
MPTCP Working Group O. Bonaventure
Internet-Draft UCLouvain
Updates: RFC6824 (if approved) July 06, 2015
Intended status: Informational
Expires: January 7, 2016

 Multipath TCP Address Advertisement
 draft-bonaventure-mptcp-addr-00

Abstract

 Multipath TCP [RFC6824] defines the ADD_ADDR option to allow a host
 to announce its addresses to the remote host. In this document we
 analyze some of the issues with the address advertisement technique
 defined [RFC6824] and propose some modifications to mitigate these
 problems. We also show that the reverse DNS could be an excellent
 alternative to advertise the stable addresses of a server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bonaventure Expires January 7, 2016 [Page 1]

Internet-Draft MPTCP ADDR July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Issues with ADD_ADDR . 3
 2.1. Usage of the Address Identifiers 4
 2.2. Reliability of the ADD_ADDR Option 5
 3. Learning the Addresses bound to a host through the DNS . . . 5
 4. Conclusion . 7
 5. Acknowledgements . 7
 6. Informative References 7
 Author’s Address . 9

1. Introduction

 Multipath TCP is an extension to TCP [RFC0793] that was specified in
 [RFC6824]. Multipath TCP was designed with multi-addressed hosts in
 mind [RFC6182]. A Multipath TCP connection is composed of subflows
 that are established between any of the addresses of the
 communicating hosts. [RFC6824] defines two options to manage the
 host addresses :

 o ADD_ADDR is used to announce one address bound to a host (possibly
 combined with a port number)

 o REMOVE_ADDR is used to indicate that an address previously
 attached to a host is not anymore attached to this host

 To cope with Network Address Translation (NAT), the ADD_ADDR and
 REMOVE_ADDR options contain an address identifier encoded as an 8
 bits integer.

 When the initial subflow is created, it is assumed to be initiated
 from the address of the client whose identifier is 0 towards the
 address of the server whose identifier is also 0. Both the client
 and the server can use ADD_ADDR to advertise the other addresses that
 they use. When an additional subflow is created, the MP_JOIN option
 placed in the SYN (resp. SYN+ACK) contains the identifier of the
 address used to create (resp. accept) the subflow.

 Experience with Multipath TCP shows that these two options allow to
 support multi-homed or dual-stack servers [TMA2015] and mobile
 devices [Cellnet12]. While the ADD_ADDR option has been supported in
 the Linux implementation of Multipath TCP, other implementors have
 chosen to not support it [I-D.eardley-mptcp-implementations-survey]
 while still supporting the REMOVE_ADDR option.

Bonaventure Expires January 7, 2016 [Page 2]

Internet-Draft MPTCP ADDR July 2015

 In this document, we first analyse in Section 2 several issues with
 the current ADD_ADDR option as defined in [RFC6824] and
 [I-D.ietf-mptcp-rfc6824bis]. Then in Section 3 we show how Multipath
 TCP could leverage the existing DNS to obtain information about the
 different addresses attached to a server.

2. Issues with ADD_ADDR

 A first issue are the security risks if an attacker is able to send
 spoofed TCP segments that include the ADD_ADDR option. Multipath TCP
 [RFC6824] defines the ADD_ADDR option shown in Figure 1.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype| IPVer | Address ID |
 +---------------+---------------+-------+-------+---------------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +-------------------------------+-------------------------------+
 | Port (2 octets, optional) |
 +-------------------------------+

 Figure 1: The ADD_ADDR option

 From a security viewpoint, this option introduces a potential
 security risk if an attacker is able to send a spoofed ADD_ADDR
 option. [I-D.ietf-mptcp-rfc6824bis] proposes a new format for this
 option by placing a truncated HMAC inside the option to authenticate
 it. The format for this new option (ADD_ADDR2) is shown in Figure 2.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype| IPVer | Address ID |
 +---------------+---------------+-------+-------+---------------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +-------------------------------+-------------------------------+
 | Port (2 octets, optional) | |
 +-------------------------------+ |
 | Truncated HMAC (8 octets) |
 | +-------------------------------+
 | |
 +-------------------------------+

 Figure 2: The ADD_ADDR2 option

Bonaventure Expires January 7, 2016 [Page 3]

Internet-Draft MPTCP ADDR July 2015

2.1. Usage of the Address Identifiers

 A second issue with the ADD_ADDR option is the management of the
 address identifiers. At first glance, a Multipath TCP implementation
 could maintain a table of the IP addresses bound to the local host
 and associate one identifier with each address. When a new IP
 address is configured, it is added to the table and the index in the
 table can be used as its identifier. If a local address stops to be
 bound to the host, the Multipath TCP can extract its identifier from
 the table and send the REMOVE_ADDR option over all existing Multipath
 TCP connections. Unfortunately, such a naive implementation is not
 possible with the current Multipath TCP implementation.

 As defined in [RFC6824], the identifiers 0 are assigned to the
 addresses that were used for the establishment of the initial
 subflow. This is because the MP_CAPABLE option does not contain any
 field to encode an address identifier in contrast with the MP_JOIN
 option.

 An annoying consequence of this design choice is that a Multipath TCP
 implementation must at least remember the identifier of the address
 that was used to create the initial subflow. It cannot simply rely
 on the global address table described above because when an address
 fails, it must be able to send a REMOVE_ADDR with for address
 identifier 0 if this address was used to create the initial subflow.
 This forces a Multipath TCP implementation to at least store the
 address identifier of the initial subflow for each connection.

 One suggestion to ease the maintenance of the addresses on a
 Multipath TCP implementation would be to stop assuming that the
 address identifier 0 corresponds to the address used to establish the
 initial subflow. Instead, the implementation should maintain a table
 of all the addresses that it uses with Multipath TCP and assign one
 strictly positive identifier to each address. In this case, each
 address assigned to the host has the same address identifier for all
 the Multipath TCP connections. When a new address is learned, it is
 automatically assigned the next available address identifier and can
 be announced over all existing Multipath TCP connections depending on
 the policy applied for the address announcements. When an address is
 not bound anymore to this host, then the same REMOVE_ADDR option can
 be sent over all Multipath TCP connections.

 There is one missing element in the solution discussed above : how to
 announce the real address identifier that corresponds to the initial
 subflow. A simple solution to this problem is to use the ADD_ADDR
 option without an address as shown in Figure 3.

Bonaventure Expires January 7, 2016 [Page 4]

Internet-Draft MPTCP ADDR July 2015

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype| IPVer | Address ID |
 +---------------+---------------+-------+-------+---------------+

 Figure 3: The ADD_ADDR option indicating the address identifier of
 the current subflow

 This empty ADD_ADDR option indicates the address identifier of the
 address on the subflow over which it has been transmitted. It MUST
 only be used on the initial subflow since on the other subflows the
 same information is carried reliably in the MP_JOIN option of the SYN
 segments. The IPVer field of this ADD_ADDR option MUST match the IP
 version used for the initial subflow.

2.2. Reliability of the ADD_ADDR Option

 A third issue with the ADD_ADDR option is that since it is
 transmitted as a TCP option, it is not delivered reliably
 [Cellnet12]. If it announces an IPv4 address, the ADD_ADDR option
 could be inserted inside a segment that carries data and would thus
 be delivered reliably like the user data. However, if the ADD_ADDR
 option contains an IPv6 address, it might be too large to fit inside
 a segment that already contains a DSS option and possibly other
 options such as the [RFC1323] timestamps. Given its length, the
 ADD_ADDR2 option cannot be placed in the same segment as a DSS
 option. In these two cases, the ADD_ADDR/ADD_ADDR2 option will be
 often transmitted inside a duplicate ACK that is not delivered
 reliably. [Cellnet12] proposes a method to improve the reliability
 of the transmission of the ADD_ADDR option, but to our knowledge this
 method has never been implemented. To cope with packet losses, some
 implementations could decide to transmit several copies of the
 ADD_ADDR option over the same connection.

3. Learning the Addresses bound to a host through the DNS

 [RFC6824] defines the ADD_ADDR option as the basic technique to learn
 the addresses bound to the remote host. Given the importance of
 learning those addresses, one would expect this technique to be
 supported by all Multipath TCP implementations. This is not the
 case, since only the Linux implementation of Multipath TCP supports
 the ADD_ADDR option [I-D.eardley-mptcp-implementations-survey] as
 defined in [RFC6824]. The other implementations do not support this
 option [I-D.eardley-mptcp-implementations-survey]. This design
 choice was probably motivated by security concerns with this option
 and also because these implementations assume that only the client

Bonaventure Expires January 7, 2016 [Page 5]

Internet-Draft MPTCP ADDR July 2015

 creates the subflows and the server is single-homed. In this case,
 the client (e.g. a smartphone), can create the subflows from any of
 its own addresses towards the single address of the server.

 However, with the deployment of IPv6, the number of dual-stack
 clients and servers will grow and it will be important for a host
 that creates a connection towards the IPv4 address of a server to
 also learn the IPv6 address associated to this particular server. We
 show in this section that the DNS could be used to distribute the
 addressing information that is required by Multipath TCP.

 There are three possibilities to use to DNS to distribute the list of
 addresses associated to a given server. A first approach is to use
 the existing forward DNS and consider that all the ’A’ and ’AAAA’
 records associated with a name correspond to the same server and can
 be used to establish Multipath TCP subflows. Unfortunately, when
 several records are associated to a DNS name, this is often for load
 balancing reasons and those records point to the addresses of
 different hosts. A second approach would be to define a new DNS
 record that contains the list of the IP addresses associated to a
 given host. However, this would require to deploy a new type of DNS
 record. Proposals that were made in the past to define new RR types
 were not endorsed by the IETF (e.g., one single RR for dual stack
 hosts [I-D.li-dnsext-ipv4-ipv6] or a distinct RR for IPv4-Embedded
 IPv6 Address [I-D.boucadair-behave-dns-a64]).

 The third approach that we propose in this document is to use the
 reverse DNS to encode the information about the alternate addresses
 that are associated to a given host. The reverse DNS tree typically
 only contains PTR records that associate names to reverse IPv4 or
 IPv6 addresses. However, nothing prevents the use of the reverse DNS
 to store A and AAAA records. This is the approach that we recommend.
 It does not require any change to the DNS protocol and can leverage
 dynamic updates to the DNS [RFC3007] and DNSSec to authenticate the
 advertisement of addresses [RFC4034].

 As an example, consider the server whose name is mptcp.example.org
 and which is reachable via the following IP addresses taken from the
 documentation prefixes [RFC3849] [RFC5737] :

 o 192.0.2.10

 o 198.51.100.23

 o 2001:db8::1234

 The forward DNS will contain the following records for this server

Bonaventure Expires January 7, 2016 [Page 6]

Internet-Draft MPTCP ADDR July 2015

 mptcp.example.org. 7200 IN A 192.0.2.10
 mptcp.example.org. 7200 IN A 198.51.100.23
 mptcp.example.org. 7200 IN AAAA 2001:db8::1234

 In addition, the following entries would be added in the reverse DNS.

 10.2.0.192.in-addr.arpa. 7200 IN AAAA 2001:db8::1234
 10.2.0.192.in-addr.arpa. 7200 IN A 198.51.100.23

 23.100.51.198.in-addr.arpa. 7200 IN AAAA 2001:db8::1234
 23.100.51.198.in-addr.arpa. 7200 IN A 192.0.2.10

 4.3.2.1.0.
 8.b.d.0.1.0.0.2.ip6.arpa. 7200 IN A 192.0.2.10
 4.3.2.1.0.
 8.b.d.0.1.0.0.2.ip6.arpa. 7200 IN A 198.51.100.23

 These reverse records can, of course, be signed with DNSSec
 [RFC4034].

4. Conclusion

 In this document, we have discussed several issues with the
 advertisement of addresses with the ADD_ADDR and ADD_ADDR2 options in
 Multipath TCP. Then, we have shown that the reverse DNS can be used
 by servers to advertise their alternate IP addresses. This does not
 require any modification to the DNS protocol and could be used by
 applications that do not want or cannot rely on the ADD_ADDR option.

5. Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project. This
 document was improved thanks to the comments and suggestions received
 from Fabien Duchene, Benjamin Hesmans and Mohammed Boucadair.

6. Informative References

 [Cellnet12]
 Paasch, C., Detal, G., Duchene, F., Raiciu, C., and O.
 Bonaventure, "Exploring Mobile/WiFi Handover with
 Multipath TCP", ACM SIGCOMM workshop on Cellular Networks
 (Cellnet12) , 2012,
 <http://inl.info.ucl.ac.be/publications/
 exploring-mobilewifi-handover-multipath-tcp>.

Bonaventure Expires January 7, 2016 [Page 7]

Internet-Draft MPTCP ADDR July 2015

 [I-D.boucadair-behave-dns-a64]
 Boucadair, M. and E. Burgey, "A64: DNS Resource Record for
 IPv4-Embedded IPv6 Address", draft-boucadair-behave-dns-
 a64-02 (work in progress), September 2010.

 [I-D.eardley-mptcp-implementations-survey]
 Eardley, P., "Survey of MPTCP Implementations", draft-
 eardley-mptcp-implementations-survey-02 (work in
 progress), July 2013.

 [I-D.ietf-mptcp-rfc6824bis]
 Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", draft-ietf-mptcp-rfc6824bis-04 (work in
 progress), March 2015.

 [I-D.li-dnsext-ipv4-ipv6]
 Li, L., Li, Z., and X. Duan, "DNS Extensions to Support
 IPv4 and IPv6", draft-li-dnsext-ipv4-ipv6-02 (work in
 progress), October 2009.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
 793, September 1981.

 [RFC1323] Jacobson, V., Braden, B., and D. Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC3007] Wellington, B., "Secure Domain Name System (DNS) Dynamic
 Update", RFC 3007, November 2000.

 [RFC3849] Huston, G., Lord, A., and P. Smith, "IPv6 Address Prefix
 Reserved for Documentation", RFC 3849, July 2004.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, March 2005.

 [RFC5737] Arkko, J., Cotton, M., and L. Vegoda, "IPv4 Address Blocks
 Reserved for Documentation", RFC 5737, January 2010.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, March 2011.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

Bonaventure Expires January 7, 2016 [Page 8]

Internet-Draft MPTCP ADDR July 2015

 [TMA2015] Hesmans, B., Hoang Tran-Viet, ., Sadre, R., and O.
 Bonaventure, "A first look at real Multipath TCP traffic",
 TMA 2015 , April 2015,
 <http://inl.info.ucl.ac.be/publications/
 first-look-real-multipath-tcp-traffic>.

Author’s Address

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

Bonaventure Expires January 7, 2016 [Page 9]

Network Working Group M. Boucadair
Internet-Draft C. Jacquenet
Intended status: Standards Track France Telecom
Expires: May 20, 2016 T. Reddy
 Cisco
 November 17, 2015

 DHCP Options for Network-Assisted Multipath TCP (MPTCP)
 draft-boucadair-mptcp-dhc-04

Abstract

 One of the promising deployment scenarios for Multipath TCP (MPTCP)
 is to enable a Customer Premises Equipment (CPE) that is connected to
 multiple networks (e.g., DSL, LTE, WLAN) to optimize the usage of its
 network attachments. Because of the lack of MPTCP support at the
 server side, some service providers consider a network-assisted model
 that relies upon the activation of a dedicated function called: MPTCP
 Concentrator.

 This document focuses on the explicit deployment scheme where the
 identity of the MPTCP Concentrator(s) is explicitly configured on
 connected hosts. This document specifies DHCP (IPv4 and IPv6)
 options to configure hosts with Multipath TCP (MPTCP) parameters.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 20, 2016.

Boucadair, et al. Expires May 20, 2016 [Page 1]

Internet-Draft DHCP for MPTCP November 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. DHCPv6 MPTCP Option . 4
 3.1. Format . 4
 3.2. DHCPv6 Client Behavior 5
 4. DHCPv4 MPTCP Option . 5
 4.1. Format . 5
 4.2. DHCPv4 Client Behavior 7
 5. DHCP Server Configuration Guidelines 7
 6. Security Considerations 8
 7. Privacy Considerations 9
 8. IANA Considerations . 9
 8.1. DHCPv6 Option . 9
 8.2. DHCPv4 Option . 9
 9. Acknowledgements . 9
 10. References . 10
 10.1. Normative References 10
 10.2. Informative References 11
 Authors’ Addresses . 11

1. Introduction

 One of the promising deployment scenarios for Multipath TCP (MPTCP,
 [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
 connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
 usage of such resources, see for example [RFC4908]. This deployment
 scenario relies on MPTCP proxies located on both the CPE and network
 sides (Figure 1). The latter plays the role of traffic concentrator.
 A concentrator terminates the MPTCP sessions established from a CPE,
 before redirecting traffic into a legacy TCP session.

Boucadair, et al. Expires May 20, 2016 [Page 2]

Internet-Draft DHCP for MPTCP November 2015

 IP Network #1
 +------------+ _--------_ +------------+
 | | (e.g., LTE) | |
 | CPE +======================+ |
 | (MPTCP | (_ _) |Concentrator|
 | Proxy) | (_______) | (MPTCP |
 | | | Proxy) |------> Internet
 | | | |
 | | IP Network #2 | |
 | | _--------_ | |
 | | (e.g., DSL) | |
 | +======================+ |
 | | (_ _) | |
 +-----+------+ (_______) +------------+
 |
 ----CPE network----
 |
 end-nodes

 Figure 1: "Network-Assisted" MPTCP Design

 Both implicit and explicit modes are considered to steer traffic
 towards an MPTCP Concentrator. This document focuses on the explicit
 mode that consists in configuring explicitly the reachability
 information of the MPTCP concentrator on a host.

 This document defines DHCPv4 [RFC2131] and DHCPv6 [RFC3315] options
 that can be used to configure hosts with MPTCP Concentrator IP
 addresses.

 This specification assumes an MPTCP Concentrator is reachable through
 one or multiple IP addresses. As such, a list of IP addresses can be
 returned in the DHCP MPTCP option. Also, it assumes the various
 network attachments provided to an MPTCP-enabled CPE are managed by
 the same administrative entity.

2. Terminology

 This document makes use of the following terms:

 o MPTCP Concentrator (or concentrator): refers to a functional
 element that is responsible for aggregating the traffic of a group
 of CPEs. This element is located upstream in the network. One or
 multiple concentrators can be deployed in the network side to
 assist MPTCP-enabled CPEs to establish MPTCP connections via
 available network attachments.

Boucadair, et al. Expires May 20, 2016 [Page 3]

Internet-Draft DHCP for MPTCP November 2015

 On the uplink path, the concentrator terminates the MPTCP
 connections [RFC6824] received from its customer-facing interfaces
 and transforms these connections into legacy TCP connections
 [RFC0793] towards upstream servers.

 On the downlink path, the concentrator turns the legacy server’s
 TCP connection into MPTCP connections towards its customer-facing
 interfaces.
 o DHCP refers to both DHCPv4 [RFC2131] and DHCPv6 [RFC3315].
 o DHCP client denotes a node that initiates requests to obtain
 configuration parameters from one or more DHCP servers.
 o DHCP server refers to a node that responds to requests from DHCP
 clients.

3. DHCPv6 MPTCP Option

3.1. Format

 The DHCPv6 MPTCP option can be used to configure a list of IPv6
 addresses of an MPTCP Concentrator.

 The format of this option is shown in Figure 2. As a reminder, this
 format follows the guidelines for creating new DHCPv6 options
 (Section 5.1 of [RFC7227]).

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_V6_MPTCP | Option-length |
 +-+
 | |
 | ipv6-address |
 | |
 | |
 +-+
 | |
 | ipv6-address |
 | |
 | |
 +-+
 | ... |
 +-+

 Figure 2: DHCPv6 MPTCP option

 The fields of the option shown in Figure 2 are as follows:

 o Option-code: OPTION_V6_MPTCP (TBA, see Section 8.1)

Boucadair, et al. Expires May 20, 2016 [Page 4]

Internet-Draft DHCP for MPTCP November 2015

 o Option-length: Length of the ’MPTCP Concentrator IP Address(es)’
 field in octets. MUST be a multiple of 16.
 o MPTCP Concentrator IPv6 Addresses: Includes one or more IPv6
 addresses [RFC4291] of the MPTCP Concentrator to be used by the
 MPTCP client.

 Note, IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291])
 are allowed to be included in this option.

 To return more than one MPTCP concentrators to the requesting DHCPv6
 client, the DHCPv6 server returns multiple instances of
 OPTION_V6_MPTCP.

3.2. DHCPv6 Client Behavior

 Clients MAY request option OPTION_V6_MPTCP, as defined in [RFC3315],
 Sections 17.1.1, 18.1.1, 18.1.3, 18.1.4, 18.1.5, and 22.7. As a
 convenience to the reader, we mention here that the client includes
 requested option codes in the Option Request Option.

 The DHCPv6 client MUST be prepared to receive multiple instances of
 OPTION_V6_MPTCP; each instance is to be treated separately as it
 corresponds to a given MPTCP Concentrator: there are as many
 concentrators as instances of the OPTION_V6_MPTCP option.

 If an IPv4-mapped IPv6 address is received in OPTION_V6_MPTCP, it
 indicates that the MPTCP Concentrator has the corresponding IPv4
 address.

 The DHCPv6 client MUST silently discard multicast and host loopback
 addresses [RFC6890] conveyed in OPTION_V6_MPTCP.

4. DHCPv4 MPTCP Option

4.1. Format

 The DHCPv4 MPTCP option can be used to configure a list of IPv4
 addresses of an MPTCP Concentrator. The format of this option is
 illustrated in Figure 3.

Boucadair, et al. Expires May 20, 2016 [Page 5]

Internet-Draft DHCP for MPTCP November 2015

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Code | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | List-Length | List of |
 +-+-+-+-+-+-+-+-+ MPTCP |
 / Concentrator IPv4 Addresses /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 | List-Length | List of | |
 +-+-+-+-+-+-+-+-+ MPTCP | |
 / Concentrator IPv4 Addresses / |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 optional
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | List-Length | List of | |
 +-+-+-+-+-+-+-+-+ MPTCP | |
 / Concentrator IPv4 Addresses / |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: DHCPv4 MPTCP option

 The fields of the option shown in Figure 3 are as follows:

 o Code: OPTION_V4_MPTCP (TBA, see Section 8.2);
 o Length: Length of all included data in octets. The minimum length
 is 5.
 o List-Length: Length of the "List of MPTCP Concentrator IPv4
 Addresses" field in octets; MUST be a multiple of 4.
 o List of MPTCP Concentrator IPv4 Addresses: Contains one or more
 IPv4 addresses of the MPTCP Concentrator to be used by the MPTCP
 client. The format of this field is shown in Figure 4.
 o OPTION_V4_MPTCP can include multiple lists of MPTCP Concentrator
 IPv4 addresses; each list is treated separately as it corresponds
 to a given MPTCP Concentrator.

 When several lists of MPTCP Concentrator IPv4 addresses are to be
 included, "List-Length" and "MPTCP Concentrator IPv4 Addresses"
 fields are repeated.

Boucadair, et al. Expires May 20, 2016 [Page 6]

Internet-Draft DHCP for MPTCP November 2015

 0 8 16 24 32 40 48
 +-----+-----+-----+-----+-----+-----+--
 | a1 | a2 | a3 | a4 | a1 | a2 | ...
 +-----+-----+-----+-----+-----+-----+--
 IPv4 Address 1 IPv4 Address 2 ...

 This format assumes that an IPv4 address is encoded as a1.a2.a3.a4.

 Figure 4: Format of the List of MPTCP Concentrator IPv4 Addresses

 OPTION_V4_MPTCP is a concatenation-requiring option. As such, the
 mechanism specified in [RFC3396] MUST be used if OPTION_V4_MPTCP
 exceeds the maximum DHCPv4 option size of 255 octets.

4.2. DHCPv4 Client Behavior

 To discover one or more MPTCP Concentrators, the DHCPv4 client MUST
 include OPTION_V4_MPTCP in a Parameter Request List Option [RFC2132].

 The DHCPv4 client MUST be prepared to receive multiple lists of MPTCP
 Concentrator IPv4 addresses in the same OPTION_V4_MPTCP; each list is
 to be treated as a separate MPTCP Concentrator instance.

 The DHCPv4 client MUST silently discard multicast and host loopback
 addresses [RFC6890] conveyed in OPTION_V4_MPTCP.

5. DHCP Server Configuration Guidelines

 DHCP servers that support the DHCP MPTCP Concentrator option can be
 configured with a list of IP addresses of the MPTCP Concentrator(s).
 If multiple IP addresses are configured, the DHCP server MUST be
 explicitly configured whether all or some of these addresses refer
 to:

 1. the same MPTCP Concentrator: the DHCP server returns multiple
 addresses in the same instance of the DHCP MPTCP Concentrator
 option.

 2. distinct MPTCP Concentrators : the DHCP server returns multiple
 lists of MPTCP Concentrator IP addresses to the requesting DHCP
 client (encoded as multiple OPTION_V6_MPTCP or in the same
 OPTION_V4_MPTCP); each list refers to a distinct MPTCP
 Concentrator.

 Precisely how DHCP servers are configured to separate lists of IP
 addresses according to which MPTCP Concentrator they refer to is out
 of scope for this document. However, DHCP servers MUST NOT combine
 the IP addresses of multiple MPTCP Concentrators and return them to

Boucadair, et al. Expires May 20, 2016 [Page 7]

Internet-Draft DHCP for MPTCP November 2015

 the DHCP client as if they were belonging to a single MPTCP
 Concentrator, and DHCP servers MUST NOT separate the addresses of a
 single MPTCP Concentrator and return them as if they were belonging
 to distinct MPTCP Concentrators. For example, if an administrator
 configures the DHCP server by providing a Fully Qualified Domain Name
 (FQDN) for a MPTCP Concentrator, even if that FQDN resolves to
 multiple addresses, the DHCP server MUST deliver them within a single
 server address block.

 DHCPv6 servers that implement this option and that can populate the
 option by resolving FQDNs will need a mechanism for indicating
 whether to query A records or only AAAA records. When a query
 returns A records, the IP addresses in those records are returned in
 the DHCPv6 response as IPv4-mapped IPv6 addresses.

 Since this option requires support for IPv4-mapped IPv6 addresses, a
 DHCPv6 server implementation will not be complete if it does not
 query A records and represent any that are returned as IPv4-mapped
 IPv6 addresses in DHCPv6 responses. The mechanism whereby DHCPv6
 implementations provide this functionality is beyond the scope of
 this document.

 For guidelines on providing context-specific configuration
 information (e.g., returning a regional-based configuration), and
 information on how a DHCP server might be configured with FQDNs that
 get resolved on demand, see [I-D.ietf-dhc-topo-conf].

6. Security Considerations

 The security considerations in [RFC2131] and [RFC3315] are to be
 considered.

 MPTCP-related security considerations are discussed in [RFC6824].

 Means to protect the MPTCP concentrator against Denial-of-Service
 (DoS) attacks must be enabled. Such means include the enforcement of
 ingress filtering policies at the boundaries of the network. In
 order to prevent exhausting the resources of the concentrator by
 creating an aggressive number of simultaneous subflows for each MPTCP
 connection, the administrator should limit the number of allowed
 subflows per host for a given connection.

 Attacks outside the domain can be prevented if ingress filtering is
 enforced. Nevertheless, attacks from within the network between a
 host and a concentrator instance are yet another actual threat.
 Means to ensure that illegitimate nodes cannot connect to a network
 should be implemented.

Boucadair, et al. Expires May 20, 2016 [Page 8]

Internet-Draft DHCP for MPTCP November 2015

 Traffic theft is also a risk if an illegitimate concentrator is
 inserted in the path. Indeed, inserting an illegitimate concentrator
 in the forwarding path allows to intercept traffic and can therefore
 provide access to sensitive data issued by or destined to a host. To
 mitigate this threat, secure means to discover a concentrator (for
 non-transparent modes) should be enabled.

7. Privacy Considerations

 Generic privacy-related considerations are discussed in
 [I-D.ietf-dhc-anonymity-profile].

 The concentrator may have access to privacy-related information
 (e.g., International Mobile Subscriber Identity (IMSI), link
 identifier, subscriber credentials, etc.). The concentrator must not
 leak such sensitive information outside an administrative domain.

8. IANA Considerations

8.1. DHCPv6 Option

 IANA is requested to assign the following new DHCPv6 Option Code in
 the registry maintained in http://www.iana.org/assignments/
 dhcpv6-parameters:

 Option Name Value
 --------------- -----
 OPTION_V6_MPTCP TBA

8.2. DHCPv4 Option

 IANA is requested to assign the following new DHCPv4 Option Code in
 the registry maintained in http://www.iana.org/assignments/bootp-
 dhcp-parameters/:

 Option Name Value Data length Meaning
 --------------- ----- ----------- -----------------------------------
 OPTION_V4_MPTCP TBA Variable; Includes one or multiple lists of
 the minimum MPTCP Concentrator IP addresses;
 length is each list is treated as a separate
 5. MPTCP Concentrator.

9. Acknowledgements

 Many thanks to Olivier Bonaventure for the feedback on this document.
 Olivier suggested to define the option as a name but that design
 approach was debated several times within the dhc wg.

Boucadair, et al. Expires May 20, 2016 [Page 9]

Internet-Draft DHCP for MPTCP November 2015

 Thanks to Dan Seibel, Bernie Volz, Niall O’Reilly, Simon Hobson, and
 Ted Lemon for the feedback on the dhc wg mailing list.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <http://www.rfc-editor.org/info/rfc2131>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <http://www.rfc-editor.org/info/rfc2132>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <http://www.rfc-editor.org/info/rfc3315>.

 [RFC3396] Lemon, T. and S. Cheshire, "Encoding Long Options in the
 Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
 DOI 10.17487/RFC3396, November 2002,
 <http://www.rfc-editor.org/info/rfc3396>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <http://www.rfc-editor.org/info/rfc4291>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6890] Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,
 RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <http://www.rfc-editor.org/info/rfc6890>.

Boucadair, et al. Expires May 20, 2016 [Page 10]

Internet-Draft DHCP for MPTCP November 2015

10.2. Informative References

 [I-D.ietf-dhc-anonymity-profile]
 Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
 profile for DHCP clients", draft-ietf-dhc-anonymity-
 profile-04 (work in progress), October 2015.

 [I-D.ietf-dhc-topo-conf]
 Lemon, T. and T. Mrugalski, "Customizing DHCP
 Configuration on the Basis of Network Topology", draft-
 ietf-dhc-topo-conf-06 (work in progress), October 2015.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC4908] Nagami, K., Uda, S., Ogashiwa, N., Esaki, H., Wakikawa,
 R., and H. Ohnishi, "Multi-homing for small scale fixed
 network Using Mobile IP and NEMO", RFC 4908,
 DOI 10.17487/RFC4908, June 2007,
 <http://www.rfc-editor.org/info/rfc4908>.

 [RFC6333] Durand, A., Droms, R., Woodyatt, J., and Y. Lee, "Dual-
 Stack Lite Broadband Deployments Following IPv4
 Exhaustion", RFC 6333, DOI 10.17487/RFC6333, August 2011,
 <http://www.rfc-editor.org/info/rfc6333>.

 [RFC7227] Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
 S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
 BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
 <http://www.rfc-editor.org/info/rfc7227>.

Authors’ Addresses

 Mohamed Boucadair
 France Telecom
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Christian Jacquenet
 France Telecom
 Rennes
 France

 Email: christian.jacquenet@orange.com

Boucadair, et al. Expires May 20, 2016 [Page 11]

Internet-Draft DHCP for MPTCP November 2015

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: tireddy@cisco.com

Boucadair, et al. Expires May 20, 2016 [Page 12]

Network Working Group M. Boucadair
Internet-Draft C. Jacquenet
Intended status: Standards Track Orange
Expires: April 11, 2018 T. Reddy
 Cisco
 October 8, 2017

 DHCP Options for Network-Assisted Multipath TCP (MPTCP)
 draft-boucadair-mptcp-dhc-08

Abstract

 Because of the lack of Multipath TCP (MPTCP) support at the server
 side, some service providers now consider a network-assisted model
 that relies upon the activation of a dedicated function called MPTCP
 Conversion Point (MCP). Network-assisted MPTCP deployment models are
 designed to facilitate the adoption of MPTCP for the establishment of
 multi-path communications without making any assumption about the
 support of MPTCP by the communicating peers. MCPs located in the
 network are responsible for establishing multi-path communications on
 behalf of endpoints, thereby taking advantage of MPTCP capabilities
 to achieve different goals that include (but are not limited to)
 optimization of resource usage (e.g., bandwidth aggregation), of
 resiliency (e.g., primary/backup communication paths), and traffic
 offload management.

 This document focuses on the explicit deployment scheme where the
 identity of the MPTCP Conversion Point(s) is explicitly configured on
 connected hosts. This document specifies DHCP (IPv4 and IPv6)
 options to configure hosts with Multipath TCP (MPTCP) parameters.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Boucadair, et al. Expires April 11, 2018 [Page 1]

Internet-Draft DHCP for MPTCP October 2017

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 11, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. DHCPv6 MPTCP Option . 5
 3.1. Format . 5
 3.2. DHCPv6 Client Behavior 6
 4. DHCPv4 MPTCP Option . 7
 4.1. Format . 7
 4.2. DHCPv4 Client Behavior 8
 5. Security Considerations 8
 6. Privacy Considerations 9
 7. IANA Considerations . 9
 7.1. DHCPv6 Option . 9
 7.2. DHCPv4 Option . 9
 8. Acknowledgements . 10
 9. References . 10
 9.1. Normative References 10
 9.2. Informative References 11
 Appendix A. DHCP Server Configuration Guidelines 11
 Authors’ Addresses . 12

Boucadair, et al. Expires April 11, 2018 [Page 2]

Internet-Draft DHCP for MPTCP October 2017

1. Introduction

 One of the promising deployment scenarios for Multipath TCP (MPTCP,
 [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
 connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
 usage of such resources. This deployment scenario relies on MPTCP
 Conversion Points (MCPs) located on both the CPE and network sides
 (Figure 1). The latter plays the role of traffic concentrator. An
 MCP terminates the MPTCP sessions established from a CPE, before
 redirecting traffic into a legacy TCP session. Further Network-
 Assisted MPTCP deployment and operational considerations are
 discussed in [I-D.nam-mptcp-deployment-considerations].

 +------------+ _--------_ +----------------+
 | | (LTE) | |
 | CPE +=======+ +===+ Backbone |
 | (MCP) | (_ _) | Network |
 | | (_______) |+--------------+|
 | | IP Network #1 || Concentrator ||------> Internet
			(MCP)	
		+--------------+		
	IP Network #2			

	(DSL)			
+=======+ +==+				
	(_ _)			
 +-----+------+ (_______) +----------------+
 |
 ---- LAN ----
 |
 end-nodes

 Figure 1: "Network-Assisted" MPTCP Design

 This document focuses on the explicit mode that consists in
 configuring explicitly the reachability information of the MCP on a
 host. Concretely, the explicit mode has several advantages, e.g.,:

 o It does not impose any specific constraint on the location of the
 MCP. For example, the MCP can be located in any access network,
 located upstream in the core network, or located in a data canter
 facility.

 o Tasks required for activating the explicit mode are minimal. In
 particular, this mode does not require any specific routing and/or
 forwarding policies for handling outbound packets other than
 ensuring that an MCP is reachable from a CPE, and vice versa
 (which is straightforward IP routing policy operation).

Boucadair, et al. Expires April 11, 2018 [Page 3]

Internet-Draft DHCP for MPTCP October 2017

 o The engineering effort to change the location of an MCP for some
 reason (e.g., to better accommodate dimensioning constraints, to
 move the MCP to a data canter, to enable additional MCP instances
 closer to the customer premises, etc.) is minimal

 o An operator can easily enforce strategies for differentiating the
 treatment of MPTCP connections that are directly initiated by an
 MPTCP-enabled host connected to an MCP if the explicit mode is
 enabled. Typically, an operator may decide to offload MPTCP
 connections originated by an MPTCP-enabled terminal from being
 forwarded through a specific MCP, or decide to relay them via a
 specific MCP. Such policies can be instructed to the MCP.
 Implementing such differentiating behavior if the implicit mode is
 in use may be complex to achieve.

 o Multiple MCPs can be supported to service the same CPE, e.g., an
 MCP can be enabled for internal services (to optimize the delivery
 of some operator-specific services) while another MCP may be
 solicited for external services (e.g., access to the Internet).
 The explicit mode allows the deployment of such scenario owing to
 the provisioning of an MCP selection policy table that relies upon
 the destination IP prefixes to select the MCP to involve for an
 ongoing MPTCP connection, for instance.

 o Because the MCP’s reachability information is explicitly
 configured on the CPE, means to guarantee successful inbound
 connections can be enabled in the CPE to dynamically discover the
 external IP address that has been assigned for communicating with
 remote servers, instruct the MCP to maintain active bindings so
 that incoming packets can be successfully redirected towards the
 appropriate CPE, etc.

 o Troubleshooting and root cause analysis may be facilitated in the
 explicit mode since faulty key nodes that may have caused a
 service degradation are known. Because of the loose adherence to
 the traffic forwarding and routing polices, troubleshooting a
 service degradation that is specific to multi-access serviced
 customers should first investigate the behavior of the involved
 MCP.

 This document defines DHCPv4 [RFC2131] and DHCPv6 [RFC3315] options
 that can be used to configure hosts with MCP IP addresses.

 This specification assumes an MCP is reachable through one or
 multiple IP addresses. As such, a list of IP addresses can be
 returned in the DHCP MPTCP option. Also, it assumes the various
 network attachments provided to an MPTCP-enabled CPE are managed by
 the same administrative entity.

Boucadair, et al. Expires April 11, 2018 [Page 4]

Internet-Draft DHCP for MPTCP October 2017

2. Terminology

 This document makes use of the following terms:

 o Multipath Conversion Point (MCP): a function that terminates a
 transport flow and relays all data received over it over another
 transport flow. This element is located upstream in the network.
 One or multiple MCPs can be deployed in the network side to assist
 MPTCP-enabled devices to establish MPTCP connections via available
 network attachments.

 On the uplink path, the MCP terminates the MPTCP connections
 [RFC6824] received from its customer-facing interfaces and
 transforms these connections into legacy TCP connections [RFC0793]
 towards upstream servers.

 On the downlink path, the MCP turns the legacy server’s TCP
 connection into MPTCP connections towards its customer-facing
 interfaces.
 o DHCP refers to both DHCPv4 [RFC2131] and DHCPv6 [RFC3315].
 o DHCP client denotes a node that initiates requests to obtain
 configuration parameters from one or more DHCP servers.
 o DHCP server refers to a node that responds to requests from DHCP
 clients.

3. DHCPv6 MPTCP Option

3.1. Format

 The DHCPv6 MPTCP option can be used to configure a list of IPv6
 addresses of an MCP.

 The format of this option is shown in Figure 2. As a reminder, this
 format follows the guidelines for creating new DHCPv6 options
 (Section 5.1 of [RFC7227]).

Boucadair, et al. Expires April 11, 2018 [Page 5]

Internet-Draft DHCP for MPTCP October 2017

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION_V6_MPTCP | Option-length |
 +-+
 | |
 | ipv6-address |
 | |
 | |
 +-+
 | |
 | ipv6-address |
 | |
 | |
 +-+
 | ... |
 +-+

 Figure 2: DHCPv6 MPTCP option

 The fields of the option shown in Figure 2 are as follows:

 o Option-code: OPTION_V6_MPTCP (TBA, see Section 7.1)
 o Option-length: Length of the ’MCP IP Address(es)’ field in octets.
 MUST be a multiple of 16.
 o MCP IPv6 Addresses: Includes one or more IPv6 addresses [RFC4291]
 of the MCP to be used by the MPTCP client.

 Note, IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291])
 are allowed to be included in this option.

 To return more than one MCPs to the requesting DHCPv6 client, the
 DHCPv6 server returns multiple instances of OPTION_V6_MPTCP. Some
 guidelines for DHCP servers are elaborated in Appendix A.

3.2. DHCPv6 Client Behavior

 Clients MAY request option OPTION_V6_MPTCP, as defined in [RFC3315],
 Sections 17.1.1, 18.1.1, 18.1.3, 18.1.4, 18.1.5, and 22.7. As a
 convenience to the reader, we mention here that the client includes
 requested option codes in the Option Request Option.

 The DHCPv6 client MUST be prepared to receive multiple instances of
 OPTION_V6_MPTCP; each instance is to be treated separately as it
 corresponds to a given MCP: there are as many MCPs as instances of
 the OPTION_V6_MPTCP option.

Boucadair, et al. Expires April 11, 2018 [Page 6]

Internet-Draft DHCP for MPTCP October 2017

 If an IPv4-mapped IPv6 address is received in OPTION_V6_MPTCP, it
 indicates that the MCP has the corresponding IPv4 address.

 The DHCPv6 client MUST silently discard multicast and host loopback
 addresses [RFC6890] conveyed in OPTION_V6_MPTCP.

4. DHCPv4 MPTCP Option

4.1. Format

 The DHCPv4 MPTCP option can be used to configure a list of IPv4
 addresses of an MCP. The format of this option is illustrated in
 Figure 3.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Code | Length |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | List-Length | List of |
 +-+-+-+-+-+-+-+-+ MPTCP |
 / MCP IPv4 Addresses /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---
 | List-Length | List of | |
 +-+-+-+-+-+-+-+-+ MPTCP | |
 / MCP IPv4 Addresses / |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 Optional
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | List-Length | List of | |
 +-+-+-+-+-+-+-+-+ MPTCP | |
 / MCP IPv4 Addresses / |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ---

 Figure 3: DHCPv4 MPTCP option

 The fields of the option shown in Figure 3 are as follows:

 o Code: OPTION_V4_MPTCP (TBA, see Section 7.2);
 o Length: Length of all included data in octets. The minimum length
 is 5.
 o List-Length: Length of the "List of MCP IPv4 Addresses" field in
 octets; MUST be a multiple of 4.
 o List of MCP IPv4 Addresses: Contains one or more IPv4 addresses of
 the MCP to be used by the MPTCP client. The format of this field
 is shown in Figure 4.
 o OPTION_V4_MPTCP can include multiple lists of MCP IPv4 addresses;
 each list is treated separately as it corresponds to a given MCP.

Boucadair, et al. Expires April 11, 2018 [Page 7]

Internet-Draft DHCP for MPTCP October 2017

 When several lists of MCP IPv4 addresses are to be included,
 "List-Length" and "MCP IPv4 Addresses" fields are repeated.

 0 8 16 24 32 40 48
 +-----+-----+-----+-----+-----+-----+--
 | a1 | a2 | a3 | a4 | a1 | a2 | ...
 +-----+-----+-----+-----+-----+-----+--
 IPv4 Address 1 IPv4 Address 2 ...

 This format assumes that an IPv4 address is encoded as a1.a2.a3.a4.

 Figure 4: Format of the List of MCP IPv4 Addresses

 OPTION_V4_MPTCP is a concatenation-requiring option. As such, the
 mechanism specified in [RFC3396] MUST be used if OPTION_V4_MPTCP
 exceeds the maximum DHCPv4 option size of 255 octets.

 Some guidelines for DHCP servers are elaborated in Appendix A.

4.2. DHCPv4 Client Behavior

 To discover one or more MCPs, the DHCPv4 client MUST include
 OPTION_V4_MPTCP in a Parameter Request List Option [RFC2132].

 The DHCPv4 client MUST be prepared to receive multiple lists of MCP
 IPv4 addresses in the same OPTION_V4_MPTCP; each list is to be
 treated as a separate MCP instance.

 The DHCPv4 client MUST silently discard multicast and host loopback
 addresses [RFC6890] conveyed in OPTION_V4_MPTCP.

5. Security Considerations

 The security considerations in [RFC2131] and [RFC3315] are to be
 considered.

 MPTCP-related security considerations are discussed in [RFC6824].

 Means to protect the MCP against Denial-of-Service (DoS) attacks must
 be enabled. Such means include the enforcement of ingress filtering
 policies at the boundaries of the network. In order to prevent
 exhausting the resources of the MCP by creating an aggressive number
 of simultaneous subflows for each MPTCP connection, the administrator
 should limit the number of allowed subflows per host for a given
 connection.

 Attacks outside the domain can be prevented if ingress filtering is
 enforced. Nevertheless, attacks from within the network between a

Boucadair, et al. Expires April 11, 2018 [Page 8]

Internet-Draft DHCP for MPTCP October 2017

 host and an MCP instance are yet another actual threat. Means to
 ensure that illegitimate nodes cannot connect to a network should be
 implemented.

 Traffic theft is also a risk if an illegitimate MCP is inserted in
 the path. Indeed, inserting an illegitimate MCP in the forwarding
 path allows to intercept traffic and can therefore provide access to
 sensitive data issued by or destined to a host. To mitigate this
 threat, secure means to discover an MCP (for non-transparent modes)
 should be enabled.

6. Privacy Considerations

 Generic privacy-related considerations are discussed in [RFC7844].

 The MCP may have access to privacy-related information (e.g.,
 International Mobile Subscriber Identity (IMSI), link identifier,
 subscriber credentials, etc.). The MCP must not leak such sensitive
 information outside an administrative domain.

7. IANA Considerations

7.1. DHCPv6 Option

 IANA is requested to assign the following new DHCPv6 Option Code in
 the registry maintained in http://www.iana.org/assignments/
 dhcpv6-parameters:

 Option Name Value
 --------------- -----
 OPTION_V6_MPTCP TBA

7.2. DHCPv4 Option

 IANA is requested to assign the following new DHCPv4 Option Code in
 the registry maintained in http://www.iana.org/assignments/bootp-
 dhcp-parameters/:

 Option Name Value Data length Meaning
 --------------- ----- ------------- ---------------------------------
 OPTION_V4_MPTCP TBA Variable; the Includes one or multiple lists of
 minimum MCP IP addresses; each list is
 length is 5. treated as a separate MCP.

Boucadair, et al. Expires April 11, 2018 [Page 9]

Internet-Draft DHCP for MPTCP October 2017

8. Acknowledgements

 Many thanks to Olivier Bonaventure for the feedback on this document.
 Olivier suggested to define the option as a name but that design
 approach was debated several times within the dhc wg.

 Thanks to Dan Seibel, Bernie Volz, Niall O’Reilly, Simon Hobson, and
 Ted Lemon for the feedback on the dhc wg mailing list.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol",
 RFC 2131, DOI 10.17487/RFC2131, March 1997,
 <https://www.rfc-editor.org/info/rfc2131>.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, DOI 10.17487/RFC2132, March 1997,
 <https://www.rfc-editor.org/info/rfc2132>.

 [RFC3315] Droms, R., Ed., Bound, J., Volz, B., Lemon, T., Perkins,
 C., and M. Carney, "Dynamic Host Configuration Protocol
 for IPv6 (DHCPv6)", RFC 3315, DOI 10.17487/RFC3315, July
 2003, <https://www.rfc-editor.org/info/rfc3315>.

 [RFC3396] Lemon, T. and S. Cheshire, "Encoding Long Options in the
 Dynamic Host Configuration Protocol (DHCPv4)", RFC 3396,
 DOI 10.17487/RFC3396, November 2002,
 <https://www.rfc-editor.org/info/rfc3396>.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <https://www.rfc-editor.org/info/rfc6824>.

Boucadair, et al. Expires April 11, 2018 [Page 10]

Internet-Draft DHCP for MPTCP October 2017

 [RFC6890] Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,
 RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <https://www.rfc-editor.org/info/rfc6890>.

9.2. Informative References

 [I-D.nam-mptcp-deployment-considerations]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Henderickx,
 W., and R. Skog, "Network-Assisted MPTCP: Use Cases,
 Deployment Scenarios and Operational Considerations",
 draft-nam-mptcp-deployment-considerations-01 (work in
 progress), December 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC7227] Hankins, D., Mrugalski, T., Siodelski, M., Jiang, S., and
 S. Krishnan, "Guidelines for Creating New DHCPv6 Options",
 BCP 187, RFC 7227, DOI 10.17487/RFC7227, May 2014,
 <https://www.rfc-editor.org/info/rfc7227>.

 [RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity
 Profiles for DHCP Clients", RFC 7844,
 DOI 10.17487/RFC7844, May 2016,
 <https://www.rfc-editor.org/info/rfc7844>.

 [RFC7969] Lemon, T. and T. Mrugalski, "Customizing DHCP
 Configuration on the Basis of Network Topology", RFC 7969,
 DOI 10.17487/RFC7969, October 2016,
 <https://www.rfc-editor.org/info/rfc7969>.

Appendix A. DHCP Server Configuration Guidelines

 DHCP servers that support the DHCP MCP option can be configured with
 a list of IP addresses of the MCP(s). If multiple IP addresses are
 configured, the DHCP server MUST be explicitly configured whether all
 or some of these addresses refer to:

 1. the same MCP: the DHCP server returns multiple addresses in the
 same instance of the DHCP MCP option.

 2. distinct MCPs : the DHCP server returns multiple lists of MCP IP
 addresses to the requesting DHCP client (encoded as multiple
 OPTION_V6_MPTCP or in the same OPTION_V4_MPTCP); each list refers
 to a distinct MCP.

Boucadair, et al. Expires April 11, 2018 [Page 11]

Internet-Draft DHCP for MPTCP October 2017

 Precisely how DHCP servers are configured to separate lists of IP
 addresses according to which MCP they refer to is out of scope for
 this document. However, DHCP servers MUST NOT combine the IP
 addresses of multiple MCPs and return them to the DHCP client as if
 they were belonging to a single MCP, and DHCP servers MUST NOT
 separate the addresses of a single MCP and return them as if they
 were belonging to distinct MCPs. For example, if an administrator
 configures the DHCP server by providing a Fully Qualified Domain Name
 (FQDN) for an MCP, even if that FQDN resolves to multiple addresses,
 the DHCP server MUST deliver them within a single server address
 block.

 DHCPv6 servers that implement this option and that can populate the
 option by resolving FQDNs will need a mechanism for indicating
 whether to query A records or only AAAA records. When a query
 returns A records, the IP addresses in those records are returned in
 the DHCPv6 response as IPv4-mapped IPv6 addresses.

 Since this option requires support for IPv4-mapped IPv6 addresses, a
 DHCPv6 server implementation will not be complete if it does not
 query A records and represent any that are returned as IPv4-mapped
 IPv6 addresses in DHCPv6 responses. The mechanism whereby DHCPv6
 implementations provide this functionality is beyond the scope of
 this document.

 For guidelines on providing context-specific configuration
 information (e.g., returning a regional-based configuration), and
 information on how a DHCP server might be configured with FQDNs that
 get resolved on demand, see [RFC7969].

Authors’ Addresses

 Mohamed Boucadair
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Christian Jacquenet
 Orange
 Rennes
 France

 Email: christian.jacquenet@orange.com

Boucadair, et al. Expires April 11, 2018 [Page 12]

Internet-Draft DHCP for MPTCP October 2017

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India

 Email: tireddy@cisco.com

Boucadair, et al. Expires April 11, 2018 [Page 13]

Network Working Group M. Boucadair
Internet-Draft C. Jacquenet
Intended status: Experimental France Telecom
Expires: June 10, 2016 D. Behaghel
 OneAccess
 S. Secci
 Universite Pierre et Marie Curie (UPMC)
 W. Henderickx
 Alcatel-Lucent
 R. Skog
 Ericsson
 December 8, 2015

An MPTCP Option for Network-Assisted MPTCP Deployments: Plain Transport
 Mode
 draft-boucadair-mptcp-plain-mode-06

Abstract

 One of the promising deployment scenarios for Multipath TCP (MPTCP)
 is to enable a Customer Premises Equipment (CPE) that is connected to
 multiple networks (e.g., DSL, LTE, WLAN) to optimize the usage of its
 network attachments. Because of the lack of MPTCP support at the
 server side, some service providers now consider a network-assisted
 model that relies upon the activation of a dedicated function called
 MPTCP Concentrator. This document focuses on a deployment scheme
 where the identity of the MPTCP Concentrator(s) is explicitly
 configured on connected hosts.

 This document specifies an MPTCP option that is used to avoid an
 encapsulation scheme between the CPE and the MPTCP Concentrator.
 Also, this document specifies how UDP traffic can be distributed
 among available paths without requiring any encapsulation scheme.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Boucadair, et al. Expires June 10, 2016 [Page 1]

Internet-Draft Plain MPTCP Transport Mode December 2015

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 10, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Assumptions . 5
 4. Introducing the MPTCP Plain Transport Mode 5
 4.1. An Alternative to Encapsulation 5
 4.2. Plain Mode MPTCP Option 6
 4.3. Theory of Operation 7
 4.4. Flow Example . 8
 5. UDP Traffic . 9
 6. IANA Considerations . 11
 7. Security Considerations 11
 8. Acknowledgements . 12
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 12
 Authors’ Addresses . 13

Boucadair, et al. Expires June 10, 2016 [Page 2]

Internet-Draft Plain MPTCP Transport Mode December 2015

1. Introduction

 One of the promising deployment scenarios for Multipath TCP (MPTCP,
 [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
 connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
 usage of such resources, see for example [I-D.deng-mptcp-proxy] or
 [RFC4908]. This deployment scenario relies on MPTCP proxies located
 on both the CPE and network sides (Figure 1). The latter plays the
 role of traffic concentrator. A concentrator terminates the MPTCP
 sessions established from a CPE, before redirecting traffic into a
 legacy TCP session.

 IP Network #1
 +------------+ _--------_ +------------+
 | | (e.g., LTE) | |
 | CPE +=======+ +===+ |
 | (MPTCP | (_ _) |Concentrator|
 | Proxy) | (_______) | (MPTCP |
 | | | Proxy) |------> Internet
 | | | |
 | | IP Network #2 | |
 | | _--------_ | |
 | | (e.g., DSL) | |
 | +=======+ +==+ |
 | | (_ _) | |
 +-----+------+ (_______) +------------+
 |
 ----CPE network----
 |
 end-nodes

 Figure 1: "Network-Assisted" MPTCP Design

 Both implicit and explicit models are considered to steer traffic
 towards an MPTCP Concentrator. This document focuses on the explicit
 model that consists in configuring explicitly the reachability
 information of the MPTCP concentrator on a host (e.g.,
 [I-D.boucadair-mptcp-dhc]).

 This specification assumes an MPTCP Concentrator is reachable through
 one or multiple IP addresses. Also, it assumes the various network
 attachments provided to an MPTCP-enabled CPE are managed by the same
 administrative entity. Additional assumptions are listed in
 Section 3.

 This document explains how a plain transport mode, where packets are
 exchanged between the CPE and the concentrator without requiring the

Boucadair, et al. Expires June 10, 2016 [Page 3]

Internet-Draft Plain MPTCP Transport Mode December 2015

 activation of any encapsulation scheme (e.g., IP-in-IP [RFC2473], GRE
 [RFC1701], SOCKS [RFC1928], etc.), can be enabled.

 Also, this document investigates an alternate track where UDP flows
 can be distributed among available paths without requiring any
 encapsulation scheme.

 The solution in this document does not require the modification of
 the binding information base (BIB) structure maintained by both the
 CPE and the Concentrator. Likewise, this approach does not infer any
 modification of the Network Address Translator (NAT) functions that
 may reside in both the CPE and the device that embeds the
 concentrator.

 The solution also works properly when NATs are present in the network
 between the CPE and the Concentrator, unlike solutions that rely upon
 GRE tunneling. Likewise, the solution accommodates deployments that
 involve CGN (Carrier Grade NAT) upstream the Concentrator.

2. Terminology

 This document makes use of the following terms:

 o Customer-facing interface: is an interface of the MPTCP
 Concentrator that is visible to a CPE and which is used for
 communication purposes between a CPE and the MPTCP Concentrator.

 o MPTCP Proxy: is a software module that is responsible for
 transforming a TCP connection into an MPTCP connection, and vice
 versa. Typically, an MPTCP proxy can be embedded in a CPE and/or
 a Concentrator.

 o MPTCP leg: Refers to a network segment on which MPTCP is used to
 establish TCP connections.

 o MPTCP Concentrator (or concentrator): refers to a functional
 element that is responsible for aggregating the traffic of a group
 of CPEs. This element is located upstream in the network. One or
 multiple concentrators can be deployed in the network side to
 assist MPTCP-enabled CPEs to establish MPTCP connections via
 available network attachments.

 On the uplink path, the concentrator terminates the MPTCP
 connections received from its customer-facing interfaces and
 transforms these connections into legacy TCP connections towards
 upstream servers.

Boucadair, et al. Expires June 10, 2016 [Page 4]

Internet-Draft Plain MPTCP Transport Mode December 2015

 On the downlink path, the concentrator turns the legacy server’s
 TCP connection into MPTCP connections towards its customer-facing
 interfaces.

3. Assumptions

 The following assumptions are made:

 o The logic for mounting network attachments by a host is
 deployment- and implementation-specific and is out of scope of
 this document.
 o The Network Provider that manages the various network attachments
 (including the concentrators) can enforce authentication and
 authorization policies using appropriate mechanisms that are out
 of scope of this document.
 o Policies can be enforced by a concentrator instance operated by
 the Network Provider to manage both upstream and downstream
 traffic. These policies may be subscriber-specific, connection-
 specific or system-wide.
 o The concentrator may be notified about the results of monitoring
 (including probing) the various network legs to service a
 customer, a group of customers, a given region, etc. No
 assumption is made by this document about how these monitoring
 (including probing) operations are executed.
 o An MPTCP-enabled, multi-interfaced host that is directly connected
 to one or multiple access networks is allocated addresses/prefixes
 via legacy mechanisms (e.g., DHCP) supported by the various
 available network attachments. The host may be assigned the same
 or distinct IP address/prefix via the various available network
 attachments.
 o The location of the concentrator(s) is deployment-specific.
 Network Providers may choose to adopt centralized or distributed
 (even if they may not be present on the different network
 accesses) designs, etc. Nevertheless, in order to take advantage
 of MPTCP, the location of the concentrator should not jeopardize
 packet forwarding performance for traffic sent from or directed to
 connected hosts.

4. Introducing the MPTCP Plain Transport Mode

4.1. An Alternative to Encapsulation

 The design option for aggregating various network accesses often
 relies upon the use of an encapsulation scheme (such as GRE) between
 the CPE and the Concentrator. The use of encapsulation is motivated
 by the need to steer traffic through the concentrator and also to
 allow the distribution of UDP flows among the available paths without
 requiring any advanced traffic engineering tweaking technique in the

Boucadair, et al. Expires June 10, 2016 [Page 5]

Internet-Draft Plain MPTCP Transport Mode December 2015

 network side to intercept traffic and redirect it towards the
 appropriate concentrator.

 This document specifies another approach that relies upon plain
 transport mode between the CPE and the Concentrator.

 The use of a plain transport mode does not require the upgrade of any
 intermediate function (security, TCP optimizer, etc.) that may be
 located on-path. Thus, the introduction of MPTCP concentrators in
 operational networks to operate plain mode does not add any extra
 complexity as far as the operation of possible intermediate functions
 is concerned.

4.2. Plain Mode MPTCP Option

 The format of the Plain Mode MPTCP option is shown in Figure 2.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |SubType|D|U| Flag Bits |
 +---------------+---------------+-------+-------+---------------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +-------------------------------+-------------------------------+
 | Port (2 octets, optional) |
 +-------------------------------+

 Figure 2: Plain Mode MPTCP Option

 The description of the fields is as follows:

 o Kind and Length: are the same as in [RFC6824].

 o Subtype: to be defined by IANA (Section 6).

 o D-bit (direction bit): This flag indicates whether the enclosed IP
 address (and a port number) reflects the source or destination IP
 address (and port). When the D-bit is set, the enclosed IP
 address must be interpreted as the source IP address. When the
 D-bit is unset, the enclosed IP address must be interpreted as the
 destination IP address.

 o U-bit (UDP bit): The use of this flag is detailed in Section 5.

 o The "Flag" bits are reserved bits for future assignment as
 additional flag bits. These additional flag bits MUST each be set
 to zero and MUST be ignored upon receipt.

Boucadair, et al. Expires June 10, 2016 [Page 6]

Internet-Draft Plain MPTCP Transport Mode December 2015

 o Address: Includes a source or destination IP address. The address
 family is determined by the "Length" field.

 o Port: May be used to carry a port number.

4.3. Theory of Operation

 Plain mode operation is as follows:

 (1) The CPE is provisioned with the reachability information of one
 or several Concentrators (e.g., [I-D.boucadair-mptcp-dhc]).

 (2) Outgoing TCP packets that can be forwarded by a CPE along MPTCP
 subflows are transformed into TCP packets carried over a MPTCP
 connection. The decision-making process to decide whether a
 flow should be MPTCP-tagged or not is local to the Concentrator
 and the CPE. It depends on the policies provisioned by the
 network provider. As such, the decision-making process is
 policy-driven, implementation- and deployment-specific.

 (3) MPTCP packets are sent using a plain transport mode (i.e.,
 without any encapsulation header).

 The source IP address and source port number are those assigned
 locally by the CPE. Because multiple IP addresses may be
 available to the CPE, the address used to rewrite the source IP
 address for an outgoing packet forwarded through a given network
 attachment (typically, a WAN interface) MUST be associated with
 that network attachment. It is assumed that ingress filtering
 ([RFC2827]) is implemented at the boundaries of the networks to
 prevent any spoofing attack.

 The destination IP address is replaced by the CPE with one of
 the IP addresses of the Concentrator.

 The destination port number may be maintained as initially set
 by the host or altered by the CPE.

 The original destination IP address is copied into a dedicated
 MPTCP option called Plain Mode MPTCP option (see Section 4.2).
 Because of the limited TCP option space, it is RECOMMENDED to
 implement the solution specified in [I-D.ietf-tcpm-tcp-edo]. As
 a reminder, [I-D.touch-tcpm-tcp-syn-ext-opt] specifies a
 proposal for TCP SYN extended option space.

 A binding entry must be maintained by the CPE for that outgoing
 packet. This binding entry is instantiated by the NAT and/or
 the firewall functions embedded in the CPE.

Boucadair, et al. Expires June 10, 2016 [Page 7]

Internet-Draft Plain MPTCP Transport Mode December 2015

 (4) Upon receipt of the packet on the MPTCP leg, the Concentrator
 extracts the IP address included in the Plain Mode MPTCP Option
 that it uses as the destination IP address of the packet
 generated in the TCP leg towards its ultimate destination.

 The source IP address and port are those of the Concentrators.
 A binding entry is instantiated by the Concentrator to record
 the state.

 The concentrator may be configured to behave as either a 1:1
 address translator or a N:1 translator where the same address is
 shared among multiple CPEs. Network Providers should be aware
 of the complications that may arise if a given IP address/prefix
 is shared among multiple hosts (see [RFC6967]). Whether these
 complications apply or not is deployment-specific.

 The Concentrator should preserve the same IP address that was
 assigned to a given CPE for all its outgoing connections when
 transforming an MPTCP connection into a TCP connection.

 (5) For incoming TCP packets that need to be forwarded to a CPE, the
 Concentrator records the source IP address in a Plain Mode MPTCP
 Option.

 The source IP address is replaced with one of the IP addresses
 listed in the aforementioned binding information base maintained
 by the Concentrator (if such a state entry exists) or with one
 of the Concentrator’s IP addresses.

 The destination IP address is replaced with the CPE’s IP address
 (if the corresponding state entry is found in the Concentrator’s
 binding table) or with one of the CPE’s IP addresses (that are
 known by the concentrator using some means that are out of the
 scope of the document).

4.4. Flow Example

 A typical flow exchange is shown in Figure 3.

 This example assumes no NAT is located between the CPE and the
 concentrator.

 Because the remote server is not MPTCP-aware, the Concentrator is
 responsible for preserving the same IP address (conc_@, in the
 example) for the same CPE even if distinct IP addresses (cpe_@1 and
 cpe_@2, in the example) are used by the CPE to establish subflows
 with the Concentrator.

Boucadair, et al. Expires June 10, 2016 [Page 8]

Internet-Draft Plain MPTCP Transport Mode December 2015

 +-------+
 |DNS |
 +--------+ |System | +------------+
 | CPE | +-------+ |Concentrator|
 +--------+ | +------------+
 | | |
 DNS | | |
 -------->| DNS Query | |
 Query |------------------------->| |
 | DNS Reply | |
 |<-------------------------| |
 | |
 | |
 src=s_@|src=cpe_@1 dst=conc_@1|src=conc_@
 -------->|--------Plain Mode MPTCP Option(d_@)--------->|-------->
 dst=d_@| |dst=d_@

 | |
 src=d_@|dst=cpe_@1 src=conc_@1|src=d_@
 <--------|<-------Plain Mode MPTCP Option(d_@)----------|<-------
 dst=s_@| |dst=conc_@

 src=s_@|src=cpe_@2 dst=conc_@1|src=conc_@
 -------->|--------Plain Mode MPTCP Option(d_@)--------->|-------->
 dst=d_@| |dst=d_@

 Legend:
 * "--Plain Mode MPTCP Option()->" indicates the packet is sent
 in a plain mode, i.e., without any encapsulation hander,
 and that "Plain Mode MPTCP Option" is carried in the packet.

 Figure 3: Flow Example (No NAT between the CPE and the Concentrator)

5. UDP Traffic

 From an application standpoint, there may be a value to distribute
 UDP datagrams among available network attachments for the sake of
 network resource optimisation, for example.

 Unlike existing proposals that rely upon encapsulation schemes such
 as IP-in-IP or GRE, this document suggests the use of MPTCP features
 to control how UDP datagrams are distributed among existing network
 attachments. UDP datagrams are therefore transformed into TCP-
 formatted packets.

Boucadair, et al. Expires June 10, 2016 [Page 9]

Internet-Draft Plain MPTCP Transport Mode December 2015

 The CPE and the Concentrator establish a set of MPTCP subflows.
 These subflows are used to transport UDP datagrams that are
 distributed among existent subflows. TCP session tracking may not be
 enabled for the set of subflows that are dedicated to transport UDP
 traffic. The establishment of these subflows is not conditioned by
 the receipt of UDP packets; instead, these subflows are initiated
 upon CPE reboot or when network conditions change (e.g., whenever a
 new Concentrator is discovered or a new IP address is assigned to the
 Concentrator). Additional MPTCP connections may be established to
 anticipate UDP traffic to be distributed among several paths. The
 maximum number of MPTCP connections that can be dedicated to UDP
 traffic may be configured locally to the CPE and the Concentrator.
 How this parameter is configured is implementation and deployment-
 specific.

 When the CPE (or the Concentrator) transforms a UDP packet into a TCP
 one, it must insert the Plain Mode MPTCP Option with the U-bit set.
 When setting the source IP address, the destination IP address, and
 the IP address enclosed in the Plain Mode MPTCP Option, the same
 considerations specified in Section 4.3 must be followed.

 In addition, the CPE (or the Concentrator) must replace the UDP
 header with a TCP header. Upon receipt of the packet with the U-bit
 set, the Concentrator (or the CPE) transforms the packet into a UDP
 packet and follows the same considerations specified in Section 4.3.
 Both the CPE and the Concentrator may be configured to disable some
 features (e.g., reordering). Enabling these features is deployment
 and implementation-specific.

 Relaying UDP packets is not conditioned by TCP session establishment
 because the required subflows that are dedicated to transport UDP
 traffic are already in place (either at the CPE or the Concentrator).

 A flow example is shown in Figure 4.

Boucadair, et al. Expires June 10, 2016 [Page 10]

Internet-Draft Plain MPTCP Transport Mode December 2015

 +--------+ +------------+
 | CPE | |Concentrator|
 +--------+ +------------+
 | /--\ |
 || Dedicated MPTCP SubFlows for UDP ||
 | \--/ |
 | |
 src=s_@|src=cpe_@1 dst=conc_@1|src=conc_@
 ---UDP-->|---------------------TCP--------------------->|---UDP-->
 dst=d_@| Plain Mode MPTCP Option(U,d_@) |dst=d_@

 src=s_@|src=cpe_@2 dst=conc_@2|src=conc_@
 ---UDP-->|---------------------TCP--------------------->|---UDP-->
 dst=d_@| Plain Mode MPTCP Option(U,d_@) |dst=d_@
 | |

 src=s_@|src=cpe_@1 dst=conc_@1|src=conc_@
 ---UDP-->|---------------------TCP--------------------->|---UDP-->
 dst=d1_@| Plain Mode MPTCP Option(U,d_@) |dst=d1_@
 | |
 src=s_@|src=cpe_@1 dst=conc_@2|src=conc_@
 ---UDP-->|---------------------TCP--------------------->|---UDP-->
 dst=d1_@| Plain Mode MPTCP Option(U,d_@) |dst=d1_@
 | |

 Figure 4: Distributing UDP packets over multiple paths

6. IANA Considerations

 This document requests an MPTCP subtype code for this option:

 o Plain Mode MPTCP Option

7. Security Considerations

 The concentrator may have access to privacy-related information
 (e.g., IMSI, link identifier, subscriber credentials, etc.). The
 concentrator must not leak such sensitive information outside a local
 domain.

 Means to protect the MPTCP concentrator against Denial-of-Service
 (DoS) attacks must be enabled. Such means include the enforcement of
 ingress filtering policies at the boundaries of the network. In
 order to prevent exhausting the resources of the concentrator by
 creating an aggressive number of simultaneous subflows for each MPTCP
 connection, the administrator should limit the number of allowed
 subflows per host for a given connection.

Boucadair, et al. Expires June 10, 2016 [Page 11]

Internet-Draft Plain MPTCP Transport Mode December 2015

 Attacks outside the domain can be prevented if ingress filtering is
 enforced. Nevertheless, attacks from within the network between a
 host and a concentrator instance are yet another actual threat.
 Means to ensure that illegitimate nodes cannot connect to a network
 should be implemented.

 Traffic theft is also a risk if an illegitimate concentrator is
 inserted in the path. Indeed, inserting an illegitimate concentrator
 in the forwarding path allows to intercept traffic and can therefore
 provide access to sensitive data issued by or destined to a host. To
 mitigate this threat, secure means to discover a concentrator (for
 non-transparent modes) should be enabled.

8. Acknowledgements

 Many thanks to Chi Dung Phung, Mingui Zhang, and Christoph Paasch for
 the comments.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

9.2. Informative References

 [I-D.boucadair-mptcp-dhc]
 Boucadair, M., Jacquenet, C., and T. Reddy, "DHCP Options
 for Network-Assisted Multipath TCP (MPTCP)", draft-
 boucadair-mptcp-dhc-04 (work in progress), November 2015.

 [I-D.deng-mptcp-proxy]
 Lingli, D., Liu, D., Sun, T., Boucadair, M., and G.
 Cauchie, "Use-cases and Requirements for MPTCP Proxy in
 ISP Networks", draft-deng-mptcp-proxy-01 (work in
 progress), October 2014.

Boucadair, et al. Expires June 10, 2016 [Page 12]

Internet-Draft Plain MPTCP Transport Mode December 2015

 [I-D.ietf-tcpm-tcp-edo]
 Touch, J. and W. Eddy, "TCP Extended Data Offset Option",
 draft-ietf-tcpm-tcp-edo-04 (work in progress), November
 2015.

 [I-D.touch-tcpm-tcp-syn-ext-opt]
 Touch, J. and T. Faber, "TCP SYN Extended Option Space
 Using an Out-of-Band Segment", draft-touch-tcpm-tcp-syn-
 ext-opt-03 (work in progress), October 2015.

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701,
 DOI 10.17487/RFC1701, October 1994,
 <http://www.rfc-editor.org/info/rfc1701>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <http://www.rfc-editor.org/info/rfc1928>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <http://www.rfc-editor.org/info/rfc2473>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <http://www.rfc-editor.org/info/rfc2827>.

 [RFC4908] Nagami, K., Uda, S., Ogashiwa, N., Esaki, H., Wakikawa,
 R., and H. Ohnishi, "Multi-homing for small scale fixed
 network Using Mobile IP and NEMO", RFC 4908,
 DOI 10.17487/RFC4908, June 2007,
 <http://www.rfc-editor.org/info/rfc4908>.

 [RFC6967] Boucadair, M., Touch, J., Levis, P., and R. Penno,
 "Analysis of Potential Solutions for Revealing a Host
 Identifier (HOST_ID) in Shared Address Deployments",
 RFC 6967, DOI 10.17487/RFC6967, June 2013,
 <http://www.rfc-editor.org/info/rfc6967>.

Authors’ Addresses

Boucadair, et al. Expires June 10, 2016 [Page 13]

Internet-Draft Plain MPTCP Transport Mode December 2015

 Mohamed Boucadair
 France Telecom
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Christian Jacquenet
 France Telecom
 Rennes
 France

 Email: christian.jacquenet@orange.com

 Denis Behaghel
 OneAccess

 Email: Denis.Behaghel@oneaccess-net.com

 Stefano Secci
 Universite Pierre et Marie Curie (UPMC)
 Paris
 France

 Email: stefano.secci@lip6.fr

 Wim Henderickx
 Alcatel-Lucent
 Belgium

 Email: wim.henderickx@alcatel-lucent.com

 Robert Skog
 Ericsson

 Email: robert.skog@ericsson.com

Boucadair, et al. Expires June 10, 2016 [Page 14]

Network Working Group M. Boucadair, Ed.
Internet-Draft C. Jacquenet, Ed.
Intended status: Standards Track Orange
Expires: September 10, 2017 O. Bonaventure, Ed.
 Tessares
 D. Behaghel
 OneAccess
 S. Secci
 UPMC
 W. Henderickx, Ed.
 Nokia/Alcatel-Lucent
 R. Skog, Ed.
 Ericsson
 S. Vinapamula
 Juniper
 S. Seo
 Korea Telecom
 W. Cloetens
 SoftAtHome
 U. Meyer
 Vodafone
 LM. Contreras
 Telefonica
 B. Peirens
 Proximus
 March 9, 2017

 Extensions for Network-Assisted MPTCP Deployment Models
 draft-boucadair-mptcp-plain-mode-10

Abstract

 Because of the lack of Multipath TCP (MPTCP) support at the server
 side, some service providers now consider a network-assisted model
 that relies upon the activation of a dedicated function called MPTCP
 Conversion Point (MCP). Network-Assisted MPTCP deployment models are
 designed to facilitate the adoption of MPTCP for the establishment of
 multi-path communications without making any assumption about the
 support of MPTCP by the communicating peers. MCPs located in the
 network are responsible for establishing multi-path communications on
 behalf of endpoints, thereby taking advantage of MPTCP capabilities
 to achieve different goals that include (but are not limited to)
 optimization of resource usage (e.g., bandwidth aggregation), of
 resiliency (e.g., primary/backup communication paths), and traffic
 offload management.

Boucadair, et al. Expires September 10, 2017 [Page 1]

Internet-Draft Plain MPTCP Transport Mode March 2017

 This document specifies extensions for Network-Assisted MPTCP
 deployment models.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Boucadair, et al. Expires September 10, 2017 [Page 2]

Internet-Draft Plain MPTCP Transport Mode March 2017

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Target Use Cases . 6
 3.1. Multipath Client . 6
 3.2. Multipath CPE . 7
 4. The MP_PREFER_PROXY MPTCP Option 8
 4.1. Option Format . 8
 4.2. Option Processing . 8
 5. Supplying Data to MCPs 9
 5.1. The MP_CONVERT Information Element 9
 5.2. Processing an MP_CONVERT Information Element 11
 6. MPTCP Connections from a Multipath TCP Client 13
 6.1. Description . 13
 6.2. Theory of Operation 14
 7. MPTCP Connections Between Single Path Client and Server . . . 16
 7.1. Description . 16
 7.2. Theory of Operation 17
 7.2.1. Downstream MCP 17
 7.2.2. Upstream MCP . 17
 8. Interaction with TFO . 19
 9. IANA Considerations . 20
 10. Security Considerations 21
 10.1. Privacy . 21
 10.2. Denial-of-Service (DoS) 21
 10.3. Illegitimate MCP . 21
 11. Acknowledgements . 21
 12. References . 22
 12.1. Normative References 22
 12.2. Informative References 22
 Authors’ Addresses . 23

1. Introduction

 The overall quality of connectivity services can be enhanced by
 combining several access network links for various purposes -
 resource optimization, better resiliency, etc. Some transport
 protocols, such as Multipath TCP [RFC6824], can help achieve such
 better quality, but failed to be massively deployed so far.

 The support of multipath transport capabilities by communicating
 hosts remains a privileged target design so that such hosts can
 directly use the available resources provided by a variety of access
 networks they can connect to. Nevertheless, network operators do not
 control end hosts while the support of MPTCP by content servers
 remains close to zero.

Boucadair, et al. Expires September 10, 2017 [Page 3]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Network-Assisted MPTCP deployment models are designed to facilitate
 the adoption of MPTCP for the establishment of multi-path
 communications without making any assumption about the support of
 MPTCP capabilities by communicating peers. Network-Assisted MPTCP
 deployment models rely upon MPTCP Conversion Points (MCPs) that act
 on behalf of hosts so that they can take advantage of establishing
 communications over multiple paths. MCPs can be deployed in CPEs
 (Customer Premises Equipment), as well as in the provider’s network.
 MCPs are responsible for establishing multi-path communications on
 behalf of endpoints. Further details about the target use cases are
 provided in Section 3.

 Most of the current operational deployments that take advantage of
 multi-interfaced devices rely upon the use of an encapsulation scheme
 (such as [I-D.zhang-gre-tunnel-bonding], [TR-348]). The use of
 encapsulation is motivated by the need to steer traffic towards the
 concentrator and also to allow the distribution of any kind of
 traffic besides TCP (e.g., UDP) among the available paths without
 requiring any advanced traffic engineering tweaking technique in the
 network to intercept traffic and redirect it towards the appropriate
 MCP.

 Current operational MPTCP deployments by network operators are
 focused on the forwarding of TCP traffic. The design of such
 deployments sometimes assumes the use of extra signalling provided by
 SOCKS [RFC1928], at the cost of additional management complexity and
 possible service degradation (e.g., up to 6 SOCKS messages may have
 to be exchanged between two MCPs before actual payload data to be
 transferred, thereby yielding several tens of milliseconds of extra
 delay before the connection is established) .

 To avoid the burden of encapsulation and additional signalling
 between MCPs, this document explains how a plain transport mode is
 enabled, so that packets are exchanged between a device and its
 upstream MCP without requiring the activation of any encapsulation
 scheme (e.g., IP-in-IP [RFC2473], GRE [RFC1701]). This plain
 transport mode also avoids the need for out-of-band signalling,
 unlike the aforementioned SOCKS context.

 The solution described in this document also works properly when NATs
 are present in the communication path between a device and its
 upstream MCP. In particular, the solution in this document
 accommodates deployments that involve CGN (Carrier Grade NAT)
 upstream the MCP.

 Network-Assisted MPTCP deployment and operational considerations are
 discussed in [I-D.nam-mptcp-deployment-considerations].

Boucadair, et al. Expires September 10, 2017 [Page 4]

Internet-Draft Plain MPTCP Transport Mode March 2017

 The plain transport mode is characterized as follows:

 o 0-RTT proxy.
 o No encapsulation required (no tunnels, whatsoever).
 o No out-of-band signaling for each MPTCP subflow is required.
 o Targets both on-path and off-path MCPs.
 o Avoids interference with native MPTCP connections.
 o Assists MPTCP connections even if endpoints are MPTCP-capable.
 o Accommodates various deployment contexts, such as those that
 require the preservation of the source IP address and others
 characterized by an address sharing design. In particular:

 * This solution is compatible with IPv4/IPv6.
 * This solution does not impose any constraint on the addressing
 scheme to be used by the client.
 * This solution does not require nor exclude the use of distinct
 IP prefix pools for network-assisted MPTCP deployments.
 * This solution supports both transparent and non-transparent
 operations.

2. Terminology

 The reader should be familiar with the terminology defined in
 [RFC6824].

 This document makes use of the following terms:

 o Client: an endhost that initiates transport flows forwarded along
 a single path. Such endhost is not assumed to support multipath
 transport capabilities.

 o Server: an endhost that communicates with a client. Such endhost
 is not assumed to support multipath transport capabilities.

 o Multipath Client: a Client that supports multipath transport
 capabilities.

 o Multipath Server: a Server that supports multipath transport
 capabilities. Both the client and the server can be single-homed
 or multi-homed. However, for the use cases discussed in this
 document, the number of interfaces available at the endhosts is
 not relevant.

 o Transport flow: a sequence of packets that belong to a
 unidirectional transport flow and which share at least one common
 characteristic (e.g., the same destination address). TCP and SCTP
 flows are composed of packets that have the same source and

Boucadair, et al. Expires September 10, 2017 [Page 5]

Internet-Draft Plain MPTCP Transport Mode March 2017

 destination addresses, the same protocol number and the same
 source and destination ports.

 o Multipath Conversion Point (MCP): a function that terminates a
 transport flow and relays all data carried in the flow into
 another transport flow.

 MCP is a function that converts a multipath transport flow and
 relays it over a single path transport flow and vice versa.

3. Target Use Cases

 We consider two important use cases in this document. We briefly
 introduce them in this section and leave the details to Section 6 and
 Section 7. The first use case is a Multipath Client that interacts
 with a remote Server through a MCP (Section 3.1). The second use
 case is a multi-homed CPE that includes a MCP and interacts with a
 remote Server through a downstream MCP (Section 3.2).

3.1. Multipath Client

 In this use case, the Multipath Client would like to take advantage
 of MPTCP even if the Server does not support MPTCP. A typical
 example is a smartphone that could use both WLAN and LTE access
 networks to reach a server in order to achieve higher bandwidth or
 better resilience.

 +--+ +-----+ +--+
 |C | | MCP | |S |
 +--+ +-----+ +--+
 | | |
 |<==================MPTCP Leg==============>|<---TCP -->|
 | | |

 Legend:
 C: Client
 MCP: Multipath Conversion Point
 S: Server

 Figure 1: Network-assisted MPTCP (Host-based Model)

 In reference to Figure 1, the MCP terminates the MPTCP connection
 established by the client and binds it to a TCP connection towards
 the remote server. Two deployments of this use case are possible.

 A first deployment is when the MCP is on the path between the
 Multipath Client and the Server. In this case, the MCP can terminate
 the MPTCP connection initiated by the Client and binds it to a TCP

Boucadair, et al. Expires September 10, 2017 [Page 6]

Internet-Draft Plain MPTCP Transport Mode March 2017

 connection that the MCP establishes with the Server. When the MCP is
 not located on all default forwarding paths, the MPTCP connection
 must be initiated by using the path where the MCP is located.

 A second deployment is when the MCP is not on the path between the
 Multipath Client and the Server. In this case, the Client must first
 initiate a connection towards the MCP and request it to initiate a
 TCP connection towards the Server. This is what the SOCKS protocol
 performs by exchanging control messages to create appropriate
 mappings to handle the connection. Unfortunately, this requires
 additional round-trip-time that affects the performance of the end-
 to-end data transfer, in particular for short-lived connections.

 This document specifies the MP_CONVERT Information Element that is
 carried in the SYN segment of the initial subflow. This SYN segment
 is sent towards the MCP. The MP_CONVERT Information Element contains
 the destination address (and optionally a port number) of the Server.
 Thanks to this information, the MCP can immediately establish the TCP
 connection with the Server without any additional round-trip-time,
 unlike a SOCKS-based MPTCP design.

3.2. Multipath CPE

 In this use case, neither the Client nor the Server support MPTCP.
 Two MCPs are used as illustrated in Figure 2. The upstream MCP is
 embedded in the CPE while the downstream MCP is located in the
 provider’s network. The CPE is attached to multiple access networks
 (e.g., xDSL and LTE). The upstream MCP transparently terminates the
 TCP connections initiated by the Client and converts them into MPTCP
 connections.

 Upstream Downstream
 +--+ +-----+ +-----+ +--+
 |H1| | MCP | | MCP | |RM|
 +--+ +-----+ +-----+ +--+
 | | | |
 |<---TCP--->|<========MPTCP Leg===========>|<---TCP--->|
 | | | |

 Figure 2: Network-assisted MPTCP (CPE-based Model)

 The same considerations detailed in Section 3.1 apply for the
 insertion of the downstream MCP in an MPTCP connection.

Boucadair, et al. Expires September 10, 2017 [Page 7]

Internet-Draft Plain MPTCP Transport Mode March 2017

4. The MP_PREFER_PROXY MPTCP Option

 The implicit mode assumes that the MCP is located on a default
 forwarding path (Section 5.2.2 of
 [I-D.nam-mptcp-deployment-considerations]). In such mode, the first
 subflow must always be placed over that primary path so that the MCP
 can intercept MPTCP flows. Once intercepted, the MCP advertises its
 reachability information by means of MPTCP signals (MP_JOIN or
 ADD_ADDR).

 In order to distinguish native MPTCP connections from proxied ones, a
 new MPTCP option, called MP_PREFER_PROXY, is defined. This option is
 meant to inform an on-path MCP that the connection should be proxied.
 The absence of the MP_PREFER_PROXY option is an indication that the
 corresponding MPTCP connection is native: an on-path MCP must not be
 involved in such connection. If no explicit signal is included in
 the initial SYN message, the MCP cannot distinguish "native" MPTCP
 connections from "proxied" ones.

4.1. Option Format

 The format of the MP_PREFER_PROXY is shown in Figure 3.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length |Subtype| Reserved |
 +---------------+---------------+-------+-----------------------+

 Figure 3: MP_PREFER_PROXY MPTCP Option

 o Kind and Length: are the same as those defined in Section 3 of
 [RFC6824]. The size of this option is 4 bytes.

 o Subtype: must be allocated by IANA (Section 9).

 o "Reserved" bits: are reserved bits for future assignment as
 additional flag bits. These additional flag bits MUST each be set
 to zero and MUST be ignored upon receipt.

4.2. Option Processing

 The MP_PREFER_PROXY option MUST only appear in the SYN message used
 to create the initial subflow of a Multipath TCP connection.

 If the MP_PREFER_PROXY appears in either a SYN segment that does not
 include the MP_CAPABLE option or a segment whose SYN flag is unset,

Boucadair, et al. Expires September 10, 2017 [Page 8]

Internet-Draft Plain MPTCP Transport Mode March 2017

 it MUST be ignored. An implementation MAY log this event since it
 likely indicates an operational issue.

 The sender inserts the MP_PREFER_PROXY option for MPTCP connections
 that it wants to be proxied by an on-path MCP. Such insertion is
 possible only when there is enough space left in the dedicated TCP
 option space.

 Upon receipt of a SYN message with an MP_CAPABLE, the MCP MUST check
 whether an MP_PREFER_PROXY option is present:

 o If no such option is included, the MCP MUST NOT interfere with
 that MPTCP connection (that is, it must not track this MPTCP
 connection). Processing subsequent subflows of this connection
 will be handled directly by the endpoints.

 o If the MP_PREFER_PROXY option is present, the MCP MUST track the
 establishment of the connection. That means that the MCP must be
 prepared to insert itself for the establishment of subsequent
 subflows, in particular.

 Section 5.2.2.1 of [I-D.nam-mptcp-deployment-considerations] details
 the use of the MP_PREFER_PROXY option.

5. Supplying Data to MCPs

 This section focuses mainly on th explicit mode (Section 5.2.1 of
 [I-D.nam-mptcp-deployment-considerations]) which assumes that the IP
 reachability information of an MCP is explicitly configured on a
 device, e.g., by means of a specific DHCP option
 [I-D.boucadair-mptcp-dhc].

5.1. The MP_CONVERT Information Element

 In order to avoid extra delays when establishing a proxied MPTCP
 connection, specific information are provided to an MCP during the
 3WHS. Such information is meant to help the MCP instantiate the
 required states to process the connection upstream. The supply of
 such information is achieved by means of an object called the
 MP_CONVERT (MC) Information Element (IE). This information element
 typically carries the source/destination IP addresses and/or port
 numbers of the used by the source and destination endpoints. Other
 information may also be supplied to an MCP; future extensions may be
 defined.

 The format of the MP_CONVERT Information Element is shown in
 Figure 4.

Boucadair, et al. Expires September 10, 2017 [Page 9]

Internet-Draft Plain MPTCP Transport Mode March 2017

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Magic Number |
 +---------------+---------------+---------------------------+-+-+
 | Type | Length | Reserved |D|M|
 +---------------+---------------+---------------------------+-+-+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +-------------------------------+-------------------------------+
 | Port (2 octets, optional) |
 +-------------------------------+

 Figure 4: MP_CONVERT Information Element

 The description of the fields is as follows:

 o Magic Number: This field MUST be set to "0xFAA8 0xFAA8" to
 indicate this is an MP_CONVERT Information Element. This field is
 meant to unambiguously distinguish any data supplied by an
 application from the one injected by an MCP. Other magic numbers
 are considered by the authors (e.g., 64 bits that include in
 addition to "0xFAA8 0xFAA8" 32 bits to enclose the RFC number).

 o Type: This field indicates the type of the MP_CONVERT Information
 Element. It MUST be set to 0 to indicate this element includes an
 IP address and, eventually, a port number. Other type values MAY
 be defined in the future.

 o Length: Indicates, in bytes, the length of MP_CONVERT Information
 Element. The minimum size of this option is 4 bytes.

 o "Reserved" bits: are reserved bits for future assignment as
 additional flag bits. These additional flag bits MUST each be set
 to zero and MUST be ignored upon receipt.

 o D-bit (Direction bit): this flag indicates whether the enclosed IP
 address (and port number) reflects the source or the destination
 IP address (and port number). When the D-bit is set, the enclosed
 IP address must be interpreted as the source IP address. When the
 D-bit is unset, the enclosed IP address must be interpreted as the
 destination IP address.

 o M-bit (More bit): When the M-bit is unset, it indicates that
 another MP_CONVERT IE is included. When the M-bit is set, it
 indicates this is the last MP_CONVERT IE included in the payload;
 if any data is placed right after this MP_CONVERT IE, it is
 application data.

Boucadair, et al. Expires September 10, 2017 [Page 10]

Internet-Draft Plain MPTCP Transport Mode March 2017

 o Address: includes a source or destination IP address. The address
 family is determined by the "Length" field. Concretely, a
 MP_CONVERT Information Element that carries an IPv4 address has a
 Length field of 8 bytes (or 10, if a port number is included). A
 MP_CONVERT Information Element that carries an IPv6 address has a
 Length of 20 bytes (or 22, if a port number is included).

 o Port: If the D-bit is set (resp. unset), a source (resp.
 destination) port number may be associated with the IP address.
 This field is valid for protocols that use a 16 bit port number
 (e.g., UDP, TCP, SCTP). This field is optional.

 If the length of MP_CONVERT Information Element is not a multiple of
 4 bytes, padding MUST be added to preserve 32 bits boundaries.

5.2. Processing an MP_CONVERT Information Element

 The MP_CONVERT Information Element is a variable length object that
 MUST NOT be used in TCP segments whose SYN flag is unset. This IE
 can only appear in the TCP control messages with SYN flag set. The
 information carried in the MP_CONVERT IE is used by an MCP to create
 the initial subflow of a Multipath TCP connection (see the example in
 Figure 5).

 Up to two MP_CONVERT Information Elements with type set to zero can
 appear inside a SYN segment. If two MP_CONVERT Information Elements
 with type zero are included, these options MUST NOT have the same
 D-bit value.

Boucadair, et al. Expires September 10, 2017 [Page 11]

Internet-Draft Plain MPTCP Transport Mode March 2017

 +----+ +-----+ +--+
 | C | | MCP | |S |
 +----+ +-----+ +--+
 | | ________________________________| |
 | / Initial subflow \ |
 | |========SYN(MP_CAPABLE+MC(S))===>| |
 | | |--SYN------->|
 | | |<--SYN/ACK---|
 | |<====SYN/ACK(MP_CAPABLE)=========| |
 | | ... | |
 | \ ________________________________/ |

 | | ________________________________| |
 | / Additional subflow \ |
 | \ ________________________________/ |

 Legend:
 <===>: MPTCP leg
 <--->: TCP leg
 MC(): MP_CONVERT Information Element

 Figure 5: Carrying the MP_CONVERT Information Element

 The MP_CONVERT Information Element MUST be included in the payload of
 a TCP segment whose SYN flag is set.

 If the MP_CONVERT Information Element appears in either a SYN segment
 that does not include the MP_CAPABLE option or a segment whose SYN
 flag is reset, it MUST be ignored. An implementation MAY log this
 event since it likely indicates an operational issue.

 If the original SYN message contains data in its payload (e.g.,
 [RFC7413]), that data MUST be placed right after the MP_CONVERT IEs
 when generating the SYN in the MPTCP leg.

 An implementation MUST ignore MP_CONVERT Information Elements that
 include multicast, broadcast, and host loopback addresses [RFC6890].
 Concretely, an implementation that receives an MP_CONVERT Information
 Element with such addresses MUST silently tear down the MPTCP
 connection.

 An implementation that supports the MP_CONVERT Information Element
 with type zero MUST echo in the SYN/ACK the instances of the
 MP_CONVERT Information Elements included in a SYN received from the
 sender. A sender that does not receive in a SYN/ACK a copy of the
 MP_CONVERT Information Elements it included in a SYN message MUST
 terminate the MPTCP connection and falls back to TCP or native MPTCP
 connection. Furthermore, the sender MUST add an entry to its local

Boucadair, et al. Expires September 10, 2017 [Page 12]

Internet-Draft Plain MPTCP Transport Mode March 2017

 cache to record the MCPs that do not support the MP_CONVERT
 Information Element. This cache MUST be flushed out under the
 following conditions: a new network attachment is detected by the
 host, a new MCP is configured, the host gets a new IP address/prefix,
 or a TTL has expired. Subsequent connections to an MCP in the cache
 MUST NOT be placed using the explicit proxy mode. This procedure is
 denoted as MCP capability discovery.

 In the following sections, MP_CONVERT Information Element is used to
 refer to the MP_CONVERT Information Element with the type field set
 to zero. Future documents will specify the exact behavior of
 processing MP_CONVERT Information Elements with a non zero type
 field.

6. MPTCP Connections from a Multipath TCP Client

6.1. Description

 The simplest usage of the MP_CONVERT Information Element is when a
 Multipath TCP Client wants to use MPTCP to efficiently utilise
 different network paths (e.g., WLAN and LTE from a smartphone) to
 reach a server that does not support Multipath TCP. The basic
 operation is illustrated in Figure 6.

 To use its multipath capabilities to establish an MPTCP connection
 over the available networks, the Client splits its end-to-end
 connection towards the TCP Server into two:

 (1) An MPTCP connection, that typically relies upon the
 establishment of one subflow per network path, is established
 between the client and the MCP.

 (2) A TCP connection that is established by the MCP with the server.

 Any data that is eligible to be transported over the MPTCP connection
 is sent by the Client towards the MCP over the MPTCP connection. The
 MCP then forwards these data over the regular TCP connection until
 they reach the server. The same forwarding principle applies for the
 data sent by the Server over the TCP connection with the MCP.

Boucadair, et al. Expires September 10, 2017 [Page 13]

Internet-Draft Plain MPTCP Transport Mode March 2017

 C <===========>MCP <------------> S
 +<============>+

 Legend:
 <===>: subflows of the upstream MPTCP connection
 <--->: downstream TCP connection

 Figure 6: A Multipath TCP Client interacts with a Server through a
 Multipath Conversion Point

6.2. Theory of Operation

 We assume in this section that the Multipath TCP Client has been
 configured with the IP address of one or more MCPs which convert the
 Multipath TCP connection into a regular TCP connection. The address
 of such MCPs can be statically configured on the Client, dynamically
 provisioned to the MPTCP Client by means of a DHCP option
 [I-D.boucadair-mptcp-dhc], or by any other means that are outside the
 scope of this document.

 Conceptually, the MCP acts as a relay between an upstream MPTCP
 connection and a downstream TCP connection. The MCP has at least a
 single IP address that is reachable from the Multipath TCP Client.
 It may be assigned other IP addresses. For the sake of simplicity,
 we assume in this section that the MCP has a single IP address
 denoted MCP@. Similarly, we assume that the client has two addresses
 C@1 and C@2 while address S@ is assigned to the server.

 The MCP maps an upstream MPTCP connection (and its associated
 subflows) onto a downstream TCP connection. On the MCP, an
 established Multipath TCP connection can be identified by the local
 Token that was assigned upon reception of the SYN segment.

 This Token is guaranteed to be unique on the MCP (provided that it
 has a single IP address) during the entire lifetime of the MPTCP
 connection. The 4-tuple (IP src, IP dst, Port src, Port dst) is used
 to identify the downstream TCP connection.

 To initiate a connection to a remote server S, the Multipath TCP
 Client sends a SYN segment towards the MCP that includes the
 MP_CONVERT Information Element described in Figure 4. The
 destination address of the SYN segment is the IP address of the MCP.
 The MP_CONVERT Information Element included in the SYN contains the
 IP address and optionally the destination port of the Server (see
 Figure 7).

Boucadair, et al. Expires September 10, 2017 [Page 14]

Internet-Draft Plain MPTCP Transport Mode March 2017

 +----+ +-----+ +--+
 | C | | MCP | |S |
 +----+ +-----+ +--+
 C@1 C@2 MCP@ S@
 | | ________________________________| |
 | / Initial subflow \ |
 | |=======SYN(MP_CAPABLE+MC(S@))===>| |
 | | |--SYN---->|
 | | |<-SYN/ACK-|
 | |<====SYN/ACK(MP_CAPABLE)=========| |
 | | ... | |
 | \ ________________________________/ |

 | |________________________________ | |
 | / Additional subflow \| |
 | \ ________________________________/ |

 Legend:
 <===>: MPTCP leg
 <--->: TCP leg

 Figure 7: Single-ended MCP Flow Example

 The MCP processes this SYN segment as follows. First, it generates
 the local key and a unique Token for the Multipath TCP connection.
 This Token identifies the MPTCP connection. It is passed to the MCP
 together with the contents of the MP_CONVERT Information Element
 (i.e., the address of the destination server) and the destination
 port.

 The MCP then establishes a TCP connection with the destination
 server. If the received MP_CONVERT Information Element contains a
 port number, it is used as the destination port of the outgoing TCP
 connection that is being established by the MCP. Otherwise, the
 destination port of the upstream MPTCP connection is used as the
 destination port of the downstream TCP connection. The MCP creates a
 flow entry for the downstream TCP connection and maps the upstream
 MPTCP connection onto the downstream TCP connection.

 The downstream TCP connection is considered to be active upon
 reception of the SYN/ACK segment sent by the destination server. The
 reception of this segment triggers the MCP that confirms the
 establishment of the upstream MPTCP connection by sending a SYN/ACK
 segment towards the Multipath TCP Client (including MP_Convert).

 At this point, there are two established connections. The endpoints
 of the upstream Multipath TCP connection are the Multipath TCP Client

Boucadair, et al. Expires September 10, 2017 [Page 15]

Internet-Draft Plain MPTCP Transport Mode March 2017

 and the MCP. The endpoints of the downstream TCP connection are the
 MCP and the Server. These two connections are bound by the MCP.

 All the techniques defined in [RFC6824] can be used by the upstream
 Multipath TCP connection. In particular, the subflows established
 over the different network paths can be controlled by either the
 Multipath TCP Client or the MCP. It is likely that the network
 operators that deploy MCPs will define policies for the utilisation
 of the MCP. These policies are discussed in Section 5.6 of
 [I-D.nam-mptcp-deployment-considerations].

 Any data received by the MCP on the upstream Multipath TCP connection
 will be forwarded by the MCP over the bound downstream TCP
 connection. The same applies for data received over the downstream
 TCP connection which will be forwarded by the MCP over the upstream
 Multipath TCP connection.

 One of the functions of the MCP is to maintain the binding between
 the upstream Multipath TCP connection and the downstream TCP
 connection. If the downstream TCP connection fails for some reason
 (excessive retransmissions, reception of a RST segment, etc.), then
 the MCP SHOULD force the teardown of the upstream Multipath TCP
 connection by transmitting a FASTCLOSE. Similarly, if the upstream
 Multipath TCP connection fails for some reason (e.g., reception of a
 FASTCLOSE), the MCP SHOULD tear the downstream TCP connection down
 and remove the flow entries.

 The same reasoning applies when the upstream Multipath TCP connection
 ends with the transmission of DATA_FINs. In this case, the MCP
 SHOULD also terminate the bound downstream TCP connection by using
 FIN segments. If the downstream TCP connection terminates with the
 exchange of FIN segments, the MCP SHOULD initiate a graceful
 termination of the bound upstream Multipath TCP connection.

 An MCP SHOULD associate a lifetime with the Multipath TCP and TCP
 flow entries. In this case, it SHOULD use the same lifetime for each
 pair of bounded connections.

7. MPTCP Connections Between Single Path Client and Server

7.1. Description

 There are situations where neither the client nor the server can use
 multipath transport protocols albeit network providers would want to
 optimize network resource usage by means of multi-path communication
 techniques. Hybrid access service offerings are typical business
 incentives for such situations, where network operators combine a
 fixed network (e.g., xDSL) with a wireless network (e.g., LTE). In

Boucadair, et al. Expires September 10, 2017 [Page 16]

Internet-Draft Plain MPTCP Transport Mode March 2017

 this case, as illustrated in Figure 8, two MCPs are used for each
 flow. The first MCP, located downstream of the client, converts the
 single path TCP connection originated from the client into a
 Multipath TCP connection established with a second MCP. The latter
 will then establish a TCP connection with the destination server.

 Upstream Downstream
 C <---> MCP <===========> MCP <------------> S
 +<=============>+

 Legend:
 <===>: MPTCP leg
 <--->: TCP leg

 Figure 8: A Client interacts with a Server through an upstream and a
 downstream Multipath Conversion Points

7.2. Theory of Operation

7.2.1. Downstream MCP

 The downstream MCP can be deployed on-path or off-path. If the
 downstream MCP is deployed off-path, its behavior is described in
 Section 6.2.

 If the downstream MCP is deployed on-path, it only terminates MPTCP
 connections that carry an empty MP_PREFER_PROXY option inside their
 SYN (i.e., no address is conveyed). If the MCP receives a SYN
 segment that contains the MP_CAPABLE option but no MP_PREFER_PROXY,
 it MUST forward the SYN to its final destination without any
 modification.

7.2.2. Upstream MCP

 The upstream and downstream MCPs cooperate. The upstream MCP may be
 configured with the addresses of downstream MCPs. If the downstream
 MCP is deployed on-path, the upstream MCP inserts an MP_PREFER_PROXY
 option.

 In this section, we assume that the upstream MCP has been configured
 with one address of the downstream MCP. This address can be
 configured statically, dynamically distributed by means of a DHCP
 option [I-D.boucadair-mptcp-dhc], or by any other means that are
 outside the scope of this document.

 We assume that the upstream MCP has two addresses uMCP@1 and uMCP@2
 while the downstream MCP is assigned a single IP address dMCP@.

Boucadair, et al. Expires September 10, 2017 [Page 17]

Internet-Draft Plain MPTCP Transport Mode March 2017

 The upstream MCP maps an upstream TCP connection onto a downstream
 MPTCP connection (and its associated subflows) . On the upstream MCP,
 an established MPTCP connection can be identified by the local Token
 that was assigned upon reception of the SYN segment from the Client.

 The Client sends a SYN segment addressed to the Server and it is
 intercepted by the upstream MCP which in turns initiates an MPTCP
 connection towards its downstream MCP that includes the MP_CONVERT
 Information Element described in Figure 4. The destination address
 of the SYN segment is the IP address of the downstream MCP. The
 MP_CONVERT Information Element included in the SYN contains the IP
 address and optionally the destination port of the Server; this
 information is extracted from the SYN message received over the
 upstream TCP connection.

 Concretely, the upstream MCP processes the SYN segment received from
 the Client as follows.

 First, it generates the local key and a unique Token for the
 Multipath TCP connection to identify the MPTCP connection. It
 extracts the destination IP address and, optionally, the destination
 port that will then be carried in a MP_CONVERT Information Element.
 The upstream MCP establishes an MPTCP connection with the downstream
 MCP. The upstream MCP creates a flow entry for the downstream MPTCP
 connection and maps the upstream TCP connection onto the downstream
 MPTCP connection.

 The downstream MPTCP connection is considered to be active upon
 reception of the SYN+ACK segment from the downstream MCP. The
 reception of this segment triggers the upstream MCP that confirms the
 establishment of the upstream TCP connection by sending a SYN+ACK
 segment towards the TCP Client.

 At this point, there are two established connections maintained by
 the upstream MCP:

 (1) The endpoints of the upstream TCP connection are the Client and
 the upstream MCP.

 (2) The endpoints of the downstream MPTCP connection are the
 upstream MCP and the downstream MCP.

 These two connections are bound by the upstream MCP. An example is
 shown in Figure 9.

Boucadair, et al. Expires September 10, 2017 [Page 18]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Upstream Downstream
 +--+ +-----+ +-----+ +--+
 |C1| | MCP | | MCP | |S1|
 +--+ +-----+ +-----+ +--+
 C@1 uMCP@1 uMCP@2 dMCP@ S@
 | | |______________________________| |
 |--SYN--->|/ Initial subflow \ |
 | |=======SYN(MP_CAPABLE+MC(S@))==>| |
 | | |--SYN---->|
 | | |<-SYN/ACK-|
 | |<====SYN/ACK(MP_CAPABLE)========| |
 |<SYN/ACK-| ... | |
 | \ ______________________________/ |

 | | | ____________________________ | |
 | | |/ Additional subflow \| |
 | | |\ ___________________________/| |

 Figure 9: Dual-Ended MCP Flow Example

 All the techniques defined in [RFC6824] can be used by the MPTCP
 connection. In particular, the utilisation of the different network
 paths can be controlled by one MCP or the other.

 Any data received by the upstream MCP over the upstream TCP
 connection will be forwarded by the MCP over the bound downstream
 MPTCP connection, assuming such data are eligible to MPTCP transport.
 The same applies for data received over the downstream MPTCP
 connection which will be forwarded by the upstream MCP over the
 upstream TCP connection.

 The same considerations as in Section 6.2 apply for the maintenance
 of the connections by the upstream MCP.

8. Interaction with TFO

 This section discusses the implications of using MP_CONVERT
 Information Elements with TCP Fast Open (TFO). We distinguish
 between TFO negotiation (i.e., a Fast Open option with an empty
 cookie field to request a cookie) and TFO data (i.e., SYN with data
 and the cookie in the Fast Open option).

 This section focuses on the implications of using MP_CONVERT
 Information Element on TFO efficiency. Implications related to MPTCP
 options and TFO negotiation are not specific to this document; the
 reader may refer to [I-D.barre-mptcp-tfo].

Boucadair, et al. Expires September 10, 2017 [Page 19]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Distinct implications are assessed depending whether TFO negotiation
 and usage occurs before MCP capability discovery phase is completed
 or not (Section 5.2). Concretely, the following cases are discussed:

 1. MCP capability discovery was already completed prior to receiving
 a message with TFO negotiation or TFO data: For this case, the
 host has already contacted its MCP in the context of a prior
 connection. The outcome of such connections is used to determine
 the capabilities of its MCP (Section 5.2).

 A. The MCP supports MP_CONVERT Information Element: Any
 information provided to an MCP to facilitate MPTCP operation
 is unambiguously distinguished from TFO data that are also
 included in the SYN payload. An upstream MCP will remove the
 MP_CONVERT Information Elements before relaying the SYN
 message (with TFO data) to the next hop.

 B. The MCP does not support MP_CONVERT Information Element: No
 additional issue is raised for obvious reasons.

 2. MCP capability discovery is not completed prior to receiving a
 message with TFO negotiation or TFO data.

 A. If the same message is used to negotiate TFO and to retrieve
 the capabilities of the MCP, extra delay may be observed
 before negotiating TFO if the MCP does not support the
 MP_CONVERT Information Element. Obviously, no concern is
 raised when the MCP supports the MP_CONVERT Information
 Element.

 B. If the same message includes TFO data and is used to retrieve
 the capabilities of the MCP, extra delay may be observed
 before negotiating TFO if the MCP does not support the
 MP_CONVERT Information Element. Obviously, no concern is
 raised when the MCP supports the MP_CONVERT Information
 Element.

 To mitigate cases where extra delays are experienced when TFO is
 present, it is RECOMMENDED to not proxy connections with TFO before
 the MCP capability discovery procedure is completed.

9. IANA Considerations

 This document requests an MPTCP subtype code for this option:

 o MP_PREFER_PROXY

Boucadair, et al. Expires September 10, 2017 [Page 20]

Internet-Draft Plain MPTCP Transport Mode March 2017

10. Security Considerations

 MPTCP-related security threats are discussed in [RFC6181] and
 [RFC6824]. Additional considerations are discussed in the following
 sub-sections.

10.1. Privacy

 The MCP may have access to privacy-related information (e.g., IMSI,
 link identifier, subscriber credentials, etc.). The MCP MUST NOT
 leak such sensitive information outside a local domain.

10.2. Denial-of-Service (DoS)

 Means to protect the MCP against Denial-of-Service (DoS) attacks MUST
 be enabled. Such means include the enforcement of ingress filtering
 policies at the network boundaries [RFC2827].

 In order to prevent the exhaustion of MCP resources by establishing a
 great number of simultaneous subflows for each MPTCP connection, the
 MCP administrator SHOULD limit the number of allowed subflows per CPE
 for a given connection. Means to protect against SYN flooding
 attacks MUST also be enabled ([RFC4987]).

 Attacks that originate outside of the domain can be prevented if
 ingress filtering policies are enforced. Nevertheless, attacks from
 within the network between a host and an MCP instance are yet another
 actual threat. Means to ensure that illegitimate nodes cannot
 connect to a network should be implemented.

10.3. Illegitimate MCP

 Traffic theft is a risk if an illegitimate MCP is inserted in the
 path. Indeed, inserting an illegitimate MCP in the forwarding path
 allows traffic intercept and can therefore provide access to
 sensitive data issued by or destined to a host. To mitigate this
 threat, secure means to discover an MCP should be enabled.

11. Acknowledgements

 Many thanks to Chi Dung Phung, Mingui Zhang, Rao Shoaib, Yoshifumi
 Nishida, and Christoph Paasch for their valuable comments.

 Thanks to Ian Farrer, Mikael Abrahamsson, Alan Ford, Dan Wing, and
 Sri Gundavelli for the fruitful discussions in IETF#95 (Buenos
 Aires).

Boucadair, et al. Expires September 10, 2017 [Page 21]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Special thanks to Pierrick Seite, Yannick Le Goff, Fred Klamm, and
 Xavier Grall for their inputs.

 Thanks also to Olaf Schleusing, Martin Gysi, Thomas Zasowski, Andreas
 Burkhard, Silka Simmen, Sandro Berger, Michael Melloul, Jean-Yves
 Flahaut, Adrien Desportes, Gregory Detal, Benjamin David, Arun
 Srinivasan, and Raghavendra Mallya for the discussion.

 The design approach adopted in -10 is the outcome of fruitful
 discussions with Alan Ford. Many thanks Alan.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [RFC6890] Cotton, M., Vegoda, L., Bonica, R., Ed., and B. Haberman,
 "Special-Purpose IP Address Registries", BCP 153,
 RFC 6890, DOI 10.17487/RFC6890, April 2013,
 <http://www.rfc-editor.org/info/rfc6890>.

12.2. Informative References

 [I-D.barre-mptcp-tfo]
 Barre, S., Detal, G., and O. Bonaventure, "TFO support for
 Multipath TCP", draft-barre-mptcp-tfo-01 (work in
 progress), January 2015.

 [I-D.boucadair-mptcp-dhc]
 Boucadair, M., Jacquenet, C., and T. Reddy, "DHCP Options
 for Network-Assisted Multipath TCP (MPTCP)", draft-
 boucadair-mptcp-dhc-06 (work in progress), October 2016.

 [I-D.nam-mptcp-deployment-considerations]
 Boucadair, M., Jacquenet, C., Bonaventure, O., Henderickx,
 W., and R. Skog, "Network-Assisted MPTCP: Use Cases,
 Deployment Scenarios and Operational Considerations",
 draft-nam-mptcp-deployment-considerations-01 (work in
 progress), December 2016.

Boucadair, et al. Expires September 10, 2017 [Page 22]

Internet-Draft Plain MPTCP Transport Mode March 2017

 [I-D.zhang-gre-tunnel-bonding]
 Leymann, N., Heidemann, C., Zhang, M., Sarikaya, B., and
 M. Cullen, "Huawei’s GRE Tunnel Bonding Protocol", draft-
 zhang-gre-tunnel-bonding-05 (work in progress), December
 2016.

 [RFC1701] Hanks, S., Li, T., Farinacci, D., and P. Traina, "Generic
 Routing Encapsulation (GRE)", RFC 1701,
 DOI 10.17487/RFC1701, October 1994,
 <http://www.rfc-editor.org/info/rfc1701>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <http://www.rfc-editor.org/info/rfc1928>.

 [RFC2473] Conta, A. and S. Deering, "Generic Packet Tunneling in
 IPv6 Specification", RFC 2473, DOI 10.17487/RFC2473,
 December 1998, <http://www.rfc-editor.org/info/rfc2473>.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <http://www.rfc-editor.org/info/rfc2827>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2011,
 <http://www.rfc-editor.org/info/rfc6181>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

 [TR-348] BBF, "Hybrid Access Broadband Network Architecture", July
 2016.

Authors’ Addresses

Boucadair, et al. Expires September 10, 2017 [Page 23]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Mohamed Boucadair (editor)
 Orange
 Rennes 35000
 France

 Email: mohamed.boucadair@orange.com

 Christian Jacquenet (editor)
 Orange
 Rennes
 France

 Email: christian.jacquenet@orange.com

 Olivier Bonaventure (editor)
 Tessares
 Belgium

 Email: olivier.bonaventure@tessares.net

 Denis Behaghel
 OneAccess

 Email: Denis.Behaghel@oneaccess-net.com

 Stefano Secci
 UPMC

 Email: stefano.secci@lip6.fr

 Wim Henderickx (editor)
 Nokia/Alcatel-Lucent
 Belgium

 Email: wim.henderickx@alcatel-lucent.com

 Robert Skog (editor)
 Ericsson

 Email: robert.skog@ericsson.com

Boucadair, et al. Expires September 10, 2017 [Page 24]

Internet-Draft Plain MPTCP Transport Mode March 2017

 Suresh Vinapamula
 Juniper
 1137 Innovation Way
 Sunnyvale, CA 94089
 USA

 Email: Sureshk@juniper.net

 SungHoon Seo
 Korea Telecom
 Seoul
 Korea

 Email: sh.seo@kt.com

 Wouter Cloetens
 SoftAtHome
 Vaartdijk 3 701
 3018 Wijgmaal
 Belgium

 Email: wouter.cloetens@softathome.com

 Ullrich Meyer
 Vodafone
 Germany

 Email: ullrich.meyer@vodafone.com

 Luis M. Contreras
 Telefonica
 Spain

 Email: luismiguel.contrerasmurillo@telefonica.com

 Bart Peirens
 Proximus

 Email: bart.peirens@proximus.com

Boucadair, et al. Expires September 10, 2017 [Page 25]

MPTCP Working Group O. Bonaventure
Internet-Draft UCLouvain
Intended status: Informational C. Paasch
Expires: April 21, 2016 Apple, Inc.
 G. Detal
 UCLouvain and Tessares
 October 19, 2015

 Use Cases and Operational Experience with Multipath TCP
 draft-ietf-mptcp-experience-03

Abstract

 This document discusses both use cases and operational experience
 with Multipath TCP in real world networks. It lists several
 prominent use cases for which Multipath TCP has been considered and
 is being used. It also gives insight to some heuristics and
 decisions that have helped to realize these use cases.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bonaventure, et al. Expires April 21, 2016 [Page 1]

Internet-Draft MPTCP Experience October 2015

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Use cases . 4
 2.1. Datacenters . 4
 2.2. Cellular/WiFi Offload 5
 2.3. Multipath TCP proxies 7
 3. Operational Experience 9
 3.1. Middlebox interference 9
 3.2. Congestion control 11
 3.3. Subflow management 11
 3.4. Implemented subflow managers 12
 3.5. Subflow destination port 14
 3.6. Closing subflows . 15
 3.7. Packet schedulers . 16
 3.8. Segment size selection 17
 3.9. Interactions with the Domain Name System 17
 3.10. Captive portals . 18
 3.11. Stateless webservers 19
 3.12. Loadbalanced serverfarms 20
 4. Conclusion . 20
 5. Acknowledgements . 20
 6. Informative References 21
 Appendix A. Changelog . 26
 Authors’ Addresses . 27

1. Introduction

 Multipath TCP was standardized in [RFC6824] and five independant
 implementations have been developed
 [I-D.eardley-mptcp-implementations-survey]. As of September 2015,
 Multipath TCP has been or is being implemented on the following
 platforms :

 o Linux kernel [MultipathTCP-Linux]

 o Apple iOS and MacOS [Apple-MPTCP]

 o Citrix load balancers

 o FreeBSD [FreeBSD-MPTCP]

 o Oracle

Bonaventure, et al. Expires April 21, 2016 [Page 2]

Internet-Draft MPTCP Experience October 2015

 The first three implementations
 [I-D.eardley-mptcp-implementations-survey] are known to interoperate.
 The last two are currently being tested and improved against the
 Linux implementation. Three of these implementations are open-
 source. Apple’s implementation is widely deployed.

 Since the publication of [RFC6824], experience has been gathered by
 various network researchers and users about the operational issues
 that arise when Multipath TCP is used in today’s Internet.

 When the MPTCP working group was created, several use cases for
 Multipath TCP were identified [RFC6182]. Since then, other use cases
 have been proposed and some have been tested and even deployed. We
 describe these use cases in Section 2.

 Section 3 focuses on the operational experience with Multipath TCP.
 Most of this experience comes from the utilisation of the Multipath
 TCP implementation in the Linux kernel [MultipathTCP-Linux]. This
 open-source implementation has been downloaded and is used by
 thousands of users all over the world. Many of these users have
 provided direct or indirect feedback by writing documents (scientific
 articles or blog messages) or posting to the mptcp-dev mailing list
 (see https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev). This
 Multipath TCP implementation is actively maintained and continuously
 improved. It is used on various types of hosts, ranging from
 smartphones or embedded routers to high-end servers.

 The Multipath TCP implementation in the Linux kernel is not, by far,
 the most widespread deployment of Multipath TCP. Since September
 2013, Multipath TCP is also supported on smartphones and tablets
 running iOS7 [IOS7]. There are likely hundreds of millions of
 Multipath TCP enabled devices. However, this particular Multipath
 TCP implementation is currently only used to support a single
 application. Unfortunately, there is no public information about the
 lessons learned from this large scale deployment.

 Section 3 is organized as follows. Supporting the middleboxes was
 one of the difficult issues in designing the Multipath TCP protocol.
 We explain in Section 3.1 which types of middleboxes the Linux Kernel
 implementation of Multipath TCP supports and how it reacts upon
 encountering these. Section 3.2 summarises the MPTCP specific
 congestion controls that have been implemented. Section 3.3 and
 Section 3.7 discuss heuristics and issues with respect to subflow
 management as well as the scheduling across the subflows.
 Section 3.8 explains some problems that occurred with subflows having
 different Maximum Segment Size (MSS) values. Section 3.9 presents
 issues with respect to content delivery networks and suggests a

Bonaventure, et al. Expires April 21, 2016 [Page 3]

Internet-Draft MPTCP Experience October 2015

 solution to this issue. Finally, Section 3.10 documents an issue
 with captive portals where MPTCP will behave suboptimally.

2. Use cases

 Multipath TCP has been tested in several use cases. There is already
 an abundant scientific literature on Multipath TCP [MPTCPBIB].
 Several of the papers published in the scientific literature have
 identified possible improvements that are worth being discussed here.

2.1. Datacenters

 A first, although initially unexpected, documented use case for
 Multipath TCP has been in datacenters [HotNets][SIGCOMM11]. Today’s
 datacenters are designed to provide several paths between single-
 homed servers. The multiplicity of these paths comes from the
 utilization of Equal Cost Multipath (ECMP) and other load balancing
 techniques inside the datacenter. Most of the deployed load
 balancing techniques in datacenters rely on hashes computed over the
 five tuple. Thus all packets from the same TCP connection follow the
 same path and so are not reordered. The results in [HotNets]
 demonstrate by simulations that Multipath TCP can achieve a better
 utilization of the available network by using multiple subflows for
 each Multipath TCP session. Although [RFC6182] assumes that at least
 one of the communicating hosts has several IP addresses, [HotNets]
 demonstrates that Multipath TCP is beneficial when both hosts are
 single-homed. This idea is analysed in more details in [SIGCOMM11]
 where the Multipath TCP implementation in the Linux kernel is
 modified to be able to use several subflows from the same IP address.
 Measurements in a public datacenter show the quantitative benefits of
 Multipath TCP [SIGCOMM11] in this environment.

 Although ECMP is widely used inside datacenters, this is not the only
 environment where there are different paths between a pair of hosts.
 ECMP and other load balancing techniques such as Link Aggregation
 Groups (LAG) are widely used in today’s networks and having multiple
 paths between a pair of single-homed hosts is becoming the norm
 instead of the exception. Although these multiple paths have often
 the same cost (from an IGP metrics viewpoint), they do not
 necessarily have the same performance. For example, [IMC13c] reports
 the results of a long measurement study showing that load balanced
 Internet paths between that same pair of hosts can have huge delay
 differences.

Bonaventure, et al. Expires April 21, 2016 [Page 4]

Internet-Draft MPTCP Experience October 2015

2.2. Cellular/WiFi Offload

 A second use case that has been explored by several network
 researchers is the cellular/WiFi offload use case. Smartphones or
 other mobile devices equipped with two wireless interfaces are a very
 common use case for Multipath TCP. In September 2015, this is also
 the largest deployment of Multipath-TCP enabled devices [IOS7]. It
 has been briefly discussed during IETF88 [ietf88], but there is no
 published paper or report that analyses this deployment. For this
 reason, we only discuss published papers that have mainly used the
 Multipath TCP implementation in the Linux kernel for their
 experiments.

 The performance of Multipath TCP in wireless networks was briefly
 evaluated in [NSDI12]. One experiment analyzes the performance of
 Multipath TCP on a client with two wireless interfaces. This
 evaluation shows that when the receive window is large, Multipath TCP
 can efficiently use the two available links. However, if the window
 becomes smaller, then packets sent on a slow path can block the
 transmission of packets on a faster path. In some cases, the
 performance of Multipath TCP over two paths can become lower than the
 performance of regular TCP over the best performing path. Two
 heuristics, reinjection and penalization, are proposed in [NSDI12] to
 solve this identified performance problem. These two heuristics have
 since been used in the Multipath TCP implementation in the Linux
 kernel. [CONEXT13] explored the problem in more detail and revealed
 some other scenarios where Multipath TCP can have difficulties in
 efficiently pooling the available paths. Improvements to the
 Multipath TCP implementation in the Linux kernel are proposed in
 [CONEXT13] to cope with some of these problems.

 The first experimental analysis of Multipath TCP in a public wireless
 environment was presented in [Cellnet12]. These measurements explore
 the ability of Multipath TCP to use two wireless networks (real WiFi
 and 3G networks). Three modes of operation are compared. The first
 mode of operation is the simultaneous use of the two wireless
 networks. In this mode, Multipath TCP pools the available resources
 and uses both wireless interfaces. This mode provides fast handover
 from WiFi to cellular or the opposite when the user moves.
 Measurements presented in [CACM14] show that the handover from one
 wireless network to another is not an abrupt process. When a host
 moves, there are regions where the quality of one of the wireless
 networks is weaker than the other, but the host considers this
 wireless network to still be up. When a mobile host enters such
 regions, its ability to send packets over another wireless network is
 important to ensure a smooth handover. This is clearly illustrated
 from the packet trace discussed in [CACM14].

Bonaventure, et al. Expires April 21, 2016 [Page 5]

Internet-Draft MPTCP Experience October 2015

 Many cellular networks use volume-based pricing and users often
 prefer to use unmetered WiFi networks when available instead of
 metered cellular networks. [Cellnet12] implements support for the
 MP_PRIO option to explore two other modes of operation.

 In the backup mode, Multipath TCP opens a TCP subflow over each
 interface, but the cellular interface is configured in backup mode.
 This implies that data only flows over only the WiFi interface when
 both interfaces are considered to be active. If the WiFi interface
 fails, then the traffic switches quickly to the cellular interface,
 ensuring a smooth handover from the user’s viewpoint [Cellnet12].
 The cost of this approach is that the WiFi and cellular interfaces
 are likely to remain active all the time since all subflows are
 established over the two interfaces.

 The single-path mode is slightly different. This mode benefits from
 the break-before-make capability of Multipath TCP. When an MPTCP
 session is established, a subflow is created over the WiFi interface.
 No packet is sent over the cellular interface as long as the WiFi
 interface remains up [Cellnet12]. This implies that the cellular
 interface can remain idle and battery capacity is preserved. When
 the WiFi interface fails, a new subflow is established over the
 cellular interface in order to preserve the established Multipath TCP
 sessions. Compared to the backup mode described earlier,
 measurements reported in [Cellnet12] indicate that this mode of
 operation is characterised by a throughput drop while the cellular
 interface is brought up and the subflows are reestablished.

 From a protocol viewpoint, [Cellnet12] discusses the problem posed by
 the unreliability of the ADD_ADDR option and proposes a small
 protocol extension to allow hosts to reliably exchange this option.
 It would be useful to analyze packet traces to understand whether the
 unreliability of the REMOVE_ADDR option poses an operational problem
 in real deployments.

 Another study of the performance of Multipath TCP in wireless
 networks was reported in [IMC13b]. This study uses laptops connected
 to various cellular ISPs and WiFi hotspots. It compares various file
 transfer scenarios. [IMC13b] observes that 4-path MPTCP outperforms
 2-path MPTCP, especially for larger files. The comparison between
 LIA, OLIA and Reno does not reveal a significant performance
 difference for file sizes smaller than 4MB.

 A different study of the performance of Multipath TCP with two
 wireless networks is presented in [INFOCOM14]. In this study the two
 networks had different qualities : a good network and a lossy
 network. When using two paths with different packet loss ratios, the
 Multipath TCP congestion control scheme moves traffic away from the

Bonaventure, et al. Expires April 21, 2016 [Page 6]

Internet-Draft MPTCP Experience October 2015

 lossy link that is considered to be congested. However, [INFOCOM14]
 documents an interesting scenario that is summarised in Figure 1.

 client ----------- path1 -------- server
 | |
 +--------------- path2 ------------+

 Figure 1: Simple network topology

 Initially, the two paths have the same quality and Multipath TCP
 distributes the load over both of them. During the transfer, the
 second path becomes lossy, e.g. because the client moves. Multipath
 TCP detects the packet losses and they are retransmitted over the
 first path. This enables the data transfer to continue over the
 first path. However, the subflow over the second path is still up
 and transmits one packet from time to time. Although the N packets
 have been acknowledged over the first subflow (at the MPTCP level),
 they have not been acknowledged at the TCP level over the second
 subflow. To preserve the continuity of the sequence numbers over the
 second subflow, TCP will continue to retransmit these segments until
 either they are acknowledged or the maximum number of retransmissions
 is reached. This behavior is clearly inefficient and may lead to
 blocking since the second subflow will consume window space to be
 able to retransmit these packets. [INFOCOM14] proposes a new
 Multipath TCP option to solve this problem. In practice, a new TCP
 option is probably not required. When the client detects that the
 data transmitted over the second subflow has been acknowledged over
 the first subflow, it could decide to terminate the second subflow by
 sending a RST segment. If the interface associated to this subflow
 is still up, a new subflow could be immediately reestablished. It
 would then be immediately usable to send new data and would not be
 forced to first retransmit the previously transmitted data. As of
 this writing, this dynamic management of the subflows is not yet
 implemented in the Multipath TCP implementation in the Linux kernel.

2.3. Multipath TCP proxies

 As Multipath TCP is not yet widely deployed on both clients and
 servers, several deployments have used various forms of proxies. Two
 families of solutions are currently being used or tested
 [I-D.deng-mptcp-proxy].

 A first use case is when a Multipath TCP enabled client wants to use
 several interfaces to reach a regular TCP server. A typical use case
 is a smartphone that needs to use both its WiFi and its cellular
 interface to transfer data. Several types of proxies are possible
 for this use case. An HTTP proxy deployed on a Multipath TCP capable

Bonaventure, et al. Expires April 21, 2016 [Page 7]

Internet-Draft MPTCP Experience October 2015

 server would enable the smartphone to use Multipath TCP to access
 regular web servers. Obviously, this solution only works for
 applications that rely on HTTP. Another possibility is to use a
 proxy that can convert any Multipath TCP connection into a regular
 TCP connection. Multipath TCP-specific proxies have been proposed
 [I-D.wei-mptcp-proxy-mechanism] [HotMiddlebox13b]
 [I-D.hampel-mptcp-proxies-anchors].

 Another possibility leverages the SOCKS protocol [RFC1928]. SOCKS is
 often used in enterprise networks to allow clients to reach external
 servers. For this, the client opens a TCP connection to the SOCKS
 server that relays it to the final destination. If both the client
 and the SOCKS server use Multipath TCP, but not the final
 destination, then Multipath TCP can still be used on the path between
 the client and the SOCKS server. At IETF’93, Korea Telecom announced
 that they have deployed in June 2015 a commercial service that uses
 Multipath TCP on smartphones. These smartphones access regular TCP
 servers through a SOCKS proxy. This enables them to achieve
 throughputs of up to 850 Mbps [KT].

 Measurements performed with Android smartphones [Mobicom15] show that
 popular applications work correctly through a SOCKS proxy and
 Multipath TCP enabled smartphones. Thanks to Multipath TCP, long-
 lived connections can be spread over the two available interfaces.
 However, for short-lived connections, most of the data is sent over
 the initial subflow that is created over the interface corresponding
 to the default route and the second subflow is almost not used.

 A second use case is when Multipath TCP is used by middleboxes,
 typically inside access networks. Various network operators are
 discussing and evaluating solutions for hybrid access networks
 [BBF-WT348]. Such networks arise when a network operator controls
 two different access network technologies, e.g. wired and cellular,
 and wants to combine them to improve the bandwidth offered to the
 endusers [I-D.lhwxz-hybrid-access-network-architecture]. Several
 solutions are currently investigated for such networks [BBF-WT348].
 Figure 2 shows the organisation of such a network. When a client
 creates a normal TCP connection, it is intercepted by the Hybrid CPE
 (HPCE) that converts it in a Multipath TCP connection so that it can
 use the available access networks (DSL and LTE in the example). The
 Hybrid Access Gateway (HAG) does the opposite to ensure that the
 regular server sees a normal TCP connection. Some of the solutions
 that are currently discussed for hybrid networks use Multipath TCP on
 the HCPE and the HAG. Other solutions rely on tunnels between the
 HCPE and the HAG [I-D.lhwxz-gre-notifications-hybrid-access].

Bonaventure, et al. Expires April 21, 2016 [Page 8]

Internet-Draft MPTCP Experience October 2015

 client --- HCPE ------ DSL ------- HAG --- internet --- server
 | |
 +------- LTE -----------+

 Figure 2: Hybrid Access Network

3. Operational Experience

3.1. Middlebox interference

 The interference caused by various types of middleboxes has been an
 important concern during the design of the Multipath TCP protocol.
 Three studies on the interactions between Multipath TCP and
 middleboxes are worth discussing.

 The first analysis appears in [IMC11]. This paper was the main
 motivation for Multipath TCP incorporating various techniques to cope
 with middlebox interference. More specifically, Multipath TCP has
 been designed to cope with middleboxes that :

 o change source or destination addresses

 o change source or destination port numbers

 o change TCP sequence numbers

 o split or coalesce segments

 o remove TCP options

 o modify the payload of TCP segments

 These middlebox interferences have all been included in the MBtest
 suite [MBTest]. This test suite is used in [HotMiddlebox13] to
 verify the reaction of the Multipath TCP implementation in the Linux
 kernel when faced with middlebox interference. The test environment
 used for this evaluation is a dual-homed client connected to a
 single-homed server. The middlebox behavior can be activated on any
 of the paths. The main results of this analysis are :

 o the Multipath TCP implementation in the Linux kernel is not
 affected by a middlebox that performs NAT or modifies TCP sequence
 numbers

 o when a middlebox removes the MP_CAPABLE option from the initial
 SYN segment, the Multipath TCP implementation in the Linux kernel
 falls back correctly to regular TCP

Bonaventure, et al. Expires April 21, 2016 [Page 9]

Internet-Draft MPTCP Experience October 2015

 o when a middlebox removes the DSS option from all data segments,
 the Multipath TCP implementation in the Linux kernel falls back
 correctly to regular TCP

 o when a middlebox performs segment coalescing, the Multipath TCP
 implementation in the Linux kernel is still able to accurately
 extract the data corresponding to the indicated mapping

 o when a middlebox performs segment splitting, the Multipath TCP
 implementation in the Linux kernel correctly reassembles the data
 corresponding to the indicated mapping. [HotMiddlebox13] shows on
 figure 4 in section 3.3 a corner case with segment splitting that
 may lead to a desynchronisation between the two hosts.

 The interactions between Multipath TCP and real deployed middleboxes
 is also analyzed in [HotMiddlebox13] and a particular scenario with
 the FTP application level gateway running on a NAT is described.

 Middlebox interference can also be detected by analysing packet
 traces on Multipath TCP enabled servers. A closer look at the
 packets received on the multipath-tcp.org server [TMA2015] shows that
 among the 184,000 Multipath TCP connections, only 125 of them were
 falling back to regular TCP. These connections originated from 28
 different client IP addresses. These include 91 HTTP connections and
 34 FTP connections. The FTP interference is expected and due to
 Application Level Gateways running home routers. The HTTP
 interference appeared only on the direction from server to client and
 could have been caused by transparent proxies deployed in cellular or
 enterprise networks.

 From an operational viewpoint, knowing that Multipath TCP can cope
 with various types of middlebox interference is important. However,
 there are situations where the network operators need to gather
 information about where a particular middlebox interference occurs.
 The tracebox software [tracebox] described in [IMC13a] is an
 extension of the popular traceroute software that enables network
 operators to check at which hop a particular field of the TCP header
 (including options) is modified. It has been used by several network
 operators to debug various middlebox interference problems. tracebox
 includes a scripting language that enables its user to specify
 precisely which packet (including IP and TCP options) is sent by the
 source. tracebox sends packets with an increasing TTL/HopLimit and
 compares the information returned in the ICMP messages with the
 packet that it sent. This enables tracebox to detect any
 interference caused by middleboxes on a given path. tracebox works
 better when routers implement the ICMP extension defined in
 [RFC1812].

Bonaventure, et al. Expires April 21, 2016 [Page 10]

Internet-Draft MPTCP Experience October 2015

 Users of the Multipath TCP implementation have reported some
 experience with middlebox interference. The strangest scenario has
 been a middlebox that accepts the Multipath TCP options in the SYN
 segment but later replaces Multipath TCP options with a TCP EOL
 option [StrangeMbox]. This causes Multipath TCP to perform a
 fallback to regular TCP without any impact on the application.

3.2. Congestion control

 Congestion control has been an important problem for Multipath TCP.
 The standardised congestion control scheme for Multipath TCP is
 defined in [RFC6356] and [NSDI11]. This congestion control scheme
 has been implemented in the Linux implementation of Multipath TCP.
 Linux uses a modular architecture to support various congestion
 control schemes. This architecture is applicable for both regular
 TCP and Multipath TCP. While the coupled congestion control scheme
 defined in [RFC6356] is the default congestion control scheme in the
 Linux implementation, other congestion control schemes have been
 added. The second congestion control scheme is OLIA [CONEXT12].
 This congestion control scheme is also an adaptation of the NewReno
 single path congestion control scheme to support multiple paths.
 Simulations and measurements have shown that it provides some
 performance benefits compared to the the default congestion control
 scheme [CONEXT12]. Measurements over a wide range of parameters
 reported in [CONEXT13] also indicate some benefits with the OLIA
 congestion control scheme. Recently, a delay-based congestion
 control scheme has been ported to the Multipath TCP implementation in
 the Linux kernel. This congestion control scheme has been evaluated
 by using simulations in [ICNP12]. The fourth congestion control
 scheme that has been included in the Linux implementation of
 Multipath TCP is the BALIA scheme
 [I-D.walid-mptcp-congestion-control].

 These different congestion control schemes have been compared in
 several articles. [CONEXT13] and [PaaschPhD] compare these
 algorithms in an emulated environment. The evaluation showed that
 the delay-based congestion control scheme is less able to efficiently
 use the available links than the three other schemes. Reports from
 some users indicate that they seem to favor OLIA.

3.3. Subflow management

 The multipath capability of Multipath TCP comes from the utilisation
 of one subflow per path. The Multipath TCP architecture [RFC6182]
 and the protocol specification [RFC6824] define the basic usage of
 the subflows and the protocol mechanisms that are required to create
 and terminate them. However, there are no guidelines on how subflows
 are used during the lifetime of a Multipath TCP session. Most of the

Bonaventure, et al. Expires April 21, 2016 [Page 11]

Internet-Draft MPTCP Experience October 2015

 published experiments with Multipath TCP have been performed in
 controlled environments. Still, based on the experience running them
 and discussions on the mptcp-dev mailing list, interesting lessons
 have been learned about the management of these subflows.

 From a subflow viewpoint, the Multipath TCP protocol is completely
 symmetrical. Both the clients and the server have the capability to
 create subflows. However in practice the existing Multipath TCP
 implementations [I-D.eardley-mptcp-implementations-survey] have opted
 for a strategy where only the client creates new subflows. The main
 motivation for this strategy is that often the client resides behind
 a NAT or a firewall, preventing passive subflow openings on the
 client. Although there are environments such as datacenters where
 this problem does not occur, as of this writing, no precise
 requirement has emerged for allowing the server to create new
 subflows.

3.4. Implemented subflow managers

 The Multipath TCP implementation in the Linux kernel includes several
 strategies to manage the subflows that compose a Multipath TCP
 session. The basic subflow manager is the full-mesh. As the name
 implies, it creates a full-mesh of subflows between the communicating
 hosts.

 The most frequent use case for this subflow manager is a multihomed
 client connected to a single-homed server. In this case, one subflow
 is created for each interface on the client. The current
 implementation of the full-mesh subflow manager is static. The
 subflows are created immediately after the creation of the initial
 subflow. If one subflow fails during the lifetime of the Multipath
 TCP session (e.g. due to excessive retransmissions, or the loss of
 the corresponding interface), it is not always reestablished. There
 is ongoing work to enhance the full-mesh path manager to deal with
 such events.

 When the server is multihomed, using the full-mesh subflow manager
 may lead to a large number of subflows being established. For
 example, consider a dual-homed client connected to a server with
 three interfaces. In this case, even if the subflows are only
 created by the client, 6 subflows will be established. This may be
 excessive in some environments, in particular when the client and/or
 the server have a large number of interfaces. A recent draft has
 proposed a Multipath TCP option to negotiate the maximum number of
 subflows. However, it should be noted that there have been reports
 on the mptcp-dev mailing indicating that users rely on Multipath TCP
 to aggregate more than four different interfaces. Thus, there is a
 need for supporting many interfaces efficiently.

Bonaventure, et al. Expires April 21, 2016 [Page 12]

Internet-Draft MPTCP Experience October 2015

 Creating subflows between multihomed clients and servers may
 sometimes lead to operational issues as observed by discussions on
 the mptcp-dev mailing list. In some cases the network operators
 would like to have a better control on how the subflows are created
 by Multipath TCP [I-D.boucadair-mptcp-max-subflow]. This might
 require the definition of policy rules to control the operation of
 the subflow manager. The two scenarios below illustrate some of
 these requirements.

 host1 ---------- switch1 ----- host2
 | | |
 +-------------- switch2 --------+

 Figure 3: Simple switched network topology

 Consider the simple network topology shown in Figure 3. From an
 operational viewpoint, a network operator could want to create two
 subflows between the communicating hosts. From a bandwidth
 utilization viewpoint, the most natural paths are host1-switch1-host2
 and host1-switch2-host2. However, a Multipath TCP implementation
 running on these two hosts may sometimes have difficulties to obtain
 this result.

 To understand the difficulty, let us consider different allocation
 strategies for the IP addresses. A first strategy is to assign two
 subnets : subnetA (resp. subnetB) contains the IP addresses of
 host1’s interface to switch1 (resp. switch2) and host2’s interface to
 switch1 (resp. switch2). In this case, a Multipath TCP subflow
 manager should only create one subflow per subnet. To enforce the
 utilization of these paths, the network operator would have to
 specify a policy that prefers the subflows in the same subnet over
 subflows between addresses in different subnets. It should be noted
 that the policy should probably also specify how the subflow manager
 should react when an interface or subflow fails.

 A second strategy is to use a single subnet for all IP addresses. In
 this case, it becomes more difficult to specify a policy that
 indicates which subflows should be established.

 The second subflow manager that is currently supported by the
 Multipath TCP implementation in the Linux kernel is the ndiffport
 subflow manager. This manager was initially created to exploit the
 path diversity that exists between single-homed hosts due to the
 utilization of flow-based load balancing techniques [SIGCOMM11].
 This subflow manager creates N subflows between the same pair of IP
 addresses. The N subflows are created by the client and differ only

Bonaventure, et al. Expires April 21, 2016 [Page 13]

Internet-Draft MPTCP Experience October 2015

 in the source port selected by the client. It was not designed to be
 used on multihomed hosts.

3.5. Subflow destination port

 The Multipath TCP protocol relies on the token contained in the
 MP_JOIN option to associate a subflow to an existing Multipath TCP
 session. This implies that there is no restriction on the source
 address, destination address and source or destination ports used for
 the new subflow. The ability to use different source and destination
 addresses is key to support multihomed servers and clients. The
 ability to use different destination port numbers is worth discussing
 because it has operational implications.

 For illustration, consider a dual-homed client that creates a second
 subflow to reach a single-homed server as illustrated in Figure 4.

 client ------- r1 --- internet --- server
 | |
 +----------r2-------+

 Figure 4: Multihomed-client connected to single-homed server

 When the Multipath TCP implementation in the Linux kernel creates the
 second subflow it uses the same destination port as the initial
 subflow. This choice is motivated by the fact that the server might
 be protected by a firewall and only accept TCP connections (including
 subflows) on the official port number. Using the same destination
 port for all subflows is also useful for operators that rely on the
 port numbers to track application usage in their network.

 There have been suggestions from Multipath TCP users to modify the
 implementation to allow the client to use different destination ports
 to reach the server. This suggestion seems mainly motivated by
 traffic shaping middleboxes that are used in some wireless networks.
 In networks where different shaping rates are associated to different
 destination port numbers, this could allow Multipath TCP to reach a
 higher performance. As of this writing, we are not aware of any
 implementation of this kind of tweaking.

 However, from an implementation point-of-view supporting different
 destination ports for the same Multipath TCP connection can cause
 some issues. A legacy implementation of a TCP stack creates a
 listening socket to react upon incoming SYN segments. The listening
 socket is handling the SYN segments that are sent on a specific port
 number. Demultiplexing incoming segments can thus be done solely by
 looking at the IP addresses and the port numbers. With Multipath TCP

Bonaventure, et al. Expires April 21, 2016 [Page 14]

Internet-Draft MPTCP Experience October 2015

 however, incoming SYN segments may have an MP_JOIN option with a
 different destination port. This means, that all incoming segments
 that did not match on an existing listening-socket or an already
 established socket must be parsed for an eventual MP_JOIN option.
 This imposes an additional cost on servers, previously not existent
 on legacy TCP implementations.

3.6. Closing subflows

 client server
 | |
 MPTCP: established | | MPTCP: established
 Sub: established | | Sub: established
 | |
 | DATA_FIN |
 MPTCP: close-wait | <------------------------ | close() (step 1)
 Sub: established | DATA_ACK |
 | ------------------------> | MPTCP: fin-wait-2
 | | Sub: established
 | |
 | DATA_FIN + subflow-FIN |
 close()/shutdown() | ------------------------> | MPTCP: time-wait
 (step 2) | DATA_ACK | Sub: close-wait
 MPTCP: closed | <------------------------ |
 Sub: fin-wait-2 | |
 | |
 | subflow-FIN |
 MPTCP: closed | <------------------------ | subflow-close()
 Sub: time-wait | subflow-ACK |
 (step 3) | ------------------------> | MPTCP: time-wait
 | | Sub: closed
 | |

 Figure 5: Multipath TCP may not be able to avoid time-wait state
 (even if enforced by the application).

 Figure 5 shows a very particular issue within Multipath TCP. Many
 high-performance applications try to avoid Time-Wait state by
 deferring the closure of the connection until the peer has sent a
 FIN. That way, the client on the left of Figure 5 does a passive
 closure of the connection, transitioning from Close-Wait to Last-ACK
 and finally freeing the resources after reception of the ACK of the
 FIN. An application running on top of a Multipath TCP enabled Linux
 kernel might also use this approach. The difference here is that the
 close() of the connection (Step 1 in Figure 5) only triggers the
 sending of a DATA_FIN. Nothing guarantees that the kernel is ready
 to combine the DATA_FIN with a subflow-FIN. The reception of the

Bonaventure, et al. Expires April 21, 2016 [Page 15]

Internet-Draft MPTCP Experience October 2015

 DATA_FIN will make the application trigger the closure of the
 connection (step 2), trying to avoid Time-Wait state with this late
 closure. This time, the kernel might decide to combine the DATA_FIN
 with a subflow-FIN. This decision will be fatal, as the subflow’s
 state machine will not transition from Close-Wait to Last-Ack, but
 rather go through Fin-Wait-2 into Time-Wait state. The Time-Wait
 state will consume resources on the host for at least 2 MSL (Maximum
 Segment Lifetime). Thus, a smart application that tries to avoid
 Time-Wait state by doing late closure of the connection actually ends
 up with one of its subflows in Time-Wait state. A high-performance
 Multipath TCP kernel implementation should honor the desire of the
 application to do passive closure of the connection and successfully
 avoid Time-Wait state - even on the subflows.

 The solution to this problem lies in an optimistic assumption that a
 host doing active-closure of a Multipath TCP connection by sending a
 DATA_FIN will soon also send a FIN on all its subflows. Thus, the
 passive closer of the connection can simply wait for the peer to send
 exactly this FIN - enforcing passive closure even on the subflows.
 Of course, to avoid consuming resources indefinitely, a timer must
 limit the time our implementation waits for the FIN.

3.7. Packet schedulers

 In a Multipath TCP implementation, the packet scheduler is the
 algorithm that is executed when transmitting each packet to decide on
 which subflow it needs to be transmitted. The packet scheduler
 itself does not have any impact on the interoperability of Multipath
 TCP implementations. However, it may clearly impact the performance
 of Multipath TCP sessions. The Multipath TCP implementation in the
 Linux kernel supports a pluggable architecture for the packet
 scheduler [PaaschPhD]. As of this writing, two schedulers have been
 implemented: round-robin and lowest-rtt-first. The second scheduler
 relies on the round-trip-time (rtt) measured on each TCP subflow and
 sends first segments over the subflow having the lowest round-trip-
 time. They are compared in [CSWS14]. The experiments and
 measurements described in [CSWS14] show that the lowest-rtt-first
 scheduler appears to be the best compromise from a performance
 viewpoint. Another study of the packet schedulers is presented in
 [PAMS2014]. This study relies on simulations with the Multipath TCP
 implementation in the Linux kernel. They compare the lowest-rtt-
 first with the round-robin and a random scheduler. They show some
 situations where the lowest-rtt-first scheduler does not perform as
 well as the other schedulers, but there are many scenarios where the
 opposite is true. [PAMS2014] notes that "it is highly likely that
 the optimal scheduling strategy depends on the characteristics of the
 paths being used."

Bonaventure, et al. Expires April 21, 2016 [Page 16]

Internet-Draft MPTCP Experience October 2015

3.8. Segment size selection

 When an application performs a write/send system call, the kernel
 allocates a packet buffer (sk_buff in Linux) to store the data the
 application wants to send. The kernel will store at most one MSS
 (Maximum Segment Size) of data per buffer. As the MSS can differ
 amongst subflows, an MPTCP implementation must select carefully the
 MSS used to generate application data. The Linux kernel
 implementation had various ways of selecting the MSS: minimum or
 maximum amongst the different subflows. However, these heuristics of
 MSS selection can cause significant performance issues in some
 environment. Consider the following example. An MPTCP connection
 has two established subflows that respectively use a MSS of 1420 and
 1428 bytes. If MPTCP selects the maximum, then the application will
 generate segments of 1428 bytes of data. An MPTCP implementation
 will have to split the segment in two (a 1420-byte and 8-byte
 segments) when pushing on the subflow with the smallest MSS. The
 latter segment will introduce a large overhead as for a single data
 segment 2 slots will be used in the congestion window (in packets)
 therefore reducing by roughly twice the potential throughput (in
 bytes/s) of this subflow. Taking the smallest MSS does not solve the
 issue as there might be a case where the subflow with the smallest
 MSS only sends a few packets therefore reducing the potential
 throughput of the other subflows.

 The Linux implementation recently took another approach [DetalMSS].
 Instead of selecting the minimum and maximum values, it now
 dynamically adapts the MSS based on the contribution of all the
 subflows to the connection’s throughput. For this it computes, for
 each subflow, the potential throughput achieved by selecting each MSS
 value and by taking into account the lost space in the cwnd. It then
 selects the MSS that allows to achieve the highest potential
 throughput.

3.9. Interactions with the Domain Name System

 Multihomed clients such as smartphones can send DNS queries over any
 of their interfaces. When a single-homed client performs a DNS
 query, it receives from its local resolver the best answer for its
 request. If the client is multihomed, the answer returned to the DNS
 query may vary with the interface over which it has been sent.

Bonaventure, et al. Expires April 21, 2016 [Page 17]

Internet-Draft MPTCP Experience October 2015

 cdn1
 |
 client -- cellular -- internet -- cdn3
 | |
 +----- wifi --------+
 |
 cdn2

 Figure 6: Simple network topology

 If the client sends a DNS query over the WiFi interface, the answer
 will point to the cdn2 server while the same request sent over the
 cellular interface will point to the cdn1 server. This might cause
 problems for CDN providers that locate their servers inside ISP
 networks and have contracts that specify that the CDN server will
 only be accessed from within this particular ISP. Assume now that
 both the client and the CDN servers support Multipath TCP. In this
 case, a Multipath TCP session from cdn1 or cdn2 would potentially use
 both the cellular network and the WiFi network. Serving the client
 from cdn2 over the cellular interface could violate the contract
 between the CDN provider and the network operators. A similar
 problem occurs with regular TCP if the client caches DNS replies.
 For example the client obtains a DNS answer over the cellular
 interface and then stops this interface and starts to use its WiFi
 interface. If the client retrieves data from cdn1 over its WiFi
 interface, this may also violate the contract between the CDN and the
 network operators.

 A possible solution to prevent this problem would be to modify the
 DNS resolution on the client. The client subnet EDNS extension
 defined in [I-D.ietf-dnsop-edns-client-subnet] could be used for this
 purpose. When the client sends a DNS query from its WiFi interface,
 it should also send the client subnet corresponding to the cellular
 interface in this request. This would indicate to the resolver that
 the answer should be valid for both the WiFi and the cellular
 interfaces (e.g., the cdn3 server).

3.10. Captive portals

 Multipath TCP enables a host to use different interfaces to reach a
 server. In theory, this should ensure connectivity when at least one
 of the interfaces is active. In practice however, there are some
 particular scenarios with captive portals that may cause operational
 problems. The reference environment is shown in Figure 7.

Bonaventure, et al. Expires April 21, 2016 [Page 18]

Internet-Draft MPTCP Experience October 2015

 client ----- network1
 |
 +------- internet ------------- server

 Figure 7: Issue with captive portal

 The client is attached to two networks : network1 that provides
 limited connectivity and the entire Internet through the second
 network interface. In practice, this scenario corresponds to an open
 WiFi network with a captive portal for network1 and a cellular
 service for the second interface. On many smartphones, the WiFi
 interface is preferred over the cellular interface. If the
 smartphone learns a default route via both interfaces, it will
 typically prefer to use the WiFi interface to send its DNS request
 and create the first subflow. This is not optimal with Multipath
 TCP. A better approach would probably be to try a few attempts on
 the WiFi interface and then try to use the second interface for the
 initial subflow as well.

3.11. Stateless webservers

 MPTCP has been designed to interoperate with webservers that benefit
 from SYN-cookies to protect against SYN-flooding attacks [RFC4987].
 MPTCP achieves this by echoing the keys negotiated during the
 MP_CAPABLE handshake in the third ACK of the 3-way handshake.
 Reception of this third ACK then allows the server to reconstruct the
 state specific to MPTCP.

 However, one caveat to this mechanism is the non-reliable nature of
 the third ACK. Indeed, when the third ACK gets lost, the server will
 not be able to reconstruct the MPTCP-state. MPTCP will fallback to
 regular TCP in this case. This is in contrast to regular TCP, as
 clients usually start the application’s transaction by sending data
 to the server. This data-segment (that is sent reliably by TCP)
 enables stateless servers to create the TCP-related state, even in
 case the third ACK has been lost.

 This issue might be considered as a minor one for MPTCP. Losing the
 third ACK should only happen when packet loss is high. However, when
 packet-loss is high MPTCP provides a lot of benefits as it can move
 traffic away from the lossy link. It is undesirable that MPTCP has a
 higher chance to fall back to regular TCP in those lossy
 environments.

 [I-D.paasch-mptcp-syncookies] discusses this issue and suggests a
 modified handshake mechanism that ensures reliable delivery of the
 MP_CAPABLE, following the 3-way handshake. This modification will

Bonaventure, et al. Expires April 21, 2016 [Page 19]

Internet-Draft MPTCP Experience October 2015

 make MPTCP reliable, even in lossy environments when servers need to
 use SYN-cookies to protect against SYN-flooding attacks.

3.12. Loadbalanced serverfarms

 Large-scale serverfarms typically deploy thousands of servers behind
 a single virtual IP (VIP). Steering traffic to these servers is done
 through layer-4 loadbalancers that ensure that a TCP-flow will always
 be routed to the same server [Presto08].

 As Multipath TCP uses multiple different TCP subflows to steer the
 traffic across the different paths, loadbalancers need to ensure that
 all these subflows are routed to the same server. This implies that
 the loadbalancers need to track the MPTCP-related state, allowing
 them to parse the token in the MP_JOIN and assign those subflows to
 the appropriate server. However, serverfarms typically deploy
 multiple of these loadbalancers for reliability and capacity reasons.
 As a TCP subflow might get routed to any of these loadbalancers, they
 would need to synchronize the MPTCP-related state - a solution that
 is not feasible at large scale.

 The token (carried in the MP_JOIN) contains the information
 indicating which MPTCP-session the subflow belongs to. As the token
 is a hash of the key, servers are not able to generate the token in
 such a way that the token can provide the necessary information to
 the loadbalancers which would allow them to route TCP subflows to the
 appropriate server. [I-D.paasch-mptcp-loadbalancer] discusses this
 issue in detail and suggests two alternative MP_CAPABLE handshakes to
 overcome these. As of September 2015, it is not yet clear how MPTCP
 might accomodate such use-case to enable its deployment within
 loadbalanced serverfarms.

4. Conclusion

 In this document, we have documented a few years of experience with
 Multipath TCP. The information presented in this document was
 gathered from scientific publications and discussions with various
 users of the Multipath TCP implementation in the Linux kernel.

5. Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project. We
 would like to thank all the implementers and users of the Multipath
 TCP implementation in the Linux kernel. This document has benefited
 from the comments of John Ronan, Yoshifumi Nishida, Phil Eardley and
 Jaehyun Hwang.

Bonaventure, et al. Expires April 21, 2016 [Page 20]

Internet-Draft MPTCP Experience October 2015

6. Informative References

 [Apple-MPTCP]
 Apple, Inc, ., "iOS - Multipath TCP Support in iOS 7",
 n.d., <https://support.apple.com/en-us/HT201373>.

 [BBF-WT348]
 Fabregas (Ed), G., "WT-348 - Hybrid Access for Broadband
 Networks", Broadband Forum, contribution bbf2014.1139.04 ,
 June 2015.

 [CACM14] Paasch, C. and O. Bonaventure, "Multipath TCP",
 Communications of the ACM, 57(4):51-57 , April 2014,
 <http://inl.info.ucl.ac.be/publications/multipath-tcp>.

 [CONEXT12]
 Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.
 Leboudec, "MPTCP is not pareto-optimal performance issues
 and a possible solution", Proceedings of the 8th
 international conference on Emerging networking
 experiments and technologies (CoNEXT12) , 2012.

 [CONEXT13]
 Paasch, C., Khalili, R., and O. Bonaventure, "On the
 Benefits of Applying Experimental Design to Improve
 Multipath TCP", Conference on emerging Networking
 EXperiments and Technologies (CoNEXT) , December 2013,
 <http://inl.info.ucl.ac.be/publications/benefits-applying-
 experimental-design-improve-multipath-tcp>.

 [CSWS14] Paasch, C., Ferlin, S., Alay, O., and O. Bonaventure,
 "Experimental Evaluation of Multipath TCP Schedulers",
 SIGCOMM CSWS2014 workshop , August 2014.

 [Cellnet12]
 Paasch, C., Detal, G., Duchene, F., Raiciu, C., and O.
 Bonaventure, "Exploring Mobile/WiFi Handover with
 Multipath TCP", ACM SIGCOMM workshop on Cellular Networks
 (Cellnet12) , 2012,
 <http://inl.info.ucl.ac.be/publications/
 exploring-mobilewifi-handover-multipath-tcp>.

 [DetalMSS]
 Detal, G., "Adaptive MSS value", Post on the mptcp-dev
 mailing list , September 2014, <https://listes-
 2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/
 msg00130.html>.

Bonaventure, et al. Expires April 21, 2016 [Page 21]

Internet-Draft MPTCP Experience October 2015

 [FreeBSD-MPTCP]
 Williams, N., "Multipath TCP For FreeBSD Kernel Patch
 v0.5", n.d., <http://caia.swin.edu.au/urp/newtcp/mptcp>.

 [HotMiddlebox13]
 Hesmans, B., Duchene, F., Paasch, C., Detal, G., and O.
 Bonaventure, "Are TCP Extensions Middlebox-proof?", CoNEXT
 workshop HotMiddlebox , December 2013,
 <http://inl.info.ucl.ac.be/publications/
 are-tcp-extensions-middlebox-proof>.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox’13 , December 2013,
 <http://inl.info.ucl.ac.be/publications/
 multipath-middlebox>.

 [HotNets] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Data center networking with
 multipath TCP", Proceedings of the 9th ACM SIGCOMM
 Workshop on Hot Topics in Networks (Hotnets-IX) , 2010,
 <http://doi.acm.org/10.1145/1868447.1868457>.

 [I-D.boucadair-mptcp-max-subflow]
 Boucadair, M. and C. Jacquenet, "Negotiating the Maximum
 Number of MPTCP Subflows", draft-boucadair-mptcp-max-
 subflow-00 (work in progress), June 2015.

 [I-D.deng-mptcp-proxy]
 Lingli, D., Liu, D., Sun, T., Boucadair, M., and G.
 Cauchie, "Use-cases and Requirements for MPTCP Proxy in
 ISP Networks", draft-deng-mptcp-proxy-01 (work in
 progress), October 2014.

 [I-D.eardley-mptcp-implementations-survey]
 Eardley, P., "Survey of MPTCP Implementations", draft-
 eardley-mptcp-implementations-survey-02 (work in
 progress), July 2013.

 [I-D.hampel-mptcp-proxies-anchors]
 Hampel, G. and T. Klein, "MPTCP Proxies and Anchors",
 draft-hampel-mptcp-proxies-anchors-00 (work in progress),
 February 2012.

 [I-D.ietf-dnsop-edns-client-subnet]
 Contavalli, C., Gaast, W., Lawrence, D., and W. Kumari,
 "Client Subnet in DNS Queries", draft-ietf-dnsop-edns-
 client-subnet-04 (work in progress), September 2015.

Bonaventure, et al. Expires April 21, 2016 [Page 22]

Internet-Draft MPTCP Experience October 2015

 [I-D.lhwxz-gre-notifications-hybrid-access]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "GRE Notifications for Hybrid Access", draft-lhwxz-
 gre-notifications-hybrid-access-01 (work in progress),
 January 2015.

 [I-D.lhwxz-hybrid-access-network-architecture]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "Hybrid Access Network Architecture", draft-lhwxz-
 hybrid-access-network-architecture-02 (work in progress),
 January 2015.

 [I-D.paasch-mptcp-loadbalancer]
 Paasch, C., Greenway, G., and A. Ford, "Multipath TCP
 behind Layer-4 loadbalancers", draft-paasch-mptcp-
 loadbalancer-00 (work in progress), September 2015.

 [I-D.paasch-mptcp-syncookies]
 Paasch, C., Biswas, A., and D. Haas, "Making Multipath TCP
 robust for stateless webservers", draft-paasch-mptcp-
 syncookies-02 (work in progress), October 2015.

 [I-D.walid-mptcp-congestion-control]
 Walid, A., Peng, Q., Hwang, J., and S. Low, "Balanced
 Linked Adaptation Congestion Control Algorithm for MPTCP",
 draft-walid-mptcp-congestion-control-03 (work in
 progress), July 2015.

 [I-D.wei-mptcp-proxy-mechanism]
 Wei, X., Xiong, C., and E. Ed, "MPTCP proxy mechanisms",
 draft-wei-mptcp-proxy-mechanism-02 (work in progress),
 June 2015.

 [ICNP12] Cao, Y., Xu, M., and X. Fu, "Delay-based congestion
 control for multipath TCP", 20th IEEE International
 Conference on Network Protocols (ICNP) , 2012.

 [IMC11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference (IMC ’11) ,
 2011, <http://doi.acm.org/10.1145/2068816.2068834>.

Bonaventure, et al. Expires April 21, 2016 [Page 23]

Internet-Draft MPTCP Experience October 2015

 [IMC13a] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., and
 B. Donnet, "Revealing Middlebox Interference with
 Tracebox", Proceedings of the 2013 ACM SIGCOMM conference
 on Internet measurement conference , 2013,
 <http://inl.info.ucl.ac.be/publications/
 revealing-middlebox-interference-tracebox>.

 [IMC13b] Chen, Y., Lim, Y., Gibbens, R., Nahum, E., Khalili, R.,
 and D. Towsley, "A measurement-based study of MultiPath
 TCP performance over wireless network", Proceedings of the
 2013 conference on Internet measurement conference (IMC
 ’13) , n.d., <http://doi.acm.org/10.1145/2504730.2504751>.

 [IMC13c] Pelsser, C., Cittadini, L., Vissicchio, S., and R. Bush,
 "From Paris to Tokyo on the suitability of ping to measure
 latency", Proceedings of the 2013 conference on Internet
 measurement conference (IMC ’13) , 2013,
 <http://doi.acm.org/10.1145/2504730.2504765>.

 [INFOCOM14]
 Lim, Y., Chen, Y., Nahum, E., Towsley, D., and K. Lee,
 "Cross-Layer Path Management in Multi-path Transport
 Protocol for Mobile Devices", IEEE INFOCOM’14 , 2014.

 [IOS7] "Multipath TCP Support in iOS 7", January 2014,
 <http://support.apple.com/kb/HT5977>.

 [KT] Seo, S., "KT’s GiGA LTE", July 2015,
 <https://www.ietf.org/proceedings/93/slides/slides-93-
 mptcp-3.pdf>.

 [MBTest] Hesmans, B., "MBTest", 2013,
 <https://bitbucket.org/bhesmans/mbtest>.

 [MPTCPBIB]
 Bonaventure, O., "Multipath TCP - An annotated
 bibliography", Technical report , April 2015,
 <https://github.com/obonaventure/mptcp-bib>.

 [Mobicom15]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Poster - Evaluating Android Applications
 with Multipath TCP", Mobicom 2015 (Poster) , September
 2015.

Bonaventure, et al. Expires April 21, 2016 [Page 24]

Internet-Draft MPTCP Experience October 2015

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP
 implementation in the Linux kernel", n.d.,
 <http://www.multipath-tcp.org>.

 [NSDI11] Wischik, D., Raiciu, C., Greenhalgh, A., and M. Handley,
 "Design, implementation and evaluation of congestion
 control for Multipath TCP", In Proceedings of the 8th
 USENIX conference on Networked systems design and
 implementation (NSDI11) , 2011.

 [NSDI12] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", USENIX Symposium of Networked Systems
 Design and Implementation (NSDI12) , April 2012,
 <http://inl.info.ucl.ac.be/publications/how-hard-can-it-
 be-designing-and-implementing-deployable-multipath-tcp>.

 [PAMS2014]
 Arzani, B., Gurney, A., Cheng, S., Guerin, R., and B. Loo,
 "Impact of Path Selection and Scheduling Policies on MPTCP
 Performance", PAMS2014 , 2014.

 [PaaschPhD]
 Paasch, C., "Improving Multipath TCP", Ph.D. Thesis ,
 November 2014, <http://inl.info.ucl.ac.be/publications/
 improving-multipath-tcp>.

 [Presto08]
 Greenberg, A., Lahiri, P., Maltz, D., Parveen, P., and S.
 Sengupta, "Towards a Next Generation Data Center
 Architecture - Scalability and Commoditization", ACM
 PRESTO 2008 , August 2008,
 <http://dl.acm.org/citation.cfm?id=1397732>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812, DOI 10.17487/RFC1812, June 1995,
 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928, DOI
 10.17487/RFC1928, March 1996,
 <http://www.rfc-editor.org/info/rfc1928>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

Bonaventure, et al. Expires April 21, 2016 [Page 25]

Internet-Draft MPTCP Experience October 2015

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols", RFC
 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

 [SIGCOMM11]
 Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Improving datacenter
 performance and robustness with multipath TCP",
 Proceedings of the ACM SIGCOMM 2011 conference , n.d.,
 <http://doi.acm.org/10.1145/2018436.2018467>.

 [StrangeMbox]
 Bonaventure, O., "Multipath TCP through a strange
 middlebox", Blog post , January 2015,
 <http://blog.multipath-tcp.org/blog/html/2015/01/30/
 multipath_tcp_through_a_strange_middlebox.html>.

 [TMA2015] Hesmans, B., Tran Viet, H., Sadre, R., and O. Bonaventure,
 "A First Look at Real Multipath TCP Traffic", Traffic
 Monitoring and Analysis , 2015,
 <http://inl.info.ucl.ac.be/publications/
 first-look-real-multipath-tcp-traffic>.

 [ietf88] Stewart, L., "IETF’88 Meeting minutes of the MPTCP working
 group", n.d., <http://tools.ietf.org/wg/mptcp/
 minutes?item=minutes-88-mptcp.html>.

 [tracebox]
 Detal, G. and O. Tilmans, "tracebox", 2013,
 <http://www.tracebox.org>.

Appendix A. Changelog

 This section should be removed before final publication

 o initial version : September 16th, 2014 : Added section Section 3.8
 that discusses some performance problems that appeared with the

Bonaventure, et al. Expires April 21, 2016 [Page 26]

Internet-Draft MPTCP Experience October 2015

 Linux implementation when using subflows having different MSS
 values

 o update with a description of the middlebox that replaces an
 unknown TCP option with EOL [StrangeMbox]

 o version ietf-02 : July 2015, answer to last call comments

 * Reorganised text to better separate use cases and operational
 experience

 * New use case on Multipath TCP proxies in Section 2.3

 * Added some text on middleboxes in Section 3.1

 * Removed the discussion on SDN

 * Restructured text and improved writing in some parts

 o version ietf-03 : September 2015, answer to comments from Phil
 Eardley

 * Improved introduction

 * Added details about using SOCKS and Korea Telecom’s use-case in
 Section 2.3.

 * Added issue around clients caching DNS-results in Section 3.9

 * Explained issue of MPTCP with stateless webservers Section 3.11

 * Added description of MPTCP’s use behind layer-4 loadbalancers
 Section 3.12

 * Restructured text and improved writing in some parts

Authors’ Addresses

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

 Christoph Paasch
 Apple, Inc.

 Email: cpaasch@apple.com

Bonaventure, et al. Expires April 21, 2016 [Page 27]

Internet-Draft MPTCP Experience October 2015

 Gregory Detal
 UCLouvain and Tessares

 Email: Gregory.Detal@tessares.net

Bonaventure, et al. Expires April 21, 2016 [Page 28]

MPTCP Working Group O. Bonaventure
Internet-Draft UCLouvain
Intended status: Informational C. Paasch
Expires: April 30, 2017 Apple, Inc.
 G. Detal
 Tessares
 October 27, 2016

 Use Cases and Operational Experience with Multipath TCP
 draft-ietf-mptcp-experience-07

Abstract

 This document discusses both use cases and operational experience
 with Multipath TCP in real networks. It lists several prominent use
 cases where Multipath TCP has been considered and is being used. It
 also gives insight to some heuristics and decisions that have helped
 to realize these use cases and suggests possible improvements.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bonaventure, et al. Expires April 30, 2017 [Page 1]

Internet-Draft MPTCP Experience October 2016

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Use cases . 5
 2.1. Datacenters . 5
 2.2. Cellular/WiFi Offload 5
 2.3. Multipath TCP proxies 9
 3. Operational Experience . 11
 3.1. Middlebox interference 11
 3.2. Congestion control . 13
 3.3. Subflow management . 13
 3.4. Implemented subflow managers 14
 3.5. Subflow destination port 16
 3.6. Closing subflows . 17
 3.7. Packet schedulers . 18
 3.8. Segment size selection 19
 3.9. Interactions with the Domain Name System 19
 3.10. Captive portals . 20
 3.11. Stateless webservers 21
 3.12. Loadbalanced server farms 22
 4. IANA Considerations . 23
 5. Security Considerations 24
 6. Acknowledgements . 26
 7. References . 27
 7.1. Normative References 27
 7.2. Informative References 27
 Appendix A. Changelog . 34
 Authors’ Addresses . 36

Bonaventure, et al. Expires April 30, 2017 [Page 2]

Internet-Draft MPTCP Experience October 2016

1. Introduction

 Multipath TCP was specified in [RFC6824] and five independent
 implementations have been developed. As of November 2016, Multipath
 TCP has been or is being implemented on the following platforms:

 o Linux kernel [MultipathTCP-Linux]

 o Apple iOS and macOS [Apple-MPTCP]

 o Citrix load balancers

 o FreeBSD [FreeBSD-MPTCP]

 o Oracle Solaris

 The first three implementations are known to interoperate. Three of
 these implementations are open-source (Linux kernel, FreeBSD and
 Apple’s iOS and macOS). Apple’s implementation is widely deployed.

 Since the publication of [RFC6824] as an experimental RFC, experience
 has been gathered by various network researchers and users about the
 operational issues that arise when Multipath TCP is used in today’s
 Internet.

 When the MPTCP working group was created, several use cases for
 Multipath TCP were identified [RFC6182]. Since then, other use cases
 have been proposed and some have been tested and even deployed. We
 describe these use cases in Section 2.

 Section 3 focuses on the operational experience with Multipath TCP.
 Most of this experience comes from the utilization of the Multipath
 TCP implementation in the Linux kernel [MultipathTCP-Linux]. This
 open-source implementation has been downloaded and is used by
 thousands of users all over the world. Many of these users have
 provided direct or indirect feedback by writing documents (scientific
 articles or blog messages) or posting to the mptcp-dev mailing list
 (see https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev). This
 Multipath TCP implementation is actively maintained and continuously
 improved. It is used on various types of hosts, ranging from
 smartphones or embedded routers to high-end servers.

 The Multipath TCP implementation in the Linux kernel is not, by far,
 the most widespread deployment of Multipath TCP. Since September
 2013, Multipath TCP is also supported on smartphones and tablets
 since iOS7 [IOS7]. There are likely hundreds of millions of
 Multipath TCP enabled devices. This Multipath TCP implementation is
 currently only used to support the Siri voice recognition/control

Bonaventure, et al. Expires April 30, 2017 [Page 3]

Internet-Draft MPTCP Experience October 2016

 application. Some lessons learned from this deployment are described
 in [IETFJ].

 Section 3 is organized as follows. Supporting the middleboxes was
 one of the difficult issues in designing the Multipath TCP protocol.
 We explain in Section 3.1 which types of middleboxes the Linux Kernel
 implementation of Multipath TCP supports and how it reacts upon
 encountering these. Section 3.2 summarizes the MPTCP specific
 congestion controls that have been implemented. Section 3.3 to
 Section 3.7 discuss heuristics and issues with respect to subflow
 management as well as the scheduling across the subflows.
 Section 3.8 explains some problems that occurred with subflows having
 different Maximum Segment Size (MSS) values. Section 3.9 presents
 issues with respect to content delivery networks and suggests a
 solution to this issue. Finally, Section 3.10 documents an issue
 with captive portals where MPTCP will behave sub optimally.

Bonaventure, et al. Expires April 30, 2017 [Page 4]

Internet-Draft MPTCP Experience October 2016

2. Use cases

 Multipath TCP has been tested in several use cases. There is already
 an abundant scientific literature on Multipath TCP [MPTCPBIB].
 Several of the papers published in the scientific literature have
 identified possible improvements that are worth being discussed here.

2.1. Datacenters

 A first, although initially unexpected, documented use case for
 Multipath TCP has been in datacenters [HotNets][SIGCOMM11]. Today’s
 datacenters are designed to provide several paths between single-
 homed servers. The multiplicity of these paths comes from the
 utilization of Equal Cost Multipath (ECMP) and other load balancing
 techniques inside the datacenter. Most of the deployed load
 balancing techniques in datacenters rely on hashes computed over the
 five tuple. Thus all packets from the same TCP connection follow the
 same path and so are not reordered. The results in [HotNets]
 demonstrate by simulations that Multipath TCP can achieve a better
 utilization of the available network by using multiple subflows for
 each Multipath TCP session. Although [RFC6182] assumes that at least
 one of the communicating hosts has several IP addresses, [HotNets]
 demonstrates that Multipath TCP is beneficial when both hosts are
 single-homed. This idea is analyzed in more details in [SIGCOMM11]
 where the Multipath TCP implementation in the Linux kernel is
 modified to be able to use several subflows from the same IP address.
 Measurements in a public datacenter show the quantitative benefits of
 Multipath TCP [SIGCOMM11] in this environment.

 Although ECMP is widely used inside datacenters, this is not the only
 environment where there are different paths between a pair of hosts.
 ECMP and other load balancing techniques such as Link Aggregation
 Groups (LAG) are widely used in today’s networks and having multiple
 paths between a pair of single-homed hosts is becoming the norm
 instead of the exception. Although these multiple paths have often
 the same cost (from an IGP metrics viewpoint), they do not
 necessarily have the same performance. For example, [IMC13c] reports
 the results of a long measurement study showing that load balanced
 Internet paths between that same pair of hosts can have huge delay
 differences.

2.2. Cellular/WiFi Offload

 A second use case that has been explored by several network
 researchers is the cellular/WiFi offload use case. Smartphones or
 other mobile devices equipped with two wireless interfaces are a very
 common use case for Multipath TCP. In September 2015, this is also
 the largest deployment of Multipath-TCP enabled devices [IOS7]. It

Bonaventure, et al. Expires April 30, 2017 [Page 5]

Internet-Draft MPTCP Experience October 2016

 has been briefly discussed during IETF88 [ietf88], but there is no
 published paper or report that analyses this deployment. For this
 reason, we only discuss published papers that have mainly used the
 Multipath TCP implementation in the Linux kernel for their
 experiments.

 The performance of Multipath TCP in wireless networks was briefly
 evaluated in [NSDI12]. One experiment analyzes the performance of
 Multipath TCP on a client with two wireless interfaces. This
 evaluation shows that when the receive window is large, Multipath TCP
 can efficiently use the two available links. However, if the window
 becomes smaller, then packets sent on a slow path can block the
 transmission of packets on a faster path. In some cases, the
 performance of Multipath TCP over two paths can become lower than the
 performance of regular TCP over the best performing path. Two
 heuristics, reinjection and penalization, are proposed in [NSDI12] to
 solve this identified performance problem. These two heuristics have
 since been used in the Multipath TCP implementation in the Linux
 kernel. [CONEXT13] explored the problem in more detail and revealed
 some other scenarios where Multipath TCP can have difficulties in
 efficiently pooling the available paths. Improvements to the
 Multipath TCP implementation in the Linux kernel are proposed in
 [CONEXT13] to cope with some of these problems.

 The first experimental analysis of Multipath TCP in a public wireless
 environment was presented in [Cellnet12]. These measurements explore
 the ability of Multipath TCP to use two wireless networks (real WiFi
 and 3G networks). Three modes of operation are compared. The first
 mode of operation is the simultaneous use of the two wireless
 networks. In this mode, Multipath TCP pools the available resources
 and uses both wireless interfaces. This mode provides fast handover
 from WiFi to cellular or the opposite when the user moves.
 Measurements presented in [CACM14] show that the handover from one
 wireless network to another is not an abrupt process. When a host
 moves, there are regions where the quality of one of the wireless
 networks is weaker than the other, but the host considers this
 wireless network to still be up. When a mobile host enters such
 regions, its ability to send packets over another wireless network is
 important to ensure a smooth handover. This is clearly illustrated
 from the packet trace discussed in [CACM14].

 Many cellular networks use volume-based pricing and users often
 prefer to use unmetered WiFi networks when available instead of
 metered cellular networks. [Cellnet12] implements support for the
 MP_PRIO option to explore two other modes of operation.

 In the backup mode, Multipath TCP opens a TCP subflow over each
 interface, but the cellular interface is configured in backup mode.

Bonaventure, et al. Expires April 30, 2017 [Page 6]

Internet-Draft MPTCP Experience October 2016

 This implies that data flows only over the WiFi interface when both
 interfaces are considered to be active. If the WiFi interface fails,
 then the traffic switches quickly to the cellular interface, ensuring
 a smooth handover from the user’s viewpoint [Cellnet12]. The cost of
 this approach is that the WiFi and cellular interfaces are likely to
 remain active all the time since all subflows are established over
 the two interfaces.

 The single-path mode is slightly different. This mode benefits from
 the break-before-make capability of Multipath TCP. When an MPTCP
 session is established, a subflow is created over the WiFi interface.
 No packet is sent over the cellular interface as long as the WiFi
 interface remains up [Cellnet12]. This implies that the cellular
 interface can remain idle and battery capacity is preserved. When
 the WiFi interface fails, a new subflow is established over the
 cellular interface in order to preserve the established Multipath TCP
 sessions. Compared to the backup mode described earlier,
 measurements reported in [Cellnet12] indicate that this mode of
 operation is characterized by a throughput drop while the cellular
 interface is brought up and the subflows are reestablished.

 From a protocol viewpoint, [Cellnet12] discusses the problem posed by
 the unreliability of the REMOVE_ADDR option and proposes a small
 protocol extension to allow hosts to reliably exchange this option.
 It would be useful to analyze packet traces to understand whether the
 unreliability of the REMOVE_ADDR option poses an operational problem
 in real deployments.

 Another study of the performance of Multipath TCP in wireless
 networks was reported in [IMC13b]. This study uses laptops connected
 to various cellular ISPs and WiFi hotspots. It compares various file
 transfer scenarios. [IMC13b] observes that 4-path MPTCP outperforms
 2-path MPTCP, especially for larger files. However, for three
 congestion control algorithms (LIA, OLIA and Reno - see Section 3.2),
 there is no significant performance difference for file sizes smaller
 than 4MB.

 A different study of the performance of Multipath TCP with two
 wireless networks is presented in [INFOCOM14]. In this study the two
 networks had different qualities : a good network and a lossy
 network. When using two paths with different packet loss ratios, the
 Multipath TCP congestion control scheme moves traffic away from the
 lossy link that is considered to be congested. However, [INFOCOM14]
 documents an interesting scenario that is summarized hereafter.

Bonaventure, et al. Expires April 30, 2017 [Page 7]

Internet-Draft MPTCP Experience October 2016

 client ----------- path1 -------- server
 | |
 +--------------- path2 ------------+

 Figure 1: Simple network topology

 Initially, the two paths in Figure 1 have the same quality and
 Multipath TCP distributes the load over both of them. During the
 transfer, the path2 becomes lossy, e.g. because the client moves.
 Multipath TCP detects the packet losses and they are retransmitted
 over path1. This enables the data transfer to continue over this
 path. However, the subflow over path2 is still up and transmits one
 packet from time to time. Although the N packets have been
 acknowledged over the first subflow (at the MPTCP level), they have
 not been acknowledged at the TCP level over the second subflow. To
 preserve the continuity of the sequence numbers over the second
 subflow, TCP will continue to retransmit these segments until either
 they are acknowledged or the maximum number of retransmissions is
 reached. This behavior is clearly inefficient and may lead to
 blocking since the second subflow will consume window space to be
 able to retransmit these packets. [INFOCOM14] proposes a new
 Multipath TCP option to solve this problem. In practice, a new TCP
 option is probably not required. When the client detects that the
 data transmitted over the second subflow has been acknowledged over
 the first subflow, it could decide to terminate the second subflow by
 sending a RST segment. If the interface associated to this subflow
 is still up, a new subflow could be immediately reestablished. It
 would then be immediately usable to send new data and would not be
 forced to first retransmit the previously transmitted data. As of
 this writing, this dynamic management of the subflows is not yet
 implemented in the Multipath TCP implementation in the Linux kernel.

 Some studies have started to analyze the performance of Multipath TCP
 on smartphones with real applications. In contrast with the bulk
 transfers that are used by many publications, many deployed
 applications do not exchange huge amounts of data and mainly use
 small connections. [COMMAG2016] proposes a software testing
 framework that allows to automate Android applications to study their
 interactions with Multipath TCP. [PAM2016] analyses a one-month
 packet trace of all the packets exchanged by a dozen of smartphones
 used by regular users. This analysis reveals that short connections
 are important on smartphones and that the main benefit of using
 Multipath TCP on smartphones is the ability to perform seamless
 handovers between different wireless networks. Long connections
 benefit from these handovers.

Bonaventure, et al. Expires April 30, 2017 [Page 8]

Internet-Draft MPTCP Experience October 2016

2.3. Multipath TCP proxies

 As Multipath TCP is not yet widely deployed on both clients and
 servers, several deployments have used various forms of proxies. Two
 families of solutions are currently being used or tested.

 A first use case is when a Multipath TCP enabled client wants to use
 several interfaces to reach a regular TCP server. A typical use case
 is a smartphone that needs to use both its WiFi and its cellular
 interface to transfer data. Several types of proxies are possible
 for this use case. An HTTP proxy deployed on a Multipath TCP capable
 server would enable the smartphone to use Multipath TCP to access
 regular web servers. Obviously, this solution only works for
 applications that rely on HTTP. Another possibility is to use a
 proxy that can convert any Multipath TCP connection into a regular
 TCP connection. Multipath TCP-specific proxies have been proposed
 [HotMiddlebox13b] [HAMPEL].

 Another possibility leverages the SOCKS protocol [RFC1928]. SOCKS is
 often used in enterprise networks to allow clients to reach external
 servers. For this, the client opens a TCP connection to the SOCKS
 server that relays it to the final destination. If both the client
 and the SOCKS server use Multipath TCP, but not the final
 destination, then Multipath TCP can still be used on the path between
 the clients and the SOCKS server. At IETF’93, Korea Telecom
 announced that they have deployed in June 2015 a commercial service
 that uses Multipath TCP on smartphones. These smartphones access
 regular TCP servers through a SOCKS proxy. This enables them to
 achieve throughputs of up to 850 Mbps [KT].

 Measurements performed with Android smartphones [Mobicom15] show that
 popular applications work correctly through a SOCKS proxy and
 Multipath TCP enabled smartphones. Thanks to Multipath TCP, long-
 lived connections can be spread over the two available interfaces.
 However, for short-lived connections, most of the data is sent over
 the initial subflow that is created over the interface corresponding
 to the default route and the second subflow is almost not used
 [PAM2016].

 A second use case is when Multipath TCP is used by middleboxes,
 typically inside access networks. Various network operators are
 discussing and evaluating solutions for hybrid access networks
 [TR-348]. Such networks arise when a network operator controls two
 different access network technologies, e.g. wired and cellular, and
 wants to combine them to improve the bandwidth offered to the
 endusers [I-D.lhwxz-hybrid-access-network-architecture]. Several
 solutions are currently investigated for such networks [TR-348].
 Figure 2 shows the organization of such a network. When a client

Bonaventure, et al. Expires April 30, 2017 [Page 9]

Internet-Draft MPTCP Experience October 2016

 creates a normal TCP connection, it is intercepted by the Hybrid CPE
 (HPCE) that converts it in a Multipath TCP connection so that it can
 use the available access networks (DSL and LTE in the example). The
 Hybrid Access Gateway (HAG) does the opposite to ensure that the
 regular server sees a normal TCP connection. Some of the solutions
 currently discussed for hybrid networks use Multipath TCP on the HCPE
 and the HAG. Other solutions rely on tunnels between the HCPE and
 the HAG [I-D.lhwxz-gre-notifications-hybrid-access].

 client --- HCPE ------ DSL ------- HAG --- internet --- server
 | |
 +------- LTE -----------+

 Figure 2: Hybrid Access Network

Bonaventure, et al. Expires April 30, 2017 [Page 10]

Internet-Draft MPTCP Experience October 2016

3. Operational Experience

3.1. Middlebox interference

 The interference caused by various types of middleboxes has been an
 important concern during the design of the Multipath TCP protocol.
 Three studies on the interactions between Multipath TCP and
 middleboxes are worth discussing.

 The first analysis appears in [IMC11]. This paper was the main
 motivation for Multipath TCP incorporating various techniques to cope
 with middlebox interference. More specifically, Multipath TCP has
 been designed to cope with middleboxes that :

 o change source or destination addresses

 o change source or destination port numbers

 o change TCP sequence numbers

 o split or coalesce segments

 o remove TCP options

 o modify the payload of TCP segments

 These middlebox interferences have all been included in the MBtest
 suite [MBTest]. This test suite is used in [HotMiddlebox13] to
 verify the reaction of the Multipath TCP implementation in the Linux
 kernel [MultipathTCP-Linux] when faced with middlebox interference.
 The test environment used for this evaluation is a dual-homed client
 connected to a single-homed server. The middlebox behavior can be
 activated on any of the paths. The main results of this analysis are
 :

 o the Multipath TCP implementation in the Linux kernel, is not
 affected by a middlebox that performs NAT or modifies TCP sequence
 numbers

 o when a middlebox removes the MP_CAPABLE option from the initial
 SYN segment, the Multipath TCP implementation in the Linux kernel
 falls back correctly to regular TCP

 o when a middlebox removes the DSS option from all data segments,
 the Multipath TCP implementation in the Linux kernel falls back
 correctly to regular TCP

Bonaventure, et al. Expires April 30, 2017 [Page 11]

Internet-Draft MPTCP Experience October 2016

 o when a middlebox performs segment coalescing, the Multipath TCP
 implementation in the Linux kernel is still able to accurately
 extract the data corresponding to the indicated mapping

 o when a middlebox performs segment splitting, the Multipath TCP
 implementation in the Linux kernel correctly reassembles the data
 corresponding to the indicated mapping. [HotMiddlebox13] shows on
 figure 4 in section 3.3 a corner case with segment splitting that
 may lead to a desynchronization between the two hosts.

 The interactions between Multipath TCP and real deployed middleboxes
 is also analyzed in [HotMiddlebox13] and a particular scenario with
 the FTP application level gateway running on a NAT is described.

 Middlebox interference can also be detected by analyzing packet
 traces on Multipath TCP enabled servers. A closer look at the
 packets received on the multipath-tcp.org server [TMA2015] shows that
 among the 184,000 Multipath TCP connections, only 125 of them were
 falling back to regular TCP. These connections originated from 28
 different client IP addresses. These include 91 HTTP connections and
 34 FTP connections. The FTP interference is expected since
 Application Level Gateways used for FTP modify the TCP payload and
 the DSS Checksum detects these modifications. The HTTP interference
 appeared only on the direction from server to client and could have
 been caused by transparent proxies deployed in cellular or enterprise
 networks. A longer trace is discussed in [COMCOM2016] and similar
 conclusions about the middlebox interference are provided.

 From an operational viewpoint, knowing that Multipath TCP can cope
 with various types of middlebox interference is important. However,
 there are situations where the network operators need to gather
 information about where a particular middlebox interference occurs.
 The tracebox software [tracebox] described in [IMC13a] is an
 extension of the popular traceroute software that enables network
 operators to check at which hop a particular field of the TCP header
 (including options) is modified. It has been used by several network
 operators to debug various middlebox interference problems.
 Experience with tracebox indicates that supporting the ICMP extension
 defined in [RFC1812] makes it easier to debug middlebox problems in
 IPv4 networks.

 Users of the Multipath TCP implementation have reported some
 experience with middlebox interference. The strangest scenario has
 been a middlebox that accepts the Multipath TCP options in the SYN
 segment but later replaces Multipath TCP options with a TCP EOL
 option [StrangeMbox]. This causes Multipath TCP to perform a
 fallback to regular TCP without any impact on the application.

Bonaventure, et al. Expires April 30, 2017 [Page 12]

Internet-Draft MPTCP Experience October 2016

3.2. Congestion control

 Congestion control has been an important challenge for Multipath TCP.
 The congestion control scheme specified for Multipath TCP is defined
 in [RFC6356]. A detailed description of this algorithm is provided
 in [NSDI11]. This congestion control scheme has been implemented in
 the Linux implementation of Multipath TCP. Linux uses a modular
 architecture to support various congestion control schemes. This
 architecture is applicable for both regular TCP and Multipath TCP.
 While the coupled congestion control scheme defined in [RFC6356] is
 the default congestion control scheme in the Linux implementation,
 other congestion control schemes have been added. The second
 congestion control scheme is OLIA [CONEXT12]. This congestion
 control scheme is also an adaptation of the NewReno single path
 congestion control scheme to support multiple paths. Simulations and
 measurements have shown that it provides some performance benefits
 compared to the default congestion control scheme [CONEXT12].
 Measurements over a wide range of parameters reported in [CONEXT13]
 also indicate some benefits with the OLIA congestion control scheme.
 Recently, a delay-based congestion control scheme has been ported to
 the Multipath TCP implementation in the Linux kernel. This
 congestion control scheme has been evaluated by using simulations in
 [ICNP12] and measurements in [PaaschPhD]. The fourth congestion
 control scheme that has been included in the Linux implementation of
 Multipath TCP is the BALIA scheme that provides a better balance
 between TCP friendliness, responsiveness, and window oscillation
 [BALIA].

 These different congestion control schemes have been compared in
 several articles. [CONEXT13] and [PaaschPhD] compare these
 algorithms in an emulated environment. The evaluation showed that
 the delay-based congestion control scheme is less able to efficiently
 use the available links than the three other schemes.

3.3. Subflow management

 The multipath capability of Multipath TCP comes from the utilization
 of one subflow per path. The Multipath TCP architecture [RFC6182]
 and the protocol specification [RFC6824] define the basic usage of
 the subflows and the protocol mechanisms that are required to create
 and terminate them. However, there are no guidelines on how subflows
 are used during the lifetime of a Multipath TCP session. Most of the
 published experiments with Multipath TCP have been performed in
 controlled environments. Still, based on the experience running them
 and discussions on the mptcp-dev mailing list, interesting lessons
 have been learned about the management of these subflows.

 From a subflow viewpoint, the Multipath TCP protocol is completely

Bonaventure, et al. Expires April 30, 2017 [Page 13]

Internet-Draft MPTCP Experience October 2016

 symmetrical. Both the clients and the server have the capability to
 create subflows. However in practice the existing Multipath TCP
 implementations have opted for a strategy where only the client
 creates new subflows. The main motivation for this strategy is that
 often the client resides behind a NAT or a firewall, preventing
 passive subflow openings on the client. Although there are
 environments such as datacenters where this problem does not occur,
 as of this writing, no precise requirement has emerged for allowing
 the server to create new subflows.

3.4. Implemented subflow managers

 The Multipath TCP implementation in the Linux kernel includes several
 strategies to manage the subflows that compose a Multipath TCP
 session. The basic subflow manager is the full-mesh. As the name
 implies, it creates a full-mesh of subflows between the communicating
 hosts.

 The most frequent use case for this subflow manager is a multihomed
 client connected to a single-homed server. In this case, one subflow
 is created for each interface on the client. The current
 implementation of the full-mesh subflow manager is static. The
 subflows are created immediately after the creation of the initial
 subflow. If one subflow fails during the lifetime of the Multipath
 TCP session (e.g. due to excessive retransmissions, or the loss of
 the corresponding interface), it is not always reestablished. There
 is ongoing work to enhance the full-mesh path manager to deal with
 such events.

 When the server is multihomed, using the full-mesh subflow manager
 may lead to a large number of subflows being established. For
 example, consider a dual-homed client connected to a server with
 three interfaces. In this case, even if the subflows are only
 created by the client, 6 subflows will be established. This may be
 excessive in some environments, in particular when the client and/or
 the server have a large number of interfaces. Implementations should
 limit the number of subflows that are used.

 Creating subflows between multihomed clients and servers may
 sometimes lead to operational issues as observed by discussions on
 the mptcp-dev mailing list. In some cases the network operators
 would like to have a better control on how the subflows are created
 by Multipath TCP [I-D.boucadair-mptcp-max-subflow]. This might
 require the definition of policy rules to control the operation of
 the subflow manager. The two scenarios below illustrate some of
 these requirements.

Bonaventure, et al. Expires April 30, 2017 [Page 14]

Internet-Draft MPTCP Experience October 2016

 host1 ---------- switch1 ----- host2
 | | |
 +-------------- switch2 --------+

 Figure 3: Simple switched network topology

 Consider the simple network topology shown in Figure 3. From an
 operational viewpoint, a network operator could want to create two
 subflows between the communicating hosts. From a bandwidth
 utilization viewpoint, the most natural paths are host1-switch1-host2
 and host1-switch2-host2. However, a Multipath TCP implementation
 running on these two hosts may sometimes have difficulties to obtain
 this result.

 To understand the difficulty, let us consider different allocation
 strategies for the IP addresses. A first strategy is to assign two
 subnets : subnetA (resp. subnetB) contains the IP addresses of
 host1’s interface to switch1 (resp. switch2) and host2’s interface to
 switch1 (resp. switch2). In this case, a Multipath TCP subflow
 manager should only create one subflow per subnet. To enforce the
 utilization of these paths, the network operator would have to
 specify a policy that prefers the subflows in the same subnet over
 subflows between addresses in different subnets. It should be noted
 that the policy should probably also specify how the subflow manager
 should react when an interface or subflow fails.

 A second strategy is to use a single subnet for all IP addresses. In
 this case, it becomes more difficult to specify a policy that
 indicates which subflows should be established.

 The second subflow manager that is currently supported by the
 Multipath TCP implementation in the Linux kernel is the ndiffport
 subflow manager. This manager was initially created to exploit the
 path diversity that exists between single-homed hosts due to the
 utilization of flow-based load balancing techniques [SIGCOMM11].
 This subflow manager creates N subflows between the same pair of IP
 addresses. The N subflows are created by the client and differ only
 in the source port selected by the client. It was not designed to be
 used on multihomed hosts.

 A more flexible subflow manager has been proposed, implemented and
 evaluated in [CONEXT15]. This subflow manager exposes various kernel
 events to a user space daemon that decides when subflows need to be
 created and terminated based on various policies.

Bonaventure, et al. Expires April 30, 2017 [Page 15]

Internet-Draft MPTCP Experience October 2016

3.5. Subflow destination port

 The Multipath TCP protocol relies on the token contained in the
 MP_JOIN option to associate a subflow to an existing Multipath TCP
 session. This implies that there is no restriction on the source
 address, destination address and source or destination ports used for
 the new subflow. The ability to use different source and destination
 addresses is key to support multihomed servers and clients. The
 ability to use different destination port numbers is worth discussing
 because it has operational implications.

 For illustration, consider a dual-homed client that creates a second
 subflow to reach a single-homed server as illustrated in Figure 4.

 client ------- r1 --- internet --- server
 | |
 +----------r2-------+

 Figure 4: Multihomed-client connected to single-homed server

 When the Multipath TCP implementation in the Linux kernel creates the
 second subflow it uses the same destination port as the initial
 subflow. This choice is motivated by the fact that the server might
 be protected by a firewall and only accept TCP connections (including
 subflows) on the official port number. Using the same destination
 port for all subflows is also useful for operators that rely on the
 port numbers to track application usage in their network.

 There have been suggestions from Multipath TCP users to modify the
 implementation to allow the client to use different destination ports
 to reach the server. This suggestion seems mainly motivated by
 traffic shaping middleboxes that are used in some wireless networks.
 In networks where different shaping rates are associated to different
 destination port numbers, this could allow Multipath TCP to reach a
 higher performance. This behavior is valid according to the
 Multipath TCP specification [RFC6824]. An application could used an
 enhanced socket API [SOCKET] to behave in this way.

 However, from an implementation point-of-view supporting different
 destination ports for the same Multipath TCP connection can cause
 some issues. A legacy implementation of a TCP stack creates a
 listening socket to react upon incoming SYN segments. The listening
 socket is handling the SYN segments that are sent on a specific port
 number. Demultiplexing incoming segments can thus be done solely by
 looking at the IP addresses and the port numbers. With Multipath TCP
 however, incoming SYN segments may have an MP_JOIN option with a
 different destination port. This means, that all incoming segments

Bonaventure, et al. Expires April 30, 2017 [Page 16]

Internet-Draft MPTCP Experience October 2016

 that did not match on an existing listening-socket or an already
 established socket must be parsed for an eventual MP_JOIN option.
 This imposes an additional cost on servers, previously not existent
 on legacy TCP implementations.

3.6. Closing subflows

 client server
 | |
 MPTCP: established | | MPTCP: established
 Sub: established | | Sub: established
 | |
 | DATA_FIN |
 MPTCP: close-wait | <------------------------ | close() (step 1)
 Sub: established | DATA_ACK |
 | ------------------------> | MPTCP: fin-wait-2
 | | Sub: established
 | |
 | DATA_FIN + subflow-FIN |
 close()/shutdown() | ------------------------> | MPTCP: time-wait
 (step 2) | DATA_ACK | Sub: close-wait
 MPTCP: closed | <------------------------ |
 Sub: fin-wait-2 | |
 | |
 | subflow-FIN |
 MPTCP: closed | <------------------------ | subflow-close()
 Sub: time-wait | subflow-ACK |
 (step 3) | ------------------------> | MPTCP: time-wait
 | | Sub: closed
 | |

 Figure 5: Multipath TCP may not be able to avoid time-wait state on
 the subflow (indicated as Sub in the drawing), even if enforced by
 the application on the client-side.

 Figure 5 shows a very particular issue within Multipath TCP. Many
 high-performance applications try to avoid Time-Wait state by
 deferring the closure of the connection until the peer has sent a
 FIN. That way, the client on the left of Figure 5 does a passive
 closure of the connection, transitioning from Close-Wait to Last-ACK
 and finally freeing the resources after reception of the ACK of the
 FIN. An application running on top of a Multipath TCP enabled Linux
 kernel might also use this approach. The difference here is that the
 close() of the connection (Step 1 in Figure 5) only triggers the
 sending of a DATA_FIN. Nothing guarantees that the kernel is ready
 to combine the DATA_FIN with a subflow-FIN. The reception of the
 DATA_FIN will make the application trigger the closure of the

Bonaventure, et al. Expires April 30, 2017 [Page 17]

Internet-Draft MPTCP Experience October 2016

 connection (step 2), trying to avoid Time-Wait state with this late
 closure. This time, the kernel might decide to combine the DATA_FIN
 with a subflow-FIN. This decision will be fatal, as the subflow’s
 state machine will not transition from Close-Wait to Last-Ack, but
 rather go through Fin-Wait-2 into Time-Wait state. The Time-Wait
 state will consume resources on the host for at least 2 MSL (Maximum
 Segment Lifetime). Thus, a smart application that tries to avoid
 Time-Wait state by doing late closure of the connection actually ends
 up with one of its subflows in Time-Wait state. A high-performance
 Multipath TCP kernel implementation should honor the desire of the
 application to do passive closure of the connection and successfully
 avoid Time-Wait state - even on the subflows.

 The solution to this problem lies in an optimistic assumption that a
 host doing active-closure of a Multipath TCP connection by sending a
 DATA_FIN will soon also send a FIN on all its subflows. Thus, the
 passive closer of the connection can simply wait for the peer to send
 exactly this FIN - enforcing passive closure even on the subflows.
 Of course, to avoid consuming resources indefinitely, a timer must
 limit the time our implementation waits for the FIN.

3.7. Packet schedulers

 In a Multipath TCP implementation, the packet scheduler is the
 algorithm that is executed when transmitting each packet to decide on
 which subflow it needs to be transmitted. The packet scheduler
 itself does not have any impact on the interoperability of Multipath
 TCP implementations. However, it may clearly impact the performance
 of Multipath TCP sessions. The Multipath TCP implementation in the
 Linux kernel supports a pluggable architecture for the packet
 scheduler [PaaschPhD]. As of this writing, two schedulers have been
 implemented: round-robin and lowest-rtt-first. The second scheduler
 relies on the round-trip-time (rtt) measured on each TCP subflow and
 sends first segments over the subflow having the lowest round-trip-
 time. They are compared in [CSWS14]. The experiments and
 measurements described in [CSWS14] show that the lowest-rtt-first
 scheduler appears to be the best compromise from a performance
 viewpoint. Another study of the packet schedulers is presented in
 [PAMS2014]. This study relies on simulations with the Multipath TCP
 implementation in the Linux kernel. They compare the lowest-rtt-
 first with the round-robin and a random scheduler. They show some
 situations where the lowest-rtt-first scheduler does not perform as
 well as the other schedulers, but there are many scenarios where the
 opposite is true. [PAMS2014] notes that "it is highly likely that
 the optimal scheduling strategy depends on the characteristics of the
 paths being used."

Bonaventure, et al. Expires April 30, 2017 [Page 18]

Internet-Draft MPTCP Experience October 2016

3.8. Segment size selection

 When an application performs a write/send system call, the kernel
 allocates a packet buffer (sk_buff in Linux) to store the data the
 application wants to send. The kernel will store at most one MSS
 (Maximum Segment Size) of data per buffer. As the MSS can differ
 amongst subflows, an MPTCP implementation must select carefully the
 MSS used to generate application data. The Linux kernel
 implementation had various ways of selecting the MSS: minimum or
 maximum amongst the different subflows. However, these heuristics of
 MSS selection can cause significant performance issues in some
 environment. Consider the following example. An MPTCP connection
 has two established subflows that respectively use a MSS of 1420 and
 1428 bytes. If MPTCP selects the maximum, then the application will
 generate segments of 1428 bytes of data. An MPTCP implementation
 will have to split the segment in two (1420-byte and 8-byte)
 segments when pushing on the subflow with the smallest MSS. The
 latter segment will introduce a large overhead as for a single data
 segment 2 slots will be used in the congestion window (in packets)
 therefore reducing by roughly twice the potential throughput (in
 bytes/s) of this subflow. Taking the smallest MSS does not solve the
 issue as there might be a case where the subflow with the smallest
 MSS only sends a few packets therefore reducing the potential
 throughput of the other subflows.

 The Linux implementation recently took another approach [DetalMSS].
 Instead of selecting the minimum and maximum values, it now
 dynamically adapts the MSS based on the contribution of all the
 subflows to the connection’s throughput. For this it computes, for
 each subflow, the potential throughput achieved by selecting each MSS
 value and by taking into account the lost space in the congestion
 window. It then selects the MSS that allows to achieve the highest
 potential throughput.

 Given the prevalence of middleboxes that clamp the MSS, Multipath TCP
 implementations must be able to efficiently support subflows with
 different MSS values. The strategy described above is a possible
 solution to this problem.

3.9. Interactions with the Domain Name System

 Multihomed clients such as smartphones can send DNS queries over any
 of their interfaces. When a single-homed client performs a DNS
 query, it receives from its local resolver the best answer for its
 request. If the client is multihomed, the answer in response to the
 DNS query may vary with the interface over which it has been sent.

Bonaventure, et al. Expires April 30, 2017 [Page 19]

Internet-Draft MPTCP Experience October 2016

 cdn1
 |
 client -- cellular -- internet -- cdn3
 | |
 +----- wifi --------+
 |
 cdn2

 Figure 6: Simple network topology

 If the client sends a DNS query over the WiFi interface, the answer
 will point to the cdn2 server while the same request sent over the
 cellular interface will point to the cdn1 server. This might cause
 problems for CDN providers that locate their servers inside ISP
 networks and have contracts that specify that the CDN server will
 only be accessed from within this particular ISP. Assume now that
 both the client and the CDN servers support Multipath TCP. In this
 case, a Multipath TCP session from cdn1 or cdn2 would potentially use
 both the cellular network and the WiFi network. Serving the client
 from cdn2 over the cellular interface could violate the contract
 between the CDN provider and the network operators. A similar
 problem occurs with regular TCP if the client caches DNS replies.
 For example the client obtains a DNS answer over the cellular
 interface and then stops this interface and starts to use its WiFi
 interface. If the client retrieves data from cdn1 over its WiFi
 interface, this may also violate the contract between the CDN and the
 network operators.

 A possible solution to prevent this problem would be to modify the
 DNS resolution on the client. The client subnet EDNS extension
 defined in [RFC7871] could be used for this purpose. When the client
 sends a DNS query from its WiFi interface, it should also send the
 client subnet corresponding to the cellular interface in this
 request. This would indicate to the resolver that the answer should
 be valid for both the WiFi and the cellular interfaces (e.g., the
 cdn3 server).

3.10. Captive portals

 Multipath TCP enables a host to use different interfaces to reach a
 server. In theory, this should ensure connectivity when at least one
 of the interfaces is active. In practice however, there are some
 particular scenarios with captive portals that may cause operational
 problems. The reference environment is shown in Figure 7.

Bonaventure, et al. Expires April 30, 2017 [Page 20]

Internet-Draft MPTCP Experience October 2016

 client ----- network1
 |
 +------- internet ------------- server

 Figure 7: Issue with captive portal

 The client is attached to two networks : network1 that provides
 limited connectivity and the entire Internet through the second
 network interface. In practice, this scenario corresponds to an open
 WiFi network with a captive portal for network1 and a cellular
 service for the second interface. On many smartphones, the WiFi
 interface is preferred over the cellular interface. If the
 smartphone learns a default route via both interfaces, it will
 typically prefer to use the WiFi interface to send its DNS request
 and create the first subflow. This is not optimal with Multipath
 TCP. A better approach would probably be to try a few attempts on
 the WiFi interface and then, upon failure of these attempts, try to
 use the second interface for the initial subflow as well.

3.11. Stateless webservers

 MPTCP has been designed to interoperate with webservers that benefit
 from SYN-cookies to protect against SYN-flooding attacks [RFC4987].
 MPTCP achieves this by echoing the keys negotiated during the
 MP_CAPABLE handshake in the third ACK of the 3-way handshake.
 Reception of this third ACK then allows the server to reconstruct the
 state specific to MPTCP.

 However, one caveat to this mechanism is the non-reliable nature of
 the third ACK. Indeed, when the third ACK gets lost, the server will
 not be able to reconstruct the MPTCP-state. MPTCP will fallback to
 regular TCP in this case. This is in contrast to regular TCP. When
 the client starts sending data, the first data segment also includes
 the SYN-cookie, which allows the server to reconstruct the TCP-state.
 Further, this data segment will be retransmitted by the client in
 case it gets lost and thus is resilient against loss. MPTCP does not
 include the keys in this data segment and thus the server cannot
 reconstruct the MPTCP state.

 This issue might be considered as a minor one for MPTCP. Losing the
 third ACK should only happen when packet loss is high. However, when
 packet-loss is high MPTCP provides a lot of benefits as it can move
 traffic away from the lossy link. It is undesirable that MPTCP has a
 higher chance to fall back to regular TCP in those lossy
 environments.

 [I-D.paasch-mptcp-syncookies] discusses this issue and suggests a

Bonaventure, et al. Expires April 30, 2017 [Page 21]

Internet-Draft MPTCP Experience October 2016

 modified handshake mechanism that ensures reliable delivery of the
 MP_CAPABLE, following the 3-way handshake. This modification will
 make MPTCP reliable, even in lossy environments when servers need to
 use SYN-cookies to protect against SYN-flooding attacks.

3.12. Loadbalanced server farms

 Large-scale server farms typically deploy thousands of servers behind
 a single virtual IP (VIP). Steering traffic to these servers is done
 through layer-4 load balancers that ensure that a TCP-flow will
 always be routed to the same server [Presto08].

 As Multipath TCP uses multiple different TCP subflows to steer the
 traffic across the different paths, load balancers need to ensure
 that all these subflows are routed to the same server. This implies
 that the load balancers need to track the MPTCP-related state,
 allowing them to parse the token in the MP_JOIN and assign those
 subflows to the appropriate server. However, server farms typically
 deploy several load balancers for reliability and capacity reasons.
 As a TCP subflow might get routed to any of these load balancers,
 they would need to synchronize the MPTCP-related state - a solution
 that is not feasible at large scale.

 The token (carried in the MP_JOIN) contains the information
 indicating which MPTCP-session the subflow belongs to. As the token
 is a hash of the key, servers are not able to generate the token in
 such a way that the token can provide the necessary information to
 the load balancers, which would allow them to route TCP subflows to
 the appropriate server. [I-D.paasch-mptcp-loadbalancer] discusses
 this issue in detail and suggests two alternative MP_CAPABLE
 handshakes to overcome these.

Bonaventure, et al. Expires April 30, 2017 [Page 22]

Internet-Draft MPTCP Experience October 2016

4. IANA Considerations

 There are no IANA considerations in this informational document.

Bonaventure, et al. Expires April 30, 2017 [Page 23]

Internet-Draft MPTCP Experience October 2016

5. Security Considerations

 This informational document discusses use-cases and operational
 experience with Multipath TCP. An extensive analysis of the
 remaining security issues in the Multipath TCP specification has been
 published in [RFC7430], together with suggestions for possible
 solutions.

 From a security viewpoint, it is important to note that Multipath
 TCP, like other multipath solutions such as SCTP, has the ability to
 send packets belonging to a single connection over different paths.
 This design feature of Multipath TCP implies that middleboxes that
 have been deployed on-path assuming that they would observe all the
 packets exchanged for a given connection in both directions may not
 function correctly anymore. A typical example are firewalls, IDS or
 DPIs deployed in enterprise networks. Those devices expect to
 observe all the packets from all TCP connections. With Multipath
 TCP, those middleboxes may not observe anymore all packets since some
 of them may follow a different path. The two examples below
 illustrate typical deployments of such middleboxes. The first
 example, Figure 8, shows a Multipath TCP enabled smartphone attached
 to both an enterprise and a cellular network. If a Multipath TCP
 connection is established by the smartphone towards a server, some of
 the packets sent by the smartphone or the server may be transmitted
 over the cellular network and thus be invisible for the enterprise
 middlebox.

 smartphone +----- entreprise net --- MBox----+------ server
 | |
 +----- cellular net -------------+

 Figure 8: Enterprise Middlebox may not observe all packets from
 multihomed host

 The second example, Figure 9, shows a possible issue when multiple
 middleboxes are deployed inside a network. For simplicity, we assume
 that network1 is the default IPv4 path while network2 is the default
 IPv6 path. A similar issue could occur with per-flow load balancing
 such as ECMP [RFC2992]. With regular TCP, all packets from each
 connection would either pass through Mbox1 or Mbox2. With Multipath
 TCP, the client can easily establish a subflow over network1 and
 another over network2 and each middlebox would only observe a part of
 the traffic of the end-to-end Multipath TCP connection.

Bonaventure, et al. Expires April 30, 2017 [Page 24]

Internet-Draft MPTCP Experience October 2016

 client ----R-- network1 --- MBox1 -----R------------- server
 | |
 +-- network2 --- MBox2 -----+

 Figure 9: Interactions between load balancing and security
 Middleboxes

 In these two cases, it is possible for an attacker to evade some
 security measures operating on the TCP byte stream and implemented on
 the middleboxes by controlling the bytes that are actually sent over
 each subflow and there are tools that ease those kinds of evasion
 [PZ15] [PT14]. This is not a security issue for Multipath TCP itself
 since Multipath TCP behaves correctly. However, this demonstrates
 the difficulty of enforcing security policies by relying only on on-
 path middleboxes instead of enforcing them directly on the endpoints.

Bonaventure, et al. Expires April 30, 2017 [Page 25]

Internet-Draft MPTCP Experience October 2016

6. Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project. We
 would like to thank all the implementers and users of the Multipath
 TCP implementation in the Linux kernel. This document has benefited
 from the comments of John Ronan, Yoshifumi Nishida, Phil Eardley,
 Jaehyun Hwang, Mirja Kuehlewind, Benoit Claise, Jari Arkko, Qin Wu,
 Spencer Dawkins and Ben Campbell.

Bonaventure, et al. Expires April 30, 2017 [Page 26]

Internet-Draft MPTCP Experience October 2016

7. References

7.1. Normative References

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

7.2. Informative References

 [Apple-MPTCP]
 Apple, Inc, ., "iOS - Multipath TCP Support in iOS 7",
 n.d., <https://support.apple.com/en-us/HT201373>.

 [BALIA] Peng, Q., Walid, A., Hwang, J., and S. Low, "Multipath TCP
 Analysis, Design, and Implementation", IEEE/ACM Trans. on
 Networking, Vol. 24, No. 1 , 2016.

 [CACM14] Paasch, C. and O. Bonaventure, "Multipath TCP",
 Communications of the ACM, 57(4):51-57 , April 2014,
 <http://inl.info.ucl.ac.be/publications/multipath-tcp>.

 [COMCOM2016]
 Tran, V., De Coninck, Q., Hesmans, B., Sadre, R., and O.
 Bonaventure, "Observing real Multipath TCP traffic",
 Computer Communications , April 2016, <http://
 inl.info.ucl.ac.be/publications/
 observing-real-multipath-tcp-traffic>.

 [COMMAG2016]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Observing Real Smartphone Applications over
 Multipath TCP", IEEE Communications Magazine , March 2016,
 <http://inl.info.ucl.ac.be/publications/
 observing-real-smartphone-applications-over-multipath-
 tcp>.

 [CONEXT12]
 Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.
 Leboudec, "MPTCP is not pareto-optimal performance issues
 and a possible solution", Proceedings of the 8th
 international conference on Emerging networking

Bonaventure, et al. Expires April 30, 2017 [Page 27]

Internet-Draft MPTCP Experience October 2016

 experiments and technologies (CoNEXT12) , 2012.

 [CONEXT13]
 Paasch, C., Khalili, R., and O. Bonaventure, "On the
 Benefits of Applying Experimental Design to Improve
 Multipath TCP", Conference on emerging Networking
 EXperiments and Technologies (CoNEXT) , December 2013, <ht
 tp://inl.info.ucl.ac.be/publications/
 benefits-applying-experimental-design-improve-multipath-
 tcp>.

 [CONEXT15]
 Hesmans, B., Detal, G., Barre, S., Bauduin, R., and O.
 Bonaventure, "SMAPP - Towards Smart Multipath TCP-enabled
 APPlications", Proc. Conext 2015, Heidelberg, Germany ,
 December 2015, <http://inl.info.ucl.ac.be/publications/
 smapp-towards-smart-multipath-tcp-enabled-applications>.

 [CSWS14] Paasch, C., Ferlin, S., Alay, O., and O. Bonaventure,
 "Experimental Evaluation of Multipath TCP Schedulers",
 SIGCOMM CSWS2014 workshop , August 2014.

 [Cellnet12]
 Paasch, C., Detal, G., Duchene, F., Raiciu, C., and O.
 Bonaventure, "Exploring Mobile/WiFi Handover with
 Multipath TCP", ACM SIGCOMM workshop on Cellular Networks
 (Cellnet12) , 2012, <http://inl.info.ucl.ac.be/
 publications/exploring-mobilewifi-handover-multipath-tcp>.

 [DetalMSS]
 Detal, G., "Adaptive MSS value", Post on the mptcp-dev
 mailing list , September 2014, <https://
 listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/
 msg00130.html>.

 [FreeBSD-MPTCP]
 Williams, N., "Multipath TCP For FreeBSD Kernel Patch
 v0.5", n.d., <http://caia.swin.edu.au/urp/newtcp/mptcp>.

 [HAMPEL] Hampel, G., Rana, A., and T. Klein, "Seamless TCP mobility
 using lightweight MPTCP proxy", Proceedings of the 11th
 ACM international symposium on Mobility management and
 wireless access (MobiWac ’13). , 2013.

 [HotMiddlebox13]
 Hesmans, B., Duchene, F., Paasch, C., Detal, G., and O.
 Bonaventure, "Are TCP Extensions Middlebox-proof?", CoNEXT
 workshop HotMiddlebox , December 2013, <http://

Bonaventure, et al. Expires April 30, 2017 [Page 28]

Internet-Draft MPTCP Experience October 2016

 inl.info.ucl.ac.be/publications/
 are-tcp-extensions-middlebox-proof>.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox’13 , December 2013, <http:/
 /inl.info.ucl.ac.be/publications/multipath-middlebox>.

 [HotNets] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Data center networking with
 multipath TCP", Proceedings of the 9th ACM SIGCOMM
 Workshop on Hot Topics in Networks (Hotnets-IX) , 2010,
 <http://doi.acm.org/10.1145/1868447.1868457>.

 [I-D.boucadair-mptcp-max-subflow]
 Boucadair, M. and C. Jacquenet, "Negotiating the Maximum
 Number of Multipath TCP (MPTCP) Subflows",
 draft-boucadair-mptcp-max-subflow-02 (work in progress),
 May 2016.

 [I-D.lhwxz-gre-notifications-hybrid-access]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "GRE Notifications for Hybrid Access",
 draft-lhwxz-gre-notifications-hybrid-access-01 (work in
 progress), January 2015.

 [I-D.lhwxz-hybrid-access-network-architecture]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "Hybrid Access Network Architecture",
 draft-lhwxz-hybrid-access-network-architecture-02 (work in
 progress), January 2015.

 [I-D.paasch-mptcp-loadbalancer]
 Paasch, C., Greenway, G., and A. Ford, "Multipath TCP
 behind Layer-4 loadbalancers",
 draft-paasch-mptcp-loadbalancer-00 (work in progress),
 September 2015.

 [I-D.paasch-mptcp-syncookies]
 Paasch, C., Biswas, A., and D. Haas, "Making Multipath TCP
 robust for stateless webservers",
 draft-paasch-mptcp-syncookies-02 (work in progress),
 October 2015.

 [ICNP12] Cao, Y., Xu, M., and X. Fu, "Delay-based congestion
 control for multipath TCP", 20th IEEE International
 Conference on Network Protocols (ICNP) , 2012.

Bonaventure, et al. Expires April 30, 2017 [Page 29]

Internet-Draft MPTCP Experience October 2016

 [IETFJ] Bonaventure, O. and S. Seo, "Multipath TCP Deployments,",
 IETF Journal, Vol. 12, Issue 2 , November 2016.

 [IMC11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference (IMC ’11) ,
 2011, <http://doi.acm.org/10.1145/2068816.2068834>.

 [IMC13a] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., and
 B. Donnet, "Revealing Middlebox Interference with
 Tracebox", Proceedings of the 2013 ACM SIGCOMM conference
 on Internet measurement conference , 2013, <http://
 inl.info.ucl.ac.be/publications/
 revealing-middlebox-interference-tracebox>.

 [IMC13b] Chen, Y., Lim, Y., Gibbens, R., Nahum, E., Khalili, R.,
 and D. Towsley, "A measurement-based study of MultiPath
 TCP performance over wireless network", Proceedings of the
 2013 conference on Internet measurement conference (IMC
 ’13) , n.d., <http://doi.acm.org/10.1145/2504730.2504751>.

 [IMC13c] Pelsser, C., Cittadini, L., Vissicchio, S., and R. Bush,
 "From Paris to Tokyo on the suitability of ping to
 measure latency", Proceedings of the 2013 conference on
 Internet measurement conference (IMC ’13) , 2013,
 <http://doi.acm.org/10.1145/2504730.2504765>.

 [INFOCOM14]
 Lim, Y., Chen, Y., Nahum, E., Towsley, D., and K. Lee,
 "Cross-Layer Path Management in Multi-path Transport
 Protocol for Mobile Devices", IEEE INFOCOM’14 , 2014.

 [IOS7] Apple, ., "Multipath TCP Support in iOS 7", January 2014,
 <http://support.apple.com/kb/HT5977>.

 [KT] Seo, S., "KT’s GiGA LTE", July 2015, <https://
 www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf>.

 [MBTest] Hesmans, B., "MBTest", 2013,
 <https://bitbucket.org/bhesmans/mbtest>.

 [MPTCPBIB]
 Bonaventure, O., "Multipath TCP - An annotated
 bibliography", Technical report , April 2015,
 <https://github.com/obonaventure/mptcp-bib>.

 [Mobicom15]

Bonaventure, et al. Expires April 30, 2017 [Page 30]

Internet-Draft MPTCP Experience October 2016

 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Poster - Evaluating Android Applications
 with Multipath TCP", Mobicom 2015 (Poster) ,
 September 2015.

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP
 implementation in the Linux kernel", n.d.,
 <http://www.multipath-tcp.org>.

 [NSDI11] Wischik, D., Raiciu, C., Greenhalgh, A., and M. Handley,
 "Design, implementation and evaluation of congestion
 control for Multipath TCP", In Proceedings of the 8th
 USENIX conference on Networked systems design and
 implementation (NSDI11) , 2011.

 [NSDI12] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", USENIX Symposium of Networked Systems
 Design and Implementation (NSDI12) , April 2012, <http://
 inl.info.ucl.ac.be/publications/
 how-hard-can-it-be-designing-and-implementing-deployable-
 multipath-tcp>.

 [PAM2016] De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "A First Analysis of Multipath TCP on
 Smartphones", 17th International Passive and Active
 Measurements Conference (PAM2016) , March 2016, <http://
 inl.info.ucl.ac.be/publications/
 first-analysis-multipath-tcp-smartphones>.

 [PAMS2014]
 Arzani, B., Gurney, A., Cheng, S., Guerin, R., and B. Loo,
 "Impact of Path Selection and Scheduling Policies on MPTCP
 Performance", PAMS2014 , 2014.

 [PT14] Pearce, C. and P. Thomas, "Multipath TCP Breaking Today’s
 Networks with Tomorrow’s Protocols", Proc. Blackhat
 Briefings , 2014, <http://www.blackhat.com/docs/us-14/
 materials/
 us-14-Pearce-Multipath-TCP-Breaking-Todays-Networks-With-
 Tomorrows-Protocols-WP.pdf>.

 [PZ15] Pearce, C. and S. Zeadally, "Ancillary Impacts of
 Multipath TCP on Current and Future Network Security",
 IEEE Internet Computing, vol. 19, no. 5, pp. 58-65 , 2015.

Bonaventure, et al. Expires April 30, 2017 [Page 31]

Internet-Draft MPTCP Experience October 2016

 [PaaschPhD]
 Paasch, C., "Improving Multipath TCP", Ph.D. Thesis ,
 November 2014, <http://inl.info.ucl.ac.be/publications/
 improving-multipath-tcp>.

 [Presto08]
 Greenberg, A., Lahiri, P., Maltz, D., Parveen, P., and S.
 Sengupta, "Towards a Next Generation Data Center
 Architecture - Scalability and Commoditization", ACM
 PRESTO 2008 , August 2008,
 <http://dl.acm.org/citation.cfm?id=1397732>.

 [RFC1812] Baker, F., Ed., "Requirements for IP Version 4 Routers",
 RFC 1812, DOI 10.17487/RFC1812, June 1995,
 <http://www.rfc-editor.org/info/rfc1812>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <http://www.rfc-editor.org/info/rfc1928>.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
 <http://www.rfc-editor.org/info/rfc2992>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC7430] Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis of Residual Threats and Possible Fixes
 for Multipath TCP (MPTCP)", RFC 7430, DOI 10.17487/
 RFC7430, July 2015,
 <http://www.rfc-editor.org/info/rfc7430>.

 [RFC7871] Contavalli, C., van der Gaast, W., Lawrence, D., and W.
 Kumari, "Client Subnet in DNS Queries", RFC 7871,
 DOI 10.17487/RFC7871, May 2016,
 <http://www.rfc-editor.org/info/rfc7871>.

 [SIGCOMM11]
 Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Improving datacenter

Bonaventure, et al. Expires April 30, 2017 [Page 32]

Internet-Draft MPTCP Experience October 2016

 performance and robustness with multipath TCP",
 Proceedings of the ACM SIGCOMM 2011 conference , n.d.,
 <http://doi.acm.org/10.1145/2018436.2018467>.

 [SOCKET] Hesmans, B. and O. Bonaventure, "An Enhanced Socket API
 for Multipath TCP", Proceedings of the 2016 Applied
 Networking Research Workshop , July 2016,
 <http://doi.acm.org/10.1145/2959424.2959433>.

 [StrangeMbox]
 Bonaventure, O., "Multipath TCP through a strange
 middlebox", Blog post , January 2015, <http://
 blog.multipath-tcp.org/blog/html/2015/01/30/
 multipath_tcp_through_a_strange_middlebox.html>.

 [TMA2015] Hesmans, B., Tran Viet, H., Sadre, R., and O. Bonaventure,
 "A First Look at Real Multipath TCP Traffic", Traffic
 Monitoring and Analysis , 2015, <http://
 inl.info.ucl.ac.be/publications/
 first-look-real-multipath-tcp-traffic>.

 [TR-348] Broadband Forum, ., "TR 348 - Hybrid Access Broadband
 Network Architecture", July 2016, <https://
 www.broadband-forum.org/technical/download/TR-348.pdf>.

 [ietf88] Stewart, L., "IETF’88 Meeting minutes of the MPTCP working
 group", n.d., <http://tools.ietf.org/wg/mptcp/
 minutes?item=minutes-88-mptcp.html>.

 [tracebox]
 Detal, G. and O. Tilmans, "tracebox", 2013,
 <http://www.tracebox.org>.

Bonaventure, et al. Expires April 30, 2017 [Page 33]

Internet-Draft MPTCP Experience October 2016

Appendix A. Changelog

 This section should be removed before final publication

 o initial version : September 16th, 2014 : Added section Section 3.8
 that discusses some performance problems that appeared with the
 Linux implementation when using subflows having different MSS
 values

 o update with a description of the middlebox that replaces an
 unknown TCP option with EOL [StrangeMbox]

 o version ietf-02 : July 2015, answer to last call comments

 * Reorganised text to better separate use cases and operational
 experience

 * New use case on Multipath TCP proxies in Section 2.3

 * Added some text on middleboxes in Section 3.1

 * Removed the discussion on SDN

 * Restructured text and improved writing in some parts

 o version ietf-03 : September 2015, answer to comments from Phil
 Eardley

 * Improved introduction

 * Added details about using SOCKS and Korea Telecom’s use-case in
 Section 2.3.

 * Added issue around clients caching DNS-results in Section 3.9

 * Explained issue of MPTCP with stateless webservers Section 3.11

 * Added description of MPTCP’s use behind layer-4 load balancers
 Section 3.12

 * Restructured text and improved writing in some parts

 o version ietf-04 : April 2016, answer to last comments

 * Updated text on measurements with smartphones

 * Updated conclusion

Bonaventure, et al. Expires April 30, 2017 [Page 34]

Internet-Draft MPTCP Experience October 2016

 o version ietf-06 : August 2016, answer to AD’s review

 * removed some expired drafts

 * removed conclusion

 o version ietf-07 : September 2016, answer to IESG comments

 * small nits

 * added more information in the security considerations as
 suggested by Stephen Farrel

Bonaventure, et al. Expires April 30, 2017 [Page 35]

Internet-Draft MPTCP Experience October 2016

Authors’ Addresses

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

 Christoph Paasch
 Apple, Inc.

 Email: cpaasch@apple.com

 Gregory Detal
 Tessares

 Email: Gregory.Detal@tessares.net

Bonaventure, et al. Expires April 30, 2017 [Page 36]

Internet Engineering Task Force A. Ford
Internet-Draft Pexip
Obsoletes: 6824 (if approved) C. Raiciu
Intended status: Standards Track U. Politechnica of Bucharest
Expires: December 10, 2019 M. Handley
 U. College London
 O. Bonaventure
 U. catholique de Louvain
 C. Paasch
 Apple, Inc.
 June 8, 2019

 TCP Extensions for Multipath Operation with Multiple Addresses
 draft-ietf-mptcp-rfc6824bis-18

Abstract

 TCP/IP communication is currently restricted to a single path per
 connection, yet multiple paths often exist between peers. The
 simultaneous use of these multiple paths for a TCP/IP session would
 improve resource usage within the network and, thus, improve user
 experience through higher throughput and improved resilience to
 network failure.

 Multipath TCP provides the ability to simultaneously use multiple
 paths between peers. This document presents a set of extensions to
 traditional TCP to support multipath operation. The protocol offers
 the same type of service to applications as TCP (i.e., reliable
 bytestream), and it provides the components necessary to establish
 and use multiple TCP flows across potentially disjoint paths.

 This document specifies v1 of Multipath TCP, obsoleting v0 as
 specified in RFC6824, through clarifications and modifications
 primarily driven by deployment experience.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Ford, et al. Expires December 10, 2019 [Page 1]

Internet-Draft Multipath TCP June 2019

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Design Assumptions 4
 1.2. Multipath TCP in the Networking Stack 5
 1.3. Terminology . 6
 1.4. MPTCP Concept . 7
 1.5. Requirements Language 8
 2. Operation Overview . 8
 2.1. Initiating an MPTCP Connection 9
 2.2. Associating a New Subflow with an Existing MPTCP
 Connection . 10
 2.3. Informing the Other Host about Another Potential Address 11
 2.4. Data Transfer Using MPTCP 12
 2.5. Requesting a Change in a Path’s Priority 13
 2.6. Closing an MPTCP Connection 13
 2.7. Notable Features . 14
 3. MPTCP Protocol . 15
 3.1. Connection Initiation 16
 3.2. Starting a New Subflow 23
 3.3. General MPTCP Operation 28
 3.3.1. Data Sequence Mapping 30
 3.3.2. Data Acknowledgments 33
 3.3.3. Closing a Connection 34
 3.3.4. Receiver Considerations 36
 3.3.5. Sender Considerations 37
 3.3.6. Reliability and Retransmissions 38
 3.3.7. Congestion Control Considerations 39

Ford, et al. Expires December 10, 2019 [Page 2]

Internet-Draft Multipath TCP June 2019

 3.3.8. Subflow Policy 39
 3.4. Address Knowledge Exchange (Path Management) 40
 3.4.1. Address Advertisement 42
 3.4.2. Remove Address 45
 3.5. Fast Close . 46
 3.6. Subflow Reset . 48
 3.7. Fallback . 49
 3.8. Error Handling . 53
 3.9. Heuristics . 53
 3.9.1. Port Usage . 54
 3.9.2. Delayed Subflow Start and Subflow Symmetry 54
 3.9.3. Failure Handling 55
 4. Semantic Issues . 56
 5. Security Considerations 57
 6. Interactions with Middleboxes 60
 7. Acknowledgments . 63
 8. IANA Considerations . 64
 8.1. MPTCP Option Subtypes 64
 8.2. MPTCP Handshake Algorithms 65
 8.3. MP_TCPRST Reason Codes 66
 9. References . 67
 9.1. Normative References 67
 9.2. Informative References 68
 Appendix A. Notes on Use of TCP Options 71
 Appendix B. TCP Fast Open and MPTCP 72
 B.1. TFO cookie request with MPTCP 72
 B.2. Data sequence mapping under TFO 73
 B.3. Connection establishment examples 74
 Appendix C. Control Blocks 76
 C.1. MPTCP Control Block 76
 C.1.1. Authentication and Metadata 76
 C.1.2. Sending Side . 77
 C.1.3. Receiving Side 77
 C.2. TCP Control Blocks 77
 C.2.1. Sending Side . 78
 C.2.2. Receiving Side 78
 Appendix D. Finite State Machine 78
 Appendix E. Changes from RFC6824 79
 Authors’ Addresses . 81

1. Introduction

 Multipath TCP (MPTCP) is a set of extensions to regular TCP [RFC0793]
 to provide a Multipath TCP [RFC6182] service, which enables a
 transport connection to operate across multiple paths simultaneously.
 This document presents the protocol changes required to add multipath
 capability to TCP; specifically, those for signaling and setting up
 multiple paths ("subflows"), managing these subflows, reassembly of

Ford, et al. Expires December 10, 2019 [Page 3]

Internet-Draft Multipath TCP June 2019

 data, and termination of sessions. This is not the only information
 required to create a Multipath TCP implementation, however. This
 document is complemented by three others:

 o Architecture [RFC6182], which explains the motivations behind
 Multipath TCP, contains a discussion of high-level design
 decisions on which this design is based, and an explanation of a
 functional separation through which an extensible MPTCP
 implementation can be developed.

 o Congestion control [RFC6356] presents a safe congestion control
 algorithm for coupling the behavior of the multiple paths in order
 to "do no harm" to other network users.

 o Application considerations [RFC6897] discusses what impact MPTCP
 will have on applications, what applications will want to do with
 MPTCP, and as a consequence of these factors, what API extensions
 an MPTCP implementation should present.

 This document is an update to, and obsoletes, the v0 specification of
 Multipath TCP (RFC6824). This document specifies MPTCP v1, which is
 not backward compatible with MPTCP v0. This document additionally
 defines version negotiation procedures for implementations that
 support both versions.

1.1. Design Assumptions

 In order to limit the potentially huge design space, the mptcp
 working group imposed two key constraints on the Multipath TCP design
 presented in this document:

 o It must be backwards-compatible with current, regular TCP, to
 increase its chances of deployment.

 o It can be assumed that one or both hosts are multihomed and
 multiaddressed.

 To simplify the design, we assume that the presence of multiple
 addresses at a host is sufficient to indicate the existence of
 multiple paths. These paths need not be entirely disjoint: they may
 share one or many routers between them. Even in such a situation,
 making use of multiple paths is beneficial, improving resource
 utilization and resilience to a subset of node failures. The
 congestion control algorithms defined in [RFC6356] ensure this does
 not act detrimentally. Furthermore, there may be some scenarios
 where different TCP ports on a single host can provide disjoint paths
 (such as through certain Equal-Cost Multipath (ECMP) implementations

Ford, et al. Expires December 10, 2019 [Page 4]

Internet-Draft Multipath TCP June 2019

 [RFC2992]), and so the MPTCP design also supports the use of ports in
 path identifiers.

 There are three aspects to the backwards-compatibility listed above
 (discussed in more detail in [RFC6182]):

 External Constraints: The protocol must function through the vast
 majority of existing middleboxes such as NATs, firewalls, and
 proxies, and as such must resemble existing TCP as far as possible
 on the wire. Furthermore, the protocol must not assume the
 segments it sends on the wire arrive unmodified at the
 destination: they may be split or coalesced; TCP options may be
 removed or duplicated.

 Application Constraints: The protocol must be usable with no change
 to existing applications that use the common TCP API (although it
 is reasonable that not all features would be available to such
 legacy applications). Furthermore, the protocol must provide the
 same service model as regular TCP to the application.

 Fallback: The protocol should be able to fall back to standard TCP
 with no interference from the user, to be able to communicate with
 legacy hosts.

 The complementary application considerations document [RFC6897]
 discusses the necessary features of an API to provide backwards-
 compatibility, as well as API extensions to convey the behavior of
 MPTCP at a level of control and information equivalent to that
 available with regular, single-path TCP.

 Further discussion of the design constraints and associated design
 decisions are given in the MPTCP Architecture document [RFC6182] and
 in [howhard].

1.2. Multipath TCP in the Networking Stack

 MPTCP operates at the transport layer and aims to be transparent to
 both higher and lower layers. It is a set of additional features on
 top of standard TCP; Figure 1 illustrates this layering. MPTCP is
 designed to be usable by legacy applications with no changes;
 detailed discussion of its interactions with applications is given in
 [RFC6897].

Ford, et al. Expires December 10, 2019 [Page 5]

Internet-Draft Multipath TCP June 2019

 +-------------------------------+
 | Application |
 +---------------+ +-------------------------------+
 | Application | | MPTCP |
 +---------------+ + - - - - - - - + - - - - - - - +
 | TCP | | Subflow (TCP) | Subflow (TCP) |
 +---------------+ +-------------------------------+
 | IP | | IP | IP |
 +---------------+ +-------------------------------+

 Figure 1: Comparison of Standard TCP and MPTCP Protocol Stacks

1.3. Terminology

 This document makes use of a number of terms that are either MPTCP-
 specific or have defined meaning in the context of MPTCP, as follows:

 Path: A sequence of links between a sender and a receiver, defined
 in this context by a 4-tuple of source and destination address/
 port pairs.

 Subflow: A flow of TCP segments operating over an individual path,
 which forms part of a larger MPTCP connection. A subflow is
 started and terminated similar to a regular TCP connection.

 (MPTCP) Connection: A set of one or more subflows, over which an
 application can communicate between two hosts. There is a one-to-
 one mapping between a connection and an application socket.

 Data-level: The payload data is nominally transferred over a
 connection, which in turn is transported over subflows. Thus, the
 term "data-level" is synonymous with "connection level", in
 contrast to "subflow-level", which refers to properties of an
 individual subflow.

 Token: A locally unique identifier given to a multipath connection
 by a host. May also be referred to as a "Connection ID".

 Host: An end host operating an MPTCP implementation, and either
 initiating or accepting an MPTCP connection.

 In addition to these terms, note that MPTCP’s interpretation of, and
 effect on, regular single-path TCP semantics are discussed in
 Section 4.

Ford, et al. Expires December 10, 2019 [Page 6]

Internet-Draft Multipath TCP June 2019

1.4. MPTCP Concept

 This section provides a high-level summary of normal operation of
 MPTCP, and is illustrated by the scenario shown in Figure 2. A
 detailed description of operation is given in Section 3.

 o To a non-MPTCP-aware application, MPTCP will behave the same as
 normal TCP. Extended APIs could provide additional control to
 MPTCP-aware applications [RFC6897]. An application begins by
 opening a TCP socket in the normal way. MPTCP signaling and
 operation are handled by the MPTCP implementation.

 o An MPTCP connection begins similarly to a regular TCP connection.
 This is illustrated in Figure 2 where an MPTCP connection is
 established between addresses A1 and B1 on Hosts A and B,
 respectively.

 o If extra paths are available, additional TCP sessions (termed
 MPTCP "subflows") are created on these paths, and are combined
 with the existing session, which continues to appear as a single
 connection to the applications at both ends. The creation of the
 additional TCP session is illustrated between Address A2 on Host A
 and Address B1 on Host B.

 o MPTCP identifies multiple paths by the presence of multiple
 addresses at hosts. Combinations of these multiple addresses
 equate to the additional paths. In the example, other potential
 paths that could be set up are A1<->B2 and A2<->B2. Although this
 additional session is shown as being initiated from A2, it could
 equally have been initiated from B1 or B2.

 o The discovery and setup of additional subflows will be achieved
 through a path management method; this document describes a
 mechanism by which a host can initiate new subflows by using its
 own additional addresses, or by signaling its available addresses
 to the other host.

 o MPTCP adds connection-level sequence numbers to allow the
 reassembly of segments arriving on multiple subflows with
 differing network delays.

 o Subflows are terminated as regular TCP connections, with a four-
 way FIN handshake. The MPTCP connection is terminated by a
 connection-level FIN.

Ford, et al. Expires December 10, 2019 [Page 7]

Internet-Draft Multipath TCP June 2019

 Host A Host B
 ------------------------ ------------------------
 Address A1 Address A2 Address B1 Address B2
 ---------- ---------- ---------- ----------
 | | | |
 | (initial connection setup) | |
 |----------------------------------->| |
 |<-----------------------------------| |
 | | | |
 | (additional subflow setup) |
 | |--------------------->| |
 | |<---------------------| |
 | | | |
 | | | |

 Figure 2: Example MPTCP Usage Scenario

1.5. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Operation Overview

 This section presents a single description of common MPTCP operation,
 with reference to the protocol operation. This is a high-level
 overview of the key functions; the full specification follows in
 Section 3. Extensibility and negotiated features are not discussed
 here. Considerable reference is made to symbolic names of MPTCP
 options throughout this section -- these are subtypes of the IANA-
 assigned MPTCP option (see Section 8), and their formats are defined
 in the detailed protocol specification that follows in Section 3.

 A Multipath TCP connection provides a bidirectional bytestream
 between two hosts communicating like normal TCP and, thus, does not
 require any change to the applications. However, Multipath TCP
 enables the hosts to use different paths with different IP addresses
 to exchange packets belonging to the MPTCP connection. A Multipath
 TCP connection appears like a normal TCP connection to an
 application. However, to the network layer, each MPTCP subflow looks
 like a regular TCP flow whose segments carry a new TCP option type.
 Multipath TCP manages the creation, removal, and utilization of these
 subflows to send data. The number of subflows that are managed
 within a Multipath TCP connection is not fixed and it can fluctuate
 during the lifetime of the Multipath TCP connection.

Ford, et al. Expires December 10, 2019 [Page 8]

Internet-Draft Multipath TCP June 2019

 All MPTCP operations are signaled with a TCP option -- a single
 numerical type for MPTCP, with "sub-types" for each MPTCP message.
 What follows is a summary of the purpose and rationale of these
 messages.

2.1. Initiating an MPTCP Connection

 This is the same signaling as for initiating a normal TCP connection,
 but the SYN, SYN/ACK, and initial ACK (and data) packets also carry
 the MP_CAPABLE option. This option has a variable length and serves
 multiple purposes. Firstly, it verifies whether the remote host
 supports Multipath TCP; secondly, this option allows the hosts to
 exchange some information to authenticate the establishment of
 additional subflows. Further details are given in Section 3.1.

 Host A Host B
 ------ ------
 MP_CAPABLE ->
 [flags]
 <- MP_CAPABLE
 [B’s key, flags]
 ACK + MP_CAPABLE (+ data) ->
 [A’s key, B’s key, flags, (data-level details)]

 Retransmission of the ACK + MP_CAPABLE can occur if it is not known
 if it has been received. The following diagrams show all possible
 exchanges for the initial subflow setup to ensure this reliability.

Ford, et al. Expires December 10, 2019 [Page 9]

Internet-Draft Multipath TCP June 2019

 Host A (with data to send immediately) Host B
 ------ ------
 MP_CAPABLE ->
 [flags]
 <- MP_CAPABLE
 [B’s key, flags]
 ACK + MP_CAPABLE + data ->
 [A’s key, B’s key, flags, data-level details]

 Host A (with data to send later) Host B
 ------ ------
 MP_CAPABLE ->
 [flags]
 <- MP_CAPABLE
 [B’s key, flags]
 ACK + MP_CAPABLE ->
 [A’s key, B’s key, flags]

 ACK + MP_CAPABLE + data ->
 [A’s key, B’s key, flags, data-level details]

 Host A Host B (sending first)
 ------ ------
 MP_CAPABLE ->
 [flags]
 <- MP_CAPABLE
 [B’s key, flags]
 ACK + MP_CAPABLE ->
 [A’s key, B’s key, flags]

 <- ACK + DSS + data
 [data-level details]

2.2. Associating a New Subflow with an Existing MPTCP Connection

 The exchange of keys in the MP_CAPABLE handshake provides material
 that can be used to authenticate the endpoints when new subflows will
 be set up. Additional subflows begin in the same way as initiating a
 normal TCP connection, but the SYN, SYN/ACK, and ACK packets also
 carry the MP_JOIN option.

 Host A initiates a new subflow between one of its addresses and one
 of Host B’s addresses. The token -- generated from the key -- is
 used to identify which MPTCP connection it is joining, and the HMAC
 is used for authentication. The Hash-based Message Authentication
 Code (HMAC) uses the keys exchanged in the MP_CAPABLE handshake, and

Ford, et al. Expires December 10, 2019 [Page 10]

Internet-Draft Multipath TCP June 2019

 the random numbers (nonces) exchanged in these MP_JOIN options.
 MP_JOIN also contains flags and an Address ID that can be used to
 refer to the source address without the sender needing to know if it
 has been changed by a NAT. Further details are in Section 3.2.

 Host A Host B
 ------ ------
 MP_JOIN ->
 [B’s token, A’s nonce,
 A’s Address ID, flags]
 <- MP_JOIN
 [B’s HMAC, B’s nonce,
 B’s Address ID, flags]
 ACK + MP_JOIN ->
 [A’s HMAC]

 <- ACK

2.3. Informing the Other Host about Another Potential Address

 The set of IP addresses associated to a multihomed host may change
 during the lifetime of an MPTCP connection. MPTCP supports the
 addition and removal of addresses on a host both implicitly and
 explicitly. If Host A has established a subflow starting at address/
 port pair IP#-A1 and wants to open a second subflow starting at
 address/port pair IP#-A2, it simply initiates the establishment of
 the subflow as explained above. The remote host will then be
 implicitly informed about the new address.

 In some circumstances, a host may want to advertise to the remote
 host the availability of an address without establishing a new
 subflow, for example, when a NAT prevents setup in one direction. In
 the example below, Host A informs Host B about its alternative IP
 address/port pair (IP#-A2). Host B may later send an MP_JOIN to this
 new address. The ADD_ADDR option contains a HMAC to authenticate the
 address as having been sent from the originator of the connection.
 The receiver of this option echoes it back to the client to indicate
 successful receipt. Further details are in Section 3.4.1.

Ford, et al. Expires December 10, 2019 [Page 11]

Internet-Draft Multipath TCP June 2019

 Host A Host B
 ------ ------
 ADD_ADDR ->
 [Echo-flag=0,
 IP#-A2,
 IP#-A2’s Address ID,
 HMAC of IP#-A2]

 <- ADD_ADDR
 [Echo-flag=1,
 IP#-A2,
 IP#-A2’s Address ID,
 HMAC of IP#-A2]

 There is a corresponding signal for address removal, making use of
 the Address ID that is signaled in the add address handshake.
 Further details in Section 3.4.2.

 Host A Host B
 ------ ------
 REMOVE_ADDR ->
 [IP#-A2’s Address ID]

2.4. Data Transfer Using MPTCP

 To ensure reliable, in-order delivery of data over subflows that may
 appear and disappear at any time, MPTCP uses a 64-bit data sequence
 number (DSN) to number all data sent over the MPTCP connection. Each
 subflow has its own 32-bit sequence number space, utilising the
 regular TCP sequence number header, and an MPTCP option maps the
 subflow sequence space to the data sequence space. In this way, data
 can be retransmitted on different subflows (mapped to the same DSN)
 in the event of failure.

 The Data Sequence Signal (DSS) carries the Data Sequence Mapping.
 The Data Sequence Mapping consists of the subflow sequence number,
 data sequence number, and length for which this mapping is valid.
 This option can also carry a connection-level acknowledgment (the
 "Data ACK") for the received DSN.

 With MPTCP, all subflows share the same receive buffer and advertise
 the same receive window. There are two levels of acknowledgment in
 MPTCP. Regular TCP acknowledgments are used on each subflow to
 acknowledge the reception of the segments sent over the subflow
 independently of their DSN. In addition, there are connection-level
 acknowledgments for the data sequence space. These acknowledgments
 track the advancement of the bytestream and slide the receiving
 window.

Ford, et al. Expires December 10, 2019 [Page 12]

Internet-Draft Multipath TCP June 2019

 Further details are in Section 3.3.

 Host A Host B
 ------ ------
 DSS ->
 [Data Sequence Mapping]
 [Data ACK]
 [Checksum]

2.5. Requesting a Change in a Path’s Priority

 Hosts can indicate at initial subflow setup whether they wish the
 subflow to be used as a regular or backup path -- a backup path only
 being used if there are no regular paths available. During a
 connection, Host A can request a change in the priority of a subflow
 through the MP_PRIO signal to Host B. Further details are in
 Section 3.3.8.

 Host A Host B
 ------ ------
 MP_PRIO ->

2.6. Closing an MPTCP Connection

 When a host wants to close an existing subflow, but not the whole
 connection, it can initiate a regular TCP FIN/ACK exchange.

 When Host A wants to inform Host B that it has no more data to send,
 it signals this "Data FIN" as part of the Data Sequence Signal (see
 above). It has the same semantics and behavior as a regular TCP FIN,
 but at the connection level. Once all the data on the MPTCP
 connection has been successfully received, then this message is
 acknowledged at the connection level with a Data ACK. Further
 details are in Section 3.3.3.

 Host A Host B
 ------ ------
 DSS ->
 [Data FIN]
 <- DSS
 [Data ACK]

 There is an additional method of connection closure, referred to as
 "Fast Close", which is analogous to closing a single-path TCP
 connection with a RST signal. The MP_FASTCLOSE signal is used to
 indicate to the peer that the connection will be abruptly closed and
 no data will be accepted anymore. This can be used on an ACK
 (ensuring reliability of the signal), or a RST (which is not). Both

Ford, et al. Expires December 10, 2019 [Page 13]

Internet-Draft Multipath TCP June 2019

 examples are shown in the following diagrams. Further details are in
 Section 3.5.

 Host A Host B
 ------ ------
 ACK + MP_FASTCLOSE ->
 [B’s key]

 [RST on all other subflows] ->

 <- [RST on all subflows]

 Host A Host B
 ------ ------
 RST + MP_FASTCLOSE ->
 [B’s key] [on all subflows]

 <- [RST on all subflows]

2.7. Notable Features

 It is worth highlighting that MPTCP’s signaling has been designed
 with several key requirements in mind:

 o To cope with NATs on the path, addresses are referred to by
 Address IDs, in case the IP packet’s source address gets changed
 by a NAT. Setting up a new TCP flow is not possible if the
 receiver of the SYN is behind a NAT; to allow subflows to be
 created when either end is behind a NAT, MPTCP uses the ADD_ADDR
 message.

 o MPTCP falls back to ordinary TCP if MPTCP operation is not
 possible, for example, if one host is not MPTCP capable or if a
 middlebox alters the payload. This is discussed in Section 3.7.

 o To address the threats identified in [RFC6181], the following
 steps are taken: keys are sent in the clear in the MP_CAPABLE
 messages; MP_JOIN messages are secured with HMAC-SHA256
 ([RFC2104], [RFC6234]) using those keys; and standard TCP validity
 checks are made on the other messages (ensuring sequence numbers
 are in-window [RFC5961]). Residual threats to MPTCP v0 were
 identified in [RFC7430], and those affecting the protocol (i.e.
 modification to ADD_ADDR) have been incorporated in this document.
 Further discussion of security can be found in Section 5.

Ford, et al. Expires December 10, 2019 [Page 14]

Internet-Draft Multipath TCP June 2019

3. MPTCP Protocol

 This section describes the operation of the MPTCP protocol, and is
 subdivided into sections for each key part of the protocol operation.

 All MPTCP operations are signaled using optional TCP header fields.
 A single TCP option number ("Kind") has been assigned by IANA for
 MPTCP (see Section 8), and then individual messages will be
 determined by a "subtype", the values of which are also stored in an
 IANA registry (and are also listed in Section 8). As with all TCP
 options, the Length field is specified in bytes, and includes the 2
 bytes of Kind and Length.

 Throughout this document, when reference is made to an MPTCP option
 by symbolic name, such as "MP_CAPABLE", this refers to a TCP option
 with the single MPTCP option type, and with the subtype value of the
 symbolic name as defined in Section 8. This subtype is a 4-bit field
 -- the first 4 bits of the option payload, as shown in Figure 3. The
 MPTCP messages are defined in the following sections.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length |Subtype| |
 +---------------+---------------+-------+ |
 | Subtype-specific data |
 | (variable length) |
 +---+

 Figure 3: MPTCP Option Format

 Those MPTCP options associated with subflow initiation are used on
 packets with the SYN flag set. Additionally, there is one MPTCP
 option for signaling metadata to ensure segmented data can be
 recombined for delivery to the application.

 The remaining options, however, are signals that do not need to be on
 a specific packet, such as those for signaling additional addresses.
 Whilst an implementation may desire to send MPTCP options as soon as
 possible, it may not be possible to combine all desired options (both
 those for MPTCP and for regular TCP, such as SACK (selective
 acknowledgment) [RFC2018]) on a single packet. Therefore, an
 implementation may choose to send duplicate ACKs containing the
 additional signaling information. This changes the semantics of a
 duplicate ACK; these are usually only sent as a signal of a lost
 segment [RFC5681] in regular TCP. Therefore, an MPTCP implementation
 receiving a duplicate ACK that contains an MPTCP option MUST NOT
 treat it as a signal of congestion. Additionally, an MPTCP

Ford, et al. Expires December 10, 2019 [Page 15]

Internet-Draft Multipath TCP June 2019

 implementation SHOULD NOT send more than two duplicate ACKs in a row
 for the purposes of sending MPTCP options alone, in order to ensure
 no middleboxes misinterpret this as a sign of congestion.

 Furthermore, standard TCP validity checks (such as ensuring the
 sequence number and acknowledgment number are within window) MUST be
 undertaken before processing any MPTCP signals, as described in
 [RFC5961], and initial subflow sequence numbers SHOULD be generated
 according to the recommendations in [RFC6528].

3.1. Connection Initiation

 Connection initiation begins with a SYN, SYN/ACK, ACK exchange on a
 single path. Each packet contains the Multipath Capable (MP_CAPABLE)
 MPTCP option (Figure 4). This option declares its sender is capable
 of performing Multipath TCP and wishes to do so on this particular
 connection.

 The MP_CAPABLE exchange in this specification (v1) is different to
 that specified in v0. If a host supports multiple versions of MPTCP,
 the sender of the MP_CAPABLE option SHOULD signal the highest version
 number it supports. In return, in its MP_CAPABLE option, the
 receiver will signal the version number it wishes to use, which MUST
 be equal to or lower than the version number indicated in the initial
 MP_CAPABLE. There is a caveat though with respect to this version
 negotiation with old listeners that only support v0. A listener that
 supports v0 expects that the MP_CAPABLE option in the SYN-segment
 includes the initiator’s key. If the initiator however already
 upgraded to v1, it won’t include the key in the SYN-segment. Thus,
 the listener will ignore the MP_CAPABLE of this SYN-segment and reply
 with a SYN/ACK that does not include an MP_CAPABLE. The initiator
 MAY choose to immediately fall back to TCP or MAY choose to attempt a
 connection using MPTCP v0 (if the initiator supports v0), in order to
 discover whether the listener supports the earlier version of MPTCP.
 In general a MPTCP v0 connection is likely to be preferred to a TCP
 one, however in a particular deployment scenario it may be known that
 the listener is unlikely to support MPTCPv0 and so the initiator may
 prefer not to attempt a v0 connection. An initiator MAY cache
 information for a peer about what version of MPTCP it supports if
 any, and use this information for future connection attempts.

 The MP_CAPABLE option is variable-length, with different fields
 included depending on which packet the option is used on. The full
 MP_CAPABLE option is shown in Figure 4.

Ford, et al. Expires December 10, 2019 [Page 16]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Option Sender’s Key (64 bits) |
 | (if option Length > 4) |
 | |
 +---+
 | Option Receiver’s Key (64 bits) |
 | (if option Length > 12) |
 | |
 +-------------------------------+-------------------------------+
 | Data-Level Length (16 bits) | Checksum (16 bits, optional) |
 +-------------------------------+-------------------------------+

 Figure 4: Multipath Capable (MP_CAPABLE) Option

 The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK packets
 that start the first subflow of an MPTCP connection, as well as the
 first packet that carries data, if the initiator wishes to send
 first. The data carried by each option is as follows, where A =
 initiator and B = listener.

 o SYN (A->B): only the first four octets (Length = 4).

 o SYN/ACK (B->A): B’s Key for this connection (Length = 12).

 o ACK (no data) (A->B): A’s Key followed by B’s Key (Length = 20).

 o ACK (with first data) (A->B): A’s Key followed by B’s Key followed
 by Data-Level Length, and optional Checksum (Length = 22 or 24).

 The contents of the option is determined by the SYN and ACK flags of
 the packet, along with the option’s length field. For the diagram
 shown in Figure 4, "sender" and "receiver" refer to the sender or
 receiver of the TCP packet (which can be either host).

 The initial SYN, containing just the MP_CAPABLE header, is used to
 define the version of MPTCP being requested, as well as exchanging
 flags to negotiate connection features, described later.

 This option is used to declare the 64-bit keys that the end hosts
 have generated for this MPTCP connection. These keys are used to
 authenticate the addition of future subflows to this connection.
 This is the only time the key will be sent in clear on the wire
 (unless "fast close", Section 3.5, is used); all future subflows will
 identify the connection using a 32-bit "token". This token is a

Ford, et al. Expires December 10, 2019 [Page 17]

Internet-Draft Multipath TCP June 2019

 cryptographic hash of this key. The algorithm for this process is
 dependent on the authentication algorithm selected; the method of
 selection is defined later in this section.

 Upon reception of the initial SYN-segment, a stateful server
 generates a random key and replies with a SYN/ACK. The key’s method
 of generation is implementation specific. The key MUST be hard to
 guess, and it MUST be unique for the sending host across all its
 current MPTCP connections. Recommendations for generating random
 numbers for use in keys are given in [RFC4086]. Connections will be
 indexed at each host by the token (a one-way hash of the key).
 Therefore, an implementation will require a mapping from each token
 to the corresponding connection, and in turn to the keys for the
 connection.

 There is a risk that two different keys will hash to the same token.
 The risk of hash collisions is usually small, unless the host is
 handling many tens of thousands of connections. Therefore, an
 implementation SHOULD check its list of connection tokens to ensure
 there is no collision before sending its key, and if there is, then
 it should generate a new key. This would, however, be costly for a
 server with thousands of connections. The subflow handshake
 mechanism (Section 3.2) will ensure that new subflows only join the
 correct connection, however, through the cryptographic handshake, as
 well as checking the connection tokens in both directions, and
 ensuring sequence numbers are in-window. So in the worst case if
 there was a token collision, the new subflow would not succeed, but
 the MPTCP connection would continue to provide a regular TCP service.

 Since key generation is implementation-specific, there is no
 requirement that they be simply random numbers. An implementation is
 free to exchange cryptographic material out-of-band and generate
 these keys from this, in order to provide additional mechanisms by
 which to verify the identity of the communicating entities. For
 example, an implementation could choose to link its MPTCP keys to
 those used in higher-layer TLS or SSH connections.

 If the server behaves in a stateless manner, it has to generate its
 own key in a verifiable fashion. This verifiable way of generating
 the key can be done by using a hash of the 4-tuple, sequence number
 and a local secret (similar to what is done for the TCP-sequence
 number [RFC4987]). It will thus be able to verify whether it is
 indeed the originator of the key echoed back in the later MP_CAPABLE
 option. As for a stateful server, the tokens SHOULD be checked for
 uniqueness, however if uniqueness is not met, and there is no way to
 generate an alternative verifiable key, then the connection MUST fall
 back to using regular TCP by not sending a MP_CAPABLE in the SYN/ACK.

Ford, et al. Expires December 10, 2019 [Page 18]

Internet-Draft Multipath TCP June 2019

 The ACK carries both A’s key and B’s key. This is the first time
 that A’s key is seen on the wire, although it is expected that A will
 have generated a key locally before the initial SYN. The echoing of
 B’s key allows B to operate statelessly, as described above.
 Therefore, A’s key must be delivered reliably to B, and in order to
 do this, the transmission of this packet must be made reliable.

 If B has data to send first, then the reliable delivery of the
 ACK+MP_CAPABLE can be inferred by the receipt of this data with a
 MPTCP Data Sequence Signal (DSS) option (Section 3.3). If, however,
 A wishes to send data first, it has two options to ensure the
 reliable delivery of the ACK+MP_CAPABLE. If it immediately has data
 to send, then the third ACK (with data) would also contain an
 MP_CAPABLE option with additional data parameters (the Data-Level
 Length and optional Checksum as shown in Figure 4). If A does not
 immediately have data to send, it MUST include the MP_CAPABLE on the
 third ACK, but without the additional data parameters. When A does
 have data to send, it must repeat the sending of the MP_CAPABLE
 option from the third ACK, with additional data parameters. This
 MP_CAPABLE option is in place of the DSS, and simply specifies the
 data-level length of the payload, and the checksum (if the use of
 checksums is negotiated). This is the minimal data required to
 establish a MPTCP connection - it allows validation of the payload,
 and given it is the first data, the Initial Data Sequence Number
 (IDSN) is also known (as it is generated from the key, as described
 below). Conveying the keys on the first data packet allows the TCP
 reliability mechanisms to ensure the packet is successfully
 delivered. The receiver will acknowledge this data at the connection
 level with a Data ACK, as if a DSS option has been received.

 There could be situations where both A and B attempt to transmit
 initial data at the same time. For example, if A did not initially
 have data to send, but then needed to transmit data before it had
 received anything from B, it would use a MP_CAPABLE option with data
 parameters (since it would not know if the MP_CAPABLE on the ACK was
 received). In such a situation, B may also have transmitted data
 with a DSS option, but it had not yet been received at A. Therefore,
 B has received data with a MP_CAPABLE mapping after it has sent data
 with a DSS option. To ensure these situations can be handled, it
 follows that the data parameters in a MP_CAPABLE are semantically
 equivalent to those in a DSS option and can be used interchangeably.
 Similar situations could occur when the MP_CAPABLE with data is lost
 and retransmitted. Furthermore, in the case of TCP Segmentation
 Offloading, the MP_CAPABLE with data parameters may be duplicated
 across multiple packets, and implementations must also be able to
 cope with duplicate MP_CAPABLE mappings as well as duplicate DSS
 mappings.

Ford, et al. Expires December 10, 2019 [Page 19]

Internet-Draft Multipath TCP June 2019

 Additionally, the MP_CAPABLE exchange allows the safe passage of
 MPTCP options on SYN packets to be determined. If any of these
 options are dropped, MPTCP will gracefully fall back to regular
 single-path TCP, as documented in Section 3.7. If at any point in
 the handshake either party thinks the MPTCP negotiation is
 compromised, for example by a middlebox corrupting the TCP options,
 or unexpected ACK numbers being present, the host MUST stop using
 MPTCP and no longer include MPTCP options in future TCP packets. The
 other host will then also fall back to regular TCP using the fall
 back mechanism. Note that new subflows MUST NOT be established
 (using the process documented in Section 3.2) until a Data Sequence
 Signal (DSS) option has been successfully received across the path
 (as documented in Section 3.3).

 Like all MPTCP options, the MP_CAPABLE option starts with the Kind
 and Length to specify the TCP-option kind and its length. Followed
 by that is the MP_CAPABLE option. The first 4 bits of the first
 octet in the MP_CAPABLE option (Figure 4) define the MPTCP option
 subtype (see Section 8; for MP_CAPABLE, this is 0x0), and the
 remaining 4 bits of this octet specify the MPTCP version in use (for
 this specification, this is 1).

 The second octet is reserved for flags, allocated as follows:

 A: The leftmost bit, labeled "A", SHOULD be set to 1 to indicate
 "Checksum Required", unless the system administrator has decided
 that checksums are not required (for example, if the environment
 is controlled and no middleboxes exist that might adjust the
 payload).

 B: The second bit, labeled "B", is an extensibility flag, and MUST be
 set to 0 for current implementations. This will be used for an
 extensibility mechanism in a future specification, and the impact
 of this flag will be defined at a later date. It is expected, but
 not mandated, that this flag would be used as part of an
 alternative security mechanism that does not require a full
 version upgrade of the protocol, but does require redefining some
 elements of the handshake. If receiving a message with the ’B’
 flag set to 1, and this is not understood, then the MP_CAPABLE in
 this SYN MUST be silently ignored, which triggers a fallback to
 regular TCP; the sender is expected to retry with a format
 compatible with this legacy specification. Note that the length
 of the MP_CAPABLE option, and the meanings of bits "D" through
 "H", may be altered by setting B=1.

 C: The third bit, labeled "C", is set to "1" to indicate that the
 sender of this option will not accept additional MPTCP subflows to
 the source address and port, and therefore the receiver MUST NOT

Ford, et al. Expires December 10, 2019 [Page 20]

Internet-Draft Multipath TCP June 2019

 try to open any additional subflows towards this address and port.
 This is an efficiency improvement for situations where the sender
 knows a restriction is in place, for example if the sender is
 behind a strict NAT, or operating behind a legacy Layer 4 load
 balancer.

 D through H: The remaining bits, labeled "D" through "H", are used
 for crypto algorithm negotiation. In this specification only the
 rightmost bit, labeled "H", is assigned. Bit "H" indicates the
 use of HMAC-SHA256 (as defined in Section 3.2). An implementation
 that only supports this method MUST set bit "H" to 1, and bits "D"
 through "G" to 0.

 A crypto algorithm MUST be specified. If flag bits D through H are
 all 0, the MP_CAPABLE option MUST be treated as invalid and ignored
 (that is, it must be treated as a regular TCP handshake).

 The selection of the authentication algorithm also impacts the
 algorithm used to generate the token and the Initial Data Sequence
 Number (IDSN). In this specification, with only the SHA-256
 algorithm (bit "H") specified and selected, the token MUST be a
 truncated (most significant 32 bits) SHA-256 hash ([RFC6234]) of the
 key. A different, 64-bit truncation (the least significant 64 bits)
 of the SHA-256 hash of the key MUST be used as the IDSN. Note that
 the key MUST be hashed in network byte order. Also note that the
 "least significant" bits MUST be the rightmost bits of the SHA-256
 digest, as per [RFC6234]. Future specifications of the use of the
 crypto bits may choose to specify different algorithms for token and
 IDSN generation.

 Both the crypto and checksum bits negotiate capabilities in similar
 ways. For the Checksum Required bit (labeled "A"), if either host
 requires the use of checksums, checksums MUST be used. In other
 words, the only way for checksums not to be used is if both hosts in
 their SYNs set A=0. This decision is confirmed by the setting of the
 "A" bit in the third packet (the ACK) of the handshake. For example,
 if the initiator sets A=0 in the SYN, but the responder sets A=1 in
 the SYN/ACK, checksums MUST be used in both directions, and the
 initiator will set A=1 in the ACK. The decision whether to use
 checksums will be stored by an implementation in a per-connection
 binary state variable. If A=1 is received by a host that does not
 want to use checksums, it MUST fall back to regular TCP by ignoring
 the MP_CAPABLE option as if it was invalid.

 For crypto negotiation, the responder has the choice. The initiator
 creates a proposal setting a bit for each algorithm it supports to 1
 (in this version of the specification, there is only one proposal, so
 bit "H" will be always set to 1). The responder responds with only 1

Ford, et al. Expires December 10, 2019 [Page 21]

Internet-Draft Multipath TCP June 2019

 bit set -- this is the chosen algorithm. The rationale for this
 behavior is that the responder will typically be a server with
 potentially many thousands of connections, so it may wish to choose
 an algorithm with minimal computational complexity, depending on the
 load. If a responder does not support (or does not want to support)
 any of the initiator’s proposals, it MUST respond without an
 MP_CAPABLE option, thus forcing a fallback to regular TCP.

 The MP_CAPABLE option is only used in the first subflow of a
 connection, in order to identify the connection; all following
 subflows will use the "Join" option (see Section 3.2) to join the
 existing connection.

 If a SYN contains an MP_CAPABLE option but the SYN/ACK does not, it
 is assumed that sender of the SYN/ACK is not multipath capable; thus,
 the MPTCP session MUST operate as a regular, single-path TCP. If a
 SYN does not contain a MP_CAPABLE option, the SYN/ACK MUST NOT
 contain one in response. If the third packet (the ACK) does not
 contain the MP_CAPABLE option, then the session MUST fall back to
 operating as a regular, single-path TCP. This is to maintain
 compatibility with middleboxes on the path that drop some or all TCP
 options. Note that an implementation MAY choose to attempt sending
 MPTCP options more than one time before making this decision to
 operate as regular TCP (see Section 3.9).

 If the SYN packets are unacknowledged, it is up to local policy to
 decide how to respond. It is expected that a sender will eventually
 fall back to single-path TCP (i.e., without the MP_CAPABLE option) in
 order to work around middleboxes that may drop packets with unknown
 options; however, the number of multipath-capable attempts that are
 made first will be up to local policy. It is possible that MPTCP and
 non-MPTCP SYNs could get reordered in the network. Therefore, the
 final state is inferred from the presence or absence of the
 MP_CAPABLE option in the third packet of the TCP handshake. If this
 option is not present, the connection SHOULD fall back to regular
 TCP, as documented in Section 3.7.

 The initial data sequence number on an MPTCP connection is generated
 from the key. The algorithm for IDSN generation is also determined
 from the negotiated authentication algorithm. In this specification,
 with only the SHA-256 algorithm specified and selected, the IDSN of a
 host MUST be the least significant 64 bits of the SHA-256 hash of its
 key, i.e., IDSN-A = Hash(Key-A) and IDSN-B = Hash(Key-B). This
 deterministic generation of the IDSN allows a receiver to ensure that
 there are no gaps in sequence space at the start of the connection.
 The SYN with MP_CAPABLE occupies the first octet of data sequence
 space, although this does not need to be acknowledged at the
 connection level until the first data is sent (see Section 3.3).

Ford, et al. Expires December 10, 2019 [Page 22]

Internet-Draft Multipath TCP June 2019

3.2. Starting a New Subflow

 Once an MPTCP connection has begun with the MP_CAPABLE exchange,
 further subflows can be added to the connection. Hosts have
 knowledge of their own address(es), and can become aware of the other
 host’s addresses through signaling exchanges as described in
 Section 3.4. Using this knowledge, a host can initiate a new subflow
 over a currently unused pair of addresses. It is permitted for
 either host in a connection to initiate the creation of a new
 subflow, but it is expected that this will normally be the original
 connection initiator (see Section 3.9 for heuristics).

 A new subflow is started as a normal TCP SYN/ACK exchange. The Join
 Connection (MP_JOIN) MPTCP option is used to identify the connection
 to be joined by the new subflow. It uses keying material that was
 exchanged in the initial MP_CAPABLE handshake (Section 3.1), and that
 handshake also negotiates the crypto algorithm in use for the MP_JOIN
 handshake.

 This section specifies the behavior of MP_JOIN using the HMAC-SHA256
 algorithm. An MP_JOIN option is present in the SYN, SYN/ACK, and ACK
 of the three-way handshake, although in each case with a different
 format.

 In the first MP_JOIN on the SYN packet, illustrated in Figure 5, the
 initiator sends a token, random number, and address ID.

 The token is used to identify the MPTCP connection and is a
 cryptographic hash of the receiver’s key, as exchanged in the initial
 MP_CAPABLE handshake (Section 3.1). In this specification, the
 tokens presented in this option are generated by the SHA-256
 [RFC6234] algorithm, truncated to the most significant 32 bits. The
 token included in the MP_JOIN option is the token that the receiver
 of the packet uses to identify this connection; i.e., Host A will
 send Token-B (which is generated from Key-B). Note that the hash
 generation algorithm can be overridden by the choice of cryptographic
 handshake algorithm, as defined in Section 3.1.

 The MP_JOIN SYN sends not only the token (which is static for a
 connection) but also random numbers (nonces) that are used to prevent
 replay attacks on the authentication method. Recommendations for the
 generation of random numbers for this purpose are given in [RFC4086].

 The MP_JOIN option includes an "Address ID". This is an identifier
 generated by the sender of the option, used to identify the source
 address of this packet, even if the IP header has been changed in
 transit by a middlebox. The numeric value of this field is generated
 by the sender and must map uniquely to a source IP address for the

Ford, et al. Expires December 10, 2019 [Page 23]

Internet-Draft Multipath TCP June 2019

 sending host. The Address ID allows address removal (Section 3.4.2)
 without needing to know what the source address at the receiver is,
 thus allowing address removal through NATs. The Address ID also
 allows correlation between new subflow setup attempts and address
 signaling (Section 3.4.1), to prevent setting up duplicate subflows
 on the same path, if an MP_JOIN and ADD_ADDR are sent at the same
 time.

 The Address IDs of the subflow used in the initial SYN exchange of
 the first subflow in the connection are implicit, and have the value
 zero. A host MUST store the mappings between Address IDs and
 addresses both for itself and the remote host. An implementation
 will also need to know which local and remote Address IDs are
 associated with which established subflows, for when addresses are
 removed from a local or remote host.

 The MP_JOIN option on packets with the SYN flag set also includes 4
 bits of flags, 3 of which are currently reserved and MUST be set to
 zero by the sender. The final bit, labeled "B", indicates whether
 the sender of this option wishes this subflow to be used as a backup
 path (B=1) in the event of failure of other paths, or whether it
 wants it to be used as part of the connection immediately. By
 setting B=1, the sender of the option is requesting the other host to
 only send data on this subflow if there are no available subflows
 where B=0. Subflow policy is discussed in more detail in
 Section 3.3.8.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----+-+---------------+
 | Kind | Length = 12 |Subtype|(rsv)|B| Address ID |
 +---------------+---------------+-------+-----+-+---------------+
 | Receiver’s Token (32 bits) |
 +---+
 | Sender’s Random Number (32 bits) |
 +---+

 Figure 5: Join Connection (MP_JOIN) Option (for Initial SYN)

 When receiving a SYN with an MP_JOIN option that contains a valid
 token for an existing MPTCP connection, the recipient SHOULD respond
 with a SYN/ACK also containing an MP_JOIN option containing a random
 number and a truncated (leftmost 64 bits) Hash-based Message
 Authentication Code (HMAC). This version of the option is shown in
 Figure 6. If the token is unknown, or the host wants to refuse
 subflow establishment (for example, due to a limit on the number of
 subflows it will permit), the receiver will send back a reset (RST)
 signal, analogous to an unknown port in TCP, containing a MP_TCPRST

Ford, et al. Expires December 10, 2019 [Page 24]

Internet-Draft Multipath TCP June 2019

 option (Section 3.6) with a "MPTCP specific error" reason code.
 Although calculating an HMAC requires cryptographic operations, it is
 believed that the 32-bit token in the MP_JOIN SYN gives sufficient
 protection against blind state exhaustion attacks; therefore, there
 is no need to provide mechanisms to allow a responder to operate
 statelessly at the MP_JOIN stage.

 An HMAC is sent by both hosts -- by the initiator (Host A) in the
 third packet (the ACK) and by the responder (Host B) in the second
 packet (the SYN/ACK). Doing the HMAC exchange at this stage allows
 both hosts to have first exchanged random data (in the first two SYN
 packets) that is used as the "message". This specification defines
 that HMAC as defined in [RFC2104] is used, along with the SHA-256
 hash algorithm [RFC6234], and that the output is truncated to the
 leftmost 160 bits (20 octets). Due to option space limitations, the
 HMAC included in the SYN/ACK is truncated to the leftmost 64 bits,
 but this is acceptable since random numbers are used; thus, an
 attacker only has one chance to correctly guess the HMAC that matches
 the random number previously sent by the peer (if the HMAC is
 incorrect, the TCP connection is closed, so a new MP_JOIN negotiation
 with a new random number is required).

 The initiator’s authentication information is sent in its first ACK
 (the third packet of the handshake), as shown in Figure 7. This data
 needs to be sent reliably, since it is the only time this HMAC is
 sent; therefore, receipt of this packet MUST trigger a regular TCP
 ACK in response, and the packet MUST be retransmitted if this ACK is
 not received. In other words, sending the ACK/MP_JOIN packet places
 the subflow in the PRE_ESTABLISHED state, and it moves to the
 ESTABLISHED state only on receipt of an ACK from the receiver. It is
 not permitted to send data while in the PRE_ESTABLISHED state. The
 reserved bits in this option MUST be set to zero by the sender.

 The key for the HMAC algorithm, in the case of the message
 transmitted by Host A, will be Key-A followed by Key-B, and in the
 case of Host B, Key-B followed by Key-A. These are the keys that
 were exchanged in the original MP_CAPABLE handshake. The "message"
 for the HMAC algorithm in each case is the concatenations of random
 number for each host (denoted by R): for Host A, R-A followed by R-B;
 and for Host B, R-B followed by R-A.

Ford, et al. Expires December 10, 2019 [Page 25]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----+-+---------------+
 | Kind | Length = 16 |Subtype|(rsv)|B| Address ID |
 +---------------+---------------+-------+-----+-+---------------+
 | |
 | Sender’s Truncated HMAC (64 bits) |
 | |
 +---+
 | Sender’s Random Number (32 bits) |
 +---+

 Figure 6: Join Connection (MP_JOIN) Option (for Responding SYN/ACK)

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length = 24 |Subtype| (reserved) |
 +---------------+---------------+-------+-----------------------+
 | |
 | |
 | Sender’s Truncated HMAC (160 bits) |
 | |
 | |
 +---+

 Figure 7: Join Connection (MP_JOIN) Option (for Third ACK)

 These various MPTCP options fit together to enable authenticated
 subflow setup as illustrated in Figure 8.

Ford, et al. Expires December 10, 2019 [Page 26]

Internet-Draft Multipath TCP June 2019

 Host A Host B
 ------------------------ ----------
 Address A1 Address A2 Address B1
 ---------- ---------- ----------
 | | |
 | | SYN + MP_CAPABLE |
 |--->|
 |<---|
 | SYN/ACK + MP_CAPABLE(Key-B) |
 | | |
 | ACK + MP_CAPABLE(Key-A, Key-B) |
 |--->|
 | | |
 | | SYN + MP_JOIN(Token-B, R-A) |
 | |------------------------------->|
 | |<-------------------------------|
 | | SYN/ACK + MP_JOIN(HMAC-B, R-B) |
 | | |
 | | ACK + MP_JOIN(HMAC-A) |
 | |------------------------------->|
 | |<-------------------------------|
 | | ACK |

 HMAC-A = HMAC(Key=(Key-A+Key-B), Msg=(R-A+R-B))
 HMAC-B = HMAC(Key=(Key-B+Key-A), Msg=(R-B+R-A))

 Figure 8: Example Use of MPTCP Authentication

 If the token received at Host B is unknown or local policy prohibits
 the acceptance of the new subflow, the recipient MUST respond with a
 TCP RST for the subflow. If appropriate, a MP_TCPRST option with a
 "Administratively prohibited" reason code (Section 3.6) should be
 included.

 If the token is accepted at Host B, but the HMAC returned to Host A
 does not match the one expected, Host A MUST close the subflow with a
 TCP RST. In this, and all following cases of sending a RST in this
 section, the sender SHOULD send a MP_TCPRST option (Section 3.6) on
 this RST packet with the reason code for a "MPTCP specific error".

 If Host B does not receive the expected HMAC, or the MP_JOIN option
 is missing from the ACK, it MUST close the subflow with a TCP RST.

 If the HMACs are verified as correct, then both hosts have verified
 each other as being the same peers as existed at the start of the
 connection, and they have agreed of which connection this subflow
 will become a part.

Ford, et al. Expires December 10, 2019 [Page 27]

Internet-Draft Multipath TCP June 2019

 If the SYN/ACK as received at Host A does not have an MP_JOIN option,
 Host A MUST close the subflow with a TCP RST.

 This covers all cases of the loss of an MP_JOIN. In more detail, if
 MP_JOIN is stripped from the SYN on the path from A to B, and Host B
 does not have a listener on the relevant port, it will respond with a
 RST in the normal way. If in response to a SYN with an MP_JOIN
 option, a SYN/ACK is received without the MP_JOIN option (either
 since it was stripped on the return path, or it was stripped on the
 outgoing path but Host B responded as if it were a new regular TCP
 session), then the subflow is unusable and Host A MUST close it with
 a RST.

 Note that additional subflows can be created between any pair of
 ports (but see Section 3.9 for heuristics); no explicit application-
 level accept calls or bind calls are required to open additional
 subflows. To associate a new subflow with an existing connection,
 the token supplied in the subflow’s SYN exchange is used for
 demultiplexing. This then binds the 5-tuple of the TCP subflow to
 the local token of the connection. A consequence is that it is
 possible to allow any port pairs to be used for a connection.

 Demultiplexing subflow SYNs MUST be done using the token; this is
 unlike traditional TCP, where the destination port is used for
 demultiplexing SYN packets. Once a subflow is set up, demultiplexing
 packets is done using the 5-tuple, as in traditional TCP. The
 5-tuples will be mapped to the local connection identifier (token).
 Note that Host A will know its local token for the subflow even
 though it is not sent on the wire -- only the responder’s token is
 sent.

3.3. General MPTCP Operation

 This section discusses operation of MPTCP for data transfer. At a
 high level, an MPTCP implementation will take one input data stream
 from an application, and split it into one or more subflows, with
 sufficient control information to allow it to be reassembled and
 delivered reliably and in order to the recipient application. The
 following subsections define this behavior in detail.

 The data sequence mapping and the Data ACK are signaled in the Data
 Sequence Signal (DSS) option (Figure 9). Either or both can be
 signaled in one DSS, depending on the flags set. The data sequence
 mapping defines how the sequence space on the subflow maps to the
 connection level, and the Data ACK acknowledges receipt of data at
 the connection level. These functions are described in more detail
 in the following two subsections.

Ford, et al. Expires December 10, 2019 [Page 28]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Kind | Length |Subtype| (reserved) |F|m|M|a|A|
 +---------------+---------------+-------+----------------------+
 | Data ACK (4 or 8 octets, depending on flags) |
 +--+
 | Data sequence number (4 or 8 octets, depending on flags) |
 +--+
 | Subflow Sequence Number (4 octets) |
 +-------------------------------+------------------------------+
 | Data-Level Length (2 octets) | Checksum (2 octets) |
 +-------------------------------+------------------------------+

 Figure 9: Data Sequence Signal (DSS) Option

 The flags, when set, define the contents of this option, as follows:

 o A = Data ACK present

 o a = Data ACK is 8 octets (if not set, Data ACK is 4 octets)

 o M = Data Sequence Number (DSN), Subflow Sequence Number (SSN),
 Data-Level Length, and Checksum (if negotiated) present

 o m = Data sequence number is 8 octets (if not set, DSN is 4 octets)

 The flags ’a’ and ’m’ only have meaning if the corresponding ’A’ or
 ’M’ flags are set; otherwise, they will be ignored. The maximum
 length of this option, with all flags set, is 28 octets.

 The ’F’ flag indicates "Data FIN". If present, this means that this
 mapping covers the final data from the sender. This is the
 connection-level equivalent to the FIN flag in single-path TCP. A
 connection is not closed unless there has been a Data FIN exchange, a
 MP_FASTCLOSE (Section 3.5) message, or an implementation-specific,
 connection-level send timeout. The purpose of the Data FIN and the
 interactions between this flag, the subflow-level FIN flag, and the
 data sequence mapping are described in Section 3.3.3. The remaining
 reserved bits MUST be set to zero by an implementation of this
 specification.

 Note that the checksum is only present in this option if the use of
 MPTCP checksumming has been negotiated at the MP_CAPABLE handshake
 (see Section 3.1). The presence of the checksum can be inferred from
 the length of the option. If a checksum is present, but its use had
 not been negotiated in the MP_CAPABLE handshake, the receiver MUST
 close the subflow with a RST as it not behaving as negotiated. If a

Ford, et al. Expires December 10, 2019 [Page 29]

Internet-Draft Multipath TCP June 2019

 checksum is not present when its use has been negotiated, the
 receiver MUST close the subflow with a RST as it is considered
 broken. In both cases, this RST SHOULD be accompanied with a
 MP_TCPRST option (Section 3.6) with the reason code for a "MPTCP
 specific error".

3.3.1. Data Sequence Mapping

 The data stream as a whole can be reassembled through the use of the
 data sequence mapping components of the DSS option (Figure 9), which
 define the mapping from the subflow sequence number to the data
 sequence number. This is used by the receiver to ensure in-order
 delivery to the application layer. Meanwhile, the subflow-level
 sequence numbers (i.e., the regular sequence numbers in the TCP
 header) have subflow-only relevance. It is expected (but not
 mandated) that SACK [RFC2018] is used at the subflow level to improve
 efficiency.

 The data sequence mapping specifies a mapping from subflow sequence
 space to data sequence space. This is expressed in terms of starting
 sequence numbers for the subflow and the data level, and a length of
 bytes for which this mapping is valid. This explicit mapping for a
 range of data was chosen rather than per-packet signaling to assist
 with compatibility with situations where TCP/IP segmentation or
 coalescing is undertaken separately from the stack that is generating
 the data flow (e.g., through the use of TCP segmentation offloading
 on network interface cards, or by middleboxes such as performance
 enhancing proxies). It also allows a single mapping to cover many
 packets, which may be useful in bulk transfer situations.

 A mapping is fixed, in that the subflow sequence number is bound to
 the data sequence number after the mapping has been processed. A
 sender MUST NOT change this mapping after it has been declared;
 however, the same data sequence number can be mapped to by different
 subflows for retransmission purposes (see Section 3.3.6). This would
 also permit the same data to be sent simultaneously on multiple
 subflows for resilience or efficiency purposes, especially in the
 case of lossy links. Although the detailed specification of such
 operation is outside the scope of this document, an implementation
 SHOULD treat the first data that is received at a subflow for the
 data sequence space as that which should be delivered to the
 application, and any later data for that sequence space SHOULD be
 ignored.

 The data sequence number is specified as an absolute value, whereas
 the subflow sequence numbering is relative (the SYN at the start of
 the subflow has relative subflow sequence number 0). This is to
 allow middleboxes to change the initial sequence number of a subflow,

Ford, et al. Expires December 10, 2019 [Page 30]

Internet-Draft Multipath TCP June 2019

 such as firewalls that undertake Initial Sequence Number (ISN)
 randomization.

 The data sequence mapping also contains a checksum of the data that
 this mapping covers, if use of checksums has been negotiated at the
 MP_CAPABLE exchange. Checksums are used to detect if the payload has
 been adjusted in any way by a non-MPTCP-aware middlebox. If this
 checksum fails, it will trigger a failure of the subflow, or a
 fallback to regular TCP, as documented in Section 3.7, since MPTCP
 can no longer reliably know the subflow sequence space at the
 receiver to build data sequence mappings. Without checksumming
 enabled, corrupt data may be delivered to the application if a
 middlebox alters segment boundaries, alters content, or does not
 deliver all segments covered by a data sequence mapping. It is
 therefore RECOMMENDED to use checksumming unless it is known the
 network path contains no such devices.

 The checksum algorithm used is the standard TCP checksum [RFC0793],
 operating over the data covered by this mapping, along with a pseudo-
 header as shown in Figure 10.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +--+
 | |
 | Data Sequence Number (8 octets) |
 | |
 +--+
 | Subflow Sequence Number (4 octets) |
 +-------------------------------+------------------------------+
 | Data-Level Length (2 octets) | Zeros (2 octets) |
 +-------------------------------+------------------------------+

 Figure 10: Pseudo-Header for DSS Checksum

 Note that the data sequence number used in the pseudo-header is
 always the 64-bit value, irrespective of what length is used in the
 DSS option itself. The standard TCP checksum algorithm has been
 chosen since it will be calculated anyway for the TCP subflow, and if
 calculated first over the data before adding the pseudo-headers, it
 only needs to be calculated once. Furthermore, since the TCP
 checksum is additive, the checksum for a DSN_MAP can be constructed
 by simply adding together the checksums for the data of each
 constituent TCP segment, and adding the checksum for the DSS pseudo-
 header.

 Note that checksumming relies on the TCP subflow containing
 contiguous data; therefore, a TCP subflow MUST NOT use the Urgent

Ford, et al. Expires December 10, 2019 [Page 31]

Internet-Draft Multipath TCP June 2019

 Pointer to interrupt an existing mapping. Further note, however,
 that if Urgent data is received on a subflow, it SHOULD be mapped to
 the data sequence space and delivered to the application analogous to
 Urgent data in regular TCP.

 To avoid possible deadlock scenarios, subflow-level processing should
 be undertaken separately from that at connection level. Therefore,
 even if a mapping does not exist from the subflow space to the data-
 level space, the data SHOULD still be ACKed at the subflow (if it is
 in-window). This data cannot, however, be acknowledged at the data
 level (Section 3.3.2) because its data sequence numbers are unknown.
 Implementations MAY hold onto such unmapped data for a short while in
 the expectation that a mapping will arrive shortly. Such unmapped
 data cannot be counted as being within the connection level receive
 window because this is relative to the data sequence numbers, so if
 the receiver runs out of memory to hold this data, it will have to be
 discarded. If a mapping for that subflow-level sequence space does
 not arrive within a receive window of data, that subflow SHOULD be
 treated as broken, closed with a RST, and any unmapped data silently
 discarded.

 Data sequence numbers are always 64-bit quantities, and MUST be
 maintained as such in implementations. If a connection is
 progressing at a slow rate, so protection against wrapped sequence
 numbers is not required, then an implementation MAY include just the
 lower 32 bits of the data sequence number in the data sequence
 mapping and/or Data ACK as an optimization, and an implementation can
 make this choice independently for each packet. An implementation
 MUST be able to receive and process both 64-bit or 32-bit sequence
 number values, but it is not required that an implementation is able
 to send both.

 An implementation MUST send the full 64-bit data sequence number if
 it is transmitting at a sufficiently high rate that the 32-bit value
 could wrap within the Maximum Segment Lifetime (MSL) [RFC7323]. The
 lengths of the DSNs used in these values (which may be different) are
 declared with flags in the DSS option. Implementations MUST accept a
 32-bit DSN and implicitly promote it to a 64-bit quantity by
 incrementing the upper 32 bits of sequence number each time the lower
 32 bits wrap. A sanity check MUST be implemented to ensure that a
 wrap occurs at an expected time (e.g., the sequence number jumps from
 a very high number to a very low number) and is not triggered by out-
 of-order packets.

 As with the standard TCP sequence number, the data sequence number
 should not start at zero, but at a random value to make blind session
 hijacking harder. This specification requires setting the initial
 data sequence number (IDSN) of each host to the least significant 64

Ford, et al. Expires December 10, 2019 [Page 32]

Internet-Draft Multipath TCP June 2019

 bits of the SHA-256 hash of the host’s key, as described in
 Section 3.1. This is required also in order for the receiver to know
 what the expected IDSN is, and thus determine if any initial
 connection-level packets are missing; this is particularly relevant
 if two subflows start transmitting simultaneously.

 A data sequence mapping does not need to be included in every MPTCP
 packet, as long as the subflow sequence space in that packet is
 covered by a mapping known at the receiver. This can be used to
 reduce overhead in cases where the mapping is known in advance; one
 such case is when there is a single subflow between the hosts,
 another is when segments of data are scheduled in larger than packet-
 sized chunks.

 An "infinite" mapping can be used to fall back to regular TCP by
 mapping the subflow-level data to the connection-level data for the
 remainder of the connection (see Section 3.7). This is achieved by
 setting the Data-Level Length field of the DSS option to the reserved
 value of 0. The checksum, in such a case, will also be set to zero.

3.3.2. Data Acknowledgments

 To provide full end-to-end resilience, MPTCP provides a connection-
 level acknowledgment, to act as a cumulative ACK for the connection
 as a whole. This is the "Data ACK" field of the DSS option
 (Figure 9). The Data ACK is analogous to the behavior of the
 standard TCP cumulative ACK -- indicating how much data has been
 successfully received (with no holes). This is in comparison to the
 subflow-level ACK, which acts analogous to TCP SACK, given that there
 may still be holes in the data stream at the connection level. The
 Data ACK specifies the next data sequence number it expects to
 receive.

 The Data ACK, as for the DSN, can be sent as the full 64-bit value,
 or as the lower 32 bits. If data is received with a 64-bit DSN, it
 MUST be acknowledged with a 64-bit Data ACK. If the DSN received is
 32 bits, an implementation can choose whether to send a 32-bit or
 64-bit Data ACK, and an implementation MUST accept either in this
 situation.

 The Data ACK proves that the data, and all required MPTCP signaling,
 has been received and accepted by the remote end. One key use of the
 Data ACK signal is that it is used to indicate the left edge of the
 advertised receive window. As explained in Section 3.3.4, the
 receive window is shared by all subflows and is relative to the Data
 ACK. Because of this, an implementation MUST NOT use the RCV.WND
 field of a TCP segment at the connection level if it does not also
 carry a DSS option with a Data ACK field. Furthermore, separating

Ford, et al. Expires December 10, 2019 [Page 33]

Internet-Draft Multipath TCP June 2019

 the connection-level acknowledgments from the subflow level allows
 processing to be done separately, and a receiver has the freedom to
 drop segments after acknowledgment at the subflow level, for example,
 due to memory constraints when many segments arrive out of order.

 An MPTCP sender MUST NOT free data from the send buffer until it has
 been acknowledged by both a Data ACK received on any subflow and at
 the subflow level by all subflows on which the data was sent. The
 former condition ensures liveness of the connection and the latter
 condition ensures liveness and self-consistence of a subflow when
 data needs to be retransmitted. Note, however, that if some data
 needs to be retransmitted multiple times over a subflow, there is a
 risk of blocking the sending window. In this case, the MPTCP sender
 can decide to terminate the subflow that is behaving badly by sending
 a RST, using an appropriate MP_TCPRST (Section 3.6) error code.

 The Data ACK MAY be included in all segments; however, optimizations
 SHOULD be considered in more advanced implementations, where the Data
 ACK is present in segments only when the Data ACK value advances, and
 this behavior MUST be treated as valid. This behavior ensures the
 sender buffer is freed, while reducing overhead when the data
 transfer is unidirectional.

3.3.3. Closing a Connection

 In regular TCP, a FIN announces the receiver that the sender has no
 more data to send. In order to allow subflows to operate
 independently and to keep the appearance of TCP over the wire, a FIN
 in MPTCP only affects the subflow on which it is sent. This allows
 nodes to exercise considerable freedom over which paths are in use at
 any one time. The semantics of a FIN remain as for regular TCP;
 i.e., it is not until both sides have ACKed each other’s FINs that
 the subflow is fully closed.

 When an application calls close() on a socket, this indicates that it
 has no more data to send; for regular TCP, this would result in a FIN
 on the connection. For MPTCP, an equivalent mechanism is needed, and
 this is referred to as the DATA_FIN.

 A DATA_FIN is an indication that the sender has no more data to send,
 and as such can be used to verify that all data has been successfully
 received. A DATA_FIN, as with the FIN on a regular TCP connection,
 is a unidirectional signal.

 The DATA_FIN is signaled by setting the ’F’ flag in the Data Sequence
 Signal option (Figure 9) to 1. A DATA_FIN occupies 1 octet (the
 final octet) of the connection-level sequence space. Note that the
 DATA_FIN is included in the Data-Level Length, but not at the subflow

Ford, et al. Expires December 10, 2019 [Page 34]

Internet-Draft Multipath TCP June 2019

 level: for example, a segment with DSN 80, and Data-Level Length 11,
 with DATA_FIN set, would map 10 octets from the subflow into data
 sequence space 80-89, the DATA_FIN is DSN 90; therefore, this segment
 including DATA_FIN would be acknowledged with a DATA_ACK of 91.

 Note that when the DATA_FIN is not attached to a TCP segment
 containing data, the Data Sequence Signal MUST have a subflow
 sequence number of 0, a Data-Level Length of 1, and the data sequence
 number that corresponds with the DATA_FIN itself. The checksum in
 this case will only cover the pseudo-header.

 A DATA_FIN has the semantics and behavior as a regular TCP FIN, but
 at the connection level. Notably, it is only DATA_ACKed once all
 data has been successfully received at the connection level. Note,
 therefore, that a DATA_FIN is decoupled from a subflow FIN. It is
 only permissible to combine these signals on one subflow if there is
 no data outstanding on other subflows. Otherwise, it may be
 necessary to retransmit data on different subflows. Essentially, a
 host MUST NOT close all functioning subflows unless it is safe to do
 so, i.e., until all outstanding data has been DATA_ACKed, or until
 the segment with the DATA_FIN flag set is the only outstanding
 segment.

 Once a DATA_FIN has been acknowledged, all remaining subflows MUST be
 closed with standard FIN exchanges. Both hosts SHOULD send FINs on
 all subflows, as a courtesy to allow middleboxes to clean up state
 even if an individual subflow has failed. It is also encouraged to
 reduce the timeouts (Maximum Segment Lifetime) on subflows at end
 hosts after receiving a DATA_FIN. In particular, any subflows where
 there is still outstanding data queued (which has been retransmitted
 on other subflows in order to get the DATA_FIN acknowledged) MAY be
 closed with a RST with MP_TCPRST (Section 3.6) error code for "too
 much outstanding data".

 A connection is considered closed once both hosts’ DATA_FINs have
 been acknowledged by DATA_ACKs.

 As specified above, a standard TCP FIN on an individual subflow only
 shuts down the subflow on which it was sent. If all subflows have
 been closed with a FIN exchange, but no DATA_FIN has been received
 and acknowledged, the MPTCP connection is treated as closed only
 after a timeout. This implies that an implementation will have
 TIME_WAIT states at both the subflow and connection levels (see
 Appendix D). This permits "break-before-make" scenarios where
 connectivity is lost on all subflows before a new one can be re-
 established.

Ford, et al. Expires December 10, 2019 [Page 35]

Internet-Draft Multipath TCP June 2019

3.3.4. Receiver Considerations

 Regular TCP advertises a receive window in each packet, telling the
 sender how much data the receiver is willing to accept past the
 cumulative ack. The receive window is used to implement flow
 control, throttling down fast senders when receivers cannot keep up.

 MPTCP also uses a unique receive window, shared between the subflows.
 The idea is to allow any subflow to send data as long as the receiver
 is willing to accept it. The alternative, maintaining per subflow
 receive windows, could end up stalling some subflows while others
 would not use up their window.

 The receive window is relative to the DATA_ACK. As in TCP, a
 receiver MUST NOT shrink the right edge of the receive window (i.e.,
 DATA_ACK + receive window). The receiver will use the data sequence
 number to tell if a packet should be accepted at the connection
 level.

 When deciding to accept packets at subflow level, regular TCP checks
 the sequence number in the packet against the allowed receive window.
 With multipath, such a check is done using only the connection-level
 window. A sanity check SHOULD be performed at subflow level to
 ensure that the subflow and mapped sequence numbers meet the
 following test: SSN - SUBFLOW_ACK <= DSN - DATA_ACK, where SSN is the
 subflow sequence number of the received packet and SUBFLOW_ACK is the
 RCV.NXT (next expected sequence number) of the subflow (with the
 equivalent connection-level definitions for DSN and DATA_ACK).

 In regular TCP, once a segment is deemed in-window, it is put either
 in the in-order receive queue or in the out-of-order queue. In
 Multipath TCP, the same happens but at the connection level: a
 segment is placed in the connection level in-order or out-of-order
 queue if it is in-window at both connection and subflow levels. The
 stack still has to remember, for each subflow, which segments were
 received successfully so that it can ACK them at subflow level
 appropriately. Typically, this will be implemented by keeping per
 subflow out-of-order queues (containing only message headers, not the
 payloads) and remembering the value of the cumulative ACK.

 It is important for implementers to understand how large a receiver
 buffer is appropriate. The lower bound for full network utilization
 is the maximum bandwidth-delay product of any one of the paths.
 However, this might be insufficient when a packet is lost on a slower
 subflow and needs to be retransmitted (see Section 3.3.6). A tight
 upper bound would be the maximum round-trip time (RTT) of any path
 multiplied by the total bandwidth available across all paths. This
 permits all subflows to continue at full speed while a packet is

Ford, et al. Expires December 10, 2019 [Page 36]

Internet-Draft Multipath TCP June 2019

 fast-retransmitted on the maximum RTT path. Even this might be
 insufficient to maintain full performance in the event of a
 retransmit timeout on the maximum RTT path. It is for future study
 to determine the relationship between retransmission strategies and
 receive buffer sizing.

3.3.5. Sender Considerations

 The sender remembers receiver window advertisements from the
 receiver. It should only update its local receive window values when
 the largest sequence number allowed (i.e., DATA_ACK + receive window)
 increases, on the receipt of a DATA_ACK. This is important to allow
 using paths with different RTTs, and thus different feedback loops.

 MPTCP uses a single receive window across all subflows, and if the
 receive window was guaranteed to be unchanged end-to-end, a host
 could always read the most recent receive window value. However,
 some classes of middleboxes may alter the TCP-level receive window.
 Typically, these will shrink the offered window, although for short
 periods of time it may be possible for the window to be larger
 (however, note that this would not continue for long periods since
 ultimately the middlebox must keep up with delivering data to the
 receiver). Therefore, if receive window sizes differ on multiple
 subflows, when sending data MPTCP SHOULD take the largest of the most
 recent window sizes as the one to use in calculations. This rule is
 implicit in the requirement not to reduce the right edge of the
 window.

 The sender MUST also remember the receive windows advertised by each
 subflow. The allowed window for subflow i is (ack_i, ack_i +
 rcv_wnd_i), where ack_i is the subflow-level cumulative ACK of
 subflow i. This ensures data will not be sent to a middlebox unless
 there is enough buffering for the data.

 Putting the two rules together, we get the following: a sender is
 allowed to send data segments with data-level sequence numbers
 between (DATA_ACK, DATA_ACK + receive_window). Each of these
 segments will be mapped onto subflows, as long as subflow sequence
 numbers are in the allowed windows for those subflows. Note that
 subflow sequence numbers do not generally affect flow control if the
 same receive window is advertised across all subflows. They will
 perform flow control for those subflows with a smaller advertised
 receive window.

 The send buffer MUST, at a minimum, be as big as the receive buffer,
 to enable the sender to reach maximum throughput.

Ford, et al. Expires December 10, 2019 [Page 37]

Internet-Draft Multipath TCP June 2019

3.3.6. Reliability and Retransmissions

 The data sequence mapping allows senders to resend data with the same
 data sequence number on a different subflow. When doing this, a host
 MUST still retransmit the original data on the original subflow, in
 order to preserve the subflow integrity (middleboxes could replay old
 data, and/or could reject holes in subflows), and a receiver will
 ignore these retransmissions. While this is clearly suboptimal, for
 compatibility reasons this is sensible behavior. Optimizations could
 be negotiated in future versions of this protocol. Note also that
 this property would also permit a sender to always send the same
 data, with the same data sequence number, on multiple subflows, if
 desired for reliability reasons.

 This protocol specification does not mandate any mechanisms for
 handling retransmissions, and much will be dependent upon local
 policy (as discussed in Section 3.3.8). One can imagine aggressive
 connection-level retransmissions policies where every packet lost at
 subflow level is retransmitted on a different subflow (hence, wasting
 bandwidth but possibly reducing application-to-application delays),
 or conservative retransmission policies where connection-level
 retransmits are only used after a few subflow-level retransmission
 timeouts occur.

 It is envisaged that a standard connection-level retransmission
 mechanism would be implemented around a connection-level data queue:
 all segments that haven’t been DATA_ACKed are stored. A timer is set
 when the head of the connection-level is ACKed at subflow level but
 its corresponding data is not ACKed at data level. This timer will
 guard against failures in retransmission by middleboxes that
 proactively ACK data.

 The sender MUST keep data in its send buffer as long as the data has
 not been acknowledged at both connection level and on all subflows on
 which it has been sent. In this way, the sender can always
 retransmit the data if needed, on the same subflow or on a different
 one. A special case is when a subflow fails: the sender will
 typically resend the data on other working subflows after a timeout,
 and will keep trying to retransmit the data on the failed subflow
 too. The sender will declare the subflow failed after a predefined
 upper bound on retransmissions is reached (which MAY be lower than
 the usual TCP limits of the Maximum Segment Life), or on the receipt
 of an ICMP error, and only then delete the outstanding data segments.

 If multiple retransmissions are triggered that indicate that a
 subflow performs badly, this MAY lead to a host resetting the subflow
 with a RST. However, additional research is required to understand
 the heuristics of how and when to reset underperforming subflows.

Ford, et al. Expires December 10, 2019 [Page 38]

Internet-Draft Multipath TCP June 2019

 For example, a highly asymmetric path may be misdiagnosed as
 underperforming. A RST for this purpose SHOULD be accompanied with
 an "Unacceptable performance" MP_TCPRST option (Section 3.6).

3.3.7. Congestion Control Considerations

 Different subflows in an MPTCP connection have different congestion
 windows. To achieve fairness at bottlenecks and resource pooling, it
 is necessary to couple the congestion windows in use on each subflow,
 in order to push most traffic to uncongested links. One algorithm
 for achieving this is presented in [RFC6356]; the algorithm does not
 achieve perfect resource pooling but is "safe" in that it is readily
 deployable in the current Internet. By this, we mean that it does
 not take up more capacity on any one path than if it was a single
 path flow using only that route, so this ensures fair coexistence
 with single-path TCP at shared bottlenecks.

 It is foreseeable that different congestion controllers will be
 implemented for MPTCP, each aiming to achieve different properties in
 the resource pooling/fairness/stability design space, as well as
 those for achieving different properties in quality of service,
 reliability, and resilience.

 Regardless of the algorithm used, the design of the MPTCP protocol
 aims to provide the congestion control implementations sufficient
 information to take the right decisions; this information includes,
 for each subflow, which packets were lost and when.

3.3.8. Subflow Policy

 Within a local MPTCP implementation, a host may use any local policy
 it wishes to decide how to share the traffic to be sent over the
 available paths.

 In the typical use case, where the goal is to maximize throughput,
 all available paths will be used simultaneously for data transfer,
 using coupled congestion control as described in [RFC6356]. It is
 expected, however, that other use cases will appear.

 For instance, a possibility is an ’all-or-nothing’ approach, i.e.,
 have a second path ready for use in the event of failure of the first
 path, but alternatives could include entirely saturating one path
 before using an additional path (the ’overflow’ case). Such choices
 would be most likely based on the monetary cost of links, but may
 also be based on properties such as the delay or jitter of links,
 where stability (of delay or bandwidth) is more important than
 throughput. Application requirements such as these are discussed in
 detail in [RFC6897].

Ford, et al. Expires December 10, 2019 [Page 39]

Internet-Draft Multipath TCP June 2019

 The ability to make effective choices at the sender requires full
 knowledge of the path "cost", which is unlikely to be the case. It
 would be desirable for a receiver to be able to signal their own
 preferences for paths, since they will often be the multihomed party,
 and may have to pay for metered incoming bandwidth.

 To enable this, the MP_JOIN option (see Section 3.2) contains the ’B’
 bit, which allows a host to indicate to its peer that this path
 should be treated as a backup path to use only in the event of
 failure of other working subflows (i.e., a subflow where the receiver
 has indicated B=1 SHOULD NOT be used to send data unless there are no
 usable subflows where B=0).

 In the event that the available set of paths changes, a host may wish
 to signal a change in priority of subflows to the peer (e.g., a
 subflow that was previously set as backup should now take priority
 over all remaining subflows). Therefore, the MP_PRIO option, shown
 in Figure 11, can be used to change the ’B’ flag of the subflow on
 which it is sent.

 Another use of the MP_PRIO option is to set the ’B’ flag on a subflow
 to cleanly retire its use before closing it and removing it with
 REMOVE_ADDR Section 3.4.2, for example to support make-before-break
 session continuity, where new subflows are added before the
 previously used ones are closed.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----+-+
 | Kind | Length |Subtype|(rsv)|B|
 +---------------+---------------+-------+-----+-+

 Figure 11: Change Subflow Priority (MP_PRIO) Option

 It should be noted that the backup flag is a request from a data
 receiver to a data sender only, and the data sender SHOULD adhere to
 these requests. A host cannot assume that the data sender will do
 so, however, since local policies -- or technical difficulties -- may
 override MP_PRIO requests. Note also that this signal applies to a
 single direction, and so the sender of this option could choose to
 continue using the subflow to send data even if it has signaled B=1
 to the other host.

3.4. Address Knowledge Exchange (Path Management)

 We use the term "path management" to refer to the exchange of
 information about additional paths between hosts, which in this
 design is managed by multiple addresses at hosts. For more detail of

Ford, et al. Expires December 10, 2019 [Page 40]

Internet-Draft Multipath TCP June 2019

 the architectural thinking behind this design, see the MPTCP
 Architecture document [RFC6182].

 This design makes use of two methods of sharing such information, and
 both can be used on a connection. The first is the direct setup of
 new subflows, already described in Section 3.2, where the initiator
 has an additional address. The second method, described in the
 following subsections, signals addresses explicitly to the other host
 to allow it to initiate new subflows. The two mechanisms are
 complementary: the first is implicit and simple, while the explicit
 is more complex but is more robust. Together, the mechanisms allow
 addresses to change in flight (and thus support operation through
 NATs, since the source address need not be known), and also allow the
 signaling of previously unknown addresses, and of addresses belonging
 to other address families (e.g., both IPv4 and IPv6).

 Here is an example of typical operation of the protocol:

 o An MPTCP connection is initially set up between address/port A1 of
 Host A and address/port B1 of Host B. If Host A is multihomed and
 multiaddressed, it can start an additional subflow from its
 address A2 to B1, by sending a SYN with a Join option from A2 to
 B1, using B’s previously declared token for this connection.
 Alternatively, if B is multihomed, it can try to set up a new
 subflow from B2 to A1, using A’s previously declared token. In
 either case, the SYN will be sent to the port already in use for
 the original subflow on the receiving host.

 o Simultaneously (or after a timeout), an ADD_ADDR option
 (Section 3.4.1) is sent on an existing subflow, informing the
 receiver of the sender’s alternative address(es). The recipient
 can use this information to open a new subflow to the sender’s
 additional address. In our example, A will send ADD_ADDR option
 informing B of address/port A2. The mix of using the SYN-based
 option and the ADD_ADDR option, including timeouts, is
 implementation specific and can be tailored to agree with local
 policy.

 o If subflow A2-B1 is successfully set up, Host B can use the
 Address ID in the Join option to correlate this with the ADD_ADDR
 option that will also arrive on an existing subflow; now B knows
 not to open A2-B1, ignoring the ADD_ADDR. Otherwise, if B has not
 received the A2-B1 MP_JOIN SYN but received the ADD_ADDR, it can
 try to initiate a new subflow from one or more of its addresses to
 address A2. This permits new sessions to be opened if one host is
 behind a NAT.

Ford, et al. Expires December 10, 2019 [Page 41]

Internet-Draft Multipath TCP June 2019

 Other ways of using the two signaling mechanisms are possible; for
 instance, signaling addresses in other address families can only be
 done explicitly using the Add Address option.

3.4.1. Address Advertisement

 The Add Address (ADD_ADDR) MPTCP option announces additional
 addresses (and optionally, ports) on which a host can be reached
 (Figure 12). This option can be used at any time during a
 connection, depending on when the sender wishes to enable multiple
 paths and/or when paths become available. As with all MPTCP signals,
 the receiver MUST undertake standard TCP validity checks, e.g.
 [RFC5961], before acting upon it.

 Every address has an Address ID that can be used for uniquely
 identifying the address within a connection for address removal. The
 Address ID is also used to identify MP_JOIN options (see Section 3.2)
 relating to the same address, even when address translators are in
 use. The Address ID MUST uniquely identify the address for the
 sender of the option (within the scope of the connection), but the
 mechanism for allocating such IDs is implementation specific.

 All address IDs learned via either MP_JOIN or ADD_ADDR SHOULD be
 stored by the receiver in a data structure that gathers all the
 Address ID to address mappings for a connection (identified by a
 token pair). In this way, there is a stored mapping between Address
 ID, observed source address, and token pair for future processing of
 control information for a connection. Note that an implementation
 MAY discard incoming address advertisements at will, for example, for
 avoiding updating mapping state, or because advertised addresses are
 of no use to it (for example, IPv6 addresses when it has IPv4 only).
 Therefore, a host MUST treat address advertisements as soft state,
 and it MAY choose to refresh advertisements periodically. Note also
 that an implementation MAY choose to cache these address
 advertisements even if they are not currently relevant but may be
 relevant in the future, such as IPv4 addresses when IPv6 connectivity
 is available but IPv4 is awaiting DHCP.

 This option is shown in Figure 12. The illustration is sized for
 IPv4 addresses. For IPv6, the length of the address will be 16
 octets (instead of 4).

 The 2 octets that specify the TCP port number to use are optional and
 their presence can be inferred from the length of the option.
 Although it is expected that the majority of use cases will use the
 same port pairs as used for the initial subflow (e.g., port 80
 remains port 80 on all subflows, as does the ephemeral port at the
 client), there may be cases (such as port-based load balancing) where

Ford, et al. Expires December 10, 2019 [Page 42]

Internet-Draft Multipath TCP June 2019

 the explicit specification of a different port is required. If no
 port is specified, MPTCP SHOULD attempt to connect to the specified
 address on the same port as is already in use by the subflow on which
 the ADD_ADDR signal was sent; this is discussed in more detail in
 Section 3.9.

 The Truncated HMAC present in this Option is the rightmost 64 bits of
 an HMAC, negotiated and calculated in the same way as for MP_JOIN as
 described in Section 3.2. For this specification of MPTCP, as there
 is only one hash algorithm option specified, this will be HMAC as
 defined in [RFC2104], using the SHA-256 hash algorithm [RFC6234]. In
 the same way as for MP_JOIN, the key for the HMAC algorithm, in the
 case of the message transmitted by Host A, will be Key-A followed by
 Key-B, and in the case of Host B, Key-B followed by Key-A. These are
 the keys that were exchanged in the original MP_CAPABLE handshake.
 The message for the HMAC is the Address ID, IP Address, and Port
 which precede the HMAC in the ADD_ADDR option. If the port is not
 present in the ADD_ADDR option, the HMAC message will nevertheless
 include two octets of value zero. The rationale for the HMAC is to
 prevent unauthorized entities from injecting ADD_ADDR signals in an
 attempt to hijack a connection. Note that additionally the presence
 of this HMAC prevents the address being changed in flight unless the
 key is known by an intermediary. If a host receives an ADD_ADDR
 option for which it cannot validate the HMAC, it SHOULD silently
 ignore the option.

 A set of four flags are present after the subtype and before the
 Address ID. Only the rightmost bit - labelled ’E’ - is assigned in
 this specification. The other bits are currently unassigned and MUST
 be set to zero by a sender and MUST be ignored by the receiver.

 The ’E’ flag exists to provide reliability for this option. Because
 this option will often be sent on pure ACKs, there is no guarantee of
 reliability. Therefore, a receiver receiving a fresh ADD_ADDR option
 (where E=0), will send the same option back to the sender, but not
 including the HMAC, and with E=1, to indicate receipt. The lack of
 this echo can be used by the initial ADD_ADDR sender to retransmit
 the ADD_ADDR according to local policy.

Ford, et al. Expires December 10, 2019 [Page 43]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|(rsv)|E| Address ID |
 +---------------+---------------+-------+-------+---------------+
 | Address (IPv4 - 4 octets / IPv6 - 16 octets) |
 +-------------------------------+-------------------------------+
 | Port (2 octets, optional) | |
 +-------------------------------+ |
 | Truncated HMAC (8 octets, if E=0) |
 | +-------------------------------+
 | |
 +-------------------------------+

 Figure 12: Add Address (ADD_ADDR) Option

 Due to the proliferation of NATs, it is reasonably likely that one
 host may attempt to advertise private addresses [RFC1918]. It is not
 desirable to prohibit this, since there may be cases where both hosts
 have additional interfaces on the same private network, and a host
 MAY advertise such addresses. The MP_JOIN handshake to create a new
 subflow (Section 3.2) provides mechanisms to minimize security risks.
 The MP_JOIN message contains a 32-bit token that uniquely identifies
 the connection to the receiving host. If the token is unknown, the
 host will return with a RST. In the unlikely event that the token is
 valid at the receiving host, subflow setup will continue, but the
 HMAC exchange must occur for authentication. This will fail, and
 will provide sufficient protection against two unconnected hosts
 accidentally setting up a new subflow upon the signal of a private
 address. Further security considerations around the issue of
 ADD_ADDR messages that accidentally misdirect, or maliciously direct,
 new MP_JOIN attempts are discussed in Section 5.

 A host that receives an ADD_ADDR but finds a connection set up to
 that IP address and port number is unsuccessful SHOULD NOT perform
 further connection attempts to this address/port combination for this
 connection. A sender that wants to trigger a new incoming connection
 attempt on a previously advertised address/port combination can
 therefore refresh ADD_ADDR information by sending the option again.

 A host can therefore send an ADD_ADDR message with an already
 assigned Address ID, but the Address MUST be the same as previously
 assigned to this Address ID. A new ADD_ADDR may have the same, or
 different, port number. If the port number is different, the
 receiving host SHOULD try to set up a new subflow to this new
 address/port combination.

Ford, et al. Expires December 10, 2019 [Page 44]

Internet-Draft Multipath TCP June 2019

 A host wishing to replace an existing Address ID MUST first remove
 the existing one (Section 3.4.2).

 During normal MPTCP operation, it is unlikely that there will be
 sufficient TCP option space for ADD_ADDR to be included along with
 those for data sequence numbering (Section 3.3.1). Therefore, it is
 expected that an MPTCP implementation will send the ADD_ADDR option
 on separate ACKs. As discussed earlier, however, an MPTCP
 implementation MUST NOT treat duplicate ACKs with any MPTCP option,
 with the exception of the DSS option, as indications of congestion
 [RFC5681], and an MPTCP implementation SHOULD NOT send more than two
 duplicate ACKs in a row for signaling purposes.

3.4.2. Remove Address

 If, during the lifetime of an MPTCP connection, a previously
 announced address becomes invalid (e.g., if the interface disappears,
 or an IPv6 address is no longer preferred), the affected host SHOULD
 announce this so that the peer can remove subflows related to this
 address. Even if an address is not in use by a MPTCP connection, if
 it has been previously announced, an implementation SHOULD announce
 its removal. A host MAY also choose to announce that a valid IP
 address should not be used any longer, for example for make-before-
 break session continuity.

 This is achieved through the Remove Address (REMOVE_ADDR) option
 (Figure 13), which will remove a previously added address (or list of
 addresses) from a connection and terminate any subflows currently
 using that address.

 For security purposes, if a host receives a REMOVE_ADDR option, it
 must ensure the affected path(s) are no longer in use before it
 instigates closure. The receipt of REMOVE_ADDR SHOULD first trigger
 the sending of a TCP keepalive [RFC1122] on the path, and if a
 response is received the path SHOULD NOT be removed. If the path is
 found to still be alive, the receiving host SHOULD no longer use the
 specified address for future connections, but it is the
 responsibility of the host which sent the REMOVE_ADDR to shut down
 the subflow. The requesting host MAY also use MP_PRIO
 (Section 3.3.8) to request a path is no longer used, before removal.
 Typical TCP validity tests on the subflow (e.g., ensuring sequence
 and ACK numbers are correct) MUST also be undertaken. An
 implementation can use indications of these test failures as part of
 intrusion detection or error logging.

 The sending and receipt (if no keepalive response was received) of
 this message SHOULD trigger the sending of RSTs by both hosts on the

Ford, et al. Expires December 10, 2019 [Page 45]

Internet-Draft Multipath TCP June 2019

 affected subflow(s) (if possible), as a courtesy to cleaning up
 middlebox state, before cleaning up any local state.

 Address removal is undertaken by ID, so as to permit the use of NATs
 and other middleboxes that rewrite source addresses. If there is no
 address at the requested ID, the receiver will silently ignore the
 request.

 A subflow that is still functioning MUST be closed with a FIN
 exchange as in regular TCP, rather than using this option. For more
 information, see Section 3.3.3.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length = 3+n |Subtype|(resvd)| Address ID | ...
 +---------------+---------------+-------+-------+---------------+
 (followed by n-1 Address IDs, if required)

 Figure 13: Remove Address (REMOVE_ADDR) Option

3.5. Fast Close

 Regular TCP has the means of sending a reset (RST) signal to abruptly
 close a connection. With MPTCP, a regular RST only has the scope of
 the subflow and will only close the concerned subflow but not affect
 the remaining subflows. MPTCP’s connection will stay alive at the
 data level, in order to permit break-before-make handover between
 subflows. It is therefore necessary to provide an MPTCP-level
 "reset" to allow the abrupt closure of the whole MPTCP connection,
 and this is the MP_FASTCLOSE option.

 MP_FASTCLOSE is used to indicate to the peer that the connection will
 be abruptly closed and no data will be accepted anymore. The reasons
 for triggering an MP_FASTCLOSE are implementation specific. Regular
 TCP does not allow sending a RST while the connection is in a
 synchronized state [RFC0793]. Nevertheless, implementations allow
 the sending of a RST in this state, if, for example, the operating
 system is running out of resources. In these cases, MPTCP should
 send the MP_FASTCLOSE. This option is illustrated in Figure 14.

Ford, et al. Expires December 10, 2019 [Page 46]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length |Subtype| (reserved) |
 +---------------+---------------+-------+-----------------------+
 | Option Receiver’s Key |
 | (64 bits) |
 | |
 +---+

 Figure 14: Fast Close (MP_FASTCLOSE) Option

 If Host A wants to force the closure of an MPTCP connection, it has
 two different options:

 o Option A (ACK) : Host A sends an ACK containing the MP_FASTCLOSE
 option on one subflow, containing the key of Host B as declared in
 the initial connection handshake. On all the other subflows, Host
 A sends a regular TCP RST to close these subflows, and tears them
 down. Host A now enters FASTCLOSE_WAIT state.

 o Option R (RST) : Host A sends a RST containing the MP_FASTCLOSE
 option on all subflows, containing the key of Host B as declared
 in the initial connection handshake. Host A can tear the subflows
 and the connection down immediately.

 If host A decides to force the closure by using Option A and sending
 an ACK with the MP_FASTCLOSE option, the connection shall proceed as
 follows:

 o Upon receipt of an ACK with MP_FASTCLOSE by Host B, containing the
 valid key, Host B answers on the same subflow with a TCP RST and
 tears down all subflows also through sending TCP RST signals.
 Host B can now close the whole MPTCP connection (it transitions
 directly to CLOSED state).

 o As soon as Host A has received the TCP RST on the remaining
 subflow, it can close this subflow and tear down the whole
 connection (transition from FASTCLOSE_WAIT to CLOSED states). If
 Host A receives an MP_FASTCLOSE instead of a TCP RST, both hosts
 attempted fast closure simultaneously. Host A should reply with a
 TCP RST and tear down the connection.

 o If Host A does not receive a TCP RST in reply to its MP_FASTCLOSE
 after one retransmission timeout (RTO) (the RTO of the subflow
 where the MP_FASTCLOSE has been sent), it SHOULD retransmit the
 MP_FASTCLOSE. The number of retransmissions SHOULD be limited to
 avoid this connection from being retained for a long time, but

Ford, et al. Expires December 10, 2019 [Page 47]

Internet-Draft Multipath TCP June 2019

 this limit is implementation specific. A RECOMMENDED number is 3.
 If no TCP RST is received in response, Host A SHOULD send a TCP
 RST with the MP_FASTCLOSE option itself when it releases state in
 order to clear any remaining state at middleboxes.

 If however host A decides to force the closure by using Option R and
 sending a RST with the MP_FASTCLOSE option, Host B will act as
 follows: Upon receipt of a RST with MP_FASTCLOSE, containing the
 valid key, Host B tears down all subflows by sending a TCP RST. Host
 B can now close the whole MPTCP connection (it transitions directly
 to CLOSED state).

3.6. Subflow Reset

 An implementation of MPTCP may also need to send a regular TCP RST to
 force the closure of a subflow. A host sends a TCP RST in order to
 close a subflow or reject an attempt to open a subflow (MP_JOIN). In
 order to inform the receiving host why a subflow is being closed or
 rejected, the TCP RST packet MAY include the MP_TCPRST Option. The
 host MAY use this information to decide, for example, whether it
 tries to re-establish the subflow immediately, later, or never.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-----------------------+
 | Kind | Length |Subtype|U|V|W|T| Reason |
 +---------------+---------------+-------+-----------------------+

 Figure 15: TCP RST Reason (MP_TCPRST) Option

 The MP_TCPRST option contains a reason code that allows the sender of
 the option to provide more information about the reason for the
 termination of the subflow. Using 12 bits of option space, the first
 four bits are reserved for flags (only one of which is currently
 defined), and the remaining octet is used to express a reason code
 for this subflow termination, from which a receiver MAY infer
 information about the usability of this path.

 The "T" flag is used by the sender to indicate whether the error
 condition that is reported is Transient (T bit set to 1) or Permanent
 (T bit set to 0). If the error condition is considered to be
 Transient by the sender of the RST segment, the recipient of this
 segment MAY try to reestablish a subflow for this connection over the
 failed path. The time at which a receiver may try to re-establish
 this is implementation-specific, but SHOULD take into account the
 properties of the failure defined by the following reason code. If
 the error condition is considered to be permanent, the receiver of
 the RST segment SHOULD NOT try to reestablish a subflow for this

Ford, et al. Expires December 10, 2019 [Page 48]

Internet-Draft Multipath TCP June 2019

 connection over this path. The "U", "V" and "W" flags are not
 defined by this specification and are reserved for future use. An
 implementation of this specification MUST set these flags to 0, and a
 receiver MUST ignore them.

 The "Reason" code is an 8-bit field that indicates the reason for the
 termination of the subflow. The following codes are defined in this
 document:

 o Unspecified error (code 0x0). This is the default error implying
 the subflow is no longer available. The presence of this option
 shows that the RST was generated by a MPTCP-aware device.

 o MPTCP specific error (code 0x01). An error has been detected in
 the processing of MPTCP options. This is the usual reason code to
 return in the cases where a RST is being sent to close a subflow
 for reasons of an invalid response.

 o Lack of resources (code 0x02). This code indicates that the
 sending host does not have enough resources to support the
 terminated subflow.

 o Administratively prohibited (code 0x03). This code indicates that
 the requested subflow is prohibited by the policies of the sending
 host.

 o Too much outstanding data (code 0x04). This code indicates that
 there is an excessive amount of data that need to be transmitted
 over the terminated subflow while having already been acknowledged
 over one or more other subflows. This may occur if a path has
 been unavailable for a short period and it is more efficient to
 reset and start again than it is to retransmit the queued data.

 o Unacceptable performance (code 0x05). This code indicates that
 the performance of this subflow was too low compared to the other
 subflows of this Multipath TCP connection.

 o Middlebox interference (code 0x06). Middlebox interference has
 been detected over this subflow making MPTCP signaling invalid.
 For example, this may be sent if the checksum does not validate.

3.7. Fallback

 Sometimes, middleboxes will exist on a path that could prevent the
 operation of MPTCP. MPTCP has been designed in order to cope with
 many middlebox modifications (see Section 6), but there are still
 some cases where a subflow could fail to operate within the MPTCP
 requirements. These cases are notably the following: the loss of

Ford, et al. Expires December 10, 2019 [Page 49]

Internet-Draft Multipath TCP June 2019

 MPTCP options on a path, and the modification of payload data. If
 such an event occurs, it is necessary to "fall back" to the previous,
 safe operation. This may be either falling back to regular TCP or
 removing a problematic subflow.

 At the start of an MPTCP connection (i.e., the first subflow), it is
 important to ensure that the path is fully MPTCP capable and the
 necessary MPTCP options can reach each host. The handshake as
 described in Section 3.1 SHOULD fall back to regular TCP if either of
 the SYN messages do not have the MPTCP options: this is the same, and
 desired, behavior in the case where a host is not MPTCP capable, or
 the path does not support the MPTCP options. When attempting to join
 an existing MPTCP connection (Section 3.2), if a path is not MPTCP
 capable and the MPTCP options do not get through on the SYNs, the
 subflow will be closed according to the MP_JOIN logic.

 There is, however, another corner case that should be addressed.
 That is one of MPTCP options getting through on the SYN, but not on
 regular packets. This can be resolved if the subflow is the first
 subflow, and thus all data in flight is contiguous, using the
 following rules.

 A sender MUST include a DSS option with data sequence mapping in
 every segment until one of the sent segments has been acknowledged
 with a DSS option containing a Data ACK. Upon reception of the
 acknowledgment, the sender has the confirmation that the DSS option
 passes in both directions and may choose to send fewer DSS options
 than once per segment.

 If, however, an ACK is received for data (not just for the SYN)
 without a DSS option containing a Data ACK, the sender determines the
 path is not MPTCP capable. In the case of this occurring on an
 additional subflow (i.e., one started with MP_JOIN), the host MUST
 close the subflow with a RST, which SHOULD contain a MP_TCPRST option
 (Section 3.6) with a "Middlebox interference" reason code.

 In the case of such an ACK being received on the first subflow (i.e.,
 that started with MP_CAPABLE), before any additional subflows are
 added, the implementation MUST drop out of an MPTCP mode, back to
 regular TCP. The sender will send one final data sequence mapping,
 with the Data-Level Length value of 0 indicating an infinite mapping
 (to inform the other end in case the path drops options in one
 direction only), and then revert to sending data on the single
 subflow without any MPTCP options.

 If a subflow breaks during operation, e.g. if it is re-routed and
 MPTCP options are no longer permitted, then once this is detected (by
 the subflow-level receive buffer filling up, since there is no

Ford, et al. Expires December 10, 2019 [Page 50]

Internet-Draft Multipath TCP June 2019

 mapping available in order to DATA_ACK this data), the subflow SHOULD
 be treated as broken and closed with a RST, since no data can be
 delivered to the application layer, and no fallback signal can be
 reliably sent. This RST SHOULD include the MP_TCPRST option
 (Section 3.6) with a "Middlebox interference" reason code.

 These rules should cover all cases where such a failure could happen:
 whether it’s on the forward or reverse path and whether the server or
 the client first sends data.

 So far this section has discussed the loss of MPTCP options, either
 initially, or during the course of the connection. As described in
 Section 3.3, each portion of data for which there is a mapping is
 protected by a checksum, if checksums have been negotiated. This
 mechanism is used to detect if middleboxes have made any adjustments
 to the payload (added, removed, or changed data). A checksum will
 fail if the data has been changed in any way. This will also detect
 if the length of data on the subflow is increased or decreased, and
 this means the data sequence mapping is no longer valid. The sender
 no longer knows what subflow-level sequence number the receiver is
 genuinely operating at (the middlebox will be faking ACKs in return),
 and it cannot signal any further mappings. Furthermore, in addition
 to the possibility of payload modifications that are valid at the
 application layer, there is the possibility that such modifications
 could be triggered across MPTCP segment boundaries, corrupting the
 data. Therefore, all data from the start of the segment that failed
 the checksum onwards is not trustworthy.

 Note that if checksum usage has not been negotiated, this fallback
 mechanism cannot be used unless there is some higher or lower layer
 signal to inform the MPTCP implementation that the payload has been
 tampered with.

 When multiple subflows are in use, the data in flight on a subflow
 will likely involve data that is not contiguously part of the
 connection-level stream, since segments will be spread across the
 multiple subflows. Due to the problems identified above, it is not
 possible to determine what adjustment has done to the data (notably,
 any changes to the subflow sequence numbering). Therefore, it is not
 possible to recover the subflow, and the affected subflow must be
 immediately closed with a RST, featuring an MP_FAIL option
 (Figure 16), which defines the data sequence number at the start of
 the segment (defined by the data sequence mapping) that had the
 checksum failure. Note that the MP_FAIL option requires the use of
 the full 64-bit sequence number, even if 32-bit sequence numbers are
 normally in use in the DSS signals on the path.

Ford, et al. Expires December 10, 2019 [Page 51]

Internet-Draft Multipath TCP June 2019

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+----------------------+
 | Kind | Length=12 |Subtype| (reserved) |
 +---------------+---------------+-------+----------------------+
 | |
 | Data Sequence Number (8 octets) |
 | |
 +--+

 Figure 16: Fallback (MP_FAIL) Option

 The receiver of this option MUST discard all data following the data
 sequence number specified. Failed data MUST NOT be DATA_ACKed and so
 will be retransmitted on other subflows (Section 3.3.6).

 A special case is when there is a single subflow and it fails with a
 checksum error. If it is known that all unacknowledged data in
 flight is contiguous (which will usually be the case with a single
 subflow), an infinite mapping can be applied to the subflow without
 the need to close it first, and essentially turn off all further
 MPTCP signaling. In this case, if a receiver identifies a checksum
 failure when there is only one path, it will send back an MP_FAIL
 option on the subflow-level ACK, referring to the data-level sequence
 number of the start of the segment on which the checksum error was
 detected. The sender will receive this, and if all unacknowledged
 data in flight is contiguous, will signal an infinite mapping. This
 infinite mapping will be a DSS option (Section 3.3) on the first new
 packet, containing a data sequence mapping that acts retroactively,
 referring to the start of the subflow sequence number of the most
 recent segment that was known to be delivered intact (i.e. was
 successfully DATA_ACKed). From that point onwards, data can be
 altered by a middlebox without affecting MPTCP, as the data stream is
 equivalent to a regular, legacy TCP session. Whilst in theory paths
 may only be damaged in one direction, and the MP_FAIL signal affects
 only one direction of traffic, for implementation simplicity, the
 receiver of an MP_FAIL MUST also respond with an MP_FAIL in the
 reverse direction and entirely revert to a regular TCP session.

 In the rare case that the data is not contiguous (which could happen
 when there is only one subflow but it is retransmitting data from a
 subflow that has recently been uncleanly closed), the receiver MUST
 close the subflow with a RST with MP_FAIL. The receiver MUST discard
 all data that follows the data sequence number specified. The sender
 MAY attempt to create a new subflow belonging to the same connection,
 and, if it chooses to do so, SHOULD place the single subflow
 immediately in single-path mode by setting an infinite data sequence

Ford, et al. Expires December 10, 2019 [Page 52]

Internet-Draft Multipath TCP June 2019

 mapping. This mapping will begin from the data-level sequence number
 that was declared in the MP_FAIL.

 After a sender signals an infinite mapping, it MUST only use subflow
 ACKs to clear its send buffer. This is because Data ACKs may become
 misaligned with the subflow ACKs when middleboxes insert or delete
 data. The receive SHOULD stop generating Data ACKs after it receives
 an infinite mapping.

 When a connection has fallen back with an infinite mapping, only one
 subflow can send data; otherwise, the receiver would not know how to
 reorder the data. In practice, this means that all MPTCP subflows
 will have to be terminated except one. Once MPTCP falls back to
 regular TCP, it MUST NOT revert to MPTCP later in the connection.

 It should be emphasized that MPTCP is not attempting to prevent the
 use of middleboxes that want to adjust the payload. An MPTCP-aware
 middlebox could provide such functionality by also rewriting
 checksums.

3.8. Error Handling

 In addition to the fallback mechanism as described above, the
 standard classes of TCP errors may need to be handled in an MPTCP-
 specific way. Note that changing semantics -- such as the relevance
 of a RST -- are covered in Section 4. Where possible, we do not want
 to deviate from regular TCP behavior.

 The following list covers possible errors and the appropriate MPTCP
 behavior:

 o Unknown token in MP_JOIN (or HMAC failure in MP_JOIN ACK, or
 missing MP_JOIN in SYN/ACK response): send RST (analogous to TCP’s
 behavior on an unknown port)

 o DSN out of window (during normal operation): drop the data, do not
 send Data ACKs

 o Remove request for unknown address ID: silently ignore

3.9. Heuristics

 There are a number of heuristics that are needed for performance or
 deployment but that are not required for protocol correctness. In
 this section, we detail such heuristics. Note that discussion of
 buffering and certain sender and receiver window behaviors are
 presented in Sections 3.3.4 and 3.3.5, as well as retransmission in
 Section 3.3.6.

Ford, et al. Expires December 10, 2019 [Page 53]

Internet-Draft Multipath TCP June 2019

3.9.1. Port Usage

 Under typical operation, an MPTCP implementation SHOULD use the same
 ports as already in use. In other words, the destination port of a
 SYN containing an MP_JOIN option SHOULD be the same as the remote
 port of the first subflow in the connection. The local port for such
 SYNs SHOULD also be the same as for the first subflow (and as such,
 an implementation SHOULD reserve ephemeral ports across all local IP
 addresses), although there may be cases where this is infeasible.
 This strategy is intended to maximize the probability of the SYN
 being permitted by a firewall or NAT at the recipient and to avoid
 confusing any network monitoring software.

 There may also be cases, however, where a host wishes to signal that
 a specific port should be used, and this facility is provided in the
 ADD_ADDR option as documented in Section 3.4.1. It is therefore
 feasible to allow multiple subflows between the same two addresses
 but using different port pairs, and such a facility could be used to
 allow load balancing within the network based on 5-tuples (e.g., some
 ECMP implementations [RFC2992]).

3.9.2. Delayed Subflow Start and Subflow Symmetry

 Many TCP connections are short-lived and consist only of a few
 segments, and so the overheads of using MPTCP outweigh any benefits.
 A heuristic is required, therefore, to decide when to start using
 additional subflows in an MPTCP connection. Experimental deployments
 have shown that MPTCP can be applied in a range of scenarios so an
 implementation is likely to need to take into account factors
 including the type of traffic being sent and duration of session, and
 this information MAY be signalled by the application layer.

 However, for standard TCP traffic, a suggested general-purpose
 heuristic that an implementation MAY choose to employ is as follows.

 If a host has data buffered for its peer (which implies that the
 application has received a request for data), the host opens one
 subflow for each initial window’s worth of data that is buffered.

 Consideration should also be given to limiting the rate of adding new
 subflows, as well as limiting the total number of subflows open for a
 particular connection. A host may choose to vary these values based
 on its load or knowledge of traffic and path characteristics.

 Note that this heuristic alone is probably insufficient. Traffic for
 many common applications, such as downloads, is highly asymmetric and
 the host that is multihomed may well be the client that will never
 fill its buffers, and thus never use MPTCP according to this

Ford, et al. Expires December 10, 2019 [Page 54]

Internet-Draft Multipath TCP June 2019

 heuristic. Advanced APIs that allow an application to signal its
 traffic requirements would aid in these decisions.

 An additional time-based heuristic could be applied, opening
 additional subflows after a given period of time has passed. This
 would alleviate the above issue, and also provide resilience for low-
 bandwidth but long-lived applications.

 Another issue is that both communicating hosts may simultaneously try
 to set up a subflow between the same pair of addresses. This leads
 to an inefficient use of resources.

 If the same ports are used on all subflows, as recommended above,
 then standard TCP simultaneous open logic should take care of this
 situation and only one subflow will be established between the
 address pairs. However, this relies on the same ports being used at
 both end hosts. If a host does not support TCP simultaneous open, it
 is RECOMMENDED that some element of randomization is applied to the
 time to wait before opening new subflows, so that only one subflow is
 created between a given address pair. If, however, hosts signal
 additional ports to use (for example, for leveraging ECMP on-path),
 this heuristic is not appropriate.

 This section has shown some of the considerations that an implementer
 should give when developing MPTCP heuristics, but is not intended to
 be prescriptive.

3.9.3. Failure Handling

 Requirements for MPTCP’s handling of unexpected signals have been
 given in Section 3.8. There are other failure cases, however, where
 a hosts can choose appropriate behavior.

 For example, Section 3.1 suggests that a host SHOULD fall back to
 trying regular TCP SYNs after one or more failures of MPTCP SYNs for
 a connection. A host may keep a system-wide cache of such
 information, so that it can back off from using MPTCP, firstly for
 that particular destination host, and eventually on a whole
 interface, if MPTCP connections continue failing. The duration of
 such a cache would be implementation-specific.

 Another failure could occur when the MP_JOIN handshake fails.
 Section 3.8 specifies that an incorrect handshake MUST lead to the
 subflow being closed with a RST. A host operating an active
 intrusion detection system may choose to start blocking MP_JOIN
 packets from the source host if multiple failed MP_JOIN attempts are
 seen. From the connection initiator’s point of view, if an MP_JOIN
 fails, it SHOULD NOT attempt to connect to the same IP address and

Ford, et al. Expires December 10, 2019 [Page 55]

Internet-Draft Multipath TCP June 2019

 port during the lifetime of the connection, unless the other host
 refreshes the information with another ADD_ADDR option. Note that
 the ADD_ADDR option is informational only, and does not guarantee the
 other host will attempt a connection.

 In addition, an implementation may learn, over a number of
 connections, that certain interfaces or destination addresses
 consistently fail and may default to not trying to use MPTCP for
 these. Behavior could also be learned for particularly badly
 performing subflows or subflows that regularly fail during use, in
 order to temporarily choose not to use these paths.

4. Semantic Issues

 In order to support multipath operation, the semantics of some TCP
 components have changed. To aid clarity, this section collects these
 semantic changes as a reference.

 Sequence number: The (in-header) TCP sequence number is specific to
 the subflow. To allow the receiver to reorder application data,
 an additional data-level sequence space is used. In this data-
 level sequence space, the initial SYN and the final DATA_FIN
 occupy 1 octet of sequence space. This is to ensure these signals
 are acknowledged at the connection level. There is an explicit
 mapping of data sequence space to subflow sequence space, which is
 signaled through TCP options in data packets.

 ACK: The ACK field in the TCP header acknowledges only the subflow
 sequence number, not the data-level sequence space.
 Implementations SHOULD NOT attempt to infer a data-level
 acknowledgment from the subflow ACKs. This separates subflow- and
 connection-level processing at an end host.

 Duplicate ACK: A duplicate ACK that includes any MPTCP signaling
 (with the exception of the DSS option) MUST NOT be treated as a
 signal of congestion. To limit the chances of non-MPTCP-aware
 entities mistakenly interpreting duplicate ACKs as a signal of
 congestion, MPTCP SHOULD NOT send more than two duplicate ACKs
 containing (non-DSS) MPTCP signals in a row.

 Receive Window: The receive window in the TCP header indicates the
 amount of free buffer space for the whole data-level connection
 (as opposed to for this subflow) that is available at the
 receiver. This is the same semantics as regular TCP, but to
 maintain these semantics the receive window must be interpreted at
 the sender as relative to the sequence number given in the
 DATA_ACK rather than the subflow ACK in the TCP header. In this
 way, the original flow control role is preserved. Note that some

Ford, et al. Expires December 10, 2019 [Page 56]

Internet-Draft Multipath TCP June 2019

 middleboxes may change the receive window, and so a host SHOULD
 use the maximum value of those recently seen on the constituent
 subflows for the connection-level receive window, and also needs
 to maintain a subflow-level window for subflow-level processing.

 FIN: The FIN flag in the TCP header applies only to the subflow it
 is sent on, not to the whole connection. For connection-level FIN
 semantics, the DATA_FIN option is used.

 RST: The RST flag in the TCP header applies only to the subflow it
 is sent on, not to the whole connection. The MP_FASTCLOSE option
 provides the fast close functionality of a RST at the MPTCP
 connection level.

 Address List: Address list management (i.e., knowledge of the local
 and remote hosts’ lists of available IP addresses) is handled on a
 per-connection basis (as opposed to per subflow, per host, or per
 pair of communicating hosts). This permits the application of
 per-connection local policy. Adding an address to one connection
 (either explicitly through an Add Address message, or implicitly
 through a Join) has no implication for other connections between
 the same pair of hosts.

 5-tuple: The 5-tuple (protocol, local address, local port, remote
 address, remote port) presented by kernel APIs to the application
 layer in a non-multipath-aware application is that of the first
 subflow, even if the subflow has since been closed and removed
 from the connection. This decision, and other related API issues,
 are discussed in more detail in [RFC6897].

5. Security Considerations

 As identified in [RFC6181], the addition of multipath capability to
 TCP will bring with it a number of new classes of threat. In order
 to prevent these, [RFC6182] presents a set of requirements for a
 security solution for MPTCP. The fundamental goal is for the
 security of MPTCP to be "no worse" than regular TCP today, and the
 key security requirements are:

 o Provide a mechanism to confirm that the parties in a subflow
 handshake are the same as in the original connection setup.

 o Provide verification that the peer can receive traffic at a new
 address before using it as part of a connection.

 o Provide replay protection, i.e., ensure that a request to add/
 remove a subflow is ’fresh’.

Ford, et al. Expires December 10, 2019 [Page 57]

Internet-Draft Multipath TCP June 2019

 In order to achieve these goals, MPTCP includes a hash-based
 handshake algorithm documented in Sections 3.1 and 3.2.

 The security of the MPTCP connection hangs on the use of keys that
 are shared once at the start of the first subflow, and are never sent
 again over the network (unless used in the fast close mechanism,
 Section 3.5). To ease demultiplexing while not giving away any
 cryptographic material, future subflows use a truncated cryptographic
 hash of this key as the connection identification "token". The keys
 are concatenated and used as keys for creating Hash-based Message
 Authentication Codes (HMACs) used on subflow setup, in order to
 verify that the parties in the handshake are the same as in the
 original connection setup. It also provides verification that the
 peer can receive traffic at this new address. Replay attacks would
 still be possible when only keys are used; therefore, the handshakes
 use single-use random numbers (nonces) at both ends -- this ensures
 the HMAC will never be the same on two handshakes. Guidance on
 generating random numbers suitable for use as keys is given in
 [RFC4086] and discussed in Section 3.1. The nonces are valid for the
 lifetime of the TCP connection attempt. HMAC is also used to secure
 the ADD_ADDR option, due to the threats identified in [RFC7430].

 The use of crypto capability bits in the initial connection handshake
 to negotiate use of a particular algorithm allows the deployment of
 additional crypto mechanisms in the future. This negotiation would
 nevertheless be susceptible to a bid-down attack by an on-path active
 attacker who could modify the crypto capability bits in the response
 from the receiver to use a less secure crypto mechanism. The
 security mechanism presented in this document should therefore
 protect against all forms of flooding and hijacking attacks discussed
 in [RFC6181].

 The version negotiation specified in Section 3.1, if differing MPTCP
 versions shared a common negotiation format, would allow an on-path
 attacker to apply a theoretical bid-down attack. Since the v1 and v0
 protocols have a different handshake, such an attack would require
 the client to re-establish the connection using v0, and this being
 supported by the server. Note that an on-path attacker would have
 access to the raw data, negating any other TCP-level security
 mechanisms. Also a change from RFC6824 has removed the subflow
 identifier from the MP_PRIO option (Section 3.3.8), to remove the
 theoretical attack where a subflow could be placed in "backup" mode
 by an attacker.

 During normal operation, regular TCP protection mechanisms (such as
 ensuring sequence numbers are in-window) will provide the same level
 of protection against attacks on individual TCP subflows as exists
 for regular TCP today. Implementations will introduce additional

Ford, et al. Expires December 10, 2019 [Page 58]

Internet-Draft Multipath TCP June 2019

 buffers compared to regular TCP, to reassemble data at the connection
 level. The application of window sizing will minimize the risk of
 denial-of-service attacks consuming resources.

 As discussed in Section 3.4.1, a host may advertise its private
 addresses, but these might point to different hosts in the receiver’s
 network. The MP_JOIN handshake (Section 3.2) will ensure that this
 does not succeed in setting up a subflow to the incorrect host.
 However, it could still create unwanted TCP handshake traffic. This
 feature of MPTCP could be a target for denial-of-service exploits,
 with malicious participants in MPTCP connections encouraging the
 recipient to target other hosts in the network. Therefore,
 implementations should consider heuristics (Section 3.9) at both the
 sender and receiver to reduce the impact of this.

 To further protect against malicious ADD_ADDR messages sent by an
 off-path attacker, the ADD_ADDR includes an HMAC using the keys
 negotiated during the handshake. This effectively prevents an
 attacker from diverting an MPTCP connection through an off-path
 ADD_ADDR injection into the stream.

 A small security risk could theoretically exist with key reuse, but
 in order to accomplish a replay attack, both the sender and receiver
 keys, and the sender and receiver random numbers, in the MP_JOIN
 handshake (Section 3.2) would have to match.

 Whilst this specification defines a "medium" security solution,
 meeting the criteria specified at the start of this section and the
 threat analysis ([RFC6181]), since attacks only ever get worse, it is
 likely that a future version of MPTCP would need to be able to
 support stronger security. There are several ways the security of
 MPTCP could potentially be improved; some of these would be
 compatible with MPTCP as defined in this document, whilst others may
 not be. For now, the best approach is to get experience with the
 current approach, establish what might work, and check that the
 threat analysis is still accurate.

 Possible ways of improving MPTCP security could include:

 o defining a new MPCTP cryptographic algorithm, as negotiated in
 MP_CAPABLE. A sub-case could be to include an additional
 deployment assumption, such as stateful servers, in order to allow
 a more powerful algorithm to be used.

 o defining how to secure data transfer with MPTCP, whilst not
 changing the signaling part of the protocol.

Ford, et al. Expires December 10, 2019 [Page 59]

Internet-Draft Multipath TCP June 2019

 o defining security that requires more option space, perhaps in
 conjunction with a "long options" proposal for extending the TCP
 options space (such as those surveyed in [TCPLO]), or perhaps
 building on the current approach with a second stage of MPTCP-
 option-based security.

 o revisiting the working group’s decision to exclusively use TCP
 options for MPTCP signaling, and instead look at also making use
 of the TCP payloads.

 MPTCP has been designed with several methods available to indicate a
 new security mechanism, including:

 o available flags in MP_CAPABLE (Figure 4);

 o available subtypes in the MPTCP option (Figure 3);

 o the version field in MP_CAPABLE (Figure 4);

6. Interactions with Middleboxes

 Multipath TCP was designed to be deployable in the present world.
 Its design takes into account "reasonable" existing middlebox
 behavior. In this section, we outline a few representative
 middlebox-related failure scenarios and show how Multipath TCP
 handles them. Next, we list the design decisions multipath has made
 to accommodate the different middleboxes.

 A primary concern is our use of a new TCP option. Middleboxes should
 forward packets with unknown options unchanged, yet there are some
 that don’t. These we expect will either strip options and pass the
 data, drop packets with new options, copy the same option into
 multiple segments (e.g., when doing segmentation), or drop options
 during segment coalescing.

 MPTCP uses a single new TCP option "Kind", and all message types are
 defined by "subtype" values (see Section 8). This should reduce the
 chances of only some types of MPTCP options being passed, and instead
 the key differing characteristics are different paths, and the
 presence of the SYN flag.

 MPTCP SYN packets on the first subflow of a connection contain the
 MP_CAPABLE option (Section 3.1). If this is dropped, MPTCP SHOULD
 fall back to regular TCP. If packets with the MP_JOIN option
 (Section 3.2) are dropped, the paths will simply not be used.

 If a middlebox strips options but otherwise passes the packets
 unchanged, MPTCP will behave safely. If an MP_CAPABLE option is

Ford, et al. Expires December 10, 2019 [Page 60]

Internet-Draft Multipath TCP June 2019

 dropped on either the outgoing or the return path, the initiating
 host can fall back to regular TCP, as illustrated in Figure 17 and
 discussed in Section 3.1.

 Subflow SYNs contain the MP_JOIN option. If this option is stripped
 on the outgoing path, the SYN will appear to be a regular SYN to Host
 B. Depending on whether there is a listening socket on the target
 port, Host B will reply either with SYN/ACK or RST (subflow
 connection fails). When Host A receives the SYN/ACK it sends a RST
 because the SYN/ACK does not contain the MP_JOIN option and its
 token. Either way, the subflow setup fails, but otherwise does not
 affect the MPTCP connection as a whole.

 Host A Host B
 | Middlebox M |
 | | |
 | SYN(MP_CAPABLE) | SYN |
 |-------------------|---------------->|
 | SYN/ACK |
 |<------------------------------------|
 a) MP_CAPABLE option stripped on outgoing path

 Host A Host B
 | SYN(MP_CAPABLE) |
 |------------------------------------>|
 | Middlebox M |
 | | |
 | SYN/ACK |SYN/ACK(MP_CAPABLE)|
 |<----------------|-------------------|
 b) MP_CAPABLE option stripped on return path

 Figure 17: Connection Setup with Middleboxes that Strip Options from
 Packets

 We now examine data flow with MPTCP, assuming the flow is correctly
 set up, which implies the options in the SYN packets were allowed
 through by the relevant middleboxes. If options are allowed through
 and there is no resegmentation or coalescing to TCP segments,
 Multipath TCP flows can proceed without problems.

 The case when options get stripped on data packets has been discussed
 in the Fallback section. If only some MPTCP options are stripped,
 behavior is not deterministic. If some data sequence mappings are
 lost, the connection can continue so long as mappings exist for the
 subflow-level data (e.g., if multiple maps have been sent that
 reinforce each other). If some subflow-level space is left unmapped,
 however, the subflow is treated as broken and is closed, through the
 process described in Section 3.7. MPTCP should survive with a loss

Ford, et al. Expires December 10, 2019 [Page 61]

Internet-Draft Multipath TCP June 2019

 of some Data ACKs, but performance will degrade as the fraction of
 stripped options increases. We do not expect such cases to appear in
 practice, though: most middleboxes will either strip all options or
 let them all through.

 We end this section with a list of middlebox classes, their behavior,
 and the elements in the MPTCP design that allow operation through
 such middleboxes. Issues surrounding dropping packets with options
 or stripping options were discussed above, and are not included here:

 o NATs [RFC3022] (Network Address (and Port) Translators) change the
 source address (and often source port) of packets. This means
 that a host will not know its public-facing address for signaling
 in MPTCP. Therefore, MPTCP permits implicit address addition via
 the MP_JOIN option, and the handshake mechanism ensures that
 connection attempts to private addresses [RFC1918], since they are
 authenticated, will only set up subflows to the correct hosts.
 Explicit address removal is undertaken by an Address ID to allow
 no knowledge of the source address.

 o Performance Enhancing Proxies (PEPs) [RFC3135] might proactively
 ACK data to increase performance. MPTCP, however, relies on
 accurate congestion control signals from the end host, and non-
 MPTCP-aware PEPs will not be able to provide such signals. MPTCP
 will, therefore, fall back to single-path TCP, or close the
 problematic subflow (see Section 3.7).

 o Traffic Normalizers [norm] may not allow holes in sequence
 numbers, and may cache packets and retransmit the same data.
 MPTCP looks like standard TCP on the wire, and will not retransmit
 different data on the same subflow sequence number. In the event
 of a retransmission, the same data will be retransmitted on the
 original TCP subflow even if it is additionally retransmitted at
 the connection level on a different subflow.

 o Firewalls [RFC2979] might perform initial sequence number
 randomization on TCP connections. MPTCP uses relative sequence
 numbers in data sequence mapping to cope with this. Like NATs,
 firewalls will not permit many incoming connections, so MPTCP
 supports address signaling (ADD_ADDR) so that a multiaddressed
 host can invite its peer behind the firewall/NAT to connect out to
 its additional interface.

 o Intrusion Detection/Prevention Systems (IDS/IPS) observe packet
 streams for patterns and content that could threaten a network.
 MPTCP may require the instrumentation of additional paths, and an
 MPTCP-aware IDS/IPS would need to read MPTCP tokens to correlate
 data from mutliple subflows to maintain comparable visibility into

Ford, et al. Expires December 10, 2019 [Page 62]

Internet-Draft Multipath TCP June 2019

 all of the traffic between devices. Without such changes, an IDS
 would get an incomplete view of the traffic, increasing the risk
 of missing traffic of interest (false negatives), and increasing
 the chances of erroneously identifying a subflow as a risk due to
 only seeing partial data (false positives).

 o Application-level middleboxes such as content-aware firewalls may
 alter the payload within a subflow, such as rewriting URIs in HTTP
 traffic. MPTCP will detect these using the checksum and close the
 affected subflow(s), if there are other subflows that can be used.
 If all subflows are affected, multipath will fall back to TCP,
 allowing such middleboxes to change the payload. MPTCP-aware
 middleboxes should be able to adjust the payload and MPTCP
 metadata in order not to break the connection.

 In addition, all classes of middleboxes may affect TCP traffic in the
 following ways:

 o TCP options may be removed, or packets with unknown options
 dropped, by many classes of middleboxes. It is intended that the
 initial SYN exchange, with a TCP option, will be sufficient to
 identify the path capabilities. If such a packet does not get
 through, MPTCP will end up falling back to regular TCP.

 o Segmentation/Coalescing (e.g., TCP segmentation offloading) might
 copy options between packets and might strip some options.
 MPTCP’s data sequence mapping includes the relative subflow
 sequence number instead of using the sequence number in the
 segment. In this way, the mapping is independent of the packets
 that carry it.

 o The receive window may be shrunk by some middleboxes at the
 subflow level. MPTCP will use the maximum window at data level,
 but will also obey subflow-specific windows.

7. Acknowledgments

 The authors gratefully acknowledge significant input into this
 document from Sebastien Barre and Andrew McDonald.

 The authors also wish to acknowledge reviews and contributions from
 Iljitsch van Beijnum, Lars Eggert, Marcelo Bagnulo, Robert Hancock,
 Pasi Sarolahti, Toby Moncaster, Philip Eardley, Sergio Lembo,
 Lawrence Conroy, Yoshifumi Nishida, Bob Briscoe, Stein Gjessing,
 Andrew McGregor, Georg Hampel, Anumita Biswas, Wes Eddy, Alexey
 Melnikov, Francis Dupont, Adrian Farrel, Barry Leiba, Robert Sparks,
 Sean Turner, Stephen Farrell, Martin Stiemerling, Gregory Detal,
 Fabien Duchene, Xavier de Foy, Rahul Jadhav, Klemens Schragel, Mirja

Ford, et al. Expires December 10, 2019 [Page 63]

Internet-Draft Multipath TCP June 2019

 Kuehlewind, Sheng Jiang, Alissa Cooper, Ines Robles, Roman Danyliw,
 Adam Roach, Barry Leiba, Alexey Melnikov, Eric Vyncke, and Ben Kaduk.

8. IANA Considerations

 This document obsoletes RFC6824 and as such IANA is requested to
 update the TCP option space registry to point to this document for
 Multipath TCP, as follows:

 +------+--------+-----------------------+---------------+
 | Kind | Length | Meaning | Reference |
 +------+--------+-----------------------+---------------+
 | 30 | N | Multipath TCP (MPTCP) | This document |
 +------+--------+-----------------------+---------------+

 Table 1: TCP Option Kind Numbers

8.1. MPTCP Option Subtypes

 The 4-bit MPTCP subtype sub-registry ("MPTCP Option Subtypes" under
 the "Transmission Control Protocol (TCP) Parameters" registry) was
 defined in RFC6824. Since RFC6824 was an Experimental not Standards
 Track RFC, and since no further entries have occurred beyond those
 pointing to RFC6824, IANA is requested to replace the existing
 registry with Table 2 and with the following explanatory note.

 Note: This registry specifies the MPTCP Option Subtypes for MPTCP v1,
 which obsoletes the Experimental MPTCP v0. For the MPTCP v0
 subtypes, please refer to RFC6824.

Ford, et al. Expires December 10, 2019 [Page 64]

Internet-Draft Multipath TCP June 2019

 +-------+-----------------+-------------------------+---------------+
 | Value | Symbol | Name | Reference |
 +-------+-----------------+-------------------------+---------------+
0x0	MP_CAPABLE	Multipath Capable	This
			document,
			Section 3.1
0x1	MP_JOIN	Join Connection	This
			document,
			Section 3.2
0x2	DSS	Data Sequence Signal	This
		(Data ACK and data	document,
		sequence mapping)	Section 3.3
0x3	ADD_ADDR	Add Address	This
			document,
			Section 3.4.1
0x4	REMOVE_ADDR	Remove Address	This
			document,
			Section 3.4.2
0x5	MP_PRIO	Change Subflow Priority	This
			document,
			Section 3.3.8
0x6	MP_FAIL	Fallback	This
			document,
			Section 3.7
0x7	MP_FASTCLOSE	Fast Close	This
			document,
			Section 3.5
0x8	MP_TCPRST	Subflow Reset	This
			document,
			Section 3.6
0xf	MP_EXPERIMENTAL	Reserved for private	
		experiments	
 +-------+-----------------+-------------------------+---------------+

 Table 2: MPTCP Option Subtypes

 Values 0x9 through 0xe are currently unassigned. Option 0xf is
 reserved for use by private experiments. Its use may be formalized
 in a future specification. Future assignments in this registry are
 to be defined by Standards Action as defined by [RFC8126].
 Assignments consist of the MPTCP subtype’s symbolic name and its
 associated value, and a reference to its specification.

8.2. MPTCP Handshake Algorithms

 The "MPTCP Handshake Algorithms" sub-registry under the "Transmission
 Control Protocol (TCP) Parameters" registry was defined in RFC6824.
 Since RFC6824 was an Experimental not Standards Track RFC, and since

Ford, et al. Expires December 10, 2019 [Page 65]

Internet-Draft Multipath TCP June 2019

 no further entries have occurred beyond those pointing to RFC6824,
 IANA is requested to replace the existing registry with Table 3 and
 with the following explanatory note.

 Note: This registry specifies the MPTCP Handshake Algorithms for
 MPTCP v1, which obsoletes the Experimental MPTCP v0. For the MPTCP
 v0 subtypes, please refer to RFC6824.

 +-------+--+------------------+
 | Flag | Meaning | Reference |
 | Bit | | |
 +-------+--+------------------+
A	Checksum required	This document,
		Section 3.1
B	Extensibility	This document,
		Section 3.1
C	Do not attempt to establish new	This document,
	subflows to the source address.	Section 3.1
D-G	Unassigned	
H	HMAC-SHA256	This document,
		Section 3.2
 +-------+--+------------------+

 Table 3: MPTCP Handshake Algorithms

 Note that the meanings of bits D through H can be dependent upon bit
 B, depending on how Extensibility is defined in future
 specifications; see Section 3.1 for more information.

 Future assignments in this registry are also to be defined by
 Standards Action as defined by [RFC8126]. Assignments consist of the
 value of the flags, a symbolic name for the algorithm, and a
 reference to its specification.

8.3. MP_TCPRST Reason Codes

 IANA is requested to create a further sub-registry, "MPTCP MP_TCPRST
 Reason Codes" under the "Transmission Control Protocol (TCP)
 Parameters" registry, based on the reason code in MP_TCPRST
 (Section 3.6) message. Initial values for this registry are given in
 Table 4; future assignments are to be defined by Specification
 Required as defined by [RFC8126]. Assignments consist of the value
 of the code, a short description of its meaning, and a reference to
 its specification. The maximum value is 0xff.

 As guidance to the Designated Expert [RFC8126], assignments should
 not normally be refused unless codepoint space is becoming scarce,
 providing that there is a clear distinction from other, already-

Ford, et al. Expires December 10, 2019 [Page 66]

Internet-Draft Multipath TCP June 2019

 existing codes, and also providing there is sufficient guidance for
 implementors both sending and receiving these codes.

 +------+-----------------------------+----------------------------+
 | Code | Meaning | Reference |
 +------+-----------------------------+----------------------------+
 | 0x00 | Unspecified TCP error | This document, Section 3.6 |
 | 0x01 | MPTCP specific error | This document, Section 3.6 |
 | 0x02 | Lack of resources | This document, Section 3.6 |
 | 0x03 | Administratively prohibited | This document, Section 3.6 |
 | 0x04 | Too much outstanding data | This document, Section 3.6 |
 | 0x05 | Unacceptable performance | This document, Section 3.6 |
 | 0x06 | Middlebox interference | This document, Section 3.6 |
 +------+-----------------------------+----------------------------+

 Table 4: MPTCP MP_TCPRST Reason Codes

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997, <https://www.rfc-
 editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
 editor.org/info/rfc2119>.

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010, <https://www.rfc-
 editor.org/info/rfc5961>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011, <https://www.rfc-
 editor.org/info/rfc6234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Ford, et al. Expires December 10, 2019 [Page 67]

Internet-Draft Multipath TCP June 2019

9.2. Informative References

 [deployments]
 Bonaventure, O. and S. Seo, "Multipath TCP Deployments",
 IETF Journal 2016, November 2016,
 <https://www.ietfjournal.org/multipath-tcp-deployments/>.

 [howhard] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", Usenix Symposium on Networked Systems
 Design and Implementation 2012, 2012,
 <https://www.usenix.org/conference/nsdi12/how-hard-can-it-
 be-designing-and-implementing-deployable-multipath-tcp>.

 [norm] Handley, M., Paxson, V., and C. Kreibich, "Network
 Intrusion Detection: Evasion, Traffic Normalization, and
 End-to-End Protocol Semantics", Usenix Security 2001,
 2001,
 <http://www.usenix.org/events/sec01/full_papers/handley/
 handley.pdf>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989, <https://www.rfc-
 editor.org/info/rfc1122>.

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <https://www.rfc-editor.org/info/rfc1918>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996, <https://www.rfc-
 editor.org/info/rfc2018>.

 [RFC2979] Freed, N., "Behavior of and Requirements for Internet
 Firewalls", RFC 2979, DOI 10.17487/RFC2979, October 2000,
 <https://www.rfc-editor.org/info/rfc2979>.

 [RFC2992] Hopps, C., "Analysis of an Equal-Cost Multi-Path
 Algorithm", RFC 2992, DOI 10.17487/RFC2992, November 2000,
 <https://www.rfc-editor.org/info/rfc2992>.

Ford, et al. Expires December 10, 2019 [Page 68]

Internet-Draft Multipath TCP June 2019

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001, <https://www.rfc-
 editor.org/info/rfc3022>.

 [RFC3135] Border, J., Kojo, M., Griner, J., Montenegro, G., and Z.
 Shelby, "Performance Enhancing Proxies Intended to
 Mitigate Link-Related Degradations", RFC 3135,
 DOI 10.17487/RFC3135, June 2001, <https://www.rfc-
 editor.org/info/rfc3135>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005, <https://www.rfc-
 editor.org/info/rfc4086>.

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <https://www.rfc-editor.org/info/rfc4987>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2011, <https://www.rfc-
 editor.org/info/rfc6181>.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <https://www.rfc-editor.org/info/rfc6182>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols",
 RFC 6356, DOI 10.17487/RFC6356, October 2011,
 <https://www.rfc-editor.org/info/rfc6356>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <https://www.rfc-editor.org/info/rfc6528>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <https://www.rfc-editor.org/info/rfc6897>.

Ford, et al. Expires December 10, 2019 [Page 69]

Internet-Draft Multipath TCP June 2019

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",
 RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

 [RFC7430] Bagnulo, M., Paasch, C., Gont, F., Bonaventure, O., and C.
 Raiciu, "Analysis of Residual Threats and Possible Fixes
 for Multipath TCP (MPTCP)", RFC 7430,
 DOI 10.17487/RFC7430, July 2015, <https://www.rfc-
 editor.org/info/rfc7430>.

 [RFC8041] Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and
 Operational Experience with Multipath TCP", RFC 8041,
 DOI 10.17487/RFC8041, January 2017, <https://www.rfc-
 editor.org/info/rfc8041>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [TCPLO] Ramaiah, A., "TCP option space extension", Work
 in Progress, March 2012.

Ford, et al. Expires December 10, 2019 [Page 70]

Internet-Draft Multipath TCP June 2019

Appendix A. Notes on Use of TCP Options

 The TCP option space is limited due to the length of the Data Offset
 field in the TCP header (4 bits), which defines the TCP header length
 in 32-bit words. With the standard TCP header being 20 bytes, this
 leaves a maximum of 40 bytes for options, and many of these may
 already be used by options such as timestamp and SACK.

 We have performed a brief study on the commonly used TCP options in
 SYN, data, and pure ACK packets, and found that there is enough room
 to fit all the options we propose using in this document.

 SYN packets typically include Maximum Segment Size (MSS) (4 bytes),
 window scale (3 bytes), SACK permitted (2 bytes), and timestamp (10
 bytes) options. Together these sum to 19 bytes. Some operating
 systems appear to pad each option up to a word boundary, thus using
 24 bytes (a brief survey suggests Windows XP and Mac OS X do this,
 whereas Linux does not). Optimistically, therefore, we have 21 bytes
 spare, or 16 if it has to be word-aligned. In either case, however,
 the SYN versions of Multipath Capable (12 bytes) and Join (12 or 16
 bytes) options will fit in this remaining space.

 Note that due to the use of a 64-bit data-level sequence space, it is
 feasible that MPTCP will not require the timestamp option for
 protection against wrapped sequence numbers (PAWS [RFC7323]), since
 the data-level sequence space has far less chance of wrapping.
 Confirmation of the validity of this optimisation is for further
 study.

 TCP data packets typically carry timestamp options in every packet,
 taking 10 bytes (or 12 with padding). That leaves 30 bytes (or 28,
 if word-aligned). The Data Sequence Signal (DSS) option varies in
 length depending on whether the data sequence mapping and DATA_ACK
 are included, and whether the sequence numbers in use are 4 or 8
 octets. The maximum size of the DSS option is 28 bytes, so even that
 will fit in the available space. But unless a connection is both
 bidirectional and high-bandwidth, it is unlikely that all that option
 space will be required on each DSS option.

 Within the DSS option, it is not necessary to include the data
 sequence mapping and DATA_ACK in each packet, and in many cases it
 may be possible to alternate their presence (so long as the mapping
 covers the data being sent in the following packet). It would also
 be possible to alternate between 4- and 8-byte sequence numbers in
 each option.

 On subflow and connection setup, an MPTCP option is also set on the
 third packet (an ACK). These are 20 bytes (for Multipath Capable)

Ford, et al. Expires December 10, 2019 [Page 71]

Internet-Draft Multipath TCP June 2019

 and 24 bytes (for Join), both of which will fit in the available
 option space.

 Pure ACKs in TCP typically contain only timestamps (10 bytes). Here,
 Multipath TCP typically needs to encode only the DATA_ACK (maximum of
 12 bytes). Occasionally, ACKs will contain SACK information.
 Depending on the number of lost packets, SACK may utilize the entire
 option space. If a DATA_ACK had to be included, then it is probably
 necessary to reduce the number of SACK blocks to accommodate the
 DATA_ACK. However, the presence of the DATA_ACK is unlikely to be
 necessary in a case where SACK is in use, since until at least some
 of the SACK blocks have been retransmitted, the cumulative data-level
 ACK will not be moving forward (or if it does, due to retransmissions
 on another path, then that path can also be used to transmit the new
 DATA_ACK).

 The ADD_ADDR option can be between 16 and 30 bytes, depending on
 whether IPv4 or IPv6 is used, and whether or not the port number is
 present. It is unlikely that such signaling would fit in a data
 packet (although if there is space, it is fine to include it). It is
 recommended to use duplicate ACKs with no other payload or options in
 order to transmit these rare signals. Note this is the reason for
 mandating that duplicate ACKs with MPTCP options are not taken as a
 signal of congestion.

Appendix B. TCP Fast Open and MPTCP

 TCP Fast Open (TFO) is an experimental TCP extension, described in
 [RFC7413], which has been introduced to allow sending data one RTT
 earlier than with regular TCP. This is considered a valuable gain as
 very short connections are very common, especially for HTTP request/
 response schemes. It achieves this by sending the SYN-segment
 together with the application’s data and allowing the listener to
 reply immediately with data after the SYN/ACK. [RFC7413] secures
 this mechanism, by using a new TCP option that includes a cookie
 which is negotiated in a preceding connection.

 When using TCP Fast Open in conjunction with MPTCP, there are two key
 points to take into account, detailed hereafter.

B.1. TFO cookie request with MPTCP

 When a TFO initiator first connects to a listener, it cannot
 immediately include data in the SYN for security reasons [RFC7413].
 Instead, it requests a cookie that will be used in subsequent
 connections. This is done with the TCP cookie request/response
 options, of respectively 2 bytes and 6-18 bytes (depending on the
 chosen cookie length).

Ford, et al. Expires December 10, 2019 [Page 72]

Internet-Draft Multipath TCP June 2019

 TFO and MPTCP can be combined provided that the total length of all
 the options does not exceed the maximum 40 bytes possible in TCP:

 o In the SYN: MPTCP uses a 4-bytes long MP_CAPABLE option. The
 MPTCP and TFO options sum up to 6 bytes. With typical TCP-options
 using up to 19 bytes in the SYN (24 bytes if options are padded at
 a word boundary), there is enough space to combine the MP_CAPABLE
 with the TFO Cookie Request.

 o In the SYN+ACK: MPTCP uses a 12-bytes long MP_CAPABLE option, but
 now TFO can be as long as 18 bytes. Since the maximum option
 length may be exceeded, it is up to the listener to solve this by
 using a shorter cookie. As an example, if we consider that 19
 bytes are used for classical TCP options, the maximum possible
 cookie length would be of 7 bytes. Note that the same limitation
 applies to subsequent connections, for the SYN packet (because the
 initiator then echoes back the cookie to the listener). Finally,
 if the security impact of reducing the cookie size is not deemed
 acceptable, the listener can reduce the amount of other TCP-
 options by omitting the TCP timestamps (as outlined in
 Appendix A).

B.2. Data sequence mapping under TFO

 MPTCP uses, in the TCP establishment phase, a key exchange that is
 used to generate the Initial Data Sequence Numbers (IDSNs). In
 particular, the SYN with MP_CAPABLE occupies the first octet of the
 data sequence space. With TFO, one way to handle the data sent
 together with the SYN would be to consider an implicit DSS mapping
 that covers that SYN segment (since there is not enough space in the
 SYN to include a DSS option). The problem with that approach is that
 if a middlebox modifies the TFO data, this will not be noticed by
 MPTCP because of the absence of a DSS-checksum. For example, a TCP
 (but not MPTCP)-aware middlebox could insert bytes at the beginning
 of the stream and adapt the TCP checksum and sequence numbers
 accordingly. With an implicit mapping, this would give to initiator
 and listener a different view on the DSS-mapping, with no way to
 detect this inconsistency as the DSS checksum is not present.

 To solve this, the TFO data must not be considered part of the Data
 Sequence Number space: the SYN with MP_CAPABLE still occupies the
 first octet of data sequence space, but then the first non-TFO data
 byte occupies the second octet. This guarantees that, if the use of
 DSS-checksum is negotiated, all data in the data sequence number
 space is checksummed. We also note that this does not entail a loss
 of functionality, because TFO-data is always only sent on the initial
 subflow before any attempt to create additional subflows.

Ford, et al. Expires December 10, 2019 [Page 73]

Internet-Draft Multipath TCP June 2019

B.3. Connection establishment examples

 The following shows a few examples of possible TFO+MPTCP
 establishment scenarios.

 Before an initiator can send data together with the SYN, it must
 request a cookie to the listener, as shown in Figure 18. This is
 done by simply combining the TFO and MPTCP options.

initiator listener
 | |
 | S Seq=0(Length=0) <MP_CAPABLE>, <TFO cookie request> |
 | ---> |
 | |
 | S. 0(0) ack 1 <MP_CAPABLE>, <TFO cookie> |
 | <--- |
 | |
 | . 0(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |

 Figure 18: Cookie request - sequence number and length are annotated
 as Seq(Length) and used hereafter in the figures.

 Once this is done, the received cookie can be used for TFO, as shown
 in Figure 19. In this example, the initiator first sends 20 bytes in
 the SYN. The listener immediately replies with 100 bytes following
 the SYN-ACK upon which the initiator replies with 20 more bytes.
 Note that the last segment in the figure has a TCP sequence number of
 21, while the DSS subflow sequence number is 1 (because the TFO data
 is not part of the data sequence number space, as explained in
 Section Appendix B.2.

Ford, et al. Expires December 10, 2019 [Page 74]

Internet-Draft Multipath TCP June 2019

initiator listener
 | |
 | S 0(20) <MP_CAPABLE>, <TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 21 <MP_CAPABLE> |
 | <--- |
 | |
 | . 1(100) ack 21 <DSS ack=1 seq=1 ssn=1 dlen=100> |
 | <--- |
 | |
 | . 21(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |
 | . 21(20) ack 101 <DSS ack=101 seq=1 ssn=1 dlen=20> |
 | ---> |
 | |

 Figure 19: The listener supports TFO

 In Figure 20, the listener does not support TFO. The initiator
 detects that no state is created in the listener (as no data is
 acked), and now sends the MP_CAPABLE in the third ack, in order for
 the listener to build its MPTCP context at then end of the
 establishment. Now, the tfo data, retransmitted, becomes part of the
 data sequence mapping because it is effectively sent (in fact re-
 sent) after the establishment.

initiator listener
 | |
 | S 0(20) <MP_CAPABLE>, <TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 1 <MP_CAPABLE> |
 | <--- |
 | |
 | . 1(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |
 | . 1(20) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=20> |
 | ---> |
 | |
 | . 0(0) ack 21 <DSS ack=21 seq=1 ssn=1 dlen=0> |
 | <--- |
 | |

 Figure 20: The listener does not support TFO

Ford, et al. Expires December 10, 2019 [Page 75]

Internet-Draft Multipath TCP June 2019

 It is also possible that the listener acknowledges only part of the
 TFO data, as illustrated in Figure 21. The initiator will simply
 retransmit the missing data together with a DSS-mapping.

initiator listener
 | |
 | S 0(1000) <MP_CAPABLE>, <TFO cookie> |
 | ---> |
 | |
 | S. 0(0) ack 501 <MP_CAPABLE> |
 | <--- |
 | |
 | . 501(0) ack 1 <MP_CAPABLE> |
 | ---> |
 | |
 | . 501(500) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=500> |
 | ---> |
 | |

 Figure 21: Partial data acknowledgement

Appendix C. Control Blocks

 Conceptually, an MPTCP connection can be represented as an MPTCP
 protocol control block (PCB) that contains several variables that
 track the progress and the state of the MPTCP connection and a set of
 linked TCP control blocks that correspond to the subflows that have
 been established.

 RFC 793 [RFC0793] specifies several state variables. Whenever
 possible, we reuse the same terminology as RFC 793 to describe the
 state variables that are maintained by MPTCP.

C.1. MPTCP Control Block

 The MPTCP control block contains the following variable per
 connection.

C.1.1. Authentication and Metadata

 Local.Token (32 bits): This is the token chosen by the local host on
 this MPTCP connection. The token must be unique among all
 established MPTCP connections, and is generated from the local
 key.

 Local.Key (64 bits): This is the key sent by the local host on this
 MPTCP connection.

Ford, et al. Expires December 10, 2019 [Page 76]

Internet-Draft Multipath TCP June 2019

 Remote.Token (32 bits): This is the token chosen by the remote host
 on this MPTCP connection, generated from the remote key.

 Remote.Key (64 bits): This is the key chosen by the remote host on
 this MPTCP connection

 MPTCP.Checksum (flag): This flag is set to true if at least one of
 the hosts has set the A bit in the MP_CAPABLE options exchanged
 during connection establishment, and is set to false otherwise.
 If this flag is set, the checksum must be computed in all DSS
 options.

C.1.2. Sending Side

 SND.UNA (64 bits): This is the data sequence number of the next byte
 to be acknowledged, at the MPTCP connection level. This variable
 is updated upon reception of a DSS option containing a DATA_ACK.

 SND.NXT (64 bits): This is the data sequence number of the next byte
 to be sent. SND.NXT is used to determine the value of the DSN in
 the DSS option.

 SND.WND (32 bits with RFC 7323, 16 bits otherwise): This is the
 sending window. MPTCP maintains the sending window at the MPTCP
 connection level and the same window is shared by all subflows.
 All subflows use the MPTCP connection level SND.WND to compute the
 SEQ.WND value that is sent in each transmitted segment.

C.1.3. Receiving Side

 RCV.NXT (64 bits): This is the data sequence number of the next byte
 that is expected on the MPTCP connection. This state variable is
 modified upon reception of in-order data. The value of RCV.NXT is
 used to specify the DATA_ACK that is sent in the DSS option on all
 subflows.

 RCV.WND (32 bits with RFC 7323, 16 bits otherwise): This is the
 connection-level receive window, which is the maximum of the
 RCV.WND on all the subflows.

C.2. TCP Control Blocks

 The MPTCP control block also contains a list of the TCP control
 blocks that are associated with the MPTCP connection.

 Note that the TCP control block on the TCP subflows does not contain
 the RCV.WND and SND.WND state variables as these are maintained at
 the MPTCP connection level and not at the subflow level.

Ford, et al. Expires December 10, 2019 [Page 77]

Internet-Draft Multipath TCP June 2019

 Inside each TCP control block, the following state variables are
 defined.

C.2.1. Sending Side

 SND.UNA (32 bits): This is the sequence number of the next byte to
 be acknowledged on the subflow. This variable is updated upon
 reception of each TCP acknowledgment on the subflow.

 SND.NXT (32 bits): This is the sequence number of the next byte to
 be sent on the subflow. SND.NXT is used to set the value of
 SEG.SEQ upon transmission of the next segment.

C.2.2. Receiving Side

 RCV.NXT (32 bits): This is the sequence number of the next byte that
 is expected on the subflow. This state variable is modified upon
 reception of in-order segments. The value of RCV.NXT is copied to
 the SEG.ACK field of the next segments transmitted on the subflow.

 RCV.WND (32 bits with RFC 7323, 16 bits otherwise): This is the
 subflow-level receive window that is updated with the window field
 from the segments received on this subflow.

Appendix D. Finite State Machine

 The diagram in Figure 22 shows the Finite State Machine for
 connection-level closure. This illustrates how the DATA_FIN
 connection-level signal (indicated in the diagram as the DFIN flag on
 a DATA_ACK) interacts with subflow-level FINs, and permits "break-
 before-make" handover between subflows.

Ford, et al. Expires December 10, 2019 [Page 78]

Internet-Draft Multipath TCP June 2019

 +---------+
 | M_ESTAB |
 +---------+
 M_CLOSE | | rcv DATA_FIN
 ------- | | -------
 +---------+ snd DATA_FIN / \ snd DATA_ACK[DFIN] +---------+
 | M_FIN |<----------------- ------------------->| M_CLOSE |
 | WAIT-1 |--------------------------- | WAIT |
 +---------+ rcv DATA_FIN \ +---------+
rcv DATA_ACK[DFIN] -------	M_CLOSE
-------------- snd DATA_ACK	-------
CLOSE all subflows	snd DATA_FIN
V V V	
+-----------+ +-----------+ +-----------+	
M_FINWAIT-2	
+-----------+ +-----------+ +-----------+	
rcv DATA_ACK[DFIN]	rcv DATA_ACK[DFIN]
rcv DATA_FIN --------------	--------------
------- CLOSE all subflows	CLOSE all subflows
snd DATA_ACK[DFIN] V delete MPTCP PCB V	
 \ +-----------+ +---------+
 ------------------------>|M_TIME WAIT|----------------->| M_CLOSED|
 +-----------+ +---------+
 All subflows in CLOSED

 delete MPTCP PCB

 Figure 22: Finite State Machine for Connection Closure

Appendix E. Changes from RFC6824

 This section lists the key technical changes between RFC6824,
 specifying MPTCP v0, and this document, which obsoletes RFC6824 and
 specifies MPTCP v1. Note that this specification is not backwards
 compatible with RFC6824.

 o The document incorporates lessons learnt from the various
 implementations, deployments and experiments gathered in the
 documents "Use Cases and Operational Experience with Multipath
 TCP" [RFC8041] and the IETF Journal article "Multipath TCP
 Deployments" [deployments].

 o Connection initiation, through the exchange of the MP_CAPABLE
 MPTCP option, is different from RFC6824. The SYN no longer
 includes the initiator’s key, allowing the MP_CAPABLE option on
 the SYN to be shorter in length, and to avoid duplicating the
 sending of keying material.

Ford, et al. Expires December 10, 2019 [Page 79]

Internet-Draft Multipath TCP June 2019

 o This also ensures reliable delivery of the key on the MP_CAPABLE
 option by allowing its transmission to be combined with data and
 thus using TCP’s in-built reliability mechanism. If the initiator
 does not immediately have data to send, the MP_CAPABLE option with
 the keys will be repeated on the first data packet. If the other
 end is first to send, then the presence of the DSS option
 implicitly confirms the receipt of the MP_CAPABLE.

 o In the Flags field of MP_CAPABLE, C is now assigned to mean that
 the sender of this option will not accept additional MPTCP
 subflows to the source address and port. This is an efficiency
 improvement, for example where the sender is behind a strict NAT.

 o In the Flags field of MP_CAPABLE, H now indicates the use of HMAC-
 SHA256 (rather than HMAC-SHA1).

 o Connection initiation also defines the procedure for version
 negotiation, for implementations that support both v0 (RFC6824)
 and v1 (this document).

 o The HMAC-SHA256 (rather than HMAC-SHA1) algorithm is used, as the
 algorithm provides better security. It is used to generate the
 token in the MP_JOIN and ADD_ADDR messages, and to set the initial
 data sequence number.

 o A new subflow-level option exists to signal reasons for sending a
 RST on a subflow (MP_TCPRST Section 3.6), which can help an
 implementation decide whether to attempt later re-connection.

 o The MP_PRIO option (Section 3.3.8), which is used to signal a
 change of priority for a subflow, no longer includes the AddrID
 field. Its purpose was to allow the changed priority to be
 applied on a subflow other than the one it was sent on. However,
 it has been realised that this could be used by a man-in-the-
 middle to divert all traffic on to its own path, and MP_PRIO does
 not include a token or other security mechanism.

 o The ADD_ADDR option (Section 3.4.1), which is used to inform the
 other host about another potential address, is different in
 several ways. It now includes an HMAC of the added address, for
 enhanced security. In addition, reliability for the ADD_ADDR
 option has been added: the IPVer field is replaced with a flag
 field, and one flag is assigned (E) which is used as an ’Echo’ so
 a host can indicate that it has received the option.

 o An additional way of performing a Fast Close is described, by
 sending a MP_FASTCLOSE option on a RST on all subflows. This

Ford, et al. Expires December 10, 2019 [Page 80]

Internet-Draft Multipath TCP June 2019

 allows the host to tear down the subflows and the connection
 immediately.

 o In the IANA registry a new MPTCP subtype option, MP_EXPERIMENTAL,
 is reserved for private experiments. However, the document
 doesn’t define how to use the subtype option.

 o A new Appendix discusses the usage of both the MPTCP and TCP Fast
 Open on the same packet (Appendix B).

Authors’ Addresses

 Alan Ford
 Pexip

 EMail: alan.ford@gmail.com

 Costin Raiciu
 University Politehnica of Bucharest
 Splaiul Independentei 313
 Bucharest
 Romania

 EMail: costin.raiciu@cs.pub.ro

 Mark Handley
 University College London
 Gower Street
 London WC1E 6BT
 UK

 EMail: m.handley@cs.ucl.ac.uk

 Olivier Bonaventure
 Universite catholique de Louvain
 Pl. Ste Barbe, 2
 Louvain-la-Neuve 1348
 Belgium

 EMail: olivier.bonaventure@uclouvain.be

Ford, et al. Expires December 10, 2019 [Page 81]

Internet-Draft Multipath TCP June 2019

 Christoph Paasch
 Apple, Inc.
 Cupertino
 US

 EMail: cpaasch@apple.com

Ford, et al. Expires December 10, 2019 [Page 82]

Internet Engineering Task Force R. Winter
Internet-Draft NEC Laboratories Europe
Intended status: Informational M. Faath
Expires: September 22, 2016 University of Applied Sciences Augsburg
 A. Ripke
 NEC Laboratories Europe
 March 21, 2016

 Multipath TCP Support for Single-homed End-systems
 draft-wr-mptcp-single-homed-07

Abstract

 Multipath TCP relies on the existence of multiple paths between end-
 systems. These are typically provided by using different IP
 addresses obtained by different ISPs at the end-systems. While this
 scenario is certainly becoming increasingly a reality (e.g. mobile
 devices), currently most end-systems are single-homed (e.g. desktop
 PCs in an enterprise). It seems also likely that a lot of network
 sites will insist on having all traffic pass a single network element
 (e.g. for security reasons) before traffic is split across multiple
 paths. This memo therefore describes mechanisms to make multiple
 paths available to multipath TCP-capable end-systems that are not
 available directly at the end-systems but somewhere within the
 network.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Winter, et al. Expires September 22, 2016 [Page 1]

Internet-Draft single-homed MPTCP March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Approaches to Use Multiple Paths in the Network 3
 2.1. Exposing Multiple Paths Through End-host Auto-
 configuration . 3
 2.2. Heuristic Use of Multiple Paths 5
 3. Other scenarios and extensions 6
 4. Alternative approaches 6
 5. Acknowledgements . 6
 6. IANA Considerations . 6
 7. Security Considerations 7
 8. References . 7
 8.1. Normative References 7
 8.2. Informative References 7
 Authors’ Addresses . 8

1. Introduction

 The IETF has specified a multipath TCP (MPTCP) architecture and
 protocol where end-systems operate a modified standard TCP stack
 which allows packets of the same TCP connection to be sent via
 different paths to an MPTCP-capable destination ([RFC6824],
 [RFC6182]). Paths are defined by sets of source and destination IP
 addresses. Using multiple paths has a number of benefits such as an
 increased reliability of the transport connection and an effect known
 as resource pooling [resource_pooling]. Most end-systems today do
 not have multiple paths/interfaces available in order to make use of
 multipath TCP, however further within the network multiple paths are
 the norm rather than the exception. This memo therefore describes
 ways how these multiple paths in the network could potentially be
 made available to multipath TCP-capable hosts that are single-homed.

Winter, et al. Expires September 22, 2016 [Page 2]

Internet-Draft single-homed MPTCP March 2016

 In order to illustrate the general mechanism we make use of a simple
 reference scenario shown in Figure 1.

 +-------+
 | DHCP |
 +-------+ +----------+ Server|
 | | | | |
 | Host +------+ +-------+
 | | | +-------+ ISP 1
 +-------+ +------+ |----------
 | Gatew.|
 | |----------
 +-------+ ISP 2

 Figure 1: Reference Scenario

 The scenario in Figure 1 depicts e.g. a possible SOHO or enterprise
 setup where a gateway/router is connected to two ISPs and a DHCP
 server gives out leases to hosts connected to the local network.
 Note that both, the gateway and the DHCP server could be on the same
 device (similar to current home gateway implementations). Also, the
 two ISPs could really be two different access technologies (e.g. LTE
 and DSL) provided by a single ISP.

 The host is running a multipath-capable IP stack, however it only has
 a single interface. The methods described in the following sections
 will let the host make use of the gateway’s two interfaces without
 requiring modifications to the MPTCP implementation.

2. Approaches to Use Multiple Paths in the Network

 All approaches in this document do not require changes to the wire
 format of MPTCP and both communicating hosts need to be MPTCP-
 capable. The benefit this approach has is that a) it has no
 implications on MPTCP standards, b) it will hopefully encourage the
 deployment of MPTCP as the number of scenarios where MPTCP brings
 benefits vastly increases and c) these approaches do not require
 complex middle-boxes to implement MPTCP-like functionality in the
 network as other approaches have suggested before.

2.1. Exposing Multiple Paths Through End-host Auto-configuration

 Multipath TCP distinguishes paths by their source and destination IP
 addresses. Assuming a certain level of path diversity in the
 Internet, using different source and destination IP addresses for a
 given subflow of a multipath TCP connection will, with a certain
 probability, result in different paths taken by packets of different
 subflows. Even in case subflows share a common bottleneck, the

Winter, et al. Expires September 22, 2016 [Page 3]

Internet-Draft single-homed MPTCP March 2016

 proposed multipath congestion control algorithm [RFC6356] will make
 sure that multipath TCP will play nicely with regular TCP flows.

 In order to not require changes to the TCP implementation, we keep
 the above assumptions multipath TCP makes, i.e. working with
 different IP addresses to use different paths. Since the end-system
 is single-homed, all IP addresses are bound to the same physical
 interface. In our reference scenario in Figure 1, the host would
 e.g. receive more than one RFC1918 [RFC1918] private IP address from
 the DHCP server as depicted in Figure 2.

 Host Gateway

 +-----------------+ ISP1
 +--------+ | src. |
 | virt. | 10.1.2.5 | 10.1.0.0/16 __.+----------
 | +---+ | __.--’ |
 | phys. | | | __.--’ N |
 | +----------+.:_ A |
 | | 10.2.2.6 | ‘-.._ T |
 +--------+ | src. ‘-.._ | ISP2
 | 10.2.0.0/16 ‘-..+----------
 | |
 +-----------------+

 Figure 2: Gateway internals

 The gateway that is shown in Figure 2 has received two IP addresses,
 one from each ISP that it is connected to (ISP1 and ISP2). The NAT
 that the gateway is implementing needs to "map" each private IP
 address of the host consistently to a one of the addresses received
 by the ISPs, i.e. each private IP to a different public IP. Packets
 sent by the host to the gateway are then routed based on the source
 address found in the packets as illustrated in the figure. In other
 words, depending on the source address of the host, the packets will
 either go through ISP 1 or ISP 2 and TCP will balance the traffic
 across those two links using its built-in congestion control
 mechanism.

 The way the gateway has received its public IP addresses is not
 relevant. It could be via DHCP, IPCP or static configuration. In
 order to configure the hosts behind the gateway, we propose to make
 use of provisioning domains [RFC7556], more specifically one
 provisioning domain per external gateway interface (the two
 interfaces to ISP1 and ISP2 in Figure 2). The DHCPv6 specification
 for encoding provisioning domains can be found in
 [I-D.ietf-mif-mpvd-dhcp-support].

Winter, et al. Expires September 22, 2016 [Page 4]

Internet-Draft single-homed MPTCP March 2016

 In order to signal to the host, that each provisioning domain will
 result in a different path towards the Internet, this memo introduces
 a new DHCP option called EXT_ROUTE, which will be included in each
 provisioning domain sent by the server. The option value will
 determine which external interface is used to sent the traffic when
 using the configuration information present in the respective
 provisioning domain.

 Upon receipt of a DHCP offer including multiple provisioning domains,
 or multiple offers each including one or more provisioning domains,
 the client SHOULD create up to n virtual interfaces, where n is one
 less than the number of different EXT_ROUTE option values found in
 all received provisioning domains. Each virtual interface will
 contact the DHCP server and will request configuration information
 for the respective provisioning domains, excluding the configuration
 of the physical interface.

2.2. Heuristic Use of Multiple Paths

 The auto-configuration mechanism above has the advantage that
 available paths and information on how to use them are directly sent
 to the end-host. In other words, there is an explicit signalling of
 the availability of multiple paths to the end-host. This has the
 advantage that the host can efficiently use these paths.

 This method works well when multiple paths are available close to the
 end-host and means for auto-configuration are available. But that is
 not always the case. Another method to use different paths in the
 network without prior knowledge of their existence is to apply
 heuristics in order to exploit setups where Equal Cost Multi-path
 [RFC2991], a widely deployed technology [ECMP_DEPLOYMENT], or similar
 per-flow load-balancing algorithms are employed.

 The ADD_ADDR option defined in [RFC6824] can be used to advertise the
 same address but a different port to open another subflow.
 Additionally, the MP_JOIN option can also be used to open another
 subflow with the same IP address and e.g. a different source port
 given that a different address ID is used. This means there are
 multiple scenarios possible (e.g. either sender-initated or receiver-
 initiated) where single-homed end-hosts can influence the 5-tuple
 (source and destination IP addresses and port numbers plus protocol
 number) which is often used as the basis for per-flow load balancing.
 Changing the 5-tuple will only with a certain probability result in
 using a different path unless the load-balancing algorithm that is
 used is known to the MPTCP implementation (an assumption we cannot
 generally make). This means that a number of subflows might end up
 on the same path. Fortunately, the MPTCP congestion control

Winter, et al. Expires September 22, 2016 [Page 5]

Internet-Draft single-homed MPTCP March 2016

 algorithm will make sure that the collection of subflows on that path
 will not be more agressive than a single TPC flow.

3. Other scenarios and extensions

 The reference scenario is only one conceivable setting. Other
 scenarios such as DSL broadband customers or mobile phones are
 conceivable as well. As an example, take the DSL scenario. The home
 gateway could be provided with multiple IP addresses using extensions
 to IPCP. The home gateway in turn can then implement the DHCP server
 and gateway functionality as described before. More scenarios will
 be described in future versions of this document.

4. Alternative approaches

 One alternative is that a DHCP server always sends n offers, where n
 is the number of interfaces at the gateway to different ISPs. The
 client could then accept all or a subset of these offers. This
 approach seems interesting in environments where there are multiple
 DHCP servers, one for each ISP connection (think multiple home
 gateways). However, accepting multiple offers based on a single DHCP
 request is not standard’s compliant behavior (at least for the DHCPv4
 case). Also, to cater for a scenario that only contains a single
 DHCP server, server changes are needed in any case. Finally, correct
 routing is not always guaranteed in these scenarios.

 An interesting alternative is the use of ECMP at the gateway for load
 distribution and let MPTCP use different port numbers for subflows.
 Assuming that ECMP is available at the gateway, this approach would
 work fine today. The only drawback of the approach is that it
 involves a little trial and error to find port numbers that actually
 hash to different paths used by ECMP [RFC2991].

5. Acknowledgements

 Part of this work was supported by Trilogy (http://www.trilogy-
 project.org), a research project (ICT-216372) partially funded by the
 European Community under its Seventh Framework Program. The views
 expressed here are those of the author(s) only. The European
 Commission is not liable for any use that may be made of the
 information in this document.

6. IANA Considerations

 One new DHCP options is required by this version of this document.

Winter, et al. Expires September 22, 2016 [Page 6]

Internet-Draft single-homed MPTCP March 2016

7. Security Considerations

 TBD.

8. References

8.1. Normative References

 [RFC1918] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G.,
 and E. Lear, "Address Allocation for Private Internets",
 BCP 5, RFC 1918, DOI 10.17487/RFC1918, February 1996,
 <http://www.rfc-editor.org/info/rfc1918>.

 [RFC2991] Thaler, D. and C. Hopps, "Multipath Issues in Unicast and
 Multicast Next-Hop Selection", RFC 2991, DOI 10.17487/
 RFC2991, November 2000,
 <http://www.rfc-editor.org/info/rfc2991>.

 [RFC7556] Anipko, D., Ed., "Multiple Provisioning Domain
 Architecture", RFC 7556, DOI 10.17487/RFC7556, June 2015,
 <http://www.rfc-editor.org/info/rfc7556>.

8.2. Informative References

 [ECMP_DEPLOYMENT]
 Augustin, B., Friedman, T., and R. Teixeira, "Measuring
 Multipath Routing in the Internet", October 2011,
 <http://www.paris-traceroute.net/images/ton_2011.pdf>.

 [I-D.ietf-mif-mpvd-dhcp-support]
 Krishnan, S., Korhonen, J., and S. Bhandari, "Support for
 multiple provisioning domains in DHCPv6", draft-ietf-mif-
 mpvd-dhcp-support-02 (work in progress), October 2015.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols", RFC
 6356, DOI 10.17487/RFC6356, October 2011,
 <http://www.rfc-editor.org/info/rfc6356>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

Winter, et al. Expires September 22, 2016 [Page 7]

Internet-Draft single-homed MPTCP March 2016

 [resource_pooling]
 Wischik, D., Handley, M., and M. Bagnulo Braun, "The
 Resource Pooling Principle", October 2008,
 <http://ccr.sigcomm.org/online/files/p47-handleyA4.pdf>.

Authors’ Addresses

 Rolf Winter
 NEC Laboratories Europe
 Kurfuersten-Anlage 36
 Heidelberg 69115
 Germany

 Email: rolf.winter@neclab.eu

 Michael Faath
 University of Applied Sciences Augsburg
 An der Hochschule 1
 Augsburg 86161
 Germany

 Email: michael.faath@hs-augsburg.de

 Andreas Ripke
 NEC Laboratories Europe
 Kurfuersten-Anlage 36
 Heidelberg 69115
 Germany

 Email: andreas.ripke@neclab.eu

Winter, et al. Expires September 22, 2016 [Page 8]

	draft-bonaventure-mptcp-addr-00
	draft-boucadair-mptcp-dhc-04
	draft-boucadair-mptcp-dhc-08
	draft-boucadair-mptcp-plain-mode-06
	draft-boucadair-mptcp-plain-mode-10
	draft-ietf-mptcp-experience-03
	draft-ietf-mptcp-experience-07
	draft-ietf-mptcp-rfc6824bis-18
	draft-wr-mptcp-single-homed-07

