a host candidate from its local IP
   address, and from that sends a STUN Binding request to the STUN
   Server.  The request creates a NAT binding.  The NAT public IP
   address of the binding becomes agent L’s server reflexive candidate.

   Message 5: Agent L sends its local candidate information to agent R,
   using the signalling protocol associated with the ICE usage.

   Messages 6-7: Agent R gathers a host candidate from its local IP
   address, and from that sends a STUN Binding request to the STUN
   Server.  Since agent R is not behind a NAT, R’s server reflexive
   candidate will be identical to the host candidate.

   Message 8: Agent R sends its local candidate information to agent L,
   using the signalling protocol associated with the ICE usage.

   Since both agents are full ICE implementations, the initiating agent
   (agent L) becomes the controlling agent.

   Agents L and R both pair up the candidates.  Both agents initially
   have two pairs.  However, agent L will prune the pair containing its
   server reflexive candidate, resulting in just one (L1).  At agent L,
   this pair has a local candidate of $L_PRIV_1 and remote candidate of
   $R_PUB_1.  At agent R, there are two pairs.  The highest priority
   pair (R1) has a local candidate of $R_PUB_1 and remote candidate of
   $L_PRIV_1, and the second pair (R2) has a local candidate of $R_PUB_1
   and remote candidate of $NAT_PUB_1.  The pairs are shown below (the
   pair numbers are for reference purpose only):

                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PRIV_1      R_PUB_1       L1

   ICE Agent R:             R_PUB_1       L_PRIV_1      R1
                            R_PUB_1       NAT_PUB_1     R2
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   Message 9: Agent R initiates a connectivity check for pair #2.  As
   the remote candidate of the pair is the private address of agent L,
   the check will not be successful, as the request cannot be routed
   from R to L, and will be dropped by the network.

   Messages 10-13: Agent L initiates a connectivity check for pair L1.
   The check succeeds, and L creates a new pair (L2).  The local
   candidate of the new pair is $NAT_PUB_1 and the remote candidate is
   $R_PUB_1.  The pair (L2) is added to the valid list of agent L.
   Agent L can now send and receive data on the pair (L2) if it wishes.

                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PRIV_1      R_PUB_1       L1
                            NAT_PUB_1     R_PUB_1       L2        X

   ICE Agent R:             R_PUB_1       L_PRIV_1      R1
                            R_PUB_1       NAT_PUB_1     R2

   Messages 14-17: When agent R receives the Binding request from agent
   L (message 11) it will initiate a triggered connectivity check.  The
   pair matches one of agent R’s existing pairs (R2).  The check
   succeeds, and the pair (R2) is added to the valid list of agent R.
   Agent R can now send and receive data on the pair (R2) if it wishes.

                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PRIV_1      R_PUB_1       L1
                            NAT_PUB_1     R_PUB_1       L2        X

   ICE Agent R:             R_PUB_1       L_PRIV_1      R1
                            R_PUB_1       NAT_PUB_1     R2        X

   Messages 18-21: At some point, the controlling agent (agent L)
   decides to nominate a pair (L2) in the valid list.  It performs a
   connectivity check on the pair (L2), and includes the USE-CANDIDATE
   attribute in the Binding request.  As the check succeeds, agent L
   sets the nominated flag value of the pair (L2) to ’true’.  Agent R
   sets the nominated flag value of the matching pair (R2) to ’true’.
   As there are no more components associated with the stream, the
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   nominated pairs become the selected pairs.  Consequently, processing
   for this stream moves into the Completed state.  The ICE process also
   moves into the Completed state.

15.2.  Example with IPv6 Addresses

   The example is using the topology shown in Figure 9.

                            +-------+
                            |STUN   |
                            |Server |
                            +-------+
                                |
                     +---------------------+
                     |                     |
                     |      Internet       |
                     |                     |
                     +---------------------+
                       |                |
                       |                |
                       |                |
                       |                |
                       |                |
                       |                |
                       |                |
                    +-----+          +-----+
                    |  L  |          |  R  |
                    +-----+          +-----+

                        Figure 9: Example Topology

   In the example, ICE agents L and R are full ICE implementations.
   Both agents have a single IPv6 address.  Both are configured with the
   same STUN server.  The IP addresses of the ICE agents and the STUN
   server are shown below;

   ENTITY                   IP Address  mnemonic name
   --------------------------------------------------
   ICE Agent L:             2001:db8::3   L-PUB-1
   ICE Agent R:             2001:db8::5   R-PUB-1
   STUN Server:             2001:db8::9   STUN-PUB-1

             L                           STUN             R
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             |STUN alloc.                  |              |
             |(1) STUN Req                 |              |
             |S=$L-PUB-1                   |              |
             |D=$STUN-PUB-1                |              |
             |---------------------------->|              |
             |(2) STUN Res                 |              |
             | S=$STUN-PUB-1               |              |
             | D=$L-PUB-1                  |              |
             | MA=$L-PUB-1                 |              |
             |<----------------------------|              |
             |(3) L’s Candidate Information|              |
             |------------------------------------------->|
             |                             |              | STUN
             |                             |              | alloc.
             |                             |(4) STUN Req  |
             |                             |S=$R-PUB-1    |
             |                             |D=$STUN-PUB-1 |
             |                             |<-------------|
             |                             |(5) STUN Res  |
             |                             |S=$STUN-PUB-1 |
             |                             |D=$R-PUB-1    |
             |                             |MA=$R-PUB-1   |
             |                             |------------->|
             |(6) R’s Candidate Information|              |
             |<-------------------------------------------|
             |(7) Bind Req                 |              |
             |S=$L-PUB-1                   |              |
             |D=$R-PUB-1                   |              |
             |------------------------------------------->|
             |(8) Bind Res                 |              |
             |S=$R-PUB-1                   |              |
             |D=$L-PUB-1                   |              |
             |MA=$L-PUB-1                  |              |
             |<-------------------------------------------|
             |Data                         |              |
             |===========================================>|
             |                             |              |
             |(9) Bind Req                 |              |
             |S=$R-PUB-1                   |              |
             |D=$L-PUB-1                   |              |
             |<-------------------------------------------|
             |(10) Bind Res                |              |
             |S=$L-PUB-1                   |              |
             |D=$R-PUB-1                   |              |
             |MA=$R-PUB-1                  |              |
             |------------------------------------------->|
             |Data                         |              |
             |<===========================================|
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             |                             |              |
                                .......
             |                             |              |
             |(11) Bind Req                |              |
             |S=$L-PUB-1                   |              |
             |D=$R-PUB-1                   |              |
             |USE-CAND                     |              |
             |------------------------------------------->|
             |(12) Bind Res                |              |
             |S=$R-PUB-1                   |              |
             |D=$L-PUB-1                   |              |
             |MA=$L-PUB-1                  |              |
             |<-------------------------------------------|
             |              |              |              |

                          Figure 10: Example Flow

   Messages 1-2: Agent L gathers a host candidate from its local IP
   address, and from that sends a STUN Binding request to the STUN
   Server.  Since agent L is not behind a NAT, L’s server reflexive
   candidate will be identical to the host candidate.

   Message 3: Agent L sends its local candidate information to agent R,
   using the signalling protocol associated with the ICE usage.

   Messages 4-5: Agent R gathers a host candidate from its local IP
   address, and from that sends a STUN Binding request to the STUN
   Server.  Since agent R is not behind a NAT, R’s server reflexive
   candidate will be identical to the host candidate.

   Message 6: Agent R sends its local candidate information to agent L,
   using the signalling protocol associated with the ICE usage.

   Since both agents are full ICE implementations, the initiating agent
   (agent L) becomes the controlling agent.

   Agents L and R both pair up the candidates.  Both agents initially
   have one pair each.  At agent L, the pair (L1) has a local candidate
   of $L_PUB_1 and remote candidate of $R_PUB_1.  At agent R, the pair
   (R1) has a local candidate of $R_PUB_1 and remote candidate of
   $L_PUB_1.  The pairs are shown below (the pair numbers are for
   reference purpose only):
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                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PUB_1       R_PUB_1       L1

   ICE Agent R:             R_PUB_1       L_PUB_1       R1

   Messages 7-8: Agent L initiates a connectivity check for pair L1.
   The check succeeds, and the pair (L1) is added to the valid list of
   agent L.  Agent L can now send and receive data on the pair (L1) if
   it wishes.

                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PUB_1       R_PUB_1       L1         X

   ICE Agent R:             R_PUB_1       L_PUB_1       R1

   Messages 9-10: When agent R receives the Binding request from agent L
   (message 7) it will initiate a triggered connectivity check.  The
   pair matches agent R’s existing pair (R1).  The check succeeds, and
   the pair (R1) is added to the valid list of agent R.  Agent R can now
   send and receive data on the pair (R1) if it wishes.

                            Pairs
   ENTITY                   Local         Remote     Pair #     Valid
   ------------------------------------------------------------------
   ICE Agent L:             L_PUB_1       R_PUB_1       L1         X

   ICE Agent R:             R_PUB_1       L_PUB_1       R1         X

   Messages 11-12: At some point, the controlling agent (agent L)
   decides to nominate a pair (L1) in the valid list.  It performs a
   connectivity check on the pair (L1), and includes the USE-CANDIDATE
   attribute in the Binding request.  As the check succeeds, agent L
   sets the nominated flag value of the pair (L1) to ’true’.  Agent R
   sets the nominated flag value of the matching pair (R1) to ’true’.
   As there are no more components associated with the stream, the
   nominated pairs become the selected pairs.  Consequently, processing
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   for this stream moves into the Completed state.  The ICE process also
   moves into the Completed state.

16.  STUN Extensions

16.1.  New Attributes

   This specification defines four STUN attributes: PRIORITY, USE-
   CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

   The PRIORITY attribute indicates the priority that is to be
   associated with a peer reflexive candidate, if one will be discovered
   by this check.  It is a 32-bit unsigned integer, and has an attribute
   value of 0x0024.

   The USE-CANDIDATE attribute indicates that the candidate pair
   resulting from this check will be used for transmission of data.  The
   attribute has no content (the Length field of the attribute is zero);
   it serves as a flag.  It has an attribute value of 0x0025.

   The ICE-CONTROLLED attribute is present in a Binding request.  The
   attribute indicates that the client believes it is currently in the
   controlled role.  The content of the attribute is a 64-bit unsigned
   integer in network byte order, which contains a random number.  The
   number is used for solving role conflicts, when it is referred to as
   the tie-breaker value.  An ICE agent MUST use the same number for all
   Binding requests, for all streams, within an ICE session, unless it
   has received a 487 response, in which case it MUST change the number
   (Section 7.2.5.1).  The agent MAY change the number when an ICE
   restart occurs.

   The ICE-CONTROLLING attribute is present in a Binding request.  The
   attribute indicates that the client believes it is currently in the
   controlling role.  The content of the attribute is a 64-bit unsigned
   integer in network byte order, which contains a random number.  As
   for the ICE-CONTROLLED attribute, the number is used for solving role
   conflicts.  An agent MUST use the same number for all Binding
   requests, for all streams, within an ICE session, unless it has
   received a 487 response, in which case it MUST change the number
   (Section 7.2.5.1).  The agent MAY change the number when an ICE
   restart occurs.

16.2.  New Error Response Codes

   This specification defines a single error response code:

   487 (Role Conflict):  The Binding request contained either the ICE-
      CONTROLLING or ICE-CONTROLLED attribute, indicating an ICE role
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      that conflicted with the server.  The remote server compared the
      tie-breaker values of the client and the server and determined
      that the client needs to switch roles.

17.  Operational Considerations

   This section discusses issues relevant to operators operating
   networks where ICE will be used by endpoints.

17.1.  NAT and Firewall Types

   ICE was designed to work with existing NAT and firewall equipment.
   Consequently, it is not necessary to replace or reconfigure existing
   firewall and NAT equipment in order to facilitate deployment of ICE.
   Indeed, ICE was developed to be deployed in environments where the
   Voice over IP (VoIP) operator has no control over the IP network
   infrastructure, including firewalls and NATs.

   That said, ICE works best in environments where the NAT devices are
   "behave" compliant, meeting the recommendations defined in [RFC4787]
   and [RFC5382].  In networks with behave-compliant NAT, ICE will work
   without the need for a TURN server, thus improving voice quality,
   decreasing call setup times, and reducing the bandwidth demands on
   the network operator.

17.2.  Bandwidth Requirements

   Deployment of ICE can have several interactions with available
   network capacity that operators need to take into consideration.

17.2.1.  STUN and TURN Server Capacity Planning

   First and foremost, ICE makes use of TURN and STUN servers, which
   would typically be located in data centers.  The STUN servers require
   relatively little bandwidth.  For each component of each data stream,
   there will be one or more STUN transactions from each client to the
   STUN server.  In a basic voice-only IPv4 VoIP deployment, there will
   be four transactions per call (one for RTP and one for RTCP, for both
   caller and callee).  Each transaction is a single request and a
   single response, the former being 20 bytes long, and the latter, 28.
   Consequently, if a system has N users, and each makes four calls in a
   busy hour, this would require N*1.7bps.  For one million users, this
   is 1.7 Mbps, a very small number (relatively speaking).

   TURN traffic is more substantial.  The TURN server will see traffic
   volume equal to the STUN volume (indeed, if TURN servers are
   deployed, there is no need for a separate STUN server), in addition
   to the traffic for the actual data.  The amount of calls requiring
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   TURN for data relay is highly dependent on network topologies, and
   can and will vary over time.  In a network with 100% behave-compliant
   NATs, it is exactly zero.

   The planning considerations above become more significant in multi-
   media scenarios (e.g., audio and video conferences), and when the
   numbers of participants in a session grow.

17.2.2.  Gathering and Connectivity Checks

   The process of gathering of candidates and performing of connectivity
   checks can be bandwidth intensive.  ICE has been designed to pace
   both of these processes.  The gathering phase and the connectivity
   check phase are meant to generate traffic at roughly the same
   bandwidth as the data traffic itself will consume once the ICE
   process conclude.  This was done to ensure that, if a network is
   designed to support communication traffic of a certain type (voice,
   video, or just text), it will have sufficient capacity to support the
   ICE checks for that data.  Once ICE has concluded, the subsequent ICE
   keepalives will later cause a marginal increase in the total
   bandwidth utilization; however, this will typically be an extremely
   small increase.

   Congestion due to the gathering and check phases has proven to be a
   problem in deployments that did not utilize pacing.  Typically,
   access links became congested as the endpoints flooded the network
   with checks as fast as they can send them.  Consequently, network
   operators need to ensure that their ICE implementations support the
   pacing feature.  Though this pacing does increase call setup times,
   it makes ICE network friendly and easier to deploy.

17.2.3.  Keepalives

   STUN keepalives (in the form of STUN Binding Indications) are sent in
   the middle of a data session.  However, they are sent only in the
   absence of actual data traffic.  In deployments with continuous media
   and without utilizing Voice Activity Detection (VAD), or deployments
   where VAD is utilized together with short interval (max 1 second)
   comfort noise, the keepalives are never used and there is no increase
   in bandwidth usage.  When VAD is being used without comfort noise,
   keepalives will be sent during silence periods.  This involves a
   single packet every 15-20 seconds, far less than the packet every
   20-30 ms that is sent when there is voice.  Therefore, keepalives do
   not have any real impact on capacity planning.
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17.3.  ICE and ICE-lite

   Deployments utilizing a mix of ICE and ICE-lite interoperate with
   each other.  They have been explicitly designed to do so.

   However, ICE-lite can only be deployed in limited use cases.  Those
   cases, and the caveats involved in doing so, are documented in
   Appendix A.

17.4.  Troubleshooting and Performance Management

   ICE utilizes end-to-end connectivity checks, and places much of the
   processing in the endpoints.  This introduces a challenge to the
   network operator -- how can they troubleshoot ICE deployments?  How
   can they know how ICE is performing?

   ICE has built-in features to help deal with these problems.
   Signaling servers, typically deployed in data centers of the network
   operator, will see the contents of the candidate exchanges that
   convey the ICE parameters.  These parameters include the type of each
   candidate (host, server reflexive, or relayed), along with their
   related addresses.  Once ICE processing has completed, an updated
   candidate exchange takes place, signaling the selected address (and
   its type).  This updated signaling is performed exactly for the
   purposes of educating network equipment (such as a diagnostic tool
   attached to a signaling) about the results of ICE processing.

   As a consequence, through the logs generated by a signaling server, a
   network operator can observe what types of candidates are being used
   for each call, and what address were selected by ICE.  This is the
   primary information that helps evaluate how ICE is performing.

17.5.  Endpoint Configuration

   ICE relies on several pieces of data being configured into the
   endpoints.  This configuration data includes timers, credentials for
   TURN servers, and hostnames for STUN and TURN servers.  ICE itself
   does not provide a mechanism for this configuration.  Instead, it is
   assumed that this information is attached to whatever mechanism is
   used to configure all of the other parameters in the endpoint.  For
   SIP phones, standard solutions such as the configuration framework
   [RFC6080] have been defined.

18.  IAB Considerations

   The IAB has studied the problem of "Unilateral Self-Address Fixing"
   (UNSAF), which is the general process by which an ICE agent attempts
   to determine its address in another realm on the other side of a NAT
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   through a collaborative protocol reflection mechanism [RFC3424].  ICE
   is an example of a protocol that performs this type of function.
   Interestingly, the process for ICE is not unilateral, but bilateral,
   and the difference has a significant impact on the issues raised by
   the IAB.  Indeed, ICE can be considered a B-SAF (Bilateral Self-
   Address Fixing) protocol, rather than an UNSAF protocol.  Regardless,
   the IAB has mandated that any protocols developed for this purpose
   document a specific set of considerations.  This section meets those
   requirements.

18.1.  Problem Definition

   From RFC 3424, any UNSAF proposal needs to provide:

      Precise definition of a specific, limited-scope problem that is to
      be solved with the UNSAF proposal.  A short-term fix will not be
      generalized in order to solve other problems; this is why "short-
      term fixes usually aren’t".

   The specific problems being solved by ICE are:

      Provide a means for two peers to determine the set of transport
      addresses that can be used for communication.

      Provide a means for a agent to determine an address that is
      reachable by another peer with which it wishes to communicate.

18.2.  Exit Strategy

   From RFC 3424, any UNSAF proposal needs to provide:

      Description of an exit strategy/transition plan.  The better
      short-term fixes are the ones that will naturally see less and
      less use as the appropriate technology is deployed.

   ICE itself doesn’t easily get phased out.  However, it is useful even
   in a globally connected Internet, to serve as a means for detecting
   whether a router failure has temporarily disrupted connectivity, for
   example.  ICE also helps prevent certain security attacks that have
   nothing to do with NAT.  However, what ICE does is help phase out
   other UNSAF mechanisms.  ICE effectively picks amongst those
   mechanisms, prioritizing ones that are better, and deprioritizing
   ones that are worse.  As NATs begin to dissipate as IPv6 is
   introduced, server reflexive and relayed candidates (both forms of
   UNSAF addresses) simply never get used, because higher-priority
   connectivity exists to the native host candidates.  Therefore, the
   servers get used less and less, and can eventually be removed when
   their usage goes to zero.
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   Indeed, ICE can assist in the transition from IPv4 to IPv6.  It can
   be used to determine whether to use IPv6 or IPv4 when two dual-stack
   hosts communicate with SIP (IPv6 gets used).  It can also allow a
   network with both 6to4 and native v6 connectivity to determine which
   address to use when communicating with a peer.

18.3.  Brittleness Introduced by ICE

   From RFC 3424, any UNSAF proposal needs to provide:

      Discussion of specific issues that may render systems more
      "brittle".  For example, approaches that involve using data at
      multiple network layers create more dependencies, increase
      debugging challenges, and make it harder to transition.

   ICE actually removes brittleness from existing UNSAF mechanisms.  In
   particular, classic STUN (as described in RFC 3489 [RFC3489]) has
   several points of brittleness.  One of them is the discovery process
   that requires an ICE agent to try to classify the type of NAT it is
   behind.  This process is error-prone.  With ICE, that discovery
   process is simply not used.  Rather than unilaterally assessing the
   validity of the address, its validity is dynamically determined by
   measuring connectivity to a peer.  The process of determining
   connectivity is very robust.

   Another point of brittleness in classic STUN and any other unilateral
   mechanism is its absolute reliance on an additional server.  ICE
   makes use of a server for allocating unilateral addresses, but allows
   agents to directly connect if possible.  Therefore, in some cases,
   the failure of a STUN server would still allow for a call to progress
   when ICE is used.

   Another point of brittleness in classic STUN is that it assumes that
   the STUN server is on the public Internet.  Interestingly, with ICE,
   that is not necessary.  There can be a multitude of STUN servers in a
   variety of address realms.  ICE will discover the one that has
   provided a usable address.

   The most troubling point of brittleness in classic STUN is that it
   doesn’t work in all network topologies.  In cases where there is a
   shared NAT between each agent and the STUN server, traditional STUN
   may not work.  With ICE, that restriction is removed.

   Classic STUN also introduces some security considerations.
   Fortunately, those security considerations are also mitigated by ICE.
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   Consequently, ICE serves to repair the brittleness introduced in
   classic STUN, and does not introduce any additional brittleness into
   the system.

   The penalty of these improvements is that ICE increases session
   establishment times.

18.4.  Requirements for a Long-Term Solution

   From RFC 3424, any UNSAF proposal needs to provide:

      ... requirements for longer term, sound technical solutions --
      contribute to the process of finding the right longer term
      solution.

   Our conclusions from RFC 3489 remain unchanged.  However, we feel ICE
   actually helps because we believe it can be part of the long-term
   solution.

18.5.  Issues with Existing NAPT Boxes

   From RFC 3424, any UNSAF proposal needs to provide:

      Discussion of the impact of the noted practical issues with
      existing, deployed NA[P]Ts and experience reports.

   A number of NAT boxes are now being deployed into the market that try
   to provide "generic" ALG functionality.  These generic ALGs hunt for
   IP addresses, either in text or binary form within a packet, and
   rewrite them if they match a binding.  This interferes with classic
   STUN.  However, the update to STUN [RFC5389] uses an encoding that
   hides these binary addresses from generic ALGs.

   Existing NAPT boxes have non-deterministic and typically short
   expiration times for UDP-based bindings.  This requires
   implementations to send periodic keepalives to maintain those
   bindings.  ICE uses a default of 15 s, which is a very conservative
   estimate.  Eventually, over time, as NAT boxes become compliant to
   behave [RFC4787], this minimum keepalive will become deterministic
   and well-known, and the ICE timers can be adjusted.  Having a way to
   discover and control the minimum keepalive interval would be far
   better still.

19.  Security Considerations
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19.1.  IP Address Privacy

   The process of probing for candidates reveals the source addresses of
   the client and its peer to any on-network listening attacker, and the
   process of exchanging candidates reveals the addresses to any
   attacker that is able to see the negotiation.  Some addresses, such
   as the server reflexive addresses gathered through the local
   interface of VPN users, may be sensitive information.  If these
   potential attacks can not be mitigated, ICE usages can define
   mechanisms for controlling which addresses are revealed to the
   negotiation and/or probing process.  Individual implementations may
   also have implementation-specific rules for controlling which
   addresses are revealed.  For example, [I-D.ietf-rtcweb-ip-handling]
   provides additional information about the privacy aspects of
   revealing IP addresses via ICE for WebRTC applications.  ICE
   implementations where such issues can arise are RECOMMENDED to
   provide a programmatic or user interface that provides control over
   which network interfaces are used to generate candidates.

   Based on the types of candidates provided by the peer, and the
   results of the connectivity tests performed against those candidates,
   the peer might be able to determine characteristics of the local
   network, e.g. if different timings are apparent to the peer.  In the
   limit the peer might be able to probe the local network.

   There are several types of attacks possible in an ICE system.  The
   subsections consider these attacks and their countermeasures.

19.2.  Attacks on Connectivity Checks

   An attacker might attempt to disrupt the STUN connectivity checks.
   Ultimately, all of these attacks fool an ICE agent into thinking
   something incorrect about the results of the connectivity checks.
   Depending on the type of attack, the attacker needs to have different
   capabilities.  In some cases the attacker needs to be on the path of
   the connectivity checks.  In other cases the attacker does not need
   to be on the path, as long as it is able to generate STUN
   connectivity checks.  While attacks on connectivity checks are
   typically performed by network entities, if an attacker is able to
   control an endpoint it might be able to trigger connectivity check
   attacks.  The possible false conclusions an attacker can try and
   cause are:

   False Invalid:  An attacker can fool a pair of agents into thinking a
      candidate pair is invalid, when it isn’t.  This can be used to
      cause an agent to prefer a different candidate (such as one
      injected by the attacker) or to disrupt a call by forcing all
      candidates to fail.
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   False Valid:  An attacker can fool a pair of agents into thinking a
      candidate pair is valid, when it isn’t.  This can cause an agent
      to proceed with a session, but then not be able to receive any
      data.

   False Peer Reflexive Candidate:  An attacker can cause an agent to
      discover a new peer reflexive candidate when it is not expected
      to.  This can be used to redirect data streams to a Denial-of-
      Service (DoS) target or to the attacker, for eavesdropping or
      other purposes.

   False Valid on False Candidate:  An attacker has already convinced an
      agent that there is a candidate with an address that does not
      actually route to that agent (e.g., by injecting a false peer
      reflexive candidate or false server reflexive candidate).  The
      attacker then launches an attack that forces the agents to believe
      that this candidate is valid.

      If an attacker can cause a false peer reflexive candidate or false
      valid on a false candidate, it can launch any of the attacks
      described in [RFC5389].

   To force the false invalid result, the attacker has to wait for the
   connectivity check from one of the agents to be sent.  When it is,
   the attacker needs to inject a fake response with an unrecoverable
   error response (such as a 400), or drop the response so that it never
   reaches the agent.  However, since the candidate is, in fact, valid,
   the original request may reach the peer agent, and result in a
   success response.  The attacker needs to force this packet or its
   response to be dropped, through a DoS attack, layer 2 network
   disruption, or other technique.  If it doesn’t do this, the success
   response will also reach the originator, alerting it to a possible
   attack.  The ability for the attacker to generate a fake response is
   mitigated through the STUN short-term credential mechanism.  In order
   for this response to be processed, the attacker needs the password.
   If the candidate exchange signaling is secured, the attacker will not
   have the password and its response will be discarded.

   Spoofed ICMP Hard Errors (Type 3, codes 2-4) can also be used to
   create false invalid results.  If an ICE agent implements a response
   to these ICMP errors, and the attacker is capable of generating an
   ICMP message that is delivered to the agent sending the connectivity
   check.  The validation of the ICMP error message by the agent is its
   only defence.  For Type 3 code=4 the outer IP header provides no
   validation, unless the connectivity check was sent with DF=0.  For
   code 2 or 3, which are originated by the host, the address is
   expected to be any of the remote agents host, reflexive, or relay
   candidates IP addresses.  The ICMP message include the IP header and
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   UDP header of the message triggering the error.  These fields also
   need to be validated.  The IP destination and UDP destination port
   need to match either the targeted candidate address and port, or the
   candidate’s base address.  The source IP address and port can be any
   candidate for the same base address of the agent sending the
   connectivity check.  Thus any attacker having access to the exchange
   of the candidates will have the necessary information.  Thus the
   validation is a weak defence, and the sending of spoofed ICMP attacks
   is possible also for off-path attackers from a node in a network
   without source address validation.

   Forcing the fake valid result works in a similar way.  The attacker
   needs to wait for the Binding request from each agent, and inject a
   fake success response.  Again, due to the STUN short-term credential
   mechanism, in order for the attacker to inject a valid success
   response, the attacker needs the password.  Alternatively, the
   attacker can route (e.g., using a tunnelling mechanism) a valid
   success response, that normally would be dropped or rejected by the
   network, to the agent.

   Forcing the false peer reflexive candidate result can be done either
   with fake requests or responses, or with replays.  We consider the
   fake requests and responses case first.  It requires the attacker to
   send a Binding request to one agent with a source IP address and port
   for the false candidate.  In addition, the attacker needs to wait for
   a Binding request from the other agent, and generate a fake response
   with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
   Like the other attacks described here, this attack is mitigated by
   the STUN message integrity mechanisms and secure candidate exchanges.

   Forcing the false peer reflexive candidate result with packet replays
   is different.  The attacker waits until one of the agents sends a
   check.  It intercepts this request, and replays it towards the other
   agent with a faked source IP address.  It also needs to prevent the
   original request from reaching the remote agent, either by launching
   a DoS attack to cause the packet to be dropped, or forcing it to be
   dropped using layer 2 mechanisms.  The replayed packet is received at
   the other agent, and accepted, since the integrity check passes (the
   integrity check cannot and does not cover the source IP address and
   port).  It is then responded to.  This response will contain a XOR-
   MAPPED-ADDRESS with the false candidate, and will be sent to that
   false candidate.  The attacker then needs to receive it and relay it
   towards the originator.

   The other agent will then initiate a connectivity check towards that
   false candidate.  This validation needs to succeed.  This requires
   the attacker to force a false valid on a false candidate.  Injecting
   of fake requests or responses to achieve this goal is prevented using
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   the integrity mechanisms of STUN and the candidate exchange.  Thus,
   this attack can only be launched through replays.  To do that, the
   attacker needs to intercept the check towards this false candidate,
   and replay it towards the other agent.  Then, it needs to intercept
   the response and replay that back as well.

   This attack is very hard to launch unless the attacker is identified
   by the fake candidate.  This is because it requires the attacker to
   intercept and replay packets sent by two different hosts.  If both
   agents are on different networks (e.g., across the public Internet),
   this attack can be hard to coordinate, since it needs to occur
   against two different endpoints on different parts of the network at
   the same time.

   If the attacker itself is identified by the fake candidate, the
   attack is easier to coordinate.  However, if the data path is secured
   (e.g., using SRTP [RFC3711]), the attacker will not be able to
   process the data packets, but will only be able to discard them,
   effectively disabling the data stream.  However, this attack requires
   the agent to disrupt packets in order to block the connectivity check
   from reaching the target.  In that case, if the goal is to disrupt
   the data stream, it’s much easier to just disrupt it with the same
   mechanism, rather than attack ICE.

19.3.  Attacks on Server Reflexive Address Gathering

   ICE endpoints make use of STUN Binding requests for gathering server
   reflexive candidates from a STUN server.  These requests are not
   authenticated in any way.  As a consequence, there are numerous
   techniques an attacker can employ to provide the client with a false
   server reflexive candidate:

   o  An attacker can compromise the DNS, causing DNS queries to return
      a rogue STUN server address.  That server can provide the client
      with fake server reflexive candidates.  This attack is mitigated
      by DNS security, though DNSSEC is not required to address it.

   o  An attacker that can observe STUN messages (such as an attacker on
      a shared network segment, like WiFi) can inject a fake response
      that is valid and will be accepted by the client.

   o  An attacker can compromise a STUN server, and cause it to send
      responses with incorrect mapped addresses.

   A false mapped address learned by these attacks will be used as a
   server reflexive candidate in the establishment of the ICE session.
   For this candidate to actually be used for data, the attacker also
   needs to attack the connectivity checks, and in particular, force a
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   false valid on a false candidate.  This attack is very hard to launch
   if the false address identifies a fourth party (neither the
   initiator, responder, nor attacker), since it requires attacking the
   checks generated by each ICE agent in the session, and is prevented
   by SRTP if it identifies the attacker itself.

   If the attacker elects not to attack the connectivity checks, the
   worst it can do is prevent the server reflexive candidate from being
   used.  However, if the peer agent has at least one candidate that is
   reachable by the agent under attack, the STUN connectivity checks
   themselves will provide a peer reflexive candidate that can be used
   for the exchange of data.  Peer reflexive candidates are generally
   preferred over server reflexive candidates.  As such, an attack
   solely on the STUN address gathering will normally have no impact on
   a session at all.

19.4.  Attacks on Relayed Candidate Gathering

   An attacker might attempt to disrupt the gathering of relayed
   candidates, forcing the client to believe it has a false relayed
   candidate.  Exchanges with the TURN server are authenticated using a
   long-term credential.  Consequently, injection of fake responses or
   requests will not work.  In addition, unlike Binding requests,
   Allocate requests are not susceptible to replay attacks with modified
   source IP addresses and ports, since the source IP address and port
   are not utilized to provide the client with its relayed candidate.

   Even if an attacker has caused the client to believe in a false
   relayed candidate, the connectivity checks cause such a candidate to
   be used only if they succeed.  Thus, an attacker needs to launch a
   false valid on a false candidate, per above, which is a very
   difficult attack to coordinate.

19.5.  Insider Attacks

   In addition to attacks where the attacker is a third party trying to
   insert fake candidate information or STUN messages, there are attacks
   possible with ICE when the attacker is an authenticated and valid
   participant in the ICE exchange.

19.5.1.  STUN Amplification Attack

   The STUN amplification attack is similar to a "voice hammer" attack,
   where the attacker causes other agents to direct voice packets to the
   attack target.  However, instead of voice packets being directed to
   the target, STUN connectivity checks are directed to the target.  The
   attacker sends an a large number of candidates, say, 50.  The
   responding agent receives the candidate information, and starts its

Keranen, et al.         Expires September 9, 2018              [Page 80]



Internet-Draft                     ICE                        March 2018

   checks, which are directed at the target, and consequently, never
   generate a response.  In the case of WebRTC the user might not even
   be aware that this attack is ongoing, since it might be triggered in
   the background by malicious JavaScript code that the user has
   fetched.  The answerer will start a new connectivity check every Ta
   ms (say, Ta=50ms).  However, the retransmission timers are set to a
   large number due to the large number of candidates.  As a
   consequence, packets will be sent at an interval of one every Ta
   milliseconds, and then with increasing intervals after that.  Thus,
   STUN will not send packets at a rate faster than data would be sent,
   and the STUN packets persist only briefly, until ICE fails for the
   session.  Nonetheless, this is an amplification mechanism.

   It is impossible to eliminate the amplification, but the volume can
   be reduced through a variety of heuristics.  ICE agents SHOULD limit
   the total number of connectivity checks they perform to 100.
   Additionally, agents MAY limit the number of candidates they will
   accept.

   Frequently, protocols that wish to avoid these kinds of attacks force
   the initiator to wait for a response prior to sending the next
   message.  However, in the case of ICE, this is not possible.  It is
   not possible to differentiate the following two cases:

   o  There was no response because the initiator is being used to
      launch a DoS attack against an unsuspecting target that will not
      respond.

   o  There was no response because the IP address and port are not
      reachable by the initiator.

   In the second case, another check will be sent at the next
   opportunity, while in the former case, no further checks will be
   sent.

20.  IANA Considerations

   The original ICE specification registered four STUN attributes, and
   one new STUN error response.  The STUN attributes and error response
   are reproduced here.  In addition, this specification registers a new
   ICE option.

20.1.  STUN Attributes

   IANA has registered four STUN attributes:
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      0x0024 PRIORITY
      0x0025 USE-CANDIDATE
      0x8029 ICE-CONTROLLED
      0x802A ICE-CONTROLLING

   NOTE TO IANA: Please replace the reference to RFC 5245 in the
   registry with a reference to this specification.

20.2.  STUN Error Responses

   IANA has registered following STUN error response code:

    487   Role Conflict: The client asserted an ICE role (controlling or
          controlled) that is in conflict with the role of the server.

   NOTE TO IANA: Please replace the reference to RFC 5245 in the
   registry with a reference to this specification.

20.3.  ICE Options

   IANA is requested to register the following ICE option in the "ICE
   Options" sub-registry of the "Interactive Connectivity Establishment
   (ICE) registry", following the procedures defined in [RFC6336].
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   ICE Option name:

        ice2

     Contact:

        Name:    IESG
        E-mail:  iesg@ietf.org

     Change control:

        IESG

     Description:

        The ICE option indicates that the ICE agent using the ICE option
        is implemented according to RFC XXXX.

     Reference:

        RFC XXXX

21.  Changes from RFC 5245

   The purpose of this updated ICE specification is to:

   o  Clarify procedures in RFC 5245.

   o  Make technical changes, due to discovered flaws in RFC 5245 and
      based on feedback from the community that has implemented and
      deployed ICE applications based on RFC 5245.

   o  Make the procedures signaling protocol independent, by removing
      the SIP and SDP procedures.  Procedures specific to a signaling
      protocol will be defined in separate usage documents.
      [I-D.ietf-mmusic-ice-sip-sdp] defines the ICE usage with SIP and
      SDP.

   The following technical changes have been done:

   o  Aggressive nomination removed.

   o  The procedures for calculating candidate pair states and
      scheduling connectivity checks modified.

   o  Procedures for calculation of Ta and RTO modified.
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   o  Active check list and frozen check list definitions removed.

   o  ’ice2’ ice option added.

   o  IPv6 considerations modified.

   o  Usage with no-op for keepalives, and keepalives with non-ICE
      peers, removed.
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Appendix A.  Lite and Full Implementations

   ICE allows for two types of implementations.  A full implementation
   supports the controlling and controlled roles in a session, and can
   also perform address gathering.  In contrast, a lite implementation
   is a minimalist implementation that does little but respond to STUN
   checks, and only supports the controlled role in a session.

   Because ICE requires both endpoints to support it in order to bring
   benefits to either endpoint, incremental deployment of ICE in a
   network is more complicated.  Many sessions involve an endpoint that
   is, by itself, not behind a NAT and not one that would worry about
   NAT traversal.  A very common case is to have one endpoint that
   requires NAT traversal (such as a VoIP hard phone or soft phone) make
   a call to one of these devices.  Even if the phone supports a full
   ICE implementation, ICE won’t be used at all if the other device
   doesn’t support it.  The lite implementation allows for a low-cost
   entry point for these devices.  Once they support the lite
   implementation, full implementations can connect to them and get the
   full benefits of ICE.

   Consequently, a lite implementation is only appropriate for devices
   that will *always* be connected to the public Internet and have a
   public IP address at which it can receive packets from any
   correspondent.  ICE will not function when a lite implementation is
   placed behind a NAT.

   ICE allows a lite implementation to have a single IPv4 host candidate
   and several IPv6 addresses.  In that case, candidate pairs are
   selected by the controlling agent using a static algorithm, such as
   the one in RFC 6724, which is recommended by this specification.
   However, static mechanisms for address selection are always prone to
   error, since they cannot ever reflect the actual topology and can
   never provide actual guarantees on connectivity.  They are always
   heuristics.  Consequently, if an ICE agent is implementing ICE just
   to select between its IPv4 and IPv6 addresses, and none of its IP
   addresses are behind NAT, usage of full ICE is still RECOMMENDED in
   order to provide the most robust form of address selection possible.
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   It is important to note that the lite implementation was added to
   this specification to provide a stepping stone to full
   implementation.  Even for devices that are always connected to the
   public Internet with just a single IPv4 address, a full
   implementation is preferable if achievable.  Full implementations
   also obtain the security benefits of ICE unrelated to NAT traversal.
   Finally, it is often the case that a device that finds itself with a
   public address today will be placed in a network tomorrow where it
   will be behind a NAT.  It is difficult to definitively know, over the
   lifetime of a device or product, that it will always be used on the
   public Internet.  Full implementation provides assurance that
   communications will always work.

Appendix B.  Design Motivations

   ICE contains a number of normative behaviors that may themselves be
   simple, but derive from complicated or non-obvious thinking or use
   cases that merit further discussion.  Since these design motivations
   are not necessary to understand for purposes of implementation, they
   are discussed here in an appendix to the specification.  This section
   is non-normative.

B.1.  Pacing of STUN Transactions

   STUN transactions used to gather candidates and to verify
   connectivity are paced out at an approximate rate of one new
   transaction every Ta milliseconds.  Each transaction, in turn, has a
   retransmission timer RTO that is a function of Ta as well.  Why are
   these transactions paced, and why are these formulas used?

   Sending of these STUN requests will often have the effect of creating
   bindings on NAT devices between the client and the STUN servers.
   Experience has shown that many NAT devices have upper limits on the
   rate at which they will create new bindings.  Discussions in the IETF
   ICE WG during the work on this specification concluded that, that
   once every 5 ms is well supported.  This is why Ta has a lower bound
   of 5 ms.  Furthermore, transmission of these packets on the network
   makes use of bandwidth and needs to be rate limited by the ICE agent.
   Deployments based on earlier draft versions of [RFC5245] tended to
   overload rate-constrained access links and perform poorly overall, in
   addition to negatively impacting the network.  As a consequence, the
   pacing ensures that the NAT device does not get overloaded and that
   traffic is kept at a reasonable rate.

   The definition of a "reasonable" rate is that STUN MUST NOT use more
   bandwidth than the RTP itself will use, once data starts flowing.
   The formula for Ta is designed so that, if a STUN packet were sent
   every Ta seconds, it would consume the same amount of bandwidth as
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   RTP packets, summed across all data streams.  Of course, STUN has
   retransmits, and the desire is to pace those as well.  For this
   reason, RTO is set such that the first retransmit on the first
   transaction happens just as the first STUN request on the last
   transaction occurs.  Pictorially:

              First Packets              Retransmits

                    |                        |
                    |                        |
             -------+------           -------+------
            /               \        /               \
           /                 \      /                 \

           +--+    +--+    +--+    +--+    +--+    +--+
           |A1|    |B1|    |C1|    |A2|    |B2|    |C2|
           +--+    +--+    +--+    +--+    +--+    +--+

        ---+-------+-------+-------+-------+-------+------------ Time
           0       Ta      2Ta     3Ta     4Ta     5Ta

   In this picture, there are three transactions that will be sent (for
   example, in the case of candidate gathering, there are three host
   candidate/STUN server pairs).  These are transactions A, B, and C.
   The retransmit timer is set so that the first retransmission on the
   first transaction (packet A2) is sent at time 3Ta.

   Subsequent retransmits after the first will occur even less
   frequently than Ta milliseconds apart, since STUN uses an exponential
   back-off on its retransmissions.

   This mechanism of a global minimum pacing interval of 5ms is not
   generally applicable to transport protocols, but is applicable to ICE
   based on the following reasoning.

   o  Start with the following rules which would be generally applicable
      to transport protocols:

      1.  Let MaxBytes be the maximum number of bytes allowed to be
          outstanding in the network at start-up, which SHOULD be 14600,
          as defined in Section 2 of [RFC6928].

      2.  Let HTO be the transaction timeout, which SHOULD be 2*RTT if
          RTT is known and 500ms otherwise.  This is based on the RTO
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          for STUN messages from [RFC5389] and the the TCP initial RTO,
          which is 1 sec in [RFC6298].

      3.  Let MinPacing be the minimum pacing interval between
          transactions, which is 5ms (see above).

   o  Observe that agents typically do not know the RTT for ICE
      transactions (connectivity checks in particular), meaning that HTO
      will almost always be 500ms.

   o  Observe that a MinPacing of 5ms and HTO of 500ms gives at most 100
      packets/HTO, which for a typical ICE check of less than 120 bytes
      means a maximum of 12000 outstanding bytes in the network, which
      is less than the maximum expressed by rule 1.

   o  Thus, for ICE, the rule set reduces down to just the MinPacing
      rule, which is equivalent to having a global Ta value.

B.2.  Candidates with Multiple Bases

   Section 5.1.3 talks about eliminating candidates that have the same
   transport address and base.  However, candidates with the same
   transport addresses but different bases are not redundant.  When can
   an ICE agent have two candidates that have the same IP address and
   port, but different bases?  Consider the topology of Figure 11:
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          +----------+
          | STUN Srvr|
          +----------+
               |
               |
             -----
           //     \\
          |         |
         |  B:net10  |
          |         |
           \\     //
             -----
               |
               |
          +----------+
          |   NAT    |
          +----------+
               |
               |
             -----
           //     \\
          |    A    |
         |192.168/16 |
          |         |
           \\     //
             -----
               |
               |
               |192.168.1.100      -----
          +----------+           //     \\             +----------+
          |          |          |         |            |          |
          | Initiator|---------|  C:net10  |-----------| Responder|
          |          |10.0.1.100|         | 10.0.1.101 |          |
          +----------+           \\     //             +----------+
                                   -----

           Figure 11: Identical Candidates with Different Bases

   In this case, the initiating agent is multihomed.  It has one IP
   address, 10.0.1.100, on network C, which is a net 10 private network.
   The responding agent is on this same network.  The initiating agent
   is also connected to network A, which is 192.168/16 and has an IP
   address of 192.168.1.100 on this network.  There is a NAT on this
   network, natting into network B, which is another net 10 private
   network, but not connected to network C.  There is a STUN server on
   network B.
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   The initiating agent obtains a host candidate on its IP address on
   network C (10.0.1.100:2498) and a host candidate on its IP address on
   network A (192.168.1.100:3344).  It performs a STUN query to its
   configured STUN server from 192.168.1.100:3344.  This query passes
   through the NAT, which happens to assign the binding 10.0.1.100:2498.
   The STUN server reflects this in the STUN Binding response.  Now, the
   initiating agent has obtained a server reflexive candidate with a
   transport address that is identical to a host candidate
   (10.0.1.100:2498).  However, the server reflexive candidate has a
   base of 192.168.1.100:3344, and the host candidate has a base of
   10.0.1.100:2498.

B.3.  Purpose of the Related Address and Related Port Attributes

   The candidate attribute contains two values that are not used at all
   by ICE itself -- related address and related port.  Why are they
   present?

   There are two motivations for its inclusion.  The first is
   diagnostic.  It is very useful to know the relationship between the
   different types of candidates.  By including it, an ICE agent can
   know which relayed candidate is associated with which reflexive
   candidate, which in turn is associated with a specific host
   candidate.  When checks for one candidate succeed and not for others,
   this provides useful diagnostics on what is going on in the network.

   The second reason has to do with off-path Quality of Service (QoS)
   mechanisms.  When ICE is used in environments such as PacketCable
   2.0, proxies will, in addition to performing normal SIP operations,
   inspect the SDP in SIP messages, and extract the IP address and port
   for data traffic.  They can then interact, through policy servers,
   with access routers in the network, to establish guaranteed QoS for
   the data flows.  This QoS is provided by classifying the RTP traffic
   based on 5-tuple, and then providing it a guaranteed rate, or marking
   its Diffserv codepoints appropriately.  When a residential NAT is
   present, and a relayed candidate gets selected for data, this relayed
   candidate will be a transport address on an actual TURN server.  That
   address says nothing about the actual transport address in the access
   router that would be used to classify packets for QoS treatment.
   Rather, the server reflexive candidate towards the TURN server is
   needed.  By carrying the translation in the SDP, the proxy can use
   that transport address to request QoS from the access router.

B.4.  Importance of the STUN Username

   ICE requires the usage of message integrity with STUN using its
   short-term credential functionality.  The actual short-term
   credential is formed by exchanging username fragments in the
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   candidate exchange.  The need for this mechanism goes beyond just
   security; it is actually required for correct operation of ICE in the
   first place.

   Consider ICE agents L, R, and Z.  L and R are within private
   enterprise 1, which is using 10.0.0.0/8.  Z is within private
   enterprise 2, which is also using 10.0.0.0/8.  As it turns out, R and
   Z both have IP address 10.0.1.1.  L sends candidates to Z.  Z, in
   responds L with its host candidates.  In this case, those candidates
   are 10.0.1.1:8866 and 10.0.1.1:8877.  As it turns out, R is in a
   session at that same time, and is also using 10.0.1.1:8866 and
   10.0.1.1:8877 as host candidates.  This means that R is prepared to
   accept STUN messages on those ports, just as Z is.  L will send a
   STUN request to 10.0.1.1:8866 and another to 10.0.1.1:8877.  However,
   these do not go to Z as expected.  Instead, they go to R!  If R just
   replied to them, L would believe it has connectivity to Z, when in
   fact it has connectivity to a completely different user, R.  To fix
   this, the STUN short-term credential mechanisms are used.  The
   username fragments are sufficiently random that it is highly unlikely
   that R would be using the same values as Z.  Consequently, R would
   reject the STUN request since the credentials were invalid.  In
   essence, the STUN username fragments provide a form of transient host
   identifiers, bound to a particular session established as part of the
   candidate exchange.

   An unfortunate consequence of the non-uniqueness of IP addresses is
   that, in the above example, R might not even be an ICE agent.  It
   could be any host, and the port to which the STUN packet is directed
   could be any ephemeral port on that host.  If there is an application
   listening on this socket for packets, and it is not prepared to
   handle malformed packets for whatever protocol is in use, the
   operation of that application could be affected.  Fortunately, since
   the ports exchanged are ephemeral and usually drawn from the dynamic
   or registered range, the odds are good that the port is not used to
   run a server on host R, but rather is the agent side of some
   protocol.  This decreases the probability of hitting an allocated
   port, due to the transient nature of port usage in this range.
   However, the possibility of a problem does exist, and network
   deployers need to be prepared for it.  Note that this is not a
   problem specific to ICE; stray packets can arrive at a port at any
   time for any type of protocol, especially ones on the public
   Internet.  As such, this requirement is just restating a general
   design guideline for Internet applications -- be prepared for unknown
   packets on any port.
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B.5.  The Candidate Pair Priority Formula

   The priority for a candidate pair has an odd form.  It is:

      pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

   Why is this?  When the candidate pairs are sorted based on this
   value, the resulting sorting has the MAX/MIN property.  This means
   that the pairs are first sorted based on decreasing value of the
   minimum of the two priorities.  For pairs that have the same value of
   the minimum priority, the maximum priority is used to sort amongst
   them.  If the max and the min priorities are the same, the
   controlling agent’s priority is used as the tie-breaker in the last
   part of the expression.  The factor of 2*32 is used since the
   priority of a single candidate is always less than 2*32, resulting in
   the pair priority being a "concatenation" of the two component
   priorities.  This creates the MAX/MIN sorting.  MAX/MIN ensures that,
   for a particular ICE agent, a lower-priority candidate is never used
   until all higher-priority candidates have been tried.

B.6.  Why Are Keepalives Needed?

   Once data begins flowing on a candidate pair, it is still necessary
   to keep the bindings alive at intermediate NATs for the duration of
   the session.  Normally, the data stream packets themselves (e.g.,
   RTP) meet this objective.  However, several cases merit further
   discussion.  Firstly, in some RTP usages, such as SIP, the data
   streams can be "put on hold".  This is accomplished by using the SDP
   "sendonly" or "inactive" attributes, as defined in RFC 3264
   [RFC3264].  RFC 3264 directs implementations to cease transmission of
   data in these cases.  However, doing so may cause NAT bindings to
   timeout, and data won’t be able to come off hold.

   Secondly, some RTP payload formats, such as the payload format for
   text conversation [RFC4103], may send packets so infrequently that
   the interval exceeds the NAT binding timeouts.

   Thirdly, if silence suppression is in use, long periods of silence
   may cause data transmission to cease sufficiently long for NAT
   bindings to time out.

   For these reasons, the data packets themselves cannot be relied upon.
   ICE defines a simple periodic keepalive utilizing STUN Binding
   indications.  This makes its bandwidth requirements highly
   predictable, and thus amenable to QoS reservations.
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B.7.  Why Prefer Peer Reflexive Candidates?

   Section 5.1.2 describes procedures for computing the priority of
   candidate based on its type and local preferences.  That section
   requires that the type preference for peer reflexive candidates
   always be higher than server reflexive.  Why is that?  The reason has
   to do with the security considerations in Section 19.  It is much
   easier for an attacker to cause an ICE agent to use a false server
   reflexive candidate than it is for an attacker to cause an agent to
   use a false peer reflexive candidate.  Consequently, attacks against
   address gathering with Binding requests are thwarted by ICE by
   preferring the peer reflexive candidates.

B.8.  Why Are Binding Indications Used for Keepalives?

   Data keepalives are described in Section 11.  These keepalives make
   use of STUN when both endpoints are ICE capable.  However, rather
   than using a Binding request transaction (which generates a
   response), the keepalives use an Indication.  Why is that?

   The primary reason has to do with network QoS mechanisms.  Once data
   begins flowing, network elements will assume that the data stream has
   a fairly regular structure, making use of periodic packets at fixed
   intervals, with the possibility of jitter.  If an ICE agent is
   sending data packets, and then receives a Binding request, it would
   need to generate a response packet along with its data packets.  This
   will increase the actual bandwidth requirements for the 5-tuple
   carrying the data packets, and introduce jitter in the delivery of
   those packets.  Analysis has shown that this is a concern in certain
   layer 2 access networks that use fairly tight packet schedulers for
   data.

   Additionally, using a Binding Indication allows integrity to be
   disabled, allowing for better performance.  This is useful for large-
   scale endpoints, such as Public Switched Telephone Network (PSTN)
   gateways and Session Border Controllers (SBCs).

B.9.  Selecting Candidate Type Preference

   One criterion for selection of the type and local preference values
   is the use of a data intermediary, such as a TURN server, a tunnel
   service such as VPN server, or NAT.  With a data intermediary, if
   data is sent to that candidate, it will first transit the data
   intermediary before being received.  Relayed candidates are one type
   of candidate that involves a data intermediary.  Another are host
   candidates obtained from a VPN interface.  When data is transited
   through a data intermediary, it can have a positive or negative
   effect on the latency between transmission and reception.  It may or
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   may not increase the packet losses, because of the additional router
   hops that may be taken.  It may increase the cost of providing
   service, since data will be routed in and right back out of a data
   intermediary run by a provider.  If these concerns are important, the
   type preference for relayed candidates needs to be carefully chosen.

   Another criterion for selection of preferences is IP address family.
   ICE works with both IPv4 and IPv6.  It provides a transition
   mechanism that allows dual-stack hosts to prefer connectivity over
   IPv6, but to fall back to IPv4 in case the v6 networks are
   disconnected.  Implementation SHOULD follow the guidelines from
   [I-D.ietf-ice-dualstack-fairness] to avoid excessive delays in the
   connectivity check phase if broken paths exist.

   Another criterion for selecting preferences is topological awareness.
   This is most useful for candidates that make use of intermediaries.
   In those cases, if an ICE agent has preconfigured or dynamically
   discovered knowledge of the topological proximity of the
   intermediaries to itself, it can use that to assign higher local
   preferences to candidates obtained from closer intermediaries.

   Another criterion for selecting preferences might be security or
   privacy.  If a user is a telecommuter, and therefore connected to a
   corporate network and a local home network, the user may prefer their
   voice traffic to be routed over the VPN or similar tunnel in order to
   keep it on the corporate network when communicating within the
   enterprise, but use the local network when communicating with users
   outside of the enterprise.  In such a case, a VPN address would have
   a higher local preference than any other address.

Appendix C.  Connectivity Check Bandwidth

   The tables below show, for IPv4 and IPv6, the bandwidth required for
   performing connectivity checks, using different Ta values (given in
   ms) and different ufrag sizes (given in bytes).

   The results were provided by Jusin Uberti (Google) 11th April 2016.
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   IP version: IPv4
   Packet len (bytes): 108 + ufrag
        |
     ms |     4     8    12    16
   -----|------------------------
    500 | 1.86k 1.98k 2.11k 2.24k
    200 | 4.64k 4.96k 5.28k  5.6k
    100 | 9.28k 9.92k 10.6k 11.2k
     50 | 18.6k 19.8k 21.1k 22.4k
     20 | 46.4k 49.6k 52.8k 56.0k
     10 | 92.8k 99.2k  105k  112k
      5 |  185k  198k  211k  224k
      2 |  464k  496k  528k  560k
      1 |  928k  992k 1.06M 1.12M

   IP version: IPv6
   Packet len (bytes): 128 + ufrag
        |
     ms |     4     8    12    16
   -----|------------------------
    500 | 2.18k  2.3k 2.43k 2.56k
    200 | 5.44k 5.76k 6.08k  6.4k
    100 | 10.9k 11.5k 12.2k 12.8k
     50 | 21.8k 23.0k 24.3k 25.6k
     20 | 54.4k 57.6k 60.8k 64.0k
     10 |  108k  115k  121k  128k
      5 |  217k  230k  243k  256k
      2 |  544k  576k  608k  640k
      1 | 1.09M 1.15M 1.22M 1.28M

                  Figure 12: Connectivity Check Bandwidth
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1.  Introduction

   The Interactive Connectivity Establishment (ICE) protocol
   [rfc5245bis] describes mechanisms for gathering candidates,
   prioritizing them, choosing default ones, exchanging them with the
   remote party, pairing them, and ordering them into check lists.  Once
   all of these actions have been completed (and only then), the
   participating agents can begin a phase of connectivity checks and
   eventually select the pair of candidates that will be used in a media
   session.

   Although the sequence described above has the advantage of being
   relatively straightforward to implement and debug once deployed, it
   can also be rather lengthy.  Candidate gathering often involves
   things like querying STUN [RFC5389] servers, discovering UPnP
   devices, and allocating relayed candidates at TURN [RFC5766] servers.
   All of these actions can be delayed for a noticeable amount of time;
   although they can be run in parallel, they still need to respect the
   pacing requirements from [rfc5245bis], which is likely to delay them
   even further.  Some or all of these actions also need be completed by
   the remote agent.  Both agents would next perform connectivity checks
   and only then would they be ready to begin streaming media.

   These factors can lead to relatively lengthy session establishment
   times and degraded user experience.

   This document defines an alternative mode of operation for ICE
   implementations, known as "Trickle ICE", in which candidates can be
   exchanged incrementally.  This enables ICE agents to exchange
   candidates as soon as a session has been initiated.  Connectivity
   checks for a media stream can also start as soon as the first
   candidates for that stream become available.

   Trickle ICE can reduce session establishment times in cases where
   connectivity is confirmed for the first exchanged candidates (e.g.,
   where the host candidates for one of the agents are directly
   reachable from the second agent, such as host candidates at a media
   relay).  Even when this is not the case, running candidate gathering
   for both agents and connectivity checks in parallel can considerably
   shorten ICE processing times.

   It is worth noting that there is quite a bit of operational
   experience with the Trickle ICE technique, going back as far as 2005
   (when the XMPP Jingle extension defined a "dribble mode" as specified
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   in [XEP-0176]); this document incorporates feedback from those who
   have implemented and deployed the technique.

   In addition to the basics of Trickle ICE, this document also
   describes how to discover support for Trickle ICE, how regular ICE
   processing needs to be modified when building and updating check
   lists, and how Trickle ICE implementations interoperate with agents
   that only implement so-called "Vanilla ICE" processing as defined in
   [rfc5245bis].

   This specification does not define the usage of Trickle ICE with any
   specific signalling protocol (however, see
   [I-D.ietf-mmusic-trickle-ice-sip] for usage with SIP [RFC3261]).
   Similarly, it does not define Trickle ICE in terms of the Session
   Description Protocol (SDP) [RFC4566] or the offer/answer model
   [RFC3264] because the technique can be and already is used in
   application protocols that are not tied to SDP or to offer/answer
   semantics.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This specification makes use of all terminology defined for
   Interactive Connectivity Establishment in [rfc5245bis].

   Vanilla ICE:  The Interactive Connectivity Establishment protocol as
      defined in [rfc5245bis].

   Candidate Harvester:  A module used by an ICE agent to obtain local
      candidates.  Candidate gatherers use different mechanisms for
      discovering local candidates.  Some of them would typically make
      use of protocols such as STUN or TURN.  Others may also employ
      techniques that are not referenced within [rfc5245bis] (e.g., UPnP
      based port allocation or XMPP Jingle Relay Nodes [XEP-0278]).

   Trickled Candidates:  Candidates that a Trickle ICE agent sends after
      an offer or answer but within the same context.  Trickled
      candidates can be sent in parallel with candidate gathering and
      connectivity checks.

   Trickling/Trickle (v.):  The act of sending trickled candidates.

   Half Trickle:  A Trickle ICE mode of operation where the offerer
      gathers its first generation of candidates strictly before
      creating and sending the offer.  Once sent, that offer can be
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      processed by Vanilla ICE agents and does not require support for
      this specification.  It also allows Trickle ICE capable answerers
      to still gather candidates and perform connectivity checks in a
      non-blocking way, thus roughly offering "half" the advantages of
      Trickle ICE.  The mechanism is mostly meant for use in cases where
      support for trickle ICE cannot be confirmed prior to sending a
      initial offer.

   Full Trickle:  The regular mode of operation for Trickle ICE agents,
      in which an initial offer can include any number of candidates
      (even zero candidates) and does not need to include the entire
      first generation of candidates as in half trickle.

3.  Determining Support for Trickle ICE

   Application protocols that use Trickle ICE should do one of the
   following:

   o  Provide a way for agents to verify support of Trickle ICE prior to
      initiating a session (XMPP’s Service Discovery [XEP-0030] is one
      such mechanism).

   o  Make support for Trickle ICE mandatory so that user agents can
      assume support.

   Alternately, for cases where a protocol provides neither of the
   foregoing methods, agents may rely on provisioning/configuration or
   use the half trickle procedure described in Section 14.

   Prior to sending an initial offer, agents using signaling protocols
   that support capabilities discovery can attempt to verify whether or
   not the remote party supports Trickle ICE.  If an agent determines
   that the remote party does not support Trickle ICE, it MUST fall back
   to using Vanilla ICE or abandon the entire session.

   In application protocols that use SDP, a user agent supporting
   Trickle ICE MUST include a token of "trickle" in the ice-options
   attribute every time it generates an offer or an answer.  This
   enables an agent that receives offers or answers to verify support by
   checking for presence of the token.

   Dedicated discovery semantics and half trickle are needed only prior
   to session initiation (e.g., when sending the initial offer).  After
   a session is established and Trickle ICE support is confirmed for
   both parties, either agent can use full trickle for subsequent
   offers.
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4.  Sending the Initial Offer

   An agent starts gathering candidates as soon as it has an indication
   that communication is imminent (e.g., a user interface cue or an
   explicit request to initiate a session).  Contrary to Vanilla ICE,
   implementations of Trickle ICE do not need to gather candidates in a
   blocking manner.  Therefore, unless half trickle is being used,
   agents SHOULD generate and transmit their initial offer as early as
   possible, in order to allow the remote party to start gathering and
   trickling candidates.

   Trickle ICE agents MAY include any set of candidates in an offer.
   This includes the possibility of sending an offer that contains all
   the candidates that the agent plans to use (as in half trickle mode),
   sending an offer that contains only a publically-reachable IP address
   (e.g., a host candidate at a media relay that is known to not be
   behind a firewall), or sending an offer with no candidates at all (in
   which case the offerer can receive the answerer’s initial candidate
   list sooner and the answerer can begin candidate gathering more
   quickly).

   For optimal performance, it is RECOMMENDED that the candidates in an
   initial offer (if any) be host candidates only.  This would allow
   both agents to start gathering server reflexive, relayed, and other
   non-host candidates simultaneously, and it would also enable them to
   begin connectivity checks.

   If the privacy implications of revealing host addresses on an
   endpoint device are a concern, agents can generate an offer that
   contains no candidates and then only trickle candidates that do not
   reveal host addresses (e.g., relayed candidates).

   Methods for calculating priorities and foundations, as well as
   determining redundancy of candidates, work just as with vanilla ICE.

5.  Receiving the Initial Offer

   When an agent receives an initial offer, it will first check if the
   offer or offerer indicates support for Trickle ICE as explained in
   Section 3.  If this is not the case, the agent MUST process the offer
   according to Vanilla ICE procedures [rfc5245bis] or offer/answer
   processing rules [RFC3264] if no ICE support is detected at all.

   If support for Trickle ICE is confirmed, an agent will automatically
   assume support for Vanilla ICE as well even if the support
   verification procedure in [rfc5245bis] indicates otherwise.
   Specifically, the rules from [rfc5245bis] would imply that ICE itself
   is not supported if the initial offer includes no candidates in the
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   offer; however, such a conclusion is not warranted if the answerer
   can confirm that the offerer supports Trickle ICE and thus fallback
   to [RFC3264] is not necessary.

   If the offer does indicate support for Trickle ICE, the agent will
   determine its role, start gathering and prioritizing candidates and
   while doing so it will also respond by sending its own answer, so
   that both agents can start forming check lists and begin connectivity
   checks.

5.1.  Sending the Initial Answer

   An agent can respond to an initial offer at any point while gathering
   candidates.  The answer can again contain any set of candidates,
   including all candidates or no candidates.  (The benefit of including
   no candidates is to send the answer as quickly as possible, so that
   both parties can consider the overall session to be under active
   negotiation as soon as possible.)  Unless the answering agent is
   protecting host addresses for privacy reasons, it would typically
   construct this initial answer including only host addresses, thus
   enabling the remote party to also start forming check lists and
   performing connectivity checks.

   In application protocols that use SDP, the answer MUST indicate
   support for Trickle ICE as described in Section 3.

5.2.  Forming Check Lists and Beginning Connectivity Checks

   After exchanging the offer and answer, and as soon as they have
   obtained local and remote candidates, agents begin forming candidate
   pairs, computing candidate pair priorities and ordering candidate
   pairs, pruning duplicate pairs, and creating check lists according to
   the Vanilla ICE procedures described in [rfc5245bis].

   According to those procedures, in order for candidate pairing to be
   possible and for duplicate candidates to be pruned, the candidates
   would need to be provided in both the offer and the answer.  Under
   Trickle ICE, check lists can be empty until candidate pairs are sent
   or received.  Therefore Trickle ICE agents handle check lists and
   candidate pairing in a slightly different way: the agents still
   create the check lists, but they only populate the check lists after
   they actually have the candidate pairs.

      Note: According to [rfc5245bis], "A check list with at least one
      pair that is Waiting is called an active check list, and a check
      list with all pairs Frozen is called a frozen check list."
      Formally speaking an active check list does not have a state of
      Active and a frozen check list does not have a state of Frozen,
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      because the only check list states are Running, Completed, and
      Failed.

   A Trickle ICE agent MUST initially consider all check lists to be
   frozen.  It then inspects the first check list and attempts to
   unfreeze all candidates belonging to the first component on the first
   media stream (i.e., the first media stream that was reported to the
   ICE implementation from the using application).  However, if this
   check list is still empty, an agent delays further processing until
   the check list is non-empty.

   With regard to pruning of duplicate candidate pairs, a Trickle ICE
   agent SHOULD follow a policy of "first one wins" and not re-apply the
   pruning procedure if a higher-priority candidate pair is received
   from the remote agent.

   Respecting the order in which check lists have been reported to an
   ICE implementation is crucial to the frozen candidates algorithm, so
   that connectivity checks are performed simultaneously by both agents.

6.  Receiving the Initial Answer

   When receiving an answer, agents follow Vanilla ICE procedures to
   determine their role, after which they form check lists (as described
   in Section 5.2) and begin connectivity checks.

7.  Performing Connectivity Checks

   For the most part, Trickle ICE agents perform connectivity checks
   following Vanilla ICE procedures.  However, the asynchronous nature
   of gathering and communicating candidates in Trickle ICE impose a
   number of changes described as described in the following sections.

7.1.  Scheduling Checks

   The ICE specification [rfc5245bis], Section 5.8, requires that agents
   terminate the timer for a triggered check in relation to an active
   check list once the agent has exhausted all frozen pairs in check
   list.  This will not work with Trickle ICE, because more pairs will
   be added to the check list incrementally.

   Therefore, a Trickle ICE agent SHOULD NOT terminate the timer until
   the state of the check list is Completed or Failed as specified
   herein (see Section 8.2).
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7.2.  Check List and Timer State Updates

   The ICE specification [rfc5245bis], Section 7.1.3.3, requires that
   agents update check lists and timer states upon completing a
   connectivity check transaction.  During such an update, Vanilla ICE
   agents would set the state of a check list to Failed if both of the
   following two conditions are satisfied:

   o  all of the pairs in the check list are either in the Failed or
      Succeeded state; and

   o  there is not a pair in the valid list for each component of the
      media stream.

   With Trickle ICE, the above situation would often occur when
   candidate gathering and trickling are still in progress, even though
   it is quite possible that future checks will succeed.  For this
   reason, Trickle ICE agents add the following conditions to the above
   list:

   o  all candidate gatherers have completed and the agent is not
      expecting to discover any new local candidates;

   o  the remote agent has sent an end-of-candidates indication for that
      check list as described in Section 8.2.

   Vanilla ICE requires that agents then update all other check lists,
   placing one pair from each of them into the Waiting state,
   effectively unfreezing all remaining check lists.  However, under
   Trickle ICE other check lists might still be empty at that point.
   Therefore a Trickle ICE agent SHOULD monitor whether a check list is
   active or frozen independently of the state of the candidate pairs
   that the check list contains.  A Trickle ICE agent SHOULD consider a
   check list to be active either when unfreezing the first candidate
   pair in the check list or when there is no candidate pair in the
   check list (i.e., when the check list is empty).

8.  Discovering and Sending Additional Local Candidates

   After an offer or an answer has been sent, agents will most likely
   continue discovering new local candidates as STUN, TURN, and other
   non-host candidate gathering mechanisms begin to yield results.
   Whenever an agent discovers such a new candidate it will compute its
   priority, type, foundation and component ID according to normal
   Vanilla ICE procedures.

   The new candidate is then checked for redundancy against the existing
   list of local candidates.  If its transport address and base match
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   those of an existing candidate, it will be considered redundant and
   will be ignored.  This would often happen for server reflexive
   candidates that match the host addresses they were obtained from
   (e.g., when the latter are public IPv4 addresses).  Contrary to
   Vanilla ICE, Trickle ICE agents will consider the new candidate
   redundant regardless of its priority.

   Next the agent sends (i.e., trickles) the newly discovered
   candidate(s) to the remote agent.  The actual delivery of the new
   candidates are specified by using protocols such as SIP or XMPP.
   Trickle ICE imposes no restrictions on the way this is done or
   whether it is done at all.  For example, some applications may choose
   not to send trickle updates for server reflexive candidates and rely
   on the discovery of peer reflexive ones instead.

   When trickle updates are sent, each candidate MUST be delivered to
   the receiving Trickle ICE implementation not more than once and in
   the same order that they were sent.  In other words, if there are any
   candidate retransmissions, they must be hidden from the ICE
   implementation.

   Also, candidate trickling needs to be correlated to a specific ICE
   negotiation session, so that if there is an ICE restart, any delayed
   updates for a previous session can be recognized as such and ignored
   by the receiving party.

   One important aspect of Vanilla ICE is that connectivity checks for a
   specific foundation and component are attempted simultaneously by
   both agents, so that any firewalls or NATs fronting the agents would
   whitelist both endpoints and allow all except for the first
   ("suicide") packets to go through.  This is also crucial to
   unfreezing candidates in the right time.

   In order to preserve this feature in Trickle ICE, when trickling
   candidates agents MUST respect the order of the components as they
   appear (implicitly or explicitly) in the offer/answer descriptions.
   Therefore a candidate for a specific component MUST NOT be sent prior
   to candidates for other components within the same foundation.

   For example, the following SDP description contains two components
   (RTP and RTCP) and two foundations (host and server reflexive):
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     v=0
     o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
     s=
     c=IN IP4 10.0.1.1
     t=0 0
     a=ice-pwd:asd88fgpdd777uzjYhagZg
     a=ice-ufrag:8hhY
     m=audio 5000 RTP/AVP 0
     a=rtpmap:0 PCMU/8000
     a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host
     a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host
     a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
         raddr 10.0.1.1 rport 8998
     a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
         raddr 10.0.1.1 rport 8998

   For this description the RTCP host candidate MUST NOT be sent prior
   to the RTP host candidate.  Similarly the RTP server reflexive
   candidate MUST be sent together with or prior to the RTCP server
   reflexive candidate.

   Note that the order restriction only applies among candidates that
   belong to the same foundation.

   It is also equally important to preserve this order across media
   streams, which is covered by the requirement to always start
   unfreezing candidates starting from the first media stream as
   described under Section 5.2.

   Once the candidate has been sent to the remote party, the agent
   checks if any remote candidates are currently known for this same
   stream.  If not, the new candidate will simply be added to the list
   of local candidates.

   Otherwise, if the agent has already learned of one or more remote
   candidates for this stream and component, it will begin pairing the
   new local candidates with them and adding the pairs to the existing
   check lists according to their priority.

8.1.  Pairing Newly Learned Candidates and Updating Check Lists

   Forming candidate pairs works the way it is described by the ICE
   specification [rfc5245bis].  However, actually adding the new pair to
   a check list happens according to the rules described below.
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   If the check list where the pair is to be added already contains the
   maximum number of candidate pairs (100 by default as per
   [rfc5245bis]), the new pair is discarded.

   If the new pair’s local candidate is server reflexive, the server
   reflexive candidate MUST be replaced by its base before adding the
   pair to the list.  Once this is done, the agent examines the check
   list looking for another pair that would be redundant with the new
   one.  If such a pair exists, the newly formed pair is ignored.

   For all other pairs, including those with a server reflexive local
   candidate that were not found to be redundant:

   o  if this check list is frozen then the new pair will be assigned a
      state of Frozen.

   o  else if the check list is active and it is either empty or
      contains only candidates in the Succeeded and Failed states, then
      the new pair’s state is set to Waiting.

   o  else if the check list is non-empty and active, then the state of
      the new pair will be set to

      Frozen:   if there is at least one pair in the check list whose
         foundation matches the one in the new pair and whose state is
         neither Succeeded nor Failed (eventually the new pair will get
         unfrozen after the ongoing check for the existing pair
         concludes);

      Waiting:   if the list contains no pairs with the same foundation
         as the new one, or, in case such pairs exist but they are all
         in either the Succeeded or Failed states.

8.2.  Announcing End of Candidates

   Once all candidate gathering is completed or expires for a specific
   media stream, the agents will generate an "end-of-candidates"
   indication for that stream and send it to the remote agent via the
   signalling channel.  The exact form of the indication depends on the
   application protocol.  The indication can be sent in the following
   ways:

   o  As part of an offer (which would typically be the case with half
      trickle initial offers)

   o  Along with the last candidate an agent can send for a stream
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   o  As a standalone notification (e.g., after STUN Binding requests or
      TURN Allocate requests to a server timeout and the agent has no
      other active gatherers)

   A controlled Trickle ICE agent SHOULD send end-of-candidates
   indications after gathering for a media stream has completed, unless
   ICE processing terminates before the agent has had a chance to do so.
   Sending the indication is necessary in order to avoid ambiguities and
   speed up the conclusion of ICE processing.  On the other hand, a
   controlling agent MAY conclude ICE processing prior to sending end-
   of-candidates indications for all streams.  This would typically be
   the case with aggressive nomination.  However, it is RECOMMENDED that
   controlling agents do send such indications whenever possible for the
   sake of consistency and to keep middle boxes and controlled agents
   up-to-date on the state of ICE processing.

   When sending an end-of-candidate indication during trickling (rather
   than as a part of an offer or an answer), it is the responsibility of
   the using protocol to define methods for relating the indication to
   one or more specific media streams.

   Receiving an end-of-candidates indication enables an agent to update
   check list states and, in case valid pairs do not exist for every
   component in every media stream, determine that ICE processing has
   failed.  It also enables agents to speed up the conclusion of ICE
   processing when a candidate pair has been validated but it involves
   the use of lower-preference transports such as TURN.  In such
   situations, an implementations may choose to wait and see if higher-
   priority candidates are received; in this case the end-of-candidates
   indication provides a notificaiton that such candidates are not
   forthcoming.

   An agent MAY also choose to generate an end-of-candidates indication
   before candidate gathering has actually completed, if the agent
   determines that gathering has continued for more than an acceptable
   period of time.  However, an agent MUST NOT send any more candidates
   after it has send an end-of-candidates indication.

   When performing half trickle, an agent SHOULD send an end-of-
   candidates indication together with its initial offer unless it is
   planning to potentially send additional candidates (e.g., in case the
   remote party turns out to support Trickle ICE).

   When an end-of-candidates indication is sent as part of an offer or
   an answer, it can be considered to apply to the session as a whole,
   which is equivalent to having it apply to all media streams.
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   After an agent sends the end-of-candidates indication, it will update
   the state of the corresponding check list as explained in
   Section 7.2.  Past that point, an agent MUST NOT send any new
   candidates within this ICE session.  After an agent has received an
   end-of-candidates indication, it MUST also ignore any newly received
   candidates for that media stream or media session.  Therefore, adding
   new candidates to the negotiation is possible only through an ICE
   restart.

   This specification does not override Vanilla ICE semantics for
   concluding ICE processing.  Therefore even if end-of-candidates
   indications are sent agents will still have to go through pair
   nomination.  Also, if pairs have been nominated for components and
   media streams, ICE processing will still conclude even if end-of-
   candidate indications have not been received for all streams.

9.  Receiving Additional Remote Candidates

   At any point of ICE processing, a Trickle ICE agent may receive new
   candidates from the remote agent.  When this happens and no local
   candidates are currently known for this same stream, the new remote
   candidates are simply added to the list of remote candidates.

   Otherwise, the new candidates are used for forming candidate pairs
   with the pool of local candidates and they are added to the local
   check lists as described in Section 8.1.

   Once the remote agent has completed candidate gathering, it will send
   an end-of-candidates indication.  Upon receiving such an indication,
   the local agent MUST update check list states as per Section 7.2.
   This may lead to some check lists being marked as Failed.

10.  Receiving an End-Of-Candidates Notification

   When an agent receives an end-of-candidates indication for a specific
   check list, it will update the state of the check list as per
   Section 7.2.  If the check list is still active state after the
   update, the agent will persist the the fact that an end-of-candidates
   indication has been received and take it into account in future
   updates to the check list.

11.  Trickle ICE and Peer Reflexive Candidates

   Even though Trickle ICE does not explicitly modify the procedures for
   handling peer reflexive candidates, their processing could be
   impacted in implementations.  With Trickle ICE, it is possible that
   server reflexive candidates can be discovered as peer reflexive in
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   cases where incoming connectivity checks are received from these
   candidates before the trickle updates that carry them.

   While this would certainly increase the number of cases where ICE
   processing nominates and selects candidates discovered as peer-
   reflexive, it does not require any change in processing.

   It is also likely that some applications would prefer not to trickle
   server reflexive candidates to entities that are known to be publicly
   accessible and where sending a direct STUN binding request is likely
   to reach the destination faster than the trickle update that travels
   through the signalling path.

12.  Concluding ICE Processing

   This specification does not directly modify the procedures ending ICE
   processing described in Section 8 of [rfc5245bis], and Trickle ICE
   implementations will follow the same rules.

13.  Subsequent Offer/Answer Exchanges

   Either agent MAY generate a subsequent offer at any time allowed by
   [RFC3264].  When this happens agents will use [rfc5245bis] semantics
   to determine whether or not the new offer requires an ICE restart.
   If this is the case then agents would perform Trickle ICE as they
   would in an initial offer/answer exchange.

   The only differences between an ICE restart and a brand new media
   session are that:

   o  during the restart, media can continue to be sent to the
      previously validated pair.

   o  both agents are already aware whether or not their peer supports
      Trickle ICE, and there is no longer need for performing half
      trickle or confirming support with other mechanisms.

14.  Unilateral Use of Trickle ICE (Half Trickle)

   In half trickle mode, the offerer sends a regular, Vanilla ICE offer,
   with a complete set of candidates.  This ensures that the offer can
   be processed by a Vanilla ICE answerer and is mostly meant for use in
   cases where support for Trickle ICE cannot be confirmed prior to
   sending an initial offer.  The initial offer indicates support for
   Trickle ICE, so that the answerer can respond with an incomplete set
   of candidates and continue trickling the rest.  Half trickle offers
   typically contain an end-of-candidates indication, although this is
   not mandatory because if trickle support is confirmed then the
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   offerer can choose to trickle additional candidates before it sends
   an end-of-candidates indication.

   The half trickle mechanism can be used in cases where there is no way
   for an agent to verify in advance whether a remote party supports
   Trickle ICE.  Because the initial offer contains a full set of
   candidates, it can thus be handled by a regular Vanilla ICE agent,
   while still allowing a Trickle ICE agent to use the optimization
   defined in this specification.  This prevents negotiation from
   failing in the former case while still giving roughly half the
   Trickle ICE benefits in the latter (hence the name of the mechanism).

   Use of half trickle is only necessary during an initial offer/answer
   exchange.  After both parties have received a session description
   from their peer, they can each reliably determine Trickle ICE support
   and use it for all subsequent offer/answer exchanges.

   In some instances, using half trickle might bring more than just half
   the improvement in terms of user experience.  This can happen when an
   agent starts gathering candidates upon user interface cues that the
   user will soon be initiating an offer, such as activity on a keypad
   or the phone going off hook.  This would mean that some or all of the
   candidate gathering could be completed before the agent actually
   needs to send the offer.  Because the answerer will be able to
   trickle candidates, both agents will be able to start connectivity
   checks and complete ICE processing earlier than with Vanilla ICE and
   potentially even as early as with full trickle.

   However, such anticipation is not always possible.  For example, a
   multipurpose user agent or a WebRTC web page where communication is a
   non-central feature (e.g., calling a support line in case of a
   problem with the main features) would not necessarily have a way of
   distinguishing between call intentions and other user activity.  In
   such cases, using full trickle is most likely to result in an ideal
   user experience.  Even so, using half trickle would be an improvement
   over vanilla ICE because it would result in a better experience for
   answerers.

15.  Example Flow

   A typical successful Trickle ICE exchange with an Offer/Answer
   protocol would look this way:
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           Alice                                            Bob
             |                     Offer                     |
             |---------------------------------------------->|
             |            Additional Candidates              |
             |---------------------------------------------->|
             |                                               |
             |                     Answer                    |
             |<----------------------------------------------|
             |            Additional Candidates              |
             |<----------------------------------------------|
             |                                               |
             | Additional Candidates and Connectivity Checks |
             |<--------------------------------------------->|
             |                                               |
             |<=============== MEDIA FLOWS =================>|

                             Figure 1: Example

16.  IANA Considerations

   This specification requests no actions from IANA.

17.  Security Considerations

   This specification inherits most of its semantics from [rfc5245bis]
   and as a result all security considerations described there remain
   the same.
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Appendix A.  Interaction with ICE

   The ICE protocol was designed to be flexible enough to work in and
   adapt to as many network environments as possible.  Despite that
   flexibility, ICE as specified in [rfc5245bis] does not by itself
   support trickle ICE.  This section describes how trickling of
   candidates interacts with ICE.

   [rfc5245bis] describes the conditions required to update check lists
   and timer states while an ICE agent is in the Running state.  These
   conditions are verified upon transaction completion and one of them
   stipulates that:

      If there is not a pair in the valid list for each component of the
      media stream, the state of the check list is set to Failed.

   This could be a problem and cause ICE processing to fail prematurely
   in a number of scenarios.  Consider the following case:

   1.  Alice and Bob are both located in different networks with Network
       Address Translation (NAT).  Alice and Bob themselves have
       different address but both networks use the same [RFC1918] block.

   2.  Alice sends Bob the candidate 10.0.0.10 which also happens to
       correspond to an existing host on Bob’s network.

   3.  Bob creates a check list consisting solely of 10.0.0.10 and
       starts checks.

   4.  These checks reach the host at 10.0.0.10 in Bob’s network, which
       responds with an ICMP "port unreachable" error and per
       [rfc5245bis] Bob marks the transaction as Failed.
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   At this point the check list only contains Failed candidates and the
   valid list is empty.  This causes the media stream and potentially
   all ICE processing to Fail.

   A similar race condition would occur if the initial offer from Alice
   only contains candidates that can be determined as unreachable (per
   [I-D.keranen-mmusic-ice-address-selection]) from any of the
   candidates that Bob has gathered.  This would be the case if Bob’s
   candidates only contain IPv4 addresses and the first candidate that
   he receives from Alice is an IPv6 one.

   Another potential problem could arise when a non-trickle ICE
   implementation sends an offer to a trickle one.  Consider the
   following case:

   1.  Alice’s client has a non-Trickle ICE implementation

   2.  Bob’s client has support for Trickle ICE.

   3.  Alice and Bob are behind NATs with address-dependent filtering
       [RFC4787].

   4.  Bob has two STUN servers but one of them is currently unreachable

   After Bob’s agent receives Alice’s offer it would immediately start
   connectivity checks.  It would also start gathering candidates, which
   would take a long time because of the unreachable STUN server.  By
   the time Bob’s answer is ready and sent to Alice, Bob’s connectivity
   checks may well have failed: until Alice gets Bob’s answer, she won’t
   be able to start connectivity checks and punch holes in her NAT.  The
   NAT would hence be filtering Bob’s checks as originating from an
   unknown endpoint.

Appendix B.  Interaction with ICE Lite

   The behavior of ICE lite agents that are capable of Trickle ICE does
   not require any particular rules other than those already defined in
   this specification and [rfc5245bis].  This section is hence provided
   only for informational purposes.

   Such an agent would generate offers or answers as per [rfc5245bis].
   Both its offers and answers will indicate support for Trickle ICE.
   Given that they will contain a complete set of candidates (the
   agent’s host candidates), these offers and answers would also be
   accompanied with an end-of-candidates indication.

   When performing full trickle, a full ICE implementation could send an
   offer or an answer with no candidates.  After receiving an answer

Ivov, et al.              Expires June 12, 2016                [Page 20]



Internet-Draft                 Trickle ICE                 December 2015

   that identifies the remote agent as an ICE lite implementation, the
   offerer may choose to not send any additional candidates.  The same
   is also true in the case when the ICE lite agent is making the offer
   and the full ICE one is answering.  In these cases the connectivity
   checks would be enough for the ICE lite implementation to discover
   all potentially useful candidates as peer reflexive.  The following
   example illustrates one such ICE session using SDP syntax:

           ICE Lite                                          Bob
            Agent
              |   Offer (a=ice-lite a=ice-options:trickle)    |
              |---------------------------------------------->|
              |                                               |no cand
              |         Answer (a=ice-options:trickle)        |trickling
              |<----------------------------------------------|
              |              Connectivity Checks              |
              |<--------------------------------------------->|
     peer rflx|                                               |
    cand disco|                                               |
              |                                               |
              |<=============== MEDIA FLOWS =================>|

                             Figure 2: Example

   In addition to reducing signaling traffic this approach also removes
   the need to discover STUN bindings, or to make TURN or UPnP
   allocations, which may considerably lighten ICE processing.

Appendix C.  Changes from Earlier Versions

   Note to the RFC-Editor: please remove this section prior to
   publication as an RFC.

C.1.  Changes from draft-ietf-ice-trickle-00

   o  Removed dependency on SDP (which is to be provided in a separate
      specification).

   o  Clarified text about the fact that a check list can be empty if no
      candidates have been sent or received yet.

   o  Clarified wording about check list states so as not to define new
      states for "Active" and "Frozen" because those states are not
      defined for check lists (only for candidate pairs) in ICE core.
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   o  Removed open issues list because it was out of date.

   o  Completed a thorough copy edit.

C.2.  Changes from draft-mmusic-trickle-ice-02

   o  Addressed feedback from Rajmohan Banavi and Brandon Williams.

   o  Clarified text about determining support and about how to proceed
      if it can be determined that the answering agent does not support
      Trickle ICE.

   o  Clarified text about check list and timer updates.

   o  Clarified when it is appropriate to use half trickle or to send no
      candidates in an offer or answer.

   o  Updated the list of open issues.

C.3.  Changes from draft-ivov-01 and draft-mmusic-00

   o  Added a requirement to trickle candidates by order of components
      to avoid deadlocks in the unfreezing algorithm.

   o  Added an informative note on peer-reflexive candidates explaining
      that nothing changes for them semantically but they do become a
      more likely occurrence for Trickle ICE.

   o  Limit the number of pairs to 100 to comply with 5245.

   o  Added clarifications on the non-importance of how newly discovered
      candidates are trickled/sent to the remote party or if this is
      done at all.

   o  Added transport expectations for trickled candidates as per Dale
      Worley’s recommendation.

C.4.  Changes from draft-ivov-00

   o  Specified that end-of-candidates is a media level attribute which
      can of course appear as session level, which is equivalent to
      having it appear in all m-lines.  Also made end-of-candidates
      optional for cases such as aggressive nomination for controlled
      agents.

   o  Added an example for ICE lite and Trickle ICE to illustrate how,
      when talking to an ICE lite agent doesn’t need to send or even
      discover any candidates.
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   o  Added an example for ICE lite and Trickle ICE to illustrate how,
      when talking to an ICE lite agent doesn’t need to send or even
      discover any candidates.

   o  Added wording that explicitly states ICE lite agents have to be
      prepared to receive no candidates over signalling and that they
      should not freak out if this happens.  (Closed the corresponding
      open issue).

   o  It is now mandatory to use MID when trickling candidates and using
      m-line indexes is no longer allowed.

   o  Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
      issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
      hold operation.  Also changed the port number here from 1 to 9
      since it already has a more appropriate meaning.  (Port change
      suggested by Jonathan Lennox).

   o  Closed the Open Issue about use about what to do with cands
      received after end-of-cands.  Solution: ignore, do an ICE restart
      if you want to add something.

   o  Added more terminology, including trickling, trickled candidates,
      half trickle, full trickle,

   o  Added a reference to the SIP usage for Trickle ICE as requested at
      the Boston interim.

C.5.  Changes from draft-rescorla-01

   o  Brought back explicit use of Offer/Answer.  There are no more
      attempts to try to do this in an O/A independent way.  Also
      removed the use of ICE Descriptions.

   o  Added SDP specification for trickled candidates, the trickle
      option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

   o  Support and Discovery.  Changed that section to be less abstract.
      As discussed in IETF85, the draft now says implementations and
      usages need to either determine support in advance and directly
      use trickle, or do half trickle.  Removed suggestion about use of
      discovery in SIP or about letting implementing protocols do what
      they want.

   o  Defined Half Trickle.  Added a section that says how it works.
      Mentioned that it only needs to happen in the first o/a (not
      necessary in updates), and added Jonathan’s comment about how it
      could, in some cases, offer more than half the improvement if you
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      can pre-gather part or all of your candidates before the user
      actually presses the call button.

   o  Added a short section about subsequent offer/answer exchanges.

   o  Added a short section about interactions with ICE Lite
      implementations.

   o  Added two new entries to the open issues section.

C.6.  Changes from draft-rescorla-00

   o  Relaxed requirements about verifying support following a
      discussion on MMUSIC.

   o  Introduced ICE descriptions in order to remove ambiguous use of
      3264 language and inappropriate references to offers and answers.

   o  Removed inappropriate assumption of adoption by RTCWEB pointed out
      by Martin Thomson.
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Abstract

   This document describes "Trickle ICE", an extension to the
   Interactive Connectivity Establishment (ICE) protocol that enables
   ICE agents to begin connectivity checks while they are still
   gathering candidates, by incrementally exchanging candidates over
   time instead of all at once.  This method can considerably accelerate
   the process of establishing a communication session.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
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   Internet-Drafts are draft documents valid for a maximum of six months
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   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on October 17, 2018.
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   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Interactive Connectivity Establishment (ICE) protocol
   [rfc5245bis] describes how an ICE agent gathers candidates, exchanges
   candidates with a peer ICE agent, and creates candidate pairs.  Once
   the pairs have been gathered, the ICE agent will perform connectivity
   checks, and eventually nominate and select pairs that will be used
   for sending and receiving data within a communication session.

   Following the procedures in [rfc5245bis] can lead to somewhat lengthy
   establishment times for communication sessions, because candidate
   gathering often involves querying STUN servers [RFC5389] and
   allocating relayed candidates using TURN servers [RFC5766].  Although
   many ICE procedures can be completed in parallel, the pacing
   requirements from [rfc5245bis] still need to be followed.

   This document defines "Trickle ICE", a supplementary mode of ICE
   operation in which candidates can be exchanged incrementally as soon
   as they become available (and simultaneously with the gathering of
   other candidates).  Connectivity checks can also start as soon as
   candidate pairs have been created.  Because Trickle ICE enables
   candidate gathering and connectivity checks to be done in parallel,
   the method can considerably accelerate the process of establishing a
   communication session.

   This document also defines how to discover support for Trickle ICE,
   how the procedures in [rfc5245bis] are modified or supplemented when
   using Trickle ICE, and how a Trickle ICE agent can interoperate with
   an ICE agent compliant to [rfc5245bis].
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   This document does not define any protocol-specific usage of Trickle
   ICE.  Instead, protocol-specific details for Trickle ICE are defined
   in separate usage documents.  Examples of such documents are
   [I-D.ietf-mmusic-trickle-ice-sip] (which defines usage with the
   Session Initiation Protocol (SIP) [RFC3261] and the Session
   Description Protocol [RFC3261]) and [XEP-0176] (which defines usage
   with XMPP [RFC6120]).  However, some of the examples in the document
   use SDP and the offer/answer model [RFC3264] to explain the
   underlying concepts.

   The following diagram illustrates a successful Trickle ICE exchange
   with a using protocol that follows the offer/answer model:

           Alice                                            Bob
             |                     Offer                     |
             |---------------------------------------------->|
             |            Additional Candidates              |
             |---------------------------------------------->|
             |                     Answer                    |
             |<----------------------------------------------|
             |            Additional Candidates              |
             |<----------------------------------------------|
             | Additional Candidates and Connectivity Checks |
             |<--------------------------------------------->|
             |<========== CONNECTION ESTABLISHED ===========>|

                              Figure 1: Flow

   The main body of this document is structured to describe the behavior
   of Trickle ICE agents in roughly the order of operations and
   interactions during an ICE session:

   1.  Determining support for trickle ICE

   2.  Generating the initial ICE description

   3.  Handling the initial ICE description and generating the initial
       ICE response

   4.  Handling the initial ICE response

   5.  Forming check lists, pruning candidates, performing connectivity
       checks, etc.
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   6.  Gathering and conveying candidates after the initial ICE
       description and response

   7.  Handling inbound trickled candidates

   8.  Generating and handling the end-of-candidates indication

   9.  Handling ICE restarts

   There is quite a bit of operational experience with the technique
   behind Trickle ICE, going back as far as 2005 (when the XMPP Jingle
   extension defined a "dribble mode" as specified in [XEP-0176]); this
   document incorporates feedback from those who have implemented and
   deployed the technique over the years.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This specification makes use of all terminology defined for
   Interactive Connectivity Establishment in [rfc5245bis].  In addition,
   it defines the following terms:

   Full Trickle:  The typical mode of operation for Trickle ICE agents,
      in which the initial ICE description can include any number of
      candidates (even zero candidates) and does not need to include a
      full generation of candidates as in half trickle.

   Generation:  All of the candidates conveyed within an ICE session.

   Half Trickle:  A Trickle ICE mode of operation in which the initiator
      gathers a full generation of candidates strictly before creating
      and conveying the initial ICE description.  Once conveyed, this
      candidate information can be processed by regular ICE agents,
      which do not require support for Trickle ICE.  It also allows
      Trickle ICE capable responders to still gather candidates and
      perform connectivity checks in a non-blocking way, thus providing
      roughly "half" the advantages of Trickle ICE.  The half trickle
      mechanism is mostly meant for use when the responder’s support for
      Trickle ICE cannot be confirmed prior to conveying the initial ICE
      description.

   ICE Description:  Any attributes related to the ICE session (not
      candidates) required to configure an ICE agent.  These include but
      are not limited to the username fragment, password, and other
      attributes.
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   Trickled Candidates:  Candidates that a Trickle ICE agent conveys
      after conveying the initial ICE description or responding to the
      initial ICE description, but within the same ICE session.
      Trickled candidates can be conveyed in parallel with candidate
      gathering and connectivity checks.

   Trickling:  The act of incrementally conveying trickled candidates.

   Empty Check List:  A check list that initially does not contain any
      candidate pairs because they will be incrementally added as they
      are trickled.  (This scenario does not arise with a regular ICE
      agent, because all candidate pairs are known when the agent
      creates the check list set).

3.  Determining Support for Trickle ICE

   To fully support Trickle ICE, using protocols SHOULD incorporate one
   of the following mechanisms so that implementations can determine
   whether Trickle ICE is supported:

   1.  Provide a capabilities discovery method so that agents can verify
       support of Trickle ICE prior to initiating a session (XMPP’s
       Service Discovery [XEP-0030] is one such mechanism).

   2.  Make support for Trickle ICE mandatory so that user agents can
       assume support.

   If a using protocol does not provide a method of determining ahead of
   time whether Trickle ICE is supported, agents can make use of the
   half trickle procedure described in Section 16.

   Prior to conveying the initial ICE description, agents that implement
   using protocols that support capabilities discovery can attempt to
   verify whether or not the remote party supports Trickle ICE.  If an
   agent determines that the remote party does not support Trickle ICE,
   it MUST fall back to using regular ICE or abandon the entire session.

   Even if a using protocol does not include a capabilities discovery
   method, a user agent can provide an indication within the ICE
   description that it supports Trickle ICE by communicating an ICE
   option of ’trickle’.  This token MUST be provided either at the
   session level or, if at the data stream level, for every data stream
   (an agent MUST NOT specify Trickle ICE support for some data streams
   but not others).  Note: The encoding of the ’trickle’ ICE option, and
   the message(s) used to carry it to the peer, are protocol specific;
   for instance, the encoding for the Session Description Protocol (SDP)
   [RFC4566] is defined in [I-D.ietf-mmusic-trickle-ice-sip].
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   Dedicated discovery semantics and half trickle are needed only prior
   to initiation of an ICE session.  After an ICE session is established
   and Trickle ICE support is confirmed for both parties, either agent
   can use full trickle for subsequent exchanges (see also Section 15).

4.  Generating the Initial ICE Description

   An ICE agent can start gathering candidates as soon as it has an
   indication that communication is imminent (e.g., a user interface cue
   or an explicit request to initiate a communication session).  Unlike
   in regular ICE, in Trickle ICE implementations do not need to gather
   candidates in a blocking manner.  Therefore, unless half trickle is
   being used, the user experience is improved if the initiating agent
   generates and transmits its initial ICE description as early as
   possible (thus enabling the remote party to start gathering and
   trickling candidates).

   An initiator MAY include any mix of candidates when conveying the
   initial ICE description.  This includes the possibility of conveying
   all the candidates the initiator plans to use (as in half trickle),
   conveying only a publicly-reachable IP address (e.g., a candidate at
   a data relay that is known to not be behind a firewall), or conveying
   no candidates at all (in which case the initiator can obtain the
   responder’s initial candidate list sooner and the responder can begin
   candidate gathering more quickly).

   For candidates included in the initial ICE description, the methods
   for calculating priorities and foundations, determining redundancy of
   candidates, and the like work just as in regular ICE [rfc5245bis].

5.  Handling the Initial ICE Description and Generating the Initial ICE
    Response

   When a responder receives the initial ICE description, it will first
   check if the ICE description or initiator indicates support for
   Trickle ICE as explained in Section 3.  If not, the responder MUST
   process the initial ICE description according to regular ICE
   procedures [rfc5245bis] (or, if no ICE support is detected at all,
   according to relevant processing rules for the using protocol, such
   as offer/answer processing rules [RFC3264]).  However, if support for
   Trickle ICE is confirmed, a responder will automatically assume
   support for regular ICE as well.

   If the initial ICE description indicates support for Trickle ICE, the
   responder will determine its role and start gathering and
   prioritizing candidates; while doing so, it will also respond by
   conveying an initial ICE response, so that both the initiator and the
   responder can form check lists and begin connectivity checks.

Ivov, et al.            Expires October 17, 2018                [Page 7]



Internet-Draft                 Trickle ICE                    April 2018

   A responder can respond to the initial ICE description at any point
   while gathering candidates.  The initial ICE response MAY contain any
   set of candidates, including all candidates or no candidates.  (The
   benefit of including no candidates is to convey the initial ICE
   response as quickly as possible, so that both parties can consider
   the ICE session to be under active negotiation as soon as possible.)

   As noted in Section 3, in using protocols that use SDP the initial
   ICE response can indicate support for Trickle ICE by including a
   token of "trickle" in the ice-options attribute.

6.  Handling the Initial ICE Response

   When processing the initial ICE response, the initiator follows
   regular ICE procedures to determine its role, after which it forms
   check lists (Section 7) and performs connectivity checks (Section 8).

7.  Forming Check Lists

   According to regular ICE procedures [rfc5245bis], in order for
   candidate pairing to be possible and for redundant candidates to be
   pruned, the candidates would need to be provided in the initial ICE
   description and initial ICE response.  By contrast, under Trickle ICE
   check lists can be empty until candidates are conveyed or received.
   Therefore a Trickle ICE agent handles check list formation and
   candidate pairing in a slightly different way than a regular ICE
   agent: the agent still forms the check lists, but it populates a
   given check list only after it actually has candidate pairs for that
   check list.  Every check list is initially placed in the Running
   state, even if the check list is empty (this is consistent with
   Section 6.1.2.1 of [rfc5245bis]).

8.  Performing Connectivity Checks

   As specified in [rfc5245bis], whenever timer Ta fires, only check
   lists in the Running state will be picked when scheduling
   connectivity checks for candidate pairs.  Therefore, a Trickle ICE
   agent MUST keep each check list in the Running state as long as it
   expects candidate pairs to be incrementally added to the check list.
   After that, the check list state is set according to the procedures
   in [rfc5245bis].

   Whenever timer Ta fires and an empty check list is picked, no action
   is performed for the list.  Without waiting for timer Ta to expire
   again, the agent selects the next check list in the Running state, in
   accordance with Section 6.1.4.2 of [rfc5245bis].
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   Section 7.2.5.3.3 of [rfc5245bis] requires that agents update check
   lists and timer states upon completing a connectivity check
   transaction.  During such an update, regular ICE agents would set the
   state of a check list to Failed if both of the following two
   conditions are satisfied:

   o  all of the pairs in the check list are either in the Failed state
      or Succeeded state; and

   o  there is not a pair in the valid list for each component of the
      data stream.

   With Trickle ICE, the above situation would often occur when
   candidate gathering and trickling are still in progress, even though
   it is quite possible that future checks will succeed.  For this
   reason, Trickle ICE agents add the following conditions to the above
   list:

   o  all candidate gathering has completed and the agent is not
      expecting to discover any new local candidates; and

   o  the remote agent has conveyed an end-of-candidates indication for
      that check list as described in Section 13.

9.  Gathering and Conveying Newly Gathered Local Candidates

   After Trickle ICE agents have conveyed initial ICE descriptions and
   initial ICE responses, they will most likely continue gathering new
   local candidates as STUN, TURN, and other non-host candidate
   gathering mechanisms begin to yield results.  Whenever an agent
   discovers such a new candidate it will compute its priority, type,
   foundation, and component ID according to regular ICE procedures.

   The new candidate is then checked for redundancy against the existing
   list of local candidates.  If its transport address and base match
   those of an existing candidate, it will be considered redundant and
   will be ignored.  This would often happen for server reflexive
   candidates that match the host addresses they were obtained from
   (e.g., when the latter are public IPv4 addresses).  Contrary to
   regular ICE, Trickle ICE agents will consider the new candidate
   redundant regardless of its priority.

   Next the agent "trickles" the newly discovered candidate(s) to the
   remote agent.  The actual delivery of the new candidates is handled
   by a using protocol such as SIP or XMPP.  Trickle ICE imposes no
   restrictions on the way this is done (e.g., some using protocols
   might choose not to trickle updates for server reflexive candidates
   and instead rely on the discovery of peer reflexive ones).
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   When candidates are trickled, the using protocol MUST deliver each
   candidate (and any end-of-candidates indication as described in
   Section 13) to the receiving Trickle ICE implementation exactly once
   and in the same order it was conveyed.  If the using protocol
   provides any candidate retransmissions, they need to be hidden from
   the ICE implementation.

   Also, candidate trickling needs to be correlated to a specific ICE
   session, so that if there is an ICE restart, any delayed updates for
   a previous session can be recognized as such and ignored by the
   receiving party.  For example, using protocols that signal candidates
   via SDP might include a Username Fragment value in the corresponding
   a=candidate line, such as:

     a=candidate:1 1 UDP 2130706431 2001:db8::1 5000 typ host ufrag 8hhY

   Or, as another example, WebRTC implementations might include a
   Username Fragment in the JavaScript objects that represent
   candidates.

   Note: The using protocol needs to provide a mechanism for both
   parties to indicate and agree on the ICE session in force (as
   identified by the Username Fragment and Password combination) so that
   they have a consistent view of which candidates are to be paired.
   This is especially important in the case of ICE restarts (see
   Section 15).

   Note: A using protocol might prefer not to trickle server reflexive
   candidates to entities that are known to be publicly accessible and
   where sending a direct STUN binding request is likely to reach the
   destination faster than the trickle update that travels through the
   signaling path.

10.  Pairing Newly Gathered Local Candidates

   As a Trickle ICE agent gathers local candidates, it needs to form
   candidate pairs; this works as described in the ICE specification
   [rfc5245bis], with the following provisos:

   1.  A Trickle ICE agent MUST NOT pair a local candidate until it has
       been trickled to the remote party.

   2.  Once the agent has conveyed the local candidate to the remote
       party, the agent checks if any remote candidates are currently
       known for this same stream and component.  If not, the agent

Ivov, et al.            Expires October 17, 2018               [Page 10]



Internet-Draft                 Trickle ICE                    April 2018

       merely adds the new candidate to the list of local candidates
       (without pairing it).

   3.  Otherwise, if the agent has already learned of one or more remote
       candidates for this stream and component, it attempts to pair the
       new local candidate as described in the ICE specification
       [rfc5245bis].

   4.  If a newly formed pair has a local candidate whose type is server
       reflexive, the agent MUST replace the local candidate with its
       base before completing the relevant redundancy tests.

   5.  The agent prunes redundant pairs by following the rules in
       Section 6.1.2.4 of [rfc5245bis], but checks existing pairs only
       if they have a state of Waiting or Frozen; this avoids removal of
       pairs for which connectivity checks are in flight (a state of In-
       Progress) or for which connectivity checks have already yielded a
       definitive result (a state of Succeeded or Failed).

   6.  If after the relevant redundancy tests the check list where the
       pair is to be added already contains the maximum number of
       candidate pairs (100 by default as per [rfc5245bis]), the agent
       SHOULD discard any pairs in the Failed state to make room for the
       new pair.  If there are no such pairs, the agent SHOULD discard a
       pair with a lower priority than the new pair in order to make
       room for the new pair, until the number of pairs is equal to the
       maximum number of pairs.  This processing is consistent with
       Section 6.1.2.5 of [rfc5245bis].

11.  Receiving Trickled Candidates

   At any time during an ICE session, a Trickle ICE agent might receive
   new candidates from the remote agent, from which it will attempt to
   form a candidate pair; this works as described in the ICE
   specification [rfc5245bis], with the following provisos:

   1.  The agent checks if any local candidates are currently known for
       this same stream and component.  If not, the agent merely adds
       the new candidate to the list of remote candidates (without
       pairing it).

   2.  Otherwise, if the agent has already gathered one or more local
       candidates for this stream and component, it attempts to pair the
       new remote candidate as described in the ICE specification
       [rfc5245bis].
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   3.  If a newly formed pair has a local candidate whose type is server
       reflexive, the agent MUST replace the local candidate with its
       base before completing the redundancy check in the next step.

   4.  The agent prunes redundant pairs as described below, but checks
       existing pairs only if they have a state of Waiting or Frozen;
       this avoids removal of pairs for which connectivity checks are in
       flight (a state of In-Progress) or for which connectivity checks
       have already yielded a definitive result (a state of Succeeded or
       Failed).

       A.  If the agent finds a redundancy between two pairs and one of
           those pairs contains a newly received remote candidate whose
           type is peer reflexive, the agent SHOULD discard the pair
           containing that candidate, set the priority of the existing
           pair to the priority of the discarded pair, and re-sort the
           check list.  (This policy helps to eliminate problems with
           remote peer reflexive candidates for which a STUN binding
           request is received before signaling of the candidate is
           trickled to the receiving agent, such as a different view of
           pair priorities between the local agent and the remote agent,
           since the same candidate could be perceived as peer reflexive
           by one agent and as server reflexive by the other agent.)

       B.  The agent then applies the rules defined in Section 6.1.2.4
           of [rfc5245bis].

   5.  If after the relevant redundancy tests the check list where the
       pair is to be added already contains the maximum number of
       candidate pairs (100 by default as per [rfc5245bis]), the agent
       SHOULD discard any pairs in the Failed state to make room for the
       new pair.  If there are no such pairs, the agent SHOULD discard a
       pair with a lower priority than the new pair in order to make
       room for the new pair, until the number of pairs is equal to the
       maximum number of pairs.  This processing is consistent with
       Section 6.1.2.5 of [rfc5245bis].

12.  Inserting Trickled Candidate Pairs into a Check List

   After a local agent has trickled a candidate and formed a candidate
   pair from that local candidate (Section 9), or after a remote agent
   has received a trickled candidate and formed a candidate pair from
   that remote candidate (Section 11), a Trickle ICE agent adds the new
   candidate pair to a check list as defined in this section.

   As an aid to understanding the procedures defined in this section,
   consider the following tabular representation of all check lists in
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   an agent (note that initially for one of the foundations, i.e., f5,
   there are no candidate pairs):

   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  F   |  F   |  F   |      |      |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  F   |  F   |  F   |  F   |      |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  F   |      |      |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  F   |      |      |      |      |
   +-----------------+------+------+------+------+------+

                   Figure 2: Example of Check List State

   Each row in the table represents a component for a given data stream
   (e.g., s1 and s2 might be the RTP and RTCP components for audio) and
   thus a single check list in the check list set.  Each column
   represents one foundation.  Each cell represents one candidate pair.
   In the tables shown in this section, "F" stands for "frozen", "W"
   stands for "waiting", and "S" stands for "succeeded"; in addition,
   "^^" is used to notate newly-added candidate pairs.

   When an agent commences ICE processing, in accordance with
   Section 6.1.2.6 of [rfc5245bis], for each foundation it will unfreeze
   the pair with the lowest component ID and, if the component IDs are
   equal, with the highest priority (this is the topmost candidate pair
   in every column).  This initial state is shown in the following
   table.
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   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  W   |  W   |  W   |      |      |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  F   |  F   |  F   |  W   |      |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  F   |      |      |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  F   |      |      |      |      |
   +-----------------+------+------+------+------+------+

                    Figure 3: Initial Check List State

   Then, as the checks proceed (see Section 7.2.5.4 of [rfc5245bis]),
   for each pair that enters the Succeeded state (denoted here by "S"),
   the agent will unfreeze all pairs for all data streams with the same
   foundation (e.g., if the pair in column 1, row 1 succeeds then the
   agent will unfreeze the pair in column 1, rows 2, 3, and 4).

   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  S   |  W   |  W   |      |      |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  W   |  F   |  F   |  W   |      |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+

         Figure 4: Check List State with Succeeded Candidate Pair

   Trickle ICE preserves all of these rules as they apply to "static"
   check list sets.  This implies that if a Trickle ICE agent were to
   begin connectivity checks with all of its pairs already present, the
   way that pair states change is indistinguishable from that of a
   regular ICE agent.

   Of course, the major difference with Trickle ICE is that check list
   sets can be dynamically updated because candidates can arrive after
   connectivity checks have started.  When this happens, an agent sets
   the state of the newly formed pair as described below.
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   Rule 1: If the newly formed pair has the lowest component ID and, if
   the component IDs are equal, the highest priority of any candidate
   pair for this foundation (i.e., if it is the topmost pair in the
   column), set the state to Waiting.  For example, this would be the
   case if the newly formed pair were placed in column 5, row 1.  This
   rule is consistent with Section 6.1.2.6 of [rfc5245bis].

   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  S   |  W   |  W   |      | ^W^  |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  W   |  F   |  F   |  W   |      |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+

         Figure 5: Check List State with Newly Formed Pair, Rule 1

   Rule 2: If there is at least one pair in the Succeeded state for this
   foundation, set the state to Waiting.  For example, this would be the
   case if the pair in column 5, row 1 succeeded and the newly formed
   pair were placed in column 5, row 2.  This rule is consistent with
   Section 7.2.5.3.3 of [rfc5245bis].

   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  S   |  W   |  W   |      |  S   |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  W   |  F   |  F   |  W   | ^W^  |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+

         Figure 6: Check List State with Newly Formed Pair, Rule 2

   Rule 3: In all other cases, set the state to Frozen.  For example,
   this would be the case if the newly formed pair were placed in column
   3, row 3.
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   +-----------------+------+------+------+------+------+
   |                 |  f1  |  f2  |  f3  |  f4  |  f5  |
   +-----------------+------+------+------+------+------+
   | s1 (Audio.RTP)  |  S   |  W   |  W   |      |  S   |
   +-----------------+------+------+------+------+------+
   | s2 (Audio.RTCP) |  W   |  F   |  F   |  W   |  W   |
   +-----------------+------+------+------+------+------+
   | s3 (Video.RTP)  |  W   |      | ^F^  |      |      |
   +-----------------+------+------+------+------+------+
   | s4 (Video.RTCP) |  W   |      |      |      |      |
   +-----------------+------+------+------+------+------+

         Figure 7: Check List State with Newly Formed Pair, Rule 3

13.  Generating an End-of-Candidates Indication

   Once all candidate gathering is completed or expires for an ICE
   session associated with a specific data stream, the agent will
   generate an "end-of-candidates" indication for that session and
   convey it to the remote agent via the signaling channel.  Although
   the exact form of the indication depends on the using protocol, the
   indication MUST specify the generation (Username Fragment and
   Password combination) so that an agent can correlate the end-of-
   candidates indication with a particular ICE session.  The indication
   can be conveyed in the following ways:

   o  As part of an initiation request (which would typically be the
      case with the initial ICE description for half trickle)

   o  Along with the last candidate an agent can send for a stream

   o  As a standalone notification (e.g., after STUN Binding requests or
      TURN Allocate requests to a server time out and the agent is no
      longer actively gathering candidates)

   Conveying an end-of-candidates indication in a timely manner is
   important in order to avoid ambiguities and speed up the conclusion
   of ICE processing.  In particular:

   o  A controlled Trickle ICE agent SHOULD convey an end-of-candidates
      indication after it has completed gathering for a data stream,
      unless ICE processing terminates before the agent has had a chance
      to complete gathering.

   o  A controlling agent MAY conclude ICE processing prior to conveying
      end-of-candidates indications for all streams.  However, it is
      RECOMMENDED for a controlling agent to convey end-of-candidates
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      indications whenever possible for the sake of consistency and to
      keep middleboxes and controlled agents up-to-date on the state of
      ICE processing.

   When conveying an end-of-candidates indication during trickling
   (rather than as a part of the initial ICE description or a response
   thereto), it is the responsibility of the using protocol to define
   methods for associating the indication with one or more specific data
   streams.

   An agent MAY also choose to generate an end-of-candidates indication
   before candidate gathering has actually completed, if the agent
   determines that gathering has continued for more than an acceptable
   period of time.  However, an agent MUST NOT convey any more
   candidates after it has conveyed an end-of-candidates indication.

   When performing half trickle, an agent SHOULD convey an end-of-
   candidates indication together with its initial ICE description
   unless it is planning to potentially trickle additional candidates
   (e.g., in case the remote party turns out to support Trickle ICE).

   After an agent conveys the end-of-candidates indication, it will
   update the state of the corresponding check list as explained in
   Section 8.  Past that point, an agent MUST NOT trickle any new
   candidates within this ICE session.  Therefore, adding new candidates
   to the negotiation is possible only through an ICE restart (see
   Section 15).

   This specification does not override regular ICE semantics for
   concluding ICE processing.  Therefore, even if end-of-candidates
   indications are conveyed, an agent will still need to go through pair
   nomination.  Also, if pairs have been nominated for components and
   data streams, ICE processing MAY still conclude even if end-of-
   candidates indications have not been received for all streams.  In
   all cases, an agent MUST NOT trickle any new candidates within an ICE
   session after nomination of a candidate pair as described in
   Section 8.1.1 of [rfc5245bis].

14.  Receiving an End-of-Candidates Indication

   Receiving an end-of-candidates indication enables an agent to update
   check list states and, in case valid pairs do not exist for every
   component in every data stream, determine that ICE processing has
   failed.  It also enables an agent to speed up the conclusion of ICE
   processing when a candidate pair has been validated but it involves
   the use of lower-preference transports such as TURN.  In such
   situations, an implementation MAY choose to wait and see if higher-
   priority candidates are received; in this case the end-of-candidates
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   indication provides a notification that such candidates are not
   forthcoming.

   When an agent receives an end-of-candidates indication for a specific
   data stream, it will update the state of the relevant check list as
   per Section 8 (which might lead to some check lists being marked as
   Failed).  If the check list is still in the Running state after the
   update, the agent will persist the fact that an end-of-candidates
   indication has been received and take it into account in future
   updates to the check list.

   After an agent has received an end-of-candidates indication, it MUST
   ignore any newly received candidates for that data stream or data
   session.

15.  Subsequent Exchanges and ICE Restarts

   Before conveying an end-of-candidates indication, either agent MAY
   convey subsequent candidate information at any time allowed by the
   using protocol.  When this happens, agents will use [rfc5245bis]
   semantics (e.g., checking of the Username Fragment and Password
   combination) to determine whether or not the new candidate
   information requires an ICE restart.

   If an ICE restart occurs, the agents can assume that Trickle ICE is
   still supported if support was determined previously, and thus can
   engage in Trickle ICE behavior as they would in an initial exchange
   of ICE descriptions where support was determined through a
   capabilities discovery method.

16.  Half Trickle

   In half trickle, the initiator conveys the initial ICE description
   with a usable but not necessarily full generation of candidates.
   This ensures that the ICE description can be processed by a regular
   ICE responder and is mostly meant for use in cases where support for
   Trickle ICE cannot be confirmed prior to conveying the initial ICE
   description.  The initial ICE description indicates support for
   Trickle ICE, so that the responder can respond with something less
   than a full generation of candidates and then trickle the rest.  The
   initial ICE description for half trickle can contain an end-of-
   candidates indication, although this is not mandatory because if
   trickle support is confirmed then the initiator can choose to trickle
   additional candidates before it conveys an end-of-candidates
   indication.

   The half trickle mechanism can be used in cases where there is no way
   for an agent to verify in advance whether a remote party supports
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   Trickle ICE.  Because the initial ICE description contain a full
   generation of candidates, it can thus be handled by a regular ICE
   agent, while still allowing a Trickle ICE agent to use the
   optimization defined in this specification.  This prevents
   negotiation from failing in the former case while still giving
   roughly half the Trickle ICE benefits in the latter.

   Use of half trickle is only necessary during an initial exchange of
   ICE descriptions.  After both parties have received an ICE
   description from their peer, they can each reliably determine Trickle
   ICE support and use it for all subsequent exchanges (see Section 15).

   In some instances, using half trickle might bring more than just half
   the improvement in terms of user experience.  This can happen when an
   agent starts gathering candidates upon user interface cues that the
   user will soon be initiating an interaction, such as activity on a
   keypad or the phone going off hook.  This would mean that some or all
   of the candidate gathering could be completed before the agent
   actually needs to convey the candidate information.  Because the
   responder will be able to trickle candidates, both agents will be
   able to start connectivity checks and complete ICE processing earlier
   than with regular ICE and potentially even as early as with full
   trickle.

   However, such anticipation is not always possible.  For example, a
   multipurpose user agent or a WebRTC web page where communication is a
   non-central feature (e.g., calling a support line in case of a
   problem with the main features) would not necessarily have a way of
   distinguishing between call intentions and other user activity.  In
   such cases, using full trickle is most likely to result in an ideal
   user experience.  Even so, using half trickle would be an improvement
   over regular ICE because it would result in a better experience for
   responders.

17.  Preserving Candidate Order while Trickling

   One important aspect of regular ICE is that connectivity checks for a
   specific foundation and component are attempted simultaneously by
   both agents, so that any firewalls or NATs fronting the agents would
   whitelist both endpoints and allow all except for the first
   ("suicide") packets to go through.  This is also important to
   unfreezing candidates at the right time.  While not crucial,
   preserving this behavior in Trickle ICE is likely to improve ICE
   performance.

   To achieve this, when trickling candidates, agents SHOULD respect the
   order of components as reflected by their component IDs; that is,
   candidates for a given component SHOULD NOT be conveyed prior to
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   candidates for a component with a lower ID number within the same
   foundation.  In addition, candidates SHOULD be paired, following the
   procedures in Section 12, in the same order they are conveyed.

   For example, the following SDP description contains two components
   (RTP and RTCP) and two foundations (host and server reflexive):

     v=0
     o=jdoe 2890844526 2890842807 IN IP4 10.0.1.1
     s=
     c=IN IP4 10.0.1.1
     t=0 0
     a=ice-pwd:asd88fgpdd777uzjYhagZg
     a=ice-ufrag:8hhY
     m=audio 5000 RTP/AVP 0
     a=rtpmap:0 PCMU/8000
     a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host
     a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host
     a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
         raddr 10.0.1.1 rport 8998
     a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
         raddr 10.0.1.1 rport 8998

   For this candidate information the RTCP host candidate would not be
   conveyed prior to the RTP host candidate.  Similarly the RTP server
   reflexive candidate would be conveyed together with or prior to the
   RTCP server reflexive candidate.

18.  Requirements for Using Protocols

   In order to fully enable the use of Trickle ICE, this specification
   defines the following requirements for using protocols.

   o  A using protocol SHOULD provide a way for parties to advertise and
      discover support for Trickle ICE before an ICE session begins (see
      Section 3).

   o  A using protocol MUST provide methods for incrementally conveying
      (i.e., "trickling") additional candidates after conveying the
      initial ICE description (see Section 9).

   o  A using protocol MUST deliver each trickled candidate or end-of-
      candidates indication exactly once and in the same order it was
      conveyed (see Section 9).
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   o  A using protocol MUST provide a mechanism for both parties to
      indicate and agree on the ICE session in force (see Section 9).

   o  A using protocol MUST provide a way for parties to communicate the
      end-of-candidates indication, which MUST specify the particular
      ICE session to which the indication applies (see Section 13).

19.  IANA Considerations

   IANA is requested to register the following ICE option in the "ICE
   Options" sub-registry of the "Interactive Connectivity Establishment
   (ICE) registry", following the procedures defined in [RFC6336].

   ICE Option:  trickle

   Contact:  IESG, iesg@ietf.org

   Change control:  IESG

   Description:  An ICE option of "trickle" indicates support for
      incremental communication of ICE candidates.

   Reference:  RFC XXXX

20.  Security Considerations

   This specification inherits most of its semantics from [rfc5245bis]
   and as a result all security considerations described there apply to
   Trickle ICE.

   If the privacy implications of revealing host addresses on an
   endpoint device are a concern (see for example the discussion in
   [I-D.ietf-rtcweb-ip-handling] and in Section 19 of [rfc5245bis]),
   agents can generate ICE descriptions that contain no candidates and
   then only trickle candidates that do not reveal host addresses (e.g.,
   relayed candidates).
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Appendix A.  Interaction with Regular ICE

   The ICE protocol was designed to be flexible enough to work in and
   adapt to as many network environments as possible.  Despite that
   flexibility, ICE as specified in [rfc5245bis] does not by itself
   support trickle ICE.  This section describes how trickling of
   candidates interacts with ICE.
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   [rfc5245bis] describes the conditions required to update check lists
   and timer states while an ICE agent is in the Running state.  These
   conditions are verified upon transaction completion and one of them
   stipulates that:

      If there is not a pair in the valid list for each component of the
      data stream, the state of the check list is set to Failed.

   This could be a problem and cause ICE processing to fail prematurely
   in a number of scenarios.  Consider the following case:

   1.  Alice and Bob are both located in different networks with Network
       Address Translation (NAT).  Alice and Bob themselves have
       different address but both networks use the same private internet
       block (e.g., the "20-bit block" 172.16/12 specified in
       [RFC1918]).

   2.  Alice conveys to Bob the candidate 172.16.0.1 which also happens
       to correspond to an existing host on Bob’s network.

   3.  Bob creates a check list consisting solely of 172.16.0.1 and
       starts checks.

   4.  These checks reach the host at 172.16.0.1 in Bob’s network, which
       responds with an ICMP "port unreachable" error; per [rfc5245bis]
       Bob marks the transaction as Failed.

   At this point the check list only contains Failed candidates and the
   valid list is empty.  This causes the data stream and potentially all
   ICE processing to fail, even though if Trickle ICE agents could
   subsequently convey candidates that would cause previously empty
   check lists to become non-empty.

   A similar race condition would occur if the initial ICE description
   from Alice contain only candidates that can be determined as
   unreachable from any of the candidates that Bob has gathered (e.g.,
   this would be the case if Bob’s candidates only contain IPv4
   addresses and the first candidate that he receives from Alice is an
   IPv6 one).

   Another potential problem could arise when a non-trickle ICE
   implementation initiates an interaction with a Trickle ICE
   implementation.  Consider the following case:

   1.  Alice’s client has a non-Trickle ICE implementation.

   2.  Bob’s client has support for Trickle ICE.
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   3.  Alice and Bob are behind NATs with address-dependent filtering
       [RFC4787].

   4.  Bob has two STUN servers but one of them is currently
       unreachable.

   After Bob’s agent receives Alice’s initial ICE description it would
   immediately start connectivity checks.  It would also start gathering
   candidates, which would take a long time because of the unreachable
   STUN server.  By the time Bob’s answer is ready and conveyed to
   Alice, Bob’s connectivity checks might have failed: until Alice gets
   Bob’s answer, she won’t be able to start connectivity checks and
   punch holes in her NAT.  The NAT would hence be filtering Bob’s
   checks as originating from an unknown endpoint.

Appendix B.  Interaction with ICE Lite

   The behavior of ICE lite agents that are capable of Trickle ICE does
   not require any particular rules other than those already defined in
   this specification and [rfc5245bis].  This section is hence provided
   only for informational purposes.

   An ICE lite agent would generate candidate information as per
   [rfc5245bis] and would indicate support for Trickle ICE.  Given that
   the candidate information will contain a full generation of
   candidates, it would also be accompanied by an end-of-candidates
   indication.

   When performing full trickle, a full ICE implementation could convey
   the initial ICE description or response thereto with no candidates.
   After receiving a response that identifies the remote agent as an ICE
   lite implementation, the initiator can choose to not trickle any
   additional candidates.  The same is also true in the case when the
   ICE lite agent initiates the interaction and the full ICE agent is
   the responder.  In these cases the connectivity checks would be
   enough for the ICE lite implementation to discover all potentially
   useful candidates as peer reflexive.  The following example
   illustrates one such ICE session using SDP syntax:
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           ICE Lite                                          Bob
            Agent
              |   Offer (a=ice-lite a=ice-options:trickle)    |
              |---------------------------------------------->|
              |                                               |no cand
              |         Answer (a=ice-options:trickle)        |trickling
              |<----------------------------------------------|
              |              Connectivity Checks              |
              |<--------------------------------------------->|
     peer rflx|                                               |
    cand disco|                                               |
              |<========== CONNECTION ESTABLISHED ===========>|

                             Figure 8: Example

   In addition to reducing signaling traffic this approach also removes
   the need to discover STUN bindings or make TURN allocations, which
   can considerably lighten ICE processing.

Appendix C.  Changes from Earlier Versions

   Note to the RFC Editor: please remove this section prior to
   publication as an RFC.

C.1.  Changes from draft-ietf-ice-trickle-20

   o  Slight corrections to hanlding of peer reflexive candidates.

   o  Wordsmithing in a few sections.

C.2.  Changes from draft-ietf-ice-trickle-19

   o  Further clarified handling of remote peer reflexive candidates.

   o  To improve readibility, renamed and restructured some sections and
      subsections, and modified some wording.

C.3.  Changes from draft-ietf-ice-trickle-18

   o  Cleaned up pairing and redundancy checking rules for newly
      discovered candidates per IESG feedback and WG discussion.

   o  Improved wording in half trickle section.

   o  Changed "not more than once" to "exactly once".
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   o  Changed NAT examples back to IPv4.

C.4.  Changes from draft-ietf-ice-trickle-17

   o  Simplified the rules for inserting a new pair in a check list.

   o  Clarified it is not allowed to nominate a candidate pair after a
      pair has already been nominated (a.k.a.  renomination or
      continuous nomination).

   o  Removed some text that referenced older versions of rfc5245bis.

   o  Removed some text that duplicated concepts and procedures
      specified in rfc5245bis.

   o  Removed the ill-defined concept of stream order.

   o  Shortened the introduction.

C.5.  Changes from draft-ietf-ice-trickle-16

   o  Made "ufrag" terminology consistent with 5245bis.

   o  Applied in-order delivery rule to end-of-candidates indication.

C.6.  Changes from draft-ietf-ice-trickle-15

   o  Adjustments to address AD review feedback.

C.7.  Changes from draft-ietf-ice-trickle-14

   o  Minor modifications to track changes to ICE core.

C.8.  Changes from draft-ietf-ice-trickle-13

   o  Removed independent monitoring of check list "states" of frozen or
      active, since this is handled by placing a check list in the
      Running state defined in ICE core.

C.9.  Changes from draft-ietf-ice-trickle-12

   o  Specified that the end-of-candidates indication must include the
      generation (ufrag/pwd) to enable association with a particular ICE
      session.

   o  Further editorial fixes to address WGLC feedback.
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C.10.  Changes from draft-ietf-ice-trickle-11

   o  Editorial and terminological fixes to address WGLC feedback.

C.11.  Changes from draft-ietf-ice-trickle-10

   o  Minor editorial fixes.

C.12.  Changes from draft-ietf-ice-trickle-09

   o  Removed immediate unfreeze upon Fail.

   o  Specified MUST NOT regarding ice-options.

   o  Changed terminology regarding initial ICE parameters to avoid
      implementer confusion.

C.13.  Changes from draft-ietf-ice-trickle-08

   o  Reinstated text about in-order processing of messages as a
      requirement for signaling protocols.

   o  Added IANA registration template for ICE option.

   o  Corrected Case 3 rule in Section 8.1.1 to ensure consistency with
      regular ICE rules.

   o  Added tabular representations to Section 8.1.1 in order to
      illustrate the new pair rules.

C.14.  Changes from draft-ietf-ice-trickle-07

   o  Changed "ICE description" to "candidate information" for
      consistency with 5245bis.

C.15.  Changes from draft-ietf-ice-trickle-06

   o  Addressed editorial feedback from chairs’ review.

   o  Clarified terminology regarding generations.

C.16.  Changes from draft-ietf-ice-trickle-05

   o  Rewrote the text on inserting a new pair into a check list.
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C.17.  Changes from draft-ietf-ice-trickle-04

   o  Removed dependency on SDP and offer/answer model.

   o  Removed mentions of aggressive nomination, since it is deprecated
      in 5245bis.

   o  Added section on requirements for signaling protocols.

   o  Clarified terminology.

   o  Addressed various WG feedback.

C.18.  Changes from draft-ietf-ice-trickle-03

   o  Provided more detailed description of unfreezing behavior,
      specifically how to replace pre-existing peer-reflexive candidates
      with higher-priority ones received via trickling.

C.19.  Changes from draft-ietf-ice-trickle-02

   o  Adjusted unfreezing behavior when there are disparate foundations.

C.20.  Changes from draft-ietf-ice-trickle-01

   o  Changed examples to use IPv6.

C.21.  Changes from draft-ietf-ice-trickle-00

   o  Removed dependency on SDP (which is to be provided in a separate
      specification).

   o  Clarified text about the fact that a check list can be empty if no
      candidates have been sent or received yet.

   o  Clarified wording about check list states so as not to define new
      states for "Active" and "Frozen" because those states are not
      defined for check lists (only for candidate pairs) in ICE core.

   o  Removed open issues list because it was out of date.

   o  Completed a thorough copy edit.

C.22.  Changes from draft-mmusic-trickle-ice-02

   o  Addressed feedback from Rajmohan Banavi and Brandon Williams.
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   o  Clarified text about determining support and about how to proceed
      if it can be determined that the answering agent does not support
      Trickle ICE.

   o  Clarified text about check list and timer updates.

   o  Clarified when it is appropriate to use half trickle or to send no
      candidates in an offer or answer.

   o  Updated the list of open issues.

C.23.  Changes from draft-ivov-01 and draft-mmusic-00

   o  Added a requirement to trickle candidates by order of components
      to avoid deadlocks in the unfreezing algorithm.

   o  Added an informative note on peer-reflexive candidates explaining
      that nothing changes for them semantically but they do become a
      more likely occurrence for Trickle ICE.

   o  Limit the number of pairs to 100 to comply with 5245.

   o  Added clarifications on the non-importance of how newly discovered
      candidates are trickled/sent to the remote party or if this is
      done at all.

   o  Added transport expectations for trickled candidates as per Dale
      Worley’s recommendation.

C.24.  Changes from draft-ivov-00

   o  Specified that end-of-candidates is a media level attribute which
      can of course appear as session level, which is equivalent to
      having it appear in all m-lines.  Also made end-of-candidates
      optional for cases such as aggressive nomination for controlled
      agents.

   o  Added an example for ICE lite and Trickle ICE to illustrate how,
      when talking to an ICE lite agent doesn’t need to send or even
      discover any candidates.

   o  Added an example for ICE lite and Trickle ICE to illustrate how,
      when talking to an ICE lite agent doesn’t need to send or even
      discover any candidates.

   o  Added wording that explicitly states ICE lite agents have to be
      prepared to receive no candidates over signaling and that they
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      should not freak out if this happens.  (Closed the corresponding
      open issue).

   o  It is now mandatory to use MID when trickling candidates and using
      m-line indexes is no longer allowed.

   o  Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
      issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
      hold operation.  Also changed the port number here from 1 to 9
      since it already has a more appropriate meaning.  (Port change
      suggested by Jonathan Lennox).

   o  Closed the Open Issue about use about what to do with cands
      received after end-of-cands.  Solution: ignore, do an ICE restart
      if you want to add something.

   o  Added more terminology, including trickling, trickled candidates,
      half trickle, full trickle,

   o  Added a reference to the SIP usage for Trickle ICE as requested at
      the Boston interim.

C.25.  Changes from draft-rescorla-01

   o  Brought back explicit use of Offer/Answer.  There are no more
      attempts to try to do this in an O/A independent way.  Also
      removed the use of ICE Descriptions.

   o  Added SDP specification for trickled candidates, the trickle
      option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

   o  Support and Discovery.  Changed that section to be less abstract.
      As discussed in IETF85, the draft now says implementations and
      usages need to either determine support in advance and directly
      use trickle, or do half trickle.  Removed suggestion about use of
      discovery in SIP or about letting implementing protocols do what
      they want.

   o  Defined Half Trickle.  Added a section that says how it works.
      Mentioned that it only needs to happen in the first o/a (not
      necessary in updates), and added Jonathan’s comment about how it
      could, in some cases, offer more than half the improvement if you
      can pre-gather part or all of your candidates before the user
      actually presses the call button.

   o  Added a short section about subsequent offer/answer exchanges.
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   o  Added a short section about interactions with ICE Lite
      implementations.

   o  Added two new entries to the open issues section.

C.26.  Changes from draft-rescorla-00

   o  Relaxed requirements about verifying support following a
      discussion on MMUSIC.

   o  Introduced ICE descriptions in order to remove ambiguous use of
      3264 language and inappropriate references to offers and answers.

   o  Removed inappropriate assumption of adoption by RTCWEB pointed out
      by Martin Thomson.
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Abstract

   This document describes an extension to the Interactive Connectivity
   Establishment (ICE) that enables ICE agents to exchange information
   about the relative cost of network interfaces and dynamically choose
   the selected ICE candidate pair based on the cost of both the local
   and remote network interfaces.  For example, if a cellular network
   interface has a higher cost than a Wi-Fi network interface, the ICE
   agents can use that information to prefer candidate pairs with Wi-Fi
   rather than cellular when possible, and only use cellular when
   necessary.

   This document additionally describes a second piece of information,
   network ID, that goes along with the network cost and can be used to
   know when a network interface has changed, even if two network
   interfaces have the same network cost.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 22, 2016.
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1.  Introduction

   In certain network conditions, ICE agents may prefer to use a network
   interface with a lower cost (for a definition of cost chosen by the
   ICE agent, which need not be directly related to monetary costs).  If
   the controlling side has such a preference, it can unilaterally
   nominate a candidate pair with the network interface with lower cost,
   but if either the controlling side has no such preference, or it
   would like to take the controlled side’s preference into account, it
   cannot do so unless the controlled side provides information about
   its network cost.

   Additionally, if the network interface of the controlled side changes
   (such as by using TURN mobility), the controlling side needs updated
   information from the controlled side.

   The controlling side may also wish to select candidate pairs not only
   based on the relative cost between candidate pairs, but also the cost
   relative to the quality of the network path.  For example, if Wi-Fi
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   has a much higher cost, but cellular is much higher quality, the
   controlling side may select cellular even though it’s higher cost.
   To do so, the controlled side must provide information about the
   network cost relative to the network quality.  For example, if a
   network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
   0 and RTT 150ms will have equal preference to a cellular with cost 10
   and RTT 50ms.

   Although the controlled side already communicates an ICE candidate
   priority, that candidate attribute doesn’t meet the needs of this
   situation for the following reasons:

   o  Candidate priority affects ICE check ordering as well as candidate
      pair preference, which is undesirable in this situation, where the
      ICE check order should be maintained, but the candidate pair
      preference should be changed.

   o  Candidate priority cannot change when the network interface
      changes (such as by using TURN mobility)

   o  Candidate priority is only defined relative to other priorities,
      and can’t be compared against network quality in a meaningful way.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This specification makes use of all terminology defined by the
   protocol for Interactive Connectivity Establishment in [RFC5245].

   Network Cost  A value indicating how much an ICE agent would prefer
      to not use a given network interface.  This may be, but need not
      be related to monetary costs of using the network interface.

   Network ID  An ID that uniquely identifies a network interface.

3.  Choosing a value for network cost and network ID

   Network cost is an integer in the range 0-999, where larger values
   indicate a stronger preference for not using that network interface.

   Each network interface SHOULD have a unique network ID, in the range
   of 0 to (2^16)-1.
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4.  Signaling network cost and network ID

   ICE agents MUST signal network cost on each ICE candidate if the cost
   is non-zero.  ICE agents MUST signal network ID on each ICE
   candidate.

   For example, in an SDP candidate line, the attributes could be
   signaled as "network-cost 100 network-id 1".

5.  STUN attribute for network cost and network ID

   To communicate a change in network cost or to communicate network
   cost for peer reflexive candidates, the following STUN attribute is
   defined:

   A 32-bit integer where the first 16 bits are the network ID and the
   second 16 bits are network cost:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |          Network ID          |         Network Cost         |

   In the initial ICE checks, ICE agents MUST communicate a network cost
   and network ID if either is non-zero.  The ICE agent MUST communicate
   new values in subsequent ICE checks if the network cost or network ID
   changes.

6.  Interpreting network cost and network ID

   If network cost is communicated via either signaling or STUN
   attribute, the controlling side SHOULD use the network cost of the
   controlled side as part of the criteria to determine which candidate
   pair to select.  It SHOULD use network cost before using candidate
   priorities (network cost takes precedence over candidate priority),
   and it SHOULD NOT change the ICE check order based on network cost.

   If the controlling side chooses to balance network cost against
   network quality, it is RECOMMENDED to treat a difference in network
   cost of 10 as equivalent of a change in network RTT of 100ms.

   Any time the controlling side sees a change in the network cost from
   the controlled side, it MUST recalculate which candidate pair to
   select and nominate the newly selected candidate pair, if it has
   changed.
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1.  Introduction

   In certain network conditions, ICE agents may prefer to use a network
   interface with a lower cost (for a definition of cost chosen by the
   ICE agent, which need not be directly related to monetary costs).  If
   the controlling side has such a preference, it can unilaterally
   nominate a candidate pair with the network interface with lower cost,
   but if either the controlling side has no such preference, or it
   would like to take the controlled side’s preference into account, it
   cannot do so unless the controlled side provides information about
   its network cost.

   Additionally, if the network interface of the controlled side changes
   (such as by using TURN mobility), the controlling side needs updated
   information from the controlled side.

   The controlling side may also wish to select candidate pairs not only
   based on the relative cost between candidate pairs, but also the cost
   relative to the quality of the network path.  For example, if Wi-Fi
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   has a much higher cost, but cellular is much higher quality, the
   controlling side may select cellular even though it’s higher cost.
   To do so, the controlled side must provide information about the
   network cost relative to the network quality.  For example, if a
   network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
   0 and RTT 150ms will have equal preference to a cellular with cost 10
   and RTT 50ms.

   Although the controlled side already communicates an ICE candidate
   priority, that candidate attribute doesn’t meet the needs of this
   situation for the following reasons:

   o  Candidate priority affects ICE check ordering as well as candidate
      pair preference, which is undesirable in this situation, where the
      ICE check order should be maintained, but the candidate pair
      preference should be changed.

   o  Candidate priority cannot change when the network interface
      changes (such as by using TURN mobility)

   o  Candidate priority is only defined relative to other priorities,
      and can’t be compared against network quality in a meaningful way.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   This specification makes use of all terminology defined by the
   protocol for Interactive Connectivity Establishment in [RFC5245].

   Network Cost  A value indicating how much an ICE agent would prefer
      to not use a given network interface.  This may be, but need not
      be related to monetary costs of using the network interface.

   Network ID  An ID that uniquely identifies a network interface.

3.  Choosing a value for network cost and network ID

   Network cost is an integer in the range 0-999, where larger values
   indicate a stronger preference for not using that network interface.

   Each network interface SHOULD have a unique network ID, in the range
   of 0 to (2^16)-1.
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4.  Signaling network cost and network ID

   ICE agents MUST signal network cost on each ICE candidate if the cost
   is non-zero.  ICE agents MUST signal network ID on each ICE
   candidate.

   For example, in an SDP candidate line, the attributes could be
   signaled as "network-cost 100 network-id 1".

5.  STUN attribute for network cost and network ID

   To communicate a change in network cost or to communicate network
   cost for peer reflexive candidates, the following STUN attribute is
   defined:

   A 32-bit integer where the first 16 bits are the network ID and the
   second 16 bits are network cost:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        |          Network ID          |         Network Cost         |

   In the initial ICE checks, ICE agents MUST communicate a network cost
   and network ID if either is non-zero.  The ICE agent MUST communicate
   new values in subsequent ICE checks if the network cost or network ID
   changes.

6.  Interpreting network cost and network ID

   If network cost is communicated via either signaling or STUN
   attribute, the controlling side SHOULD use the network cost of the
   controlled side as part of the criteria to determine which candidate
   pair to select.  It SHOULD use network cost before using candidate
   priorities (network cost takes precedence over candidate priority),
   and it SHOULD NOT change the ICE check order based on network cost.

   If the controlling side chooses to balance network cost against
   network quality, it is RECOMMENDED to treat a difference in network
   cost of 10 as equivalent of a change in network RTT of 100ms.

   Any time the controlling side sees a change in the network cost from
   the controlled side, it MUST recalculate which candidate pair to
   select and nominate the newly selected candidate pair, if it has
   changed.
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1.  Introduction

   ICE agents are either controlling or controlled.  The controlling ICE
   agent can unilaterally select a given candidate pair at any time.
   But it cannot control what candidate pair the controlled ICE agent
   selects once the controlling ICE agent has nominated a candidate pair
   (with passive nomination) or nominated many candidate pairs (with
   aggressive nomination), with the exception that it may nominate a
   higher priority candidate pair with aggressive nomination.  This
   greatly limits the controlling side’s options.

   For example, if an ICE agent selects and nominates a candidate pair
   over a cellular network, and then later connects to a Wi-Fi network
   and trickles ICE candidates for the Wi-Fi network, it may wish to
   select and nominate a candidate pair using Wi-Fi.  If soon thereafter
   the Wi-Fi network disconnects and the ICE agent wishes to select and
   nominate the cellular candidate pair again, it would be unable to do
   with either passive or aggressive nomination.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Renomination

   We define a new ICE option called "renomination".  When renomination
   is signaled, aggressive nomination is disabled, and the controlled
   side follows a rule of "last nomination wins".  This allows the
   controlling side to send nominations for new candidate pairs at any
   time.  The controlling side SHOULD send the new nomination until the
   STUN packet is acked to ensure that the renomination was received.
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   If one side signals "renomination" and the other does not understand
   it, then according to the rules of ICE, aggressive nomination is
   disabled and passive nomination is used, and the controlling side
   MUST NOT send more than one nomination.

4.  "Nomination" attribute

   To deal with out-of-order delivery of nominations, we define a new
   STUN attribute: "nomination" which includes a 24-bit integer in the 3
   least significant bytes of the attribute.

   The controlling side MAY include such an attribute when renominating.
   The controlled side MUST select the nomination with the largest value
   contained in the "nomination" attribute.  Any value included takes
   precedence over the lack of a value.

5.  IANA Considerations

   This specification requests no actions from IANA.

6.  Security Considerations

   TODO
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1.  Introduction

   ICE agents are either controlling or controlled.  The controlling ICE
   agent can unilaterally select a given candidate pair at any time.
   But it cannot control what candidate pair the controlled ICE agent
   selects once the controlling ICE agent has nominated a candidate pair
   (with passive nomination) or nominated many candidate pairs (with
   aggressive nomination), with the exception that it may nominate a
   higher priority candidate pair with aggressive nomination.  This
   greatly limits the controlling side’s options.

   For example, if an ICE agent selects and nominates a candidate pair
   over a cellular network, and then later connects to a Wi-Fi network
   and trickles ICE candidates for the Wi-Fi network, it may wish to
   select and nominate a candidate pair using Wi-Fi.  If soon thereafter
   the Wi-Fi network disconnects and the ICE agent wishes to select and
   nominate the cellular candidate pair again, it would be unable to do
   with either passive or aggressive nomination.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Renomination

   We define a new ICE option called "renomination".  When renomination
   is signaled, aggressive nomination is disabled, and the controlled
   side follows a rule of "last nomination wins".  This allows the
   controlling side to send nominations for new candidate pairs at any
   time.  The controlling side SHOULD send the new nomination until the
   STUN packet is acked to ensure that the renomination was received.
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   If one side signals "renomination" and the other does not understand
   it, then according to the rules of ICE, aggressive nomination is
   disabled and passive nomination is used, and the controlling side
   MUST NOT send more than one nomination.

4.  "Nomination" attribute

   To deal with out-of-order delivery of nominations, we define a new
   STUN attribute: "nomination" which includes a 24-bit integer in the 3
   least significant bytes of the attribute.

   The controlling side MAY include such an attribute when renominating.
   The controlled side MUST select the nomination with the largest value
   contained in the "nomination" attribute.  Any value included takes
   precedence over the lack of a value.

5.  IANA Considerations

   This specification requests no actions from IANA.

6.  Security Considerations

   TODO

7.  Acknowledgements

   TODO
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