MMUSIC A. Keranen

Internet-Draft Ericsson
Obsoletes: 5245 (if approved) J. Rosenberg
Intended status: Standards Track jdrosen.net
Expires: June 23, 2016 December 21, 2015

Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal
draft-ietf-ice-rfc5245bis-01

Abstract

This document describes a protocol for Network Address Translator
(NAT) traversal for UDP-based multimedia. This protocol is called
Interactive Connectivity Establishment (ICE). ICE makes use of the
Session Traversal Utilities for NAT (STUN) protocol and its
extension, Traversal Using Relay NAT (TURN).

This document obsoletes RFC 5245.
Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on June 23, 2016.
Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect

Keranen & Rosenberg Expires June 23, 2016 [Page 1]

Internet-Draft ICE December 2015

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction 5
2. Overviewof ICE 6
2.1. Gathering Candidate Addresses 8
2.2. ConnectivityChecks 10
2.3. Sorting Candidates 11
2.4. FrozenCandidates 12
2.5. SecurityforChecks 13
2.6. ConcludingICE 13
2.7. Lite Implementations 15
28. UsagesofICE...................... 15
3. Terminology 15
4. ICE Candidate Gathering and Exchange 19
4.1. Procedures for Full Implementation 20
4.1.1. Gathering Candidates 20
4.11.1. HostCandidates 21
4.1.1.2. Server Reflexive and Relayed Candidates 22
4.1.1.3. Computing Foundations 24
4.1.1.4. Keeping Candidates Alive 24
4.1.2. Prioritizing Candidates 24
4.1.2.1. Recommended Formula............... 25
4.1.2.2. Guidelines for Choosing Type and Local
Preferences 26
4.1.3. Eliminating Redundant Candidates 27
4.2. Lite Implementation Procedures 27
4.3. Encoding the Candidate Information 28
5. ICE Candidate Processing 30
5.1. Procedures for Full Implementation 30
5.1.1. Verifying ICE Support. 30
5.1.2. DeterminingRole 31

Keranen & Rosenberg Expires June 23, 2016 [Page 2]

Internet-Draft ICE December 2015

5.1.3. Forming the Check Lists 32
5.1.3.1. Forming Candidate Pairs............. 32
5.1.3.2. Computing Pair Priority and Ordering Pairs ... 35
5.1.3.3. PruningthePairs................ 35
5.1.3.4. Computing States 35

5.1.4. SchedulingChecks 38

5.2. Lite Implementation Procedures 40
6. Performing Connectivity Checks 40
6.1. STUN Client Procedures 40

6.1.1. Creating Permissions for Relayed Candidates 40

6.1.2. Sendingthe Request................. 41
6.1.2.1. PRIORITY and USE-CANDIDATE 41
6.1.2.2. ICE-CONTROLLED and ICE-CONTROLLING
6.1.2.3. Forming Credentials 42
6.1.2.4. DiffServ Treatment 42

6.1.3. Processingthe Response 42
6.1.3.1. FailureCases.................. 42
6.1.3.2. SuccessCases 43

6.1.3.2.1. Discovering Peer Reflexive Candidates 43
6.1.3.2.2. Constructing a Valid Pair.......... 44
6.1.3.2.3. Updating Pair States 45
6.1.3.2.4. Updating the Nominated Flag 46
6.1.3.3. Check List and Timer State Updates 46
6.2. STUN Server Procedures 47

6.2.1. Additional Procedures for Full Implementations ... 47
6.2.1.1. Detecting and Repairing Role Conflicts a7
6.2.1.2. Computing Mapped Address 49
6.2.1.3. Learning Peer Reflexive Candidates 49
6.2.1.4. Triggered Checks 49
6.2.1.5. Updating the Nominated Flag 51

6.2.2. Additional Procedures for Lite Implementations ... 51

7. Concluding ICE Processing 51
7.1. Procedures for Full Implementations 51

7.1.1. NominatingPairs 51
7.1.1.1. Regular Nomination 52
7.1.1.2. Aggressive Nomination.............. 52

7.1.2. Updating States 53

7.2. Procedures for Lite Implementations 54

7.21. PeerlIsFull 55

7.2.2. PeerlslLite 55

7.3. Freeing Candidates 56
7.3.1. Full Implementation Procedures 56
7.3.2. Lite Implementation Procedures 56
8. ICERestarts 56
9. Keepalives 57
10. MediaHandling 58
10.1. SendingMedia 58
10.1.1. Procedures for Full Implementations 58

Keranen & Rosenberg Expires June 23, 2016 [Page 3]

Internet-Draft ICE December 2015

10.1.2. Procedures for Lite Implementations 59
10.1.3. Procedures for All Implementations 59
10.2. ReceivingMedia 59
11. Extensibility Considerations 60
12. Setting Taand RTO 61
12.1. Real-time Media Streams 61
12.2. Non-real-time Sessions 63
13.Example o 63
14. Security Considerations 68
14.1. Attacks on Connectivity Checks............. 68
14.2. Attacks on Server Reflexive Address Gathering 71
14.3. Attacks on Relayed Candidate Gathering 72
14.4. Insider Attacks 72
14.4.1. STUN Amplification Attack 72
15. STUNExtensions 73
15.1. New Attributes 73
15.2. New Error Response Codes 74
16. Operational Considerations 74
16.1. NAT and Firewall Types 74
16.2. Bandwidth Requirements 74
16.2.1. STUN and TURN Server Capacity Planning 74
16.2.2. Gathering and Connectivity Checks 75
16.2.3. Keepalives..................... 75
16.3. ICEandICE-lite 76
16.4. Troubleshooting and Performance Management. 76
16.5. Endpoint Configuration 76
17. IANA Considerations 77
17.1. STUN Attributes 77
17.2. STUNErrorResponses 77
18. IAB Considerations 77
18.1. Problem Definition................... 77
18.2. ExitStrategy 78
18.3. Brittleness Introduced by ICE 78
18.4. Requirements for a Long-Term Solution 79
18.5. Issues with Existing NAPT Boxes 80
19. ChangesfromRFC 5245 80
20. Acknowledgements 80
21.References 81
21.1. Normative References 81
21.2. Informative References 81
Appendix A. Lite and Full Implementations 85
Appendix B. Design Motivations 86
B.1. Pacing of STUN Transactions 86
B.2. Candidates with Multiple Bases 87
B.3. Purpose of the Related Address and Related Port
Attributes 89
B.4. Importance of the STUN Username 20
B.5. The Candidate Pair Priority Formula. 91

Keranen & Rosenberg Expires June 23, 2016 [Page 4]

Internet-Draft ICE December 2015

B.6. Why Are Keepalives Needed? 91

B.7. Why Prefer Peer Reflexive Candidates? 92

B.8. Why Are Binding Indications Used for Keepalives? 92
Authors’ Addressesot 92

1. Introduction

Protocols establishing multimedia sessions between peers typically
involve exchanging IP addresses and ports for the media sources and
sinks. However this poses challenges when operated through Network
Address Translators (NATs) [RFC3235]. These protocols also seek to
create a media flow directly between participants, so that there is

no application layer intermediary between them. This is done to
reduce media latency, decrease packet loss, and reduce the
operational costs of deploying the application. However, this is

difficult to accomplish through NAT. A full treatment of the reasons

for this is beyond the scope of this specification.

Numerous solutions have been defined for allowing these protocols to
operate through NAT. These include Application Layer Gateways
(ALGSs), the Middlebox Control Protocol [RFC3303], the original Simple
Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
Realm Specific IP [RFC3102] [RFC3103] along with session description
extensions needed to make them work, such as the Session Description
Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
(RTCP) [RFC3605]. Unfortunately, these techniques all have pros and
cons which, make each one optimal in some network topologies, but a
poor choice in others. The result is that administrators and
implementors are making assumptions about the topologies of the
networks in which their solutions will be deployed. This introduces
complexity and brittleness into the system. What is needed is a

single solution that is flexible enough to work well in all

situations.

This specification defines Interactive Connectivity Establishment

(ICE) as a technique for NAT traversal for UDP-based media streams
(though ICE has been extended to handle other transport protocols,
such as TCP [RFC6544]). ICE works by exchanging a multiplicity of IP
addresses and ports which are then tested for connectivity by peer-
to-peer connectivity checks. The IP addresses and ports are
exchanged via mechanisms (for example, including in a offer/answer
exchange) and the connectivity checks are performed using Session
Traversal Utilities for NAT (STUN) specification [RFC5389]. ICE also
makes use of Traversal Using Relays around NAT (TURN) [RFC5766], an
extension to STUN. Because ICE exchanges a multiplicity of IP
addresses and ports for each media stream, it also allows for address
selection for multihomed and dual-stack hosts, and for this reason it
deprecates [RFC4091] and [RFC4092].

Keranen & Rosenberg Expires June 23, 2016 [Page 5]

Internet-Draft ICE December 2015

2. Overview of ICE

In a typical ICE deployment, we have two endpoints (known as ICE
AGENTS) that want to communicate. They are able to communicate
indirectly via some signaling protocol (such as SIP), by which they
can exchange ICE candidates. Note that ICE is not intended for NAT
traversal for the signaling protocol, which is assumed to be provided
via another mechanism. At the beginning of the ICE process, the
agents are ignorant of their own topologies. In particular, they

might or might not be behind a NAT (or multiple tiers of NATs). ICE
allows the agents to discover enough information about their
topologies to potentially find one or more paths by which they can
communicate.

Figure 1 shows a typical environment for ICE deployment. The two
endpoints are labelled L and R (for left and right, which helps

visualize call flows). Both L and R are behind their own respective
NATSs though they may not be aware of it. The type of NAT and its
properties are also unknown. Agents L and R are capable of engaging
in an candidate exchange process, whose purpose is to set up a media
session between L and R. Typically, this exchange will occur through
a signaling (e.g., SIP) server.

In addition to the agents, a signaling server and NATSs, ICE is

typically used in concert with STUN or TURN servers in the network.
Each agent can have its own STUN or TURN server, or they can be the
same.

Keranen & Rosenberg Expires June 23, 2016 [Page 6]

Internet-Draft ICE December 2015

 —— +
oo + |Signaling| +ommoe- +
| STUN | [Server | | STUN |
| Server | oo + | Server |
N — + S e— +
/ \
/ \
/ <- Signaling ->\
/ \
S + E +
| NAT | | NAT |
S — + L —— +
/ \
/ \
R + R +
| Agent | | Agent |
| L | | R
R — + R +

Figure 1: ICE Deployment Scenario

The basic idea behind ICE is as follows: each agent has a variety of

candidate TRANSPORT ADDRESSES (combination of IP address and port for
a particular transport protocol, which is always UDP in this

specification) it could use to communicate with the other agent.

These might include:

0 A transport address on a directly attached network interface

0 A translated transport address on the public side of a NAT (a
"server reflexive" address)

0 A transport address allocated from a TURN server (a "relayed
address")

Potentially, any of L's candidate transport addresses can be used to
communicate with any of R’s candidate transport addresses. In
practice, however, many combinations will not work. For instance, if
L and R are both behind NATS, their directly attached interface
addresses are unlikely to be able to communicate directly (this is
why ICE is needed, after all'). The purpose of ICE is to discover
which pairs of addresses will work. The way that ICE does this is to
systematically try all possible pairs (in a carefully sorted order)

until it finds one or more that work.

Keranen & Rosenberg Expires June 23, 2016 [Page 7]

Internet-Draft ICE December 2015

2.1. Gathering Candidate Addresses

In order to execute ICE, an agent has to identify all of its address
candidates. A CANDIDATE is a transport address -- a combination of
IP address and port for a particular transport protocol (with only

UDP specified here). This document defines three types of
candidates, some derived from physical or logical network interfaces,
others discoverable via STUN and TURN. Naturally, one viable
candidate is a transport address obtained directly from a local
interface. Such a candidate is called a HOST CANDIDATE. The local
interface could be Ethernet or WiFi, or it could be one that is

obtained through a tunnel mechanism, such as a Virtual Private
Network (VPN) or Mobile IP (MIP). In all cases, such a network
interface appears to the agent as a local interface from which ports
(and thus candidates) can be allocated.

If an agent is multihomed, it obtains a candidate from each IP
address. Depending on the location of the PEER (the other agent in
the session) on the IP network relative to the agent, the agent may
be reachable by the peer through one or more of those IP addresses.
Consider, for example, an agent that has a local IP address on a
private net 10 network (I11), and a second connected to the public
Internet (12). A candidate from I1 will be directly reachable when
communicating with a peer on the same private net 10 network, while a
candidate from 12 will be directly reachable when communicating with
a peer on the public Internet. Rather than trying to guess which IP
address will work, the initiating sends both the candidates to its

peer.

Next, the agent uses STUN or TURN to obtain additional candidates.

These come in two flavors: translated addresses on the public side of

a NAT (SERVER REFLEXIVE CANDIDATES) and addresses on TURN servers
(RELAYED CANDIDATES). When TURN servers are utilized, both types of
candidates are obtained from the TURN server. If only STUN servers

are utilized, only server reflexive candidates are obtained from

them. The relationship of these candidates to the host candidate is

shown in Figure 2. In this figure, both types of candidates are

discovered using TURN. In the figure, the notation X:x means IP

address X and UDP port x.

Keranen & Rosenberg Expires June 23, 2016 [Page 8]

Internet-Draft ICE December 2015

To Internet
I
I
[E— Relayed
Yy |/ Address
R +
||
| TURN |
| Server |
I
R — +
I
I
| f-==--=mm- Server
X1:x2'|/ Reflexive
R + Address
| NAT |
[T +
I
[— Local
Xx |/ Address
— +
| Agent |
E S— +

Figure 2: Candidate Relationships

When the agent sends the TURN Allocate request from IP address and
port X:x, the NAT (assuming there is one) will create a binding

X1':x1’, mapping this server reflexive candidate to the host

candidate X:x. Outgoing packets sent from the host candidate will be
translated by the NAT to the server reflexive candidate. Incoming
packets sent to the server reflexive candidate will be translated by

the NAT to the host candidate and forwarded to the agent. We call

the host candidate associated with a given server reflexive candidate
the BASE.

Note: "Base" refers to the address an agent sends from for a
particular candidate. Thus, as a degenerate case host candidates
also have a base, but it's the same as the host candidate.

When there are multiple NATs between the agent and the TURN server,

the TURN request will create a binding on each NAT, but only the
outermost server reflexive candidate (the one nearest the TURN

Keranen & Rosenberg Expires June 23, 2016 [Page 9]

Internet-Draft ICE December 2015

server) will be discovered by the agent. If the agent is not behind
a NAT, then the base candidate will be the same as the server
reflexive candidate and the server reflexive candidate is redundant
and will be eliminated.

The Allocate request then arrives at the TURN server. The TURN
server allocates a port y from its local IP address Y, and generates

an Allocate response, informing the agent of this relayed candidate.
The TURN server also informs the agent of the server reflexive
candidate, X1":x1’ by copying the source transport address of the
Allocate request into the Allocate response. The TURN server acts as
a packet relay, forwarding traffic between L and R. In order to send
traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
server forwards that to X1':x1’, which passes through the NAT where
it is mapped to X:x and delivered to L.

When only STUN servers are utilized, the agent sends a STUN Binding
request [RFC5389] to its STUN server. The STUN server will inform
the agent of the server reflexive candidate X1:x1’ by copying the
source transport address of the Binding request into the Binding
response.

2.2. Connectivity Checks

Once L has gathered all of its candidates, it orders them in highest

to lowest-priority and sends them to R over the signaling channel.
When R receives the candidates from L, it performs the same gathering
process and responds with its own list of candidates. At the end of

this process, each agent has a complete list of both its candidates

and its peer’s candidates. It pairs them up, resulting in CANDIDATE
PAIRS. To see which pairs work, each agent schedules a series of
CHECKS. Each check is a STUN request/response transaction that the
client will perform on a particular candidate pair by sending a STUN
request from the local candidate to the remote candidate.

The basic principle of the connectivity checks is simple:
1. Sort the candidate pairs in priority order.

2. Send checks on each candidate pair in priority order.
3. Acknowledge checks received from the other agent.

With both agents performing a check on a candidate pair, the result
is a 4-way handshake:

Keranen & Rosenberg Expires June 23, 2016 [Page 10]

Internet-Draft ICE December 2015

L R

STUN request -> \'L's
<- STUN response / check

<- STUN request \ R’s
STUN response -> / check

Figure 3: Basic Connectivity Check

It is important to note that the STUN requests are sent to and from

the exact same IP addresses and ports that will be used for media

(e.g., RTP and RTCP). Consequently, agents demultiplex STUN and RTP/
RTCP using contents of the packets, rather than the port on which

they are received. Fortunately, this demultiplexing is easy to do,

especially for RTP and RTCP.

Because a STUN Binding request is used for the connectivity check,

the STUN Binding response will contain the agent’s translated

transport address on the public side of any NATs between the agent

and its peer. If this transport address is different from other

candidates the agent already learned, it represents a new candidate,

called a PEER REFLEXIVE CANDIDATE, which then gets tested by ICE just
the same as any other candidate.

As an optimization, as soon as R gets L's check message, R schedules
a connectivity check message to be sent to L on the same candidate
pair. This accelerates the process of finding a valid candidate, and

is called a TRIGGERED CHECK.

At the end of this handshake, both L and R know that they can send
(and receive) messages end-to-end in both directions.

2.3. Sorting Candidates

Because the algorithm above searches all candidate pairs, if a
working pair exists it will eventually find it no matter what order
the candidates are tried in. In order to produce faster (and better)
results, the candidates are sorted in a specified order. The
resulting list of sorted candidate pairs is called the CHECK LIST.
The algorithm is described in Section 4.1.2 but follows two general
principles:

o Each agent gives its candidates a numeric priority, which is sent
along with the candidate to the peer.

o0 The local and remote priorities are combined so that each agent
has the same ordering for the candidate pairs.

Keranen & Rosenberg Expires June 23, 2016 [Page 11]

Internet-Draft ICE December 2015

The second property is important for getting ICE to work when there
are NATs in front of L and R. Frequently, NATs will not allow

packets in from a host until the agent behind the NAT has sent a
packet towards that host. Consequently, ICE checks in each direction
will not succeed until both sides have sent a check through their
respective NATSs.

The agent works through this check list by sending a STUN request for
the next candidate pair on the list periodically. These are called
ORDINARY CHECKS.

In general, the priority algorithm is designed so that candidates of
similar type get similar priorities and so that more direct routes

(that is, through fewer media relays and through fewer NATS) are
preferred over indirect ones (ones with more media relays and more
NATs). Within those guidelines, however, agents have a fair amount
of discretion about how to tune their algorithms.

2.4. Frozen Candidates

The previous description only addresses the case where the agents
wish to establish a media session with one COMPONENT (a piece of a
media stream requiring a single transport address; a media stream may
require multiple components, each of which has to work for the media
stream as a whole to be work). Sometimes (e.g., with RTP and RTCP in
separate components), the agents actually need to establish
connectivity for more than one flow.

The network properties are likely to be very similar for each

component (especially because RTP and RTCP are sent and received from
the same IP address). It is usually possible to leverage information

from one media component in order to determine the best candidates

for another. ICE does this with a mechanism called "frozen

candidates".

Each candidate is associated with a property called its FOUNDATION.
Two candidates have the same foundation when they are "similar" -- of
the same type and obtained from the same host candidate and STUN/TURN
server using the same protocol. Otherwise, their foundation is
different. A candidate pair has a foundation too, which is just the
concatenation of the foundations of its two candidates. Initially,

only the candidate pairs with unique foundations are tested. The

other candidate pairs are marked "frozen". When the connectivity
checks for a candidate pair succeed, the other candidate pairs with

the same foundation are unfrozen. This avoids repeated checking of
components that are superficially more attractive but in fact are

likely to fail.

Keranen & Rosenberg Expires June 23, 2016 [Page 12]

Internet-Draft ICE December 2015

While we've described "frozen" here as a separate mechanism for
expository purposes, in fact it is an integral part of ICE and the

ICE prioritization algorithm automatically ensures that the right
candidates are unfrozen and checked in the right order. However, if
the ICE usage does not utilize multiple components or media streams,
it does not need to implement this algorithm.

2.5. Security for Checks

Because ICE is used to discover which addresses can be used to send
media between two agents, it is important to ensure that the process
cannot be hijacked to send media to the wrong location. Each STUN
connectivity check is covered by a message authentication code (MAC)
computed using a key exchanged in the signaling channel. This MAC
provides message integrity and data origin authentication, thus
stopping an attacker from forging or modifying connectivity check
messages. Furthermore, if for example a SIP [RFC3261] caller is
using ICE, and their call forks, the ICE exchanges happen
independently with each forked recipient. In such a case, the keys
exchanged in the signaling help associate each ICE exchange with each
forked recipient.

2.6. Concluding ICE

ICE checks are performed in a specific sequence, so that high-
priority candidate pairs are checked first, followed by lower-

priority ones. One way to conclude ICE is to declare victory as soon
as a check for each component of each media stream completes
successfully. Indeed, this is a reasonable algorithm, and details
for it are provided below. However, it is possible that a packet

loss will cause a higher-priority check to take longer to complete.

In that case, allowing ICE to run a little longer might produce

better results. More fundamentally, however, the prioritization
defined by this specification may not yield "optimal" results. As an
example, if the aim is to select low-latency media paths, usage of a
relay is a hint that latencies may be higher, but it is nothing more
than a hint. An actual round-trip time (RTT) measurement could be
made, and it might demonstrate that a pair with lower priority is
actually better than one with higher priority.

Consequently, ICE assigns one of the agents in the role of the

CONTROLLING AGENT, and the other of the CONTROLLED AGENT. The
controlling agent gets to nominate which candidate pairs will get

used for media amongst the ones that are valid. It can do this in

one of two ways -- using REGULAR NOMINATION or AGGRESSIVE NOMINATION.

With regular nomination, the controlling agent lets the checks
continue until at least one valid candidate pair for each media

Keranen & Rosenberg Expires June 23, 2016 [Page 13]

Internet-Draft ICE December 2015

stream is found. Then, it picks amongst those that are valid, and

sends a second STUN request on its NOMINATED candidate pair, but this
time with a flag set to tell the peer that this pair has been

nominated for use. This is shown in Figure 4.

L R

STUN request -> \'L's
<- STUN response / check

<- STUN request \ R’s
STUN response -> / check

STUN request + flag-> \ L’s
<- STUN response / check

Figure 4: Regular Nomination

Once the STUN transaction with the flag completes, both sides cancel
any future checks for that media stream. ICE will now send media
using this pair. The pair an ICE agent is using for media is called

the SELECTED PAIR.

In aggressive nomination, the controlling agent puts the flag in

every connectivity check STUN request it sends. This way, once the
first check succeeds, ICE processing is complete for that media
stream and the controlling agent doesn'’t have to send a second STUN
request. The selected pair will be the highest-priority valid pair

whose check succeeded. Aggressive nomination is faster than regular
nomination, but gives less flexibility. Aggressive nomination is

shown in Figure 5.

L R

STUN request + flag-> \ L’s
<- STUN response / check

<- STUN request \ R’s
STUN response -> / check

Figure 5: Aggressive Nomination

Keranen & Rosenberg Expires June 23, 2016 [Page 14]

Internet-Draft ICE December 2015

Once ICE is concluded, it can be restarted at any time for one or all
of the media streams by either agent. This is done by sending an
updated candidate information indicating a restart.

2.7. Lite Implementations

In order for ICE to be used in a call, both agents need to support

it. However, certain agents will always be connected to the public
Internet and have a public IP address at which it can receive packets
from any correspondent. To make it easier for these devices to
support ICE, ICE defines a special type of implementation called LITE
(in contrast to the normal FULL implementation). A lite
implementation doesn’t gather candidates; it includes only host
candidates for any media stream. Lite agents do not generate
connectivity checks or run the state machines, though they need to be
able to respond to connectivity checks. When a lite implementation
connects with a full implementation, the full agent takes the role of
the controlling agent, and the lite agent takes on the controlled

role. When two lite implementations connect, no checks are sent.

For guidance on when a lite implementation is appropriate, see the
discussion in Appendix A.

It is important to note that the lite implementation was added to
this specification to provide a stepping stone to full

implementation. Even for devices that are always connected to the
public Internet, a full implementation is preferable if achievable.

2.8. Usages of ICE

This document specifies generic use of ICE with protocols that
provide means to exchange candidate information between the ICE
Peers. The specific details of (i.e how to encode candidate
information and the actual candidate exchange process) for different
protocols using ICE are described in separate usage documents. One
possible way the agents can exchange the candidate information is to
use [RFC3264] based Offer/Answer semantics as part of the SIP
[RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

3. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC
2119 [RFC2119].

Readers should be familiar with the terminology defined in the STUN
[RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

Keranen & Rosenberg Expires June 23, 2016 [Page 15]

Internet-Draft ICE December 2015

This specification makes use of the following additional terminology:

ICE Agent: An agent is the protocol implementation involved in the
ICE candidate exchange. There are two agents involved in a
typical candidate exchange.

Initiating Peer, Initiating Agent, Initiator: An initiating agent is
the protocol implementation involved in the ICE candidate exchange
that initiates the ICE candidate exchange process.

Responding Peer, Responding Agent, Responder: A receiving agent is
the protocol implementation involved in the ICE candidate exchange
that receives and responds to the candidate exchange process
initiated by the Initiator.

ICE Candidate Exchange, Candidate Exchange: The process where the
ICE agents exchange information (e.g., candidates and passwords)
that is needed to perform ICE. [RFC3264] Offer/Answer with SDP
encoding is one example of a protocol that can be used for
exchanging the candidate information.

Peer: From the perspective of one of the agents in a session, its
peer is the other agent. Specifically, from the perspective of
the initiating agent, the peer is the responding agent. From the
perspective of the responding agent, the peer is the initiating
agent.

Transport Address: The combination of an IP address and transport
protocol (such as UDP or TCP) port.

Media, Media Stream, Media Session: When ICE is used to setup
multimedia sessions, the media is usually transported over RTP,
and a media stream composes of a stream of RTP packets. When ICE
is used with other than multimedia sessions, the terms "media”,
"media stream”, and "media session" are still used in this
specification to refer to the IP data packets that are exchanged
between the peers on the path created and tested with ICE.

Candidate, Candidate Information: A transport address that is a
potential point of contact for receipt of media. Candidates also
have properties -- their type (server reflexive, relayed, or
host), priority,foundation, and base.

Component: A component is a piece of a media stream requiring a
single transport address; a media stream may require multiple
components, each of which has to work for the media stream as a
whole to work. For media streams based on RTP, unless RTP and

Keranen & Rosenberg Expires June 23, 2016 [Page 16]

Internet-Draft ICE December 2015

RTCP are multiplexed in the same port, there are two components
per media stream -- one for RTP, and one for RTCP.

Host Candidate: A candidate obtained by binding to a specific port
from an IP address on the host. This includes IP addresses on
physical interfaces and logical ones, such as ones obtained
through Virtual Private Networks (VPNs) and Realm Specific IP
(RSIP) [RFC3102] (which lives at the operating system level).

Server Reflexive Candidate: A candidate whose IP address and port
are a binding allocated by a NAT for an agent when it sent a
packet through the NAT to a server. Server reflexive candidates
can be learned by STUN servers using the Binding request, or TURN
servers, which provides both a relayed and server reflexive
candidate.

Peer Reflexive Candidate: A candidate whose IP address and port are
a binding allocated by a NAT for an agent when it sent a STUN
Binding request through the NAT to its peer.

Relayed Candidate: A candidate obtained by sending a TURN Allocate
request from a host candidate to a TURN server. The relayed
candidate is resident on the TURN server, and the TURN server
relays packets back towards the agent.

Base: The base of a server reflexive candidate is the host candidate
from which it was derived. A host candidate is also said to have
a base, equal to that candidate itself. Similarly, the base of a
relayed candidate is that candidate itself.

Foundation: An arbitrary string that is the same for two candidates
that have the same type, base IP address, protocol (UDP, TCP,
etc.), and STUN or TURN server. If any of these are different,
then the foundation will be different. Two candidate pairs with
the same foundation pairs are likely to have similar network
characteristics. Foundations are used in the frozen algorithm.

Local Candidate: A candidate that an agent has obtained and shared
with the peer.

Remote Candidate: A candidate that an agent received from its peer.

Default Destination/Candidate: The default destination for a
component of a media stream is the transport address that would be
used by an agent that is not ICE aware. A default candidate for a
component is one whose transport address matches the default
destination for that component.

Keranen & Rosenberg Expires June 23, 2016 [Page 17]

Internet-Draft ICE December 2015

Candidate Pair: A pairing containing a local candidate and a remote
candidate.

Check, Connectivity Check, STUN Check: A STUN Binding request
transaction for the purposes of verifying connectivity. A check
is sent from the local candidate to the remote candidate of a
candidate pair.

Check List: An ordered set of candidate pairs that an agent will use
to generate checks.

Ordinary Check: A connectivity check generated by an agent as a
consequence of a timer that fires periodically, instructing it to
send a check.

Triggered Check: A connectivity check generated as a consequence of
the receipt of a connectivity check from the peer.

Valid List: An ordered set of candidate pairs for a media stream
that have been validated by a successful STUN transaction.

Full: An ICE implementation that performs the complete set of
functionality defined by this specification.

Lite: An ICE implementation that omits certain functions,
implementing only as much as is necessary for a peer
implementation that is full to gain the benefits of ICE. Lite
implementations do not maintain any of the state machines and do
not generate connectivity checks.

Controlling Agent: The ICE agent that is responsible for selecting
the final choice of candidate pairs and signaling them through
STUN. In any session, one agent is always controlling. The other
is the controlled agent.

Controlled Agent: An ICE agent that waits for the controlling agent
to select the final choice of candidate pairs.

Regular Nomination: The process of picking a valid candidate pair
for media traffic by validating the pair with one STUN request,
and then picking it by sending a second STUN request with a flag
indicating its nomination.

Aggressive Nomination: The process of picking a valid candidate pair
for media traffic by including a flag in every connectivity check
STUN request, such that the first one to produce a valid candidate
pair is used for media.

Keranen & Rosenberg Expires June 23, 2016 [Page 18]

Internet-Draft ICE December 2015

Nominated: If a valid candidate pair has its nominated flag set, it
means that it may be selected by ICE for sending and receiving
media.

Selected Pair, Selected Candidate: The candidate pair selected by
ICE for sending and receiving media is called the selected pair,
and each of its candidates is called the selected candidate.

Using Protocol, ICE Usage: The protocol that uses ICE for NAT
traversal. A usage specification defines the protocol specific
details on how the procedures defined here are applied to that
protocol.

4. ICE Candidate Gathering and Exchange

As part of ICE processing, both the initiating and responding agents
exchange encoded candidate information as defined by the Usage
Protocol (ICE Usage). Specifics of encoding mechanism and the
semantics of candidate information exchange is out of scope of this
specification.

However at a higher level, the below diagram captures ICE processing

sequence in the agents (initiator and responder) for exchange of
their respective candidate(s) information.

Keranen & Rosenberg Expires June 23, 2016 [Page 19]

Internet-Draft ICE December 2015
Initiating Responding

Agent Agent

0] (R)
Gather, | |
prioritize, | |
eliminate | |
redundant | |
candidates, | |
Encode | |
candidates |

| I's Candidate Information |

I >|

| | Gather,

| | prioritize,

| | eliminate

| | redundant

| | candidates,

| | Encode

| | candidates

| R’s Candidate Information |

< |

I

Figure 6: Candidate Gathering and Exchange Sequence

As shown, the agents involved in the candidate exchange perform (1)
candidate gathering, (2) candidate prioritization, (3) eliminating
redundant candidates, (4) (possibly) choose default candidates, and
then (5) formulate and send the candidates to the Peer ICE agent.

All but the last of these five steps differ for full and lite
implementations.

4.1. Procedures for Full Implementation
4.1.1. Gathering Candidates

An agent gathers candidates when it believes that communication is
imminent. An initiating agent can do this based on a user interface
cue, or based on an explicit request to initiate a session. Every
candidate is a transport address. It also has a type and a base.

Four types are defined and gathered by this specification -- host
candidates, server reflexive candidates, peer reflexive candidates,
and relayed candidates. The server reflexive candidates are gathered
using STUN or TURN, and relayed candidates are obtained through TURN.
Peer reflexive candidates are obtained in later phases of ICE, as a
consequence of connectivity checks. The base of a candidate is the
candidate that an agent must send from when using that candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 20]

Internet-Draft ICE December 2015

The process for gathering candidates at the responding agent is
identical to the process for the initiating agent. It is RECOMMENDED
that the responding agent begins this process immediately on receipt
of the candidate information, prior to alerting the user. Such
gathering MAY begin when an agent starts.

4.1.1.1. Host Candidates

The first step is to gather host candidates. Host candidates are
obtained by binding to ports (typically ephemeral) on a IP address
attached to an interface (physical or virtual, including VPN
interfaces) on the host.

For each UDP media stream the agent wishes to use, the agent SHOULD
obtain a candidate for each component of the media stream on each IP
address that the host has, with the exceptions listed below. The

agent obtains each candidate by binding to a UDP port on the specific

IP address. A host candidate (and indeed every candidate) is always
associated with a specific component for which it is a candidate.

Each component has an ID assigned to it, called the component ID.

For RTP-based media streams, unless both RTP and RTCP are multiplexed
in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
component ID of 1, and RTCP a component ID of 2. In case of RTP/RTCP
multiplexing, a component ID of 1 is used for both RTP and RTCP.

When candidates are obtained, unless the agent knows for sure that
RTP/RTCP multiplexing will be used (i.e. the agent knows that the

other agent also supports, and is willing to use, RTP/RTCP
multiplexing), or unless the agent only supports RTP/RTCP
multiplexing, the agent MUST obtain a separate candidate for RTCP.

If an agent has obtained a candidate for RTCP, and ends up using RTP/
RTCP multiplexing, the agent does not need to perform connectivity
checks on the RTCP candidate.

If an agent is using separate candidates for RTP and RTCP, it will
end up with 2*K host candidates if an agent has K IP addresses.

Note that the responding agent, when obtaining its candidates, will
typically know if the other agent supports RTP/RTCP multiplexing, in
which case it will not need to obtain a separate candidate for RTCP.
However, absence of a component ID 2 as such does not imply use of
RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

For other than RTP-based streams, use of multiple components is
discouraged since using them increases the complexity of ICE
processing. If multiple components are needed, the component IDs
SHOULD start with 1 and increase by 1 for each component.

Keranen & Rosenberg Expires June 23, 2016 [Page 21]

Internet-Draft ICE December 2015

The base for each host candidate is set to the candidate itself.

The host candidates are gathered from all IP addresses with the
following exceptions:

0 Addresses from a loopback interface MUST NOT be included in the
candidate addresses.

o Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
local unicast addresses [RFC3879] MUST NOT be included in the
address candidates.

o IPv4-mapped IPv6 addresses SHOULD NOT be included in the offered
candidates unless the application using ICE does not support IPv4
(i.e., is an IPv6-only application [RFC4038]).

o If one or more host candidates corresponding to an IPv6 address
generated using a mechanism that prevents location tracking
[I-D.ietf-6man-ipv6-address-generation-privacy] are gathered, host
candidates corresponding to IPv6 addresses that do allow location
tracking, that are configured on the same interface, and are part
of the same network prefix MUST NOT be gathered; and host
candidates corresponding to IPv6 link-local addresses MUST NOT be
gathered.

4.1.1.2. Server Reflexive and Relayed Candidates

Agents SHOULD obtain relayed candidates and SHOULD obtain server
reflexive candidates. These requirements are at SHOULD strength to
allow for provider variation. Use of STUN and TURN servers may be
unnecessary in closed networks where agents are never connected to
the public Internet or to endpoints outside of the closed network.

In such cases, a full implementation would be used for agents that

are dual-stack or multihomed, to select a host candidate. Use of

TURN servers is expensive, and when ICE is being used, they will only
be utilized when both endpoints are behind NATs that perform address
and port dependent mapping. Consequently, some deployments might
consider this use case to be marginal, and elect not to use TURN
servers. If an agent does not gather server reflexive or relayed
candidates, it is RECOMMENDED that the functionality be implemented
and just disabled through configuration, so that it can be re-enabled
through configuration if conditions change in the future.

If an agent is gathering both relayed and server reflexive

candidates, it uses a TURN server. If it is gathering just server
reflexive candidates, it uses a STUN server.

Keranen & Rosenberg Expires June 23, 2016 [Page 22]

Internet-Draft ICE December 2015

The agent next pairs each host candidate with the STUN or TURN server
with which it is configured or has discovered by some means. If a

STUN or TURN server is configured, it is RECOMMENDED that a domain
name be configured, and the DNS procedures in [RFC5389] (using SRV
records with the "stun" service) be used to discover the STUN server,

and the DNS procedures in [RFC5766] (using SRV records with the

"turn" service) be used to discover the TURN server.

This specification only considers usage of a single STUN or TURN
server. When there are multiple choices for that single STUN or TURN
server (when, for example, they are learned through DNS records and
multiple results are returned), an agent SHOULD use a single STUN or
TURN server (based on its IP address) for all candidates for a
particular session. This improves the performance of ICE. The

result is a set of pairs of host candidates with STUN or TURN

servers. The agent then chooses one pair, and sends a Binding or
Allocate request to the server from that host candidate. Binding
requests to a STUN server are not authenticated, and any ALTERNATE-
SERVER attribute in a response is ignored. Agents MUST support the
backwards compatibility mode for the Binding request defined in
[RFC5389]. Allocate requests SHOULD be authenticated using a long-
term credential obtained by the client through some other means.

Every Ta milliseconds thereafter, the agent can generate another new
STUN or TURN transaction. This transaction can either be a retry of
a previous transaction that failed with a recoverable error (such as
authentication failure), or a transaction for a new host candidate

and STUN or TURN server pair. The agent SHOULD NOT generate
transactions more frequently than one every Ta milliseconds. See
Section 12 for guidance on how to set Ta and the STUN retransmit
timer, RTO.

The agent will receive a Binding or Allocate response. A successful
Allocate response will provide the agent with a server reflexive
candidate (obtained from the mapped address) and a relayed candidate
in the XOR-RELAYED-ADDRESS attribute. If the Allocate request is
rejected because the server lacks resources to fulfill it, the agent
SHOULD instead send a Binding request to obtain a server reflexive
candidate. A Binding response will provide the agent with only a
server reflexive candidate (also obtained from the mapped address).
The base of the server reflexive candidate is the host candidate from
which the Allocate or Binding request was sent. The base of a
relayed candidate is that candidate itself. If a relayed candidate

is identical to a host candidate (which can happen in rare cases),

the relayed candidate MUST be discarded.

If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
and DNS64 [RFC6147] technologies, it may gather also IPv4 server

Keranen & Rosenberg Expires June 23, 2016 [Page 23]

Internet-Draft ICE December 2015

reflexive and/or relayed candidates from IPv4-only STUN or TURN
servers. IPv6-only agents SHOULD also utilize IPv6 prefix discovery
[RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
generate server reflexive candidates for each IPv6-only interface
accordingly. The NAT64 server reflexive candidates are prioritized
like IPv4 server reflexive candidates.

4.1.1.3. Computing Foundations

Finally, the agent assigns each candidate a foundation. The
foundation is an identifier, scoped within a session. Two candidates
MUST have the same foundation ID when all of the following are true:

o they are of the same type (host, relayed, server reflexive, or
peer reflexive)

o their bases have the same IP address (the ports can be different)

o for reflexive and relayed candidates, the STUN or TURN servers
used to obtain them have the same IP address

o they were obtained using the same transport protocol (TCP, UDP,
etc.)

Similarly, two candidates MUST have different foundations if their

types are different, their bases have different IP addresses, the

STUN or TURN servers used to obtain them have different IP addresses,
or their transport protocols are different.

4.1.1.4. Keeping Candidates Alive

Once server reflexive and relayed candidates are allocated, they MUST
be kept alive until ICE processing has completed, as described in
Section 7.3. For server reflexive candidates learned through a

Binding request, the bindings MUST be kept alive by additional

Binding requests to the server. Refreshes for allocations are done
using the Refresh transaction, as described in [RFC5766]. The
Refresh requests will also refresh the server reflexive candidate.

4.1.2. Prioritizing Candidates

The prioritization process results in the assignment of a priority to

each candidate. Each candidate for a media stream MUST have a unique
priority that MUST be a positive integer between 1 and (2**31 - 1).

This priority will be used by ICE to determine the order of the

connectivity checks and the relative preference for candidates.

Keranen & Rosenberg Expires June 23, 2016 [Page 24]

Internet-Draft ICE December 2015

An agent SHOULD compute this priority using the formula in
Section 4.1.2.1 and choose its parameters using the guidelines in
Section 4.1.2.2. If an agent elects to use a different formula, ICE
will take longer to converge since both agents will not be
coordinated in their checks.

The process for prioritizing candidates is common across the
initiating and the responding agent.

4.1.2.1. Recommended Formula

When using the formula, an agent computes the priority by determining
a preference for each type of candidate (server reflexive, peer
reflexive, relayed, and host), and, when the agent is multihomed,
choosing a preference for its IP addresses. These two preferences
are then combined to compute the priority for a candidate. That
priority is computed using the following formula:

priority = (2°24)*(type preference) +
(278)*(local preference) +
(270)*(256 - component ID)

The type preference MUST be an integer from 0 to 126 inclusive, and
represents the preference for the type of the candidate (where the
types are local, server reflexive, peer reflexive, and relayed). A

126 is the highest preference, and a 0 is the lowest. Setting the
value to a 0 means that candidates of this type will only be used as

a last resort. The type preference MUST be identical for all
candidates of the same type and MUST be different for candidates of
different types. The type preference for peer reflexive candidates
MUST be higher than that of server reflexive candidates. Note that
candidates gathered based on the procedures of Section 4.1.1 will
never be peer reflexive candidates; candidates of these type are
learned from the connectivity checks performed by ICE.

The local preference MUST be an integer from 0 to 65535 inclusive.

It represents a preference for the particular IP address from which

the candidate was obtained. 65535 represents the highest preference,
and a zero, the lowest. When there is only a single IP address, this
value SHOULD be set to 65535. More generally, if there are multiple
candidates for a particular component for a particular media stream
that have the same type, the local preference MUST be unique for each
one. In this specification, this only happens for multihomed hosts

or if an agent is using multiple TURN servers. If a host is

multihomed because it is dual-stack, the local preference SHOULD be
set equal to the precedence value for IP addresses described in RFC

Keranen & Rosenberg Expires June 23, 2016 [Page 25]

Internet-Draft ICE December 2015

6724 [RFC6724]. If the host operating system provides an API for
discovering preference among different addresses, those preferences
SHOULD be used for the local preference to prioritize addresses
indicated as preferred by the operating system.

The component ID is the component ID for the candidate, and MUST be
between 1 and 256 inclusive.

4.1.2.2. Guidelines for Choosing Type and Local Preferences

One criterion for selection of the type and local preference values

is the use of a media intermediary, such as a TURN server, VPN
server, or NAT. With a media intermediary, if media is sent to that
candidate, it will first transit the media intermediary before being
received. Relayed candidates are one type of candidate that involves
a media intermediary. Another are host candidates obtained from a
VPN interface. When media is transited through a media intermediary,
it can increase the latency between transmission and reception. It

can increase the packet losses, because of the additional router hops
that may be taken. It may increase the cost of providing service,

since media will be routed in and right back out of a media
intermediary run by a provider. If these concerns are important, the
type preference for relayed candidates SHOULD be lower than host
candidates. The RECOMMENDED values are 126 for host candidates, 100
for server reflexive candidates, 110 for peer reflexive candidates,

and O for relayed candidates.

Furthermore, if an agent is multihomed and has multiple IP addresses,
the local preference for host candidates from a VPN interface SHOULD
have a priority of 0. If multiple TURN servers are used, local

priorities for the candidates obtained from the TURN servers are
chosen in a similar fashion as for multihomed local candidates: the
local preference value is used to indicate preference among different
servers but the preference MUST be unique for each one.

Another criterion for selection of preferences is IP address family.
ICE works with both IPv4 and IPv6. It therefore provides a

transition mechanism that allows dual-stack hosts to prefer
connectivity over IPv6, but to fall back to IPv4 in case the v6
networks are disconnected (due, for example, to a failure in a 6to4
relay) [RFC3056]. It can also help with hosts that have both a

native IPv6 address and a 6to4 address. In such a case, higher local
preferences could be assigned to the v6 addresses, followed by the
6to4 addresses, followed by the v4 addresses. This allows a site to
obtain and begin using native v6 addresses immediately, yet still

fall back to 6to4 addresses when communicating with agents in other
sites that do not yet have native v6 connectivity.

Keranen & Rosenberg Expires June 23, 2016 [Page 26]

Internet-Draft ICE December 2015

Another criterion for selecting preferences is security. If a user

is a telecommuter, and therefore connected to a corporate network and
a local home network, the user may prefer their voice traffic to be
routed over the VPN in order to keep it on the corporate network when
communicating within the enterprise, but use the local network when
communicating with users outside of the enterprise. In such a case,

a VPN address would have a higher local preference than any other
address.

Another criterion for selecting preferences is topological awareness.
This is most useful for candidates that make use of intermediaries.
In those cases, if an agent has preconfigured or dynamically
discovered knowledge of the topological proximity of the
intermediaries to itself, it can use that to assign higher local
preferences to candidates obtained from closer intermediaries.

4.1.3. Eliminating Redundant Candidates

Next, the agent eliminates redundant candidates. A candidate is
redundant if its transport address equals another candidate, and its
base equals the base of that other candidate. Note that two
candidates can have the same transport address yet have different
bases, and these would not be considered redundant. Frequently, a
server reflexive candidate and a host candidate will be redundant

when the agent is not behind a NAT. The agent SHOULD eliminate the
redundant candidate with the lower priority.

This process is common across the initiating and responding agents.
4.2. Lite Implementation Procedures

Lite implementations only utilize host candidates. A lite
implementation MUST, for each component of each media stream,
allocate zero or one IPv4 candidates. It MAY allocate zero or more
IPv6 candidates, but no more than one per each IPv6 address utilized
by the host. Since there can be no more than one IPv4 candidate per
component of each media stream, if an agent has multiple IPv4
addresses, it MUST choose one for allocating the candidate. If a
host is dual-stack, it is RECOMMENDED that it allocate one 1Pv4
candidate and one global IPv6 address. With the lite implementation,
ICE cannot be used to dynamically choose amongst candidates.
Therefore, including more than one candidate from a particular scope
is NOT RECOMMENDED, since only a connectivity check can truly
determine whether to use one address or the other.

Each component has an ID assigned to it, called the component ID.

For RTP-based media streams, unless RTCP is multiplexed in the same
port with RTP, the RTP itself has a component ID of 1, and RTCP a

Keranen & Rosenberg Expires June 23, 2016 [Page 27]

Internet-Draft ICE December 2015

component ID of 2. If an agent is using RTCP without multiplexing,

it MUST obtain candidates for it. However, absence of a component ID
2 as such does not imply use of RTCP/RTP multiplexing, as it could
also mean that RTCP is not used.

Each candidate is assigned a foundation. The foundation MUST be
different for two candidates allocated from different IP addresses,

and MUST be the same otherwise. A simple integer that increments for
each IP address will suffice. In addition, each candidate MUST be
assigned a unique priority amongst all candidates for the same media
stream. This priority SHOULD be equal to:

priority = (2°24)*(126) +
(278)*(IP precedence) +
(270)*(256 - component ID)

If a host is v4-only, it SHOULD set the IP precedence to 65535. If a
host is v6 or dual-stack, the IP precedence SHOULD be the precedence
value for IP addresses described in RFC 6724 [RFC6724].

Next, an agent chooses a default candidate for each component of each
media stream. If a host is IPv4-only, there would only be one

candidate for each component of each media stream, and therefore that
candidate is the default. If a host is IPv6 or dual-stack, the

selection of default is a matter of local policy. This default

SHOULD be chosen such that it is the candidate most likely to be used
with a peer. For IPv6-only hosts, this would typically be a globally
scoped IPv6 address. For dual-stack hosts, the IPv4 address is
RECOMMENDED.

The procedures in this section is common across the initiating and
responding agents.

4.3. Encoding the Candidate Information

Regardless of the agent being an Initiator or Responder Agent, the
following parameters and their data types needs to be conveyed as
part of the candidate exchange process. The specifics of syntax for
encoding the candidate information is out of scope of this
specification.

Candidate attribute There will be one or more of these for each
"media stream". Each candidate is composed of:

Connection Address: The IP address and transport protocol port of
the candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 28]

Internet-Draft ICE December 2015

Transport: An indicator of the transport protocol for this
candidate. This need not be present if the using protocol will
only ever run over a single transport protocol. If it runs
over more than one, or if others are anticipated to be used in
the future, this should be present.

Foundation: A sequence of up to 32 characters.

Component-ID: This would be present only if the using protocol
were utilizing the concept of components. If itis, it would
be a positive integer that indicates the component ID for which
this is a candidate.

Priority: An encoding of the 32-bit priority value.
Candidate Type: The candidate type, as defined in ICE.

Related Address and Port: The related IP address and port for
this candidate, as defined by ICE. These MAY be omitted or set
to invalid values if the agent does not want to reveal them,

e.g., for privacy reasons.

Extensibility Parameters: The using protocol should define some
means for adding new per-candidate ICE parameters in the
future.

Lite Flag: If ICE lite is used by the using protocol, it needs to
convey a boolean parameter which indicates whether the
implementation is lite or not.

Connectivity check pacing value: If an agent wants to use other than
the default pacing values for the connectivity checks, it MUST
indicate this in the ICE exchange.

Username Fragment and Password: The using protocol has to convey a
username fragment and password. The username fragment MUST
contain at least 24 bits of randomness, and the password MUST
contain at least 128 bits of randomness.

ICE extensions: In addition to the per-candidate extensions above,
the using protocol should allow for new media-stream or session-
level attributes (ice-options).

If the using protocol is using the ICE mismatch feature, a way is
needed to convey this parameter in answers. It is a boolean flag.

The exchange of parameters is symmetric; both agents need to send the
same set of attributes as defined above.

Keranen & Rosenberg Expires June 23, 2016 [Page 29]

Internet-Draft ICE December 2015

The using protocol may (or may not) need to deal with backwards
compatibility with older implementations that do not support ICE. If
the fallback mechanism is being used, then presumably the using
protocol provides a way of conveying the default candidate (its IP
address and port) in addition to the ICE parameters.

STUN connectivity checks between agents are authenticated using the
short-term credential mechanism defined for STUN [RFC5389]. This
mechanism relies on a username and password that are exchanged
through protocol machinery between the client and server. The
username part of this credential is formed by concatenating a
username fragment from each agent, separated by a colon. Each agent
also provides a password, used to compute the message integrity for
requests it receives. The username fragment and password are
exchanged between the peers. In addition to providing security, the
username provides disambiguation and correlation of checks to media
streams. See Appendix B.4 for motivation.

If the initiating agent is a lite implementation, it MUST indicate
this when sending its candidates .

ICE provides for extensibility by allowing an agent to include a
series of tokens that identify ICE extensions as part of the
candidate exchange process.

Once an agent has sent its candidate information, that agent MUST be
prepared to receive both STUN and media packets on each candidate.
As discussed in Section 10.1, media packets can be sentto a
candidate prior to its appearance as the default destination for

media.

5. ICE Candidate Processing

Once an agent has candidates from it's peer, it will check if the
peer supports ICE, determine its own role, exchanges candidates
(Section 4) and for full implementations, forms the check lists and
begins connectivity checks as explained in this section.

5.1. Procedures for Full Implementation

5.1.1. Verifying ICE Support
Certain middleboxes, such as ALGs, may alter the ICE candidate
information that breaks ICE. If the using protocol is vulnerable to
this kind of changes, called ICE mismatch, the responding agent needs

to detect this and signal this back to the initiating agent. The
details on whether this is needed and how it is done is defined by

Keranen & Rosenberg Expires June 23, 2016 [Page 30]

Internet-Draft ICE December 2015

the usage specifications. One exception to the above is that an
initiating agent would never indicate ICE mismatch.

5.1.2. Determining Role

For each session, each agent (Initiating and Responding) takes on a
role. There are two roles -- controlling and controlled. The

controlling agent is responsible for the choice of the final

candidate pairs used for communications. For a full agent, this

means nominating the candidate pairs that can be used by ICE for each
media stream, and for updating the peer with the ICE’s selection,

when needed. The controlled agent is told which candidate pairs to
use for each media stream, and does not require updating the peer to
signal this information. The sections below describe in detail the

actual procedures followed by controlling and controlled nodes.

The rules for determining the role and the impact on behavior are as
follows:

Both agents are full: The Initiating Agent which started the ICE
processing MUST take the controlling role, and the other MUST take
the controlled role. Both agents will form check lists, run the
ICE state machines, and generate connectivity checks. The
controlling agent will execute the logic in Section 7.1 to
nominate pairs that will be selected by ICE, and then both agents
end ICE as described in Section 7.1.2.

One agent full, one lite: The full agent MUST take the controlling
role, and the lite agent MUST take the controlled role. The full
agent will form check lists, run the ICE state machines, and
generate connectivity checks. That agent will execute the logic
in Section 7.1 to nominate pairs that will be selected by ICE, and
use the logic in Section 7.1.2 to end ICE. The lite
implementation will just listen for connectivity checks, receive
them and respond to them, and then conclude ICE as described in
Section 7.2. For the lite implementation, the state of ICE
processing for each media stream is considered to be Running, and
the state of ICE overall is Running.

Both lite: The Initiating Agent which started the ICE processing
MUST take the controlling role, and the other MUST take the
controlled role. In this case, no connectivity checks are ever
sent. Rather, once the candidates are exchanged, each agent
performs the processing described in Section 7 without
connectivity checks. It is possible that both agents will believe
they are controlled or controlling. In the latter case, the
conflict is resolved through glare detection capabilities in the
signaling protocol enabling the candidate exchange. The state of

Keranen & Rosenberg Expires June 23, 2016 [Page 31]

Internet-Draft ICE December 2015

ICE processing for each media stream is considered to be Running,
and the state of ICE overall is Running.

Once roles are determined for a session, they persist unless ICE is
restarted. An ICE restart causes a new selection of roles and tie-
breakers.

5.1.3. Forming the Check Lists

There is one check list per in-use media stream resulting from the
candidate exchange. To form the check list for a media stream, the
agent forms candidate pairs, computes a candidate pair priority,
orders the pairs by priority, prunes them, and sets their states.
These steps are described in this section.

5.1.3.1. Forming Candidate Pairs

First, the agent takes each of its candidates for a media stream

(called LOCAL CANDIDATES) and pairs them with the candidates it
received from its peer (called REMOTE CANDIDATES) for that media
stream. In order to prevent the attacks described in Section 14.4.1,
agents MAY limit the number of candidates they’ll accept in an
candidate exchange process. A local candidate is paired with a
remote candidate if and only if the two candidates have the same
component ID and have the same IP address version. It is possible
that some of the local candidates won't get paired with remote
candidates, and some of the remote candidates won't get paired with
local candidates. This can happen if one agent doesn't include
candidates for the all of the components for a media stream. If this
happens, the number of components for that media stream is
effectively reduced, and considered to be equal to the minimum across
both agents of the maximum component ID provided by each agent across
all components for the media stream.

In the case of RTP, this would happen when one agent provides
candidates for RTCP, and the other does not. As another example, the
initiating agent can multiplex RTP and RTCP on the same port
[RFC5761]. However, since the initiating agent doesn’t know if the

peer agent can perform such multiplexing, it includes candidates for
RTP and RTCP on separate ports. If the peer agent can perform such
multiplexing, it would include just a single component for each

candidate -- for the combined RTP/RTCP mux. ICE would end up acting
as if there was just a single component for this candidate.

With IPv6 it is common for a host to have multiple host candidates

for each interface. To keep the amount of resulting candidate pairs
reasonable and to avoid candidate pairs that are highly unlikely to

Keranen & Rosenberg Expires June 23, 2016 [Page 32]

Internet-Draft ICE December 2015

work, IPv6 link-local addresses [RFC4291] MUST NOT be paired with
other than link-local addresses.

The candidate pairs whose local and remote candidates are both the
default candidates for a particular component is called,
unsurprisingly, the default candidate pair for that component. This

is the pair that would be used to transmit media if both agents had
not been ICE aware.

In order to aid understanding, Figure 7 shows the relationships
between several key concepts -- transport addresses, candidates,
candidate pairs, and check lists, in addition to indicating the main
properties of candidates and candidate pairs.

Keranen & Rosenberg Expires June 23, 2016 [Page 33]

Internet-Draft ICE December 2015

+ +
I I

| + + |

| [+----+ +----+ +--—-+ | +Type |

| || 1P | [Port] [Tran| | +Priority |

| JAddr|| || || +Foundation |

[+----+ +----+ +----+	+Component ID	
	Transport	+Related Address
	Addr	

| -mmmmmmmmm e + +Base |

| Candidate |

+ +

* *

* kkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkx

* *

— +
+

| Local Remote |

| +----+ +----+ +default? |

| |Cand| |Cand| +valid? |

| +----+ +----+ +nominated?|
+State |

|
Candidate Pair |

* 4k p————
+

*
*kkkkkkkkkkk
*
S +
| Candidate Pair |
S +
[+
| Candidate Pair |
. +
S +
| Candidate Pair |
S +

Check
List

Figure 7: Conceptual Diagram of a Check List

Keranen & Rosenberg Expires June 23, 2016 [Page 34]

Internet-Draft ICE December 2015

5.1.3.2. Computing Pair Priority and Ordering Pairs

Once the pairs are formed, a candidate pair priority is computed.
Let G be the priority for the candidate provided by the controlling
agent. Let D be the priority for the candidate provided by the
controlled agent. The priority for a pair is computed as:

pair priority = 2232*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

Where G>D?1:0 is an expression whose value is 1 if G is greater than
D, and 0 otherwise. Once the priority is assigned, the agent sorts

the candidate pairs in decreasing order of priority. If two pairs

have identical priority, the ordering amongst them is arbitrary.

5.1.3.3. Pruning the Pairs

This sorted list of candidate pairs is used to determine a sequence

of connectivity checks that will be performed. Each check involves
sending a request from a local candidate to a remote candidate.
Since an agent cannot send requests directly from a reflexive
candidate, but only from its base, the agent next goes through the
sorted list of candidate pairs. For each pair where the local
candidate is server reflexive, the server reflexive candidate MUST be
replaced by its base. Once this has been done, the agent MUST prune
the list. This is done by removing a pair if its local and remote
candidates are identical to the local and remote candidates of a pair
higher up on the priority list. The result is a sequence of ordered
candidate pairs, called the check list for that media stream.

In addition, in order to limit the attacks described in

Section 14.4.1, an agent MUST limit the total number of connectivity
checks the agent performs across all check lists to a specific value,
and this value MUST be configurable. A default of 100 is
RECOMMENDED. This limit is enforced by discarding the lower-priority
candidate pairs until there are less than 100. Itis RECOMMENDED
that a lower value be utilized when possible, set to the maximum
number of plausible checks that might be seen in an actual deployment
configuration. The requirement for configuration is meant to provide

a tool for fixing this value in the field if, once deployed, it is

found to be problematic.

5.1.3.4. Computing States

Each candidate pair in the check list has a foundation and a state.
The foundation is the combination of the foundations of the local and
remote candidates in the pair. The state is assigned once the check
list for each media stream has been computed. There are five
potential values that the state can have:

Keranen & Rosenberg Expires June 23, 2016 [Page 35]

Internet-Draft ICE December 2015

Waiting: A check has not been performed for this pair, and can be
performed as soon as it is the highest-priority Waiting pair on
the check list.

In-Progress: A check has been sent for this pair, but the
transaction is in progress.

Succeeded: A check for this pair was already done and produced a
successful result.

Failed: A check for this pair was already done and failed, either
never producing any response or producing an unrecoverable failure
response.

Frozen: A check for this pair hasn’t been performed, and it can’t
yet be performed until some other check succeeds, allowing this
pair to unfreeze and move into the Waiting state.

As ICE runs, the pairs will move between states as shown in Figure 8.

Keranen & Rosenberg Expires June 23, 2016 [Page 36]

Internet-Draft ICE December 2015
B ——— +
| |
| |
| Frozen |
| |
| |
B ——— +
|
|unfreeze
I
\Y
B ——— + B — +
| |
	perform	
Waiting [-------- >	In-Progress	
B ——— + B — +		
!		
I/		
I/		
I		
/		
1		
failure //	success	
1		
/		
1		
1		
1		
Vv \Y		
Fommmmmeee + B — +		
Failed		Succeeded
Fommmmmeee + B — +

Figure 8: Pair State FSM

The initial states for each pair in a check list are computed by
performing the following sequence of steps:

1. The agent sets all of the pairs in each check list to the Frozen

State.

Keranen & Rosenberg

Expires June 23, 2016

[Page 37]

Internet-Draft ICE December 2015

2. The agent examines the check list for the first media stream.
For that media stream:

* For all pairs with the same foundation, it sets the state of
the pair with the lowest component ID to Waiting. If there is
more than one such pair, the one with the highest-priority is
used.

One of the check lists will have some number of pairs in the Waiting
state, and the other check lists will have all of their pairs in the
Frozen state. A check list with at least one pair that is Waiting is
called an active check list, and a check list with all pairs Frozen

is called a frozen check list.

The check list itself is associated with a state, which captures the
state of ICE checks for that media stream. There are three states:

Running: In this state, ICE checks are still in progress for this
media stream.

Completed: In this state, ICE checks have produced nominated pairs
for each component of the media stream. Consequently, ICE has
succeeded and media can be sent.

Failed: In this state, the ICE checks have not completed
successfully for this media stream.

When a check list is first constructed as the consequence of an
candidate exchange, it is placed in the Running state.

ICE processing across all media streams also has a state associated
with it. This state is equal to Running while ICE processing is

under way. The state is Completed when ICE processing is complete
and Failed if it failed without success. Rules for transitioning
between states are described below.

5.1.4. Scheduling Checks

An agent performs ordinary checks and triggered checks. The
generation of both checks is governed by a timer that fires
periodically for each media stream. The agent maintains a FIFO
gueue, called the triggered check queue, which contains candidate
pairs for which checks are to be sent at the next available

opportunity. When the timer fires, the agent removes the top pair
from the triggered check queue, performs a connectivity check on that
pair, and sets the state of the candidate pair to In-Progress. If

there are no pairs in the triggered check queue, an ordinary check is
sent.

Keranen & Rosenberg Expires June 23, 2016 [Page 38]

Internet-Draft ICE December 2015

Once the agent has computed the check lists as described in

Section 5.1.3, it sets a timer for each active check list. The timer

fires every Ta*N seconds, where N is the number of active check lists
(initially, there is only one active check list). Implementations

MAY set the timer to fire less frequently than this. Implementations
SHOULD take care to spread out these timers so that they do not fire
at the same time for each media stream. Ta and the retransmit timer
RTO are computed as described in Section 12. Multiplying by N allows
this aggregate check throughput to be split between all active check
lists. The first timer fires immediately, so that the agent performs

a connectivity check the moment the candidate exchange has been done,
followed by the next check Ta seconds later (since there is only one
active check list).

When the timer fires and there is no triggered check to be sent, the
agent MUST choose an ordinary check as follows:

o Find the highest-priority pair in that check list that is in the
Waiting state.

o If there is such a pair:

* Send a STUN check from the local candidate of that pair to the
remote candidate of that pair. The procedures for forming the
STUN request for this purpose are described in Section 6.1.2.

* Set the state of the candidate pair to In-Progress.

o If there is no such pair:

* Find the highest-priority pair in that check list that is in
the Frozen state.

* |f there is such a pair:
+ Unfreeze the pair.

+ Perform a check for that pair, causing its state to
transition to In-Progress.

* |f there is no such pair:
+ Terminate the timer for that check list.
To compute the message integrity for the check, the agent uses the
remote username fragment and password learned from the candidate

information obtained from its peer. The local username fragment is
known directly by the agent for its own candidate.

Keranen & Rosenberg Expires June 23, 2016 [Page 39]

Internet-Draft ICE December 2015

The Initiator performs the ordinary checks on receiving the candidate
information from the Peer (responder) and having formed the
checklists. On the other hand the responding agent either performs
the triggered or ordinary checks as described above.

5.2. Lite Implementation Procedures

Lite implementations skips most of the steps in Section 5 except for
verifying the peer’s ICE support and determining its role in the ICE
processing.

On determining the role for a lite implementation being the

controlling agent means selecting a candidate pair based on the ones
in the candidate exchange (for IPv4, there is only ever one pair),

and then updating the peer with the new candidate information
reflecting that selection, when needed (it is never needed for an
IPv4-only host). The controlled agent is told which candidate pairs

to use for each media stream, and no further candidate updates are
needed to signal this information.

6. Performing Connectivity Checks

This section describes how connectivity checks are performed. All
ICE implementations are required to be compliant to [RFC5389], as
opposed to the older [RFC3489]. However, whereas a full
implementation will both generate checks (acting as a STUN client)
and receive them (acting as a STUN server), a lite implementation
will only receive checks, and thus will only act as a STUN server.

6.1. STUN Client Procedures

These procedures define how an agent sends a connectivity check,
whether it is an ordinary or a triggered check. These procedures are
only applicable to full implementations.

6.1.1. Creating Permissions for Relayed Candidates

If the connectivity check is being sent using a relayed local

candidate, the client MUST create a permission first if it has not

already created one previously. It would have created one previously

if it had told the TURN server to create a permission for the given
relayed candidate towards the IP address of the remote candidate. To
create the permission, the agent follows the procedures defined in
[RFC5766]. The permission MUST be created towards the IP address of
the remote candidate. It is RECOMMENDED that the agent defer
creation of a TURN channel until ICE completes, in which case
permissions for connectivity checks are normally created using a

Keranen & Rosenberg Expires June 23, 2016 [Page 40]

Internet-Draft ICE December 2015

CreatePermission request. Once established, the agent MUST keep the
permission active until ICE concludes.

6.1.2. Sending the Request

A connectivity check is generated by sending a Binding request from a

local candidate to a remote candidate. [RFC5389] describes how

Binding requests are constructed and generated. A connectivity check
MUST utilize the STUN short-term credential mechanism. Support for
backwards compatibility with RFC 3489 MUST NOT be used or assumed
with connectivity checks. The FINGERPRINT mechanism MUST be used for
connectivity checks.

ICE extends STUN by defining several new attributes, including

PRIORITY, USE-CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING. These
new attributes are formally defined in Section 15.1, and their usage

is described in the subsections below. These STUN extensions are

applicable only to connectivity checks used for ICE.

6.1.2.1. PRIORITY and USE-CANDIDATE

An agent MUST include the PRIORITY attribute in its Binding request.
The attribute MUST be set equal to the priority that would be
assigned, based on the algorithm in Section 4.1.2, to a peer

reflexive candidate, should one be learned as a consequence of this
check (see Section 6.1.3.2.1 for how peer reflexive candidates are
learned). This priority value will be computed identically to how

the priority for the local candidate of the pair was computed, except
that the type preference is set to the value for peer reflexive
candidate types.

The controlling agent MAY include the USE-CANDIDATE attribute in the
Binding request. The controlled agent MUST NOT include it in its
Binding request. This attribute signals that the controlling agent

wishes to cease checks for this component, and use the candidate pair
resulting from the check for this component. Section 7.1.1 provides
guidance on determining when to include it.

6.1.2.2. ICE-CONTROLLED and ICE-CONTROLLING

The agent MUST include the ICE-CONTROLLED attribute in the request if
it is in the controlled role, and MUST include the ICE-CONTROLLING
attribute in the request if it is in the controlling role. The

content of either attribute MUST be the tie-breaker that was

determined in Section 5.1.2. These attributes are defined fully in

Section 15.1.

Keranen & Rosenberg Expires June 23, 2016 [Page 41]

Internet-Draft ICE December 2015

6.1.2.3. Forming Credentials

A Binding request serving as a connectivity check MUST utilize the

STUN short-term credential mechanism. The username for the

credential is formed by concatenating the username fragment provided

by the peer with the username fragment of the agent sending the

request, separated by a colon (":"). The password is equal to the
password provided by the peer. For example, consider the case where
agent L is the initiating , agent and agent R is the responding

agent. Agent L included a username fragment of LFRAG for its
candidates and a password of LPASS. Agent R provided a username
fragment of RFRAG and a password of RPASS. A connectivity check from
L to R utilizes the username RFRAG:LFRAG and a password of RPASS. A
connectivity check from R to L utilizes the username LFRAG:RFRAG and
a password of LPASS. The responses utilize the same usernames and
passwords as the requests (note that the USERNAME attribute is not
present in the response).

6.1.2.4. DiffServ Treatment

If the agent is using Diffserv Codepoint markings [RFC2475] in its
media packets, it SHOULD apply those same markings to its
connectivity checks.

6.1.3. Processing the Response

When a Binding response is received, it is correlated to its Binding
request using the transaction ID, as defined in [RFC5389], which then
ties it to the candidate pair for which the Binding request was sent.
This section defines additional procedures for processing Binding
responses specific to this usage of STUN.

6.1.3.1. Failure Cases

If the STUN transaction generates a 487 (Role Conflict) error

response, the agent checks whether it included the ICE-CONTROLLED or
ICE-CONTROLLING attribute in the Binding request. If the request
contained the ICE-CONTROLLED attribute, the agent MUST switch to the
controlling role if it has not already done so. If the request

contained the ICE-CONTROLLING attribute, the agent MUST switch to the
controlled role if it has not already done so. Once it has switched,

the agent MUST enqueue the candidate pair whose check generated the
487 into the triggered check queue. The state of that pair is set to
Waiting. When the triggered check is sent, it will contain an ICE-
CONTROLLING or ICE-CONTROLLED attribute reflecting its new role.
Note, however, that the tie-breaker value MUST NOT be reselected.

Keranen & Rosenberg Expires June 23, 2016 [Page 42]

Internet-Draft ICE December 2015

A change in roles will require an agent to recompute pair priorities
(Section 5.1.3.2), since those priorities are a function of

controlling and controlled roles. The change in role will also

impact whether the agent is responsible for selecting nominated pairs
and generating updated candidate information for sharing upon
conclusion of ICE.

Agents MAY support receipt of ICMP errors for connectivity checks.

If the STUN transaction generates an ICMP error, the agent sets the
state of the pair to Failed. If the STUN transaction generates a
STUN error response that is unrecoverable (as defined in [RFC5389])
or times out, the agent sets the state of the pair to Failed.

The agent MUST check that the source IP address and port of the
response equal the destination IP address and port to which the
Binding request was sent, and that the destination IP address and
port of the response match the source IP address and port from which
the Binding request was sent. In other words, the source and
destination transport addresses in the request and responses are
symmetric. If they are not symmetric, the agent sets the state of

the pair to Failed.

6.1.3.2. Success Cases

A check is considered to be a success if all of the following are
true:

0 The STUN transaction generated a success response.

0 The source IP address and port of the response equals the
destination IP address and port to which the Binding request was
sent.

0 The destination IP address and port of the response match the
source IP address and port from which the Binding request was
sent.

6.1.3.2.1. Discovering Peer Reflexive Candidates
The agent checks the mapped address from the STUN response. If the
transport address does not match any of the local candidates that the
agent knows about, the mapped address represents a new candidate -- a
peer reflexive candidate. Like other candidates, it has a type,
base, priority, and foundation. They are computed as follows:

0 lIts type is equal to peer reflexive.

Keranen & Rosenberg Expires June 23, 2016 [Page 43]

Internet-Draft ICE December 2015

o Its base is set equal to the local candidate of the candidate pair
from which the STUN check was sent.

o lIts priority is set equal to the value of the PRIORITY attribute
in the Binding request.

o Its foundation is selected as described in Section 4.1.1.3.

This peer reflexive candidate is then added to the list of local
candidates for the media stream. Its username fragment and password
are the same as all other local candidates for that media stream.
However, the peer reflexive candidate is not paired with other remote
candidates. This is not necessary; a valid pair will be generated
from it momentarily based on the procedures in Section 6.1.3.2.2. If
an agent wishes to pair the peer reflexive candidate with other
remote candidates besides the one in the valid pair that will be
generated, the agent MAY generate an update the peer with the
candidate information that includes the peer reflexive candidate.

This will cause it to be paired with all other remote candidates.

6.1.3.2.2. Constructing a Valid Pair

The agent constructs a candidate pair whose local candidate equals
the mapped address of the response, and whose remote candidate equals
the destination address to which the request was sent. This is
called a valid pair, since it has been validated by a STUN
connectivity check. The valid pair may equal the pair that generated
the check, may equal a different pair in the check list, or may be a
pair not currently on any check list. If the pair equals the pair

that generated the check or is on a check list currently, it is also
added to the VALID LIST, which is maintained by the agent for each
media stream. This list is empty at the start of ICE processing, and
fills as checks are performed, resulting in valid candidate pairs.

It will be very common that the pair will not be on any check list.
Recall that the check list has pairs whose local candidates are never
server reflexive; those pairs had their local candidates converted to
the base of the server reflexive candidates, and then pruned if they
were redundant. When the response to the STUN check arrives, the
mapped address will be reflexive if there is a NAT between the two.
In that case, the valid pair will have a local candidate that doesn't
match any of the pairs in the check list.

If the pair is not on any check list, the agent computes the priority
for the pair based on the priority of each candidate, using the
algorithm in Section 5.1.3. The priority of the local candidate
depends on its type. If it is not peer reflexive, it is equal to the
priority signaled for that candidate in the candidate exchange. If

Keranen & Rosenberg Expires June 23, 2016 [Page 44]

Internet-Draft ICE December 2015

it is peer reflexive, it is equal to the PRIORITY attribute the agent
placed in the Binding request that just completed. The priority of

the remote candidate is taken from the candidate information of the
peer. If the candidate does not appear there, then the check must
have been a triggered check to a new remote candidate. In that case,
the priority is taken as the value of the PRIORITY attribute in the
Binding request that triggered the check that just completed. The
pair is then added to the VALID LIST.

6.1.3.2.3. Updating Pair States

The agent sets the state of the pair that *generated* the check to
Succeeded. Note that, the pair which *generated* the check may be
different than the valid pair constructed in Section 6.1.3.2.2 as a
consequence of the response. The success of this check might also
cause the state of other checks to change as well. The agent MUST
perform the following two steps:

1. The agent changes the states for all other Frozen pairs for the
same media stream and same foundation to Waiting. Typically, but
not always, these other pairs will have different component IDs.

2. If there is a pair in the valid list for every component of this
media stream (where this is the actual number of components being
used, in cases where the number of components signaled in the
candidate exchange differs from initiating to responding agent),
the success of this check may unfreeze checks for other media
streams. Note that this step is followed not just the first time
the valid list under consideration has a pair for every
component, but every subsequent time a check succeeds and adds
yet another pair to that valid list. The agent examines the
check list for each other media stream in turn:

* |f the check list is active, the agent changes the state of
all Frozen pairs in that check list whose foundation matches a
pair in the valid list under consideration to Waiting.

* If the check list is frozen, and there is at least one pair in
the check list whose foundation matches a pair in the valid
list under consideration, the state of all pairs in the check
list whose foundation matches a pair in the valid list under
consideration is set to Waiting. This will cause the check
list to become active, and ordinary checks will begin for it,
as described in Section 5.1.4.

* |f the check list is frozen, and there are no pairs in the

check list whose foundation matches a pair in the valid list
under consideration, the agent

Keranen & Rosenberg Expires June 23, 2016 [Page 45]

Internet-Draft ICE December 2015

+ groups together all of the pairs with the same foundation,
and

+ for each group, sets the state of the pair with the lowest
component ID to Waiting. If there is more than one such
pair, the one with the highest-priority is used.

6.1.3.2.4. Updating the Nominated Flag

If the agent was a controlling agent, and it had included a USE-
CANDIDATE attribute in the Binding request, the valid pair generated
from that check has its nominated flag set to true. This flag

indicates that this valid pair should be used for media if it is the
highest-priority one amongst those whose nominated flag is set. This
may conclude ICE processing for this media stream or all media
streams; see Section 7.

If the agent is the controlled agent, the response may be the result
of a triggered check that was sent in response to a request that
itself had the USE-CANDIDATE attribute. This case is described in
Section 6.2.1.5, and may now result in setting the nominated flag for
the pair learned from the original request.

6.1.3.3. Check List and Timer State Updates
Regardless of whether the check was successful or failed, the
completion of the transaction may require updating of check list and
timer states.

If all of the pairs in the check list are now either in the Failed or
Succeeded state:

o If there is not a pair in the valid list for each component of the
media stream, the state of the check list is set to Failed.

o For each frozen check list, the agent
* groups together all of the pairs with the same foundation, and
* for each group, sets the state of the pair with the lowest
component ID to Waiting. If there is more than one such pair,
the one with the highest-priority is used.
If none of the pairs in the check list are in the Waiting or Frozen
state, the check list is no longer considered active, and will not

count towards the value of N in the computation of timers for
ordinary checks as described in Section 5.1.4.

Keranen & Rosenberg Expires June 23, 2016 [Page 46]

Internet-Draft ICE December 2015

6.2. STUN Server Procedures

An agent MUST be prepared to receive a Binding request on the base of
each candidate it included in its most recent candidate exchange.
This requirement holds even if the peer is a lite implementation.

The agent MUST use the short-term credential mechanism (i.e., the
MESSAGE-INTEGRITY attribute) to authenticate the request and perform
a message integrity check. Likewise, the short-term credential
mechanism MUST be used for the response. The agent MUST consider the
username to be valid if it consists of two values separated by a

colon, where the first value is equal to the username fragment

generated by the agent in an candidate exchange for a session in-
progress. lItis possible (and in fact very likely) that the

initiating agent will receive a Binding request prior to receiving

the candidates from its peer. If this happens, the agent MUST
immediately generate a response (including computation of the mapped
address as described in Section 6.2.1.2). The agent has sufficient
information at this point to generate the response; the password from

the peer is not required. Once the answer is received, it MUST

proceed with the remaining steps required, namely, Section 6.2.1.3,
Section 6.2.1.4, and Section 6.2.1.5 for full implementations. In

cases where multiple STUN requests are received before the answer,
this may cause several pairs to be queued up in the triggered check
gueue.

An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
NOT support the backwards-compatibility mechanisms to RFC 3489. It
MUST utilize the FINGERPRINT mechanism.

If the agent is using Diffserv Codepoint markings [RFC2475] in its
media packets, it SHOULD apply those same markings to its responses
to Binding requests. The same would apply to any layer 2 markings
the endpoint might be applying to media packets.

6.2.1. Additional Procedures for Full Implementations

This subsection defines the additional server procedures applicable
to full implementations.

6.2.1.1. Detecting and Repairing Role Conflicts

Normally, the rules for selection of a role in Section 5.1.2 will

result in each agent selecting a different role -- one controlling

and one controlled. However, in unusual call flows, typically

utilizing third party call control, it is possible for both agents to

select the same role. This section describes procedures for checking
for this case and repairing it. These procedures apply only to

Keranen & Rosenberg Expires June 23, 2016 [Page 47]

Internet-Draft ICE December 2015

usages of ICE that require conflict resolution. The usage document
MUST specify whether this mechanism is needed.

An agent MUST examine the Binding request for either the ICE-
CONTROLLING or ICE-CONTROLLED attribute. It MUST follow these
procedures:

o If neither ICE-CONTROLLING nor ICE-CONTROLLED is present in the
request, the peer agent may have implemented a previous version of
this specification. There may be a conflict, but it cannot be
detected.

o If the agent is in the controlling role, and the ICE-CONTROLLING
attribute is present in the request:

* |f the agent’s tie-breaker is larger than or equal to the
contents of the ICE-CONTROLLING attribute, the agent generates
a Binding error response and includes an ERROR-CODE attribute
with a value of 487 (Role Conflict) but retains its role.

* |If the agent’s tie-breaker is less than the contents of the
ICE-CONTROLLING attribute, the agent switches to the controlled
role.

o If the agent is in the controlled role, and the ICE-CONTROLLED
attribute is present in the request:

* |f the agent’s tie-breaker is larger than or equal to the
contents of the ICE-CONTROLLED attribute, the agent switches to
the controlling role.

* |If the agent’s tie-breaker is less than the contents of the
ICE-CONTROLLED attribute, the agent generates a Binding error
response and includes an ERROR-CODE attribute with a value of
487 (Role Conflict) but retains its role.

o If the agent is in the controlled role and the ICE-CONTROLLING
attribute was present in the request, or the agent was in the
controlling role and the ICE-CONTROLLED attribute was present in
the request, there is no conflict.

A change in roles will require an agent to recompute pair priorities
(Section 5.1.3.2), since those priorities are a function of

controlling and controlled roles. The change in role will also

impact whether the agent is responsible for selecting nominated pairs
and initiating exchange with updated candidate information upon
conclusion of ICE.

Keranen & Rosenberg Expires June 23, 2016 [Page 48]

Internet-Draft ICE December 2015

The remaining sections in Section 6.2.1 are followed if the server
generated a successful response to the Binding request, even if the
agent changed roles.

6.2.1.2. Computing Mapped Address

For requests being received on a relayed candidate, the source

transport address used for STUN processing (namely, generation of the
XOR-MAPPED-ADDRESS attribute) is the transport address as seen by the
TURN server. That source transport address will be present in the
XOR-PEER-ADDRESS attribute of a Data Indication message, if the
Binding request was delivered through a Data Indication. If the

Binding request was delivered through a ChannelData message, the

source transport address is the one that was bound to the channel.

6.2.1.3. Learning Peer Reflexive Candidates

If the source transport address of the request does not match any
existing remote candidates, it represents a new peer reflexive remote
candidate. This candidate is constructed as follows:

0 The priority of the candidate is set to the PRIORITY attribute
from the request.

0 The type of the candidate is set to peer reflexive.

o The foundation of the candidate is set to an arbitrary value,
different from the foundation for all other remote candidates. If
any subsequent candidate exchanges contain this peer reflexive
candidate, it will signal the actual foundation for the candidate.

o The component ID of this candidate is set to the component ID for
the local candidate to which the request was sent.

This candidate is added to the list of remote candidates. However,
the agent does not pair this candidate with any local candidates.

6.2.1.4. Triggered Checks

Next, the agent constructs a pair whose local candidate is equal to

the transport address on which the STUN request was received, and a
remote candidate equal to the source transport address where the
request came from (which may be the peer reflexive remote candidate
that was just learned). The local candidate will either be a host
candidate (for cases where the request was not received through a
relay) or a relayed candidate (for cases where it is received through

a relay). The local candidate can never be a server reflexive
candidate. Since both candidates are known to the agent, it can

Keranen & Rosenberg Expires June 23, 2016 [Page 49]

Internet-Draft ICE December 2015

obtain their priorities and compute the candidate pair priority.
This pair is then looked up in the check list. There can be one of
several outcomes:

o If the pair is already on the check list:

* |f the state of that pair is Waiting or Frozen, a check for
that pair is enqueued into the triggered check queue if not
already present.

* |f the state of that pair is In-Progress, the agent cancels the
in-progress transaction. Cancellation means that the agent
will not retransmit the request, will not treat the lack of
response to be a failure, but will wait the duration of the
transaction timeout for a response. In addition, the agent
MUST create a new connectivity check for that pair
(representing a new STUN Binding request transaction) by
enqueueing the pair in the triggered check queue. The state of
the pair is then changed to Waiting.

* |If the state of the pair is Failed, it is changed to Waiting
and the agent MUST create a new connectivity check for that
pair (representing a new STUN Binding request transaction), by
enqueueing the pair in the triggered check queue.

* |If the state of that pair is Succeeded, nothing further is
done.

These steps are done to facilitate rapid completion of ICE when both
agents are behind NAT.

o If the pair is not already on the check list:
* The pair is inserted into the check list based on its priority.
* |ts state is set to Waiting.
* The pair is enqueued into the triggered check queue.

When a triggered check is to be sent, it is constructed and processed
as described in Section 6.1.2. These procedures require the agent to
know the transport address, username fragment, and password for the
peer. The username fragment for the remote candidate is equal to the
part after the colon of the USERNAME in the Binding request that was
just received. Using that username fragment, the agent can check the
candidates received from its peer (there may be more than one in
cases of forking), and find this username fragment. The
corresponding password is then selected.

Keranen & Rosenberg Expires June 23, 2016 [Page 50]

Internet-Draft ICE December 2015

6.2.1.5. Updating the Nominated Flag

If the Binding request received by the agent had the USE-CANDIDATE
attribute set, and the agent is in the controlled role, the agent
looks at the state of the pair computed in Section 6.2.1.4:

o If the state of this pair is Succeeded, it means that the check
generated by this pair produced a successful response. This would
have caused the agent to construct a valid pair when that success
response was received (see Section 6.1.3.2.2). The agent now sets
the nominated flag in the valid pair to true. This may end ICE
processing for this media stream; see Section 7.

o If the state of this pair is In-Progress, if its check produces a
successful result, the resulting valid pair has its nominated flag
set when the response arrives. This may end ICE processing for
this media stream when it arrives; see Section 7.

6.2.2. Additional Procedures for Lite Implementations

If the check that was just received contained a USE-CANDIDATE
attribute, the agent constructs a candidate pair whose local

candidate is equal to the transport address on which the request was
received, and whose remote candidate is equal to the source transport
address of the request that was received. This candidate pair is
assigned an arbitrary priority, and placed into a list of valid

candidates called the valid list. The agent sets the nominated flag

for that pair to true. ICE processing is considered complete for a
media stream if the valid list contains a candidate pair for each
component.

7. Concluding ICE Processing
This section describes how an agent completes ICE.
7.1. Procedures for Full Implementations

Concluding ICE involves nominating pairs by the controlling agent and
updating of state machinery.

7.1.1. Nominating Pairs

The controlling agent nominates pairs to be selected by ICE by using
one of two techniques: regular nomination or aggressive nomination.
If its peer has a lite implementation, an agent MUST use a regular
nomination algorithm. If its peer is using ICE options (present in

an ice-options attribute from the peer) that the agent does not
understand, the agent MUST use a regular nomination algorithm. If

Keranen & Rosenberg Expires June 23, 2016 [Page 51]

Internet-Draft ICE December 2015

its peer is a full implementation and isn’t using any ICE options or

is using ICE options understood by the agent, the agent MAY use
either the aggressive or the regular nomination algorithm. However,
the regular algorithm is RECOMMENDED since it provides greater
stability.

7.1.1.1. Regular Nomination

With regular nomination, the agent lets some number of checks
complete, each of which omit the USE-CANDIDATE attribute. Once one
or more checks complete successfully for a component of a media
stream, valid pairs are generated and added to the valid list. The

agent lets the checks continue until some stopping criterion is met,

and then picks amongst the valid pairs based on an evaluation

criterion. The criteria for stopping the checks and for evaluating

the valid pairs is entirely a matter of local optimization.

When the controlling agent selects the valid pair, it repeats the

check that produced this valid pair (by enqueueing the pair that
generated the check into the triggered check queue), this time with

the USE-CANDIDATE attribute. This check should succeed (since the
previous did), causing the nominated flag of that and only that pair

to be set. Consequently, there will be only a single nominated pair

in the valid list for each component, and when the state of the check
list moves to completed, that exact pair is selected by ICE for

sending and receiving media for that component.

Regular nomination provides the most flexibility, since the agent has
control over the stopping and selection criteria for checks. The

only requirement is that the agent MUST eventually pick one and only
one candidate pair and generate a check for that pair with the USE-
CANDIDATE attribute present. Regular nomination also improves ICE’s
resilience to variations in implementation (see Section 11). Regular
nomination is also more stable, allowing both agents to converge on a
single pair for media without any transient selections, which can
happen with the aggressive algorithm. The drawback of regular
nomination is that it is guaranteed to increase latencies because it
requires an additional check to be done.

7.1.1.2. Aggressive Nomination

With aggressive nomination, the controlling agent includes the USE-
CANDIDATE attribute in every check it sends. Once the first check
for a component succeeds, it will be added to the valid list and have
its nominated flag set. When all components have a nominated pair in
the valid list, media can begin to flow using the highest-priority
nominated pair. However, because the agent included the USE-
CANDIDATE attribute in all of its checks, another check may yet

Keranen & Rosenberg Expires June 23, 2016 [Page 52]

Internet-Draft ICE December 2015

complete, causing another valid pair to have its nominated flag set.
ICE always selects the highest-priority nominated candidate pair from
the valid list as the one used for media. Consequently, the selected
pair may actually change briefly as ICE checks complete, resulting in
a set of transient selections until it stabilizes.

If certain connectivity check messages are lost, ICE agents using
aggressive nomination may end up with different views on the selected
candidate pair. In this case, if a security protocol that is able to
authenticate the communicating parties (e.g., DTLS) is used, the
controlled agent may receive valid secured traffic or handshake
initialization originating from the controlling agent on a candidate
pair that is different from the one the controlled agent considers as
the selected pair. If this happens, the controlled agent MUST
consider the pair with the secured traffic as the correct selected
pair. If such security protocol is not used, both agents SHOULD
continue sending connectivity check messages on the selected pair
even after a pair has already been selected for use. In order to
prevent the problem described here, at least one check from both
agents needs to fully succeed on the selected pair.

7.1.2. Updating States

For both controlling and controlled agents, the state of ICE
processing depends on the presence of nominated candidate pairs in
the valid list and on the state of the check list. Note that, at any

time, more than one of the following cases can apply:

o If there are no nominated pairs in the valid list for a media
stream and the state of the check list is Running, ICE processing
continues.

o If there is at least one nominated pair in the valid list for a
media stream and the state of the check list is Running:

* The agent MUST remove all Waiting and Frozen pairs in the check
list and triggered check queue for the same component as the
nominated pairs for that media stream.

* |f an In-Progress pair in the check list is for the same
component as a nominated pair, the agent SHOULD cease
retransmissions for its check if its pair priority is lower
than the lowest-priority nominated pair for that component.

0 Once there is at least one nominated pair in the valid list for

every component of at least one media stream and the state of the
check list is Running:

Keranen & Rosenberg Expires June 23, 2016 [Page 53]

Internet-Draft ICE December 2015

* The agent MUST change the state of processing for its check
list for that media stream to Completed.

* The agent MUST continue to respond to any checks it may still
receive for that media stream, and MUST perform triggered
checks if required by the processing of Section 6.2.

* The agent MUST continue retransmitting any In-Progress checks
for that check list.

* The agent MAY begin transmitting media for this media stream as
described in Section 10.1.

0 Once the state of each check list is Completed:

* The agent sets the state of ICE processing overall to
Completed.

* |If the controlling agent is using an aggressive nomination
algorithm, this may result in several updated candidate
exchanges as the pairs selected for media change. An agent MAY
delay sending its candidates for a brief interval (one second
is RECOMMENDED) in order to allow the selected pairs to

stabilize.

o If the state of the check list is Failed, ICE has not been able to
complete for this media stream. The correct behavior depends on
the state of the check lists for other media streams:

* |f all check lists are Failed, ICE processing overall is
considered to be in the Failed state, and the agent SHOULD
consider the session a failure, SHOULD NOT restart ICE, and the
controlling agent SHOULD terminate the entire session.

* |If at least one of the check lists for other media streams is
Completed, the controlling agent SHOULD remove the failed media
stream from the session while sending updated candidate list to
its peer.

* |If none of the check lists for other media streams are
Completed, but at least one is Running, the agent SHOULD let

ICE continue.
7.2. Procedures for Lite Implementations

Concluding ICE for a lite implementation is relatively
straightforward. There are two cases to consider:

Keranen & Rosenberg Expires June 23, 2016 [Page 54]

Internet-Draft ICE December 2015

The implementation is lite, and its peer is full.
The implementation is lite, and its peer is lite.

The effect of ICE concluding is that the agent can free any allocated
host candidates that were not utilized by ICE, as described in
Section 7.3.

7.2.1. PeerIs Full

In this case, the agent will receive connectivity checks from its

peer. When an agent has received a connectivity check that includes

the USE-CANDIDATE attribute for each component of a media stream, the
state of ICE processing for that media stream moves from Running to
Completed. When the state of ICE processing for all media streams is
Completed, the state of ICE processing overall is Completed.

The lite implementation will never itself determine that ICE
processing has failed for a media stream; rather, the full peer will
make that determination and then remove or restart the failed media
stream as part of subsequent candidate exchange process.

7.2.2. Peer Is Lite

Once the candidate exchange has completed, both agents examine their
candidates and those of its peer. For each media stream, each agent
pairs up its own candidates with the candidates of its peer for that

media stream. Two candidates are paired up when they are for the
same component, utilize the same transport protocol (UDP in this
specification), and are from the same IP address family (IPv4 or

IPv6).

o If there is a single pair per component, that pair is added to the
Valid list. If all of the components for a media stream had one
pair, the state of ICE processing for that media stream is set to
Completed. If all media streams are Completed, the state of ICE
processing is set to Completed overall. This will always be the
case for implementations that are IPv4-only.

o If there is more than one pair per component:

* The agent MUST select a pair based on local policy. Since this
case only arises for IPv6, it is RECOMMENDED that an agent
follow the procedures of RFC 6724 [RFC6724] to select a single
pair.

* The agent adds the selected pair for each component to the
valid list. As described in Section 10.1, this will permit

Keranen & Rosenberg Expires June 23, 2016 [Page 55]

Internet-Draft ICE December 2015

media to begin flowing. However, it is possible (and in fact
likely) that both agents have chosen different pairs.

* To reconcile this, the controlling agent MUST send updated
candidate list which will include the remote-candidates
attribute.

* The agent MUST NOT update the state of ICE processing until
after the candidate exchange completes. Then the controlling
agent MUST change the state of ICE processing to Completed for
all media streams, and the state of ICE processing overall to
Completed.

7.3. Freeing Candidates
7.3.1. Full Implementation Procedures

The procedures in Section 7 require that an agent continue to listen
for STUN requests and continue to generate triggered checks for a
media stream, even once processing for that stream completes. The
rules in this section describe when it is safe for an agent to cease
sending or receiving checks on a candidate that was not selected by
ICE, and then free the candidate.

7.3.2. Lite Implementation Procedures

A lite implementation MAY free candidates not selected by ICE as soon
as ICE processing has reached the Completed state for all peers for
all media streams using those candidates.

8. ICE Restarts

An agent MAY restart ICE processing for an existing media stream. An
ICE restart, as the name implies, will cause all previous states of

ICE processing to be flushed and checks to start anew. The only
difference between an ICE restart and a brand new media session is
that, during the restart, media can continue to be sent to the

previously validated pair.

An agent MUST restart ICE for a media stream if:

0 The candidate(s) is being generated for the purposes of changing
the target of the media stream. In other words, if an agent wants
to generate an updated candidate information that, had ICE not
been in use, would result in a new value for the destination of a
media component.

Keranen & Rosenberg Expires June 23, 2016 [Page 56]

Internet-Draft ICE December 2015

0 An agent is changing its implementation level. This typically
only happens in third party call control use cases, where the
entity performing the signaling is not the entity receiving the
media, and it has changed the target of media mid-session to
another entity that has a different ICE implementation.

To restart ICE, an agent MUST change both the password and the user
name fragment for the media stream when exchanging the candidates.
The new candidate set MAY include some, none, or all of the previous
candidates for that stream and MAY include a totally new set of
candidates.

9. Keepalives

All endpoints MUST send keepalives for each media session. These
keepalives serve the purpose of keeping NAT bindings alive for the
media session. These keepalives MUST be sent even if ICE is not
being utilized for the session at all. The keepalive SHOULD be sent
using a format that is supported by its peer. ICE endpoints allow

for STUN-based keepalives for UDP streams, and as such, STUN
keepalives MUST be used when an agent is a full ICE implementation
and is communicating with a peer that supports ICE (lite or full).

If the peer does not support ICE, the choice of a packet format for
keepalives is a matter of local implementation. A format that allows
packets to easily be sent in the absence of actual media content is
RECOMMENDED. Examples of formats that readily meet this goal are RTP
No-Op [I-D.ietf-avt-rtp-no-op], and in cases where both sides support

it, RTP comfort noise [RFC3389]. If the peer doesn’t support any
formats that are particularly well suited for keepalives, an agent
SHOULD send RTP packets with an incorrect version number, or some
other form of error that would cause them to be discarded by the

peer.

If there has been no packet sent on the candidate pair ICE is using

for a media component for Tr seconds (where packets include those
defined for the component (RTP or RTCP) and previous keepalives), an
agent MUST generate a keepalive on that pair. Tr SHOULD be
configurable and SHOULD have a default of 15 seconds. Tr MUST NOT be
configured to less than 15 seconds. Alternatively, if an agent has a
dynamic way to discover the binding lifetimes of the intervening

NATSs, it can use that value to determine Tr. Administrators

deploying ICE in more controlled networking environments SHOULD set

Tr to the longest duration possible in their environment.

If STUN is being used for keepalives, a STUN Binding Indication is
used [RFC5389]. The Indication MUST NOT utilize any authentication
mechanism. It SHOULD contain the FINGERPRINT attribute to aid in
demultiplexing, but SHOULD NOT contain any other attributes. Itis

Keranen & Rosenberg Expires June 23, 2016 [Page 57]

Internet-Draft ICE December 2015

used solely to keep the NAT bindings alive. The Binding Indication
is sent using the same local and remote candidates that are being
used for media. Though Binding Indications are used for keepalives,
an agent MUST be prepared to receive a connectivity check as well.
If a connectivity check is received, a response is generated as
discussed in [RFC5389], but there is no impact on ICE processing
otherwise.

An agent MUST begin the keepalive processing once ICE has selected
candidates for usage with media, or media begins to flow, whichever
happens first. Keepalives end once the session terminates or the
media stream is removed.

10. Media Handling
10.1. Sending Media

Procedures for sending media differ for full and lite
implementations.

10.1.1. Procedures for Full Implementations

Agents always send media using a candidate pair, called the selected
candidate pair. An agent will send media to the remote candidate in
the selected pair (setting the destination address and port of the
packet equal to that remote candidate), and will send it from the

local candidate of the selected pair. When the local candidate is
server or peer reflexive, media is originated from the base. Media
sent from a relayed candidate is sent from the base through that TURN
server, using procedures defined in [RFC5766].

If the local candidate is a relayed candidate, it is RECOMMENDED that
an agent create a channel on the TURN server towards the remote
candidate. This is done using the procedures for channel creation as
defined in Section 11 of [RFC5766].

The selected pair for a component of a media stream is:

o empty if the state of the check list for that media stream is
Running, and there is no previous selected pair for that component
due to an ICE restart

0 equal to the previous selected pair for a component of a media
stream if the state of the check list for that media stream is
Running, and there was a previous selected pair for that component
due to an ICE restart

Keranen & Rosenberg Expires June 23, 2016 [Page 58]

Internet-Draft ICE December 2015

o equal to the highest-priority nominated pair for that component in
the valid list if the state of the check list is Completed

If the selected pair for at least one component of a media stream is
empty, an agent MUST NOT send media for any component of that media
stream. If the selected pair for each component of a media stream

has a value, an agent MAY send media for all components of that media
stream.

10.1.2. Procedures for Lite Implementations

A lite implementation MUST NOT send media until it has a Valid list
that contains a candidate pair for each component of that media
stream. Once that happens, the agent MAY begin sending media
packets. To do that, it sends media to the remote candidate in the
pair (setting the destination address and port of the packet equal to
that remote candidate), and will send it from the local candidate.

10.1.3. Procedures for All Implementations

ICE has interactions with jitter buffer adaptation mechanisms. An
RTP stream can begin using one candidate, and switch to another one,
though this happens rarely with ICE. The newer candidate may result
in RTP packets taking a different path through the network -- one

with different delay characteristics. As discussed below, agents are
encouraged to re-adjust jitter buffers when there are changes in
source or destination address of media packets. Furthermore, many
audio codecs use the marker bit to signal the beginning of a

talkspurt, for the purposes of jitter buffer adaptation. For such
codecs, it is RECOMMENDED that the sender set the marker bit
[RFC3550] when an agent switches transmission of media from one
candidate pair to another.

10.2. Receiving Media

ICE implementations MUST be prepared to receive media on each
component on any candidates provided for that component in the most
recent candidate exchange (in the case of RTP, this would include
both RTP and RTCP if candidates were provided for both).

Itis RECOMMENDED that, when an agent receives an RTP packet with a
new source or destination IP address for a particular media stream,
that the agent re-adjust its jitter buffers.

RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
detecting synchronization source (SSRC) collisions and loops. These
algorithms are based, in part, on seeing different source transport
addresses with the same SSRC. However, when ICE is used, such

Keranen & Rosenberg Expires June 23, 2016 [Page 59]

Internet-Draft ICE December 2015

changes will sometimes occur as the media streams switch between
candidates. An agent will be able to determine that a media stream
is from the same peer as a consequence of the STUN exchange that
proceeds media transmission. Thus, if there is a change in source
transport address, but the media packets come from the same peer
agent, this SHOULD NOT be treated as an SSRC collision.

11. Extensibility Considerations

This specification makes very specific choices about how both agents
in a session coordinate to arrive at the set of candidate pairs that

are selected for media. It is anticipated that future specifications

will want to alter these algorithms, whether they are simple changes
like timer tweaks or larger changes like a revamp of the priority
algorithm. When such a change is made, providing interoperability
between the two agents in a session is critical.

First, ICE provides the ice-options attribute. Each extension or
change to ICE is associated with a token. When an agent supporting
such an extension or change triggers candidate exchange, it MUST
include the token for that extension in this attribute. This allows

each side to know what the other side is doing. This attribute MUST
NOT be present if the agent doesn’t support any ICE extensions or
changes.

One of the complications in achieving interoperability is that ICE
relies on a distributed algorithm running on both agents to converge
on an agreed set of candidate pairs. If the two agents run different
algorithms, it can be difficult to guarantee convergence on the same
candidate pairs. The regular nomination procedure described in
Section 7 eliminates some of the tight coordination by delegating the
selection algorithm completely to the controlling agent.
Consequently, when a controlling agent is communicating with a peer
that supports options it doesn’t know about, the agent MUST run a
regular nomination algorithm. When regular nomination is used, ICE
will converge perfectly even when both agents use different pair
prioritization algorithms. One of the keys to such convergence is
triggered checks, which ensure that the nominated pair is validated
by both agents. Consequently, any future ICE enhancements MUST
preserve triggered checks.

ICE is also extensible to other media streams beyond RTP, and for
transport protocols beyond UDP. Extensions to ICE for non-RTP media
streams need to specify how many components they utilize, and assign
component IDs to them, starting at 1 for the most important component
ID. Specifications for new transport protocols must define how, if

at all, various steps in the ICE processing differ from UDP.

Keranen & Rosenberg Expires June 23, 2016 [Page 60]

Internet-Draft ICE December 2015

12. Setting Ta and RTO

During the gathering phase of ICE (Section 4.1.1) and while ICE is
performing connectivity checks (Section 6), an agent sends STUN and
TURN transactions. These transactions are paced at a rate of one
every Ta milliseconds, and utilize a specific RTO. This section
describes how the values of Ta and RTO are computed. This
computation depends on whether ICE is being used with a real-time
media stream (such as RTP) or something else. When ICE is used for a
stream with a known maximum bandwidth, the computation in

Section 12.1 MAY be followed to rate-control the ICE exchanges. For
all other streams, the computation in Section 12.2 MUST be followed.

12.1. Real-time Media Streams

The values of RTO and Ta change during the lifetime of ICE
processing. One set of values applies during the gathering phase,
and the other, for connectivity checks.

The value of Ta SHOULD be configurable, and SHOULD have a default of:

For each media stream i:
Ta_i = (stun_packet_size / rtp_packet_size) * rtp_ptime

1
Ta = MAX (20ms, -------------=-=---)

i=1

where k is the number of media streams. During the gathering phase,
Ta is computed based on the number of media streams the agent has
indicated in the candidate information, and the RTP packet size and
RTP ptime are those of the most preferred codec for each media
stream. Once the candidate exchange is completed, the agent
recomputes Ta to pace the connectivity checks. In that case, the
value of Ta is based on the number of media streams that will

actually be used in the session, and the RTP packet size and RTP
ptime are those of the most preferred codec with which the agent will
send.

Keranen & Rosenberg Expires June 23, 2016 [Page 61]

Internet-Draft ICE December 2015

In addition, the retransmission timer for the STUN transactions, RTO,
defined in [RFC5389], SHOULD be configurable and during the gathering
phase, SHOULD have a default of:

RTO = MAX (100ms, Ta * (number of pairs))

where the number of pairs refers to the number of pairs of candidates
with STUN or TURN servers.

For connectivity checks, RTO SHOULD be configurable and SHOULD have a
default of:

RTO = MAX (100ms, Ta*N * (Num-Waiting + Num-In-Progress))

where Num-Waiting is the number of checks in the check list in the
Waiting state, and Num-In-Progress is the number of checks in the In-
Progress state. Note that the RTO will be different for each
transaction as the number of checks in the Waiting and In-Progress
states change.

These formulas are aimed at causing STUN transactions to be paced at
the same rate as media. This ensures that ICE will work properly

under the same network conditions needed to support the media as
well. See Appendix B.1 for additional discussion and motivations.
Because of this pacing, it will take a certain amount of time to

obtain all of the server reflexive and relayed candidates.
Implementations should be aware of the time required to do this, and

if the application requires a time budget, limit the number of

candidates that are gathered.

The formulas result in a behavior whereby an agent will send its
first packet for every single connectivity check before performing a
retransmit. This can be seen in the formulas for the RTO (which
represents the retransmit interval). Those formulas scale with N,
the number of checks to be performed. As a result of this, ICE
maintains a nicely constant rate, but becomes more sensitive to
packet loss. The loss of the first single packet for any
connectivity check is likely to cause that pair to take a long time

to be validated, and instead, a lower-priority check (but one for
which there was no packet loss) is much more likely to complete
first. This results in ICE performing sub-optimally, choosing lower-
priority pairs over higher-priority pairs. Implementors should be
aware of this consequence, but still should utilize the timer values
described here.

Keranen & Rosenberg Expires June 23, 2016 [Page 62]

Internet-Draft ICE December 2015

12.2. Non-real-time Sessions

In cases where ICE is used to establish some kind of session that is

not real time, and has no fixed rate associated with it that is known

to work on the network in which ICE is deployed, Ta and RTO revert to
more conservative values. Ta SHOULD be configurable, SHOULD have a
default of 500 ms, and MUST NOT be configurable to be less than 500
ms.

If other Ta value than the default is used, the agent MUST indicate
the value it prefers to use in the ICE exchange. Both agents MUST
use the higher out of the two proposed values.
In addition, the retransmission timer for the STUN transactions, RTO,
SHOULD be configurable and during the gathering phase, SHOULD have a
default of:

RTO = MAX (500ms, Ta * (humber of pairs))

where the number of pairs refers to the number of pairs of candidates
with STUN or TURN servers.

For connectivity checks, RTO SHOULD be configurable and SHOULD have a
default of:

RTO = MAX (500ms, Ta*N * (Num-Waiting + Num-In-Progress))
13. Example

The example is based on the simplified topology of Figure 9.

Keranen & Rosenberg Expires June 23, 2016 [Page 63]

Internet-Draft ICE December 2015

+ommeee +
[STUN |
|Server |
S — +

I
oo +
I I
| Internet |
I I
R +

I I
I I

+ommmeee +

| NAT | |

R + |

I I

I I
oot oot
| L | | R |

Fomem + B +

Figure 9: Example Topology

Two agents, L and R, are using ICE. Both are full-mode ICE
implementations and use aggressive nomination when they are
controlling. Both agents have a single IPv4 address. For agent L,
itis 10.0.1.1 in private address space [RFC1918], and for agent R,
192.0.2.1 on the public Internet. Both are configured with the same
STUN server (shown in this example for simplicity, although in
practice the agents do not need to use the same STUN server), which
is listening for STUN Binding requests at an IP address of 192.0.2.2
and port 3478. TURN servers are not used in this example. Agent L
is behind a NAT, and agent R is on the public Internet. The NAT has
an endpoint independent mapping property and an address dependent
filtering property. The public side of the NAT has an IP address of
192.0.2.3.

To facilitate understanding, transport addresses are listed using
variables that have mnemonic names. The format of the name is
entity-type-seqno, where entity refers to the entity whose IP address
the transport address is on, and is one of "L", "R", "STUN", or
"NAT". The type is either "PUB" for transport addresses that are
public, and "PRIV" for transport addresses that are private.
Finally, seq-no is a sequence number that is different for each
transport address of the same type on a particular entity. Each
variable has an IP address and port, denoted by varname.IP and
varname.PORT, respectively, where varname is the name of the
variable.

Keranen & Rosenberg Expires June 23, 2016 [Page 64]

Internet-Draft ICE December 2015

The STUN server has advertised transport address STUN-PUB-1 (which is
192.0.2.2:3478).

In the call flow itself, STUN messages are annotated with several
attributes. The "S=" attribute indicates the source transport

address of the message. The "D=" attribute indicates the destination
transport address of the message. The "MA=" attribute is used in
STUN Binding response messages and refers to the mapped address.
"USE-CAND" implies the presence of the USE-CANDIDATE attribute.

The call flow examples omit STUN authentication operations and RTCP,
and focus on RTP for a single media stream between two full
implementations.

L NAT STUN R
[RTP STUN alloc. | |
|(1) STUN Req | I I
[S=$L-PRIV-1 | | |
[ID=$STUN-PUB-1 | | |

|
|(2) STUN Req | |
|S=$NAT-PUB-1 | |
ID=$STUN-PUB-1 | |

|

|

|

| |

| |(3) STUN Res | |

	S=$STUN-PUB-1	
ID=$NAT-PUB-1		
IMA=$NAT-PUB-1		

|(4) STUN Res | | |
|S=$STUN-PUB-1 | | |
ID=$L-PRIV-1 | | |
IMA=$NAT-PUB-1 | | |

|(5) L's Candidate Information| |
| >|

| | | | RTP STUN
| | | | alloc.

| | |(6) STUN Req |

| | |S=$R-PUB-1 |

| | |D=$STUN-PUB-1 |

| | e |

| |

| |

| |

| |

| |

|(7) STUN Res |
|S=$STUN-PUB-1 |
|D=$R-PUB-1 |
IMA=$R-PUB-1 |

Keranen & Rosenberg Expires June 23, 2016 [Page 65]

Internet-Draft ICE December 2015

[(8) R’s Candidate Information| |

< |
| |(9) Bind Req | |Begin
|
|
|
|

|S=$R-PUB-1 | |Connectivity

[D=L-PRIV-1 | |Checks

|< I

|Dropped | I
[(10) Bind Req | | |
|S=$L-PRIV-1 | | |
|D=$R-PUB-1 | | |
[USE-CAND | | |

(11) Bind Req | |
|S=$NAT-PUB-1 | |
ID=$R-PUB-1 | |
JUSE-CAND | |

|S=$R-PUB-1 | |
ID=$NAT-PUB-1 | |
IMA=$NAT-PUB-1 | |
|< I
|(13) Bind Res | | |
|S=$R-PUB-1 | | |
ID=$L-PRIV-1 | | |
IMA=$NAT-PUB-1 | | |
[<o | | |
IRTP flows | | |
| |(14) Bind Req | |
| |S=$R-PUB-1 | |
|
|

I

I

I

|

I I

| (12) Bind Res | |
I

I

I

|

ID=$NAT-PUB-1 | |

< I
|(15) Bind Req | | |
|S=$R-PUB-1 | | |
ID=$L-PRIV-1 | | |

I
|(16) Bind Res | | |
|S=$L-PRIV-1 | | |
ID=$R-PUB-1 | | |
IMA=$R-PUB-1 | | |
e >] | |
	(17) Bind Res	
	S=$NAT-PUB-1	
ID=$R-PUB-1		
IMA=$R-PUB-1		

I >|
| | |IRTP flows

Keranen & Rosenberg Expires June 23, 2016 [Page 66]

Internet-Draft ICE December 2015

Figure 10: Example Flow

First, agent L obtains a host candidate from its local IP address

(not shown), and from that, sends a STUN Binding request to the STUN
server to get a server reflexive candidate (messages 1-4). Recall

that the NAT has the address and port independent mapping property.
Here, it creates a binding of NAT-PUB-1 for this UDP request, and

this becomes the server reflexive candidate for RTP.

Agent L sets a type preference of 126 for the host candidate and 100
for the server reflexive. The local preference is 65535. Based on
this, the priority of the host candidate is 2130706431 and for the
server reflexive candidate is 1694498815. The host candidate is
assigned a foundation of 1, and the server reflexive, a foundation of
2. These are sent to the peer.

This candidate information is received at agent R. Agent R will
obtain a host candidate, and from it, obtain a server reflexive
candidate (messages 6-7). Since R is not behind a NAT, this
candidate is identical to its host candidate, and they share the same
base. It therefore discards this redundant candidate and ends up
with a single host candidate. With identical type and local
preferences as L, the priority for this candidate is 2130706431. It
chooses a foundation of 1 for its single candidate. Then R’s
candidates are then sent to L.

Since neither side indicated that it is lite, the initiating agent
that began ICE processing (agent L) becomes the controlling agent.

Agents L and R both pair up the candidates. They both initially have
two pairs. However, agent L will prune the pair containing its

server reflexive candidate, resulting in just one. At agent L, this

pair has a local candidate of $L_PRIV_1 and remote candidate of
$R_PUB_1, and has a candidate pair priority of 4.57566E+18 (note that
an implementation would represent this as a 64-bit integer so as not

to lose precision). At agent R, there are two pairs. The highest

priority has a local candidate of $R_PUB_1 and remote candidate of
$L_PRIV_1 and has a priority of 4.57566E+18, and the second has a
local candidate of $R_PUB_1 and remote candidate of SNAT_PUB_1 and
priority 3.63891E+18.

Agent R begins its connectivity check (message 9) for the first pair
(between the two host candidates). Since R is the controlled agent
for this session, the check omits the USE-CANDIDATE attribute. The
host candidate from agent L is private and behind a NAT, and thus
this check won't be successful, because the packet cannot be routed
from R to L.

Keranen & Rosenberg Expires June 23, 2016 [Page 67]

Internet-Draft ICE December 2015

When agent L gets the R's candidates, it performs its one and only
connectivity check (messages 10-13). It implements the aggressive
nomination algorithm, and thus includes a USE-CANDIDATE attribute in
this check. Since the check succeeds, agent L creates a new pair,
whose local candidate is from the mapped address in the Binding
response (NAT-PUB-1 from message 13) and whose remote candidate is
the destination of the request (R-PUB-1 from message 10). This is
added to the valid list. In addition, it is marked as selected since

the Binding request contained the USE-CANDIDATE attribute. Since
there is a selected candidate in the Valid list for the one component

of this media stream, ICE processing for this stream moves into the
Completed state. Agent L can now send media if it so chooses.

Soon after receipt of the STUN Binding request from agent L (message
11), agent R will generate its triggered check. This check happens

to match the next one on its check list -- from its host candidate to
agent L’s server reflexive candidate. This check (messages 14-17)

will succeed. Consequently, agent R constructs a new candidate pair
using the mapped address from the response as the local candidate (R-
PUB-1) and the destination of the request (NAT-PUB-1) as the remote
candidate. This pair is added to the Valid list for that media

stream. Since the check was generated in the reverse direction of a
check that contained the USE-CANDIDATE attribute, the candidate pair
is marked as selected. Consequently, processing for this stream
moves into the Completed state, and agent R can also send media.

14. Security Considerations

There are several types of attacks possible in an ICE system. This
section considers these attacks and their countermeasures. These
countermeasures include:

0 Using ICE in conjunction with secure signaling techniques, such as
SIPS.

o Limiting the total number of connectivity checks to 100, and
optionally limiting the number of candidates they’ll accept in an
candidate exchange.

14.1. Attacks on Connectivity Checks
An attacker might attempt to disrupt the STUN connectivity checks.
Ultimately, all of these attacks fool an agent into thinking
something incorrect about the results of the connectivity checks.
The possible false conclusions an attacker can try and cause are:

False Invalid: An attacker can fool a pair of agents into thinking a
candidate pair is invalid, when it isn’t. This can be used to

Keranen & Rosenberg Expires June 23, 2016 [Page 68]

Internet-Draft ICE December 2015

cause an agent to prefer a different candidate (such as one
injected by the attacker) or to disrupt a call by forcing all
candidates to fail.

False Valid: An attacker can fool a pair of agents into thinking a
candidate pair is valid, when it isn’t. This can cause an agent
to proceed with a session, but then not be able to receive any
media.

False Peer Reflexive Candidate: An attacker can cause an agent to
discover a new peer reflexive candidate, when it shouldn’t have.
This can be used to redirect media streams to a Denial-of-Service
(DoS) target or to the attacker, for eavesdropping or other
purposes.

False Valid on False Candidate: An attacker has already convinced an
agent that there is a candidate with an address that doesn’t
actually route to that agent (for example, by injecting a false
peer reflexive candidate or false server reflexive candidate). It
must then launch an attack that forces the agents to believe that
this candidate is valid.

If an attacker can cause a false peer reflexive candidate or false
valid on a false candidate, it can launch any of the attacks
described in [RFC5389].

To force the false invalid result, the attacker has to wait for the
connectivity check from one of the agents to be sent. When it is,
the attacker needs to inject a fake response with an unrecoverable
error response, such as a 400. However, since the candidate is, in
fact, valid, the original request may reach the peer agent, and
result in a success response. The attacker needs to force this
packet or its response to be dropped, through a DoS attack, layer 2
network disruption, or other technique. If it doesn’t do this, the
success response will also reach the originator, alerting it to a
possible attack. Fortunately, this attack is mitigated completely
through the STUN short-term credential mechanism. The attacker needs
to inject a fake response, and in order for this response to be
processed, the attacker needs the password. If the candidate
exchange signaling is secured, the attacker will not have the
password and its response will be discarded.

Forcing the fake valid result works in a similar way. The agent
needs to wait for the Binding request from each agent, and inject a
fake success response. The attacker won’t need to worry about
disrupting the actual response since, if the candidate is not valid,

it presumably wouldn’t be received anyway. However, like the fake

Keranen & Rosenberg Expires June 23, 2016 [Page 69]

Internet-Draft ICE December 2015

invalid attack, this attack is mitigated by the STUN short-term
credential mechanism in conjunction with a secure candidate exchange.

Forcing the false peer reflexive candidate result can be done either

with fake requests or responses, or with replays. We consider the

fake requests and responses case first. It requires the attacker to

send a Binding request to one agent with a source IP address and port

for the false candidate. In addition, the attacker must wait for a

Binding request from the other agent, and generate a fake response

with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
Like the other attacks described here, this attack is mitigated by

the STUN message integrity mechanisms and secure candidate exchanges.

Forcing the false peer reflexive candidate result with packet replays
is different. The attacker waits until one of the agents sends a

check. Itintercepts this request, and replays it towards the other
agent with a faked source IP address. It must also prevent the
original request from reaching the remote agent, either by launching
a DoS attack to cause the packet to be dropped, or forcing it to be
dropped using layer 2 mechanisms. The replayed packet is received at
the other agent, and accepted, since the integrity check passes (the
integrity check cannot and does not cover the source IP address and
port). Itis then responded to. This response will contain a XOR-
MAPPED-ADDRESS with the false candidate, and will be sent to that
false candidate. The attacker must then receive it and relay it
towards the originator.

The other agent will then initiate a connectivity check towards that
false candidate. This validation needs to succeed. This requires

the attacker to force a false valid on a false candidate. Injecting

of fake requests or responses to achieve this goal is prevented using
the integrity mechanisms of STUN and the candidate exchange. Thus,
this attack can only be launched through replays. To do that, the
attacker must intercept the check towards this false candidate, and
replay it towards the other agent. Then, it must intercept the

response and replay that back as well.

This attack is very hard to launch unless the attacker is identified
by the fake candidate. This is because it requires the attacker to
intercept and replay packets sent by two different hosts. If both
agents are on different networks (for example, across the public
Internet), this attack can be hard to coordinate, since it needs to
occur against two different endpoints on different parts of the
network at the same time.

If the attacker itself is identified by the fake candidate, the

attack is easier to coordinate. However, if the media path is
secured (e.g., using SRTP [RFC3711)), the attacker will not be able

Keranen & Rosenberg Expires June 23, 2016 [Page 70]

Internet-Draft ICE December 2015

to play the media packets, but will only be able to discard them,
effectively disabling the media stream for the call. However, this
attack requires the agent to disrupt packets in order to block the
connectivity check from reaching the target. In that case, if the
goal is to disrupt the media stream, it's much easier to just disrupt
it with the same mechanism, rather than attack ICE.

14.2. Attacks on Server Reflexive Address Gathering

ICE endpoints make use of STUN Binding requests for gathering server
reflexive candidates from a STUN server. These requests are not
authenticated in any way. As a consequence, there are numerous
techniques an attacker can employ to provide the client with a false
server reflexive candidate:

0 An attacker can compromise the DNS, causing DNS queries to return
a rogue STUN server address. That server can provide the client
with fake server reflexive candidates. This attack is mitigated
by DNS security, though DNS-SEC is not required to address it.

0 An attacker that can observe STUN messages (such as an attacker on
a shared network segment, like WiFi) can inject a fake response
that is valid and will be accepted by the client.

0 An attacker can compromise a STUN server by means of a virus, and
cause it to send responses with incorrect mapped addresses.

A false mapped address learned by these attacks will be used as a
server reflexive candidate in the ICE exchange. For this candidate
to actually be used for media, the attacker must also attack the
connectivity checks, and in particular, force a false valid on a

false candidate. This attack is very hard to launch if the false
address identifies a fourth party (neither the initiator, responder,
nor attacker), since it requires attacking the checks generated by
each agent in the session, and is prevented by SRTP if it identifies
the attacker themself.

If the attacker elects not to attack the connectivity checks, the

worst it can do is prevent the server reflexive candidate from being
used. However, if the peer agent has at least one candidate that is
reachable by the agent under attack, the STUN connectivity checks
themselves will provide a peer reflexive candidate that can be used
for the exchange of media. Peer reflexive candidates are generally
preferred over server reflexive candidates. As such, an attack

solely on the STUN address gathering will normally have no impact on
a session at all.

Keranen & Rosenberg Expires June 23, 2016 [Page 71]

Internet-Draft ICE December 2015

14.3. Attacks on Relayed Candidate Gathering

An attacker might attempt to disrupt the gathering of relayed
candidates, forcing the client to believe it has a false relayed
candidate. Exchanges with the TURN server are authenticated using a
long-term credential. Consequently, injection of fake responses or
requests will not work. In addition, unlike Binding requests,

Allocate requests are not susceptible to replay attacks with modified
source IP addresses and ports, since the source IP address and port
are not utilized to provide the client with its relayed candidate.

However, TURN servers are susceptible to DNS attacks, or to viruses
aimed at the TURN server, for purposes of turning it into a zombie or
rogue server. These attacks can be mitigated by DNS-SEC and through
good box and software security on TURN servers.

Even if an attacker has caused the client to believe in a false

relayed candidate, the connectivity checks cause such a candidate to
be used only if they succeed. Thus, an attacker must launch a false
valid on a false candidate, per above, which is a very difficult

attack to coordinate.

14.4. Insider Attacks

In addition to attacks where the attacker is a third party trying to
insert fake candidate information or stun messages, there are attacks
possible with ICE when the attacker is an authenticated and valid
participant in the ICE exchange.

14.4.1. STUN Amplification Attack

The STUN amplification attack is similar to the voice hammer.
However, instead of voice packets being directed to the target, STUN
connectivity checks are directed to the target. The attacker sends
an a large number of candidates, say, 50. The responding agent
receives the candidate information, and starts its checks, which are
directed at the target, and consequently, never generate a response.
The answerer will start a new connectivity check every Ta ms (say,
Ta=20ms). However, the retransmission timers are set to a large
number due to the large number of candidates. As a consequence,
packets will be sent at an interval of one every Ta milliseconds, and
then with increasing intervals after that. Thus, STUN will not send
packets at a rate faster than media would be sent, and the STUN
packets persist only briefly, until ICE fails for the session.
Nonetheless, this is an amplification mechanism.

It is impossible to eliminate the amplification, but the volume can
be reduced through a variety of heuristics. Agents SHOULD limit the

Keranen & Rosenberg Expires June 23, 2016 [Page 72]

Internet-Draft ICE December 2015

total number of connectivity checks they perform to 100.
Additionally, agents MAY limit the number of candidates they’ll
accept.

Frequently, protocols that wish to avoid these kinds of attacks force
the initiator to wait for a response prior to sending the next
message. However, in the case of ICE, this is not possible. Itis
not possible to differentiate the following two cases:

0 There was no response because the initiator is being used to
launch a DoS attack against an unsuspecting target that will not
respond.

0 There was no response because the IP address and port are not
reachable by the initiator.

In the second case, another check should be sent at the next
opportunity, while in the former case, no further checks should be
sent.

15. STUN Extensions
15.1. New Attributes

This specification defines four new attributes, PRIORITY, USE-
CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

The PRIORITY attribute indicates the priority that is to be

associated with a peer reflexive candidate, should one be discovered
by this check. It is a 32-bit unsigned integer, and has an attribute
value of 0x0024.

The USE-CANDIDATE attribute indicates that the candidate pair
resulting from this check should be used for transmission of media.
The attribute has no content (the Length field of the attribute is
zero); it serves as a flag. It has an attribute value of 0x0025.

The ICE-CONTROLLED attribute is present in a Binding request and
indicates that the client believes it is currently in the controlled

role. The content of the attribute is a 64-bit unsigned integer in
network byte order, which contains a random number used for tie-
breaking of role conflicts.

The ICE-CONTROLLING attribute is present in a Binding request and
indicates that the client believes it is currently in the controlling

role. The content of the attribute is a 64-bit unsigned integer in
network byte order, which contains a random number used for tie-
breaking of role conflicts.

Keranen & Rosenberg Expires June 23, 2016 [Page 73]

Internet-Draft ICE December 2015

15.2. New Error Response Codes
This specification defines a single error response code:

487 (Role Conflict): The Binding request contained either the ICE-
CONTROLLING or ICE-CONTROLLED attribute, indicating a role that
conflicted with the server. The server ran a tie-breaker based on
the tie-breaker value in the request and determined that the
client needs to switch roles.

16. Operational Considerations

This section discusses issues relevant to network operators looking
to deploy ICE.

16.1. NAT and Firewall Types

ICE was designed to work with existing NAT and firewall equipment.
Consequently, it is not necessary to replace or reconfigure existing
firewall and NAT equipment in order to facilitate deployment of ICE.
Indeed, ICE was developed to be deployed in environments where the
Voice over IP (VolP) operator has no control over the IP network
infrastructure, including firewalls and NAT.

That said, ICE works best in environments where the NAT devices are
"behave" compliant, meeting the recommendations defined in [RFC4787]
and [RFC5382]. In networks with behave-compliant NAT, ICE will work
without the need for a TURN server, thus improving voice quality,
decreasing call setup times, and reducing the bandwidth demands on
the network operator.

16.2. Bandwidth Requirements

Deployment of ICE can have several interactions with available
network capacity that operators should take into consideration.

16.2.1. STUN and TURN Server Capacity Planning

First and foremost, ICE makes use of TURN and STUN servers, which
would typically be located in the network operator’'s data centers.

The STUN servers require relatively little bandwidth. For each
component of each media stream, there will be one or more STUN
transactions from each client to the STUN server. In a basic voice-
only IPv4 VolP deployment, there will be four transactions per call
(one for RTP and one for RTCP, for both caller and callee). Each
transaction is a single request and a single response, the former

being 20 bytes long, and the latter, 28. Consequently, if a system

has N users, and each makes four calls in a busy hour, this would

Keranen & Rosenberg Expires June 23, 2016 [Page 74]

Internet-Draft ICE December 2015

require N*1.7bps. For one million users, this is 1.7 Mbps, a very
small number (relatively speaking).

TURN traffic is more substantial. The TURN server will see traffic
volume equal to the STUN volume (indeed, if TURN servers are
deployed, there is no need for a separate STUN server), in addition
to the traffic for the actual media traffic. The amount of calls
requiring TURN for media relay is highly dependent on network
topologies, and can and will vary over time. In a network with 100%
behave-compliant NAT, it is exactly zero. At time of writing, large-
scale consumer deployments were seeing between 5 and 10 percent of
calls requiring TURN servers. Considering a voice-only deployment
using G.711 (so 80 kbps in each direction), with .2 erlangs during
the busy hour, this is N*3.2 kbps. For a population of one million
users, this is 3.2 Gbps, assuming a 10% usage of TURN servers.

16.2.2. Gathering and Connectivity Checks

The process of gathering of candidates and performing of connectivity
checks can be bandwidth intensive. ICE has been designed to pace
both of these processes. The gathering phase and the connectivity
check phase are meant to generate traffic at roughly the same
bandwidth as the media traffic itself. This was done to ensure that,

if a network is designed to support multimedia traffic of a certain

type (voice, video, or just text), it will have sufficient capacity

to support the ICE checks for that media. Of course, the ICE checks
will cause a marginal increase in the total utilization; however,

this will typically be an extremely small increase.

Congestion due to the gathering and check phases has proven to be a
problem in deployments that did not utilize pacing. Typically,

access links became congested as the endpoints flooded the network
with checks as fast as they can send them. Consequently, network
operators should make sure that their ICE implementations support the
pacing feature. Though this pacing does increase call setup times,

it makes ICE network friendly and easier to deploy.

16.2.3. Keepalives

STUN keepalives (in the form of STUN Binding Indications) are sent in
the middle of a media session. However, they are sent only in the
absence of actual media traffic. In deployments that are not

utilizing Voice Activity Detection (VAD), the keepalives are never

used and there is no increase in bandwidth usage. When VAD is being
used, keepalives will be sent during silence periods. This involves

a single packet every 15-20 seconds, far less than the packet every
20-30 ms that is sent when there is voice. Therefore, keepalives

don’t have any real impact on capacity planning.

Keranen & Rosenberg Expires June 23, 2016 [Page 75]

Internet-Draft ICE December 2015

16.3. ICE and ICE-lite

Deployments utilizing a mix of ICE and ICE-lite interoperate
perfectly. They have been explicitly designed to do so, without loss
of function.

However, ICE-lite can only be deployed in limited use cases. Those
cases, and the caveats involved in doing so, are documented in
Appendix A.

16.4. Troubleshooting and Performance Management

ICE utilizes end-to-end connectivity checks, and places much of the
processing in the endpoints. This introduces a challenge to the
network operator -- how can they troubleshoot ICE deployments? How
can they know how ICE is performing?

ICE has built-in features to help deal with these problems. SIP
servers on the signaling path, typically deployed in the data centers
of the network operator, will see the contents of the candidate
exchanges that convey the ICE parameters. These parameters include
the type of each candidate (host, server reflexive, or relayed),

along with their related addresses. Once ICE processing has
completed, an updated candidate exchange takes place, signaling the
selected address (and its type). This updated re-INVITE is performed
exactly for the purposes of educating network equipment (such as a
diagnostic tool attached to a SIP server) about the results of ICE
processing.

As a consequence, through the logs generated by the SIP server, a
network operator can observe what types of candidates are being used
for each call, and what address was selected by ICE. This is the
primary information that helps evaluate how ICE is performing.

16.5. Endpoint Configuration

ICE relies on several pieces of data being configured into the
endpoints. This configuration data includes timers, credentials for
TURN servers, and hostnames for STUN and TURN servers. ICE itself
does not provide a mechanism for this configuration. Instead, it is
assumed that this information is attached to whatever mechanism is
used to configure all of the other parameters in the endpoint. For

SIP phones, standard solutions such as the configuration framework
[RFC6080] have been defined.

Keranen & Rosenberg Expires June 23, 2016 [Page 76]

Internet-Draft ICE December 2015

17. IANA Considerations

The original ICE specification registered four new STUN attributes,
and one new STUN error response. The STUN attributes and error
response are reproduced here.

17.1. STUN Attributes

IANA has registered four STUN attributes:

0x0024 PRIORITY

0x0025 USE-CANDIDATE
0x8029 ICE-CONTROLLED
0x802A ICE-CONTROLLING

17.2. STUN Error Responses

IANA has registered following STUN error response code:

487 Role Conflict: The client asserted an ICE role (controlling or
controlled) that is in conflict with the role of the server.

18. IAB Considerations

The IAB has studied the problem of "Unilateral Self-Address Fixing",
which is the general process by which a agent attempts to determine
its address in another realm on the other side of a NAT through a
collaborative protocol reflection mechanism [RFC3424]. ICE is an
example of a protocol that performs this type of function.

Interestingly, the process for ICE is not unilateral, but bilateral,

and the difference has a significant impact on the issues raised by
IAB. Indeed, ICE can be considered a B-SAF (Bilateral Self-Address
Fixing) protocol, rather than an UNSAF protocol. Regardless, the IAB
has mandated that any protocols developed for this purpose document a
specific set of considerations. This section meets those
requirements.

18.1. Problem Definition
>From RFC 3424, any UNSAF proposal must provide:
Precise definition of a specific, limited-scope problem that is to
be solved with the UNSAF proposal. A short-term fix should not be

generalized to solve other problems; this is why "short-term fixes
usually aren't".

Keranen & Rosenberg Expires June 23, 2016 [Page 77]

Internet-Draft ICE December 2015

The specific problems being solved by ICE are:

Provide a means for two peers to determine the set of transport
addresses that can be used for communication.

Provide a means for a agent to determine an address that is
reachable by another peer with which it wishes to communicate.

18.2. Exit Strategy
>From RFC 3424, any UNSAF proposal must provide:

Description of an exit strategy/transition plan. The better
short-term fixes are the ones that will naturally see less and
less use as the appropriate technology is deployed.

ICE itself doesn't easily get phased out. However, it is useful even

in a globally connected Internet, to serve as a means for detecting
whether a router failure has temporarily disrupted connectivity, for
example. ICE also helps prevent certain security attacks that have
nothing to do with NAT. However, what ICE does is help phase out
other UNSAF mechanisms. ICE effectively selects amongst those
mechanisms, prioritizing ones that are better, and deprioritizing

ones that are worse. Local IPv6 addresses can be preferred. As NATs
begin to dissipate as IPv6 is introduced, server reflexive and

relayed candidates (both forms of UNSAF addresses) simply never get
used, because higher-priority connectivity exists to the native host
candidates. Therefore, the servers get used less and less, and can
eventually be remove when their usage goes to zero.

Indeed, ICE can assist in the transition from IPv4 to IPv6. It can

be used to determine whether to use IPv6 or IPv4 when two dual-stack
hosts communicate with SIP (IPv6 gets used). It can also allow a
network with both 6to4 and native v6 connectivity to determine which
address to use when communicating with a peer.

18.3. Brittleness Introduced by ICE
>From RFC 3424, any UNSAF proposal must provide:
Discussion of specific issues that may render systems more
"brittle". For example, approaches that involve using data at
multiple network layers create more dependencies, increase
debugging challenges, and make it harder to transition.
ICE actually removes brittleness from existing UNSAF mechanisms. In

particular, classic STUN (as described in RFC 3489 [RFC3489]) has
several points of brittleness. One of them is the discovery process

Keranen & Rosenberg Expires June 23, 2016 [Page 78]

Internet-Draft ICE December 2015

that requires an agent to try to classify the type of NAT it is
behind. This process is error-prone. With ICE, that discovery
process is simply not used. Rather than unilaterally assessing the
validity of the address, its validity is dynamically determined by
measuring connectivity to a peer. The process of determining
connectivity is very robust.

Another point of brittleness in classic STUN and any other unilateral
mechanism is its absolute reliance on an additional server. ICE
makes use of a server for allocating unilateral addresses, but allows
agents to directly connect if possible. Therefore, in some cases,
the failure of a STUN server would still allow for a call to progress
when ICE is used.

Another point of brittleness in classic STUN is that it assumes that
the STUN server is on the public Internet. Interestingly, with ICE,
that is not necessary. There can be a multitude of STUN servers in a
variety of address realms. ICE will discover the one that has
provided a usable address.

The most troubling point of brittleness in classic STUN is that it

doesn’t work in all network topologies. In cases where there is a

shared NAT between each agent and the STUN server, traditional STUN
may not work. With ICE, that restriction is removed.

Classic STUN also introduces some security considerations.
Fortunately, those security considerations are also mitigated by ICE.

Consequently, ICE serves to repair the brittleness introduced in
classic STUN, and does not introduce any additional brittleness into
the system.

The penalty of these improvements is that ICE increases session
establishment times.

18.4. Requirements for a Long-Term Solution
From RFC 3424, any UNSAF proposal must provide:
... requirements for longer term, sound technical solutions --
contribute to the process of finding the right longer term
solution.
Our conclusions from RFC 3489 remain unchanged. However, we feel ICE

actually helps because we believe it can be part of the long-term
solution.

Keranen & Rosenberg Expires June 23, 2016 [Page 79]

Internet-Draft ICE December 2015

18.5. Issues with Existing NAPT Boxes
From RFC 3424, any UNSAF proposal must provide:

Discussion of the impact of the noted practical issues with
existing, deployed NA[P]Ts and experience reports.

A number of NAT boxes are now being deployed into the market that try
to provide "generic" ALG functionality. These generic ALGs hunt for

IP addresses, either in text or binary form within a packet, and

rewrite them if they match a binding. This interferes with classic

STUN. However, the update to STUN [RFC5389] uses an encoding that
hides these binary addresses from generic ALGs.

Existing NAPT boxes have non-deterministic and typically short
expiration times for UDP-based bindings. This requires
implementations to send periodic keepalives to maintain those
bindings. ICE uses a default of 15 s, which is a very conservative
estimate. Eventually, over time, as NAT boxes become compliant to
behave [RFC4787], this minimum keepalive will become deterministic
and well-known, and the ICE timers can be adjusted. Having a way to
discover and control the minimum keepalive interval would be far
better still.

19. Changes from RFC 5245

Following is the list of changes from RFC 5245

0 The specification was generalized to be more usable with any
protocol and the parts that are specific to SIP and SDP were moved
to a SIP/SDP usage document [I-D.ietf-mmusic-ice-sip-sdp].

o Default candidates, multiple components, ICE mismatch detection,
subsequent offer/answer, and role conflict resolution were made
optional since they are not needed with every protocol using ICE.

o With IPv6, the precedence rules of RFC 6724 are used instead of
the obsoleted RFC 3483 and using address preferences provided by
the host operating system is recommended.

o Candidate gathering rules regarding loopback addresses and IPv6
addresses were clarified.

20. Acknowledgements
Most of the text in this document comes from the original ICE

specification, RFC 5245. The authors would like to thank everyone
who has contributed to that document. For additional contributions

Keranen & Rosenberg Expires June 23, 2016 [Page 80]

Internet-Draft ICE December 2015

to this revision of the specification we would like to thank Christer
Holmberg, Emil Ivov, Paul Kyzivat, Pal-Erik Martinsen, Simon
Perrault, Eric Rescorla, Thomas Stach, Peter Thatcher, Martin
Thomson, Justin Uberti, and Suhas Nandakumar.

21. References

21.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,

"Session Traversal Utilities for NAT (STUN)", RFC 5389,
DOI 10.17487/RFC5389, October 2008,

<http://www.rfc-editor.org/info/rfc5389>.

[RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766,

DOI 10.17487/RFC5766, April 2010,
<http://www.rfc-editor.org/info/rfc5766>.

[RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
"Default Address Selection for Internet Protocol Version 6

(IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
<http://lwww.rfc-editor.org/info/rfc6724>.

21.2. Informative References

[RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
in Session Description Protocol (SDP)", RFC 3605,
DOI 10.17487/RFC3605, October 2003,
<http://www.rfc-editor.org/info/rfc3605>.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
DOI 10.17487/RFC3261, June 2002,
<http://www.rfc-editor.org/info/rfc3261>.

[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model

with Session Description Protocol (SDP)", RFC 3264,
DOI 10.17487/RFC3264, June 2002,

<http://lwww.rfc-editor.org/info/rfc3264>.

Keranen & Rosenberg Expires June 23, 2016 [Page 81]

Internet-Draft ICE December 2015

[RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
"STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATS)", RFC 3489,
DOI 10.17487/RFC3489, March 2003,
<http://www.rfc-editor.org/info/rfc3489>.

[RFC3235] Senie, D., "Network Address Translator (NAT)-Friendly
Application Design Guidelines", RFC 3235,
DOI 10.17487/RFC3235, January 2002,
<http://lwww.rfc-editor.org/info/rfc3235>.

[RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
A. Rayhan, "Middlebox communication architecture and
framework", RFC 3303, DOI 10.17487/RFC3303, August 2002,
<http://www.rfc-editor.org/info/rfc3303>.

[RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
"Realm Specific IP: Framework", RFC 3102,
DOI 10.17487/RFC3102, October 2001,
<http://www.rfc-editor.org/info/rfc3102>.

[RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
"Realm Specific IP: Protocol Specification", RFC 3103,
DOI 10.17487/RFC3103, October 2001,
<http://www.rfc-editor.org/info/rfc3103>.

[RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
UNilateral Self-Address Fixing (UNSAF) Across Network
Address Translation", RFC 3424, DOI 10.17487/RFC3424,
November 2002, <http://www.rfc-editor.org/info/rfc3424>.

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications”, STD 64, RFC 3550, DOI 10.17487/RFC3550,
July 2003, <http://lwww.rfc-editor.org/info/rfc3550>.

[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, DOI 10.17487/RFC3711, March 2004,
<http://lwww.rfc-editor.org/info/rfc3711>.

[RFC3056] Carpenter, B. and K. Moore, "Connection of IPv6 Domains
via IPv4 Clouds", RFC 3056, DOI 10.17487/RFC3056, February
2001, <http://www.rfc-editor.org/info/rfc3056>.

[RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for

Comfort Noise (CN)", RFC 3389, DOI 10.17487/RFC3389,
September 2002, <http://www.rfc-editor.org/info/rfc3389>.

Keranen & Rosenberg Expires June 23, 2016 [Page 82]

Internet-Draft ICE December 2015

[RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
Addresses", RFC 3879, DOI 10.17487/RFC3879, September
2004, <http://www.rfc-editor.org/info/rfc3879>.

[RFC4038] shin, M-K., Ed., Hong, Y-G., Hagino, J., Savola, P., and
E. Castro, "Application Aspects of IPv6 Transition",
RFC 4038, DOI 10.17487/RFC4038, March 2005,
<http://www.rfc-editor.org/info/rfc4038>.

[RFC4091] Camarillo, G. and J. Rosenberg, "The Alternative Network
Address Types (ANAT) Semantics for the Session Description
Protocol (SDP) Grouping Framework", RFC 4091,

DOI 10.17487/RFC4091, June 2005,
<http://www.rfc-editor.org/info/rfc4091>.

[RFC4092] Camarillo, G. and J. Rosenberg, "Usage of the Session
Description Protocol (SDP) Alternative Network Address
Types (ANAT) Semantics in the Session Initiation Protocol
(SIP)", RFC 4092, DOI 10.17487/RFC4092, June 2005,
<http://www.rfc-editor.org/info/rfc4092>.

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February
2006, <http://www.rfc-editor.org/info/rfc4291>.

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol”, RFC 4566, DOI 10.17487/RFC4566,
July 2006, <http://www.rfc-editor.org/info/rfc4566>.

[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
and W. Weiss, "An Architecture for Differentiated
Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
<http://www.rfc-editor.org/info/rfc2475>.

[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets"”,
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<http://www.rfc-editor.org/info/rfc1918>.

[RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
2007, <http://www.rfc-editor.org/info/rfc4787>.

[I-D.ietf-avt-rtp-no-op]

Andreasen, F., "A No-Op Payload Format for RTP", draft-
ietf-avt-rtp-no-op-04 (work in progress), May 2007.

Keranen & Rosenberg Expires June 23, 2016 [Page 83]

Internet-Draft ICE December 2015

[RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
Control Packets on a Single Port", RFC 5761,
DOI 10.17487/RFC5761, April 2010,
<http://lwww.rfc-editor.org/info/rfc5761>.

[RFC4103] Hellstrom, G. and P. Jones, "RTP Payload for Text
Conversation", RFC 4103, DOI 10.17487/RFC4103, June 2005,
<http://www.rfc-editor.org/info/rfc4103>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", RFC 5245,

DOI 10.17487/RFC5245, April 2010,
<http://www.rfc-editor.org/info/rfc5245>.

[RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
RFC 5382, DOI 10.17487/RFC5382, October 2008,
<http://www.rfc-editor.org/info/rfc5382>.

[RFC6080] Petrie, D. and S. Channabasappa, Ed., "A Framework for
Session Initiation Protocol User Agent Profile Delivery",
RFC 6080, DOI 10.17487/RFC6080, March 2011,
<http://www.rfc-editor.org/info/rfc6080>.

[RFC6146] Bagnulo, M., Matthews, P., and I. van Beijnum, "Stateful
NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
April 2011, <http://www.rfc-editor.org/info/rfc6146>.

[RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
Beijnum, "DNS64: DNS Extensions for Network Address
Translation from IPv6 Clients to IPv4 Servers”, RFC 6147,
DOI 10.17487/RFC6147, April 2011,
<http://lwww.rfc-editor.org/info/rfc6147>.

[RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
"TCP Candidates with Interactive Connectivity
Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
March 2012, <http://www.rfc-editor.org/info/rfc6544>.

[RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
the IPv6 Prefix Used for IPv6 Address Synthesis",
RFC 7050, DOI 10.17487/RFC7050, November 2013,
<http://www.rfc-editor.org/info/rfc7050>.

Keranen & Rosenberg Expires June 23, 2016 [Page 84]

Internet-Draft ICE December 2015

[I-D.ietf-mmusic-ice-sip-sdp]
Petit-Huguenin, M., Keranen, A., and S. Nandakumar, "Using
Interactive Connectivity Establishment (ICE) with Session
Description Protocol (SDP) offer/answer and Session
Initiation Protocol (SIP)", draft-ietf-mmusic-ice-sip-
sdp-07 (work in progress), October 2015.

[I-D.ietf-6man-ipv6-address-generation-privacy]
Cooper, A., Gont, F., and D. Thaler, "Privacy
Considerations for IPv6 Address Generation Mechanisms",
draft-ietf-6man-ipv6-address-generation-privacy-08 (work
in progress), September 2015.

Appendix A. Lite and Full Implementations

ICE allows for two types of implementations. A full implementation
supports the controlling and controlled roles in a session, and can

also perform address gathering. In contrast, a lite implementation

is a minimalist implementation that does little but respond to STUN
checks.

Because ICE requires both endpoints to support it in order to bring
benefits to either endpoint, incremental deployment of ICE in a
network is more complicated. Many sessions involve an endpoint that
is, by itself, not behind a NAT and not one that would worry about
NAT traversal. A very common case is to have one endpoint that
requires NAT traversal (such as a VolP hard phone or soft phone) make
a call to one of these devices. Even if the phone supports a full

ICE implementation, ICE won't be used at all if the other device
doesn'’t support it. The lite implementation allows for a low-cost

entry point for these devices. Once they support the lite
implementation, full implementations can connect to them and get the
full benefits of ICE.

Consequently, a lite implementation is only appropriate for devices
that will *always* be connected to the public Internet and have a
public IP address at which it can receive packets from any
correspondent. ICE will not function when a lite implementation is
placed behind a NAT.

ICE allows a lite implementation to have a single IPv4 host candidate
and several IPv6 addresses. In that case, candidate pairs are
selected by the controlling agent using a static algorithm, such as

the one in RFC 6724, which is recommended by this specification.
However, static mechanisms for address selection are always prone to
error, since they cannot ever reflect the actual topology and can

never provide actual guarantees on connectivity. They are always
heuristics. Consequently, if an agent is implementing ICE just to

Keranen & Rosenberg Expires June 23, 2016 [Page 85]

Internet-Draft ICE December 2015

select between its IPv4 and IPv6 addresses, and none of its IP
addresses are behind NAT, usage of full ICE is stil RECOMMENDED in
order to provide the most robust form of address selection possible.

It is important to note that the lite implementation was added to
this specification to provide a stepping stone to full
implementation. Even for devices that are always connected to the
public Internet with just a single IPv4 address, a full
implementation is preferable if achievable. A full implementation
will reduce call setup times, since ICE’s aggressive mode can be
used. Full implementations also obtain the security benefits of ICE
unrelated to NAT traversal; in particular, the voice hammer attack
described in Section 14 is prevented only for full implementations,
not lite. Finally, it is often the case that a device that finds

itself with a public address today will be placed in a network
tomorrow where it will be behind a NAT. It is difficult to

definitively know, over the lifetime of a device or product, that it
will always be used on the public Internet. Full implementation
provides assurance that communications will always work.

Appendix B. Design Motivations

ICE contains a number of normative behaviors that may themselves be
simple, but derive from complicated or non-obvious thinking or use
cases that merit further discussion. Since these design motivations
are not necessary to understand for purposes of implementation, they
are discussed here in an appendix to the specification. This section

iS non-normative.

B.1. Pacing of STUN Transactions

STUN transactions used to gather candidates and to verify
connectivity are paced out at an approximate rate of one new
transaction every Ta milliseconds. Each transaction, in turn, has a
retransmission timer RTO that is a function of Ta as well. Why are
these transactions paced, and why are these formulas used?

Sending of these STUN requests will often have the effect of creating
bindings on NAT devices between the client and the STUN servers.
Experience has shown that many NAT devices have upper limits on the
rate at which they will create new bindings. Experiments have shown
that once every 20 ms is well supported, but not much lower than

that. This is why Ta has a lower bound of 20 ms. Furthermore,
transmission of these packets on the network makes use of bandwidth
and needs to be rate limited by the agent. Deployments based on
earlier draft versions of [RFC5245] tended to overload rate-
constrained access links and perform poorly overall, in addition to
negatively impacting the network. As a consequence, the pacing

Keranen & Rosenberg Expires June 23, 2016 [Page 86]

Internet-Draft ICE December 2015

ensures that the NAT device does not get overloaded and that traffic
is kept at a reasonable rate.

The definition of a "reasonable" rate is that STUN should not use
more bandwidth than the RTP itself will use, once media starts
flowing. The formula for Ta is designed so that, if a STUN packet
were sent every Ta seconds, it would consume the same amount of
bandwidth as RTP packets, summed across all media streams. Of
course, STUN has retransmits, and the desire is to pace those as
well. For this reason, RTO is set such that the first retransmit on
the first transaction happens just as the first STUN request on the
last transaction occurs. Pictorially:

First Packets Retransmits

e T s S S SO A S
[A1] |B1] |C1] |A2] |B2| |C2|
+oot At et et et et

— + + + + + Time
0 Ta 2Ta 3Ta 4Ta 5Ta

In this picture, there are three transactions that will be sent (for
example, in the case of candidate gathering, there are three host
candidate/STUN server pairs). These are transactions A, B, and C.
The retransmit timer is set so that the first retransmission on the
first transaction (packet A2) is sent at time 3Ta.

Subsequent retransmits after the first will occur even less
frequently than Ta milliseconds apart, since STUN uses an exponential
back-off on its retransmissions.
B.2. Candidates with Multiple Bases
Section 4.1.3 talks about eliminating candidates that have the same

transport address and base. However, candidates with the same
transport addresses but different bases are not redundant. When can

Keranen & Rosenberg Expires June 23, 2016 [Page 87]

Internet-Draft ICE December 2015

an agent have two candidates that have the same IP address and port,
but different bases? Consider the topology of Figure 11:

A

oo + /I \\ oo +

| Initiator|--------- | C:netl0Q |----------- | Responder|
| [20.0.1.100| | 10.0.1.101 | |

[S —— + \\ R +

Figure 11: Identical Candidates with Different Bases
In this case, the initiating agent is multihomed. It has one IP

address, 10.0.1.100, on network C, which is a net 10 private network.
The responding agent is on this same network. The initiating agent

Keranen & Rosenberg Expires June 23, 2016 [Page 88]

Internet-Draft ICE December 2015

is also connected to network A, which is 192.168/16 and has an IP
address of 192.168.1.100 on this network. There is a NAT on this
network, natting into network B, which is another net 10 private
network, but not connected to network C. There is a STUN server on
network B.

The initiating agent obtains a host candidate on its IP address on
network C (10.0.1.100:2498) and a host candidate on its IP address on
network A (192.168.1.100:3344). It performs a STUN query to its
configured STUN server from 192.168.1.100:3344. This query passes
through the NAT, which happens to assign the binding 10.0.1.100:2498.
The STUN server reflects this in the STUN Binding response. Now, the
initiating agent has obtained a server reflexive candidate with a
transport address that is identical to a host candidate
(10.0.1.100:2498). However, the server reflexive candidate has a

base of 192.168.1.100:3344, and the host candidate has a base of
10.0.1.100:2498.

B.3. Purpose of the Related Address and Related Port Attributes

The candidate attribute contains two values that are not used at all
by ICE itself -- related address and related port. Why are they
present?

There are two motivations for its inclusion. The first is

diagnostic. It is very useful to know the relationship between the
different types of candidates. By including it, an agent can know
which relayed candidate is associated with which reflexive candidate,
which in turn is associated with a specific host candidate. When
checks for one candidate succeed and not for others, this provides
useful diagnostics on what is going on in the network.

The second reason has to do with off-path Quality of Service (QoS)
mechanisms. When ICE is used in environments such as PacketCable
2.0, proxies will, in addition to performing normal SIP operations,
inspect the SDP in SIP messages, and extract the IP address and port
for media traffic. They can then interact, through policy servers,

with access routers in the network, to establish guaranteed QoS for
the media flows. This QoS is provided by classifying the RTP traffic
based on 5-tuple, and then providing it a guaranteed rate, or marking
its Diffserv codepoints appropriately. When a residential NAT is
present, and a relayed candidate gets selected for media, this

relayed candidate will be a transport address on an actual TURN
server. That address says nothing about the actual transport address
in the access router that would be used to classify packets for QoS
treatment. Rather, the server reflexive candidate towards the TURN
server is needed. By carrying the translation in the SDP, the proxy
can use that transport address to request QoS from the access router.

Keranen & Rosenberg Expires June 23, 2016 [Page 89]

Internet-Draft ICE December 2015

B.4. Importance of the STUN Username

ICE requires the usage of message integrity with STUN using its
short-term credential functionality. The actual short-term

credential is formed by exchanging username fragments in the
candidate exchange. The need for this mechanism goes beyond just
security; it is actually required for correct operation of ICE in the

first place.

Consider agents L, R, and Z. L and R are within private enterprise

1, which is using 10.0.0.0/8. Z is within private enterprise 2,

which is also using 10.0.0.0/8. As it turns out, R and Z both have

IP address 10.0.1.1. L sends candidates to Z. Z, in responds L with
its host candidates. In this case, those candidates are

10.0.1.1:8866 and 10.0.1.1:8877. As it turns out, R is in a session

at that same time, and is also using 10.0.1.1:8866 and 10.0.1.1:8877
as host candidates. This means that R is prepared to accept STUN
messages on those ports, just as Z is. L will send a STUN request to
10.0.1.1:8866 and another to 10.0.1.1:8877. However, these do not go
to Z as expected. Instead, they go to R! If R just replied to them,

L would believe it has connectivity to Z, when in fact it has
connectivity to a completely different user, R. To fix this, the

STUN short-term credential mechanisms are used. The username
fragments are sufficiently random that it is highly unlikely that R

would be using the same values as Z. Consequently, R would reject
the STUN request since the credentials were invalid. In essence, the
STUN username fragments provide a form of transient host identifiers,
bound to a particular session established as part of the candidate
exchange.

An unfortunate consequence of the non-uniqueness of IP addresses is
that, in the above example, R might not even be an ICE agent. It
could be any host, and the port to which the STUN packet is directed
could be any ephemeral port on that host. If there is an application
listening on this socket for packets, and it is not prepared to

handle malformed packets for whatever protocol is in use, the
operation of that application could be affected. Fortunately, since

the ports exchanged are ephemeral and usually drawn from the dynamic
or registered range, the odds are good that the port is not used to
run a server on host R, but rather is the agent side of some
protocol. This decreases the probability of hitting an allocated
port, due to the transient nature of port usage in this range.
However, the possibility of a problem does exist, and network
deployers should be prepared for it. Note that this is not a problem
specific to ICE; stray packets can arrive at a port at any time for
any type of protocol, especially ones on the public Internet. As
such, this requirement is just restating a general design guideline

Keranen & Rosenberg Expires June 23, 2016 [Page 90]

Internet-Draft ICE December 2015

for Internet applications -- be prepared for unknown packets on any
port.

B.5. The Candidate Pair Priority Formula
The priority for a candidate pair has an odd form. Itis:
pair priority = 2232*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

Why is this? When the candidate pairs are sorted based on this
value, the resulting sorting has the MAX/MIN property. This means
that the pairs are first sorted based on decreasing value of the
minimum of the two priorities. For pairs that have the same value of
the minimum priority, the maximum priority is used to sort amongst
them. If the max and the min priorities are the same, the

controlling agent’s priority is used as the tie-breaker in the last

part of the expression. The factor of 2*32 is used since the

priority of a single candidate is always less than 2*32, resulting in
the pair priority being a "concatenation" of the two component
priorities. This creates the MAX/MIN sorting. MAX/MIN ensures that,
for a particular agent, a lower-priority candidate is never used

until all higher-priority candidates have been tried.

B.6. Why Are Keepalives Needed?

Once media begins flowing on a candidate pair, it is still necessary

to keep the bindings alive at intermediate NATSs for the duration of

the session. Normally, the media stream packets themselves (e.g.,
RTP) meet this objective. However, several cases merit further
discussion. Firstly, in some RTP usages, such as SIP, the media
streams can be "put on hold". This is accomplished by using the SDP
"sendonly” or "inactive" attributes, as defined in RFC 3264

[RFC3264]. RFC 3264 directs implementations to cease transmission of
media in these cases. However, doing so may cause NAT bindings to
timeout, and media won’t be able to come off hold.

Secondly, some RTP payload formats, such as the payload format for
text conversation [RFC4103], may send packets so infrequently that
the interval exceeds the NAT binding timeouts.

Thirdly, if silence suppression is in use, long periods of silence
may cause media transmission to cease sufficiently long for NAT
bindings to time out.

For these reasons, the media packets themselves cannot be relied
upon. ICE defines a simple periodic keepalive utilizing STUN Binding
indications. This makes its bandwidth requirements highly
predictable, and thus amenable to QoS reservations.

Keranen & Rosenberg Expires June 23, 2016 [Page 91]

Internet-Draft ICE December 2015

B.7. Why Prefer Peer Reflexive Candidates?

Section 4.1.2 describes procedures for computing the priority of
candidate based on its type and local preferences. That section
requires that the type preference for peer reflexive candidates
always be higher than server reflexive. Why is that? The reason has
to do with the security considerations in Section 14. It is much

easier for an attacker to cause an agent to use a false server
reflexive candidate than it is for an attacker to cause an agent to

use a false peer reflexive candidate. Consequently, attacks against
address gathering with Binding requests are thwarted by ICE by
preferring the peer reflexive candidates.

B.8. Why Are Binding Indications Used for Keepalives?

Media keepalives are described in Section 9. These keepalives make
use of STUN when both endpoints are ICE capable. However, rather
than using a Binding request transaction (which generates a
response), the keepalives use an Indication. Why is that?

The primary reason has to do with network QoS mechanisms. Once media
begins flowing, network elements will assume that the media stream
has a fairly regular structure, making use of periodic packets at

fixed intervals, with the possibility of jitter. If an agent is

sending media packets, and then receives a Binding request, it would
need to generate a response packet along with its media packets.
This will increase the actual bandwidth requirements for the 5-tuple
carrying the media packets, and introduce jitter in the delivery of
those packets. Analysis has shown that this is a concern in certain
layer 2 access networks that use fairly tight packet schedulers for
media.

Additionally, using a Binding Indication allows integrity to be
disabled, allowing for better performance. This is useful for large-
scale endpoints, such as PSTN gateways and SBCs.

Authors’ Addresses
Ari Keranen
Ericsson
Hirsalantie 11
02420 Jorvas
Finland

Email: ari.keranen@ericsson.com

Keranen & Rosenberg Expires June 23, 2016 [Page 92]

Internet-Draft ICE December 2015

Jonathan Rosenberg
jdrosen.net
Monmouth, NJ

us

Email: jdrosen@jdrosen.net
URI: http://www.jdrosen.net

Keranen & Rosenberg Expires June 23, 2016 [Page 93]

ICE A. Keranen

Internet-Draft C. Holmberg
Obsoletes: 5245 (if approved) Ericsson
Intended status: Standards Track J. Rosenberg
Expires: September 9, 2018 jdrosen.net

March 8, 2018

Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal
draft-ietf-ice-rfc5245bis-20

Abstract

This document describes a protocol for Network Address Translator
(NAT) traversal for UDP-based communication. This protocol is called
Interactive Connectivity Establishment (ICE). ICE makes use of the
Session Traversal Utilities for NAT (STUN) protocol and its

extension, Traversal Using Relay NAT (TURN).

This document obsoletes RFC 5245.
Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

This Internet-Draft will expire on September 9, 2018.
Copyright Notice

Copyright (¢) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents

Keranen, et al. Expires September 9, 2018 [Page 1]

Internet-Draft ICE March 2018

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
modifications of such material outside the IETF Standards Process.
Without obtaining an adequate license from the person(s) controlling
the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may
not be created outside the IETF Standards Process, except to format
it for publication as an RFC or to translate it into languages other
than English.

Table of Contents

1. Introduction 5
2. Overviewof ICE 6
2.1. Gathering Candidates 8
2.2. Connectivity Checks 10
2.3. Nominating Candidate Pairs And Concluding ICE 12
24. ICERestart........... 13
2.5. Lite Implementations 13
3.ICEUsaget 13
4. Terminology 13
5. ICE Candidate Gathering and Exchange 17
5.1. Full Implementation. 17
5.1.1. Gathering Candidates 17
5.1.1.1. HostCandidates 18
5.1.1.2. Server Reflexive and Relayed Candidates 19
5.1.1.3. Computing Foundations 21
5.1.1.4. Keeping Candidates Alive 21
5.1.2. Prioritizing Candidates 22
5.1.2.1. Recommended Formula............... 22
5.1.2.2. Guidelines for Choosing Type and Local
Preferences 23
5.1.3. Eliminating Redundant Candidates 23
5.2. Lite Implementation Procedures 23
5.3. Exchanging Candidate Information 24
5.4. ICEMismatch 26
6. ICE Candidate Processing 26
6.1. Procedures for Full Implementation 26
6.1.1. DeterminingRole 26
6.1.2. Formingthe Check Lists............... 28

Keranen, et al. Expires September 9, 2018 [Page 2]

Internet-Draft ICE March 2018

6.1.2.1. Check ListState 28
6.1.2.2. Forming Candidate Pairs 28
6.1.2.3. Computing Pair Priority and Ordering Pairs ... 31
6.1.2.4. Pruningthe Pairs................ 31
6.1.2.5. Removing lower-priority Pairs 31
6.1.2.6. Computing Candidate Pair States 32
6.13. ICEState 35
6.1.4. SchedulingChecks.................. 35
6.1.4.1. Triggered Check Queue 35
6.1.4.2. Performing Connectivity Checks 36
6.2. Lite Implementation Procedures 37
7. Performing Connectivity Checks 37
7.1. STUNExtensions 37
7.1.1. PRIORITY i, 38
7.1.2. USE-CANDIDATE 38
7.1.3. ICE-CONTROLLED and ICE-CONTROLLING
7.2. STUN Client Procedures 38
7.2.1. Creating Permissions for Relayed Candidates 38
7.2.2. Forming Credentials 38
7.2.3. DiffServ Treatment 39
7.2.4. Sendingthe Request 39
7.2.5. Processingthe Response 39
7.25.1. RoleConflict.................. 40
7.252. Failure...................... 40
7.2.5.2.1. Non-Symmetric Transport Addresses 40
72522, ICMPErmor 41
7.2523. Timeout................... 41
7.2.5.2.4. Unrecoverable STUN Response 41
7.253. SUCCESSt 41
7.2.5.3.1. Discovering Peer Reflexive Candidates 41
7.2.5.3.2. Constructing a Valid Pair 42
7.2.5.3.3. Updating Candidate Pair States 43
7.2.5.3.4. Updating the Nominated Flag 43
7.2.5.4. Check List State Updates 44
7.3. STUN Server Procedures 44
7.3.1. Additional Procedures for Full Implementations ... 45
7.3.1.1. Detecting and Repairing Role Conflicts 45
7.3.1.2. Computing Mapped Address 46
7.3.1.3. Learning Peer Reflexive Candidates 46
7.3.1.4. Triggered Checks 47
7.3.1.5. Updating the Nominated Flag 48
7.3.2. Additional Procedures for Lite Implementations ... 48
8. Concluding ICE Processing 49
8.1. Procedures for Full Implementations 49
8.1.1. Nominating Pairs 49
8.1.2. Updating Check List and ICE States 50
8.2. Procedures for Lite Implementations 51
8.3. Freeing Candidates 52

Keranen, et al. Expires September 9, 2018 [Page 3]

Internet-Draft ICE March 2018

8.3.1. Full Implementation Procedures 52
8.3.2. Lite Implementation Procedures 52
9. ICERestarts 52
10.ICEOption 53
11.Keepalives, 53
12. DataHandling 54
12.1. SendingData 54
12.1.1. Procedures for Lite Implementations 55
12.2. ReceivingData..................... 55
13. Extensibility Considerations 56
14. Setting Taand RTO 57
14.1. General 57

15.Examples L 58
15.1. Example with IPv4 Addresses 59
15.2. Example with IPv6 Addresses 65
16. STUNExtensions 69
16.1. New Attributes 69
16.2. New Error Response Codes 69
17. Operational Considerations 70
17.1. NAT and Firewall Types 70
17.2. Bandwidth Requirements................. 70
17.2.1. STUN and TURN Server Capacity Planning 7
17.2.2. Gathering and Connectivity Checks 71
17.2.3. Keepalives 71
17.3. ICEandICE-lite 72
17.4. Troubleshooting and Performance Management.
17.5. Endpoint Configuration................. 72
18. IAB Considerations 72
18.1. Problem Definition................... 73
18.2. ExitStrategy 73
18.3. Brittleness Introduced by ICE 74
18.4. Requirements for a Long-Term Solution 75
18.5. Issues with Existing NAPT Boxes 75
19. Security Considerations 75
19.1. IP AddressPrivacy 76
19.2. Attacks on Connectivity Checks 76
19.3. Attacks on Server Reflexive Address Gathering 79
19.4. Attacks on Relayed Candidate Gathering 80
19.5. Insider Attacks 80
19.5.1. STUN Amplification Attack 80
20. IANA Considerations 81
20.1. STUN Attributes 81
20.2. STUN ErrorResponses 82
20.3. ICEOptionscciuun.. 82
21.ChangesfromRFC5245.................... 83
22. Acknowledgements 84

Keranen, et al. Expires September 9, 2018 [Page 4]

Internet-Draft ICE March 2018

23.References L. 84
23.1. Normative References 84
23.2. Informative References 85
Appendix A. Lite and Full Implementations 89
Appendix B. Design Motivations 90
B.1. Pacing of STUN Transactions 90
B.2. Candidates with Multiple Bases 92
B.3. Purpose of the Related Address and Related Port
Attributes 94
B.4. Importance of the STUN Username 94
B.5. The Candidate Pair Priority Formula........... 96
B.6. Why Are Keepalives Needed? 96
B.7. Why Prefer Peer Reflexive Candidates? 97
B.8. Why Are Binding Indications Used for Keepalives? 97
B.9. Selecting Candidate Type Preference 97
Appendix C. Connectivity Check Bandwidth 98
Authors’ Addresses, 99

1. Introduction

Protocols establishing communication sessions between peers typically
involve exchanging IP addresses and ports for the data sources and
sinks. However, this poses challenges when operated through Network
Address Translators (NATs) [RFC3235]. These protocols also seek to
create a data flow directly between participants, so that there is no
application layer intermediary between them. This is done to reduce
data latency, decrease packet loss, and reduce the operational costs

of deploying the application. However, this is difficult to

accomplish through NATs. A full treatment of the reasons for this is
beyond the scope of this specification.

Numerous solutions have been defined for allowing these protocols to
operate through NATs. These include Application Layer Gateways
(ALGSs), the Middlebox Control Protocol [RFC3303], the original Simple
Traversal of UDP Through NAT (STUN) [RFC3489] specification, and
Realm Specific IP [RFC3102] [RFC3103] along with session description
extensions needed to make them work, such as the Session Description
Protocol (SDP) [RFC4566] attribute for the Real Time Control Protocol
(RTCP) [RFC3605]. Unfortunately, these techniques all have pros and
cons that make each one optimal in some network topologies, but a
poor choice in others. The result is that administrators and
implementers are making assumptions about the topologies of the
networks in which their solutions will be deployed. This introduces
complexity and brittleness into the system.

This specification defines Interactive Connectivity Establishment

(ICE) as a technique for NAT traversal for UDP-based data streams
(though ICE has been extended to handle other transport protocols,

Keranen, et al. Expires September 9, 2018 [Page 5]

Internet-Draft ICE March 2018

such as TCP [RFC6544]). ICE works by exchanging a multiplicity of IP
addresses and ports which are then tested for connectivity by peer-
to-peer connectivity checks. The IP addresses and ports are
exchanged using ICE usage-specific mechanisms (e.g., including in a
offer/answer exchange) and the connectivity checks are performed
using STUN [RFC5389]. ICE also makes use of Traversal Using Relays
around NAT (TURN) [RFC5766], an extension to STUN. Because ICE
exchanges a multiplicity of IP addresses and ports for each media
stream, it also allows for address selection for multihomed and dual-
stack hosts. For this reason, RFC 5245 [RFC5245] deprecated the
solutions previously defined in RFC 4091 [RFC4091] and RFC 4092
[RFC4092].

Appendix B provides background information and motivations regarding
the design decisions that were made when designing ICE.

2. Overview of ICE

In a typical ICE deployment, there are two endpoints (ICE agents)
that want to communicate. Note that ICE is not intended for NAT
traversal for the signaling protocol, which is assumed to be provided
via another mechanism. ICE assumes that the agents are able to
establish a signaling connection between each other.

Initially, the agents are ignorant of their own topologies. In

particular, the agents may or may not be behind NATs (or multiple
tiers of NATs). ICE allows the agents to discover enough information
about their topologies to potentially find one or more paths by which
they can establish a data session.

Figure 1 shows a typical ICE deployment. The agents are labelled L
and R. Both L and R are behind their own respective NATs though they
may not be aware of it. The type of NAT and its properties are also
unknown. L and R are capable of engaging in a candidate exchange
process, whose purpose is to set up a data session between L and R.
Typically, this exchange will occur through a signaling server (e.g.,

SIP proxy).

In addition to the agents, a signaling server, and NATSs, ICE is

typically used in concert with STUN or TURN servers in the network.
Each agent can have its own STUN or TURN server, or they can be the
same.

Keranen, et al. Expires September 9, 2018 [Page 6]

Internet-Draft ICE March 2018

 —— +
oo + |Signaling| +ommoe- +
| STUN | [Server | | STUN |
| Server | oo + | Server |
N — + S e— +
/ \
/ \
/ <- Signaling ->\
/ \
S + E +
| NAT | | NAT |
S — + L —— +
/ \
/ \
R + R +
| Agent | | Agent |
| L | | R
R — + R +

Figure 1: ICE Deployment Scenario

The basic idea behind ICE is as follows: each agent has a variety of
candidate transport addresses (combination of IP address and port for
a particular transport protocol, which is always UDP in this
specification) it could use to communicate with the other agent.

These might include:

0 A transport address on a directly attached network interface

0 A translated transport address on the public side of a NAT (a
"server reflexive" address)

0 A transport address allocated from a TURN server (a "relayed
address")

Potentially, any of L's candidate transport addresses can be used to
communicate with any of R’s candidate transport addresses. In
practice, however, many combinations will not work. For instance, if
L and R are both behind NATS, their directly attached interface
addresses are unlikely to be able to communicate directly (this is
why ICE is needed, after all'). The purpose of ICE is to discover
which pairs of addresses will work. The way that ICE does this is to
systematically try all possible pairs (in a carefully sorted order)

until it finds one or more that work.

Keranen, et al. Expires September 9, 2018 [Page 7]

Internet-Draft ICE March 2018

2.1. Gathering Candidates

In order to execute ICE, an ICE agent identifies and gathers one or
more address candidates. A candidate has a transport address -- a
combination of IP address and port for a particular transport
protocol (with only UDP specified here). There are different types
of candidates, some derived from physical or logical network
interfaces, others discoverable via STUN and TURN.

The first category of candidates are those with a transport address
obtained directly from a local interface. Such a candidate is called

a host candidate. The local interface could be Ethernet or WiFi, or

it could be one that is obtained through a tunnel mechanism, such as
a Virtual Private Network (VPN) or Mobile IP (MIP). In all cases,
such a network interface appears to the agent as a local interface
from which ports (and thus candidates) can be allocated.

Next, the agent uses STUN or TURN to obtain additional candidates.
These come in two flavors: translated addresses on the public side of
a NAT (server reflexive candidates) and addresses on TURN servers
(relayed candidates). When TURN servers are utilized, both types of
candidates are obtained from the TURN server. If only STUN servers
are utilized, only server reflexive candidates are obtained from

them. The relationship of these candidates to the host candidate is
shown in Figure 2. In this figure, both types of candidates are
discovered using TURN. In the figure, the notation X:x means IP
address X and UDP port x.

Keranen, et al. Expires September 9, 2018 [Page 8]

Internet-Draft ICE March 2018

To Internet
I
I
[E— Relayed
Yy |/ Address
R +
||
| TURN |
| Server |
I
R — +
I
I
| f-==--=mm- Server
X1:x2'|/ Reflexive
R + Address
| NAT |
[T +
I
[— Local
Xx |/ Address
— +
I
| Agent |
|
E S— +

Figure 2: Candidate Relationships

When the agent sends a TURN Allocate request from IP address and port
X:x, the NAT (assuming there is one) will create a binding X1:x1’,
mapping this server reflexive candidate to the host candidate X:x.
Outgoing packets sent from the host candidate will be translated by

the NAT to the server reflexive candidate. Incoming packets sent to

the server reflexive candidate will be translated by the NAT to the

host candidate and forwarded to the agent. The host candidate
associated with a given server reflexive candidate is the BASE.

Note: "Base" refers to the address an agent sends from for a
particular candidate. Thus, as a degenerate case, host candidates
also have a base, but it's the same as the host candidate.

When there are multiple NATs between the agent and the TURN server,
the TURN request will create a binding on each NAT, but only the
outermost server reflexive candidate (the one nearest the TURN

server) will be discovered by the agent. If the agent is not behind

Keranen, et al. Expires September 9, 2018 [Page 9]

Internet-Draft ICE March 2018

a NAT, then the base candidate will be the same as the server
reflexive candidate and the server reflexive candidate is redundant
and will be eliminated.

The Allocate request then arrives at the TURN server. The TURN
server allocates a port y from its local IP address Y, and generates

an Allocate response, informing the agent of this relayed candidate.
The TURN server also informs the agent of the server reflexive
candidate, X1:x1’ by copying the source transport address of the
Allocate request into the Allocate response. The TURN server acts as
a packet relay, forwarding traffic between L and R. In order to send
traffic to L, R sends traffic to the TURN server at Y:y, and the TURN
server forwards that to X1":x1’, which passes through the NAT where
it is mapped to X:x and delivered to L.

When only STUN servers are utilized, the agent sends a STUN Binding
request [RFC5389] to its STUN server. The STUN server will inform
the agent of the server reflexive candidate X1:x1’ by copying the
source transport address of the Binding request into the Binding
response.

2.2. Connectivity Checks

Once L has gathered all of its candidates, it orders them in highest

to lowest-priority and sends them to R over the signaling channel.
When R receives the candidates from L, it performs the same gathering
process and responds with its own list of candidates. At the end of

this process, each ICE agent has a complete list of both its

candidates and its peer’'s candidates. It pairs them up, resulting in
candidate pairs. To see which pairs work, each agent schedules a
series of connectivity checks. Each check is a STUN request/response
transaction that the client will perform on a particular candidate

pair by sending a STUN request from the local candidate to the remote
candidate.

The basic principle of the connectivity checks is simple:
1. Sort the candidate pairs in priority order.

2. Send checks on each candidate pair in priority order.
3. Acknowledge checks received from the other agent.

With both agents performing a check on a candidate pair, the result
is a 4-way handshake:

Keranen, et al. Expires September 9, 2018 [Page 10]

Internet-Draft ICE March 2018

L R

STUN request -> \'L's
<- STUN response / check

<- STUN request \ R’s
STUN response -> / check

Figure 3: Basic Connectivity Check

It is important to note that the STUN requests are sent to and from
the exact same IP addresses and ports that will be used for data
(e.g., RTP, RTCP, or other protocols). Consequently, agents
demultiplex STUN and data using the contents of the packets, rather
than the port on which they are received.

Because a STUN Binding request is used for the connectivity check,
the STUN Binding response will contain the agent’s translated
transport address on the public side of any NATs between the agent
and its peer. If this transport address is different from that of

other candidates the agent already learned, it represents a new
candidate (peer reflexive candidate), which then gets tested by ICE
just the same as any other candidate.

Because the algorithm above searches all candidate pairs, if a
working pair exists it will eventually find it no matter what order
the candidates are tried in. In order to produce faster (and better)
results, the candidates are sorted in a specified order. The
resulting list of sorted candidate pairs is called the check list.

The agent works through the check list by sending a STUN request for
the next candidate pair on the list periodically. These are called
"ordinary checks". When a STUN transaction succeeds, one or more
candidate pairs will become so called valid pairs, and will be added

to a candidate pair list called the valid list.

As an optimization, as soon as R gets L’'s check message, R schedules
a connectivity check message to be sent to L on the same candidate
pair. This is called a "triggered check", and accelerates the

process of finding valid pairs.

At the end of this handshake, both L and R know that they can send
(and receive) messages end-to-end in both directions.

In general, the priority algorithm is designed so that candidates of
similar type get similar priorities and so that more direct routes
(that is, routes without data relays or NATS) are preferred over
indirect routes (routes with data relays or NATs). Within those

Keranen, et al. Expires September 9, 2018 [Page 11]

Internet-Draft ICE March 2018

guidelines, however, agents have a fair amount of discretion about
how to tune their algorithms.

A data stream might consist of multiple components (pieces of a data
stream that require their own set of candidates, e.g., RTP and RTCP).

2.3. Nominating Candidate Pairs And Concluding ICE

ICE assigns one of the ICE agents in the role of the controlling
agent, and the other of the controlled agent. For each component of
a data stream, the controlling agent nominates a valid pair (from the
valid list) to be used for data. The exact timing of the nomination

is based on local policy.

When nominating, the controlling agent lets the checks continue until
at least one valid pair for each component of a data stream is found
and then picks a valid pair and sends a STUN request on the valid
pair, using an attribute to indicate to the controlled peer that it

has nominated the pair. This is shown in Figure 4.

L R

STUN request -> \'L's
<- STUN response / check

<- STUN request \ R’s
STUN response -> / check

STUN request + attribute ->\ L's
<- STUN response / check

Figure 4: Nomination

Once the controlled agent receives the STUN request with the
attribute, it will check (unless the check has already been done) the
same pair. If the transactions above succeed, the agents will set

the nominated flag for the pairs, and will cancel any future checks

for that component of the data stream. Once an agent has set the
nominated flag for each component of a data stream, the pairs become
the selected pairs. After that, only the selected pairs will be used

for sending and receiving data associated with that data stream.

Keranen, et al. Expires September 9, 2018 [Page 12]

Internet-Draft ICE March 2018

2.4. ICE Restart

Once ICE is concluded, it can be restarted at any time for one or all
of the data streams by either ICE agent. This is done by sending
updated candidate information indicating a restart.

2.5. Lite Implementations

Certain ICE agents will always be connected to the public Internet
and have a public IP address at which it can receive packets from any
correspondent. To make it easier for these devices to support ICE,
ICE defines a special type of implementation called lite (in contrast

to the normal full implementation). Lite agents only use host
candidates and do not generate connectivity checks or run the state
machines, though they need to be able to respond to connectivity
checks.

3. ICE Usage

This document specifies generic use of ICE with protocols that
provide means to exchange candidate information between the ICE
agents. The specific details (i.e., how to encode candidate
information and the actual candidate exchange process) for different
protocols using ICE (referred to as "using protocol") are described

in separate usage documents.

One mechanism for agents to exchange the candidate information by
using [RFC3264] based Offer/Answer semantics as part of the SIP
[RFC3261] protocol [I-D.ietf-mmusic-ice-sip-sdp].

[RFC7825] defines an ICE usage for the Real-Time Streaming Protocol
(RTSP). Note, however, that the ICE usage is based on RFC 5245.

4. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in RFC
2119 [RFC2119].

Readers need to be familiar with the terminology defined in
[RFC5389], and NAT Behavioral requirements for UDP [RFC4787].

This specification makes use of the following additional terminology:
ICE Session: An ICE session consists of all ICE-related actions

starting with the candidate gathering, followed by the
interactions (candidate exchange, connectivity checks, nhominations

Keranen, et al. Expires September 9, 2018 [Page 13]

Internet-Draft ICE March 2018

and keepalives) between the ICE agents until all the candidates
are released or ICE restart is triggered.

ICE Agent, Agent: An ICE agent (sometimes simply referred to as an
agent) is the protocol implementation involved in the ICE
candidate exchange. There are two agents involved in a typical
candidate exchange.

Initiating Peer, Initiating Agent, Initiator: An initiating agent is
an ICE agent that initiates the ICE candidate exchange process.

Responding Peer, Responding Agent, Responder: A responding agent is
an ICE agent that receives and responds to the candidate exchange
process initiated by the initiating agent.

ICE Candidate Exchange, Candidate Exchange: The process where the
ICE agents exchange information (e.g., candidates and passwords)
that is needed to perform ICE. [RFC3264] Offer/Answer with SDP
encoding is one example of a protocol that can be used for
exchanging the candidate information.

Peer: From the perspective of one of the ICE agents in a session,
its peer is the other agent. Specifically, from the perspective
of the initiating agent, the peer is the responding agent. From
the perspective of the responding agent, the peer is the
initiating agent.

Transport Address: The combination of an IP address and transport
protocol (such as UDP or TCP) port.

Data, Data Stream, Data Session: When ICE is used to setup data
sessions, the data is transported using some protocol. Media is
usually transported over RTP, composed of a stream of RTP packets.
Data session refers to data packets that are exchanged between the
peer on the path created and tested with ICE.

Candidate, Candidate Information: A transport address that is a
potential point of contact for receipt of data. Candidates also
have properties -- their type (server reflexive, relayed, or
host), priority, foundation, and base.

Component: A component is a piece of a data stream. A data stream
may require multiple components, each of which has to work in
order for the data stream as a whole to work. For RTP/RTCP data
streams, unless RTP and RTCP are multiplexed in the same port,
there are two components per data stream -- one for RTP, and one
for RTCP. A component has a candidate pair, which cannot be used
by other components.

Keranen, et al. Expires September 9, 2018 [Page 14]

Internet-Draft ICE March 2018

Host Candidate: A candidate obtained by binding to a specific port
from an IP address on the host. This includes IP addresses on
physical interfaces and logical ones, such as ones obtained
through Virtual Private Networks (VPNSs).

Server Reflexive Candidate: A candidate whose IP address and port
are a binding allocated by a NAT for an ICE agent when it sent a
packet through the NAT to a server, such as a STUN server.

Peer Reflexive Candidate: A candidate whose IP address and port are
a binding allocated by a NAT for an ICE agent when it sent a
packet through the NAT to its peer.

Relayed Candidate: A candidate obtained from a relay server, such as
a TURN server.

Base: The transport address that an ICE agent sends from for a
particular candidate. For host, server reflexive and peer
reflexive candidates the base is the same as the host candidate.
For relayed candidates the base is the same as the relayed
candidate (i.e., the transport address used by the TURN server to
send from).

Related Address and Port: A transport address related to a
candidate, useful for diagnostics and other purposes. If a
candidate is server or peer reflexive, the related address and
port is equal to the base for that server or peer reflexive
candidate. If the candidate is relayed, the related address and
port is equal to the mapped address in the Allocate response that
provided the client with that relayed candidate. If the candidate
is a host candidate, the related address and port is identical to
the host candidate.

Foundation: An arbitrary string used in the freezing algorithm to
group similar candidates. |s the same for two candidates that
have the same type, base IP address, protocol (UDP, TCP, etc.),
and STUN or TURN server. If any of these are different, then the
foundation will be different.

Local Candidate: A candidate that an ICE agent has obtained and may
send to its peer.

Remote Candidate: A candidate that an ICE agent received from its
peer.

Default Destination/Candidate: The default destination for a

component of a data stream is the transport address that would be
used by an ICE agent that is not ICE-aware. A default candidate

Keranen, et al. Expires September 9, 2018 [Page 15]

Internet-Draft ICE March 2018

for a component is one whose transport address matches the default
destination for that component.

Candidate Pair: A pair of a local candidate and a remote candidate.

Check, Connectivity Check, STUN Check: A STUN Binding request for
the purposes of verifying connectivity. A check is sent from the
base of the local candidate to the remote candidate of a candidate
pair.

Check List: An ordered set of candidate pairs that an ICE agent will
use to generate checks.

Ordinary Check: A connectivity check generated by an ICE agent as a
consequence of a timer that fires periodically, instructing it to
send a check.

Triggered Check: A connectivity check generated as a consequence of
the receipt of a connectivity check from the peer.

Valid Pair: A candidate pair whose local candidate equals the mapped
address of a successful connectivity check response, and whose
remote candidate equals the destination address to which the
connectivity check request was sent.

Valid List: An ordered set of candidate pairs for a data stream that
have been validated by a successful STUN transaction.

Check List Set: The ordered list of all check lists. The order is
determined by each ICE usage.

Full Implementation: An ICE implementation that performs the
complete set of functionality defined by this specification.

Lite Implementation: An ICE implementation that omits certain
functions, implementing only as much as is necessary for a peer
implementation that is full to gain the benefits of ICE. Lite
implementations do not maintain any of the state machines and do
not generate connectivity checks.

Controlling Agent: The ICE agent that nominates a candidate pair.
In any session, one agent is always controlling. The other is the
controlled agent.

Controlled Agent: The ICE agent that waits for the controlling agent
to nominate a candidate pair.

Keranen, et al. Expires September 9, 2018 [Page 16]

Internet-Draft ICE March 2018

Nomination: The process of the controlling agent indicating to the
controlled agent which candidate pair the ICE agents will use for
sending and receiving data. The nomination process defined in
this specification was referred to "regular nomination" in RFC
5245. The nomination process that was referred to "aggressive
nomination" in RFC 5245 has been deprecated in this specification.

Nominated, Nominated Flag: Once the nomination of a candidate pair
has succeeded, the candidate pair has become nominated, and the
value of its nominated flag is set to true.

Selected Pair, Selected Candidate Pair: The candidate pair used for
sending and receiving data for a component of a data stream is
referred to as the selected pair. Before selected pairs have been
produced for a data stream, any valid pair associated with a
component of a data stream can be used for sending and receiving
data for the component. Once there are nominated pairs for each
component of a data stream, the nominated pairs become the
selected pairs for the data stream. The candidates associated
with the selected pairs are referred to as selected candidates.

Using Protocol, ICE Usage: The protocol that uses ICE for NAT
traversal. A usage specification defines the protocol-specific
details on how the procedures defined here are applied to that
protocol.

Timer Ta: The timer for generating new STUN or TURN transactions.

Timer RTO (Retransmission Timout): The retransmission timer for a
given STUN or TURN transaction.

5. ICE Candidate Gathering and Exchange

As part of ICE processing, both the initiating and responding agents
gather candidates, prioritize and eliminate redundant candidates, and
exchange candidate information with the peer as defined by the Usage
Protocol (ICE Usage). Specifics of the candidate encoding mechanism
and the semantics of candidate information exchange is out of scope
of this specification.

5.1. Full Implementation

5.1.1. Gathering Candidates
An ICE agent gathers candidates when it believes that communication
is imminent. An initiating agent can do this based on a user

interface cue, or based on an explicit request to initiate a session.
Every candidate has a transport address. It also has a type and a

Keranen, et al. Expires September 9, 2018 [Page 17]

Internet-Draft ICE March 2018

base. Four types are defined and gathered by this specification --

host candidates, server reflexive candidates, peer reflexive

candidates, and relayed candidates. The server reflexive candidates
are gathered using STUN or TURN, and relayed candidates are obtained
through TURN. Peer reflexive candidates are obtained in later phases
of ICE, as a consequence of connectivity checks.

The process for gathering candidates at the responding agent is
identical to the process for the initiating agent. It is RECOMMENDED
that the responding agent begins this process immediately on receipt
of the candidate information, prior to alerting the user of the
application associated with the ICE session.

5.1.1.1. Host Candidates

Host candidates are obtained by binding to ports on an IP address
attached to an interface (physical or virtual, including VPN
interfaces) on the host.

For each component of each data stream the ICE agent wishes to use,
the agent SHOULD obtain a candidate on each IP address that the host
has, with the exceptions listed below. The agent obtains each
candidate by binding to a UDP port on the specific IP address. A

host candidate (and indeed every candidate) is always associated with
a specific component for which it is a candidate.

Each component has an ID assigned to it, called the component ID.

For RTP/RTCP data streams, unless both RTP and RTCP are multiplexed
in the same UDP port (RTP/RTCP multiplexing), the RTP itself has a
component ID of 1, and RTCP a component ID of 2. In case of RTP/RTCP
multiplexing, a component ID of 1 is used for both RTP and RTCP.

When candidates are obtained, unless the agent knows for sure that
RTP/RTCP multiplexing will be used (i.e., the agent knows that the
other agent also supports, and is willing to use, RTP/RTCP
multiplexing), or unless the agent only supports RTP/RTCP
multiplexing, the agent MUST obtain a separate candidate for RTCP.

If an agent has obtained a candidate for RTCP, and ends up using RTP/
RTCP multiplexing, the agent does not need to perform connectivity
checks on the RTCP candidate. Absence of a component ID 2 as such
does not imply use of RTCP/RTP multiplexing, as it could also mean
that RTCP is not used.

If an agent is using separate candidates for RTP and RTCP, it will
end up with 2*K host candidates if an agent has K IP addresses.

Note that the responding agent, when obtaining its candidates, will
typically know if the other agent supports RTP/RTCP multiplexing, in

Keranen, et al. Expires September 9, 2018 [Page 18]

Internet-Draft ICE March 2018

which case it will not need to obtain a separate candidate for RTCP.
However, absence of a component ID 2 as such does not imply use of
RTCP/RTP multiplexing, as it could also mean that RTCP is not used.

For uses other than RTP/RTCP streams, use of multiple components is
discouraged, since using them increases the complexity of ICE
processing. If multiple components are needed, the component IDs
SHOULD start with 1 and increase by 1 for each component.

The base for each host candidate is set to the candidate itself.

The host candidates are gathered from all IP addresses with the
following exceptions:

0 Addresses from a loopback interface MUST NOT be included in the
candidate addresses.

o Deprecated IPv4-compatible IPv6 addresses [RFC4291] and IPv6 site-
local unicast addresses [RFC3879] MUST NOT be included in the
address candidates.

o IPv4-mapped IPv6 addresses SHOULD NOT be included in the address
candidates unless the application using ICE does not support IPv4
(i.e., is an IPv6-only application [RFC4038]).

o If one or more host candidates corresponding to an IPv6 address
generated using a mechanism that prevents location tracking
[RFC7721] are gathered, host candidates corresponding to IPv6
addresses that do allow location tracking that are configured on
the same interface and are part of the same network prefix MUST
NOT be gathered. Similarly, when host candidates corresponding to
an IPv6 address generated using a mechanism that prevents location
tracking are gathered, then host candidates corresponding to IPv6
link-local addresses [RFC4291] MUST NOT be gathered.

The IPv6 default address selection specification [RFC6724] specifies
that temporary addresses [RFC4941] are to be preferred over permanent
addresses.

5.1.1.2. Server Reflexive and Relayed Candidates

An ICE agent SHOULD gather server reflexive and relayed candidates.
However, use of STUN and TURN servers may be unnecessary in certain
networks and use of TURN servers may be expensive, so some
deployments may elect not to use them. If an agent does not gather
server reflexive or relayed candidates, it is RECOMMENDED that the
functionality be implemented and just disabled through configuration,

Keranen, et al. Expires September 9, 2018 [Page 19]

Internet-Draft ICE March 2018

so that it can be re-enabled through configuration if conditions
change in the future.

The agent pairs each host candidate with the STUN or TURN servers

with which it is configured or has discovered by some means. lItis
RECOMMENDED that a domain name be configured, and the DNS procedures
in [RFC5389] (using SRV records with the "stun" service) be used to

discover the STUN server, and the DNS procedures in [RFC5766] (using

SRV records with the "turn” service) be used to discover the TURN

server.

When multiple STUN or TURN servers are available (or when they are
learned through DNS records and multiple results are returned), the
agent MAY gather candidates for all of them and SHOULD gather
candidates for at least one of them (one STUN server and one TURN
server). It does so by pairing host candidates with STUN or TURN
servers and, for each pair, the agent sends a Binding or Allocate
request to the server from the host candidate. Binding requests to a
STUN server are not authenticated, and any ALTERNATE-SERVER attribute
in a response is ignored. Agents MUST support the backwards
compatibility mode for the Binding request defined in [RFC5389].
Allocate requests SHOULD be authenticated using a long-term
credential obtained by the client through some other means.

The gathering process is controlled using a timer, Ta. Every time Ta
expires the agent can generate another new STUN or TURN transaction.
This transaction can either be a retry of a previous transaction that

failed with a recoverable error (such as authentication failure), or

a transaction for a new host candidate and STUN or TURN server pair.
The agent SHOULD NOT generate transactions more frequently than one
every time Ta expires. See Section 14 for guidance on how to set Ta

and the STUN retransmit timer, RTO.

The agent will receive a Binding or Allocate response. A successful
Allocate response will provide the agent with a server reflexive
candidate (obtained from the mapped address) and a relayed candidate
in the XOR-RELAYED-ADDRESS attribute. If the Allocate request is
rejected because the server lacks resources to fulfill it, the agent
SHOULD instead send a Binding request to obtain a server reflexive
candidate. A Binding response will provide the agent with only a
server reflexive candidate (also obtained from the mapped address).
The base of the server reflexive candidate is the host candidate from
which the Allocate or Binding request was sent. The base of a
relayed candidate is that candidate itself. If a relayed candidate

is identical to a host candidate (which can happen in rare cases),

the relayed candidate MUST be discarded.

Keranen, et al. Expires September 9, 2018 [Page 20]

Internet-Draft ICE March 2018

If an IPv6-only agent is in a network that utilizes NAT64 [RFC6146]
and DNS64 [RFC6147] technologies, it may also gather IPv4 server
reflexive and/or relayed candidates from IPv4-only STUN or TURN
servers. IPv6-only agents SHOULD also utilize IPv6 prefix discovery
[RFC7050] to discover the IPv6 prefix used by NAT64 (if any) and
generate server reflexive candidates for each IPv6-only interface
accordingly. The NAT64 server reflexive candidates are prioritized
like IPv4 server reflexive candidates.

5.1.1.3. Computing Foundations

The ICE agent assigns each candidate a foundation. Two candidates
have the same foundation when all of the following are true:

o They have the same type (host, relayed, server reflexive, or peer
reflexive).

0 Their bases have the same IP address (the ports can be different).

o For reflexive and relayed candidates, the STUN or TURN servers
used to obtain them have the same IP address (the IP address used
by the agent to contact the STUN or TURN server).

0 They were obtained using the same transport protocol (TCP, UDP).

Similarly, two candidates have different foundations if their types

are different, their bases have different IP addresses, the STUN or
TURN servers used to obtain them have different IP addresses (the IP
addresses used by the agent to contact the STUN or TURN server), or
their transport protocols are different.

5.1.1.4. Keeping Candidates Alive

Once server reflexive and relayed candidates are allocated, they MUST
be kept alive until ICE processing has completed, as described in
Section 8.3. For server reflexive candidates learned through a

Binding request, the bindings MUST be kept alive by additional

Binding requests to the server. Refreshes for allocations are done
using the Refresh transaction, as described in [RFC5766]. The
Refresh requests will also refresh the server reflexive candidate.

Host candidates do not time out, but the candidate addresses may
change or disappear for a number of reasons. An ICE agent SHOULD
monitor the interfaces it uses, invalidate candidates whose base has
gone away, and acquire new candidates as appropriate when new IP
addresses (on new or currently used interfaces) appear.

Keranen, et al. Expires September 9, 2018 [Page 21]

Internet-Draft ICE March 2018

5.1.2. Prioritizing Candidates

The prioritization process results in the assignment of a priority to

each candidate. Each candidate for a data stream MUST have a unique
priority that MUST be a positive integer between 1 and (2**31 - 1).

This priority will be used by ICE to determine the order of the
connectivity checks and the relative preference for candidates.

Higher priority values give more priority over lower values.

An ICE agent SHOULD compute this priority using the formula in
Section 5.1.2.1 and choose its parameters using the guidelines in
Section 5.1.2.2. If an agent elects to use a different formula, ICE
may take longer to converge since the agents will not be coordinated
in their checks.

The process for prioritizing candidates is common across the
initiating and the responding agent.

5.1.2.1. Recommended Formula

The recommended formula combines a preference for the candidate type
(server reflexive, peer reflexive, relayed, and host), a preference

for the IP address for which the candidate was obtained, and

component ID using the following formula:

priority = (2°24)*(type preference) +
(278)*(local preference) +
(270)*(256 - component ID)

The type preference MUST be an integer from O (lowest preference) to
126 (highest preference) inclusive and MUST be identical for all
candidates of the same type and MUST be different for candidates of
different types. The type preference for peer reflexive candidates
MUST be higher than that of server reflexive candidates. Setting the
value to 0 means that candidates of this type will only be used as a
last resort. Note that candidates gathered based on the procedures

of Section 5.1.1 will never be peer reflexive candidates; candidates

of these type are learned from the connectivity checks performed by
ICE.

The local preference MUST be an integer from O (lowest preference) to
65535 (highest preference) inclusive. When there is only a single IP
address, this value SHOULD be set to 65535. If there are multiple
candidates for a particular component for a particular data stream

that have the same type, the local preference MUST be unique for each
one. If an ICE agent is dual-stack, the local preference SHOULD be

Keranen, et al. Expires September 9, 2018 [Page 22]

Internet-Draft ICE March 2018

set according to the current best practice described in
[I-D.ietf-ice-dualstack-fairness].

The component ID MUST be an integer between 1 and 256 inclusive.
5.1.2.2. Guidelines for Choosing Type and Local Preferences

The RECOMMENDED values for type preferences are 126 for host
candidates, 110 for peer reflexive candidates, 100 for server
reflexive candidates, and 0O for relayed candidates.

If an ICE agent is multihomed and has multiple IP addresses, the
recommendations in [I-D.ietf-ice-dualstack-fairness] SHOULD be
followed. If multiple TURN servers are used, local priorities for

the candidates obtained from the TURN servers are chosen in a similar
fashion as for multihomed local candidates: the local preference

value is used to indicate a preference among different servers but

the preference MUST be unique for each one.

When choosing type preferences, agents may take into account factors
such as latency, packet loss, cost, network topology, security,
privacy, and others.

5.1.3. Eliminating Redundant Candidates

Next, the ICE agents (initiating and responding) eliminate redundant
candidates. Two candidates can have the same transport address yet
have different bases, and these would not be considered redundant.
Frequently, a server reflexive candidate and a host candidate will be
redundant when the agent is not behind a NAT. A candidate is
redundant if and only if its transport address and base equal those

of another candidate. The agent SHOULD eliminate the redundant
candidate with the lower priority.

5.2. Lite Implementation Procedures

Lite implementations only utilize host candidates. For each IP
address, independent of IP address family, there MUST be zero or one
candidate. With the lite implementation, ICE cannot be used to
dynamically choose amongst candidates. Therefore, including more
than one candidate from a particular IP address family is NOT
RECOMMENDED, since only a connectivity check can truly determine
whether to use one address or the other. Instead agents that have
multiple public IP addresses are RECOMMENDED to run full ICE
implementations to ensure the best usage of its addresses.

Each component has an ID assigned to it, called the component ID.
For RTP/RTCP data streams, unless RTCP is multiplexed in the same

Keranen, et al. Expires September 9, 2018 [Page 23]

Internet-Draft ICE March 2018

port with RTP, the RTP itself has a component ID of 1, and RTCP a
component ID of 2. If an agent is using RTCP without multiplexing,

it MUST obtain candidates for it. However, absence of a component ID
2 as such does not imply use of RTCP/RTP multiplexing, as it could
also mean that RTCP is not used.

Each candidate is assigned a foundation. The foundation MUST be
different for two candidates allocated from different IP addresses,

and MUST be the same otherwise. A simple integer that increments for
each IP address will suffice. In addition, each candidate MUST be
assigned a unique priority amongst all candidates for the same data
stream. If the formula in Section 5.1.2.1 is used to calculate the
priority, the type preference value SHOULD be set to 126. If a host

is v4-only, the local preference value SHOULD be set to 65535. If a
host is v6 or dual-stack, the local preference value SHOULD be set to
the precedence value for IP addresses described in RFC 6724
[RFC6724].

Next, an agent chooses a default candidate for each component of each
data stream. If a host is IPv4-only, there would only be one

candidate for each component of each data stream, and therefore that
candidate is the default. If a host is IPv6-only, the default

candidate would typically be a globally scoped IPv6 address. Dual-
stack hosts SHOULD allow configuration of whether IPv4 or IPV6 is
used for the default candidate, and the configuration needs to be

based on which one its administrator believes has a higher chance of
success in the current network environment.

The procedures in this section are common across the initiating and
responding agents.

5.3. Exchanging Candidate Information
ICE agents (initiating and responding) need the following information
about candidates to be exchanged. Each ICE usage MUST define how the
information is exchanged with the using protocol. This section
describes the information that needs to be exchanged.

Candidates: One or more candidates. For each candidate:

Address: The IP address and transport protocol port of the
candidate.

Transport: The transport protocol of the candidate. This MAY be

omitted if the using protocol only runs over a single transport
protocol.

Keranen, et al. Expires September 9, 2018 [Page 24]

Internet-Draft ICE March 2018

Foundation: A sequence of up to 32 characters.

Component ID: The component ID of the candidate. This MAY be
omitted if the using protocol does not use the concept of
components.

Priority: The 32-bit priority of the candidate.
Type: The type of the candidate.

Related Address and Port: The related IP address and port of the
candidate. These MAY be omitted or set to invalid values if
the agent does not want to reveal them, e.g., for privacy
reasons.

Extensibility Parameters: The using protocol might define means
for adding new per-candidate ICE parameters in the future.

Lite or Full: Whether the agent is a lite agent or full agent.

Connectivity check pacing value: The pacing value for connectivity
checks that the agent wishes to use. This MAY be omitted if the
agent wishes to use a defined default value.

Username Fragment and Password: Values used to perform connectivity
checks. The values MUST be unguessable, with at least 128 bits of
random number generator output used to generate the password, and
at least 24 bhits output to generate the username fragment.

Extensions: New media-stream or session-level attributes (ice-
options).

If the using protocol is vulnerable to, and able to detect, ICE
mismatch (Section 5.4), a way is needed for the detecting agent to
convey this information to its peer. It is a boolean flag.

The using protocol may (or may not) need to deal with backwards
compatibility with older implementations that do not support ICE. If

a fallback mechanism to non-ICE is supported is being used, then
presumably the using protocol provides a way of conveying the default
candidate (its IP address and port) in addition to the ICE

parameters.

Once an agent has sent its candidate information, it MUST be prepared
to receive both STUN and data packets on each candidate. As
discussed in Section 12.1, data packets can be sent to a candidate
prior to its appearance as the default destination for data.

Keranen, et al. Expires September 9, 2018 [Page 25]

Internet-Draft ICE March 2018

5.4. ICE Mismatch

Certain middleboxes, such as ALGs, can alter signaling information in
ways that break ICE (e.qg., by rewriting IP addresses in SDP). This

is referred to as ICE mismatch. If the using protocol is vulnerable

to ICE mismatch, the responding agent needs to be able to detect it
and inform the peer ICE agent about the ICE mismatch.

Each using protocol needs to define whether the using protocol is
vulnerable to ICE mismatch, how ICE mismatch is detected, and whether
specific actions need to be taken when ICE mismatch is detected.

6. ICE Candidate Processing

Once an ICE agent has gathered its candidates and exchanged
candidates with its peer (Section 5), it will determine its own role.
In addition, full implementations will form check lists, and begin
performing connectivity checks with the peer.

6.1. Procedures for Full Implementation
6.1.1. Determining Role

For each session, each ICE agent (Initiating and Responding) takes on
arole. There are two roles -- controlling and controlled. The
controlling agent is responsible for the choice of the final

candidate pairs used for communications. The sections below describe
in detail the actual procedures followed by controlling and

controlled agents.

The rules for determining the role and the impact on behavior are as
follows:

Both agents are full: The initiating agent that started the ICE
processing MUST take the controlling role, and the other MUST take
the controlled role. Both agents will form check lists, run the
ICE state machines, and generate connectivity checks. The
controlling agent will execute the logic in Section 8.1 to
nominate pairs that will become (if the connectivity checks
associated with the nominations succeed) the selected pairs, and
then both agents end ICE as described in Section 8.1.2.

One agent full, one lite: The full agent MUST take the controlling
role, and the lite agent MUST take the controlled role. The full
agent will form check lists, run the ICE state machines, and
generate connectivity checks. That agent will execute the logic
in Section 8.1 to nominate pairs that will become (if the
connectivity checks associated with the nominations succeed) the

Keranen, et al. Expires September 9, 2018 [Page 26]

Internet-Draft ICE March 2018

selected pairs, and use the logic in Section 8.1.2 to end ICE.
The lite implementation will just listen for connectivity checks,
receive them and respond to them, and then conclude ICE as
described in Section 8.2. For the lite implementation, the state
of ICE processing for each data stream is considered to be
Running, and the state of ICE overall is Running.

Both lite: The initiating agent that started the ICE processing MUST
take the controlling role, and the other MUST take the controlled
role. In this case, no connectivity checks are ever sent.

Rather, once the candidates are exchanged, each agent performs the
processing described in Section 8 without connectivity checks. It

is possible that both agents will believe they are controlled or
controlling. In the latter case, the conflict is resolved through

glare detection capabilities in the signaling protocol enabling

the candidate exchange. The state of ICE processing for each data
stream is considered to be Running, and the state of ICE overall

is Running.

Once the roles are determined for a session, they persist throughout
the lifetime of the session. The roles can be re-determined as part

of an ICE restart (Section 9), but an ICE agent MUST NOT re-determine
the role as part of an ICE restart unless one or more of the

following criteria is fulfilled:

Full becomes lite: If the controlling agent is full, and switches to
lite, the roles MUST be re-determined if the peer agent is also
full.

Role conflict: If the ICE restart causes a role conflict, the roles
might be re-determined due to the role conflict procedures in
Section 7.3.1.1.

NOTE: There are certain 3PCC (third party call control) [RFC3725]
scenarios where an ICE restart might cause a role conflict.

NOTE: The agents needs to inform each other whether they are full or
lite before the roles are determined. The mechanism for that is
signalling protocol specific, and outside the scope of the document.

An agent MUST accept if the peer initiates a re-determination of the

roles even if the criteria for doing so are not fulfilled. This can
happen if the peer is compliant with RFC 5245.

Keranen, et al. Expires September 9, 2018 [Page 27]

Internet-Draft ICE March 2018

6.1.2. Forming the Check Lists

There is one check list for each data stream. To form a check list,
initiating and responding ICE agents form candidate pairs, compute
pair priorities, order pairs by priority, prune pairs, remove lower-
priority pairs, and set check list states. If candidates are added

to a check list (e.g., due to detection of peer reflexive

candidates), the agent will re-perform these steps for the updated
check list.

6.1.2.1. Check List State

Each check list has a state, which captures the state of ICE checks
for the data stream associated with the check list. The states are:

Running: The check list is neither Completed nor Failed yet. Check
lists are initially set to the Running state.

Completed: The check list contains a nominated pair for each
component of the data stream.

Failed: The check list does not have a valid pair for each component
of the data stream and all of the candidate pairs in the check
list are in either the Failed or Succeeded state. In other words,
at least one component of the check list has candidate pairs that
are all in the Failed state, which means the component has failed,
which means the check list has failed.

6.1.2.2. Forming Candidate Pairs

The ICE agent pairs each local candidate with each remote candidate
for the same component of the same data stream with the same IP
address family. It is possible that some of the local candidates

won't get paired with remote candidates, and some of the remote
candidates won't get paired with local candidates. This can happen

if one agent doesn't include candidates for the all of the components
for a data stream. If this happens, the humber of components for
that data stream is effectively reduced, and considered to be equal

to the minimum across both agents of the maximum component 1D
provided by each agent across all components for the data stream.

In the case of RTP, this would happen when one agent provides
candidates for RTCP, and the other does not. As another example, the
initiating agent can multiplex RTP and RTCP on the same port
[RFC5761]. However, since the initiating agent doesn’t know if the
peer agent can perform such multiplexing, it includes candidates for
RTP and RTCP on separate ports. If the peer agent can perform such
multiplexing, it would include just a single component for each

Keranen, et al. Expires September 9, 2018 [Page 28]

Internet-Draft ICE March 2018

candidate -- for the combined RTP/RTCP mux. ICE would end up acting
as if there was just a single component for this candidate.

With IPv6 it is common for a host to have multiple host candidates
for each interface. To keep the amount of resulting candidate pairs
reasonable and to avoid candidate pairs that are highly unlikely to
work, IPv6 link-local addresses MUST NOT be paired with other than
link-local addresses.

The candidate pairs whose local and remote candidates are both the
default candidates for a particular component is called the default
candidate pair for that component. This is the pair that would be
used to transmit data if both agents had not been ICE aware.

Figure 5 shows the properties of and relationships between transport
addresses, candidates, candidate pairs, and check lists.

Keranen, et al. Expires September 9, 2018 [Page 29]

Internet-Draft ICE March 2018

+ +
I I

| + + |

| [+----+ +----+ +--—-+ | +Type |

| || 1P | [Port] [Tran| | +Priority |

| JAddr|| || || +Foundation |

[+----+ +----+ +----+	+Component ID	
	Transport	+Related Address
	Addr	

| -mmmmmmmmm e + +Base |

| Candidate |

+ +

* *

* kkkkkkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkkkx

* *

— +
+

| Local Remote |

| +----+ +----+ +default? |

| |Cand| |Cand| +valid? |

| +----+ +----+ +nominated?|
+State |

|
Candidate Pair |

* 4k p————
+

*
*kkkkkkkkkkk
*
S +
| Candidate Pair |
S +
[+
| Candidate Pair |
. +
S +
| Candidate Pair |
S +

Check
List

Figure 5: Conceptual Diagram of a Check List

Keranen, et al. Expires September 9, 2018 [Page 30]

Internet-Draft ICE March 2018

6.1.2.3. Computing Pair Priority and Ordering Pairs

The ICE agent computes a priority for each candidate pair. Let G be
the priority for the candidate provided by the controlling agent.

Let D be the priority for the candidate provided by the controlled
agent. The priority for a pair is computed as follows:

pair priority = 2232*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

The agent sorts each check list in decreasing order of candidate pair
priority. If two pairs have identical priority, the ordering amongst
them is arbitrary.

6.1.2.4. Pruning the Pairs

This sorted list of candidate pairs is used to determine a sequence
of connectivity checks that will be performed. Each check involves
sending a request from a local candidate to a remote candidate.
Since an ICE agent cannot send requests directly from a reflexive
candidate (server reflexive or peer reflexive), but only from its
base, the agent next goes through the sorted list of candidate pairs.
For each pair where the local candidate is reflexive, the candidate
MUST be replaced by its base.

The agent prunes each check list. This is done by removing a
candidate pair if it is redundant with a higher priority candidate

pair in the same check list. Two candidate pairs are redundant if

their local candidates have the same base and their remote candidates
are identical. The result is a sequence of ordered candidate pairs,
called the check list for that data stream.

6.1.2.5. Removing lower-priority Pairs

In order to limit the attacks described in Section 19.5.1, an ICE
agent MUST limit the total number of connectivity checks the agent
performs across all check lists in the check list set. This is done

by limiting the total number of candidate pairs in the check list

set. The default limit of candidate pairs for the check list set is
100, but the value MUST be configurable. The limit is enforced by,
within in each check list, discarding lower-priority candidate pairs
until the total number of candidate pairs in the check list set is
smaller than the limit value. The discarding SHOULD be done evenly
so that the number of candidate pairs in each check list is reduced
the same amount.

Itis RECOMMENDED that a lower limit value than the default is picked

when possible, and that the value is set to the maximum number of
plausible candidate pairs that might be created in an actual

Keranen, et al. Expires September 9, 2018 [Page 31]

Internet-Draft ICE March 2018

deployment configuration. The requirement for configuration is meant
to provide a tool for fixing this value in the field if, once
deployed, it is found to be problematic.

6.1.2.6. Computing Candidate Pair States
Each candidate pair in the check list has a foundation (the
combination of the foundations of the local and remote candidates in

the pair) and one of the following states:

Waiting: A check has not been sent for this pair, but the pair is
not Frozen.

In-Progress: A check has been sent for this pair, but the
transaction is in progress.

Succeeded: A check has been sent for this pair, and produced a
successful result.

Failed: A check has been sent for this pair, and failed (a response
to the check was never received, or a failure response was
received).

Frozen: A check for this pair has not been sent, and it can not be
sent until the pair is unfrozen and moved into the Waiting state.

Pairs move between states as shown in Figure 6.

Keranen, et al. Expires September 9, 2018 [Page 32]

Internet-Draft ICE March 2018
B ——— +
| |
| |
| Frozen |
| |
| |
B ——— +
|
|unfreeze
I
\Y
B ——— + B — +
| |
	perform	
Waiting [-------- >	In-Progress	
B ——— + B — +		
!		
I/		
I/		
I		
/		
1		
failure //	success	
1		
/		
1		
1		
1		
Vv \Y		
Fommmmmeee + B — +		
Failed		Succeeded
Fommmmmeee + B — +

Figure 6: Pair State FSM

1. The initial states for each pair in a check list are computed by
performing the following sequence of steps:

2. The check lists are placed in an ordered list (the order is
determined by each ICE usage), called the check list set.

Keranen, et al. Expires September 9, 2018 [Page 33]

Internet-Draft ICE March 2018

3. The ICE agent initially places all candidate pairs in the Frozen
state.

4. The agent sets all of the check lists in the check list set to
the Running state.

5. For each foundation, the agent sets the state of exactly one
candidate pair to the Waiting state (unfreezing it). The
candidate pair to unfreeze is chosen by finding the first
candidate pair (ordered by lowest component ID and then highest
priority if component IDs are equal) in the first check list
(according to the usage-defined check list set order) that has
that foundation.

NOTE: The procedures above are different from RFC 5245, where only
candidate pairs in the first check list of were initially placed in

the Waiting state. Now it applies to candidate pairs in the the

first check list which have that foundation, even if the first check

list to have that foundation is not the first check list in the check

list set.

The table below illustrates an example.

Table legend:

Each row (m1, m2,...) represents a check list associated with a data
stream. m1 represents the first check list in the check list set.

Each column (f1, f2,...) represents a foundation. Every candidate pair
within a given column share the same foundation.

f-cp represents a candidate pair in the Frozen state.
w-cp represents a candidate pair in the Waiting state.

1. The agent sets all of the pairs in the check list set to the Frozen
state.

fl f2 f3 f4 15

m1 | f-cp f-cp f-cp

|
m2 | f-cp f-cp f-cp f-cp

I
m3 | f-cp f-cp

Keranen, et al. Expires September 9, 2018 [Page 34]

Internet-Draft ICE March 2018

2. For each foundation, the candidate pair with the lowest component ID
is placed in the Waiting state, unless a candidate pair associated with
the same foundation has already been put in the Waiting state in one of
the other examined check lists in the check list set.

fi f2 f3 f4 15

ml | w-cp w-cp w-cp

|
m2 | f-cp f-cp f-cp w-cp

I
m3 | f-cp w-cp

In the first check list (m1) the candidate pair for each foundation is
placed in the Waiting state, as no pairs for the same foundations have
yet been placed in the Waiting state.

In the second check list (m2) the candidate pair for foundation 4 is
placed in the Waiting state. The candidate pair for foundations f1, f2
and f3 are kept in the Frozen state, as candidate pairs for those
foundations have already been placed in the Waiting state (within check
list m1).

In the third check list (m3) the candidate pair for foundation 5 is
placed in the Waiting state. The candidate pair for foundation f1 is
kept in the Frozen state, as a candidate pair for that foundation have
already been placed in the Waiting state (within check list m1).

Once each check list have been processed, one candidate pair for each
foundation in the check list set has been placed in the Waiting state.
6.1.3. ICE State
The ICE agent has a state determined by the state of the check lists.
The state is Completed if all check lists are Completed, Failed if
all check lists are Failed, and Running otherwise.
6.1.4. Scheduling Checks
6.1.4.1. Triggered Check Queue
Once the ICE agent has computed the check lists and created the check
list set, as described in Section 6.1.2, the agent will begin
performing connectivity checks (ordinary and triggered). For

triggered connectivity checks, the agent maintains a FIFO queue for
each check list, referred to as the triggered check queue, which

Keranen, et al. Expires September 9, 2018 [Page 35]

Internet-Draft ICE March 2018

contains candidate pairs for which checks are to be sent at the next
available opportunity. The triggered check queue is initially empty.

6.1.4.2. Performing Connectivity Checks

The generation of ordinary and triggered connectivity checks is
governed by timer Ta. As soon as the initial states for the
candidate pairs in the check list set have been set, a check is
performed for a candidate pair within the first check list in the
Running state, following the procedures in Section 7. After that,
whenever Ta fires the next check list in the Running state in the
check list set is picked, and a check is performed for a candidate
within that check list. After the last check list in the Running
state in the check list set has been processed, the first check list
is picked again, etc.

Whenever Ta fires, the ICE agent will perform a check for a candidate
pair within the picked check list by performing the following steps:

1. If the triggered check queue associated with the check list
contains one or more candidate pairs, the agent removes the top
pair from the queue, performs a connectivity check on that pair,
puts the candidate pair state to In-Progress, and aborts the
subsequent steps.

2. If there is no candidate pair in the Waiting state, and if there
are one or more pairs in the Frozen state, for each pair in the
Frozen state the agent checks the foundation associated with the
pair. For a given foundation, if there is no pair (in any check
list in the check list set) in the Waiting or In-Progress state,
the agent puts the candidate pair state to Waiting and continues
with the next step.

3. If there are one or more candidate pairs in the Waiting state,
the agent picks the highest-priority candidate pair (if there are
multiple pairs with the same priority, the pair with the lowest
component ID is picked) in the Waiting state, performs a
connectivity check on that pair, puts the candidate pair par
state to In-Progress, and abort the subsequent steps.

4. If this step is reached, no check could be performed for the
picked check list. So, without waiting for timer Ta to expire
again, select the next check list in the Running state and return
to step #1. If this happens for every single check list in the
Running state, meaning there are no remaining candidate pairs to
perform connectivity checks for, abort these steps.

Keranen, et al. Expires September 9, 2018 [Page 36]

Internet-Draft ICE March 2018

Once the agent has picked a candidate pair for which a connectivity
check is to be performed, the agent starts a check and sends the
Binding request from the base associated with the local candidate of
the pair to the remote candidate of the pair, as described in

Section 7.2.4.

Based on local policy, an agent MAY choose to terminate performing
the connectivity checks for one or more checks lists in the check

list set at any time. However, only the controlling agent is allowed

to conclude ICE (Section 8).

To compute the message integrity for the check, the agent uses the
remote username fragment and password learned from the candidate
information obtained from its peer. The local username fragment is
known directly by the agent for its own candidate.

6.2. Lite Implementation Procedures

Lite implementations skip most of the steps in Section 6 except for
verifying the peer’s ICE support and determining its role in the ICE
processing.

If the lite implementation is the controlling agent (which will only
happen if the peer ICE agent is also a lite implementation), it

selects a candidate pair based on the ones in the candidate exchange
(for IPv4, there is only ever one pair), and then updating the peer

with the new candidate information reflecting that selection, if

needed (it is never needed for an IPv4-only host).

7. Performing Connectivity Checks
This section describes how connectivity checks are performed.
An ICE agent MUST be compliant to [RFC5389]. A full implementation
acts both as a STUN client and a STUN server, while a lite
implementation only acts as a STUN server (as it does not generate
connectivity checks).

7.1. STUN Extensions
ICE extends STUN by defining new attributes: PRIORITY, USE-CANDIDATE,
ICE-CONTROLLED, and ICE-CONTROLLING. The new attributes are formally
defined in Section 16.1. This section describes the usage of the new
attributes.

The new attributes are only applicable to ICE connectivity checks.

Keranen, et al. Expires September 9, 2018 [Page 37]

Internet-Draft ICE March 2018

7.1.1. PRIORITY

The priority attribute MUST be included in a Binding request and be
set to the value computed by the algorithm in Section 5.1.2 for the
local candidate, but with the candidate type preference of peer
reflexive candidates.

7.1.2. USE-CANDIDATE

The controlling agent MUST include the USE-CANDIDATE attribute in
order to nominate a candidate pair (Section 8.1.1). The controlled
agent MUST NOT include the USE-CANDIDATE attribute in a Binding
request.

7.1.3. ICE-CONTROLLED and ICE-CONTROLLING

The controlling agent MUST include the ICE-CONTROLLING attribute in a
Binding request. The controlled agent MUST include the ICE-
CONTROLLED attribute in a Binding request.

The content of either attribute are used as tie-breaker values when
an ICE role conflict occurs (Section 7.3.1.1).

7.2. STUN Client Procedures
7.2.1. Creating Permissions for Relayed Candidates

If the connectivity check is being sent using a relayed local

candidate, the client MUST create a permission first if it has not

already created one previously. It would have created one previously

if it had told the TURN server to create a permission for the given
relayed candidate towards the IP address of the remote candidate. To
create the permission, the ICE agent follows the procedures defined

in [RFC5766]. The permission MUST be created towards the IP address
of the remote candidate. Itis RECOMMENDED that the agent defer
creation of a TURN channel until ICE completes, in which case
permissions for connectivity checks are normally created using a
CreatePermission request. Once established, the agent MUST keep the
permission active until ICE concludes.

7.2.2. Forming Credentials

A connectivity check Binding request MUST utilize the STUN short-term
credential mechanism.

The username for the credential is formed by concatenating the

username fragment provided by the peer with the username fragment of
the ICE agent sending the request, separated by a colon (":").

Keranen, et al. Expires September 9, 2018 [Page 38]

Internet-Draft ICE March 2018

The password is equal to the password provided by the peer.

For example, consider the case where ICE agent L is the Initiating

agent and ICE agent R is the Responding agent. Agent L included a
username fragment of LFRAG for its candidates and a password of

LPASS. Agent R provided a username fragment of RFRAG and a password
of RPASS. A connectivity check from L to R utilizes the username
RFRAG:LFRAG and a password of RPASS. A connectivity check from R to
L utilizes the username LFRAG:RFRAG and a password of LPASS. The
responses utilize the same usernames and passwords as the requests

(note that the USERNAME attribute is not present in the response).

7.2.3. DiffServ Treatment

If the agent is using Diffserv Codepoint markings [RFC2475] in data
packets that it will send, the agent SHOULD apply the same markings
to Binding requests and responses that it will send.

If multiple DSCP markings are used on the data packets, the agent
SHOULD choose one of them for use with the connectivity check.

7.2.4. Sending the Request

A connectivity check is generated by sending a Binding request from
the base associated with a local candidate to a remote candidate.
[RFC5389] describes how Binding requests are constructed and
generated.

Support for backwards compatibility with RFC 3489 MUST NOT be assumed
when performing connectivity checks. The FINGERPRINT mechanism MUST
be used for connectivity checks.

7.2.5. Processing the Response

This section defines additional procedures for processing Binding
responses specific to ICE connectivity checks.

When a Binding response is received, it is correlated to the
corresponding Binding request using the transaction ID [RFC5389],
which then associates the response with the candidate pair for which
the Binding request was sent. After that, the response is processed
according to the procedures for a role conflict, a failure, or a
success, according to the procedures below.

Keranen, et al. Expires September 9, 2018 [Page 39]

Internet-Draft ICE March 2018

7.2.5.1. Role Conflict

If the Binding request generates a 487 (Role Conflict) error response
(Section 7.3.1.1), and if the ICE agent included an ICE-CONTROLLED
attribute in the request, the agent MUST switch to the controlling

role. If the agent included an ICE-CONTROLLING attribute in the
request, the agent MUST switch to the controlled role.

Once the agent has switched its role, the agent MUST add the
candidate pair whose check generated the 487 error response to the
triggered check queue associated with the check list to which the
pair belongs, and set the candidate pair state to Waiting. When the
triggered connectivity check is later performed, the ICE-CONTROLLING/
ICE-CONTROLLED attribute of the Binding request will indicate the
agent’'s new role. The agent MUST change the tie-breaker value.

NOTE: A role switch requires an agent to recompute pair priorities
(Section 6.1.2.3), since the priority values depend on the role.

NOTE: A role switch will also impact whether the agent is responsible
for nominating candidate pairs, and whether the agent is responsible
for initiating the exchange of the updated candidate information with
the peer once ICE is concluded.

7.2.5.2. Failure

This section describes cases when the candidate pair state is set to
Failed.

NOTE: When the ICE agent sets the candidate pair state to Failed as a
result of a connectivity check error, the agent does not change the
states of other candidate pairs with the same foundation.

7.2.5.2.1. Non-Symmetric Transport Addresses

The ICE agent MUST check that the source and destination transport
addresses in the Binding request and response are symmetric. l.e.,
the source IP address and port of the response MUST be equal to the
destination IP address and port to which the Binding request was
sent, and that the destination IP address and port of the response
MUST be equal to the source IP address and port from which the
Binding request was sent. If the addresses are not symmetric, the
agent MUST set the candidate pair state to Failed.

Keranen, et al. Expires September 9, 2018 [Page 40]

Internet-Draft ICE March 2018

7.25.2.2. ICMP Error

An ICE agent MAY support processing of ICMP errors for connectivity
checks. If the agent supports processing of ICMP errors, and if a
Binding request generates a hard ICMP error, the agent SHOULD set the
state of the candidate pair to Failed. Implementers need to be aware
that ICMP errors can be used as a method for denial of service

attacks when making a decision on how and if to process ICMP errors.

7.2.5.2.3. Timeout

If the Binding request transaction times out, the ICE agent MUST set
the candidate pair state to Failed.

7.2.5.2.4. Unrecoverable STUN Response
If the Binding request generates a STUN error response that is
unrecoverable [RFC5389] the ICE agent SHOULD set the candidate pair
state to Failed.

7.2.5.3. Success

A connectivity check is considered a success if each of the following
criteria is true:

o0 The Binding request generated a success response; and

0 The source and destination transport addresses in the Binding
request and response are symmetric.

If a check is considered a success, the ICE agent performs (in order)
the actions described in the following sections.

7.2.5.3.1. Discovering Peer Reflexive Candidates

The ICE agent MUST check the mapped address from the STUN response.
If the transport address does not match any of the local candidates

that the agent knows about, the mapped address represents a new
candidate: a peer reflexive candidate. Like other candidates, a peer
reflexive candidate has a type, base, priority, and foundation. They

are computed as follows:

0 The type is peer reflexive.

0 The base is the local candidate of the candidate pair from which
the Binding request was sent.

Keranen, et al. Expires September 9, 2018 [Page 41]

Internet-Draft ICE March 2018

0 The priority is the value of the PRIORITY attribute in the Binding
request.

0 The foundation is described in Section 5.1.1.3.

The peer reflexive candidate is then added to the list of local
candidates for the data stream. The username fragment and password
are the same as for all other local candidates for that data stream.

The ICE agent does not need to pair the peer reflexive candidate with
remote candidates, as a valid pair will be created due to the
procedures in Section 7.2.5.3.2. If an agent wishes to pair the peer
reflexive candidate with remote candidates other than the one in the
valid pair that will be generated, the agent MAY provide updated
candidate information to the peer that includes the peer reflexive
candidate. This will cause the peer reflexive candidate to be paired
with all other remote candidates.

7.2.5.3.2. Constructing a Valid Pair

The ICE agent constructs a candidate pair whose local candidate

equals the mapped address of the response, and whose remote candidate
equals the destination address to which the request was sent. This

is called a valid pair.

The valid pair might equal the pair that generated the connectivity
check, a different pair in the check list, or a pair currently not in
the check list.

The agent maintains a separate list, referred to as the valid list.
There is a valid list for each check list in the check list set. The
valid list will contain valid pairs. Initially each valid list is
empty.

Each valid pair within the valid list has a flag, called the
nominated flag. When a valid pair is added to a valid list, the flag
value is set to 'false’.

The valid pair will be added to a valid list as follows:

1. If the valid pair equals the pair that generated the check, the
pair is added to the valid list associated with the check list to
which the pair belongs; or

2. If the valid pair equals another pair in a check list, that pair
is added to the valid list associated with the check list of that
pair. The pair that generated the check is not added to a valid
list; or

Keranen, et al. Expires September 9, 2018 [Page 42]

Internet-Draft ICE March 2018

3. If the valid pair is not in any check list, the agent computes
the priority for the pair based on the priority of each
candidate, using the algorithm in Section 6.1.2. The priority of
the local candidate depends on its type. Unless the type is peer
reflexive, the priority is equal to the priority signaled for
that candidate in the candidate exchange. If the type is peer
reflexive, it is equal to the PRIORITY attribute the agent placed
in the Binding request that just completed. The priority of the
remote candidate is taken from the candidate information of the
peer. If the candidate does not appear there, then the check has
been a triggered check to a new remote candidate. In that case,
the priority is taken as the value of the PRIORITY attribute in
the Binding request that triggered the check that just completed.
The pair is then added to the valid list.

NOTE: It will be very common that the valid pair will not be in any
check list. Recall that the check list has pairs whose local

candidates are never reflexive; those pairs had their local

candidates converted to the base of the reflexive candidates, and

then pruned if they were redundant. When the response to the Binding
request arrives, the mapped address will be reflexive if there is a

NAT between the two. In that case, the valid pair will have a local
candidate that doesn’t match any of the pairs in the check list.

7.2.5.3.3. Updating Candidate Pair States

The ICE agent sets the states of both the candidate pair that
generated the check and the constructed valid pair (which may be
different) to Succeeded.

The agent MUST set the states for all other Frozen candidate pairs in
all check lists with the same foundation to Waiting.

NOTE: Within a given check list, candidate pairs with the same
foundations will typically have different component ID values.

7.2.5.3.4. Updating the Nominated Flag

If the controlling agent sends a Binding request with the USE-
CANDIDATE attribute set, and if the ICE agent receives a successful
response to the request, the agent sets the nominated flag of the
pair to true. If the request fails (Section 7.2.5.2), the agent MUST
remove the candidate pair from the valid list, set the candidate pair
state to Failed and set the check list state to Failed.

If the controlled agent receives a successful response to a Binding

request sent by the agent, and that Binding request was triggered by
a received Binding request with the USE-CANDIDATE attribute set

Keranen, et al. Expires September 9, 2018 [Page 43]

Internet-Draft ICE March 2018

(Section 7.3.1.4), the agent sets the nominated flag of the pair to
true. If the triggered request fails, the agent MUST remove the
candidate pair from the valid list, set the candidate pair state to
Failed and set the check list state to Failed.

Once the nominated flag is set for a component of a data stream, it
concludes the ICE processing for that component (Section 8).

7.2.5.4. Check List State Updates

Regardless of whether a connectivity check was successful or failed,
the completion of the check may require updating of check list
states. For each check list in the check list set, if all of the
candidate pairs are in either Failed or Succeeded state, and if there
is not a valid pair in the valid list for each component of the data
stream associated with the check list, the state of the check list is
set to Failed. If there is a valid pair for each component in the

valid list, the state of the check list is set to Succeeded.

7.3. STUN Server Procedures

An ICE agent (lite or full) MUST be prepared to receive Binding
requests on the base of each candidate it included in its most recent
candidate exchange.

The agent MUST use the short-term credential mechanism (i.e., the
MESSAGE-INTEGRITY attribute) to authenticate the request and perform
a message integrity check. Likewise, the short-term credential
mechanism MUST be used for the response. The agent MUST consider the
username to be valid if it consists of two values separated by a

colon, where the first value is equal to the username fragment

generated by the agent in a candidate exchange for a session in-
progress. lItis possible (and in fact very likely) that the

initiating agent will receive a Binding request prior to receiving

the candidates from its peer. If this happens, the agent MUST
immediately generate a response (including computation of the mapped
address as described in Section 7.3.1.2). The agent has sufficient
information at this point to generate the response; the password from

the peer is not required. Once the answer is received, it MUST

proceed with the remaining steps required, namely, Section 7.3.1.3,
Section 7.3.1.4, and Section 7.3.1.5 for full implementations. In

cases where multiple STUN requests are received before the answer,
this may cause several pairs to be queued up in the triggered check
gueue.

An agent MUST NOT utilize the ALTERNATE-SERVER mechanism, and MUST
NOT support the backwards-compatibility mechanisms to RFC 3489. It
MUST utilize the FINGERPRINT mechanism.

Keranen, et al. Expires September 9, 2018 [Page 44]

Internet-Draft ICE March 2018

If the agent is using Diffserv Codepoint markings [RFC2475] in its

data packets, it SHOULD apply the same markings to Binding responses.
The same would apply to any layer 2 markings the endpoint might be
applying to data packets.

7.3.1. Additional Procedures for Full Implementations

This subsection defines the additional server procedures applicable
to full implementations, when the full implementation accepts the
Binding request.

7.3.1.1. Detecting and Repairing Role Conflicts

In certain usages of ICE (such as 3PCC), both ICE agents may end up
choosing the same role, resulting in a role conflict. The section
describes a mechanism for detecting and repairing role conflicts.

The usage document MUST specify whether this mechanism is needed.

An agent MUST examine the Binding request for either the ICE-
CONTROLLING or ICE-CONTROLLED attribute. It MUST follow these

procedures:

o If the agent is in the controlling role, and the ICE-CONTROLLING
attribute is present in the request:

* |If the agent’s tie-breaker value is larger than or equal to the
contents of the ICE-CONTROLLING attribute, the agent generates
a Binding error response and includes an ERROR-CODE attribute
with a value of 487 (Role Conflict) but retains its role.

* |f the agent’s tie-breaker value is less than the contents of
the ICE-CONTROLLING attribute, the agent switches to the
controlled role.

o Ifthe agent is in the controlled role, and the ICE-CONTROLLED
attribute is present in the request:

* |If the agent’s tie-breaker value is larger than or equal to the
contents of the ICE-CONTROLLED attribute, the agent switches to

the controlling role.

* |f the agent’s tie-breaker value is less than the contents of
the ICE-CONTROLLED attribute, the agent generates a Binding
error response and includes an ERROR-CODE attribute with a
value of 487 (Role Conflict) but retains its role.

o If the agent is in the controlled role and the ICE-CONTROLLING
attribute was present in the request, or the agent was in the

Keranen, et al. Expires September 9, 2018 [Page 45]

Internet-Draft ICE March 2018

controlling role and the ICE-CONTROLLED attribute was present in
the request, there is no conflict.

A change in roles will require an agent to recompute pair priorities
(Section 6.1.2.3), since those priorities are a function of role.

The change in role will also impact whether the agent is responsible
for selecting nominated pairs and initiating exchange with updated
candidate information upon conclusion of ICE.

The remaining sections in Section 7.3.1 are followed if the agent
generated a successful response to the Binding request, even if the
agent changed roles.

7.3.1.2. Computing Mapped Address

For requests received on a relayed candidate, the source transport
address used for STUN processing (namely, generation of the XOR-
MAPPED-ADDRESS attribute) is the transport address as seen by the
TURN server. That source transport address will be present in the
XOR-PEER-ADDRESS attribute of a Data Indication message, if the
Binding request was delivered through a Data Indication. If the
Binding request was delivered through a ChannelData message, the
source transport address is the one that was bound to the channel.

7.3.1.3. Learning Peer Reflexive Candidates
If the source transport address of the request does not match any
existing remote candidates, it represents a new peer reflexive remote
candidate. This candidate is constructed as follows:

0 The type is peer reflexive.

0 The priority is the value of the PRIORITY attribute in the Binding
request.

o0 The foundation is an arbitrary value, different from the
foundations of all other remote candidates. If any subsequent
candidate exchanges contain this peer reflexive candidate, it will
signal the actual foundation for the candidate.

0 The component ID is the component ID of the local candidate to
which the request was sent.

This candidate is added to the list of remote candidates. However,
the ICE agent does not pair this candidate with any local candidates.

Keranen, et al. Expires September 9, 2018 [Page 46]

Internet-Draft ICE March 2018

7.3.1.4. Triggered Checks

Next, the agent constructs a pair whose local candidate has the
transport address (as seen by the agent) on which the STUN request
was received, and a remote candidate equal to the source transport
address where the request came from (which may be the peer reflexive
remote candidate that was just learned). The local candidate will
either be a host candidate (for cases where the request was not
received through a relay) or a relayed candidate (for cases where it
is received through a relay). The local candidate can never be a
server reflexive candidate. Since both candidates are known to the
agent, it can obtain their priorities and compute the candidate pair
priority. This pair is then looked up in the check list. There can

be one of several outcomes:

o If the pair is already on the check list:

* |f the state of that pair is Succeeded, nothing further is
done.

* |If the state of that pair is In-Progress, the agent cancels the
In-Progress transaction. Cancellation means that the agent
will not retransmit the Binding requests associated with the
connectivity check transaction, will not treat the lack of
response to be a failure, but will wait the duration of the
transaction timeout for a response. In addition, the agent
MUST add enqueue the pair in the triggered check list
associated with the check list, and set the state of the pair
to Waiting, in order to trigger a new connectivity check of the
pair. Creating a new connectivity check enables validating In-
Progress pairs as soon as possible, without having to wait for
retransmissions of the Binding requests associated with the
original connectivity check transaction.

*

If the state of that pair is Waiting, Frozen or Failed, the
agent MUST enqueue the pair in the triggered check list
associated with the check list (if not already present), and
set the state of the pair to Waiting, in order to trigger a new
connectivity check of the pair. Note that a state change of
the pair from Failed to Waiting might also trigger a state
change of the associated check list.

These steps are done to facilitate rapid completion of ICE when both
agents are behind NAT.

o If the pair is not already on the check list:

* The pair is inserted into the check list based on its priority.

Keranen, et al. Expires September 9, 2018 [Page 47]

Internet-Draft ICE March 2018

* |ts state is set to Waiting.
* The pair is enqueued into the triggered check queue.

When a triggered check is to be sent, it is constructed and processed
as described in Section 7.2.4. These procedures require the agent to
know the transport address, username fragment, and password for the
peer. The username fragment for the remote candidate is equal to the
part after the colon of the USERNAME in the Binding request that was
just received. Using that username fragment, the agent can check the
candidates received from its peer (there may be more than one in
cases of forking), and find this username fragment. The
corresponding password is then picked.

7.3.1.5. Updating the Nominated Flag

If the controlled agent receives a Binding request with the USE-
CANDIDATE attribute set, and if the ICE agent accepts the request,
the following action is based on the state of the pair computed in
Section 7.3.1.4:

o If the state of this pair is Succeeded, it means that the check
previously sent by this pair produced a successful response, and
generated a valid pair (Section 7.2.5.3.2). The agent sets the
nominated flag value of the valid pair to true.

o If the received Binding request triggered a new check to be enqued
in the triggered check queue (Section 7.3.1.4), once the check is
sent and if it generates a successful response, and generates a
valid pair, the agent sets the nominated flag of the pair to true.

If the request fails (Section 7.2.5.2), the agent MUST remove the
candidate pair from the valid list, set the candidate pair state
to Failed and set the check list state to Failed.

If the controlled agent does not accept the request from the
controlling agent, the controlled agent MUST reject the nomination
request with an appropriate error code response (e.g., 400)
[RFC5389].

Once the nominated flag is set for a component of a data stream, it
concludes the ICE processing for that component. See Section 8.

7.3.2. Additional Procedures for Lite Implementations
If the controlled agent receives a Binding request with the USE-
CANDIDATE attribute set, and if the ICE agent accepts the request,

the agent constructs a candidate pair whose local candidate has the
transport address on which the request was received, and whose remote

Keranen, et al. Expires September 9, 2018 [Page 48]

Internet-Draft ICE March 2018

candidate is equal to the source transport address of the request
that was received. This candidate pair is assigned an arbitrary
priority, and placed into the valid list of the associated check

list. The agent sets the nominated flag for that pair to true.

Once the nominated flag is set for a component of a data stream, it
concludes the ICE processing for that component. See Section 8.

8. Concluding ICE Processing
This section describes how an ICE agent completes ICE.
8.1. Procedures for Full Implementations

Concluding ICE involves nominating pairs by the controlling agent and
updating of state machinery.

8.1.1. Nominating Pairs

Prior to nominating, the controlling agent let connectivity checks
continue until some stopping criterion is met. After that, based on
an evaluation criterion, the controlling agent picks a pair among the
valid pairs in the valid list for nomination.

Once the controlling agent has picked a valid pair for nomination, it
repeats the connectivity check that produced this valid pair (by
enqueueing the pair that generated the check into the triggered check
gueue), this time with the USE-CANDIDATE attribute

(Section 7.2.5.3.4). The procdures for the controlled agent are
described in Section 7.3.1.5.

Eventually, if the nominations succeed, both the controlling and
controlled agents will have a single nominated pair in the valid list
for each component of the data stream. Once an ICE agent sets the
state of the check list to Completed (when there is a nominated pair
for each component of the data stream), that pair becomes the
selected pair for that agent, and is used for sending and receiving
data for that component of the data stream.

If an agent is not able to produce selected pairs for each component
of a data stream, the agent MUST take proper actions for informing
the other agent, and e.g., removing the stream. The exact actions
are outside the scope of this specification.

The criteria for stopping the connectivity checks and for picking a
pair for nomination, are outside the scope of this specification.

They are a matter of local optimization. The only requirement is

that the agent MUST eventually pick one and only one candidate pair

Keranen, et al. Expires September 9, 2018 [Page 49]

Internet-Draft ICE March 2018

and generate a check for that pair with the USE-CANDIDATE attribute
set.

Once the controlling agent has successfully nominated a candidate
pair (Section 7.2.5.3.4), the agent MUST NOT nominate another pair
for same same component of the data stream within the ICE session.
Doing so requires an ICE restart.

A controlling agent that does not support this specification (i.e.,

it is implemented according to RFC 5245) might nominate more than one
candidate pair. This was referred to as "aggressive nomination" in

RFC 5245. If more than one candidate pair is nominated by the
controlling agent, and if the controlled agent accepts multiple
nominations requests, the agents MUST produce the selected pairs
using the pairs with the highest priority.

The usage of the 'ice2’ ice option (Section 10) by endpoints
supporting this specification is supposed to prevent controlling
agents implemented according to RFC 5245 from using aggressive
nomination.

NOTE: In RFC 5245, usage of "aggressive nomination" allowed agents to
continuously nominate pairs, before a pair was eventually selected,

in order to allow sending of data on those pairs. In this

specification, data can always be sent on any valid pair, without
nomination. Hence, there is no longer a need for aggressive

nomination.

8.1.2. Updating Check List and ICE States

For both a controlling and a controlled agent, when a candidate pair
for a component of a data stream gets nominated, it might impact
other pairs in the check list associated with the data stream. It
might also impact the state of the check list:

0 Once a candidate pair for a component of a data stream has been
nominated, and the state of the check list associated with the
data stream is Running, the ICE agent MUST remove all candidate
pairs for the same component from the check list and from the
triggered check queue. If the state of a pair is In-Progress
pair, the agent cancels the In-Progress transaction. Cancellation
means that the agent will not retransmit the Binding requests
associated with the connectivity check transaction, will not treat
the lack of response to be a failure, but will wait the duration
of the transaction timeout for a response.

0 Once candidate pairs for each component of a data stream have been
nominated, and the state of the check list associated with the

Keranen, et al. Expires September 9, 2018 [Page 50]

Internet-Draft ICE March 2018

data stream is Running, the ICE agent sets the state of the check
list to Completed.

0 Once a candidate pair for a component of a data stream has been
nominated, an agent MUST continue to respond to any Binding
request it might still receive for the nominated pair, and for any
remaining candidate pairs in the check list associated with the
data stream. As defined in Section 7.3.1.4, as the state a pair
is Succeeded, an agent will no longer generate triggered checks
when receiving a Binding request for the pair.

Once the state of each check list in the check list set is Completed,
the agent sets the state of the ICE session to Completed.

If the state of a check list is Failed, ICE has not been able to
complete for the data stream associated with the check list. The
correct behavior depends on the state of the check lists in the check
list set. If the controlling agent wants to continue the session

without the data stream associated with the Failed check list, and if
there are still one or more check lists in Running or Completed mode,
the agent can let the ICE processing continue. The agent MUST take
proper actions for removing the failed data stream. If the

controlling agent does not want to continue the session and MUST
terminate the session. The state of the ICE session is set to

Failed.

If the state of each check list in the check list set is Failed, the

state of the ICE session is set to Failed. Unless the controlling

agent wants to continue the session without the data streams, it MUST
terminate the session.

8.2. Procedures for Lite Implementations

When ICE concludes, a lite ICE agent can free host candidates that
were not used by ICE, as described in Section 8.3.

If the peer is a full agent, once the lite agent accepts a homination
request for a candidate pair, the lite agent considers the pair
nominated. Once there are nominated pairs for each component of a
data stream, the pairs become the selected pairs for the components
of the data stream. Once the lite agent has produced selected pairs
for all components of all data streams, the ICE session state is set

to Completed.

If the peer is a lite agent, the agent pairs local candidates with

remote candidates that are for the same data stream and have the same
component, transport protocol, and IP address family. For each
component of each data stream, if there is only one candidate pair,

Keranen, et al. Expires September 9, 2018 [Page 51]

Internet-Draft ICE March 2018

that pair is added to the valid list. If there is more than one
pair, it is RECOMMENDED that an agent follow the procedures of RFC
6724 [RFC6724] to select a pair and add it to the valid list.

If all of the components for all data streams had one pair, the state
of ICE processing is Completed. Otherwise, the controlling agent
MUST send an updated candidate list to reconcile different agents
selecting different candidate pairs. ICE processing is complete
after and only after the updated candidate exchange is complete.

8.3. Freeing Candidates
8.3.1. Full Implementation Procedures

The rules in this section describe when it is safe for an agent to

cease sending or receiving checks on a candidate that did not become
a selected candidate (is not associated with a selected pair), and

then free the candidate.

Once a check list has reached the Completed state, the agent SHOULD
wait an additional three seconds, and then it can cease responding to
checks or generating triggered checks on all local candidates other

than the ones that became selected candidates. Once all ICE sessions
have ceased using a given local candidate (a candidate may be used by
multiple ICE sessions, e.g., in forking scenarios), the agent can

free that candidate. The three-second delay handles cases when
aggressive nomination is used, and the selected pairs can quickly
change after ICE has completed.

Freeing of server reflexive candidates is never explicit; it happens
by lack of a keepalive.

8.3.2. Lite Implementation Procedures

A lite implementation can free candidates that did not become
selected candidates as soon as ICE processing has reached the
Completed state for all ICE sessions using those candidates.

9. ICE Restarts

An ICE agent MAY restart ICE for existing data streams. An ICE
restart causes all previous state of the data streams, excluding the
roles of the agents, to be flushed. The only difference between an
ICE restart and a brand new data session is that during the restart,
data can continue to be sent using existing data sessions, and that a
new data session always requires the roles to be determined.

Keranen, et al. Expires September 9, 2018 [Page 52]

Internet-Draft ICE March 2018

The following actions can be accomplished only using an ICE restart
(the agent MUST use ICE restarts to do so):

0 Change the destinations of data streams.
0 Change from a lite implementation to a full implementation.
0 Change from a full implementation to a lite implementation.

To restart ICE, an agent MUST change both the password and the
username fragment for the data stream(s) being restarted.

When the ICE is restarted, the candidate set for the new ICE session
might include some, none, or all of the candidates used in the
current ICE session.

As described in Section 6.1.1, agents MUST NOT re-determine the roles
as part as an ICE restart, unless certain criteria that require the
roles to be re-determined are fulfilled.

10. ICE Option

This section defines a new ICE option, 'ice2’. The ICE option
indicates that the ICE agent that includes it in a candidate exchange
is compliant to this specification. For example, the agent will not

use the aggressive nomination procedure defined in RFC 5245. In
addition, it will ensure that an RFC 5245-compliant peer does not use
aggressive nomination either, as required by Section 14 of RFC 5245
for peers which receive unknown ICE options.

An agent compliant to this specification MUST inform the peer about
the compliance using the 'ice2’ option.

NOTE: The encoding of the 'ice2’ ICE option, and the message(s) used
to carry it to the peer, are protocol specific. The encoding for the
Session Description Protocol (SDP) [RFC4566] is defined in
[I-D.ietf-mmusic-ice-sip-sdp].

11. Keepalives

All endpoints MUST send keepalives for each data session. These
keepalives serve the purpose of keeping NAT bindings alive for the

data session. The keepalives SHOULD be sent using a format that is
supported by its peer. ICE endpoints allow for STUN-based keepalives
for UDP streams, and as such, STUN keepalives MUST be used when an
ICE agent is a full ICE implementation and is communicating with a

peer that supports ICE (lite or full).

Keranen, et al. Expires September 9, 2018 [Page 53]

Internet-Draft ICE March 2018

For each candidate pair that an agent is using to send data, if no

packet has been sent on that pair in the last Tr seconds, an agent

MUST send a keepalive on that pair. Agents SHOULD use a Tr value of
15 seconds. Agents MAY use a higger value, but MUST NOT use a value
smaller than 15 seconds.

Once selected pairs have been produced for a data stream, keepalives
are only sent on those pairs.

An agent MUST stop sending keepalives on a data stream if the data
stream is removed. If the ICE session is terminated, an agent MUST
stop sending keepalives on all data streams.

An agent MAY use another value for Tr, e.g. based on configuration or
network/NAT characteristics. For example, if an agent has a dynamic
way to discover the binding lifetimes of the intervening NATS, it can
use that value to determine Tr. Administrators deploying ICE in more
controlled networking environments SHOULD set Tr to the longest
duration possible in their environment.

When STUN is being used for keepalives, a STUN Binding Indication is
used [RFC5389]. The Indication MUST NOT utilize any authentication
mechanism. It SHOULD contain the FINGERPRINT attribute to aid in
demultiplexing, but SHOULD NOT contain any other attributes. Itis
used solely to keep the NAT bindings alive. The Binding Indication

is sent using the same local and remote candidates that are being
used for data. Though Binding Indications are used for keepalives,

an agent MUST be prepared to receive a connectivity check as well.

If a connectivity check is received, a response is generated as
discussed in [RFC5389], but there is no impact on ICE processing
otherwise.

Agents MUST by default use STUN keepalives. Individual ICE usages
and ICE extensions MAY specify usage/extension-specific keepalives.

12. Data Handling
12.1. Sending Data

An ICE agent MAY send data on any valid pair before selected pairs
have been produced for the data stream.

Once selected pairs have been produced for a data stream, an agent
MUST send data on those pairs only.

An agent sends data from the base of the local candidate to the
remote candidate. In the case of a local relayed candidate, data is

Keranen, et al. Expires September 9, 2018 [Page 54]

Internet-Draft ICE March 2018

forwarded through the base (located in the TURN server), using the
procedures defined in [RFC5766].

If the local candidate is a relayed candidate, it is RECOMMENDED that
an agent creates a channel on the TURN server towards the remote
candidate. This is done using the procedures for channel creation as
defined in Section 11 of [RFC5766].

The selected pair for a component of a data stream is:

o empty if the state of the check list for that data stream is
Running, and there is no previous selected pair for that component
due to an ICE restart

0 equal to the previous selected pair for a component of a data
stream if the state of the check list for that data stream is
Running, and there was a previous selected pair for that component
due to an ICE restart

Unless an agent is able to produce a selected pair for each component
associated with a data stream, the agent MUST NOT continue sending
data for any component associated with that data stream.

12.1.1. Procedures for Lite Implementations

A lite implementation MUST NOT send data until it has a valid list

that contains a candidate pair for each component of that data

stream. Once that happens, the ICE agent MAY begin sending data
packets. To do that, it sends data to the remote candidate in the

pair (setting the destination address and port of the packet equal to
that remote candidate), and will send it from the base associated

with the candidate pair used for sending data. In case of a relayed
candidate, data is sent from the agent and forwarded through the base
(located in the TURN server), using the procedures defined in
[RFC5766].

12.2. Receiving Data

Even though ICE agents are only allowed to send data using valid
candidate pairs (and, once selected pairs have been produced, only on
the selected pairs) ICE implementations SHOULD by default be prepared
to receive data on any of the candidates provided in the most recent
candidate exchange with the peer. ICE usages MAY define rules that
differ from this, e.g., by defining that data will not be sent until

selected pairs have been produced for a data stream.

Keranen, et al. Expires September 9, 2018 [Page 55]

Internet-Draft ICE March 2018

Itis RECOMMENDED that, when an agent receives an RTP packet with a
new source or destination IP address for a particular RTP/RTCP data
stream, that the agent re-adjust its jitter buffers.

RFC 3550 [RFC3550] describes an algorithm in Section 8.2 for
detecting synchronization source (SSRC) collisions and loops. These
algorithms are based, in part, on seeing different source transport
addresses with the same SSRC. However, when ICE is used, such
changes will sometimes occur as the data streams switch between
candidates. An agent will be able to determine that a data stream is
from the same peer as a consequence of the STUN exchange that
proceeds media data transmission. Thus, if there is a change in
source transport address, but the media data packets come from the
same peer agent, this MUST NOT be treated as an SSRC collision.

13. Extensibility Considerations

This specification makes very specific choices about how both ICE
agents in a session coordinate to arrive at the set of candidate

pairs that are selected for data. It is anticipated that future
specifications will want to alter these algorithms, whether they are
simple changes like timer tweaks or larger changes like a revamp of
the priority algorithm. When such a change is made, providing
interoperability between the two agents in a session is critical.

First, ICE provides the ICE option concept. Each extension or change
to ICE is associated with an ICE option. When an agent supports such
an extension or change, it provides the ICE option to the peer agent
as part of the candidate exchange.

One of the complications in achieving interoperability is that ICE
relies on a distributed algorithm running on both agents to converge
on an agreed set of candidate pairs. If the two agents run different
algorithms, it can be difficult to guarantee convergence on the same
candidate pairs. The nomination procedure described in Section 8
eliminates some of the need for tight coordination by delegating the
selection algorithm completely to the controlling agent, and ICE will
converge perfectly even when both agents use different pair
prioritization algorithms. One of the keys to such convergence is
triggered checks, which ensure that the nominated pair is validated
by both agents.

ICE is also extensible to other data streams beyond RTP, and for
transport protocols beyond UDP. Extensions to ICE for non-RTP data
streams need to specify how many components they utilize, and assign
component IDs to them, starting at 1 for the most important component
ID. Specifications for new transport protocols MUST define how, if

at all, various steps in the ICE processing differ from UDP.

Keranen, et al. Expires September 9, 2018 [Page 56]

Internet-Draft ICE March 2018

14. Setting Ta and RTO
14.1. General

During the ICE gathering phase (Section 5.1.1) and while ICE is
performing connectivity checks (Section 7), an ICE agent triggers
STUN and TURN transactions. These transactions are paced at a rate
indicated by Ta, and the retransmission interval for each transaction

is calculated based on the the retransmission timer for the STUN
transactions (RTO) [RFC5389].

This section describes how the Ta and RTO values are computed during
the ICE gathering phase and while ICE is performing connectivity
checks.

NOTE: Previously, in RFC 5245, different formulas were defined for
computing Ta and RTO, depending on whether ICE was used for a real-
time data stream (e.g., RTP) or not.

The formulas below result in a behavior whereby an agent will send
its first packet for every single connectivity check before

performing a retransmit. This can be seen in the formulas for the
RTO (which represents the retransmit interval). Those formulas scale
with N, the number of checks to be performed. As a result of this,
ICE maintains a nicely constant rate, but becomes more sensitive to
packet loss. The loss of the first single packet for any

connectivity check is likely to cause that pair to take a long time

to be validated, and instead, a lower-priority check (but one for
which there was no packet loss) is much more likely to complete
first. This results in ICE performing sub-optimally, choosing lower-
priority pairs over higher-priority pairs.

14.2. Ta

ICE agents SHOULD use a default Ta value, 50 ms, but MAY use another
value based on the characteristics of the associated data.

If an agent wants to use another Ta value than the default value, the
agent MUST indicate the proposed value to its peer during the
establishment of the ICE session. Both agents MUST use the higher
value of the proposed values. If an agent does not propose a value,
the default value is used for that agent when comparing which value
is higher.

Regardless of the Ta value chosen for each agent, the combination of
all transactions from all agents (if a given implementation runs
several concurrent agents) MUST NOT be sent more often than once
every 5ms (as though there were one global Ta value for pacing all

Keranen, et al. Expires September 9, 2018 [Page 57]

Internet-Draft ICE March 2018
agents). See Appendix B.1 for the background of using a value of 5ms
with ICE.

NOTE: Appendix C shows examples of required bandwidth, using
different Ta values.

14.3. RTO

During the ICE gathering phase, ICE agents SHOULD calculate the RTO
value using the following formula:

RTO = MAX (500ms, Ta * (Num-Of-Cands))

Num-Of-Cands: the number of server-reflexive and relay candidates

For connectivity checks, agents SHOULD calculate the RTO value using
the following formula:

RTO = MAX (500ms, Ta * N * (Num-Waiting + Num-In-Progress))
N: the total number of connectivity checks to be performed.

Num-Waiting: the number of checks in the check list set in the
Waiting state.

Nume-In-Progress: the number of checks in the check list set in the
In-Progress state.

Note that the RTO will be different for each transaction as the
number of checks in the Waiting and In-Progress states change.

Agents MAY calculate the RTO value using other mechanisms than those
described above. Agents MUST NOT use a RTO value smaller than 500
ms.

15. Examples

This section shows two ICE examples: one using IPv4 addresses, and
one using IPv6 addresses.

Keranen, et al. Expires September 9, 2018 [Page 58]

Internet-Draft ICE March 2018

To facilitate understanding, transport addresses are listed using
variables that have mnemonic names. The format of the name is
entity-type-segno, where entity refers to the entity whose IP address
the transport address is on, and is one of "L", "R", "STUN", or
"NAT". The type is either "PUB" for transport addresses that are
public, and "PRIV" for transport addresses that are private
[RFC1918]. Finally, seg-no is a sequence number that is different
for each transport address of the same type on a particular entity.
Each variable has an IP address and port, denoted by varname.IP and
varname.PORT, respectively, where varname is the name of the
variable.

In the call flow itself, STUN messages are annotated with several
attributes. The "S=" attribute indicates the source transport

address of the message. The "D=" attribute indicates the destination
transport address of the message. The "MA=" attribute is used in
STUN Binding response messages and refers to the mapped address.
"USE-CAND" implies the presence of the USE-CANDIDATE attribute.

The call flow examples omit STUN authentication operations, and focus
on a single data stream between two full implementations.

15.1. Example with IPv4 Addresses

The example is using the topology shown in Figure 7.

Keranen, et al. Expires September 9, 2018 [Page 59]

Internet-Draft ICE March 2018

+ommeee +
[STUN |
|Server |
S — +

I
oo +
I I
| Internet |
I I
R +

I I
I I

+ommmeee +

| NAT | |

R + |

I I

I I
oot oot
| L | | R |

Fomem + B +

Figure 7: Example Topology

In the example, ICE agents L and R are full ICE implementations.

Both agents have a single IPv4 address. Both are configured with the
same STUN server. The NAT has an endpoint independent mapping
property and an address dependent filtering property. The IP
addresses of the ICE agents, the STUN server and the NAT are shown
below;

ENTITY IP Address mnemonic name
ICE Agent L: 10.0.1.1 L-PRIV-1
ICE Agent R: 192.0.2.1 R-PUB-1
STUN Server: 192.0.2.2 STUN-PUB-1
NAT (Public): 192.0.2.3 NAT-PUB-1
L NAT STUN R
[STUN alloc. | | |
|(1) STUN Req | I I
|S=$L-PRIV-1 | | |
[ID=$STUN-PUB-1 | | |
------------- >| |

I I
| [(2) STUN Req | |

Keranen, et al. Expires September 9, 2018 [Page 60]

Internet-Draft

ICE March 2018

|S=$NAT-PUB-1 | |
ID=$STUN-PUB-1 | |

|

|(3) STUN Res | |
|S=$STUN-PUB-1 | |
ID=$NAT-PUB-1 | |
IMA=$NAT-PUB-1 | |

|(4) STUN Res | | |
|S=$STUN-PUB-1 | | |
ID=$L-PRIV-1 | | |
IMA=$NAT-PUB-1 | | |

[<-mmmmmmmmmee-
|(5) L's Candidate Information| |
>|
| | STUN
| alloc.
|(6) STUN Req |
|S=$R-PUB-1 |

<

I

|

|

| |D=$STUN-PUB-1 |
| P |

| |(7) STUN Res |

| |S=$STUN-PUB-1 |
| |D=$R-PUB-1 |

| IMA=$R-PUB-1 |
|

(8) R's Candidate Information|

I
(9) Bind Req |Begin

I

| S=$R-PUB-1 |Connectivity
| D=$L-PRIV-1 |Checks
I
I

Dropped |

|(10) Bind Req | | |
|S=$L-PRIV-1 | | |
ID=$R-PUB-1 | | |

-—=->| I |

(11) Bind Req	
S=$NAT-PUB-1	
ID=$R-PUB-1	

I >|

[(12) Bind Res | |
|S=$R-PUB-1 | |
|[ID=$NAT-PUB-1 | |
IMA=$NAT-PUB-1 | |
|< I

I(13) Bind Res | | |
|S=$R-PUB-1 | | |

Keranen, et al.

Expires September 9, 2018

[Page 61]

Internet-Draft ICE March 2018

ID=$L-PRIV-1 | | |
IMA=$NAT-PUB-1 | | |

| >

| | I I

| (14) Bind Req | |

| |S=$R-PUB-1 | |
| ID=$NAT-PUB-1 | |

|< I

|(15) Bind Req | | |
|S=$R-PUB-1 | | |
ID=$L-PRIV-1 | | |

I
|(16) Bind Res | | |
|S=$L-PRIV-1 | | |
ID=$R-PUB-1 | | |
IMA=$R-PUB-1 | | |
e >] | |
	(17) Bind Res	
	S=$NAT-PUB-1	
ID=$R-PUB-1		
IMA=$R-PUB-1		

| |

[(18) Bind Req | [|

|S=$L-PRIV-1 | | |
[ID=$R-PUB-1 | | |
|[USE-CAND | | |

I
[(19) Bind Req | |
|S=$NAT-PUB-1 | |
ID=$R-PUB-1 | |
|[USE-CAND | |

|S=$R-PUB-1 | |
ID=$NAT-PUB-1 |
IMA=$NAT-PUB-1 | |
< I
|(21) Bind Res | | |
|S=$R-PUB-1 | | |
ID=$L-PRIV-1 | | |
IMA=$NAT-PUB-1 | | |

|

|

|

|

| |

| |(20) Bind Res | |
|

|

|

|

Keranen, et al. Expires September 9, 2018 [Page 62]

Internet-Draft ICE March 2018

Figure 8: Example Flow

Messages 1-4: Agent L gathers a host candidate from its local IP
address, and from that sends a STUN Binding request to the STUN
Server. The request creates a NAT binding. The NAT public IP
address of the binding becomes agent L’s server reflexive candidate.

Message 5: Agent L sends its local candidate information to agent R,
using the signalling protocol associated with the ICE usage.

Messages 6-7: Agent R gathers a host candidate from its local IP
address, and from that sends a STUN Binding request to the STUN
Server. Since agent R is not behind a NAT, R’s server reflexive
candidate will be identical to the host candidate.

Message 8: Agent R sends its local candidate information to agent L,
using the signalling protocol associated with the ICE usage.

Since both agents are full ICE implementations, the initiating agent
(agent L) becomes the controlling agent.

Agents L and R both pair up the candidates. Both agents initially

have two pairs. However, agent L will prune the pair containing its

server reflexive candidate, resulting in just one (L1). At agent L,

this pair has a local candidate of $L_PRIV_1 and remote candidate of
$R_PUB_1. At agent R, there are two pairs. The highest priority

pair (R1) has a local candidate of $R_PUB_1 and remote candidate of
$L_PRIV_1, and the second pair (R2) has a local candidate of $R_PUB_1
and remote candidate of SNAT_PUB_1. The pairs are shown below (the
pair numbers are for reference purpose only):

Pairs
ENTITY Local Remote Pair# Valid
ICE Agent L: LPRIV.1 RPUB1 L1
ICE Agent R: R PUB 1 L PRIV 1 R1

R PUB_1 NAT PUB 1 R2

Keranen, et al. Expires September 9, 2018 [Page 63]

Internet-Draft ICE March 2018

Message 9: Agent R initiates a connectivity check for pair #2. As
the remote candidate of the pair is the private address of agent L,
the check will not be successful, as the request cannot be routed
from R to L, and will be dropped by the network.

Messages 10-13: Agent L initiates a connectivity check for pair L1.

The check succeeds, and L creates a new pair (L2). The local
candidate of the new pair is $NAT_PUB_1 and the remote candidate is
$R_PUB_1. The pair (L2) is added to the valid list of agent L.

Agent L can now send and receive data on the pair (L2) if it wishes.

Pairs
ENTITY Local Remote Pair# Valid

ICE Agent L: LPRIV.1 RPUB 1 L1
NAT PUB 1~ R PUB 1 L2 X

ICE Agent R: RPUB1 LPRV1 R1
R PUB_.1 NAT PUB 1 R2

Messages 14-17: When agent R receives the Binding request from agent
L (message 11) it will initiate a triggered connectivity check. The

pair matches one of agent R’s existing pairs (R2). The check

succeeds, and the pair (R2) is added to the valid list of agent R.

Agent R can now send and receive data on the pair (R2) if it wishes.

Pairs
ENTITY Local Remote Pair# Valid

ICE Agent L: LPRIV.1 RPUB 1 L1
NAT PUB 1~ R PUB 1 L2 X

ICE Agent R: RPUB1 LPRV1 R1
R PUB_1 NAT PUB.1 R2 X

Messages 18-21: At some point, the controlling agent (agent L)
decides to nominate a pair (L2) in the valid list. It performs a
connectivity check on the pair (L2), and includes the USE-CANDIDATE
attribute in the Binding request. As the check succeeds, agent L

sets the nominated flag value of the pair (L2) to 'true’. AgentR

sets the nominated flag value of the matching pair (R2) to 'true’.

As there are no more components associated with the stream, the

Keranen, et al. Expires September 9, 2018 [Page 64]

Internet-Draft ICE March 2018

nominated pairs become the selected pairs. Consequently, processing
for this stream moves into the Completed state. The ICE process also
moves into the Completed state.

15.2. Example with IPv6 Addresses

The example is using the topology shown in Figure 9.

B +
|[STUN |
|Server |
S — +

I

+ +

I I

| Internet |

I I

S — +

I I
I I
I I
I I
I I
I I
I I

B + S +

| L | | R |

B + E +

Figure 9: Example Topology

In the example, ICE agents L and R are full ICE implementations.

Both agents have a single IPv6 address. Both are configured with the
same STUN server. The IP addresses of the ICE agents and the STUN
server are shown below;

ENTITY IP Address mnemonic name

ICE Agent L: 2001:db8::3 L-PUB-1

ICE Agent R: 2001:db8::5 R-PUB-1

STUN Server: 2001:db8::9 STUN-PUB-1
L STUN R

Keranen, et al. Expires September 9, 2018 [Page 65]

Keranen, et al.

Internet-Draft

[STUN alloc.
[(1) STUN Req
|S=$L-PUB-1

|D=$STUN-PUB-1

ICE

|
[(2) STUN Res

|
| S=$STUN-PUB-1 |

| D=$L-PUB-1 | |

| MA=$L-PUB-1 |

[<

|(3) L's Candidate Information|

>

[| STUN
| | alloc.
[(4) STUN Req |
[S=$R-PUB-1 |

March 2018

|D=$STUN-PUB-1 |

|
I(5) STUN Res |

|S=$STUN-PUB-1 |

ID=$R-PUB-1 |

IMA=$R-PUB-1 |

|(6) R’s Candidate Information|

|<
[(7) Bind Req
|S=$L-PUB-1
|D=$R-PUB-1

|

|(8) Bind Res
|S=$R-PUB-1
|D=$L-PUB-1
IMA=$L-PUB-1

[<
|Data

>

I
[(9) Bind Req
|S=$R-PUB-1
|D=$L-PUB-1
|<

|(10) Bind Res
|S=$L-PUB-1
|D=$R-PUB-1
IMA=$R-PUB-1

|Data

|<

Expires September 9, 2018

[Page 66]

Internet-Draft ICE March 2018

|

[(11) Bind Req | |
|S=$L-PUB-1 | |
|D=$R-PUB-1 | |
|[USE-CAND | [
| >
[(12) Bind Res | |
|S=$R-PUB-1 | |
|D=$L-PUB-1 | |
IMA=$L-PUB-1 | |
|< I

Figure 10: Example Flow

Messages 1-2: Agent L gathers a host candidate from its local IP
address, and from that sends a STUN Binding request to the STUN
Server. Since agent L is not behind a NAT, L’s server reflexive
candidate will be identical to the host candidate.

Message 3: Agent L sends its local candidate information to agent R,
using the signalling protocol associated with the ICE usage.

Messages 4-5: Agent R gathers a host candidate from its local IP
address, and from that sends a STUN Binding request to the STUN
Server. Since agent R is not behind a NAT, R’s server reflexive
candidate will be identical to the host candidate.

Message 6: Agent R sends its local candidate information to agent L,
using the signalling protocol associated with the ICE usage.

Since both agents are full ICE implementations, the initiating agent
(agent L) becomes the controlling agent.

Agents L and R both pair up the candidates. Both agents initially

have one pair each. At agent L, the pair (L1) has a local candidate

of $L_PUB_1 and remote candidate of $R_PUB_1. At agent R, the pair
(R1) has a local candidate of $R_PUB_1 and remote candidate of
$L_PUB_1. The pairs are shown below (the pair numbers are for
reference purpose only):

Keranen, et al. Expires September 9, 2018 [Page 67]

Internet-Draft ICE March 2018

Pairs
ENTITY Local Remote Pair# Valid
ICE Agent L: L PUB 1 R PUB 1 L1
ICE Agent R: R PUB 1 L PUB 1 R1

Messages 7-8: Agent L initiates a connectivity check for pair L1.
The check succeeds, and the pair (L1) is added to the valid list of
agent L. Agent L can now send and receive data on the pair (L1) if
it wishes.

Pairs
ENTITY Local Remote Pair# Valid
ICE Agent L: L PUB_1 R_PUB 1 L1 X
ICE Agent R: R PUB 1 L PUB 1 R1

Messages 9-10: When agent R receives the Binding request from agent L
(message 7) it will initiate a triggered connectivity check. The

pair matches agent R’s existing pair (R1). The check succeeds, and

the pair (R1) is added to the valid list of agent R. Agent R can now

send and receive data on the pair (R1) if it wishes.

Pairs
ENTITY Local Remote Pair# Valid
ICE Agent L: L PUB 1 R PUB 1 L1 X
ICE Agent R: R_PUB_ 1 L PUB 1 R1 X

Messages 11-12: At some point, the controlling agent (agent L)
decides to nominate a pair (L1) in the valid list. It performs a
connectivity check on the pair (L1), and includes the USE-CANDIDATE
attribute in the Binding request. As the check succeeds, agent L

sets the nominated flag value of the pair (L1) to 'true’. Agent R

sets the nominated flag value of the matching pair (R1) to 'true’.

As there are no more components associated with the stream, the
nominated pairs become the selected pairs. Consequently, processing

Keranen, et al. Expires September 9, 2018 [Page 68]

Internet-Draft ICE March 2018

for this stream moves into the Completed state. The ICE process also
moves into the Completed state.

16. STUN Extensions
16.1. New Attributes

This specification defines four STUN attributes: PRIORITY, USE-
CANDIDATE, ICE-CONTROLLED, and ICE-CONTROLLING.

The PRIORITY attribute indicates the priority that is to be
associated with a peer reflexive candidate, if one will be discovered
by this check. It is a 32-bit unsigned integer, and has an attribute
value of 0x0024.

The USE-CANDIDATE attribute indicates that the candidate pair
resulting from this check will be used for transmission of data. The
attribute has no content (the Length field of the attribute is zero);

it serves as a flag. It has an attribute value of 0x0025.

The ICE-CONTROLLED attribute is present in a Binding request. The
attribute indicates that the client believes it is currently in the

controlled role. The content of the attribute is a 64-bit unsigned

integer in network byte order, which contains a random number. The
number is used for solving role conflicts, when it is referred to as

the tie-breaker value. An ICE agent MUST use the same number for all
Binding requests, for all streams, within an ICE session, unless it

has received a 487 response, in which case it MUST change the number
(Section 7.2.5.1). The agent MAY change the number when an ICE
restart occurs.

The ICE-CONTROLLING attribute is present in a Binding request. The
attribute indicates that the client believes it is currently in the

controlling role. The content of the attribute is a 64-bit unsigned

integer in network byte order, which contains a random number. As

for the ICE-CONTROLLED attribute, the number is used for solving role
conflicts. An agent MUST use the same number for all Binding
requests, for all streams, within an ICE session, unless it has

received a 487 response, in which case it MUST change the number
(Section 7.2.5.1). The agent MAY change the number when an ICE
restart occurs.

16.2. New Error Response Codes
This specification defines a single error response code:

487 (Role Conflict): The Binding request contained either the ICE-
CONTROLLING or ICE-CONTROLLED attribute, indicating an ICE role

Keranen, et al. Expires September 9, 2018 [Page 69]

Internet-Draft ICE March 2018

that conflicted with the server. The remote server compared the
tie-breaker values of the client and the server and determined
that the client needs to switch roles.

17. Operational Considerations

This section discusses issues relevant to operators operating
networks where ICE will be used by endpoints.

17.1. NAT and Firewall Types

ICE was designed to work with existing NAT and firewall equipment.
Consequently, it is not necessary to replace or reconfigure existing
firewall and NAT equipment in order to facilitate deployment of ICE.
Indeed, ICE was developed to be deployed in environments where the
Voice over IP (VolP) operator has no control over the IP network
infrastructure, including firewalls and NATSs.

That said, ICE works best in environments where the NAT devices are
"behave" compliant, meeting the recommendations defined in [RFC4787]
and [RFC5382]. In networks with behave-compliant NAT, ICE will work
without the need for a TURN server, thus improving voice quality,
decreasing call setup times, and reducing the bandwidth demands on
the network operator.

17.2. Bandwidth Requirements

Deployment of ICE can have several interactions with available
network capacity that operators need to take into consideration.

17.2.1. STUN and TURN Server Capacity Planning

First and foremost, ICE makes use of TURN and STUN servers, which
would typically be located in data centers. The STUN servers require
relatively little bandwidth. For each component of each data stream,
there will be one or more STUN transactions from each client to the
STUN server. In a basic voice-only IPv4 VolP deployment, there will
be four transactions per call (one for RTP and one for RTCP, for both
caller and callee). Each transaction is a single request and a

single response, the former being 20 bytes long, and the latter, 28.
Consequently, if a system has N users, and each makes four calls in a
busy hour, this would require N*1.7bps. For one million users, this

is 1.7 Mbps, a very small number (relatively speaking).

TURN traffic is more substantial. The TURN server will see traffic
volume equal to the STUN volume (indeed, if TURN servers are
deployed, there is no need for a separate STUN server), in addition
to the traffic for the actual data. The amount of calls requiring

Keranen, et al. Expires September 9, 2018 [Page 70]

Internet-Draft ICE March 2018

TURN for data relay is highly dependent on network topologies, and
can and will vary over time. In a network with 100% behave-compliant
NATS, it is exactly zero.

The planning considerations above become more significant in multi-
media scenarios (e.g., audio and video conferences), and when the
numbers of participants in a session grow.

17.2.2. Gathering and Connectivity Checks

The process of gathering of candidates and performing of connectivity
checks can be bandwidth intensive. ICE has been designed to pace
both of these processes. The gathering phase and the connectivity
check phase are meant to generate traffic at roughly the same
bandwidth as the data traffic itself will consume once the ICE

process conclude. This was done to ensure that, if a network is
designed to support communication traffic of a certain type (voice,
video, or just text), it will have sufficient capacity to support the

ICE checks for that data. Once ICE has concluded, the subsequent ICE
keepalives will later cause a marginal increase in the total

bandwidth utilization; however, this will typically be an extremely
small increase.

Congestion due to the gathering and check phases has proven to be a
problem in deployments that did not utilize pacing. Typically,

access links became congested as the endpoints flooded the network
with checks as fast as they can send them. Consequently, network
operators need to ensure that their ICE implementations support the
pacing feature. Though this pacing does increase call setup times,

it makes ICE network friendly and easier to deploy.

17.2.3. Keepalives

STUN keepalives (in the form of STUN Binding Indications) are sent in
the middle of a data session. However, they are sent only in the
absence of actual data traffic. In deployments with continuous media
and without utilizing Voice Activity Detection (VAD), or deployments
where VAD is utilized together with short interval (max 1 second)
comfort noise, the keepalives are never used and there is no increase
in bandwidth usage. When VAD is being used without comfort noise,
keepalives will be sent during silence periods. This involves a

single packet every 15-20 seconds, far less than the packet every
20-30 ms that is sent when there is voice. Therefore, keepalives do
not have any real impact on capacity planning.

Keranen, et al. Expires September 9, 2018 [Page 71]

Internet-Draft ICE March 2018

17.3. ICE and ICE-lite

Deployments utilizing a mix of ICE and ICE-lite interoperate with
each other. They have been explicitly designed to do so.

However, ICE-lite can only be deployed in limited use cases. Those
cases, and the caveats involved in doing so, are documented in
Appendix A.

17.4. Troubleshooting and Performance Management

ICE utilizes end-to-end connectivity checks, and places much of the
processing in the endpoints. This introduces a challenge to the
network operator -- how can they troubleshoot ICE deployments? How
can they know how ICE is performing?

ICE has built-in features to help deal with these problems.

Signaling servers, typically deployed in data centers of the network
operator, will see the contents of the candidate exchanges that

convey the ICE parameters. These parameters include the type of each
candidate (host, server reflexive, or relayed), along with their

related addresses. Once ICE processing has completed, an updated
candidate exchange takes place, signaling the selected address (and
its type). This updated signaling is performed exactly for the

purposes of educating network equipment (such as a diagnostic tool
attached to a signaling) about the results of ICE processing.

As a consequence, through the logs generated by a signaling server, a
network operator can observe what types of candidates are being used
for each call, and what address were selected by ICE. This is the
primary information that helps evaluate how ICE is performing.

17.5. Endpoint Configuration

ICE relies on several pieces of data being configured into the
endpoints. This configuration data includes timers, credentials for
TURN servers, and hostnames for STUN and TURN servers. ICE itself
does not provide a mechanism for this configuration. Instead, it is
assumed that this information is attached to whatever mechanism is
used to configure all of the other parameters in the endpoint. For

SIP phones, standard solutions such as the configuration framework
[RFC6080] have been defined.

18. IAB Considerations
The IAB has studied the problem of "Unilateral Self-Address Fixing"

(UNSAF), which is the general process by which an ICE agent attempts
to determine its address in another realm on the other side of a NAT

Keranen, et al. Expires September 9, 2018 [Page 72]

Internet-Draft ICE March 2018

through a collaborative protocol reflection mechanism [RFC3424]. ICE
is an example of a protocol that performs this type of function.
Interestingly, the process for ICE is not unilateral, but bilateral,

and the difference has a significant impact on the issues raised by

the IAB. Indeed, ICE can be considered a B-SAF (Bilateral Self-
Address Fixing) protocol, rather than an UNSAF protocol. Regardless,
the IAB has mandated that any protocols developed for this purpose
document a specific set of considerations. This section meets those
requirements.

18.1. Problem Definition
From RFC 3424, any UNSAF proposal needs to provide:

Precise definition of a specific, limited-scope problem that is to
be solved with the UNSAF proposal. A short-term fix will not be
generalized in order to solve other problems; this is why "short-
term fixes usually aren't".

The specific problems being solved by ICE are:

Provide a means for two peers to determine the set of transport
addresses that can be used for communication.

Provide a means for a agent to determine an address that is
reachable by another peer with which it wishes to communicate.

18.2. Exit Strategy
From RFC 3424, any UNSAF proposal needs to provide:

Description of an exit strategy/transition plan. The better
short-term fixes are the ones that will naturally see less and
less use as the appropriate technology is deployed.

ICE itself doesn't easily get phased out. However, it is useful even
in a globally connected Internet, to serve as a means for detecting
whether a router failure has temporarily disrupted connectivity, for
example. ICE also helps prevent certain security attacks that have
nothing to do with NAT. However, what ICE does is help phase out
other UNSAF mechanisms. ICE effectively picks amongst those
mechanisms, prioritizing ones that are better, and deprioritizing
ones that are worse. As NATSs begin to dissipate as IPv6 is
introduced, server reflexive and relayed candidates (both forms of
UNSAF addresses) simply never get used, because higher-priority
connectivity exists to the native host candidates. Therefore, the
servers get used less and less, and can eventually be removed when
their usage goes to zero.

Keranen, et al. Expires September 9, 2018 [Page 73]

Internet-Draft ICE March 2018

Indeed, ICE can assist in the transition from IPv4 to IPv6. It can

be used to determine whether to use IPv6 or IPv4 when two dual-stack
hosts communicate with SIP (IPv6 gets used). It can also allow a
network with both 6to4 and native v6 connectivity to determine which
address to use when communicating with a peer.

18.3. Brittleness Introduced by ICE
From RFC 3424, any UNSAF proposal needs to provide:

Discussion of specific issues that may render systems more
"brittle". For example, approaches that involve using data at
multiple network layers create more dependencies, increase
debugging challenges, and make it harder to transition.

ICE actually removes brittleness from existing UNSAF mechanisms. In
particular, classic STUN (as described in RFC 3489 [RFC3489]) has
several points of brittleness. One of them is the discovery process
that requires an ICE agent to try to classify the type of NAT it is

behind. This process is error-prone. With ICE, that discovery

process is simply not used. Rather than unilaterally assessing the
validity of the address, its validity is dynamically determined by
measuring connectivity to a peer. The process of determining
connectivity is very robust.

Another point of brittleness in classic STUN and any other unilateral
mechanism is its absolute reliance on an additional server. ICE
makes use of a server for allocating unilateral addresses, but allows
agents to directly connect if possible. Therefore, in some cases,
the failure of a STUN server would still allow for a call to progress
when ICE is used.

Another point of brittleness in classic STUN is that it assumes that
the STUN server is on the public Internet. Interestingly, with ICE,
that is not necessary. There can be a multitude of STUN servers in a
variety of address realms. ICE will discover the one that has
provided a usable address.

The most troubling point of brittleness in classic STUN is that it

doesn’t work in all network topologies. In cases where there is a

shared NAT between each agent and the STUN server, traditional STUN
may not work. With ICE, that restriction is removed.

Classic STUN also introduces some security considerations.
Fortunately, those security considerations are also mitigated by ICE.

Keranen, et al. Expires September 9, 2018 [Page 74]

Internet-Draft ICE March 2018

Consequently, ICE serves to repair the brittleness introduced in
classic STUN, and does not introduce any additional brittleness into
the system.

The penalty of these improvements is that ICE increases session
establishment times.

18.4. Requirements for a Long-Term Solution
From RFC 3424, any UNSAF proposal needs to provide:

... requirements for longer term, sound technical solutions --
contribute to the process of finding the right longer term
solution.

Our conclusions from RFC 3489 remain unchanged. However, we feel ICE
actually helps because we believe it can be part of the long-term
solution.

18.5. Issues with Existing NAPT Boxes
From RFC 3424, any UNSAF proposal needs to provide:

Discussion of the impact of the noted practical issues with
existing, deployed NA[P]Ts and experience reports.

A number of NAT boxes are now being deployed into the market that try
to provide "generic" ALG functionality. These generic ALGs hunt for

IP addresses, either in text or binary form within a packet, and

rewrite them if they match a binding. This interferes with classic

STUN. However, the update to STUN [RFC5389] uses an encoding that
hides these binary addresses from generic ALGs.

Existing NAPT boxes have non-deterministic and typically short
expiration times for UDP-based bindings. This requires
implementations to send periodic keepalives to maintain those
bindings. ICE uses a default of 15 s, which is a very conservative
estimate. Eventually, over time, as NAT boxes become compliant to
behave [RFC4787], this minimum keepalive will become deterministic
and well-known, and the ICE timers can be adjusted. Having a way to
discover and control the minimum keepalive interval would be far
better still.

19. Security Considerations

Keranen, et al. Expires September 9, 2018 [Page 75]

Internet-Draft ICE March 2018

19.1. IP Address Privacy

The process of probing for candidates reveals the source addresses of
the client and its peer to any on-network listening attacker, and the
process of exchanging candidates reveals the addresses to any
attacker that is able to see the negotiation. Some addresses, such

as the server reflexive addresses gathered through the local

interface of VPN users, may be sensitive information. If these
potential attacks can not be mitigated, ICE usages can define
mechanisms for controlling which addresses are revealed to the
negotiation and/or probing process. Individual implementations may
also have implementation-specific rules for controlling which
addresses are revealed. For example, [I-D.ietf-rtcweb-ip-handling]
provides additional information about the privacy aspects of

revealing IP addresses via ICE for WebRTC applications. ICE
implementations where such issues can arise are RECOMMENDED to
provide a programmatic or user interface that provides control over
which network interfaces are used to generate candidates.

Based on the types of candidates provided by the peer, and the
results of the connectivity tests performed against those candidates,
the peer might be able to determine characteristics of the local
network, e.g. if different timings are apparent to the peer. In the
limit the peer might be able to probe the local network.

There are several types of attacks possible in an ICE system. The
subsections consider these attacks and their countermeasures.

19.2. Attacks on Connectivity Checks

An attacker might attempt to disrupt the STUN connectivity checks.
Ultimately, all of these attacks fool an ICE agent into thinking
something incorrect about the results of the connectivity checks.
Depending on the type of attack, the attacker needs to have different
capabilities. In some cases the attacker needs to be on the path of
the connectivity checks. In other cases the attacker does not need
to be on the path, as long as it is able to generate STUN
connectivity checks. While attacks on connectivity checks are
typically performed by network entities, if an attacker is able to
control an endpoint it might be able to trigger connectivity check
attacks. The possible false conclusions an attacker can try and
cause are:

False Invalid: An attacker can fool a pair of agents into thinking a
candidate pair is invalid, when it isn’t. This can be used to
cause an agent to prefer a different candidate (such as one
injected by the attacker) or to disrupt a call by forcing all
candidates to fail.

Keranen, et al. Expires September 9, 2018 [Page 76]

Internet-Draft ICE March 2018

False Valid: An attacker can fool a pair of agents into thinking a
candidate pair is valid, when it isn’t. This can cause an agent
to proceed with a session, but then not be able to receive any
data.

False Peer Reflexive Candidate: An attacker can cause an agent to
discover a new peer reflexive candidate when it is not expected
to. This can be used to redirect data streams to a Denial-of-
Service (DoS) target or to the attacker, for eavesdropping or
other purposes.

False Valid on False Candidate: An attacker has already convinced an
agent that there is a candidate with an address that does not
actually route to that agent (e.g., by injecting a false peer
reflexive candidate or false server reflexive candidate). The
attacker then launches an attack that forces the agents to believe
that this candidate is valid.

If an attacker can cause a false peer reflexive candidate or false
valid on a false candidate, it can launch any of the attacks
described in [RFC5389].

To force the false invalid result, the attacker has to wait for the
connectivity check from one of the agents to be sent. When itis,

the attacker needs to inject a fake response with an unrecoverable
error response (such as a 400), or drop the response so that it never
reaches the agent. However, since the candidate is, in fact, valid,
the original request may reach the peer agent, and result in a
success response. The attacker needs to force this packet or its
response to be dropped, through a DoS attack, layer 2 network
disruption, or other technique. If it doesn’t do this, the success
response will also reach the originator, alerting it to a possible
attack. The ability for the attacker to generate a fake response is
mitigated through the STUN short-term credential mechanism. In order
for this response to be processed, the attacker needs the password.
If the candidate exchange signaling is secured, the attacker will not
have the password and its response will be discarded.

Spoofed ICMP Hard Errors (Type 3, codes 2-4) can also be used to
create false invalid results. If an ICE agent implements a response

to these ICMP errors, and the attacker is capable of generating an

ICMP message that is delivered to the agent sending the connectivity
check. The validation of the ICMP error message by the agent is its

only defence. For Type 3 code=4 the outer IP header provides no
validation, unless the connectivity check was sent with DF=0. For

code 2 or 3, which are originated by the host, the address is

expected to be any of the remote agents host, reflexive, or relay
candidates IP addresses. The ICMP message include the IP header and

Keranen, et al. Expires September 9, 2018 [Page 77]

Internet-Draft ICE March 2018

UDP header of the message triggering the error. These fields also
need to be validated. The IP destination and UDP destination port
need to match either the targeted candidate address and port, or the
candidate’s base address. The source IP address and port can be any
candidate for the same base address of the agent sending the
connectivity check. Thus any attacker having access to the exchange
of the candidates will have the necessary information. Thus the
validation is a weak defence, and the sending of spoofed ICMP attacks
is possible also for off-path attackers from a node in a network

without source address validation.

Forcing the fake valid result works in a similar way. The attacker
needs to wait for the Binding request from each agent, and inject a
fake success response. Again, due to the STUN short-term credential
mechanism, in order for the attacker to inject a valid success
response, the attacker needs the password. Alternatively, the
attacker can route (e.g., using a tunnelling mechanism) a valid
success response, that normally would be dropped or rejected by the
network, to the agent.

Forcing the false peer reflexive candidate result can be done either

with fake requests or responses, or with replays. We consider the

fake requests and responses case first. It requires the attacker to

send a Binding request to one agent with a source IP address and port

for the false candidate. In addition, the attacker needs to wait for

a Binding request from the other agent, and generate a fake response

with a XOR-MAPPED-ADDRESS attribute containing the false candidate.
Like the other attacks described here, this attack is mitigated by

the STUN message integrity mechanisms and secure candidate exchanges.

Forcing the false peer reflexive candidate result with packet replays
is different. The attacker waits until one of the agents sends a

check. Itintercepts this request, and replays it towards the other
agent with a faked source IP address. It also needs to prevent the
original request from reaching the remote agent, either by launching
a DoS attack to cause the packet to be dropped, or forcing it to be
dropped using layer 2 mechanisms. The replayed packet is received at
the other agent, and accepted, since the integrity check passes (the
integrity check cannot and does not cover the source IP address and
port). Itis then responded to. This response will contain a XOR-
MAPPED-ADDRESS with the false candidate, and will be sent to that
false candidate. The attacker then needs to receive it and relay it
towards the originator.

The other agent will then initiate a connectivity check towards that
false candidate. This validation needs to succeed. This requires
the attacker to force a false valid on a false candidate. Injecting

of fake requests or responses to achieve this goal is prevented using

Keranen, et al. Expires September 9, 2018 [Page 78]

Internet-Draft ICE March 2018

the integrity mechanisms of STUN and the candidate exchange. Thus,
this attack can only be launched through replays. To do that, the
attacker needs to intercept the check towards this false candidate,

and replay it towards the other agent. Then, it needs to intercept

the response and replay that back as well.

This attack is very hard to launch unless the attacker is identified
by the fake candidate. This is because it requires the attacker to
intercept and replay packets sent by two different hosts. If both
agents are on different networks (e.g., across the public Internet),
this attack can be hard to coordinate, since it needs to occur
against two different endpoints on different parts of the network at
the same time.

If the attacker itself is identified by the fake candidate, the

attack is easier to coordinate. However, if the data path is secured
(e.g., using SRTP [RFC3711]), the attacker will not be able to
process the data packets, but will only be able to discard them,
effectively disabling the data stream. However, this attack requires
the agent to disrupt packets in order to block the connectivity check
from reaching the target. In that case, if the goal is to disrupt

the data stream, it's much easier to just disrupt it with the same
mechanism, rather than attack ICE.

19.3. Attacks on Server Reflexive Address Gathering

ICE endpoints make use of STUN Binding requests for gathering server
reflexive candidates from a STUN server. These requests are not
authenticated in any way. As a consequence, there are numerous
techniques an attacker can employ to provide the client with a false
server reflexive candidate:

0 An attacker can compromise the DNS, causing DNS queries to return
a rogue STUN server address. That server can provide the client
with fake server reflexive candidates. This attack is mitigated
by DNS security, though DNSSEC is not required to address it.

0 An attacker that can observe STUN messages (such as an attacker on
a shared network segment, like WiFi) can inject a fake response
that is valid and will be accepted by the client.

0 An attacker can compromise a STUN server, and cause it to send
responses with incorrect mapped addresses.

A false mapped address learned by these attacks will be used as a
server reflexive candidate in the establishment of the ICE session.
For this candidate to actually be used for data, the attacker also
needs to attack the connectivity checks, and in particular, force a

Keranen, et al. Expires September 9, 2018 [Page 79]

Internet-Draft ICE March 2018

false valid on a false candidate. This attack is very hard to launch

if the false address identifies a fourth party (neither the

initiator, responder, nor attacker), since it requires attacking the
checks generated by each ICE agent in the session, and is prevented
by SRTP if it identifies the attacker itself.

If the attacker elects not to attack the connectivity checks, the

worst it can do is prevent the server reflexive candidate from being
used. However, if the peer agent has at least one candidate that is
reachable by the agent under attack, the STUN connectivity checks
themselves will provide a peer reflexive candidate that can be used
for the exchange of data. Peer reflexive candidates are generally
preferred over server reflexive candidates. As such, an attack

solely on the STUN address gathering will normally have no impact on
a session at all.

19.4. Attacks on Relayed Candidate Gathering

An attacker might attempt to disrupt the gathering of relayed
candidates, forcing the client to believe it has a false relayed
candidate. Exchanges with the TURN server are authenticated using a
long-term credential. Consequently, injection of fake responses or
requests will not work. In addition, unlike Binding requests,

Allocate requests are not susceptible to replay attacks with modified
source IP addresses and ports, since the source IP address and port
are not utilized to provide the client with its relayed candidate.

Even if an attacker has caused the client to believe in a false

relayed candidate, the connectivity checks cause such a candidate to
be used only if they succeed. Thus, an attacker needs to launch a
false valid on a false candidate, per above, which is a very

difficult attack to coordinate.

19.5. Insider Attacks

In addition to attacks where the attacker is a third party trying to

insert fake candidate information or STUN messages, there are attacks
possible with ICE when the attacker is an authenticated and valid
participant in the ICE exchange.

19.5.1. STUN Amplification Attack

The STUN amplification attack is similar to a "voice hammer" attack,
where the attacker causes other agents to direct voice packets to the
attack target. However, instead of voice packets being directed to
the target, STUN connectivity checks are directed to the target. The
attacker sends an a large number of candidates, say, 50. The
responding agent receives the candidate information, and starts its

Keranen, et al. Expires September 9, 2018 [Page 80]

Internet-Draft ICE March 2018

checks, which are directed at the target, and consequently, never
generate a response. In the case of WebRTC the user might not even
be aware that this attack is ongoing, since it might be triggered in

the background by malicious JavaScript code that the user has
fetched. The answerer will start a new connectivity check every Ta
ms (say, Ta=50ms). However, the retransmission timers are set to a
large number due to the large number of candidates. As a
consequence, packets will be sent at an interval of one every Ta
milliseconds, and then with increasing intervals after that. Thus,
STUN will not send packets at a rate faster than data would be sent,
and the STUN packets persist only briefly, until ICE fails for the
session. Nonetheless, this is an amplification mechanism.

It is impossible to eliminate the amplification, but the volume can

be reduced through a variety of heuristics. ICE agents SHOULD limit
the total number of connectivity checks they perform to 100.
Additionally, agents MAY limit the number of candidates they will
accept.

Frequently, protocols that wish to avoid these kinds of attacks force
the initiator to wait for a response prior to sending the next
message. However, in the case of ICE, this is not possible. Itis
not possible to differentiate the following two cases:

0 There was no response because the initiator is being used to
launch a DoS attack against an unsuspecting target that will not
respond.

0 There was no response because the IP address and port are not
reachable by the initiator.

In the second case, another check will be sent at the next
opportunity, while in the former case, no further checks will be
sent.
20. IANA Considerations
The original ICE specification registered four STUN attributes, and
one new STUN error response. The STUN attributes and error response
are reproduced here. In addition, this specification registers a new
ICE option.
20.1. STUN Attributes

IANA has registered four STUN attributes:

Keranen, et al. Expires September 9, 2018 [Page 81]

Internet-Draft ICE March 2018

0x0024 PRIORITY

0x0025 USE-CANDIDATE
0x8029 ICE-CONTROLLED
0x802A ICE-CONTROLLING

NOTE TO IANA: Please replace the reference to RFC 5245 in the
registry with a reference to this specification.

20.2. STUN Error Responses
IANA has registered following STUN error response code:
487 Role Conflict: The client asserted an ICE role (controlling or
controlled) that is in conflict with the role of the server.

NOTE TO IANA: Please replace the reference to RFC 5245 in the
registry with a reference to this specification.

20.3. ICE Options
IANA is requested to register the following ICE option in the "ICE

Options" sub-registry of the "Interactive Connectivity Establishment
(ICE) registry", following the procedures defined in [RFC6336].

Keranen, et al. Expires September 9, 2018 [Page 82]

Internet-Draft ICE March 2018

ICE Option name:
ice2
Contact:

Name: |ESG
E-mail: iesg@ietf.org

Change control:
IESG
Description:

The ICE option indicates that the ICE agent using the ICE option
is implemented according to RFC XXXX.

Reference:

RFC XXXX

21. Changes from RFC 5245

The purpose of this updated ICE specification is to:

o Clarify procedures in RFC 5245.

o0 Make technical changes, due to discovered flaws in RFC 5245 and
based on feedback from the community that has implemented and
deployed ICE applications based on RFC 5245.

0 Make the procedures signaling protocol independent, by removing
the SIP and SDP procedures. Procedures specific to a signaling
protocol will be defined in separate usage documents.
[I-D.ietf-mmusic-ice-sip-sdp] defines the ICE usage with SIP and
SDP.

The following technical changes have been done:

0 Aggressive nomination removed.

0 The procedures for calculating candidate pair states and
scheduling connectivity checks modified.

o Procedures for calculation of Ta and RTO modified.

Keranen, et al. Expires September 9, 2018 [Page 83]

Internet-Draft ICE March 2018

0 Active check list and frozen check list definitions removed.
0 ’ice2’ ice option added.
o IPv6 considerations modified.

0 Usage with no-op for keepalives, and keepalives with non-ICE
peers, removed.

22. Acknowledgements

Most of the text in this document comes from the original ICE
specification, RFC 5245. The authors would like to thank everyone
who has contributed to that document. For additional contributions
to this revision of the specification we would like to thank Emil

Ivov, Paul Kyzivat, Pal-Erik Martinsen, Simon Perrault, Eric
Rescorla, Thomas Stach, Peter Thatcher, Martin Thomson, Justin
Uberti, Suhas Nandakumar, Taylor Brandstetter, Peter Saint-Andre,
Harald Alvestrand and Roman Shpount. Ben Campbell did the AD review.
Stephen Farrell did the sec-dir review. Stewart Bryant did the gen-
art review. Qin We did the ops-dir review. Magnus Westerlund did
the tsv-art review.

23. References
23.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
editor.org/info/rfc2119>.

[RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy
Extensions for Stateless Address Autoconfiguration in
IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,
<https://www.rfc-editor.org/info/rfc4941>.

[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", RFC 5389,
DOI 10.17487/RFC5389, October 2008, <https://www.rfc-
editor.org/info/rfc5389>.

[RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766,

DOI 10.17487/RFC5766, April 2010, <https://www:.rfc-
editor.org/info/rfc5766>.

Keranen, et al. Expires September 9, 2018 [Page 84]

Internet-Draft ICE March 2018

[RFC6336] Westerlund, M. and C. Perkins, "IANA Registry for
Interactive Connectivity Establishment (ICE) Options",
RFC 6336, DOI 10.17487/RFC6336, July 2011,
<https://www.rfc-editor.org/info/rfc6336>.

[RFC6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown,
"Default Address Selection for Internet Protocol Version 6
(IPv6)", RFC 6724, DOI 10.17487/RFC6724, September 2012,
<https://www.rfc-editor.org/info/rfc6724>.

23.2. Informative References

[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets",
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<https://www.rfc-editor.org/info/rfc1918>.

[RFC3605] Huitema, C., "Real Time Control Protocol (RTCP) attribute
in Session Description Protocol (SDP)", RFC 3605,
DOI 10.17487/RFC3605, October 2003, <https://www.rfc-
editor.org/info/rfc3605>.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol”, RFC 3261,
DOI 10.17487/RFC3261, June 2002, <https://www.rfc-
editor.org/info/rfc3261>.

[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", RFC 3264,
DOI 10.17487/RFC3264, June 2002, <https://www.rfc-
editor.org/info/rfc3264>.

[RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
"STUN - Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs)", RFC 3489,
DOI 10.17487/RFC3489, March 2003, <https://www.rfc-
editor.org/info/rfc3489>.

[RFC3235] Senie, D., "Network Address Translator (NAT)-Friendly
Application Design Guidelines", RFC 3235,
DOI 10.17487/RFC3235, January 2002, <https://www.rfc-
editor.org/info/rfc3235>.

[RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
A. Rayhan, "Middlebox communication architecture and
framework", RFC 3303, DOI 10.17487/RFC3303, August 2002,
<https://www.rfc-editor.org/info/rfc3303>.

Keranen, et al. Expires September 9, 2018 [Page 85]

Internet-Draft ICE March 2018

[RFC3102] Borella, M., Lo, J., Grabelsky, D., and G. Montenegro,
"Realm Specific IP: Framework", RFC 3102,
DOI 10.17487/RFC3102, October 2001, <https://www.rfc-
editor.org/info/rfc3102>.

[RFC3103] Borella, M., Grabelsky, D., Lo, J., and K. Taniguchi,
"Realm Specific IP: Protocol Specification", RFC 3103,
DOI 10.17487/RFC3103, October 2001, <https://www.rfc-
editor.org/info/rfc3103>.

[RFC3424] Daigle, L., Ed. and IAB, "IAB Considerations for
UNilateral Self-Address Fixing (UNSAF) Across Network
Address Translation", RFC 3424, DOI 10.17487/RFC3424,
November 2002, <https://www.rfc-editor.org/info/rfc3424>.

[RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
Jacobson, "RTP: A Transport Protocol for Real-Time
Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
July 2003, <https://www.rfc-editor.org/info/rfc3550>.

[RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
Norrman, "The Secure Real-time Transport Protocol (SRTP)",
RFC 3711, DOI 10.17487/RFC3711, March 2004,
<https://www.rfc-editor.org/info/rfc3711>.

[RFC3725] Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
Camarillo, "Best Current Practices for Third Party Call
Control (3pcc) in the Session Initiation Protocol (SIP)",
BCP 85, RFC 3725, DOI 10.17487/RFC3725, April 2004,
<https://www.rfc-editor.org/info/rfc3725>.

[RFC3879] Huitema, C. and B. Carpenter, "Deprecating Site Local
Addresses”, RFC 3879, DOI 10.17487/RFC3879, September
2004, <https://www.rfc-editor.org/info/rfc3879>.

[RFC4038] shin, M-K., Ed., Hong, Y-G., Hagino, J., Savola, P., and
E. Castro, "Application Aspects of IPv6 Transition",
RFC 4038, DOI 10.17487/RFC4038, March 2005,
<https://www.rfc-editor.org/info/rfc4038>.

[RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
Architecture", RFC 4291, DOI 10.17487/RFC4291, February
2006, <https://www.rfc-editor.org/info/rfc4291>.

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session

Description Protocol”, RFC 4566, DOI 10.17487/RFC4566,
July 2006, <https://www.rfc-editor.org/info/rfc4566>.

Keranen, et al. Expires September 9, 2018 [Page 86]

Internet-Draft ICE March 2018

[RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
and W. Weiss, "An Architecture for Differentiated
Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
<https://www.rfc-editor.org/info/rfc2475>.

[RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
2007, <https://www.rfc-editor.org/info/rfc4787>.

[RFC5761] Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
Control Packets on a Single Port", RFC 5761,
DOI 10.17487/RFC5761, April 2010, <https://www.rfc-
editor.org/info/rfc5761>.

[RFC4103] Hellstrom, G. and P. Jones, "RTP Payload for Text
Conversation", RFC 4103, DOI 10.17487/RFC4103, June 2005,
<https://www.rfc-editor.org/info/rfc4103>.

[RFC4091] Camarillo, G. and J. Rosenberg, "The Alternative Network
Address Types (ANAT) Semantics for the Session Description
Protocol (SDP) Grouping Framework", RFC 4091,

DOI 10.17487/RFC4091, June 2005, <https://www.rfc-
editor.org/info/rfc4091>.

[RFC4092] Camarillo, G. and J. Rosenberg, "Usage of the Session
Description Protocol (SDP) Alternative Network Address
Types (ANAT) Semantics in the Session Initiation Protocol
(SIP)", RFC 4092, DOI 10.17487/RFC4092, June 2005,
<https://www.rfc-editor.org/info/rfc4092>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols”, RFC 5245,

DOI 10.17487/RFC5245, April 2010, <https://www.rfc-
editor.org/info/rfc5245>,

[RFC5382] Guha, S., Ed., Biswas, K., Ford, B., Sivakumar, S., and P.
Srisuresh, "NAT Behavioral Requirements for TCP", BCP 142,
RFC 5382, DOI 10.17487/RFC5382, October 2008,
<https://www.rfc-editor.org/info/rfc5382>.

[RFC6080] Petrie, D. and S. Channabasappa, Ed., "A Framework for
Session Initiation Protocol User Agent Profile Delivery",
RFC 6080, DOI 10.17487/RFC6080, March 2011,
<https://www.rfc-editor.org/info/rfc6080>.

Keranen, et al. Expires September 9, 2018 [Page 87]

Internet-Draft ICE March 2018

[RFC6146] Bagnulo, M., Matthews, P., and |. van Beijnum, "Stateful
NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers", RFC 6146, DOI 10.17487/RFC6146,
April 2011, <https://www.rfc-editor.org/info/rfc6146>.

[RFC6147] Bagnulo, M., Sullivan, A., Matthews, P., and I. van
Beijnum, "DNS64: DNS Extensions for Network Address
Translation from IPv6 Clients to IPv4 Servers", RFC 6147,
DOI 10.17487/RFC6147, April 2011, <https://www.rfc-
editor.org/info/rfc6147>.

[RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
"Computing TCP’s Retransmission Timer", RFC 6298,
DOI 10.17487/RFC6298, June 2011, <https://www.rfc-
editor.org/info/rfc6298>.

[RFC6544] Rosenberg, J., Keranen, A., Lowekamp, B., and A. Roach,
"TCP Candidates with Interactive Connectivity
Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
March 2012, <https://www.rfc-editor.org/info/rfc6544>.

[RFC6928] Chu, J., Dukkipati, N., Cheng, Y., and M. Mathis,
"Increasing TCP’s Initial Window", RFC 6928,
DOI 10.17487/RFC6928, April 2013, <https://www.rfc-
editor.org/info/rfc6928>.

[RFC7050] Savolainen, T., Korhonen, J., and D. Wing, "Discovery of
the IPv6 Prefix Used for IPv6 Address Synthesis",
RFC 7050, DOI 10.17487/RFC7050, November 2013,
<https://www.rfc-editor.org/info/rfc7050>.

[RFC7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy
Considerations for IPv6 Address Generation Mechanisms",
RFC 7721, DOI 10.17487/RFC7721, March 2016,
<https://www.rfc-editor.org/info/rfc7721>.

[RFC7825] Goldberg, J., Westerlund, M., and T. Zeng, "A Network
Address Translator (NAT) Traversal Mechanism for Media
Controlled by the Real-Time Streaming Protocol (RTSP)",
RFC 7825, DOI 10.17487/RFC7825, December 2016,
<https://www.rfc-editor.org/info/rfc7825>.

[I-D.ietf-mmusic-ice-sip-sdp]
Petit-Huguenin, M., Keranen, A., and S. Nandakumar,
"Session Description Protocol (SDP) Offer/Answer
procedures for Interactive Connectivity Establishment
(ICE)", draft-ietf-mmusic-ice-sip-sdp-16 (work in
progress), November 2017.

Keranen, et al. Expires September 9, 2018 [Page 88]

Internet-Draft ICE March 2018

[I-D.ietf-ice-dualstack-fairness]
Martinsen, P., Reddy, T., and P. Patil, "ICE Multihomed
and IPv4/IPv6 Dual Stack Guidelines", draft-ietf-ice-
dualstack-fairness-07 (work in progress), November 2016.

[I-D.ietf-rtcweb-ip-handling]
Uberti, J. and G. Shieh, "WebRTC IP Address Handling
Requirements”, draft-ietf-rtcweb-ip-handling-06 (work in
progress), March 2018.

Appendix A. Lite and Full Implementations

ICE allows for two types of implementations. A full implementation
supports the controlling and controlled roles in a session, and can

also perform address gathering. In contrast, a lite implementation

is a minimalist implementation that does little but respond to STUN
checks, and only supports the controlled role in a session.

Because ICE requires both endpoints to support it in order to bring
benefits to either endpoint, incremental deployment of ICE in a
network is more complicated. Many sessions involve an endpoint that
is, by itself, not behind a NAT and not one that would worry about
NAT traversal. A very common case is to have one endpoint that
requires NAT traversal (such as a VolP hard phone or soft phone) make
a call to one of these devices. Even if the phone supports a full

ICE implementation, ICE won't be used at all if the other device
doesn’t support it. The lite implementation allows for a low-cost

entry point for these devices. Once they support the lite
implementation, full implementations can connect to them and get the
full benefits of ICE.

Consequently, a lite implementation is only appropriate for devices
that will *always* be connected to the public Internet and have a
public IP address at which it can receive packets from any
correspondent. ICE will not function when a lite implementation is
placed behind a NAT.

ICE allows a lite implementation to have a single IPv4 host candidate
and several IPv6 addresses. In that case, candidate pairs are
selected by the controlling agent using a static algorithm, such as

the one in RFC 6724, which is recommended by this specification.
However, static mechanisms for address selection are always prone to
error, since they cannot ever reflect the actual topology and can

never provide actual guarantees on connectivity. They are always
heuristics. Consequently, if an ICE agent is implementing ICE just

to select between its IPv4 and IPv6 addresses, and none of its IP
addresses are behind NAT, usage of full ICE is stil RECOMMENDED in
order to provide the most robust form of address selection possible.

Keranen, et al. Expires September 9, 2018 [Page 89]

Internet-Draft ICE March 2018

It is important to note that the lite implementation was added to
this specification to provide a stepping stone to full
implementation. Even for devices that are always connected to the
public Internet with just a single IPv4 address, a full
implementation is preferable if achievable. Full implementations
also obtain the security benefits of ICE unrelated to NAT traversal.
Finally, it is often the case that a device that finds itself with a
public address today will be placed in a network tomorrow where it
will be behind a NAT. It is difficult to definitively know, over the
lifetime of a device or product, that it will always be used on the
public Internet. Full implementation provides assurance that
communications will always work.

Appendix B. Design Motivations

ICE contains a number of normative behaviors that may themselves be
simple, but derive from complicated or non-obvious thinking or use
cases that merit further discussion. Since these design motivations
are not necessary to understand for purposes of implementation, they
are discussed here in an appendix to the specification. This section

iS non-normative.

B.1. Pacing of STUN Transactions

STUN transactions used to gather candidates and to verify
connectivity are paced out at an approximate rate of one new
transaction every Ta milliseconds. Each transaction, in turn, has a
retransmission timer RTO that is a function of Ta as well. Why are
these transactions paced, and why are these formulas used?

Sending of these STUN requests will often have the effect of creating
bindings on NAT devices between the client and the STUN servers.
Experience has shown that many NAT devices have upper limits on the
rate at which they will create new bindings. Discussions in the IETF
ICE WG during the work on this specification concluded that, that

once every 5 ms is well supported. This is why Ta has a lower bound
of 5 ms. Furthermore, transmission of these packets on the network
makes use of bandwidth and needs to be rate limited by the ICE agent.
Deployments based on earlier draft versions of [RFC5245] tended to
overload rate-constrained access links and perform poorly overall, in
addition to negatively impacting the network. As a consequence, the
pacing ensures that the NAT device does not get overloaded and that
traffic is kept at a reasonable rate.

The definition of a "reasonable” rate is that STUN MUST NOT use more
bandwidth than the RTP itself will use, once data starts flowing.

The formula for Ta is designed so that, if a STUN packet were sent
every Ta seconds, it would consume the same amount of bandwidth as

Keranen, et al. Expires September 9, 2018 [Page 90]

Internet-Draft ICE March 2018

RTP packets, summed across all data streams. Of course, STUN has
retransmits, and the desire is to pace those as well. For this

reason, RTO is set such that the first retransmit on the first
transaction happens just as the first STUN request on the last
transaction occurs. Pictorially:

First Packets Retransmits

I s S NS Sy S S S
[A1] |B1] |C1] |A2] |B2| |C2|
. I S S S

— + + + + + Time
0 Ta 2Ta 3Ta 4Ta b5Ta

In this picture, there are three transactions that will be sent (for
example, in the case of candidate gathering, there are three host
candidate/STUN server pairs). These are transactions A, B, and C.
The retransmit timer is set so that the first retransmission on the
first transaction (packet A2) is sent at time 3Ta.

Subsequent retransmits after the first will occur even less
frequently than Ta milliseconds apart, since STUN uses an exponential
back-off on its retransmissions.

This mechanism of a global minimum pacing interval of 5ms is not
generally applicable to transport protocols, but is applicable to ICE
based on the following reasoning.

o Start with the following rules which would be generally applicable
to transport protocols:

1. Let MaxBytes be the maximum number of bytes allowed to be
outstanding in the network at start-up, which SHOULD be 14600,
as defined in Section 2 of [RFC6928].

2. Let HTO be the transaction timeout, which SHOULD be 2*RTT if
RTT is known and 500ms otherwise. This is based on the RTO

Keranen, et al. Expires September 9, 2018 [Page 91]

Internet-Draft ICE March 2018

for STUN messages from [RFC5389] and the the TCP initial RTO,
which is 1 sec in [RFC6298].

3. Let MinPacing be the minimum pacing interval between
transactions, which is 5ms (see above).

0 Observe that agents typically do not know the RTT for ICE
transactions (connectivity checks in particular), meaning that HTO
will almost always be 500ms.

0 Observe that a MinPacing of 5ms and HTO of 500ms gives at most 100
packets/HTO, which for a typical ICE check of less than 120 bytes
means a maximum of 12000 outstanding bytes in the network, which
is less than the maximum expressed by rule 1.

0 Thus, for ICE, the rule set reduces down to just the MinPacing
rule, which is equivalent to having a global Ta value.

B.2. Candidates with Multiple Bases

Section 5.1.3 talks about eliminating candidates that have the same
transport address and base. However, candidates with the same
transport addresses but different bases are not redundant. When can
an ICE agent have two candidates that have the same IP address and
port, but different bases? Consider the topology of Figure 11:

Keranen, et al. Expires September 9, 2018 [Page 92]

Internet-Draft ICE March 2018

A

e + I\ e +

| Initiator]|--------- | C:netlQ |----------- | Responder|
| [10.0.1.100| | 10.0.1.101 | |
R + \\ R +

Figure 11: Identical Candidates with Different Bases

In this case, the initiating agent is multihomed. It has one IP
address, 10.0.1.100, on network C, which is a net 10 private network.
The responding agent is on this same network. The initiating agent
is also connected to network A, which is 192.168/16 and has an IP
address of 192.168.1.100 on this network. There is a NAT on this
network, natting into network B, which is another net 10 private

network, but not connected to network C. There is a STUN server on
network B.

Keranen, et al. Expires September 9, 2018 [Page 93]

Internet-Draft ICE March 2018

The initiating agent obtains a host candidate on its IP address on
network C (10.0.1.100:2498) and a host candidate on its IP address on
network A (192.168.1.100:3344). It performs a STUN query to its
configured STUN server from 192.168.1.100:3344. This query passes
through the NAT, which happens to assign the binding 10.0.1.100:2498.
The STUN server reflects this in the STUN Binding response. Now, the
initiating agent has obtained a server reflexive candidate with a
transport address that is identical to a host candidate
(10.0.1.100:2498). However, the server reflexive candidate has a

base of 192.168.1.100:3344, and the host candidate has a base of
10.0.1.100:2498.

B.3. Purpose of the Related Address and Related Port Attributes

The candidate attribute contains two values that are not used at all
by ICE itself -- related address and related port. Why are they
present?

There are two motivations for its inclusion. The first is

diagnostic. It is very useful to know the relationship between the
different types of candidates. By including it, an ICE agent can

know which relayed candidate is associated with which reflexive
candidate, which in turn is associated with a specific host

candidate. When checks for one candidate succeed and not for others,
this provides useful diagnostics on what is going on in the network.

The second reason has to do with off-path Quality of Service (QoS)
mechanisms. When ICE is used in environments such as PacketCable
2.0, proxies will, in addition to performing normal SIP operations,
inspect the SDP in SIP messages, and extract the IP address and port
for data traffic. They can then interact, through policy servers,

with access routers in the network, to establish guaranteed QoS for
the data flows. This QoS is provided by classifying the RTP traffic
based on 5-tuple, and then providing it a guaranteed rate, or marking
its Diffserv codepoints appropriately. When a residential NAT is
present, and a relayed candidate gets selected for data, this relayed
candidate will be a transport address on an actual TURN server. That
address says nothing about the actual transport address in the access
router that would be used to classify packets for QoS treatment.
Rather, the server reflexive candidate towards the TURN server is
needed. By carrying the translation in the SDP, the proxy can use
that transport address to request QoS from the access router.

B.4. Importance of the STUN Username
ICE requires the usage of message integrity with STUN using its

short-term credential functionality. The actual short-term
credential is formed by exchanging username fragments in the

Keranen, et al. Expires September 9, 2018 [Page 94]

Internet-Draft ICE March 2018

candidate exchange. The need for this mechanism goes beyond just
security; it is actually required for correct operation of ICE in the
first place.

Consider ICE agents L, R, and Z. L and R are within private

enterprise 1, which is using 10.0.0.0/8. Z is within private

enterprise 2, which is also using 10.0.0.0/8. As it turns out, R and

Z both have IP address 10.0.1.1. L sends candidates to Z. Z, in
responds L with its host candidates. In this case, those candidates

are 10.0.1.1:8866 and 10.0.1.1:8877. Asitturns out, Risina

session at that same time, and is also using 10.0.1.1:8866 and
10.0.1.1:8877 as host candidates. This means that R is prepared to
accept STUN messages on those ports, just as Z is. L will send a
STUN request to 10.0.1.1:8866 and another to 10.0.1.1:8877. However,
these do not go to Z as expected. Instead, they go to R! If R just
replied to them, L would believe it has connectivity to Z, when in

fact it has connectivity to a completely different user, R. To fix

this, the STUN short-term credential mechanisms are used. The
username fragments are sufficiently random that it is highly unlikely

that R would be using the same values as Z. Consequently, R would
reject the STUN request since the credentials were invalid. In

essence, the STUN username fragments provide a form of transient host
identifiers, bound to a particular session established as part of the
candidate exchange.

An unfortunate consequence of the non-uniqueness of IP addresses is
that, in the above example, R might not even be an ICE agent. It
could be any host, and the port to which the STUN packet is directed
could be any ephemeral port on that host. If there is an application
listening on this socket for packets, and it is not prepared to

handle malformed packets for whatever protocol is in use, the
operation of that application could be affected. Fortunately, since

the ports exchanged are ephemeral and usually drawn from the dynamic
or registered range, the odds are good that the port is not used to

run a server on host R, but rather is the agent side of some

protocol. This decreases the probability of hitting an allocated

port, due to the transient nature of port usage in this range.

However, the possibility of a problem does exist, and network
deployers need to be prepared for it. Note that this is not a

problem specific to ICE; stray packets can arrive at a port at any

time for any type of protocol, especially ones on the public

Internet. As such, this requirement is just restating a general

design guideline for Internet applications -- be prepared for unknown
packets on any port.

Keranen, et al. Expires September 9, 2018 [Page 95]

Internet-Draft ICE March 2018

B.5. The Candidate Pair Priority Formula
The priority for a candidate pair has an odd form. Itis:
pair priority = 2*32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)

Why is this? When the candidate pairs are sorted based on this
value, the resulting sorting has the MAX/MIN property. This means
that the pairs are first sorted based on decreasing value of the
minimum of the two priorities. For pairs that have the same value of
the minimum priority, the maximum priority is used to sort amongst
them. If the max and the min priorities are the same, the

controlling agent’s priority is used as the tie-breaker in the last

part of the expression. The factor of 2*32 is used since the

priority of a single candidate is always less than 2*32, resulting in
the pair priority being a "concatenation" of the two component
priorities. This creates the MAX/MIN sorting. MAX/MIN ensures that,
for a particular ICE agent, a lower-priority candidate is never used
until all higher-priority candidates have been tried.

B.6. Why Are Keepalives Needed?

Once data begins flowing on a candidate pair, it is still necessary

to keep the bindings alive at intermediate NATSs for the duration of

the session. Normally, the data stream packets themselves (e.g.,

RTP) meet this objective. However, several cases merit further
discussion. Firstly, in some RTP usages, such as SIP, the data

streams can be "put on hold". This is accomplished by using the SDP
"sendonly” or "inactive" attributes, as defined in RFC 3264

[RFC3264]. RFC 3264 directs implementations to cease transmission of
data in these cases. However, doing so may cause NAT bindings to
timeout, and data won't be able to come off hold.

Secondly, some RTP payload formats, such as the payload format for
text conversation [RFC4103], may send packets so infrequently that
the interval exceeds the NAT binding timeouts.

Thirdly, if silence suppression is in use, long periods of silence
may cause data transmission to cease sufficiently long for NAT
bindings to time out.

For these reasons, the data packets themselves cannot be relied upon.
ICE defines a simple periodic keepalive utilizing STUN Binding
indications. This makes its bandwidth requirements highly

predictable, and thus amenable to QoS reservations.

Keranen, et al. Expires September 9, 2018 [Page 96]

Internet-Draft ICE March 2018

B.7. Why Prefer Peer Reflexive Candidates?

Section 5.1.2 describes procedures for computing the priority of
candidate based on its type and local preferences. That section
requires that the type preference for peer reflexive candidates
always be higher than server reflexive. Why is that? The reason has
to do with the security considerations in Section 19. It is much

easier for an attacker to cause an ICE agent to use a false server
reflexive candidate than it is for an attacker to cause an agent to

use a false peer reflexive candidate. Consequently, attacks against
address gathering with Binding requests are thwarted by ICE by
preferring the peer reflexive candidates.

B.8. Why Are Binding Indications Used for Keepalives?

Data keepalives are described in Section 11. These keepalives make
use of STUN when both endpoints are ICE capable. However, rather
than using a Binding request transaction (which generates a
response), the keepalives use an Indication. Why is that?

The primary reason has to do with network QoS mechanisms. Once data

begins flowing, network elements will assume that the data stream has
a fairly regular structure, making use of periodic packets at fixed
intervals, with the possibility of jitter. If an ICE agent is

sending data packets, and then receives a Binding request, it would
need to generate a response packet along with its data packets. This
will increase the actual bandwidth requirements for the 5-tuple
carrying the data packets, and introduce jitter in the delivery of

those packets. Analysis has shown that this is a concern in certain
layer 2 access networks that use fairly tight packet schedulers for
data.

Additionally, using a Binding Indication allows integrity to be

disabled, allowing for better performance. This is useful for large-
scale endpoints, such as Public Switched Telephone Network (PSTN)
gateways and Session Border Controllers (SBCs).

B.9. Selecting Candidate Type Preference

One criterion for selection of the type and local preference values

is the use of a data intermediary, such as a TURN server, a tunnel
service such as VPN server, or NAT. With a data intermediary, if
data is sent to that candidate, it will first transit the data

intermediary before being received. Relayed candidates are one type
of candidate that involves a data intermediary. Another are host
candidates obtained from a VPN interface. When data is transited
through a data intermediary, it can have a positive or negative

effect on the latency between transmission and reception. It may or

Keranen, et al. Expires September 9, 2018 [Page 97]

Internet-Draft ICE March 2018

may not increase the packet losses, because of the additional router
hops that may be taken. It may increase the cost of providing
service, since data will be routed in and right back out of a data
intermediary run by a provider. If these concerns are important, the
type preference for relayed candidates needs to be carefully chosen.

Another criterion for selection of preferences is IP address family.
ICE works with both IPv4 and IPv6. It provides a transition
mechanism that allows dual-stack hosts to prefer connectivity over
IPv6, but to fall back to IPv4 in case the v6 networks are
disconnected. Implementation SHOULD follow the guidelines from
[I-D.ietf-ice-dualstack-fairness] to avoid excessive delays in the
connectivity check phase if broken paths exist.

Another criterion for selecting preferences is topological awareness.
This is most useful for candidates that make use of intermediaries.
In those cases, if an ICE agent has preconfigured or dynamically
discovered knowledge of the topological proximity of the
intermediaries to itself, it can use that to assign higher local
preferences to candidates obtained from closer intermediaries.

Another criterion for selecting preferences might be security or
privacy. If a user is a telecommuter, and therefore connected to a
corporate network and a local home network, the user may prefer their
voice traffic to be routed over the VPN or similar tunnel in order to
keep it on the corporate network when communicating within the
enterprise, but use the local network when communicating with users
outside of the enterprise. In such a case, a VPN address would have
a higher local preference than any other address.

Appendix C. Connectivity Check Bandwidth
The tables below show, for IPv4 and IPv6, the bandwidth required for
performing connectivity checks, using different Ta values (given in
ms) and different ufrag sizes (given in bytes).

The results were provided by Jusin Uberti (Google) 11th April 2016.

Keranen, et al. Expires September 9, 2018 [Page 98]

Internet-Draft ICE

IP version: IPv4
Packet len (bytes): 108 + ufrag

ms| 4 8 12 16
500 | 1.86k 1.98k 2.11k 2.24k
200 | 4.64k 4.96k 5.28k 5.6k
100 | 9.28k 9.92k 10.6k 11.2k
50 | 18.6k 19.8k 21.1k 22.4k
20 | 46.4k 49.6k 52.8k 56.0k
10 | 92.8k 99.2k 105k 112k

5| 185k 198k 211k 224k
2| 464k 496k 528k 560k
1] 928k 992k 1.06M 1.12M

IP version: IPv6
Packet len (bytes): 128 + ufrag
|

ms| 4 8 12 16
500 | 2.18k 2.3k 2.43k 2.56k
200 | 5.44k 5.76k 6.08k 6.4k
100 | 10.9k 11.5k 12.2k 12.8k
50 | 21.8k 23.0k 24.3k 25.6k
20 | 54.4k 57.6k 60.8k 64.0k
10| 108k 115k 121k 128k

5| 217k 230k 243k 256k
2| 544k 576k 608Kk 640K
1]1.09M 1.15M 1.22M 1.28M

Figure 12: Connectivity Check Bandwidth

Authors’ Addresses

Ari Keranen
Ericsson
Hirsalantie 11
02420 Jorvas
Finland

Email: ari.keranen@ericsson.com

Keranen, et al. Expires September 9, 2018

March 2018

[Page 99]

Internet-Draft ICE March 2018

Christer Holmberg
Ericsson
Hirsalantie 11
02420 Jorvas
Finland

Email: christer.holmberg@ericsson.com

Jonathan Rosenberg
jdrosen.net
Monmouth, NJ

us

Email: jdrosen@jdrosen.net
URI: http://www.jdrosen.net

Keranen, et al. Expires September 9, 2018 [Page 100]

Network Working Group E. lvov

Internet-Draft Jitsi
Intended status: Standards Track E. Rescorla
Expires: June 12, 2016 RTFM, Inc.
J. Uberti
Google
P. Saint-Andre
&yet

December 10, 2015

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
Connectivity Establishment (ICE) Protocol
draft-ietf-ice-trickle-01

Abstract

This document describes an extension to the Interactive Connectivity
Establishment (ICE) protocol that enables ICE agents to send and
receive candidates incrementally rather than exchanging complete
lists. With such incremental provisioning, ICE agents can begin
connectivity checks while they are still gathering candidates and
considerably shorten the time necessary for ICE processing to
complete. This mechanism is called "trickle ICE".

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 12, 2016.

Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

Ivov, et al. Expires June 12, 2016 [Page 1]

Internet-Draft Trickle ICE December 2015

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction 3
Terminology i 4
Determining Support for Trickle ICE 5
Sending the Initial Offer 6
. Receiving the Initial Offer 6
5.1. Sending the Initial Answer 7
5.2. Forming Check Lists and Beginning Connectivity
Checks L. 7
6. Receiving the Initial Answer 8
7. Performing Connectivity Checks 8
7.1. SchedulingChecks 8
7.2. Check List and Timer State Updates 9
8. Discovering and Sending Additional Local Candidates 9
8.1. Pairing Newly Learned Candidates and Updating
CheckLists 11
8.2. Announcing End of Candidates 12
9. Receiving Additional Remote Candidates 14
10. Receiving an End-Of-Candidates Notification 14
11. Trickle ICE and Peer Reflexive Candidates 14
12. Concluding ICE Processingo covvv v 15
13. Subsequent Offer/Answer Exchanges 15
14. Unilateral Use of Trickle ICE (Half Trickle) 15
15.Example Flow 16
16. IANA Considerations 17
17. Security Considerations 17
18. Acknowledgements 17
19. References 17
19.1. Normative References.................. 17
19.2. Informative References 18
Appendix A. Interactionwith ICE 19
Appendix B. Interaction with ICE Lite 20
Appendix C. Changes from Earlier Versions 21
C.1. Changes from draft-ietf-ice-trickle-00 21
C.2. Changes from draft-mmusic-trickle-ice-02 22
C.3. Changes from draft-ivov-01 and draft-mmusic-00 22
C.4. Changes from draft-ivov-00 22

agrwbdpE

Ivov, et al. Expires June 12, 2016 [Page 2]

Internet-Draft Trickle ICE December 2015

C.5. Changes from draft-rescorla-01 23
C.6. Changes from draft-rescorla-00 24
Authors’ Addresses 24

1. Introduction

The Interactive Connectivity Establishment (ICE) protocol
[rfc5245bis] describes mechanisms for gathering candidates,
prioritizing them, choosing default ones, exchanging them with the
remote party, pairing them, and ordering them into check lists. Once
all of these actions have been completed (and only then), the
participating agents can begin a phase of connectivity checks and
eventually select the pair of candidates that will be used in a media
session.

Although the sequence described above has the advantage of being
relatively straightforward to implement and debug once deployed, it
can also be rather lengthy. Candidate gathering often involves

things like querying STUN [RFC5389] servers, discovering UPnP
devices, and allocating relayed candidates at TURN [RFC5766] servers.
All of these actions can be delayed for a noticeable amount of time;
although they can be run in parallel, they still need to respect the
pacing requirements from [rfc5245bis], which is likely to delay them
even further. Some or all of these actions also need be completed by
the remote agent. Both agents would next perform connectivity checks
and only then would they be ready to begin streaming media.

These factors can lead to relatively lengthy session establishment
times and degraded user experience.

This document defines an alternative mode of operation for ICE
implementations, known as "Trickle ICE", in which candidates can be
exchanged incrementally. This enables ICE agents to exchange
candidates as soon as a session has been initiated. Connectivity
checks for a media stream can also start as soon as the first
candidates for that stream become available.

Trickle ICE can reduce session establishment times in cases where
connectivity is confirmed for the first exchanged candidates (e.g.,
where the host candidates for one of the agents are directly
reachable from the second agent, such as host candidates at a media
relay). Even when this is not the case, running candidate gathering
for both agents and connectivity checks in parallel can considerably
shorten ICE processing times.

It is worth noting that there is quite a bit of operational

experience with the Trickle ICE technique, going back as far as 2005
(when the XMPP Jingle extension defined a "dribble mode" as specified

Ivov, et al. Expires June 12, 2016 [Page 3]

Internet-Draft Trickle ICE December 2015

in [XEP-0176]); this document incorporates feedback from those who
have implemented and deployed the technique.

In addition to the basics of Trickle ICE, this document also
describes how to discover support for Trickle ICE, how regular ICE
processing needs to be modified when building and updating check
lists, and how Trickle ICE implementations interoperate with agents
that only implement so-called "Vanilla ICE" processing as defined in
[rfc5245bis].

This specification does not define the usage of Trickle ICE with any
specific signalling protocol (however, see
[I-D.ietf-mmusic-trickle-ice-sip] for usage with SIP [RFC3261]).
Similarly, it does not define Trickle ICE in terms of the Session
Description Protocol (SDP) [RFC4566] or the offer/answer model
[RFC3264] because the technique can be and already is used in
application protocols that are not tied to SDP or to offer/answer
semantics.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

This specification makes use of all terminology defined for
Interactive Connectivity Establishment in [rfc5245bis].

Vanilla ICE: The Interactive Connectivity Establishment protocol as
defined in [rfc5245bis].

Candidate Harvester: A module used by an ICE agent to obtain local
candidates. Candidate gatherers use different mechanisms for
discovering local candidates. Some of them would typically make
use of protocols such as STUN or TURN. Others may also employ
techniques that are not referenced within [rfc5245bis] (e.g., UPnP
based port allocation or XMPP Jingle Relay Nodes [XEP-0278]).

Trickled Candidates: Candidates that a Trickle ICE agent sends after
an offer or answer but within the same context. Trickled
candidates can be sent in parallel with candidate gathering and
connectivity checks.

Trickling/Trickle (v.): The act of sending trickled candidates.
Half Trickle: A Trickle ICE mode of operation where the offerer

gathers its first generation of candidates strictly before
creating and sending the offer. Once sent, that offer can be

Ivov, et al. Expires June 12, 2016 [Page 4]

Internet-Draft Trickle ICE December 2015

processed by Vanilla ICE agents and does not require support for
this specification. It also allows Trickle ICE capable answerers

to still gather candidates and perform connectivity checks in a
non-blocking way, thus roughly offering "half" the advantages of
Trickle ICE. The mechanism is mostly meant for use in cases where
support for trickle ICE cannot be confirmed prior to sending a

initial offer.

Full Trickle: The regular mode of operation for Trickle ICE agents,
in which an initial offer can include any number of candidates
(even zero candidates) and does not need to include the entire
first generation of candidates as in half trickle.

3. Determining Support for Trickle ICE

Application protocols that use Trickle ICE should do one of the
following:

o Provide a way for agents to verify support of Trickle ICE prior to
initiating a session (XMPP’s Service Discovery [XEP-0030] is one
such mechanism).

o Make support for Trickle ICE mandatory so that user agents can
assume support.

Alternately, for cases where a protocol provides neither of the
foregoing methods, agents may rely on provisioning/configuration or
use the half trickle procedure described in Section 14.

Prior to sending an initial offer, agents using signaling protocols

that support capabilities discovery can attempt to verify whether or
not the remote party supports Trickle ICE. If an agent determines
that the remote party does not support Trickle ICE, it MUST fall back
to using Vanilla ICE or abandon the entire session.

In application protocols that use SDP, a user agent supporting
Trickle ICE MUST include a token of "trickle" in the ice-options
attribute every time it generates an offer or an answer. This

enables an agent that receives offers or answers to verify support by
checking for presence of the token.

Dedicated discovery semantics and half trickle are needed only prior
to session initiation (e.g., when sending the initial offer). After

a session is established and Trickle ICE support is confirmed for
both parties, either agent can use full trickle for subsequent

offers.

Ivov, et al. Expires June 12, 2016 [Page 5]

Internet-Draft Trickle ICE December 2015

4. Sending the Initial Offer

An agent starts gathering candidates as soon as it has an indication
that communication is imminent (e.g., a user interface cue or an
explicit request to initiate a session). Contrary to Vanilla ICE,
implementations of Trickle ICE do not need to gather candidates in a
blocking manner. Therefore, unless half trickle is being used,
agents SHOULD generate and transmit their initial offer as early as
possible, in order to allow the remote party to start gathering and
trickling candidates.

Trickle ICE agents MAY include any set of candidates in an offer.
This includes the possibility of sending an offer that contains alll

the candidates that the agent plans to use (as in half trickle mode),
sending an offer that contains only a publically-reachable IP address
(e.g., a host candidate at a media relay that is known to not be
behind a firewall), or sending an offer with no candidates at all (in
which case the offerer can receive the answerer’s initial candidate
list sooner and the answerer can begin candidate gathering more

quickly).

For optimal performance, it is RECOMMENDED that the candidates in an
initial offer (if any) be host candidates only. This would allow

both agents to start gathering server reflexive, relayed, and other
non-host candidates simultaneously, and it would also enable them to
begin connectivity checks.

If the privacy implications of revealing host addresses on an
endpoint device are a concern, agents can generate an offer that
contains no candidates and then only trickle candidates that do not
reveal host addresses (e.g., relayed candidates).

Methods for calculating priorities and foundations, as well as
determining redundancy of candidates, work just as with vanilla ICE.

5. Receiving the Initial Offer

When an agent receives an initial offer, it will first check if the

offer or offerer indicates support for Trickle ICE as explained in
Section 3. If this is not the case, the agent MUST process the offer
according to Vanilla ICE procedures [rfc5245bis] or offer/answer
processing rules [RFC3264] if no ICE support is detected at all.

If support for Trickle ICE is confirmed, an agent will automatically
assume support for Vanilla ICE as well even if the support
verification procedure in [rfc5245bis] indicates otherwise.
Specifically, the rules from [rfc5245bis] would imply that ICE itself
is not supported if the initial offer includes no candidates in the

Ivov, et al. Expires June 12, 2016 [Page 6]

Internet-Draft Trickle ICE December 2015

offer; however, such a conclusion is not warranted if the answerer
can confirm that the offerer supports Trickle ICE and thus fallback
to [RFC3264] is not necessary.

If the offer does indicate support for Trickle ICE, the agent will
determine its role, start gathering and prioritizing candidates and
while doing so it will also respond by sending its own answer, so
that both agents can start forming check lists and begin connectivity
checks.

5.1. Sending the Initial Answer

An agent can respond to an initial offer at any point while gathering
candidates. The answer can again contain any set of candidates,
including all candidates or no candidates. (The benefit of including
no candidates is to send the answer as quickly as possible, so that
both parties can consider the overall session to be under active
negotiation as soon as possible.) Unless the answering agent is
protecting host addresses for privacy reasons, it would typically
construct this initial answer including only host addresses, thus
enabling the remote party to also start forming check lists and
performing connectivity checks.

In application protocols that use SDP, the answer MUST indicate
support for Trickle ICE as described in Section 3.

5.2. Forming Check Lists and Beginning Connectivity Checks

After exchanging the offer and answer, and as soon as they have
obtained local and remote candidates, agents begin forming candidate
pairs, computing candidate pair priorities and ordering candidate
pairs, pruning duplicate pairs, and creating check lists according to
the Vanilla ICE procedures described in [rfc5245bis].

According to those procedures, in order for candidate pairing to be
possible and for duplicate candidates to be pruned, the candidates
would need to be provided in both the offer and the answer. Under
Trickle ICE, check lists can be empty until candidate pairs are sent
or received. Therefore Trickle ICE agents handle check lists and
candidate pairing in a slightly different way: the agents still

create the check lists, but they only populate the check lists after
they actually have the candidate pairs.

Note: According to [rfc5245bis], "A check list with at least one
pair that is Waiting is called an active check list, and a check
list with all pairs Frozen is called a frozen check list."

Formally speaking an active check list does not have a state of
Active and a frozen check list does not have a state of Frozen,

Ivov, et al. Expires June 12, 2016 [Page 7]

Internet-Draft Trickle ICE December 2015

because the only check list states are Running, Completed, and
Failed.

A Trickle ICE agent MUST initially consider all check lists to be
frozen. It then inspects the first check list and attempts to

unfreeze all candidates belonging to the first component on the first
media stream (i.e., the first media stream that was reported to the
ICE implementation from the using application). However, if this
check list is still empty, an agent delays further processing until

the check list is non-empty.

With regard to pruning of duplicate candidate pairs, a Trickle ICE
agent SHOULD follow a policy of "first one wins" and not re-apply the
pruning procedure if a higher-priority candidate pair is received

from the remote agent.

Respecting the order in which check lists have been reported to an
ICE implementation is crucial to the frozen candidates algorithm, so
that connectivity checks are performed simultaneously by both agents.

6. Receiving the Initial Answer

When receiving an answer, agents follow Vanilla ICE procedures to
determine their role, after which they form check lists (as described
in Section 5.2) and begin connectivity checks.

7. Performing Connectivity Checks

For the most part, Trickle ICE agents perform connectivity checks
following Vanilla ICE procedures. However, the asynchronous nature
of gathering and communicating candidates in Trickle ICE impose a
number of changes described as described in the following sections.

7.1. Scheduling Checks

The ICE specification [rfc5245bis], Section 5.8, requires that agents
terminate the timer for a triggered check in relation to an active
check list once the agent has exhausted all frozen pairs in check
list. This will not work with Trickle ICE, because more pairs will

be added to the check list incrementally.

Therefore, a Trickle ICE agent SHOULD NOT terminate the timer until

the state of the check list is Completed or Failed as specified
herein (see Section 8.2).

Ivov, et al. Expires June 12, 2016 [Page 8]

Internet-Draft Trickle ICE December 2015

7.2. Check List and Timer State Updates

The ICE specification [rfc5245bis], Section 7.1.3.3, requires that
agents update check lists and timer states upon completing a
connectivity check transaction. During such an update, Vanilla ICE
agents would set the state of a check list to Failed if both of the
following two conditions are satisfied:

o all of the pairs in the check list are either in the Failed or
Succeeded state; and

o there is not a pair in the valid list for each component of the
media stream.

With Trickle ICE, the above situation would often occur when
candidate gathering and trickling are still in progress, even though

it is quite possible that future checks will succeed. For this

reason, Trickle ICE agents add the following conditions to the above
list:

o all candidate gatherers have completed and the agent is not
expecting to discover any new local candidates;

o the remote agent has sent an end-of-candidates indication for that
check list as described in Section 8.2.

Vanilla ICE requires that agents then update all other check lists,
placing one pair from each of them into the Waiting state,

effectively unfreezing all remaining check lists. However, under
Trickle ICE other check lists might still be empty at that point.
Therefore a Trickle ICE agent SHOULD monitor whether a check list is
active or frozen independently of the state of the candidate pairs

that the check list contains. A Trickle ICE agent SHOULD consider a
check list to be active either when unfreezing the first candidate

pair in the check list or when there is no candidate pair in the

check list (i.e., when the check list is empty).

8. Discovering and Sending Additional Local Candidates

After an offer or an answer has been sent, agents will most likely
continue discovering new local candidates as STUN, TURN, and other
non-host candidate gathering mechanisms begin to yield results.
Whenever an agent discovers such a new candidate it will compute its
priority, type, foundation and component ID according to normal
Vanilla ICE procedures.

The new candidate is then checked for redundancy against the existing
list of local candidates. If its transport address and base match

Ivov, et al. Expires June 12, 2016 [Page 9]

Internet-Draft Trickle ICE December 2015

those of an existing candidate, it will be considered redundant and
will be ignored. This would often happen for server reflexive
candidates that match the host addresses they were obtained from
(e.g., when the latter are public IPv4 addresses). Contrary to
Vanilla ICE, Trickle ICE agents will consider the new candidate
redundant regardless of its priority.

Next the agent sends (i.e., trickles) the newly discovered

candidate(s) to the remote agent. The actual delivery of the new
candidates are specified by using protocols such as SIP or XMPP.
Trickle ICE imposes no restrictions on the way this is done or
whether it is done at all. For example, some applications may choose
not to send trickle updates for server reflexive candidates and rely

on the discovery of peer reflexive ones instead.

When trickle updates are sent, each candidate MUST be delivered to
the receiving Trickle ICE implementation not more than once and in
the same order that they were sent. In other words, if there are any
candidate retransmissions, they must be hidden from the ICE
implementation.

Also, candidate trickling needs to be correlated to a specific ICE
negotiation session, so that if there is an ICE restart, any delayed
updates for a previous session can be recognized as such and ignored
by the receiving party.

One important aspect of Vanilla ICE is that connectivity checks for a
specific foundation and component are attempted simultaneously by
both agents, so that any firewalls or NATs fronting the agents would
whitelist both endpoints and allow all except for the first

("suicide") packets to go through. This is also crucial to

unfreezing candidates in the right time.

In order to preserve this feature in Trickle ICE, when trickling

candidates agents MUST respect the order of the components as they
appear (implicitly or explicitly) in the offer/answer descriptions.

Therefore a candidate for a specific component MUST NOT be sent prior
to candidates for other components within the same foundation.

For example, the following SDP description contains two components
(RTP and RTCP) and two foundations (host and server reflexive):

Ivov, et al. Expires June 12, 2016 [Page 10]

Internet-Draft Trickle ICE December 2015

v=0

o=jdoe 2890844526 2890842807 IN 1P4 10.0.1.1

S=

c=IN1P4 10.0.1.1

t=00

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 5000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host

a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
raddr 10.0.1.1 rport 8998

a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
raddr 10.0.1.1 rport 8998

For this description the RTCP host candidate MUST NOT be sent prior
to the RTP host candidate. Similarly the RTP server reflexive
candidate MUST be sent together with or prior to the RTCP server
reflexive candidate.

Note that the order restriction only applies among candidates that
belong to the same foundation.

It is also equally important to preserve this order across media
streams, which is covered by the requirement to always start
unfreezing candidates starting from the first media stream as
described under Section 5.2.

Once the candidate has been sent to the remote party, the agent
checks if any remote candidates are currently known for this same
stream. If not, the new candidate will simply be added to the list
of local candidates.

Otherwise, if the agent has already learned of one or more remote
candidates for this stream and component, it will begin pairing the
new local candidates with them and adding the pairs to the existing
check lists according to their priority.

8.1. Pairing Newly Learned Candidates and Updating Check Lists
Forming candidate pairs works the way it is described by the ICE

specification [rfc5245bis]. However, actually adding the new pair to
a check list happens according to the rules described below.

Ivov, et al. Expires June 12, 2016 [Page 11]

Internet-Draft Trickle ICE December 2015

If the check list where the pair is to be added already contains the
maximum number of candidate pairs (100 by default as per
[rfc5245bis]), the new pair is discarded.

If the new pair’s local candidate is server reflexive, the server
reflexive candidate MUST be replaced by its base before adding the
pair to the list. Once this is done, the agent examines the check

list looking for another pair that would be redundant with the new
one. If such a pair exists, the newly formed pair is ignored.

For all other pairs, including those with a server reflexive local
candidate that were not found to be redundant:

o if this check list is frozen then the new pair will be assigned a
state of Frozen.

o else if the check list is active and it is either empty or
contains only candidates in the Succeeded and Failed states, then
the new pair’s state is set to Waiting.

o else if the check list is non-empty and active, then the state of
the new pair will be set to

Frozen: if there is at least one pair in the check list whose
foundation matches the one in the new pair and whose state is
neither Succeeded nor Failed (eventually the new pair will get
unfrozen after the ongoing check for the existing pair
concludes);

Waiting: if the list contains no pairs with the same foundation
as the new one, or, in case such pairs exist but they are all
in either the Succeeded or Failed states.

8.2. Announcing End of Candidates

Once all candidate gathering is completed or expires for a specific
media stream, the agents will generate an "end-of-candidates"
indication for that stream and send it to the remote agent via the
signalling channel. The exact form of the indication depends on the
application protocol. The indication can be sent in the following
ways:

0 As part of an offer (which would typically be the case with half
trickle initial offers)

o Along with the last candidate an agent can send for a stream

Ivov, et al. Expires June 12, 2016 [Page 12]

Internet-Draft Trickle ICE December 2015

0 As a standalone notification (e.g., after STUN Binding requests or
TURN Allocate requests to a server timeout and the agent has no
other active gatherers)

A controlled Trickle ICE agent SHOULD send end-of-candidates
indications after gathering for a media stream has completed, unless
ICE processing terminates before the agent has had a chance to do so.
Sending the indication is necessary in order to avoid ambiguities and
speed up the conclusion of ICE processing. On the other hand, a
controlling agent MAY conclude ICE processing prior to sending end-
of-candidates indications for all streams. This would typically be

the case with aggressive nomination. However, itis RECOMMENDED that
controlling agents do send such indications whenever possible for the
sake of consistency and to keep middle boxes and controlled agents
up-to-date on the state of ICE processing.

When sending an end-of-candidate indication during trickling (rather
than as a part of an offer or an answer), it is the responsibility of

the using protocol to define methods for relating the indication to
one or more specific media streams.

Receiving an end-of-candidates indication enables an agent to update
check list states and, in case valid pairs do not exist for every
component in every media stream, determine that ICE processing has
failed. It also enables agents to speed up the conclusion of ICE
processing when a candidate pair has been validated but it involves
the use of lower-preference transports such as TURN. In such
situations, an implementations may choose to wait and see if higher-
priority candidates are received; in this case the end-of-candidates
indication provides a notificaiton that such candidates are not
forthcoming.

An agent MAY also choose to generate an end-of-candidates indication
before candidate gathering has actually completed, if the agent
determines that gathering has continued for more than an acceptable
period of time. However, an agent MUST NOT send any more candidates
after it has send an end-of-candidates indication.

When performing half trickle, an agent SHOULD send an end-of-
candidates indication together with its initial offer unless it is
planning to potentially send additional candidates (e.qg., in case the
remote party turns out to support Trickle ICE).

When an end-of-candidates indication is sent as part of an offer or

an answer, it can be considered to apply to the session as a whole,
which is equivalent to having it apply to all media streams.

Ivov, et al. Expires June 12, 2016 [Page 13]

Internet-Draft Trickle ICE December 2015

After an agent sends the end-of-candidates indication, it will update
the state of the corresponding check list as explained in

Section 7.2. Past that point, an agent MUST NOT send any new
candidates within this ICE session. After an agent has received an
end-of-candidates indication, it MUST also ignore any newly received
candidates for that media stream or media session. Therefore, adding
new candidates to the negotiation is possible only through an ICE
restart.

This specification does not override Vanilla ICE semantics for
concluding ICE processing. Therefore even if end-of-candidates
indications are sent agents will still have to go through pair
nomination. Also, if pairs have been nominated for components and
media streams, ICE processing will still conclude even if end-of-
candidate indications have not been received for all streams.

9. Receiving Additional Remote Candidates

At any point of ICE processing, a Trickle ICE agent may receive new
candidates from the remote agent. When this happens and no local
candidates are currently known for this same stream, the new remote
candidates are simply added to the list of remote candidates.

Otherwise, the new candidates are used for forming candidate pairs
with the pool of local candidates and they are added to the local
check lists as described in Section 8.1.

Once the remote agent has completed candidate gathering, it will send
an end-of-candidates indication. Upon receiving such an indication,
the local agent MUST update check list states as per Section 7.2.

This may lead to some check lists being marked as Failed.

10. Receiving an End-Of-Candidates Notification

When an agent receives an end-of-candidates indication for a specific
check list, it will update the state of the check list as per

Section 7.2. If the check list is still active state after the

update, the agent will persist the the fact that an end-of-candidates
indication has been received and take it into account in future
updates to the check list.

11. Trickle ICE and Peer Reflexive Candidates
Even though Trickle ICE does not explicitly modify the procedures for
handling peer reflexive candidates, their processing could be

impacted in implementations. With Trickle ICE, it is possible that
server reflexive candidates can be discovered as peer reflexive in

Ivov, et al. Expires June 12, 2016 [Page 14]

Internet-Draft Trickle ICE December 2015

cases where incoming connectivity checks are received from these
candidates before the trickle updates that carry them.

While this would certainly increase the number of cases where ICE
processing nominates and selects candidates discovered as peer-
reflexive, it does not require any change in processing.

It is also likely that some applications would prefer not to trickle
server reflexive candidates to entities that are known to be publicly
accessible and where sending a direct STUN binding request is likely
to reach the destination faster than the trickle update that travels
through the signalling path.

12. Concluding ICE Processing

This specification does not directly modify the procedures ending ICE
processing described in Section 8 of [rfc5245bis], and Trickle ICE
implementations will follow the same rules.

13. Subsequent Offer/Answer Exchanges

Either agent MAY generate a subsequent offer at any time allowed by
[RFC3264]. When this happens agents will use [rfc5245bis] semantics
to determine whether or not the new offer requires an ICE restart.

If this is the case then agents would perform Trickle ICE as they

would in an initial offer/answer exchange.

The only differences between an ICE restart and a brand new media
session are that:

o during the restart, media can continue to be sent to the
previously validated pair.

o both agents are already aware whether or not their peer supports
Trickle ICE, and there is no longer need for performing half
trickle or confirming support with other mechanisms.

14. Unilateral Use of Trickle ICE (Half Trickle)

In half trickle mode, the offerer sends a regular, Vanilla ICE offer,

with a complete set of candidates. This ensures that the offer can

be processed by a Vanilla ICE answerer and is mostly meant for use in
cases where support for Trickle ICE cannot be confirmed prior to
sending an initial offer. The initial offer indicates support for

Trickle ICE, so that the answerer can respond with an incomplete set
of candidates and continue trickling the rest. Half trickle offers
typically contain an end-of-candidates indication, although this is

not mandatory because if trickle support is confirmed then the

Ivov, et al. Expires June 12, 2016 [Page 15]

Internet-Draft Trickle ICE December 2015

offerer can choose to trickle additional candidates before it sends
an end-of-candidates indication.

The half trickle mechanism can be used in cases where there is no way
for an agent to verify in advance whether a remote party supports
Trickle ICE. Because the initial offer contains a full set of

candidates, it can thus be handled by a regular Vanilla ICE agent,
while still allowing a Trickle ICE agent to use the optimization

defined in this specification. This prevents negotiation from

failing in the former case while still giving roughly half the

Trickle ICE benefits in the latter (hence the name of the mechanism).

Use of half trickle is only necessary during an initial offer/answer
exchange. After both parties have received a session description
from their peer, they can each reliably determine Trickle ICE support
and use it for all subsequent offer/answer exchanges.

In some instances, using half trickle might bring more than just half

the improvement in terms of user experience. This can happen when an
agent starts gathering candidates upon user interface cues that the

user will soon be initiating an offer, such as activity on a keypad

or the phone going off hook. This would mean that some or all of the
candidate gathering could be completed before the agent actually

needs to send the offer. Because the answerer will be able to

trickle candidates, both agents will be able to start connectivity

checks and complete ICE processing earlier than with Vanilla ICE and
potentially even as early as with full trickle.

However, such anticipation is not always possible. For example, a
multipurpose user agent or a WebRTC web page where communication is a
non-central feature (e.g., calling a support line in case of a

problem with the main features) would not necessarily have a way of
distinguishing between call intentions and other user activity. In

such cases, using full trickle is most likely to result in an ideal

user experience. Even so, using half trickle would be an improvement

over vanilla ICE because it would result in a better experience for
answerers.

15. Example Flow

A typical successful Trickle ICE exchange with an Offer/Answer
protocol would look this way:

Ivov, et al. Expires June 12, 2016 [Page 16]

Internet-Draft Trickle ICE December 2015

Alice Bob
| Offer |
| - , >|
| Additional Candidates |
| >|
| |
| Answer |
< - _ |
| Additional Candidates |
|< I
|

|
| Additional Candidates and Connectivity Checks |
|< >|
| |
|< MEDIA FLOWS >

Figure 1: Example
16. IANA Considerations
This specification requests no actions from IANA.
17. Security Considerations
This specification inherits most of its semantics from [rfc5245bis]
and as a result all security considerations described there remain
the same.
18. Acknowledgements
The authors would like to thank Bernard Aboba, Flemming Andreasen,
Rajmohan Banavi, Christer Holmberg, Jonathan Lennox, Enrico Marocco,
Pal Martinsen, Martin Thomson, Dale R. Worley, and Brandon Williams
for their reviews and suggestions on improving this document.
19. References

19.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model

with Session Description Protocol (SDP)", RFC 3264, June
2002.

Ivov, et al. Expires June 12, 2016 [Page 17]

Internet-Draft Trickle ICE December 2015

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol”, RFC 4566, July 2006.

[rfc5245bis]
Keranen, A. and J. Rosenberg, "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address
Translator (NAT) Traversal", draft-ietf-ice-rfc5245bis-00
(work in progress), October 2015.

19.2. Informative References

[I-D.ietf-mmusic-trickle-ice-sip]
Ivov, E., Thomas, T., Marocco, E., and C. Holmberg, "A
Session Initiation Protocol (SIP) usage for Trickle ICE",
draft-ietf-mmusic-trickle-ice-sip-03 (work in progress),
October 2015.

[I-D.keranen-mmusic-ice-address-selection]
Keraenen, A. and J. Arkko, "Update on Candidate Address
Selection for Interactive Connectivity Establishment
(ICE)", draft-keranen-mmusic-ice-address-selection-01
(work in progress), July 2012.

[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets”,
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<http://www.rfc-editor.org/info/rfc1918>.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol", RFC 3261,
June 2002.

[RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP", BCP 127, RFC 4787, DOI 10.17487/RFC4787, January
2007, <http://www.rfc-editor.org/info/rfc4787>.

[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", RFC 5389,
DOI 10.17487/RFC5389, October 2008,
<http://www.rfc-editor.org/info/rfc5389>.

[RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using

Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

Ivov, et al. Expires June 12, 2016 [Page 18]

Internet-Draft Trickle ICE December 2015

[XEP-0030]
Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
2008.

[XEP-0176]
Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
Transport Method", XEP XEP-0176, June 2009.

[XEP-0278]
Camargo, T., "XEP-0278: Jingle Relay Nodes", XEP XEP-0278,
June 2011.

Appendix A. Interaction with ICE

The ICE protocol was designed to be flexible enough to work in and
adapt to as many network environments as possible. Despite that
flexibility, ICE as specified in [rfc5245bis] does not by itself

support trickle ICE. This section describes how trickling of
candidates interacts with ICE.

[rfc5245bis] describes the conditions required to update check lists
and timer states while an ICE agent is in the Running state. These
conditions are verified upon transaction completion and one of them
stipulates that:

If there is not a pair in the valid list for each component of the
media stream, the state of the check list is set to Failed.

This could be a problem and cause ICE processing to fail prematurely
in a number of scenarios. Consider the following case:

1. Alice and Bob are both located in different networks with Network
Address Translation (NAT). Alice and Bob themselves have
different address but both networks use the same [RFC1918] block.

2. Alice sends Bob the candidate 10.0.0.10 which also happens to
correspond to an existing host on Bob’s network.

3. Bob creates a check list consisting solely of 10.0.0.10 and
starts checks.

4. These checks reach the host at 10.0.0.10 in Bob's network, which

responds with an ICMP "port unreachable” error and per
[rfc5245bis] Bob marks the transaction as Failed.

Ivov, et al. Expires June 12, 2016 [Page 19]

Internet-Draft Trickle ICE December 2015

At this point the check list only contains Failed candidates and the
valid list is empty. This causes the media stream and potentially
all ICE processing to Fail.

A similar race condition would occur if the initial offer from Alice

only contains candidates that can be determined as unreachable (per
[I-D.keranen-mmusic-ice-address-selection]) from any of the
candidates that Bob has gathered. This would be the case if Bob’s
candidates only contain IPv4 addresses and the first candidate that
he receives from Alice is an IPv6 one.

Another potential problem could arise when a non-trickle ICE
implementation sends an offer to a trickle one. Consider the
following case:

1. Alice’s client has a non-Trickle ICE implementation
2. Bob's client has support for Trickle ICE.

3. Alice and Bob are behind NATs with address-dependent filtering
[RFC4787].

4. Bob has two STUN servers but one of them is currently unreachable

After Bob’s agent receives Alice’s offer it would immediately start
connectivity checks. It would also start gathering candidates, which
would take a long time because of the unreachable STUN server. By
the time Bob’s answer is ready and sent to Alice, Bob’s connectivity
checks may well have failed: until Alice gets Bob’s answer, she won't
be able to start connectivity checks and punch holes in her NAT. The
NAT would hence be filtering Bob’s checks as originating from an
unknown endpoint.

Appendix B. Interaction with ICE Lite

The behavior of ICE lite agents that are capable of Trickle ICE does
not require any particular rules other than those already defined in
this specification and [rfc5245bis]. This section is hence provided
only for informational purposes.

Such an agent would generate offers or answers as per [rfc5245bis].
Both its offers and answers will indicate support for Trickle ICE.
Given that they will contain a complete set of candidates (the
agent’s host candidates), these offers and answers would also be
accompanied with an end-of-candidates indication.

When performing full trickle, a full ICE implementation could send an
offer or an answer with no candidates. After receiving an answer

Ivov, et al. Expires June 12, 2016 [Page 20]

Internet-Draft Trickle ICE December 2015

that identifies the remote agent as an ICE lite implementation, the
offerer may choose to not send any additional candidates. The same
is also true in the case when the ICE lite agent is making the offer
and the full ICE one is answering. In these cases the connectivity
checks would be enough for the ICE lite implementation to discover
all potentially useful candidates as peer reflexive. The following
example illustrates one such ICE session using SDP syntax:

ICE Lite Bob
Agent
| Offer (a=ice-lite a=ice-options:trickle) |
I >|
| |[no cand
| Answer (a=ice-options:trickle) [trickling
|<
| Connectivity Checks |
< >|
peer rflx| |
cand disco| |
I |
|< MEDIA FLOWS >

Figure 2: Example
In addition to reducing signaling traffic this approach also removes
the need to discover STUN bindings, or to make TURN or UPnP
allocations, which may considerably lighten ICE processing.

Appendix C. Changes from Earlier Versions

Note to the RFC-Editor: please remove this section prior to
publication as an RFC.

C.1. Changes from draft-ietf-ice-trickle-00

o Removed dependency on SDP (which is to be provided in a separate
specification).

o Clarified text about the fact that a check list can be empty if no
candidates have been sent or received yet.

o Clarified wording about check list states so as not to define new

states for "Active" and "Frozen" because those states are not
defined for check lists (only for candidate pairs) in ICE core.

Ivov, et al. Expires June 12, 2016 [Page 21]

Internet-Draft Trickle ICE December 2015

0 Removed open issues list because it was out of date.
o Completed a thorough copy edit.
C.2. Changes from draft-mmusic-trickle-ice-02
0 Addressed feedback from Rajmohan Banavi and Brandon Williams.
o Clarified text about determining support and about how to proceed
if it can be determined that the answering agent does not support
Trickle ICE.

o Clarified text about check list and timer updates.

o Clarified when it is appropriate to use half trickle or to send no
candidates in an offer or answer.

o Updated the list of open issues.
C.3. Changes from draft-ivov-01 and draft-mmusic-00

0 Added a requirement to trickle candidates by order of components
to avoid deadlocks in the unfreezing algorithm.

o Added an informative note on peer-reflexive candidates explaining
that nothing changes for them semantically but they do become a
more likely occurrence for Trickle ICE.

0 Limit the number of pairs to 100 to comply with 5245.

0 Added clarifications on the non-importance of how newly discovered
candidates are trickled/sent to the remote party or if this is
done at all.

0 Added transport expectations for trickled candidates as per Dale
Worley’s recommendation.

C.4. Changes from draft-ivov-00

o Specified that end-of-candidates is a media level attribute which
can of course appear as session level, which is equivalent to
having it appear in all m-lines. Also made end-of-candidates
optional for cases such as aggressive nomination for controlled
agents.

0 Added an example for ICE lite and Trickle ICE to illustrate how,

when talking to an ICE lite agent doesn’t need to send or even
discover any candidates.

Ivov, et al. Expires June 12, 2016 [Page 22]

Internet-Draft Trickle ICE December 2015

0 Added an example for ICE lite and Trickle ICE to illustrate how,
when talking to an ICE lite agent doesn’t need to send or even
discover any candidates.

0 Added wording that explicitly states ICE lite agents have to be
prepared to receive no candidates over signalling and that they
should not freak out if this happens. (Closed the corresponding
open issue).

o Itis now mandatory to use MID when trickling candidates and using
m-line indexes is no longer allowed.

0 Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
hold operation. Also changed the port number here from 1to 9
since it already has a more appropriate meaning. (Port change
suggested by Jonathan Lennox).

0 Closed the Open Issue about use about what to do with cands
received after end-of-cands. Solution: ignore, do an ICE restart
if you want to add something.

o Added more terminology, including trickling, trickled candidates,
half trickle, full trickle,

0 Added a reference to the SIP usage for Trickle ICE as requested at
the Boston interim.

C.5. Changes from draft-rescorla-01

0 Brought back explicit use of Offer/Answer. There are no more
attempts to try to do this in an O/A independent way. Also
removed the use of ICE Descriptions.

0 Added SDP specification for trickled candidates, the trickle
option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

o0 Support and Discovery. Changed that section to be less abstract.
As discussed in IETF85, the draft now says implementations and
usages need to either determine support in advance and directly
use trickle, or do half trickle. Removed suggestion about use of
discovery in SIP or about letting implementing protocols do what
they want.

o Defined Half Trickle. Added a section that says how it works.
Mentioned that it only needs to happen in the first o/a (not
necessary in updates), and added Jonathan’'s comment about how it
could, in some cases, offer more than half the improvement if you

Ivov, et al. Expires June 12, 2016 [Page 23]

Internet-Draft Trickle ICE December 2015

can pre-gather part or all of your candidates before the user
actually presses the call button.

0 Added a short section about subsequent offer/answer exchanges.

o0 Added a short section about interactions with ICE Lite
implementations.

0 Added two new entries to the open issues section.
C.6. Changes from draft-rescorla-00

0 Relaxed requirements about verifying support following a
discussion on MMUSIC.

o Introduced ICE descriptions in order to remove ambiguous use of
3264 language and inappropriate references to offers and answers.

o Removed inappropriate assumption of adoption by RTCWEB pointed out
by Martin Thomson.

Authors’ Addresses

Emil lvov

Jitsi

Strasbourg 67000
France

Phone: +33 6 72 81 15 55
Email: emcho@jitsi.org

Eric Rescorla

RTFM, Inc.

2064 Edgewood Drive
Palo Alto, CA 94303
USA

Phone: +1 650 678 2350
Email: ekr@rtfm.com

Ivov, et al. Expires June 12, 2016 [Page 24]

Internet-Draft Trickle ICE December 2015

Justin Uberti
Google

747 6th St S
Kirkland, WA 98033
USA

Phone: +1 857 288 8888
Email: justin@uberti.name
Peter Saint-Andre

&yet

Email: peter@andyet.com
URI: https://andyet.com/

Ivov, et al. Expires June 12, 2016 [Page 25]

Network Working Group E. lvov

Internet-Draft Atlassian
Intended status: Standards Track E. Rescorla
Expires: October 17, 2018 RTFM, Inc.
J. Uberti
Google
P. Saint-Andre
Mozilla
April 15, 2018

Trickle ICE: Incremental Provisioning of Candidates for the Interactive
Connectivity Establishment (ICE) Protocol
draft-ietf-ice-trickle-21

Abstract

This document describes "Trickle ICE", an extension to the
Interactive Connectivity Establishment (ICE) protocol that enables
ICE agents to begin connectivity checks while they are still

gathering candidates, by incrementally exchanging candidates over
time instead of all at once. This method can considerably accelerate
the process of establishing a communication session.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. Itis inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 17, 2018.
Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents

Ivov, et al. Expires October 17, 2018 [Page 1]

Internet-Draft Trickle ICE April 2018

(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3

2. Terminologyo ... 5

3. Determining Support for Trickle ICE 6

4. Generating the Initial ICE Description 7

5. Handling the Initial ICE Description and Generating the

Initial ICE Response 7

6. Handling the Initial ICE Response 8

7. Forming Check Lists 8

8. Performing Connectivity Checks 8

9. Gathering and Conveying Newly Gathered Local Candidates ... 9

10. Pairing Newly Gathered Local Candidates 10

11. Receiving Trickled Candidates 11

12. Inserting Trickled Candidate Pairs into a Check List 12

13. Generating an End-of-Candidates Indication 16

14. Receiving an End-of-Candidates Indication 17

15. Subsequent Exchanges and ICE Restarts 18

16. Half Trickle 18

17. Preserving Candidate Order while Trickling 19

18. Requirements for Using Protocols 20

19. IANA Considerations 21

20. Security Considerations 21

21. Acknowledgements 21

22.References 22
22.1. Normative References 22
22.2. Informative References 22

Appendix A. Interaction with Regular ICE 23

Appendix B. Interaction with ICE Lite 25

Appendix C. Changes from Earlier Versions 26
C.1. Changes from draft-ietf-ice-trickle-20 26
C.2. Changes from draft-ietf-ice-trickle-19 26
C.3. Changes from draft-ietf-ice-trickle-18 26
C.4. Changes from draft-ietf-ice-trickle-17 27
C.5. Changes from draft-ietf-ice-trickle-16 27
C.6. Changes from draft-ietf-ice-trickle-15 27
C.7. Changes from draft-ietf-ice-trickle-14 27
C.8. Changes from draft-ietf-ice-trickle-13 27
C.9. Changes from draft-ietf-ice-trickle-12 27
C.10. Changes from draft-ietf-ice-trickle-11 28

Ivov, et al. Expires October 17, 2018 [Page 2]

Internet-Draft Trickle ICE April 2018

C.11. Changes from draft-ietf-ice-trickle-10 28
C.12. Changes from draft-ietf-ice-trickle-09 28
C.13. Changes from draft-ietf-ice-trickle-08 28
C.14. Changes from draft-ietf-ice-trickle-07 28
C.15. Changes from draft-ietf-ice-trickle-06 28
C.16. Changes from draft-ietf-ice-trickle-05 28
C.17. Changes from draft-ietf-ice-trickle-04 29
C.18. Changes from draft-ietf-ice-trickle-03 29
C.19. Changes from draft-ietf-ice-trickle-02 29
C.20. Changes from draft-ietf-ice-trickle-01 29
C.21. Changes from draft-ietf-ice-trickle-00 29
C.22. Changes from draft-mmusic-trickle-ice-02 29
C.23. Changes from draft-ivov-01 and draft-mmusic-00 30
C.24. Changes from draft-ivov-00 30
C.25. Changes from draft-rescorla-01 31
C.26. Changes from draft-rescorla-00 32
Authors’ Addresses, 32

1. Introduction

The Interactive Connectivity Establishment (ICE) protocol

[rfc5245bis] describes how an ICE agent gathers candidates, exchanges
candidates with a peer ICE agent, and creates candidate pairs. Once
the pairs have been gathered, the ICE agent will perform connectivity
checks, and eventually nominate and select pairs that will be used

for sending and receiving data within a communication session.

Following the procedures in [rfc5245bis] can lead to somewhat lengthy
establishment times for communication sessions, because candidate
gathering often involves querying STUN servers [RFC5389] and
allocating relayed candidates using TURN servers [RFC5766]. Although
many ICE procedures can be completed in parallel, the pacing
requirements from [rfc5245bis] still need to be followed.

This document defines "Trickle ICE", a supplementary mode of ICE
operation in which candidates can be exchanged incrementally as soon
as they become available (and simultaneously with the gathering of
other candidates). Connectivity checks can also start as soon as
candidate pairs have been created. Because Trickle ICE enables
candidate gathering and connectivity checks to be done in parallel,

the method can considerably accelerate the process of establishing a
communication session.

This document also defines how to discover support for Trickle ICE,
how the procedures in [rfc5245bis] are modified or supplemented when
using Trickle ICE, and how a Trickle ICE agent can interoperate with
an ICE agent compliant to [rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 3]

Internet-Draft Trickle ICE April 2018

This document does not define any protocol-specific usage of Trickle

ICE. Instead, protocol-specific details for Trickle ICE are defined

in separate usage documents. Examples of such documents are
[I-D.ietf-mmusic-trickle-ice-sip] (which defines usage with the

Session Initiation Protocol (SIP) [RFC3261] and the Session

Description Protocol [RFC3261]) and [XEP-0176] (which defines usage
with XMPP [RFC6120]). However, some of the examples in the document
use SDP and the offer/answer model [RFC3264] to explain the

underlying concepts.

The following diagram illustrates a successful Trickle ICE exchange
with a using protocol that follows the offer/answer model:

Alice Bob
| Offer |
| - : >|
| Additional Candidates |
| >|
| Answer |
|< - : |
| Additional Candidates |
|<
| Additional Candidates and Connectivity Checks |
|< >
|<========== CONNECTION ESTABLISHED ===========>

Figure 1: Flow
The main body of this document is structured to describe the behavior
of Trickle ICE agents in roughly the order of operations and
interactions during an ICE session:
1. Determining support for trickle ICE

2. Generating the initial ICE description

3. Handling the initial ICE description and generating the initial
ICE response

4. Handling the initial ICE response

5. Forming check lists, pruning candidates, performing connectivity
checks, etc.

Ivov, et al. Expires October 17, 2018 [Page 4]

Internet-Draft Trickle ICE April 2018

6. Gathering and conveying candidates after the initial ICE
description and response

7. Handling inbound trickled candidates
8. Generating and handling the end-of-candidates indication
9. Handling ICE restarts

There is quite a bit of operational experience with the technique

behind Trickle ICE, going back as far as 2005 (when the XMPP Jingle
extension defined a "dribble mode" as specified in [XEP-0176]); this
document incorporates feedback from those who have implemented and
deployed the technique over the years.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

This specification makes use of all terminology defined for
Interactive Connectivity Establishment in [rfc5245bis]. In addition,
it defines the following terms:

Full Trickle: The typical mode of operation for Trickle ICE agents,
in which the initial ICE description can include any number of
candidates (even zero candidates) and does not need to include a
full generation of candidates as in half trickle.

Generation: All of the candidates conveyed within an ICE session.

Half Trickle: A Trickle ICE mode of operation in which the initiator
gathers a full generation of candidates strictly before creating
and conveying the initial ICE description. Once conveyed, this
candidate information can be processed by regular ICE agents,
which do not require support for Trickle ICE. It also allows
Trickle ICE capable responders to still gather candidates and
perform connectivity checks in a non-blocking way, thus providing
roughly "half" the advantages of Trickle ICE. The half trickle
mechanism is mostly meant for use when the responder’s support for
Trickle ICE cannot be confirmed prior to conveying the initial ICE
description.

ICE Description: Any attributes related to the ICE session (not
candidates) required to configure an ICE agent. These include but
are not limited to the username fragment, password, and other
attributes.

Ivov, et al. Expires October 17, 2018 [Page 5]

Internet-Draft Trickle ICE April 2018

Trickled Candidates: Candidates that a Trickle ICE agent conveys
after conveying the initial ICE description or responding to the
initial ICE description, but within the same ICE session.

Trickled candidates can be conveyed in parallel with candidate
gathering and connectivity checks.

Trickling: The act of incrementally conveying trickled candidates.

Empty Check List: A check list that initially does not contain any
candidate pairs because they will be incrementally added as they
are trickled. (This scenario does not arise with a regular ICE
agent, because all candidate pairs are known when the agent
creates the check list set).

3. Determining Support for Trickle ICE

To fully support Trickle ICE, using protocols SHOULD incorporate one
of the following mechanisms so that implementations can determine
whether Trickle ICE is supported:

1. Provide a capabilities discovery method so that agents can verify
support of Trickle ICE prior to initiating a session (XMPP’s
Service Discovery [XEP-0030] is one such mechanism).

2. Make support for Trickle ICE mandatory so that user agents can
assume support.

If a using protocol does not provide a method of determining ahead of
time whether Trickle ICE is supported, agents can make use of the
half trickle procedure described in Section 16.

Prior to conveying the initial ICE description, agents that implement
using protocols that support capabilities discovery can attempt to
verify whether or not the remote party supports Trickle ICE. If an
agent determines that the remote party does not support Trickle ICE,
it MUST fall back to using regular ICE or abandon the entire session.

Even if a using protocol does not include a capabilities discovery
method, a user agent can provide an indication within the ICE
description that it supports Trickle ICE by communicating an ICE

option of 'trickle’. This token MUST be provided either at the

session level or, if at the data stream level, for every data stream

(an agent MUST NOT specify Trickle ICE support for some data streams
but not others). Note: The encoding of the 'trickle’ ICE option, and

the message(s) used to carry it to the peer, are protocol specific;

for instance, the encoding for the Session Description Protocol (SDP)
[RFC4566] is defined in [I-D.ietf-mmusic-trickle-ice-sip].

Ivov, et al. Expires October 17, 2018 [Page 6]

Internet-Draft Trickle ICE April 2018

Dedicated discovery semantics and half trickle are needed only prior
to initiation of an ICE session. After an ICE session is established
and Trickle ICE support is confirmed for both parties, either agent
can use full trickle for subsequent exchanges (see also Section 15).

4. Generating the Initial ICE Description

An ICE agent can start gathering candidates as soon as it has an
indication that communication is imminent (e.g., a user interface cue
or an explicit request to initiate a communication session). Unlike

in regular ICE, in Trickle ICE implementations do not need to gather
candidates in a blocking manner. Therefore, unless half trickle is
being used, the user experience is improved if the initiating agent
generates and transmits its initial ICE description as early as
possible (thus enabling the remote party to start gathering and
trickling candidates).

An initiator MAY include any mix of candidates when conveying the
initial ICE description. This includes the possibility of conveying

all the candidates the initiator plans to use (as in half trickle),
conveying only a publicly-reachable IP address (e.g., a candidate at
a data relay that is known to not be behind a firewall), or conveying
no candidates at all (in which case the initiator can obtain the
responder’s initial candidate list sooner and the responder can begin
candidate gathering more quickly).

For candidates included in the initial ICE description, the methods
for calculating priorities and foundations, determining redundancy of
candidates, and the like work just as in regular ICE [rfc5245bis].

5. Handling the Initial ICE Description and Generating the Initial ICE
Response

When a responder receives the initial ICE description, it will first
check if the ICE description or initiator indicates support for

Trickle ICE as explained in Section 3. If not, the responder MUST
process the initial ICE description according to regular ICE
procedures [rfc5245bis] (or, if no ICE support is detected at all,
according to relevant processing rules for the using protocol, such

as offer/answer processing rules [RFC3264]). However, if support for
Trickle ICE is confirmed, a responder will automatically assume
support for regular ICE as well.

If the initial ICE description indicates support for Trickle ICE, the
responder will determine its role and start gathering and
prioritizing candidates; while doing so, it will also respond by
conveying an initial ICE response, so that both the initiator and the
responder can form check lists and begin connectivity checks.

Ivov, et al. Expires October 17, 2018 [Page 7]

Internet-Draft Trickle ICE April 2018

A responder can respond to the initial ICE description at any point
while gathering candidates. The initial ICE response MAY contain any
set of candidates, including all candidates or no candidates. (The
benefit of including no candidates is to convey the initial ICE

response as quickly as possible, so that both parties can consider

the ICE session to be under active negotiation as soon as possible.)

As noted in Section 3, in using protocols that use SDP the initial
ICE response can indicate support for Trickle ICE by including a
token of "trickle" in the ice-options attribute.

6. Handling the Initial ICE Response

When processing the initial ICE response, the initiator follows
regular ICE procedures to determine its role, after which it forms
check lists (Section 7) and performs connectivity checks (Section 8).

7. Forming Check Lists

According to regular ICE procedures [rfc5245bis], in order for
candidate pairing to be possible and for redundant candidates to be
pruned, the candidates would need to be provided in the initial ICE
description and initial ICE response. By contrast, under Trickle ICE
check lists can be empty until candidates are conveyed or received.
Therefore a Trickle ICE agent handles check list formation and
candidate pairing in a slightly different way than a regular ICE
agent: the agent still forms the check lists, but it populates a

given check list only after it actually has candidate pairs for that
check list. Every check list is initially placed in the Running

state, even if the check list is empty (this is consistent with

Section 6.1.2.1 of [rfc5245bis]).

8. Performing Connectivity Checks

As specified in [rfc5245bis], whenever timer Ta fires, only check
lists in the Running state will be picked when scheduling
connectivity checks for candidate pairs. Therefore, a Trickle ICE
agent MUST keep each check list in the Running state as long as it
expects candidate pairs to be incrementally added to the check list.
After that, the check list state is set according to the procedures

in [rfc5245bis].

Whenever timer Ta fires and an empty check list is picked, no action
is performed for the list. Without waiting for timer Ta to expire
again, the agent selects the next check list in the Running state, in
accordance with Section 6.1.4.2 of [rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 8]

Internet-Draft Trickle ICE April 2018

Section 7.2.5.3.3 of [rfc5245bis] requires that agents update check
lists and timer states upon completing a connectivity check
transaction. During such an update, regular ICE agents would set the
state of a check list to Failed if both of the following two

conditions are satisfied:

o all of the pairs in the check list are either in the Failed state
or Succeeded state; and

o there is not a pair in the valid list for each component of the
data stream.

With Trickle ICE, the above situation would often occur when
candidate gathering and trickling are still in progress, even though

it is quite possible that future checks will succeed. For this

reason, Trickle ICE agents add the following conditions to the above
list:

o all candidate gathering has completed and the agent is not
expecting to discover any new local candidates; and

o the remote agent has conveyed an end-of-candidates indication for
that check list as described in Section 13.

9. Gathering and Conveying Newly Gathered Local Candidates

After Trickle ICE agents have conveyed initial ICE descriptions and
initial ICE responses, they will most likely continue gathering new
local candidates as STUN, TURN, and other non-host candidate
gathering mechanisms begin to yield results. Whenever an agent
discovers such a new candidate it will compute its priority, type,
foundation, and component ID according to regular ICE procedures.

The new candidate is then checked for redundancy against the existing
list of local candidates. If its transport address and base match

those of an existing candidate, it will be considered redundant and

will be ignored. This would often happen for server reflexive
candidates that match the host addresses they were obtained from
(e.g., when the latter are public IPv4 addresses). Contrary to

regular ICE, Trickle ICE agents will consider the new candidate
redundant regardless of its priority.

Next the agent "trickles" the newly discovered candidate(s) to the
remote agent. The actual delivery of the new candidates is handled
by a using protocol such as SIP or XMPP. Trickle ICE imposes no
restrictions on the way this is done (e.g., some using protocols
might choose not to trickle updates for server reflexive candidates
and instead rely on the discovery of peer reflexive ones).

Ivov, et al. Expires October 17, 2018 [Page 9]

Internet-Draft Trickle ICE April 2018

When candidates are trickled, the using protocol MUST deliver each
candidate (and any end-of-candidates indication as described in
Section 13) to the receiving Trickle ICE implementation exactly once
and in the same order it was conveyed. If the using protocol
provides any candidate retransmissions, they need to be hidden from
the ICE implementation.

Also, candidate trickling needs to be correlated to a specific ICE
session, so that if there is an ICE restart, any delayed updates for

a previous session can be recognized as such and ignored by the
receiving party. For example, using protocols that signal candidates

via SDP might include a Username Fragment value in the corresponding
a=candidate line, such as:

a=candidate:1 1 UDP 2130706431 2001:db8::1 5000 typ host ufrag 8hhY

Or, as another example, WebRTC implementations might include a
Username Fragment in the JavaScript objects that represent
candidates.

Note: The using protocol needs to provide a mechanism for both

parties to indicate and agree on the ICE session in force (as

identified by the Username Fragment and Password combination) so that
they have a consistent view of which candidates are to be paired.

This is especially important in the case of ICE restarts (see

Section 15).

Note: A using protocol might prefer not to trickle server reflexive
candidates to entities that are known to be publicly accessible and
where sending a direct STUN binding request is likely to reach the
destination faster than the trickle update that travels through the
signaling path.

10. Pairing Newly Gathered Local Candidates
As a Trickle ICE agent gathers local candidates, it needs to form
candidate pairs; this works as described in the ICE specification
[rfc5245bis], with the following provisos:

1. A Trickle ICE agent MUST NOT pair a local candidate until it has
been trickled to the remote party.

2. Once the agent has conveyed the local candidate to the remote

party, the agent checks if any remote candidates are currently
known for this same stream and component. If not, the agent

Ivov, et al. Expires October 17, 2018 [Page 10]

Internet-Draft Trickle ICE April 2018

11.

merely adds the new candidate to the list of local candidates
(without pairing it).

. Otherwise, if the agent has already learned of one or more remote

candidates for this stream and component, it attempts to pair the
new local candidate as described in the ICE specification
[rfc5245bis].

. If a newly formed pair has a local candidate whose type is server

reflexive, the agent MUST replace the local candidate with its
base before completing the relevant redundancy tests.

. The agent prunes redundant pairs by following the rules in

Section 6.1.2.4 of [rfc5245bis], but checks existing pairs only

if they have a state of Waiting or Frozen; this avoids removal of
pairs for which connectivity checks are in flight (a state of In-
Progress) or for which connectivity checks have already yielded a
definitive result (a state of Succeeded or Failed).

. If after the relevant redundancy tests the check list where the

pair is to be added already contains the maximum number of
candidate pairs (100 by default as per [rfc5245bis]), the agent
SHOULD discard any pairs in the Failed state to make room for the
new pair. If there are no such pairs, the agent SHOULD discard a
pair with a lower priority than the new pair in order to make

room for the new pair, until the number of pairs is equal to the
maximum number of pairs. This processing is consistent with
Section 6.1.2.5 of [rfc5245bis].

Receiving Trickled Candidates

At any time during an ICE session, a Trickle ICE agent might receive
new candidates from the remote agent, from which it will attempt to
form a candidate pair; this works as described in the ICE
specification [rfc5245bis], with the following provisos:

1. The agent checks if any local candidates are currently known for

this same stream and component. If not, the agent merely adds
the new candidate to the list of remote candidates (without
pairing it).

2. Otherwise, if the agent has already gathered one or more local

candidates for this stream and component, it attempts to pair the
new remote candidate as described in the ICE specification
[rfc5245bis].

Ivov, et al. Expires October 17, 2018 [Page 11]

Internet-Draft Trickle ICE April 2018

3. If a newly formed pair has a local candidate whose type is server
reflexive, the agent MUST replace the local candidate with its
base before completing the redundancy check in the next step.

4. The agent prunes redundant pairs as described below, but checks
existing pairs only if they have a state of Waiting or Frozen;
this avoids removal of pairs for which connectivity checks are in
flight (a state of In-Progress) or for which connectivity checks
have already yielded a definitive result (a state of Succeeded or
Failed).

A. If the agent finds a redundancy between two pairs and one of
those pairs contains a newly received remote candidate whose
type is peer reflexive, the agent SHOULD discard the pair
containing that candidate, set the priority of the existing
pair to the priority of the discarded pair, and re-sort the
check list. (This policy helps to eliminate problems with
remote peer reflexive candidates for which a STUN binding
request is received before signaling of the candidate is
trickled to the receiving agent, such as a different view of
pair priorities between the local agent and the remote agent,
since the same candidate could be perceived as peer reflexive
by one agent and as server reflexive by the other agent.)

B. The agent then applies the rules defined in Section 6.1.2.4
of [rfc5245bis].

5. If after the relevant redundancy tests the check list where the
pair is to be added already contains the maximum number of
candidate pairs (100 by default as per [rfc5245bis]), the agent
SHOULD discard any pairs in the Failed state to make room for the
new pair. If there are no such pairs, the agent SHOULD discard a
pair with a lower priority than the new pair in order to make
room for the new pair, until the number of pairs is equal to the
maximum number of pairs. This processing is consistent with
Section 6.1.2.5 of [rfc5245bis].

12. Inserting Trickled Candidate Pairs into a Check List

After a local agent has trickled a candidate and formed a candidate
pair from that local candidate (Section 9), or after a remote agent
has received a trickled candidate and formed a candidate pair from
that remote candidate (Section 11), a Trickle ICE agent adds the new
candidate pair to a check list as defined in this section.

As an aid to understanding the procedures defined in this section,
consider the following tabular representation of all check lists in

Ivov, et al. Expires October 17, 2018 [Page 12]

Internet-Draft Trickle ICE April 2018

an agent (note that initially for one of the foundations, i.e., f5,
there are no candidate pairs):

+ + + + + + +
| | f1 | f2 | f3 | f4 | 5 |

+ + + + + + +
| s1 (Audio.RTP) | F | F | F | |
S R R R — R oo +
| s2 (Audio.RTCP) | F | F | F | F | |
+ + + + + + +
|s3 (Video.RTP) | F | | | | |

+ + + + + i +
| s4 (Video.RTCP) | F | | | | |
S R R R — R RO +

Figure 2: Example of Check List State

Each row in the table represents a component for a given data stream
(e.g., s1 and s2 might be the RTP and RTCP components for audio) and
thus a single check list in the check list set. Each column

represents one foundation. Each cell represents one candidate pair.

In the tables shown in this section, "F" stands for "frozen", "W"

stands for "waiting", and "S" stands for "succeeded"; in addition,

"\ is used to notate newly-added candidate pairs.

When an agent commences ICE processing, in accordance with
Section 6.1.2.6 of [rfc5245bis], for each foundation it will unfreeze
the pair with the lowest component ID and, if the component IDs are
equal, with the highest priority (this is the topmost candidate pair

in every column). This initial state is shown in the following

table.

Ivov, et al. Expires October 17, 2018 [Page 13]

Internet-Draft Trickle ICE April 2018

+ + + + + + +
| | fL | f2 | 13| f4 | f5 |
R S — S — S — S — S — +
|s1(Audio.RTP) |W | W |W | | |
+ + + + + + +
|s2 (Audio.RTCP) | F | F | F | W | |
+ + + + + + +
|s3(VideoRTP) | F | | | | |
R — S — S — S S — S — +
|s4 (VideoRTCP) | F | | | | |
+ + + + + + +

Figure 3: Initial Check List State

Then, as the checks proceed (see Section 7.2.5.4 of [rfc5245bhis]),
for each pair that enters the Succeeded state (denoted here by "S"),
the agent will unfreeze all pairs for all data streams with the same
foundation (e.g., if the pair in column 1, row 1 succeeds then the
agent will unfreeze the pair in column 1, rows 2, 3, and 4).

+ + + + + + +
| | f1 | f2 | 13 | f4 | 5 |

+ + + + + + +
|s1(Audio.RTP) | S |W |W | | |
R — S — S — S — S — S — +
|s2 (Audio.RTCP) | W | F | F | W | |
+ + + + + + +
|s3(VideoRTP) [W | | | | |

+ + + + + + +
|s4 (VideoRTCP) | W | | | | |
R — S — S — S S — S — +

Figure 4: Check List State with Succeeded Candidate Pair

Trickle ICE preserves all of these rules as they apply to "static"
check list sets. This implies that if a Trickle ICE agent were to
begin connectivity checks with all of its pairs already present, the
way that pair states change is indistinguishable from that of a
regular ICE agent.

Of course, the major difference with Trickle ICE is that check list

sets can be dynamically updated because candidates can arrive after
connectivity checks have started. When this happens, an agent sets
the state of the newly formed pair as described below.

Ivov, et al. Expires October 17, 2018 [Page 14]

Internet-Draft Trickle ICE April 2018

Rule 1: If the newly formed pair has the lowest component ID and, if
the component IDs are equal, the highest priority of any candidate
pair for this foundation (i.e., if it is the topmost pair in the

column), set the state to Waiting. For example, this would be the
case if the newly formed pair were placed in column 5, row 1. This
rule is consistent with Section 6.1.2.6 of [rfc5245bis].

R — S — S — S — S — S — +
| | f1 | f2 | 13| f4 | 15 |

+ + + + + + +

|s1(Audio.RTP) | S | W | W | |*WA |
+ + + + + + +

|s2 (Audio.RTCP) | W | F | F | W | |
R — S — S — S S — S — +

|s3(VideoRTP) [W | | | | |

+ + + + + + +

|s4 (VideoRTCP) | W | | | | |

+ + + + + + +

Figure 5: Check List State with Newly Formed Pair, Rule 1

Rule 2: If there is at least one pair in the Succeeded state for this
foundation, set the state to Waiting. For example, this would be the
case if the pair in column 5, row 1 succeeded and the newly formed
pair were placed in column 5, row 2. This rule is consistent with
Section 7.2.5.3.3 of [rfc5245bis].

+ + + + + + +
| | fL | f2 | 13| f4 | f5 |
R S — S — S — S — S — +
|s1(Audio.RTP) | S |W |W | |S |

+ + + + + + +

| s2 (Audio.RTCP) | W | F | F | W |"WA |
+ + + + + + +
|s3(VideoRTP) |[W | | | | |
R — S — S — S S — S — +
|s4 (VideoRTCP) | W | | | | |

+ + + + + + +

Figure 6: Check List State with Newly Formed Pair, Rule 2
Rule 3: In all other cases, set the state to Frozen. For example,

this would be the case if the newly formed pair were placed in column
3, row 3.

Ivov, et al. Expires October 17, 2018 [Page 15]

Internet-Draft Trickle ICE April 2018

+ + + + + + +
| | fL | f2 | 13| f4 | f5 |
R S — S — S — S — S — +
|s1(Audio.RTP) | S |W |W | |S |
+ + + + + + +
|s2 (Audio.RTCP) | W | F | F | W | W |
+ + + + + + +
|s3 (Video.RTP) | W | |*F~| | |
R — S — S — S S — S — +
|s4 (VideoRTCP) | W | | | | |

+ + + + + + +

Figure 7: Check List State with Newly Formed Pair, Rule 3
13. Generating an End-of-Candidates Indication

Once all candidate gathering is completed or expires for an ICE
session associated with a specific data stream, the agent will
generate an "end-of-candidates" indication for that session and
convey it to the remote agent via the signaling channel. Although
the exact form of the indication depends on the using protocol, the
indication MUST specify the generation (Username Fragment and
Password combination) so that an agent can correlate the end-of-
candidates indication with a particular ICE session. The indication
can be conveyed in the following ways:

0 As part of an initiation request (which would typically be the
case with the initial ICE description for half trickle)

o Along with the last candidate an agent can send for a stream

0 As a standalone notification (e.g., after STUN Binding requests or
TURN Allocate requests to a server time out and the agent is no
longer actively gathering candidates)

Conveying an end-of-candidates indication in a timely manner is
important in order to avoid ambiguities and speed up the conclusion
of ICE processing. In particular:

o A controlled Trickle ICE agent SHOULD convey an end-of-candidates
indication after it has completed gathering for a data stream,
unless ICE processing terminates before the agent has had a chance
to complete gathering.

0 A controlling agent MAY conclude ICE processing prior to conveying

end-of-candidates indications for all streams. However, it is
RECOMMENDED for a controlling agent to convey end-of-candidates

Ivov, et al. Expires October 17, 2018 [Page 16]

Internet-Draft Trickle ICE April 2018

indications whenever possible for the sake of consistency and to
keep middleboxes and controlled agents up-to-date on the state of
ICE processing.

When conveying an end-of-candidates indication during trickling
(rather than as a part of the initial ICE description or a response
thereto), it is the responsibility of the using protocol to define
methods for associating the indication with one or more specific data
streams.

An agent MAY also choose to generate an end-of-candidates indication
before candidate gathering has actually completed, if the agent
determines that gathering has continued for more than an acceptable
period of time. However, an agent MUST NOT convey any more
candidates after it has conveyed an end-of-candidates indication.

When performing half trickle, an agent SHOULD convey an end-of-
candidates indication together with its initial ICE description

unless it is planning to potentially trickle additional candidates
(e.g., in case the remote party turns out to support Trickle ICE).

After an agent conveys the end-of-candidates indication, it will

update the state of the corresponding check list as explained in
Section 8. Past that point, an agent MUST NOT trickle any new
candidates within this ICE session. Therefore, adding new candidates
to the negotiation is possible only through an ICE restart (see

Section 15).

This specification does not override regular ICE semantics for
concluding ICE processing. Therefore, even if end-of-candidates
indications are conveyed, an agent will still need to go through pair
nomination. Also, if pairs have been nominated for components and
data streams, ICE processing MAY still conclude even if end-of-
candidates indications have not been received for all streams. In

all cases, an agent MUST NOT trickle any new candidates within an ICE
session after nomination of a candidate pair as described in

Section 8.1.1 of [rfc5245bis].

14. Receiving an End-of-Candidates Indication

Receiving an end-of-candidates indication enables an agent to update
check list states and, in case valid pairs do not exist for every
component in every data stream, determine that ICE processing has
failed. It also enables an agent to speed up the conclusion of ICE
processing when a candidate pair has been validated but it involves
the use of lower-preference transports such as TURN. In such
situations, an implementation MAY choose to wait and see if higher-
priority candidates are received; in this case the end-of-candidates

Ivov, et al. Expires October 17, 2018 [Page 17]

Internet-Draft Trickle ICE April 2018

indication provides a notification that such candidates are not
forthcoming.

When an agent receives an end-of-candidates indication for a specific
data stream, it will update the state of the relevant check list as

per Section 8 (which might lead to some check lists being marked as
Failed). If the check list is still in the Running state after the

update, the agent will persist the fact that an end-of-candidates
indication has been received and take it into account in future
updates to the check list.

After an agent has received an end-of-candidates indication, it MUST
ignore any newly received candidates for that data stream or data
session.

15. Subsequent Exchanges and ICE Restarts

Before conveying an end-of-candidates indication, either agent MAY
convey subsequent candidate information at any time allowed by the
using protocol. When this happens, agents will use [rfc5245bis]
semantics (e.g., checking of the Username Fragment and Password
combination) to determine whether or not the new candidate
information requires an ICE restart.

If an ICE restart occurs, the agents can assume that Trickle ICE is
still supported if support was determined previously, and thus can
engage in Trickle ICE behavior as they would in an initial exchange
of ICE descriptions where support was determined through a
capabilities discovery method.

16. Half Trickle

In half trickle, the initiator conveys the initial ICE description

with a usable but not necessarily full generation of candidates.

This ensures that the ICE description can be processed by a regular
ICE responder and is mostly meant for use in cases where support for
Trickle ICE cannot be confirmed prior to conveying the initial ICE
description. The initial ICE description indicates support for

Trickle ICE, so that the responder can respond with something less
than a full generation of candidates and then trickle the rest. The
initial ICE description for half trickle can contain an end-of-
candidates indication, although this is not mandatory because if
trickle support is confirmed then the initiator can choose to trickle
additional candidates before it conveys an end-of-candidates
indication.

The half trickle mechanism can be used in cases where there is no way
for an agent to verify in advance whether a remote party supports

Ivov, et al. Expires October 17, 2018 [Page 18]

Internet-Draft Trickle ICE April 2018

Trickle ICE. Because the initial ICE description contain a full
generation of candidates, it can thus be handled by a regular ICE
agent, while still allowing a Trickle ICE agent to use the
optimization defined in this specification. This prevents
negotiation from failing in the former case while still giving
roughly half the Trickle ICE benefits in the latter.

Use of half trickle is only necessary during an initial exchange of

ICE descriptions. After both parties have received an ICE

description from their peer, they can each reliably determine Trickle
ICE support and use it for all subsequent exchanges (see Section 15).

In some instances, using half trickle might bring more than just half
the improvement in terms of user experience. This can happen when an
agent starts gathering candidates upon user interface cues that the
user will soon be initiating an interaction, such as activity on a

keypad or the phone going off hook. This would mean that some or all
of the candidate gathering could be completed before the agent
actually needs to convey the candidate information. Because the
responder will be able to trickle candidates, both agents will be

able to start connectivity checks and complete ICE processing earlier
than with regular ICE and potentially even as early as with full

trickle.

However, such anticipation is not always possible. For example, a
multipurpose user agent or a WebRTC web page where communication is a
non-central feature (e.g., calling a support line in case of a

problem with the main features) would not necessarily have a way of
distinguishing between call intentions and other user activity. In

such cases, using full trickle is most likely to result in an ideal

user experience. Even so, using half trickle would be an improvement

over regular ICE because it would result in a better experience for
responders.

17. Preserving Candidate Order while Trickling

One important aspect of regular ICE is that connectivity checks for a
specific foundation and component are attempted simultaneously by
both agents, so that any firewalls or NATs fronting the agents would
whitelist both endpoints and allow all except for the first

("suicide") packets to go through. This is also important to
unfreezing candidates at the right time. While not crucial,
preserving this behavior in Trickle ICE is likely to improve ICE
performance.

To achieve this, when trickling candidates, agents SHOULD respect the

order of components as reflected by their component IDs; that is,
candidates for a given component SHOULD NOT be conveyed prior to

Ivov, et al. Expires October 17, 2018 [Page 19]

Internet-Draft Trickle ICE April 2018

candidates for a component with a lower ID number within the same
foundation. In addition, candidates SHOULD be paired, following the
procedures in Section 12, in the same order they are conveyed.

For example, the following SDP description contains two components
(RTP and RTCP) and two foundations (host and server reflexive):

v=0

o=jdoe 2890844526 2890842807 IN 1P4 10.0.1.1

S=

c=IN1P410.0.1.1

t=00

a=ice-pwd:asd88fgpdd777uzjYhagZg

a=ice-ufrag:8hhY

m=audio 5000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

a=candidate:1 1 UDP 2130706431 10.0.1.1 5000 typ host

a=candidate:1 2 UDP 2130706431 10.0.1.1 5001 typ host

a=candidate:2 1 UDP 1694498815 192.0.2.3 5000 typ srflx
raddr 10.0.1.1 rport 8998

a=candidate:2 2 UDP 1694498815 192.0.2.3 5001 typ srflx
raddr 10.0.1.1 rport 8998

For this candidate information the RTCP host candidate would not be
conveyed prior to the RTP host candidate. Similarly the RTP server
reflexive candidate would be conveyed together with or prior to the
RTCP server reflexive candidate.

18. Requirements for Using Protocols

In order to fully enable the use of Trickle ICE, this specification
defines the following requirements for using protocols.

0 A using protocol SHOULD provide a way for parties to advertise and
discover support for Trickle ICE before an ICE session begins (see
Section 3).

0 A using protocol MUST provide methods for incrementally conveying
(i.e., "trickling") additional candidates after conveying the
initial ICE description (see Section 9).

0 A using protocol MUST deliver each trickled candidate or end-of-

candidates indication exactly once and in the same order it was
conveyed (see Section 9).

Ivov, et al. Expires October 17, 2018 [Page 20]

Internet-Draft Trickle ICE April 2018

0 A using protocol MUST provide a mechanism for both parties to
indicate and agree on the ICE session in force (see Section 9).

0 A using protocol MUST provide a way for parties to communicate the
end-of-candidates indication, which MUST specify the particular
ICE session to which the indication applies (see Section 13).

19. IANA Considerations

IANA is requested to register the following ICE option in the "ICE
Options" sub-registry of the "Interactive Connectivity Establishment
(ICE) registry", following the procedures defined in [RFC6336].

ICE Option: trickle
Contact: IESG, iesg@ietf.org
Change control: IESG

Description: An ICE option of "trickle" indicates support for
incremental communication of ICE candidates.

Reference: RFC XXXX
20. Security Considerations

This specification inherits most of its semantics from [rfc5245bis]
and as a result all security considerations described there apply to
Trickle ICE.

If the privacy implications of revealing host addresses on an
endpoint device are a concern (see for example the discussion in
[I-D.ietf-rtcweb-ip-handling] and in Section 19 of [rfc5245bis]),

agents can generate ICE descriptions that contain no candidates and
then only trickle candidates that do not reveal host addresses (e.qg.,
relayed candidates).

21. Acknowledgements

The authors would like to thank Bernard Aboba, Flemming Andreasen,
Rajmohan Banavi, Taylor Brandstetter, Philipp Hancke, Christer
Holmberg, Ari Keranen, Paul Kyzivat, Jonathan Lennox, Enrico Marocco,
Pal Martinsen, Nils Ohlmeier, Thomas Stach, Peter Thatcher, Martin
Thomson, Brandon Williams, and Dale Worley for their reviews and
suggestions on improving this document. Sarah Banks, Roni Even, and
David Mandelberg completed opsdir, genart, and security reviews,
respectively. Thanks also to Ari Keranen and Peter Thatcher in their

Ivov, et al. Expires October 17, 2018 [Page 21]

Internet-Draft Trickle ICE April 2018

role as chairs, and Ben Campbell in his role as responsible Area
Director.

22. References
22.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
editor.org/info/rfc2119>.

[rfc5245bis]
Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal", draft-ietf-ice-
rfc5245bis-20 (work in progress), March 2018.

22.2. Informative References

[I-D.ietf-mmusic-trickle-ice-sip]
Ivov, E., Stach, T., Marocco, E., and C. Holmberg, "A
Session Initiation Protocol (SIP) usage for Trickle ICE",
draft-ietf-mmusic-trickle-ice-sip-14 (work in progress),
February 2018.

[I-D.ietf-rtcweb-ip-handling]
Uberti, J. and G. Shieh, "WebRTC IP Address Handling
Requirements”, draft-ietf-rtcweb-ip-handling-06 (work in
progress), March 2018.

[RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
and E. Lear, "Address Allocation for Private Internets”,
BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
<https://www.rfc-editor.org/info/rfc1918>.

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
A., Peterson, J., Sparks, R., Handley, M., and E.
Schooler, "SIP: Session Initiation Protocol”, RFC 3261,
DOI 10.17487/RFC3261, June 2002, <https://www.rfc-
editor.org/info/rfc3261>.

[RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
with Session Description Protocol (SDP)", RFC 3264,
DOI 10.17487/RFC3264, June 2002, <https://www.rfc-
editor.org/info/rfc3264>.

Ivov, et al. Expires October 17, 2018 [Page 22]

Internet-Draft Trickle ICE April 2018

[RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
Description Protocol”, RFC 4566, DOI 10.17487/RFC4566,
July 2006, <https://www.rfc-editor.org/info/rfc4566>.

[RFC4787] Audet, F., Ed. and C. Jennings, "Network Address
Translation (NAT) Behavioral Requirements for Unicast
UDP", BCP 127, RFC 4787, DOI 10.17487/RFCA4787, January
2007, <https://www.rfc-editor.org/info/rfc4787>.

[RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
"Session Traversal Utilities for NAT (STUN)", RFC 5389,
DOI 10.17487/RFC5389, October 2008, <https://www.rfc-
editor.org/info/rfc5389>.

[RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
Relays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766,

DOI 10.17487/RFC5766, April 2010, <https://www.rfc-
editor.org/info/rfc5766>.

[RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
March 2011, <https://www.rfc-editor.org/info/rfc6120>.

[RFC6336] Westerlund, M. and C. Perkins, "IANA Registry for
Interactive Connectivity Establishment (ICE) Options",
RFC 6336, DOI 10.17487/RFC6336, July 2011,
<https://www.rfc-editor.org/info/rfc6336>.

[XEP-0030]
Hildebrand, J., Millard, P., Eatmon, R., and P. Saint-
Andre, "XEP-0030: Service Discovery", XEP XEP-0030, June
2008.

[XEP-0176]
Beda, J., Ludwig, S., Saint-Andre, P., Hildebrand, J.,
Egan, S., and R. McQueen, "XEP-0176: Jingle ICE-UDP
Transport Method", XEP XEP-0176, June 2009.

Appendix A. Interaction with Regular ICE

The ICE protocol was designed to be flexible enough to work in and
adapt to as many network environments as possible. Despite that
flexibility, ICE as specified in [rfc5245bis] does not by itself

support trickle ICE. This section describes how trickling of
candidates interacts with ICE.

Ivov, et al. Expires October 17, 2018 [Page 23]

Internet-Draft Trickle ICE April 2018

[rfc5245bis] describes the conditions required to update check lists
and timer states while an ICE agent is in the Running state. These
conditions are verified upon transaction completion and one of them
stipulates that:

If there is not a pair in the valid list for each component of the
data stream, the state of the check list is set to Failed.

This could be a problem and cause ICE processing to fail prematurely
in a number of scenarios. Consider the following case:

1. Alice and Bob are both located in different networks with Network
Address Translation (NAT). Alice and Bob themselves have
different address but both networks use the same private internet
block (e.qg., the "20-bit block" 172.16/12 specified in
[RFC1918]).

2. Alice conveys to Bob the candidate 172.16.0.1 which also happens
to correspond to an existing host on Bob’s network.

3. Bob creates a check list consisting solely of 172.16.0.1 and
starts checks.

4. These checks reach the host at 172.16.0.1 in Bob’s network, which
responds with an ICMP "port unreachable” error; per [rfc5245bis]
Bob marks the transaction as Failed.

At this point the check list only contains Failed candidates and the
valid list is empty. This causes the data stream and potentially all
ICE processing to fail, even though if Trickle ICE agents could
subsequently convey candidates that would cause previously empty
check lists to become non-empty.

A similar race condition would occur if the initial ICE description
from Alice contain only candidates that can be determined as
unreachable from any of the candidates that Bob has gathered (e.g.,
this would be the case if Bob’s candidates only contain IPv4
addresses and the first candidate that he receives from Alice is an
IPv6 one).

Another potential problem could arise when a non-trickle ICE
implementation initiates an interaction with a Trickle ICE
implementation. Consider the following case:

1. Alice’s client has a non-Trickle ICE implementation.

2. Bob’s client has support for Trickle ICE.

Ivov, et al. Expires October 17, 2018 [Page 24]

Internet-Draft Trickle ICE April 2018

3. Alice and Bob are behind NATs with address-dependent filtering
[RFC478T7].

4. Bob has two STUN servers but one of them is currently
unreachable.

After Bob’s agent receives Alice’s initial ICE description it would
immediately start connectivity checks. It would also start gathering
candidates, which would take a long time because of the unreachable
STUN server. By the time Bob’s answer is ready and conveyed to
Alice, Bob'’s connectivity checks might have failed: until Alice gets
Bob’s answer, she won't be able to start connectivity checks and
punch holes in her NAT. The NAT would hence be filtering Bob’s
checks as originating from an unknown endpoint.

Appendix B. Interaction with ICE Lite

The behavior of ICE lite agents that are capable of Trickle ICE does
not require any particular rules other than those already defined in
this specification and [rfc5245bis]. This section is hence provided
only for informational purposes.

An ICE lite agent would generate candidate information as per
[rfc5245bis] and would indicate support for Trickle ICE. Given that
the candidate information will contain a full generation of
candidates, it would also be accompanied by an end-of-candidates
indication.

When performing full trickle, a full ICE implementation could convey
the initial ICE description or response thereto with no candidates.
After receiving a response that identifies the remote agent as an ICE
lite implementation, the initiator can choose to not trickle any
additional candidates. The same is also true in the case when the
ICE lite agent initiates the interaction and the full ICE agent is

the responder. In these cases the connectivity checks would be
enough for the ICE lite implementation to discover all potentially
useful candidates as peer reflexive. The following example
illustrates one such ICE session using SDP syntax:

Ivov, et al. Expires October 17, 2018 [Page 25]

Internet-Draft Trickle ICE April 2018

ICE Lite Bob
Agent
| Offer (a=ice-lite a=ice-options:trickle) |
I >|
| |[no cand
| Answer (a=ice-options:trickle) |trickling
|<
| Connectivity Checks |
< >|
peer rflx| |
cand disco|
|<========== CONNECTION ESTABLISHED ===========>

Figure 8: Example
In addition to reducing signaling traffic this approach also removes
the need to discover STUN bindings or make TURN allocations, which
can considerably lighten ICE processing.

Appendix C. Changes from Earlier Versions

Note to the RFC Editor: please remove this section prior to
publication as an RFC.

C.1. Changes from draft-ietf-ice-trickle-20
o Slight corrections to hanlding of peer reflexive candidates.
o Wordsmithing in a few sections.
C.2. Changes from draft-ietf-ice-trickle-19
o Further clarified handling of remote peer reflexive candidates.

o To improve readibility, renamed and restructured some sections and
subsections, and modified some wording.

C.3. Changes from draft-ietf-ice-trickle-18

o Cleaned up pairing and redundancy checking rules for newly
discovered candidates per IESG feedback and WG discussion.

o Improved wording in half trickle section.

0 Changed "not more than once" to "exactly once".

Ivov, et al. Expires October 17, 2018 [Page 26]

Internet-Draft Trickle ICE April 2018

0 Changed NAT examples back to IPv4.
C.4. Changes from draft-ietf-ice-trickle-17
o Simplified the rules for inserting a new pair in a check list.
o Clarified it is not allowed to nominate a candidate pair after a
pair has already been nominated (a.k.a. renomination or
continuous nomination).

o Removed some text that referenced older versions of rfc5245bis.

0 Removed some text that duplicated concepts and procedures
specified in rfc5245bis.

o Removed the ill-defined concept of stream order.
o Shortened the introduction.
C.5. Changes from draft-ietf-ice-trickle-16
o Made "ufrag" terminology consistent with 5245bis.
o Applied in-order delivery rule to end-of-candidates indication.
C.6. Changes from draft-ietf-ice-trickle-15
0 Adjustments to address AD review feedback.
C.7. Changes from draft-ietf-ice-trickle-14
o Minor modifications to track changes to ICE core.
C.8. Changes from draft-ietf-ice-trickle-13
o0 Removed independent monitoring of check list "states" of frozen or
active, since this is handled by placing a check list in the
Running state defined in ICE core.
C.9. Changes from draft-ietf-ice-trickle-12
o Specified that the end-of-candidates indication must include the
generation (ufrag/pwd) to enable association with a particular ICE

session.

o Further editorial fixes to address WGLC feedback.

Ivov, et al. Expires October 17, 2018 [Page 27]

Internet-Draft Trickle ICE April 2018

C.10. Changes from draft-ietf-ice-trickle-11

o Editorial and terminological fixes to address WGLC feedback.
C.11. Changes from draft-ietf-ice-trickle-10

o Minor editorial fixes.
C.12. Changes from draft-ietf-ice-trickle-09

0 Removed immediate unfreeze upon Fail.

0 Specified MUST NOT regarding ice-options.

o Changed terminology regarding initial ICE parameters to avoid
implementer confusion.

C.13. Changes from draft-ietf-ice-trickle-08

0 Reinstated text about in-order processing of messages as a
requirement for signaling protocols.

0 Added IANA registration template for ICE option.

o Corrected Case 3 rule in Section 8.1.1 to ensure consistency with
regular ICE rules.

0 Added tabular representations to Section 8.1.1 in order to
illustrate the new pair rules.

C.14. Changes from draft-ietf-ice-trickle-07

0 Changed "ICE description" to "candidate information" for
consistency with 5245bis.

C.15. Changes from draft-ietf-ice-trickle-06
0 Addressed editorial feedback from chairs’ review.
o Clarified terminology regarding generations.
C.16. Changes from draft-ietf-ice-trickle-05

0 Rewrote the text on inserting a new pair into a check list.

Ivov, et al. Expires October 17, 2018 [Page 28]

Internet-Draft Trickle ICE April 2018

C.17. Changes from draft-ietf-ice-trickle-04
o0 Removed dependency on SDP and offer/answer model.

o0 Removed mentions of aggressive nomination, since it is deprecated
in 5245bis.

0 Added section on requirements for signaling protocols.
o Clarified terminology.
0 Addressed various WG feedback.
C.18. Changes from draft-ietf-ice-trickle-03
o Provided more detailed description of unfreezing behavior,
specifically how to replace pre-existing peer-reflexive candidates
with higher-priority ones received via trickling.
C.19. Changes from draft-ietf-ice-trickle-02
0 Adjusted unfreezing behavior when there are disparate foundations.
C.20. Changes from draft-ietf-ice-trickle-01
0 Changed examples to use IPv6.

C.21. Changes from draft-ietf-ice-trickle-00

0 Removed dependency on SDP (which is to be provided in a separate
specification).

o Clarified text about the fact that a check list can be empty if no
candidates have been sent or received yet.

o Clarified wording about check list states so as not to define new
states for "Active" and "Frozen" because those states are not
defined for check lists (only for candidate pairs) in ICE core.

o Removed open issues list because it was out of date.

o Completed a thorough copy edit.

C.22. Changes from draft-mmusic-trickle-ice-02

0 Addressed feedback from Rajmohan Banavi and Brandon Williams.

Ivov, et al. Expires October 17, 2018 [Page 29]

Internet-Draft Trickle ICE April 2018

o Clarified text about determining support and about how to proceed
if it can be determined that the answering agent does not support
Trickle ICE.

o Clarified text about check list and timer updates.

o Clarified when it is appropriate to use half trickle or to send no
candidates in an offer or answer.

o Updated the list of open issues.
C.23. Changes from draft-ivov-01 and draft-mmusic-00

0 Added a requirement to trickle candidates by order of components
to avoid deadlocks in the unfreezing algorithm.

0 Added an informative note on peer-reflexive candidates explaining
that nothing changes for them semantically but they do become a
more likely occurrence for Trickle ICE.

0 Limit the number of pairs to 100 to comply with 5245.

0 Added clarifications on the non-importance of how newly discovered
candidates are trickled/sent to the remote party or if this is
done at all.

0 Added transport expectations for trickled candidates as per Dale
Worley’s recommendation.

C.24. Changes from draft-ivov-00

o Specified that end-of-candidates is a media level attribute which
can of course appear as session level, which is equivalent to
having it appear in all m-lines. Also made end-of-candidates
optional for cases such as aggressive nomination for controlled
agents.

0 Added an example for ICE lite and Trickle ICE to illustrate how,
when talking to an ICE lite agent doesn’t need to send or even
discover any candidates.

0 Added an example for ICE lite and Trickle ICE to illustrate how,
when talking to an ICE lite agent doesn’t need to send or even
discover any candidates.

o Added wording that explicitly states ICE lite agents have to be
prepared to receive no candidates over signaling and that they

Ivov, et al. Expires October 17, 2018 [Page 30]

Internet-Draft Trickle ICE April 2018

should not freak out if this happens. (Closed the corresponding
open issue).

o Itis now mandatory to use MID when trickling candidates and using
m-line indexes is no longer allowed.

0 Replaced use of 0.0.0.0 to IP6 :: in order to avoid potential
issues with RFC2543 SDP libraries that interpret 0.0.0.0 as an on-
hold operation. Also changed the port number here from 1to 9
since it already has a more appropriate meaning. (Port change
suggested by Jonathan Lennox).

0 Closed the Open Issue about use about what to do with cands
received after end-of-cands. Solution: ignore, do an ICE restart
if you want to add something.

o Added more terminology, including trickling, trickled candidates,
half trickle, full trickle,

0 Added a reference to the SIP usage for Trickle ICE as requested at
the Boston interim.

C.25. Changes from draft-rescorla-01

0 Brought back explicit use of Offer/Answer. There are no more
attempts to try to do this in an O/A independent way. Also
removed the use of ICE Descriptions.

0 Added SDP specification for trickled candidates, the trickle
option and 0.0.0.0 addresses in m-lines, and end-of-candidates.

0 Support and Discovery. Changed that section to be less abstract.
As discussed in IETF85, the draft now says implementations and
usages need to either determine support in advance and directly
use trickle, or do half trickle. Removed suggestion about use of
discovery in SIP or about letting implementing protocols do what
they want.

o Defined Half Trickle. Added a section that says how it works.
Mentioned that it only needs to happen in the first o/a (not
necessary in updates), and added Jonathan’'s comment about how it
could, in some cases, offer more than half the improvement if you
can pre-gather part or all of your candidates before the user
actually presses the call button.

0 Added a short section about subsequent offer/answer exchanges.

Ivov, et al. Expires October 17, 2018 [Page 31]

Internet-Draft Trickle ICE April 2018

0 Added a short section about interactions with ICE Lite
implementations.

0 Added two new entries to the open issues section.
C.26. Changes from draft-rescorla-00

0 Relaxed requirements about verifying support following a
discussion on MMUSIC.

o Introduced ICE descriptions in order to remove ambiguous use of
3264 language and inappropriate references to offers and answers.

0 Removed inappropriate assumption of adoption by RTCWEB pointed out
by Martin Thomson.

Authors’ Addresses

Emil lvov

Atlassian

303 Colorado Street, #1600
Austin, TX 78701

USA

Phone: +1-512-640-3000
Email: eivov@atlassian.com

Eric Rescorla

RTFM, Inc.

2064 Edgewood Drive
Palo Alto, CA 94303
USA

Phone: +1 650 678 2350
Email: ekr@rtfm.com

Justin Uberti
Google

747 6th St S
Kirkland, WA 98033
USA

Phone: +1 857 288 8888
Email: justin@uberti.name

Ivov, et al. Expires October 17, 2018 [Page 32]

Internet-Draft Trickle ICE April 2018

Peter Saint-Andre
Mozilla

P.O. Box 787
Parker, CO 80134
USA

Phone: +1 720 256 6756

Email: stpeter@mozilla.com
URI: https://www.mozilla.com/

Ivov, et al. Expires October 17, 2018 [Page 33]

Network Working Group P. Thatcher

Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: September 22, 2016 Google

March 21, 2016

ICE Network Cost: Dynamically selecting ICE candidate pairs based on
relative cost of network interfaces
draft-thatcher-ice-network-cost-00

Abstract

This document describes an extension to the Interactive Connectivity
Establishment (ICE) that enables ICE agents to exchange information
about the relative cost of network interfaces and dynamically choose
the selected ICE candidate pair based on the cost of both the local
and remote network interfaces. For example, if a cellular network
interface has a higher cost than a Wi-Fi network interface, the ICE
agents can use that information to prefer candidate pairs with Wi-Fi
rather than cellular when possible, and only use cellular when
necessary.

This document additionally describes a second piece of information,
network ID, that goes along with the network cost and can be used to
know when a network interface has changed, even if two network
interfaces have the same network cost.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

This Internet-Draft will expire on September 22, 2016.

Thatcher, et al. Expires September 22, 2016 [Page 1]

Internet-Draft ICE Network Cost March 2016

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction 2

Terminology 3

Choosing a value for network cost and network ID 3
Signaling network cost and network ID 4
STUN attribute for network cost and network ID 4
Interpreting network cost and network ID 4
IANA Considerations 5

Security Considerations 5

. Acknowledgements 5

10. Normative References 5
Authors’ Addresses, 5

©CoNorwWNE

1. Introduction

In certain network conditions, ICE agents may prefer to use a network
interface with a lower cost (for a definition of cost chosen by the

ICE agent, which need not be directly related to monetary costs). If
the controlling side has such a preference, it can unilaterally
nominate a candidate pair with the network interface with lower cost,
but if either the controlling side has no such preference, or it

would like to take the controlled side’s preference into account, it
cannot do so unless the controlled side provides information about

its network cost.

Additionally, if the network interface of the controlled side changes
(such as by using TURN mobility), the controlling side needs updated
information from the controlled side.

The controlling side may also wish to select candidate pairs not only

based on the relative cost between candidate pairs, but also the cost
relative to the quality of the network path. For example, if Wi-Fi

Thatcher, et al. Expires September 22, 2016 [Page 2]

Internet-Draft ICE Network Cost March 2016

has a much higher cost, but cellular is much higher quality, the
controlling side may select cellular even though it's higher cost.

To do so, the controlled side must provide information about the
network cost relative to the network quality. For example, if a

network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
0 and RTT 150ms will have equal preference to a cellular with cost 10
and RTT 50ms.

Although the controlled side already communicates an ICE candidate
priority, that candidate attribute doesn’t meet the needs of this
situation for the following reasons:

o Candidate priority affects ICE check ordering as well as candidate
pair preference, which is undesirable in this situation, where the
ICE check order should be maintained, but the candidate pair
preference should be changed.

o0 Candidate priority cannot change when the network interface
changes (such as by using TURN mobility)

o Candidate priority is only defined relative to other priorities,
and can’t be compared against network quality in a meaningful way.

2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

This specification makes use of all terminology defined by the
protocol for Interactive Connectivity Establishment in [RFC5245].

Network Cost A value indicating how much an ICE agent would prefer
to not use a given network interface. This may be, but need not
be related to monetary costs of using the network interface.

Network ID An ID that uniquely identifies a network interface.

3. Choosing a value for network cost and network 1D

Network cost is an integer in the range 0-999, where larger values
indicate a stronger preference for not using that network interface.

Each network interface SHOULD have a unique network ID, in the range
of 0 to (2716)-1.

Thatcher, et al. Expires September 22, 2016 [Page 3]

Internet-Draft ICE Network Cost March 2016

4. Signaling network cost and network ID

ICE agents MUST signal network cost on each ICE candidate if the cost
is non-zero. ICE agents MUST signal network ID on each ICE
candidate.

For example, in an SDP candidate line, the attributes could be
signaled as "network-cost 100 network-id 1".

5. STUN attribute for network cost and network ID

To communicate a change in network cost or to communicate network
cost for peer reflexive candidates, the following STUN attribute is
defined:

A 32-bit integer where the first 16 bits are the network ID and the
second 16 bits are network cost:

0 1 2 3
01234567890123456789012345678901
T S s s o S s S T S O
| Network ID | Network Cost |

In the initial ICE checks, ICE agents MUST communicate a network cost
and network ID if either is non-zero. The ICE agent MUST communicate
new values in subsequent ICE checks if the network cost or network ID
changes.

6. Interpreting network cost and network 1D

If network cost is communicated via either signaling or STUN

attribute, the controlling side SHOULD use the network cost of the
controlled side as part of the criteria to determine which candidate

pair to select. It SHOULD use network cost before using candidate
priorities (network cost takes precedence over candidate priority),

and it SHOULD NOT change the ICE check order based on network cost.

If the controlling side chooses to balance network cost against
network quality, it is RECOMMENDED to treat a difference in network
cost of 10 as equivalent of a change in network RTT of 100ms.

Any time the controlling side sees a change in the network cost from
the controlled side, it MUST recalculate which candidate pair to
select and nominate the newly selected candidate pair, if it has
changed.

Thatcher, et al. Expires September 22, 2016 [Page 4]

Internet-Draft ICE Network Cost March 2016

7. IANA Considerations
This specification requests no actions from IANA.
8. Security Considerations
TODO
9. Acknowledgements
TODO
10. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols”, RFC 5245,

DOI 10.17487/RFC5245, April 2010,
<http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Peter Thatcher
Google

747 6th St S
Kirkland, WA 98033
USA

Email: pthatcher@google.com
Honghai Zhang

Google

747 6th St S

Kirkland, WA 98033

USA

Email: honghaiz@google.com

Thatcher, et al. Expires September 22, 2016 [Page 5]

Internet-Draft ICE Network Cost March 2016

Taylor Brandstetter
Google

747 6th St S
Kirkland, WA 98033
USA

Email: deadbeef@google.com

Thatcher, et al. Expires September 22, 2016 [Page 6]

Network Working Group P. Thatcher

Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: March 23, 2017 Google

September 19, 2016

ICE Network Cost: Dynamically selecting ICE candidate pairs based on
relative cost of network interfaces
draft-thatcher-ice-network-cost-01

Abstract

This document describes an extension to the Interactive Connectivity
Establishment (ICE) that enables ICE agents to exchange information
about the relative cost of network interfaces and dynamically choose
the selected ICE candidate pair based on the cost of both the local
and remote network interfaces. For example, if a cellular network
interface has a higher cost than a Wi-Fi network interface, the ICE
agents can use that information to prefer candidate pairs with Wi-Fi
rather than cellular when possible, and only use cellular when
necessary.

This document additionally describes a second piece of information,
network ID, that goes along with the network cost and can be used to
know when a network interface has changed, even if two network
interfaces have the same network cost.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress.”

This Internet-Draft will expire on March 23, 2017.

Thatcher, et al. Expires March 23, 2017 [Page 1]

Internet-Draft ICE Network Cost September 2016

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must

include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

Introduction 2

Terminology 3

Choosing a value for network cost and network ID 3
Signaling network cost and network ID 4
STUN attribute for network cost and network ID 4
Interpreting network cost and network ID 4
IANA Considerations 5

Security Considerations 5

. Acknowledgements 5

10. Normative References 5
Authors’ Addresses, 5

©CoNorwWNE

1. Introduction

In certain network conditions, ICE agents may prefer to use a network
interface with a lower cost (for a definition of cost chosen by the

ICE agent, which need not be directly related to monetary costs). If
the controlling side has such a preference, it can unilaterally
nominate a candidate pair with the network interface with lower cost,
but if either the controlling side has no such preference, or it

would like to take the controlled side’s preference into account, it
cannot do so unless the controlled side provides information about

its network cost.

Additionally, if the network interface of the controlled side changes
(such as by using TURN mobility), the controlling side needs updated
information from the controlled side.

The controlling side may also wish to select candidate pairs not only

based on the relative cost between candidate pairs, but also the cost
relative to the quality of the network path. For example, if Wi-Fi

Thatcher, et al. Expires March 23, 2017 [Page 2]

Internet-Draft ICE Network Cost September 2016

has a much higher cost, but cellular is much higher quality, the
controlling side may select cellular even though it's higher cost.

To do so, the controlled side must provide information about the
network cost relative to the network quality. For example, if a

network cost 10 is equivalent to 100ms network RTT, a Wi-Fi with cost
0 and RTT 150ms will have equal preference to a cellular with cost 10
and RTT 50ms.

Although the controlled side already communicates an ICE candidate
priority, that candidate attribute doesn’t meet the needs of this
situation for the following reasons:

o Candidate priority affects ICE check ordering as well as candidate
pair preference, which is undesirable in this situation, where the
ICE check order should be maintained, but the candidate pair
preference should be changed.

o0 Candidate priority cannot change when the network interface
changes (such as by using TURN mobility)

o Candidate priority is only defined relative to other priorities,
and can’t be compared against network quality in a meaningful way.

2. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

This specification makes use of all terminology defined by the
protocol for Interactive Connectivity Establishment in [RFC5245].

Network Cost A value indicating how much an ICE agent would prefer
to not use a given network interface. This may be, but need not
be related to monetary costs of using the network interface.

Network ID An ID that uniquely identifies a network interface.

3. Choosing a value for network cost and network 1D

Network cost is an integer in the range 0-999, where larger values
indicate a stronger preference for not using that network interface.

Each network interface SHOULD have a unique network ID, in the range
of 0 to (2716)-1.

Thatcher, et al. Expires March 23, 2017 [Page 3]

Internet-Draft ICE Network Cost September 2016

4. Signaling network cost and network ID

ICE agents MUST signal network cost on each ICE candidate if the cost
is non-zero. ICE agents MUST signal network ID on each ICE
candidate.

For example, in an SDP candidate line, the attributes could be
signaled as "network-cost 100 network-id 1".

5. STUN attribute for network cost and network ID

To communicate a change in network cost or to communicate network
cost for peer reflexive candidates, the following STUN attribute is
defined:

A 32-bit integer where the first 16 bits are the network ID and the
second 16 bits are network cost:

0 1 2 3
01234567890123456789012345678901
T S s s o S s S T S O
| Network ID | Network Cost |

In the initial ICE checks, ICE agents MUST communicate a network cost
and network ID if either is non-zero. The ICE agent MUST communicate
new values in subsequent ICE checks if the network cost or network ID
changes.

6. Interpreting network cost and network 1D

If network cost is communicated via either signaling or STUN

attribute, the controlling side SHOULD use the network cost of the
controlled side as part of the criteria to determine which candidate

pair to select. It SHOULD use network cost before using candidate
priorities (network cost takes precedence over candidate priority),

and it SHOULD NOT change the ICE check order based on network cost.

If the controlling side chooses to balance network cost against
network quality, it is RECOMMENDED to treat a difference in network
cost of 10 as equivalent of a change in network RTT of 100ms.

Any time the controlling side sees a change in the network cost from
the controlled side, it MUST recalculate which candidate pair to
select and nominate the newly selected candidate pair, if it has
changed.

Thatcher, et al. Expires March 23, 2017 [Page 4]

Internet-Draft ICE Network Cost September 2016

7. IANA Considerations
This specification requests no actions from IANA.
8. Security Considerations
TODO
9. Acknowledgements
TODO
10. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols”, RFC 5245,

DOI 10.17487/RFC5245, April 2010,
<http://www.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Peter Thatcher
Google

747 6th St S
Kirkland, WA 98033
USA

Email: pthatcher@google.com
Honghai Zhang

Google

747 6th St S

Kirkland, WA 98033

USA

Email: honghaiz@google.com

Thatcher, et al. Expires March 23, 2017 [Page 5]

Internet-Draft ICE Network Cost September 2016

Taylor Brandstetter
Google

747 6th St S
Kirkland, WA 98033
USA

Email: deadbeef@google.com

Thatcher, et al. Expires March 23, 2017 [Page 6]

Network Working Group P. Thatcher

Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: September 22, 2016 Google

March 21, 2016

ICE Renomination: Dynamically selecting ICE candidate pairs
draft-thatcher-ice-renomination-00

Abstract

This document describes an extension to the Interactive Connectivity
Establishment (ICE) that enables ICE agents to dynamically change the
selected candidate pair of the controlled side by allowing the

controlling side to nominate different candidate pairs over time as
network conditions change.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 22, 2016.
Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Thatcher, et al. Expires September 22, 2016 [Page 1]

Internet-Draft ICE Renomination March 2016

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 2

2. Terminology 2

3. Renomination 2

4. "Nomination" attribute 3

5. IANA Considerations 3
6. Security Considerations 3
7. Acknowledgements, 3
8. Normative References 3
Authors’ Addresses 3

1. Introduction

ICE agents are either controlling or controlled. The controlling ICE
agent can unilaterally select a given candidate pair at any time.

But it cannot control what candidate pair the controlled ICE agent
selects once the controlling ICE agent has nominated a candidate pair
(with passive nomination) or nominated many candidate pairs (with
aggressive nomination), with the exception that it may nominate a
higher priority candidate pair with aggressive nomination. This
greatly limits the controlling side’s options.

For example, if an ICE agent selects and nominates a candidate pair
over a cellular network, and then later connects to a Wi-Fi network
and trickles ICE candidates for the Wi-Fi network, it may wish to
select and nominate a candidate pair using Wi-Fi. If soon thereafter
the Wi-Fi network disconnects and the ICE agent wishes to select and
nominate the cellular candidate pair again, it would be unable to do
with either passive or aggressive nomination.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Renomination

We define a new ICE option called "renomination". When renomination
is signaled, aggressive nomination is disabled, and the controlled

side follows a rule of "last nomination wins". This allows the

controlling side to send nominations for new candidate pairs at any
time. The controlling side SHOULD send the new nomination until the
STUN packet is acked to ensure that the renomination was received.

Thatcher, et al. Expires September 22, 2016 [Page 2]

Internet-Draft ICE Renomination March 2016

If one side signals "renomination” and the other does not understand
it, then according to the rules of ICE, aggressive nomination is
disabled and passive nomination is used, and the controlling side
MUST NOT send more than one nomination.

4. "Nomination" attribute

To deal with out-of-order delivery of nominations, we define a new

STUN attribute: "nomination” which includes a 24-bit integer in the 3

least significant bytes of the attribute.

The controlling side MAY include such an attribute when renominating.

The controlled side MUST select the nomination with the largest value

contained in the "nomination" attribute. Any value included takes

precedence over the lack of a value.
5. IANA Considerations
This specification requests no actions from IANA.
6. Security Considerations
TODO
7. Acknowledgements
TODO
8. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<http://lwww.rfc-editor.org/info/rfc2119>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols”, RFC 5245,

DOI 10.17487/RFC5245, April 2010,
<http://lwww.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Thatcher, et al. Expires September 22, 2016 [Page 3]

Internet-Draft ICE Renomination

Peter Thatcher
Google

747 6th St S
Kirkland, WA 98033
USA

Email: pthatcher@google.com

Honghai Zhang
Google

747 6th St S
Kirkland, WA 98033
USA

Email: honghaiz@google.com
Taylor Brandstetter

Google

747 6th St S

Kirkland, WA 98033

USA

Email: deadbeef@google.com

Thatcher, et al.

Expires September 22, 2016

March 2016

[Page 4]

Network Working Group P. Thatcher

Internet-Draft H. Zhang
Intended status: Standards Track T. Brandstetter
Expires: March 23, 2017 Google

September 19, 2016

ICE Renomination: Dynamically selecting ICE candidate pairs
draft-thatcher-ice-renomination-01

Abstract

This document describes an extension to the Interactive Connectivity
Establishment (ICE) that enables ICE agents to dynamically change the
selected candidate pair of the controlled side by allowing the

controlling side to nominate different candidate pairs over time as
network conditions change.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. Itis inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 23, 2017.
Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Thatcher, et al. Expires March 23, 2017 [Page 1]

Internet-Draft ICE Renomination September 2016

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 2

2. Terminology 2

3. Renomination 2

4. "Nomination" attribute 3

5. IANA Considerations 3
6. Security Considerations 3
7. Acknowledgements, 3
8. Normative References 3
Authors’ Addresses 3

1. Introduction

ICE agents are either controlling or controlled. The controlling ICE
agent can unilaterally select a given candidate pair at any time.

But it cannot control what candidate pair the controlled ICE agent
selects once the controlling ICE agent has nominated a candidate pair
(with passive nomination) or nominated many candidate pairs (with
aggressive nomination), with the exception that it may nominate a
higher priority candidate pair with aggressive nomination. This
greatly limits the controlling side’s options.

For example, if an ICE agent selects and nominates a candidate pair
over a cellular network, and then later connects to a Wi-Fi network
and trickles ICE candidates for the Wi-Fi network, it may wish to
select and nominate a candidate pair using Wi-Fi. If soon thereafter
the Wi-Fi network disconnects and the ICE agent wishes to select and
nominate the cellular candidate pair again, it would be unable to do
with either passive or aggressive nomination.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Renomination

We define a new ICE option called "renomination". When renomination
is signaled, aggressive nomination is disabled, and the controlled

side follows a rule of "last nomination wins". This allows the

controlling side to send nominations for new candidate pairs at any
time. The controlling side SHOULD send the new nomination until the
STUN packet is acked to ensure that the renomination was received.

Thatcher, et al. Expires March 23, 2017 [Page 2]

Internet-Draft ICE Renomination September 2016

If one side signals "renomination” and the other does not understand
it, then according to the rules of ICE, aggressive nomination is
disabled and passive nomination is used, and the controlling side
MUST NOT send more than one nomination.

4. "Nomination" attribute

To deal with out-of-order delivery of nominations, we define a new

STUN attribute: "nomination” which includes a 24-bit integer in the 3

least significant bytes of the attribute.

The controlling side MAY include such an attribute when renominating.

The controlled side MUST select the nomination with the largest value

contained in the "nomination" attribute. Any value included takes

precedence over the lack of a value.
5. IANA Considerations
This specification requests no actions from IANA.
6. Security Considerations
TODO
7. Acknowledgements
TODO
8. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<http://lwww.rfc-editor.org/info/rfc2119>.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols”, RFC 5245,

DOI 10.17487/RFC5245, April 2010,
<http://lwww.rfc-editor.org/info/rfc5245>.

Authors’ Addresses

Thatcher, et al. Expires March 23, 2017 [Page 3]

Internet-Draft ICE Renomination September 2016

Peter Thatcher
Google

747 6th St S
Kirkland, WA 98033
USA

Email: pthatcher@google.com

Honghai Zhang
Google

747 6th St S
Kirkland, WA 98033
USA

Email: honghaiz@google.com
Taylor Brandstetter

Google

747 6th St S

Kirkland, WA 98033

USA

Email: deadbeef@google.com

Thatcher, et al. Expires March 23, 2017 [Page 4]

	draft-ietf-ice-rfc5245bis-01
	draft-ietf-ice-rfc5245bis-20
	draft-ietf-ice-trickle-01
	draft-ietf-ice-trickle-21
	draft-thatcher-ice-network-cost-00
	draft-thatcher-ice-network-cost-01
	draft-thatcher-ice-renomination-00
	draft-thatcher-ice-renomination-01

