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Abstract

   Multipath TCP [RFC6824] defines the ADD_ADDR option to allow a host
   to announce its addresses to the remote host.  In this document we
   analyze some of the issues with the address advertisement technique
   defined [RFC6824] and propose some modifications to mitigate these
   problems.  We also show that the reverse DNS could be an excellent
   alternative to advertise the stable addresses of a server.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on January 7, 2016.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
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1.  Introduction

   Multipath TCP is an extension to TCP [RFC0793] that was specified in
   [RFC6824].  Multipath TCP was designed with multi-addressed hosts in
   mind [RFC6182].  A Multipath TCP connection is composed of subflows
   that are established between any of the addresses of the
   communicating hosts.  [RFC6824] defines two options to manage the
   host addresses :

   o  ADD_ADDR is used to announce one address bound to a host (possibly
      combined with a port number)

   o  REMOVE_ADDR is used to indicate that an address previously
      attached to a host is not anymore attached to this host

   To cope with Network Address Translation (NAT), the ADD_ADDR and
   REMOVE_ADDR options contain an address identifier encoded as an 8
   bits integer.

   When the initial subflow is created, it is assumed to be initiated
   from the address of the client whose identifier is 0 towards the
   address of the server whose identifier is also 0.  Both the client
   and the server can use ADD_ADDR to advertise the other addresses that
   they use.  When an additional subflow is created, the MP_JOIN option
   placed in the SYN (resp.  SYN+ACK) contains the identifier of the
   address used to create (resp. accept) the subflow.

   Experience with Multipath TCP shows that these two options allow to
   support multi-homed or dual-stack servers [TMA2015] and mobile
   devices [Cellnet12].  While the ADD_ADDR option has been supported in
   the Linux implementation of Multipath TCP, other implementors have
   chosen to not support it [I-D.eardley-mptcp-implementations-survey]
   while still supporting the REMOVE_ADDR option.
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   In this document, we first analyse in Section 2 several issues with
   the current ADD_ADDR option as defined in [RFC6824] and
   [I-D.ietf-mptcp-rfc6824bis].  Then in Section 3 we show how Multipath
   TCP could leverage the existing DNS to obtain information about the
   different addresses attached to a server.

2.  Issues with ADD_ADDR

   A first issue are the security risks if an attacker is able to send
   spoofed TCP segments that include the ADD_ADDR option.  Multipath TCP
   [RFC6824] defines the ADD_ADDR option shown in Figure 1.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +---------------+---------------+-------+-------+---------------+
     |     Kind      |     Length    |Subtype| IPVer |  Address ID   |
     +---------------+---------------+-------+-------+---------------+
     |          Address (IPv4 - 4 octets / IPv6 - 16 octets)         |
     +-------------------------------+-------------------------------+
     |   Port (2 octets, optional)   |
     +-------------------------------+

                       Figure 1: The ADD_ADDR option

   From a security viewpoint, this option introduces a potential
   security risk if an attacker is able to send a spoofed ADD_ADDR
   option.  [I-D.ietf-mptcp-rfc6824bis] proposes a new format for this
   option by placing a truncated HMAC inside the option to authenticate
   it.  The format for this new option (ADD_ADDR2) is shown in Figure 2.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +---------------+---------------+-------+-------+---------------+
     |     Kind      |     Length    |Subtype| IPVer |  Address ID   |
     +---------------+---------------+-------+-------+---------------+
     |          Address (IPv4 - 4 octets / IPv6 - 16 octets)         |
     +-------------------------------+-------------------------------+
     |   Port (2 octets, optional)   |                               |
     +-------------------------------+                               |
     |                      Truncated HMAC (8 octets)                |
     |                               +-------------------------------+
     |                               |
     +-------------------------------+

                      Figure 2: The ADD_ADDR2 option
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2.1.  Usage of the Address Identifiers

   A second issue with the ADD_ADDR option is the management of the
   address identifiers.  At first glance, a Multipath TCP implementation
   could maintain a table of the IP addresses bound to the local host
   and associate one identifier with each address.  When a new IP
   address is configured, it is added to the table and the index in the
   table can be used as its identifier.  If a local address stops to be
   bound to the host, the Multipath TCP can extract its identifier from
   the table and send the REMOVE_ADDR option over all existing Multipath
   TCP connections.  Unfortunately, such a naive implementation is not
   possible with the current Multipath TCP implementation.

   As defined in [RFC6824], the identifiers 0 are assigned to the
   addresses that were used for the establishment of the initial
   subflow.  This is because the MP_CAPABLE option does not contain any
   field to encode an address identifier in contrast with the MP_JOIN
   option.

   An annoying consequence of this design choice is that a Multipath TCP
   implementation must at least remember the identifier of the address
   that was used to create the initial subflow.  It cannot simply rely
   on the global address table described above because when an address
   fails, it must be able to send a REMOVE_ADDR with for address
   identifier 0 if this address was used to create the initial subflow.
   This forces a Multipath TCP implementation to at least store the
   address identifier of the initial subflow for each connection.

   One suggestion to ease the maintenance of the addresses on a
   Multipath TCP implementation would be to stop assuming that the
   address identifier 0 corresponds to the address used to establish the
   initial subflow.  Instead, the implementation should maintain a table
   of all the addresses that it uses with Multipath TCP and assign one
   strictly positive identifier to each address.  In this case, each
   address assigned to the host has the same address identifier for all
   the Multipath TCP connections.  When a new address is learned, it is
   automatically assigned the next available address identifier and can
   be announced over all existing Multipath TCP connections depending on
   the policy applied for the address announcements.  When an address is
   not bound anymore to this host, then the same REMOVE_ADDR option can
   be sent over all Multipath TCP connections.

   There is one missing element in the solution discussed above : how to
   announce the real address identifier that corresponds to the initial
   subflow.  A simple solution to this problem is to use the ADD_ADDR
   option without an address as shown in Figure 3.
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                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +---------------+---------------+-------+-------+---------------+
     |     Kind      |     Length    |Subtype| IPVer |  Address ID   |
     +---------------+---------------+-------+-------+---------------+

    Figure 3: The ADD_ADDR option indicating the address identifier of
                            the current subflow

   This empty ADD_ADDR option indicates the address identifier of the
   address on the subflow over which it has been transmitted.  It MUST
   only be used on the initial subflow since on the other subflows the
   same information is carried reliably in the MP_JOIN option of the SYN
   segments.  The IPVer field of this ADD_ADDR option MUST match the IP
   version used for the initial subflow.

2.2.  Reliability of the ADD_ADDR Option

   A third issue with the ADD_ADDR option is that since it is
   transmitted as a TCP option, it is not delivered reliably
   [Cellnet12].  If it announces an IPv4 address, the ADD_ADDR option
   could be inserted inside a segment that carries data and would thus
   be delivered reliably like the user data.  However, if the ADD_ADDR
   option contains an IPv6 address, it might be too large to fit inside
   a segment that already contains a DSS option and possibly other
   options such as the [RFC1323] timestamps.  Given its length, the
   ADD_ADDR2 option cannot be placed in the same segment as a DSS
   option.  In these two cases, the ADD_ADDR/ADD_ADDR2 option will be
   often transmitted inside a duplicate ACK that is not delivered
   reliably.  [Cellnet12] proposes a method to improve the reliability
   of the transmission of the ADD_ADDR option, but to our knowledge this
   method has never been implemented.  To cope with packet losses, some
   implementations could decide to transmit several copies of the
   ADD_ADDR option over the same connection.

3.  Learning the Addresses bound to a host through the DNS

   [RFC6824] defines the ADD_ADDR option as the basic technique to learn
   the addresses bound to the remote host.  Given the importance of
   learning those addresses, one would expect this technique to be
   supported by all Multipath TCP implementations.  This is not the
   case, since only the Linux implementation of Multipath TCP supports
   the ADD_ADDR option [I-D.eardley-mptcp-implementations-survey] as
   defined in [RFC6824].  The other implementations do not support this
   option [I-D.eardley-mptcp-implementations-survey].  This design
   choice was probably motivated by security concerns with this option
   and also because these implementations assume that only the client
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   creates the subflows and the server is single-homed.  In this case,
   the client (e.g. a smartphone), can create the subflows from any of
   its own addresses towards the single address of the server.

   However, with the deployment of IPv6, the number of dual-stack
   clients and servers will grow and it will be important for a host
   that creates a connection towards the IPv4 address of a server to
   also learn the IPv6 address associated to this particular server.  We
   show in this section that the DNS could be used to distribute the
   addressing information that is required by Multipath TCP.

   There are three possibilities to use to DNS to distribute the list of
   addresses associated to a given server.  A first approach is to use
   the existing forward DNS and consider that all the ’A’ and ’AAAA’
   records associated with a name correspond to the same server and can
   be used to establish Multipath TCP subflows.  Unfortunately, when
   several records are associated to a DNS name, this is often for load
   balancing reasons and those records point to the addresses of
   different hosts.  A second approach would be to define a new DNS
   record that contains the list of the IP addresses associated to a
   given host.  However, this would require to deploy a new type of DNS
   record.  Proposals that were made in the past to define new RR types
   were not endorsed by the IETF (e.g., one single RR for dual stack
   hosts [I-D.li-dnsext-ipv4-ipv6] or a distinct RR for IPv4-Embedded
   IPv6 Address [I-D.boucadair-behave-dns-a64]).

   The third approach that we propose in this document is to use the
   reverse DNS to encode the information about the alternate addresses
   that are associated to a given host.  The reverse DNS tree typically
   only contains PTR records that associate names to reverse IPv4 or
   IPv6 addresses.  However, nothing prevents the use of the reverse DNS
   to store A and AAAA records.  This is the approach that we recommend.
   It does not require any change to the DNS protocol and can leverage
   dynamic updates to the DNS [RFC3007] and DNSSec to authenticate the
   advertisement of addresses [RFC4034].

   As an example, consider the server whose name is mptcp.example.org
   and which is reachable via the following IP addresses taken from the
   documentation prefixes [RFC3849] [RFC5737] :

   o  192.0.2.10

   o  198.51.100.23

   o  2001:db8::1234

   The forward DNS will contain the following records for this server
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     mptcp.example.org.    7200    IN  A     192.0.2.10
     mptcp.example.org.    7200    IN  A     198.51.100.23
     mptcp.example.org.    7200    IN      AAAA  2001:db8::1234

   In addition, the following entries would be added in the reverse DNS.

      10.2.0.192.in-addr.arpa. 7200 IN AAAA  2001:db8::1234
      10.2.0.192.in-addr.arpa. 7200 IN A     198.51.100.23

      23.100.51.198.in-addr.arpa. 7200 IN  AAAA  2001:db8::1234
      23.100.51.198.in-addr.arpa. 7200 IN  A     192.0.2.10

      4.3.2.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
           8.b.d.0.1.0.0.2.ip6.arpa. 7200 IN A  192.0.2.10
      4.3.2.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
           8.b.d.0.1.0.0.2.ip6.arpa. 7200 IN A  198.51.100.23

   These reverse records can, of course, be signed with DNSSec
   [RFC4034].

4.  Conclusion

   In this document, we have discussed several issues with the
   advertisement of addresses with the ADD_ADDR and ADD_ADDR2 options in
   Multipath TCP.  Then, we have shown that the reverse DNS can be used
   by servers to advertise their alternate IP addresses.  This does not
   require any modification to the DNS protocol and could be used by
   applications that do not want or cannot rely on the ADD_ADDR option.
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Abstract

   One of the promising deployment scenarios for Multipath TCP (MPTCP)
   is to enable a Customer Premises Equipment (CPE) that is connected to
   multiple networks (e.g., DSL, LTE, WLAN) to optimize the usage of its
   network attachments.  Because of the lack of MPTCP support at the
   server side, some service providers consider a network-assisted model
   that relies upon the activation of a dedicated function called: MPTCP
   Concentrator.

   This document focuses on the explicit deployment scheme where the
   identity of the MPTCP Concentrator(s) is explicitly configured on
   connected hosts.  This document specifies DHCP (IPv4 and IPv6)
   options to configure hosts with Multipath TCP (MPTCP) parameters.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on May 20, 2016.
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1.  Introduction

   One of the promising deployment scenarios for Multipath TCP (MPTCP,
   [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
   connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
   usage of such resources, see for example [RFC4908].  This deployment
   scenario relies on MPTCP proxies located on both the CPE and network
   sides (Figure 1).  The latter plays the role of traffic concentrator.
   A concentrator terminates the MPTCP sessions established from a CPE,
   before redirecting traffic into a legacy TCP session.
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                         IP Network #1
    +------------+        _--------_    +------------+
    |            |       (e.g., LTE )   |            |
    |   CPE      +======================+            |
    | (MPTCP     |       (_        _)   |Concentrator|
    |  Proxy)    |         (_______)    | (MPTCP     |
    |            |                      |  Proxy)    |------> Internet
    |            |                      |            |
    |            |        IP Network #2 |            |
    |            |        _--------_    |            |
    |            |       ( e.g., DSL )  |            |
    |            +======================+            |
    |            |       (_        _)   |            |
    +-----+------+        (_______)     +------------+
          |
   ----CPE network----
          |
       end-nodes

                 Figure 1: "Network-Assisted" MPTCP Design

   Both implicit and explicit modes are considered to steer traffic
   towards an MPTCP Concentrator.  This document focuses on the explicit
   mode that consists in configuring explicitly the reachability
   information of the MPTCP concentrator on a host.

   This document defines DHCPv4 [RFC2131] and DHCPv6 [RFC3315] options
   that can be used to configure hosts with MPTCP Concentrator IP
   addresses.

   This specification assumes an MPTCP Concentrator is reachable through
   one or multiple IP addresses.  As such, a list of IP addresses can be
   returned in the DHCP MPTCP option.  Also, it assumes the various
   network attachments provided to an MPTCP-enabled CPE are managed by
   the same administrative entity.

2.  Terminology

   This document makes use of the following terms:

   o  MPTCP Concentrator (or concentrator): refers to a functional
      element that is responsible for aggregating the traffic of a group
      of CPEs.  This element is located upstream in the network.  One or
      multiple concentrators can be deployed in the network side to
      assist MPTCP-enabled CPEs to establish MPTCP connections via
      available network attachments.
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      On the uplink path, the concentrator terminates the MPTCP
      connections [RFC6824] received from its customer-facing interfaces
      and transforms these connections into legacy TCP connections
      [RFC0793] towards upstream servers.

      On the downlink path, the concentrator turns the legacy server’s
      TCP connection into MPTCP connections towards its customer-facing
      interfaces.
   o  DHCP refers to both DHCPv4 [RFC2131] and DHCPv6 [RFC3315].
   o  DHCP client denotes a node that initiates requests to obtain
      configuration parameters from one or more DHCP servers.
   o  DHCP server refers to a node that responds to requests from DHCP
      clients.

3.  DHCPv6 MPTCP Option

3.1.  Format

   The DHCPv6 MPTCP option can be used to configure a list of IPv6
   addresses of an MPTCP Concentrator.

   The format of this option is shown in Figure 2.  As a reminder, this
   format follows the guidelines for creating new DHCPv6 options
   (Section 5.1 of [RFC7227]).

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     OPTION_V6_MPTCP           |         Option-length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         ipv6-address                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         ipv6-address                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 2: DHCPv6 MPTCP option

   The fields of the option shown in Figure 2 are as follows:

   o  Option-code: OPTION_V6_MPTCP (TBA, see Section 8.1)
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   o  Option-length: Length of the ’MPTCP Concentrator IP Address(es)’
      field in octets.  MUST be a multiple of 16.
   o  MPTCP Concentrator IPv6 Addresses: Includes one or more IPv6
      addresses [RFC4291] of the MPTCP Concentrator to be used by the
      MPTCP client.

      Note, IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291])
      are allowed to be included in this option.

   To return more than one MPTCP concentrators to the requesting DHCPv6
   client, the DHCPv6 server returns multiple instances of
   OPTION_V6_MPTCP.

3.2.  DHCPv6 Client Behavior

   Clients MAY request option OPTION_V6_MPTCP, as defined in [RFC3315],
   Sections 17.1.1, 18.1.1, 18.1.3, 18.1.4, 18.1.5, and 22.7.  As a
   convenience to the reader, we mention here that the client includes
   requested option codes in the Option Request Option.

   The DHCPv6 client MUST be prepared to receive multiple instances of
   OPTION_V6_MPTCP; each instance is to be treated separately as it
   corresponds to a given MPTCP Concentrator: there are as many
   concentrators as instances of the OPTION_V6_MPTCP option.

   If an IPv4-mapped IPv6 address is received in OPTION_V6_MPTCP, it
   indicates that the MPTCP Concentrator has the corresponding IPv4
   address.

   The DHCPv6 client MUST silently discard multicast and host loopback
   addresses [RFC6890] conveyed in OPTION_V6_MPTCP.

4.  DHCPv4 MPTCP Option

4.1.  Format

   The DHCPv4 MPTCP option can be used to configure a list of IPv4
   addresses of an MPTCP Concentrator.  The format of this option is
   illustrated in Figure 3.
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       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Code         |     Length    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | List-Length   |   List of     |
      +-+-+-+-+-+-+-+-+    MPTCP      |
      / Concentrator IPv4 Addresses   /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ---
      | List-Length   |   List of     |    |
      +-+-+-+-+-+-+-+-+    MPTCP      |   |
      / Concentrator IPv4 Addresses   /    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |
      .             ...               . optional
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    |
      | List-Length   |   List of     |    |
      +-+-+-+-+-+-+-+-+    MPTCP      |    |
      / Concentrator IPv4 Addresses   /    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   ---

                       Figure 3: DHCPv4 MPTCP option

   The fields of the option shown in Figure 3 are as follows:

   o  Code: OPTION_V4_MPTCP (TBA, see Section 8.2);
   o  Length: Length of all included data in octets.  The minimum length
      is 5.
   o  List-Length: Length of the "List of MPTCP Concentrator IPv4
      Addresses" field in octets; MUST be a multiple of 4.
   o  List of MPTCP Concentrator IPv4 Addresses: Contains one or more
      IPv4 addresses of the MPTCP Concentrator to be used by the MPTCP
      client.  The format of this field is shown in Figure 4.
   o  OPTION_V4_MPTCP can include multiple lists of MPTCP Concentrator
      IPv4 addresses; each list is treated separately as it corresponds
      to a given MPTCP Concentrator.

      When several lists of MPTCP Concentrator IPv4 addresses are to be
      included, "List-Length" and "MPTCP Concentrator IPv4 Addresses"
      fields are repeated.
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      0     8     16    24    32    40    48
      +-----+-----+-----+-----+-----+-----+--
      |  a1 |  a2 |  a3 |  a4 |  a1 |  a2 | ...
      +-----+-----+-----+-----+-----+-----+--
           IPv4 Address 1          IPv4 Address 2 ...

   This format assumes that an IPv4 address is encoded as a1.a2.a3.a4.

     Figure 4: Format of the List of MPTCP Concentrator IPv4 Addresses

   OPTION_V4_MPTCP is a concatenation-requiring option.  As such, the
   mechanism specified in [RFC3396] MUST be used if OPTION_V4_MPTCP
   exceeds the maximum DHCPv4 option size of 255 octets.

4.2.  DHCPv4 Client Behavior

   To discover one or more MPTCP Concentrators, the DHCPv4 client MUST
   include OPTION_V4_MPTCP in a Parameter Request List Option [RFC2132].

   The DHCPv4 client MUST be prepared to receive multiple lists of MPTCP
   Concentrator IPv4 addresses in the same OPTION_V4_MPTCP; each list is
   to be treated as a separate MPTCP Concentrator instance.

   The DHCPv4 client MUST silently discard multicast and host loopback
   addresses [RFC6890] conveyed in OPTION_V4_MPTCP.

5.  DHCP Server Configuration Guidelines

   DHCP servers that support the DHCP MPTCP Concentrator option can be
   configured with a list of IP addresses of the MPTCP Concentrator(s).
   If multiple IP addresses are configured, the DHCP server MUST be
   explicitly configured whether all or some of these addresses refer
   to:

   1.  the same MPTCP Concentrator: the DHCP server returns multiple
       addresses in the same instance of the DHCP MPTCP Concentrator
       option.

   2.  distinct MPTCP Concentrators : the DHCP server returns multiple
       lists of MPTCP Concentrator IP addresses to the requesting DHCP
       client (encoded as multiple OPTION_V6_MPTCP or in the same
       OPTION_V4_MPTCP); each list refers to a distinct MPTCP
       Concentrator.

   Precisely how DHCP servers are configured to separate lists of IP
   addresses according to which MPTCP Concentrator they refer to is out
   of scope for this document.  However, DHCP servers MUST NOT combine
   the IP addresses of multiple MPTCP Concentrators and return them to
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   the DHCP client as if they were belonging to a single MPTCP
   Concentrator, and DHCP servers MUST NOT separate the addresses of a
   single MPTCP Concentrator and return them as if they were belonging
   to distinct MPTCP Concentrators.  For example, if an administrator
   configures the DHCP server by providing a Fully Qualified Domain Name
   (FQDN) for a MPTCP Concentrator, even if that FQDN resolves to
   multiple addresses, the DHCP server MUST deliver them within a single
   server address block.

   DHCPv6 servers that implement this option and that can populate the
   option by resolving FQDNs will need a mechanism for indicating
   whether to query A records or only AAAA records.  When a query
   returns A records, the IP addresses in those records are returned in
   the DHCPv6 response as IPv4-mapped IPv6 addresses.

   Since this option requires support for IPv4-mapped IPv6 addresses, a
   DHCPv6 server implementation will not be complete if it does not
   query A records and represent any that are returned as IPv4-mapped
   IPv6 addresses in DHCPv6 responses.  The mechanism whereby DHCPv6
   implementations provide this functionality is beyond the scope of
   this document.

   For guidelines on providing context-specific configuration
   information (e.g., returning a regional-based configuration), and
   information on how a DHCP server might be configured with FQDNs that
   get resolved on demand, see [I-D.ietf-dhc-topo-conf].

6.  Security Considerations

   The security considerations in [RFC2131] and [RFC3315] are to be
   considered.

   MPTCP-related security considerations are discussed in [RFC6824].

   Means to protect the MPTCP concentrator against Denial-of-Service
   (DoS) attacks must be enabled.  Such means include the enforcement of
   ingress filtering policies at the boundaries of the network.  In
   order to prevent exhausting the resources of the concentrator by
   creating an aggressive number of simultaneous subflows for each MPTCP
   connection, the administrator should limit the number of allowed
   subflows per host for a given connection.

   Attacks outside the domain can be prevented if ingress filtering is
   enforced.  Nevertheless, attacks from within the network between a
   host and a concentrator instance are yet another actual threat.
   Means to ensure that illegitimate nodes cannot connect to a network
   should be implemented.
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   Traffic theft is also a risk if an illegitimate concentrator is
   inserted in the path.  Indeed, inserting an illegitimate concentrator
   in the forwarding path allows to intercept traffic and can therefore
   provide access to sensitive data issued by or destined to a host.  To
   mitigate this threat, secure means to discover a concentrator (for
   non-transparent modes) should be enabled.

7.  Privacy Considerations

   Generic privacy-related considerations are discussed in
   [I-D.ietf-dhc-anonymity-profile].

   The concentrator may have access to privacy-related information
   (e.g., International Mobile Subscriber Identity (IMSI), link
   identifier, subscriber credentials, etc.).  The concentrator must not
   leak such sensitive information outside an administrative domain.

8.  IANA Considerations

8.1.  DHCPv6 Option

   IANA is requested to assign the following new DHCPv6 Option Code in
   the registry maintained in http://www.iana.org/assignments/
   dhcpv6-parameters:

                               Option Name Value
                           --------------- -----
                           OPTION_V6_MPTCP TBA

8.2.  DHCPv4 Option

   IANA is requested to assign the following new DHCPv4 Option Code in
   the registry maintained in http://www.iana.org/assignments/bootp-
   dhcp-parameters/:

       Option Name Value Data length Meaning
   --------------- ----- ----------- -----------------------------------
   OPTION_V4_MPTCP TBA   Variable;   Includes one or multiple lists of
                         the minimum MPTCP Concentrator IP addresses;
                         length is   each list is treated as a separate
                         5.          MPTCP Concentrator.
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Abstract

   Because of the lack of Multipath TCP (MPTCP) support at the server
   side, some service providers now consider a network-assisted model
   that relies upon the activation of a dedicated function called MPTCP
   Conversion Point (MCP).  Network-assisted MPTCP deployment models are
   designed to facilitate the adoption of MPTCP for the establishment of
   multi-path communications without making any assumption about the
   support of MPTCP by the communicating peers.  MCPs located in the
   network are responsible for establishing multi-path communications on
   behalf of endpoints, thereby taking advantage of MPTCP capabilities
   to achieve different goals that include (but are not limited to)
   optimization of resource usage (e.g., bandwidth aggregation), of
   resiliency (e.g., primary/backup communication paths), and traffic
   offload management.

   This document focuses on the explicit deployment scheme where the
   identity of the MPTCP Conversion Point(s) is explicitly configured on
   connected hosts.  This document specifies DHCP (IPv4 and IPv6)
   options to configure hosts with Multipath TCP (MPTCP) parameters.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.
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   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 11, 2018.
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   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   One of the promising deployment scenarios for Multipath TCP (MPTCP,
   [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
   connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
   usage of such resources.  This deployment scenario relies on MPTCP
   Conversion Points (MCPs) located on both the CPE and network sides
   (Figure 1).  The latter plays the role of traffic concentrator.  An
   MCP terminates the MPTCP sessions established from a CPE, before
   redirecting traffic into a legacy TCP session.  Further Network-
   Assisted MPTCP deployment and operational considerations are
   discussed in [I-D.nam-mptcp-deployment-considerations].

  +------------+        _--------_    +----------------+
  |            |       (    LTE   )   |                |
  |   CPE      +=======+          +===+  Backbone      |
  |  (MCP)     |       (_        _)   |   Network      |
  |            |         (_______)    |+--------------+|
  |            |       IP Network #1  || Concentrator ||------> Internet
  |            |                      ||    (MCP)     ||
  |            |                      |+--------------+|
  |            |       IP Network #2  |                |
  |            |        _--------_    |                |
  |            |       (    DSL    )  |                |
  |            +=======+           +==+                |
  |            |       (_        _)   |                |
  +-----+------+        (_______)     +----------------+
        |
  ---- LAN ----
        |
    end-nodes

                 Figure 1: "Network-Assisted" MPTCP Design

   This document focuses on the explicit mode that consists in
   configuring explicitly the reachability information of the MCP on a
   host.  Concretely, the explicit mode has several advantages, e.g.,:

   o  It does not impose any specific constraint on the location of the
      MCP.  For example, the MCP can be located in any access network,
      located upstream in the core network, or located in a data canter
      facility.

   o  Tasks required for activating the explicit mode are minimal.  In
      particular, this mode does not require any specific routing and/or
      forwarding policies for handling outbound packets other than
      ensuring that an MCP is reachable from a CPE, and vice versa
      (which is straightforward IP routing policy operation).
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   o  The engineering effort to change the location of an MCP for some
      reason (e.g., to better accommodate dimensioning constraints, to
      move the MCP to a data canter, to enable additional MCP instances
      closer to the customer premises, etc.) is minimal

   o  An operator can easily enforce strategies for differentiating the
      treatment of MPTCP connections that are directly initiated by an
      MPTCP-enabled host connected to an MCP if the explicit mode is
      enabled.  Typically, an operator may decide to offload MPTCP
      connections originated by an MPTCP-enabled terminal from being
      forwarded through a specific MCP, or decide to relay them via a
      specific MCP.  Such policies can be instructed to the MCP.
      Implementing such differentiating behavior if the implicit mode is
      in use may be complex to achieve.

   o  Multiple MCPs can be supported to service the same CPE, e.g., an
      MCP can be enabled for internal services (to optimize the delivery
      of some operator-specific services) while another MCP may be
      solicited for external services (e.g., access to the Internet).
      The explicit mode allows the deployment of such scenario owing to
      the provisioning of an MCP selection policy table that relies upon
      the destination IP prefixes to select the MCP to involve for an
      ongoing MPTCP connection, for instance.

   o  Because the MCP’s reachability information is explicitly
      configured on the CPE, means to guarantee successful inbound
      connections can be enabled in the CPE to dynamically discover the
      external IP address that has been assigned for communicating with
      remote servers, instruct the MCP to maintain active bindings so
      that incoming packets can be successfully redirected towards the
      appropriate CPE, etc.

   o  Troubleshooting and root cause analysis may be facilitated in the
      explicit mode since faulty key nodes that may have caused a
      service degradation are known.  Because of the loose adherence to
      the traffic forwarding and routing polices, troubleshooting a
      service degradation that is specific to multi-access serviced
      customers should first investigate the behavior of the involved
      MCP.

   This document defines DHCPv4 [RFC2131] and DHCPv6 [RFC3315] options
   that can be used to configure hosts with MCP IP addresses.

   This specification assumes an MCP is reachable through one or
   multiple IP addresses.  As such, a list of IP addresses can be
   returned in the DHCP MPTCP option.  Also, it assumes the various
   network attachments provided to an MPTCP-enabled CPE are managed by
   the same administrative entity.
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2.  Terminology

   This document makes use of the following terms:

   o  Multipath Conversion Point (MCP): a function that terminates a
      transport flow and relays all data received over it over another
      transport flow.  This element is located upstream in the network.
      One or multiple MCPs can be deployed in the network side to assist
      MPTCP-enabled devices to establish MPTCP connections via available
      network attachments.

      On the uplink path, the MCP terminates the MPTCP connections
      [RFC6824] received from its customer-facing interfaces and
      transforms these connections into legacy TCP connections [RFC0793]
      towards upstream servers.

      On the downlink path, the MCP turns the legacy server’s TCP
      connection into MPTCP connections towards its customer-facing
      interfaces.
   o  DHCP refers to both DHCPv4 [RFC2131] and DHCPv6 [RFC3315].
   o  DHCP client denotes a node that initiates requests to obtain
      configuration parameters from one or more DHCP servers.
   o  DHCP server refers to a node that responds to requests from DHCP
      clients.

3.  DHCPv6 MPTCP Option

3.1.  Format

   The DHCPv6 MPTCP option can be used to configure a list of IPv6
   addresses of an MCP.

   The format of this option is shown in Figure 2.  As a reminder, this
   format follows the guidelines for creating new DHCPv6 options
   (Section 5.1 of [RFC7227]).
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       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     OPTION_V6_MPTCP           |         Option-length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         ipv6-address                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                         ipv6-address                          |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                              ...                              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 2: DHCPv6 MPTCP option

   The fields of the option shown in Figure 2 are as follows:

   o  Option-code: OPTION_V6_MPTCP (TBA, see Section 7.1)
   o  Option-length: Length of the ’MCP IP Address(es)’ field in octets.
      MUST be a multiple of 16.
   o  MCP IPv6 Addresses: Includes one or more IPv6 addresses [RFC4291]
      of the MCP to be used by the MPTCP client.

      Note, IPv4-mapped IPv6 addresses (Section 2.5.5.2 of [RFC4291])
      are allowed to be included in this option.

   To return more than one MCPs to the requesting DHCPv6 client, the
   DHCPv6 server returns multiple instances of OPTION_V6_MPTCP.  Some
   guidelines for DHCP servers are elaborated in Appendix A.

3.2.  DHCPv6 Client Behavior

   Clients MAY request option OPTION_V6_MPTCP, as defined in [RFC3315],
   Sections 17.1.1, 18.1.1, 18.1.3, 18.1.4, 18.1.5, and 22.7.  As a
   convenience to the reader, we mention here that the client includes
   requested option codes in the Option Request Option.

   The DHCPv6 client MUST be prepared to receive multiple instances of
   OPTION_V6_MPTCP; each instance is to be treated separately as it
   corresponds to a given MCP: there are as many MCPs as instances of
   the OPTION_V6_MPTCP option.
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   If an IPv4-mapped IPv6 address is received in OPTION_V6_MPTCP, it
   indicates that the MCP has the corresponding IPv4 address.

   The DHCPv6 client MUST silently discard multicast and host loopback
   addresses [RFC6890] conveyed in OPTION_V6_MPTCP.

4.  DHCPv4 MPTCP Option

4.1.  Format

   The DHCPv4 MPTCP option can be used to configure a list of IPv4
   addresses of an MCP.  The format of this option is illustrated in
   Figure 3.

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Code         |     Length    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | List-Length   |   List of     |
      +-+-+-+-+-+-+-+-+    MPTCP      |
      /      MCP IPv4 Addresses       /
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ---
      | List-Length   |   List of     |   |
      +-+-+-+-+-+-+-+-+    MPTCP      |   |
      /      MCP IPv4 Addresses       /   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
      .             ...               . Optional
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   |
      | List-Length   |   List of     |   |
      +-+-+-+-+-+-+-+-+    MPTCP      |   |
      /      MCP IPv4 Addresses       /   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  ---

                       Figure 3: DHCPv4 MPTCP option

   The fields of the option shown in Figure 3 are as follows:

   o  Code: OPTION_V4_MPTCP (TBA, see Section 7.2);
   o  Length: Length of all included data in octets.  The minimum length
      is 5.
   o  List-Length: Length of the "List of MCP IPv4 Addresses" field in
      octets; MUST be a multiple of 4.
   o  List of MCP IPv4 Addresses: Contains one or more IPv4 addresses of
      the MCP to be used by the MPTCP client.  The format of this field
      is shown in Figure 4.
   o  OPTION_V4_MPTCP can include multiple lists of MCP IPv4 addresses;
      each list is treated separately as it corresponds to a given MCP.
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      When several lists of MCP IPv4 addresses are to be included,
      "List-Length" and "MCP IPv4 Addresses" fields are repeated.

      0     8     16    24    32    40    48
      +-----+-----+-----+-----+-----+-----+--
      |  a1 |  a2 |  a3 |  a4 |  a1 |  a2 | ...
      +-----+-----+-----+-----+-----+-----+--
           IPv4 Address 1          IPv4 Address 2 ...

   This format assumes that an IPv4 address is encoded as a1.a2.a3.a4.

            Figure 4: Format of the List of MCP IPv4 Addresses

   OPTION_V4_MPTCP is a concatenation-requiring option.  As such, the
   mechanism specified in [RFC3396] MUST be used if OPTION_V4_MPTCP
   exceeds the maximum DHCPv4 option size of 255 octets.

   Some guidelines for DHCP servers are elaborated in Appendix A.

4.2.  DHCPv4 Client Behavior

   To discover one or more MCPs, the DHCPv4 client MUST include
   OPTION_V4_MPTCP in a Parameter Request List Option [RFC2132].

   The DHCPv4 client MUST be prepared to receive multiple lists of MCP
   IPv4 addresses in the same OPTION_V4_MPTCP; each list is to be
   treated as a separate MCP instance.

   The DHCPv4 client MUST silently discard multicast and host loopback
   addresses [RFC6890] conveyed in OPTION_V4_MPTCP.

5.  Security Considerations

   The security considerations in [RFC2131] and [RFC3315] are to be
   considered.

   MPTCP-related security considerations are discussed in [RFC6824].

   Means to protect the MCP against Denial-of-Service (DoS) attacks must
   be enabled.  Such means include the enforcement of ingress filtering
   policies at the boundaries of the network.  In order to prevent
   exhausting the resources of the MCP by creating an aggressive number
   of simultaneous subflows for each MPTCP connection, the administrator
   should limit the number of allowed subflows per host for a given
   connection.

   Attacks outside the domain can be prevented if ingress filtering is
   enforced.  Nevertheless, attacks from within the network between a
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   host and an MCP instance are yet another actual threat.  Means to
   ensure that illegitimate nodes cannot connect to a network should be
   implemented.

   Traffic theft is also a risk if an illegitimate MCP is inserted in
   the path.  Indeed, inserting an illegitimate MCP in the forwarding
   path allows to intercept traffic and can therefore provide access to
   sensitive data issued by or destined to a host.  To mitigate this
   threat, secure means to discover an MCP (for non-transparent modes)
   should be enabled.

6.  Privacy Considerations

   Generic privacy-related considerations are discussed in [RFC7844].

   The MCP may have access to privacy-related information (e.g.,
   International Mobile Subscriber Identity (IMSI), link identifier,
   subscriber credentials, etc.).  The MCP must not leak such sensitive
   information outside an administrative domain.

7.  IANA Considerations

7.1.  DHCPv6 Option

   IANA is requested to assign the following new DHCPv6 Option Code in
   the registry maintained in http://www.iana.org/assignments/
   dhcpv6-parameters:

                               Option Name Value
                           --------------- -----
                           OPTION_V6_MPTCP TBA

7.2.  DHCPv4 Option

   IANA is requested to assign the following new DHCPv4 Option Code in
   the registry maintained in http://www.iana.org/assignments/bootp-
   dhcp-parameters/:

       Option Name Value Data length   Meaning
   --------------- ----- ------------- ---------------------------------
   OPTION_V4_MPTCP TBA   Variable; the Includes one or multiple lists of
                         minimum       MCP IP addresses; each list is
                         length is 5.  treated as a separate MCP.
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Appendix A.  DHCP Server Configuration Guidelines

   DHCP servers that support the DHCP MCP option can be configured with
   a list of IP addresses of the MCP(s).  If multiple IP addresses are
   configured, the DHCP server MUST be explicitly configured whether all
   or some of these addresses refer to:

   1.  the same MCP: the DHCP server returns multiple addresses in the
       same instance of the DHCP MCP option.

   2.  distinct MCPs : the DHCP server returns multiple lists of MCP IP
       addresses to the requesting DHCP client (encoded as multiple
       OPTION_V6_MPTCP or in the same OPTION_V4_MPTCP); each list refers
       to a distinct MCP.
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   Precisely how DHCP servers are configured to separate lists of IP
   addresses according to which MCP they refer to is out of scope for
   this document.  However, DHCP servers MUST NOT combine the IP
   addresses of multiple MCPs and return them to the DHCP client as if
   they were belonging to a single MCP, and DHCP servers MUST NOT
   separate the addresses of a single MCP and return them as if they
   were belonging to distinct MCPs.  For example, if an administrator
   configures the DHCP server by providing a Fully Qualified Domain Name
   (FQDN) for an MCP, even if that FQDN resolves to multiple addresses,
   the DHCP server MUST deliver them within a single server address
   block.

   DHCPv6 servers that implement this option and that can populate the
   option by resolving FQDNs will need a mechanism for indicating
   whether to query A records or only AAAA records.  When a query
   returns A records, the IP addresses in those records are returned in
   the DHCPv6 response as IPv4-mapped IPv6 addresses.

   Since this option requires support for IPv4-mapped IPv6 addresses, a
   DHCPv6 server implementation will not be complete if it does not
   query A records and represent any that are returned as IPv4-mapped
   IPv6 addresses in DHCPv6 responses.  The mechanism whereby DHCPv6
   implementations provide this functionality is beyond the scope of
   this document.

   For guidelines on providing context-specific configuration
   information (e.g., returning a regional-based configuration), and
   information on how a DHCP server might be configured with FQDNs that
   get resolved on demand, see [RFC7969].
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Abstract

   One of the promising deployment scenarios for Multipath TCP (MPTCP)
   is to enable a Customer Premises Equipment (CPE) that is connected to
   multiple networks (e.g., DSL, LTE, WLAN) to optimize the usage of its
   network attachments.  Because of the lack of MPTCP support at the
   server side, some service providers now consider a network-assisted
   model that relies upon the activation of a dedicated function called
   MPTCP Concentrator.  This document focuses on a deployment scheme
   where the identity of the MPTCP Concentrator(s) is explicitly
   configured on connected hosts.

   This document specifies an MPTCP option that is used to avoid an
   encapsulation scheme between the CPE and the MPTCP Concentrator.
   Also, this document specifies how UDP traffic can be distributed
   among available paths without requiring any encapsulation scheme.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
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   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   One of the promising deployment scenarios for Multipath TCP (MPTCP,
   [RFC6824]) is to enable a Customer Premises Equipment (CPE) that is
   connected to multiple networks (e.g., DSL, LTE, WLAN) to optimize the
   usage of such resources, see for example [I-D.deng-mptcp-proxy] or
   [RFC4908].  This deployment scenario relies on MPTCP proxies located
   on both the CPE and network sides (Figure 1).  The latter plays the
   role of traffic concentrator.  A concentrator terminates the MPTCP
   sessions established from a CPE, before redirecting traffic into a
   legacy TCP session.

                         IP Network #1
    +------------+        _--------_    +------------+
    |            |       (e.g., LTE )   |            |
    |   CPE      +=======+          +===+            |
    | (MPTCP     |       (_        _)   |Concentrator|
    |  Proxy)    |         (_______)    | (MPTCP     |
    |            |                      |  Proxy)    |------> Internet
    |            |                      |            |
    |            |        IP Network #2 |            |
    |            |        _--------_    |            |
    |            |       ( e.g., DSL )  |            |
    |            +=======+           +==+            |
    |            |       (_        _)   |            |
    +-----+------+        (_______)     +------------+
          |
   ----CPE network----
          |
       end-nodes

                 Figure 1: "Network-Assisted" MPTCP Design

   Both implicit and explicit models are considered to steer traffic
   towards an MPTCP Concentrator.  This document focuses on the explicit
   model that consists in configuring explicitly the reachability
   information of the MPTCP concentrator on a host (e.g.,
   [I-D.boucadair-mptcp-dhc]).

   This specification assumes an MPTCP Concentrator is reachable through
   one or multiple IP addresses.  Also, it assumes the various network
   attachments provided to an MPTCP-enabled CPE are managed by the same
   administrative entity.  Additional assumptions are listed in
   Section 3.

   This document explains how a plain transport mode, where packets are
   exchanged between the CPE and the concentrator without requiring the
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   activation of any encapsulation scheme (e.g., IP-in-IP [RFC2473], GRE
   [RFC1701], SOCKS [RFC1928], etc.), can be enabled.

   Also, this document investigates an alternate track where UDP flows
   can be distributed among available paths without requiring any
   encapsulation scheme.

   The solution in this document does not require the modification of
   the binding information base (BIB) structure maintained by both the
   CPE and the Concentrator.  Likewise, this approach does not infer any
   modification of the Network Address Translator (NAT) functions that
   may reside in both the CPE and the device that embeds the
   concentrator.

   The solution also works properly when NATs are present in the network
   between the CPE and the Concentrator, unlike solutions that rely upon
   GRE tunneling.  Likewise, the solution accommodates deployments that
   involve CGN (Carrier Grade NAT) upstream the Concentrator.

2.  Terminology

   This document makes use of the following terms:

   o  Customer-facing interface: is an interface of the MPTCP
      Concentrator that is visible to a CPE and which is used for
      communication purposes between a CPE and the MPTCP Concentrator.

   o  MPTCP Proxy: is a software module that is responsible for
      transforming a TCP connection into an MPTCP connection, and vice
      versa.  Typically, an MPTCP proxy can be embedded in a CPE and/or
      a Concentrator.

   o  MPTCP leg: Refers to a network segment on which MPTCP is used to
      establish TCP connections.

   o  MPTCP Concentrator (or concentrator): refers to a functional
      element that is responsible for aggregating the traffic of a group
      of CPEs.  This element is located upstream in the network.  One or
      multiple concentrators can be deployed in the network side to
      assist MPTCP-enabled CPEs to establish MPTCP connections via
      available network attachments.

      On the uplink path, the concentrator terminates the MPTCP
      connections received from its customer-facing interfaces and
      transforms these connections into legacy TCP connections towards
      upstream servers.
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      On the downlink path, the concentrator turns the legacy server’s
      TCP connection into MPTCP connections towards its customer-facing
      interfaces.

3.  Assumptions

   The following assumptions are made:

   o  The logic for mounting network attachments by a host is
      deployment- and implementation-specific and is out of scope of
      this document.
   o  The Network Provider that manages the various network attachments
      (including the concentrators) can enforce authentication and
      authorization policies using appropriate mechanisms that are out
      of scope of this document.
   o  Policies can be enforced by a concentrator instance operated by
      the Network Provider to manage both upstream and downstream
      traffic.  These policies may be subscriber-specific, connection-
      specific or system-wide.
   o  The concentrator may be notified about the results of monitoring
      (including probing) the various network legs to service a
      customer, a group of customers, a given region, etc.  No
      assumption is made by this document about how these monitoring
      (including probing) operations are executed.
   o  An MPTCP-enabled, multi-interfaced host that is directly connected
      to one or multiple access networks is allocated addresses/prefixes
      via legacy mechanisms (e.g., DHCP) supported by the various
      available network attachments.  The host may be assigned the same
      or distinct IP address/prefix via the various available network
      attachments.
   o  The location of the concentrator(s) is deployment-specific.
      Network Providers may choose to adopt centralized or distributed
      (even if they may not be present on the different network
      accesses) designs, etc.  Nevertheless, in order to take advantage
      of MPTCP, the location of the concentrator should not jeopardize
      packet forwarding performance for traffic sent from or directed to
      connected hosts.

4.  Introducing the MPTCP Plain Transport Mode

4.1.  An Alternative to Encapsulation

   The design option for aggregating various network accesses often
   relies upon the use of an encapsulation scheme (such as GRE) between
   the CPE and the Concentrator.  The use of encapsulation is motivated
   by the need to steer traffic through the concentrator and also to
   allow the distribution of UDP flows among the available paths without
   requiring any advanced traffic engineering tweaking technique in the
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   network side to intercept traffic and redirect it towards the
   appropriate concentrator.

   This document specifies another approach that relies upon plain
   transport mode between the CPE and the Concentrator.

   The use of a plain transport mode does not require the upgrade of any
   intermediate function (security, TCP optimizer, etc.) that may be
   located on-path.  Thus, the introduction of MPTCP concentrators in
   operational networks to operate plain mode does not add any extra
   complexity as far as the operation of possible intermediate functions
   is concerned.

4.2.  Plain Mode MPTCP Option

   The format of the Plain Mode MPTCP option is shown in Figure 2.

        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +---------------+---------------+-------+-------+---------------+
       |     Kind      |     Length    |SubType|D|U|       Flag Bits   |
       +---------------+---------------+-------+-------+---------------+
       |          Address (IPv4 - 4 octets / IPv6 - 16 octets)         |
       +-------------------------------+-------------------------------+
       |   Port (2 octets, optional)   |
       +-------------------------------+

                     Figure 2: Plain Mode MPTCP Option

   The description of the fields is as follows:

   o  Kind and Length: are the same as in [RFC6824].

   o  Subtype: to be defined by IANA (Section 6).

   o  D-bit (direction bit): This flag indicates whether the enclosed IP
      address (and a port number) reflects the source or destination IP
      address (and port).  When the D-bit is set, the enclosed IP
      address must be interpreted as the source IP address.  When the
      D-bit is unset, the enclosed IP address must be interpreted as the
      destination IP address.

   o  U-bit (UDP bit): The use of this flag is detailed in Section 5.

   o  The "Flag" bits are reserved bits for future assignment as
      additional flag bits.  These additional flag bits MUST each be set
      to zero and MUST be ignored upon receipt.
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   o  Address: Includes a source or destination IP address.  The address
      family is determined by the "Length" field.

   o  Port: May be used to carry a port number.

4.3.  Theory of Operation

   Plain mode operation is as follows:

   (1)  The CPE is provisioned with the reachability information of one
        or several Concentrators (e.g., [I-D.boucadair-mptcp-dhc]).

   (2)  Outgoing TCP packets that can be forwarded by a CPE along MPTCP
        subflows are transformed into TCP packets carried over a MPTCP
        connection.  The decision-making process to decide whether a
        flow should be MPTCP-tagged or not is local to the Concentrator
        and the CPE.  It depends on the policies provisioned by the
        network provider.  As such, the decision-making process is
        policy-driven, implementation- and deployment-specific.

   (3)  MPTCP packets are sent using a plain transport mode (i.e.,
        without any encapsulation header).

        The source IP address and source port number are those assigned
        locally by the CPE.  Because multiple IP addresses may be
        available to the CPE, the address used to rewrite the source IP
        address for an outgoing packet forwarded through a given network
        attachment (typically, a WAN interface) MUST be associated with
        that network attachment.  It is assumed that ingress filtering
        ([RFC2827]) is implemented at the boundaries of the networks to
        prevent any spoofing attack.

        The destination IP address is replaced by the CPE with one of
        the IP addresses of the Concentrator.

        The destination port number may be maintained as initially set
        by the host or altered by the CPE.

        The original destination IP address is copied into a dedicated
        MPTCP option called Plain Mode MPTCP option (see Section 4.2).
        Because of the limited TCP option space, it is RECOMMENDED to
        implement the solution specified in [I-D.ietf-tcpm-tcp-edo].  As
        a reminder, [I-D.touch-tcpm-tcp-syn-ext-opt] specifies a
        proposal for TCP SYN extended option space.

        A binding entry must be maintained by the CPE for that outgoing
        packet.  This binding entry is instantiated by the NAT and/or
        the firewall functions embedded in the CPE.
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   (4)  Upon receipt of the packet on the MPTCP leg, the Concentrator
        extracts the IP address included in the Plain Mode MPTCP Option
        that it uses as the destination IP address of the packet
        generated in the TCP leg towards its ultimate destination.

        The source IP address and port are those of the Concentrators.
        A binding entry is instantiated by the Concentrator to record
        the state.

        The concentrator may be configured to behave as either a 1:1
        address translator or a N:1 translator where the same address is
        shared among multiple CPEs.  Network Providers should be aware
        of the complications that may arise if a given IP address/prefix
        is shared among multiple hosts (see [RFC6967]).  Whether these
        complications apply or not is deployment-specific.

        The Concentrator should preserve the same IP address that was
        assigned to a given CPE for all its outgoing connections when
        transforming an MPTCP connection into a TCP connection.

   (5)  For incoming TCP packets that need to be forwarded to a CPE, the
        Concentrator records the source IP address in a Plain Mode MPTCP
        Option.

        The source IP address is replaced with one of the IP addresses
        listed in the aforementioned binding information base maintained
        by the Concentrator (if such a state entry exists) or with one
        of the Concentrator’s IP addresses.

        The destination IP address is replaced with the CPE’s IP address
        (if the corresponding state entry is found in the Concentrator’s
        binding table) or with one of the CPE’s IP addresses (that are
        known by the concentrator using some means that are out of the
        scope of the document).

4.4.  Flow Example

   A typical flow exchange is shown in Figure 3.

   This example assumes no NAT is located between the CPE and the
   concentrator.

   Because the remote server is not MPTCP-aware, the Concentrator is
   responsible for preserving the same IP address (conc_@, in the
   example) for the same CPE even if distinct IP addresses (cpe_@1 and
   cpe_@2, in the example) are used by the CPE to establish subflows
   with the Concentrator.
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                                    +-------+
                                    |DNS    |
        +--------+                  |System |         +------------+
        |  CPE   |                  +-------+         |Concentrator|
        +--------+                      |             +------------+
             |                          |                   |
      DNS    |                          |                   |
    -------->|           DNS Query      |                   |
     Query   |------------------------->|                   |
             |   DNS Reply              |                   |
             |<-------------------------|                   |
             |                                              |
             |                                              |
      src=s_@|src=cpe_@1                         dst=conc_@1|src=conc_@
    -------->|--------Plain Mode MPTCP Option(d_@)--------->|-------->
      dst=d_@|                                              |dst=d_@
                                      ....

             |                                              |
      src=d_@|dst=cpe_@1                         src=conc_@1|src=d_@
    <--------|<-------Plain Mode MPTCP Option(d_@)----------|<-------
      dst=s_@|                                              |dst=conc_@
                                      ....

      src=s_@|src=cpe_@2                         dst=conc_@1|src=conc_@
    -------->|--------Plain Mode MPTCP Option(d_@)--------->|-------->
      dst=d_@|                                              |dst=d_@
                                      ....

    Legend:
      * "--Plain Mode MPTCP Option()->" indicates the packet is sent
        in a plain mode, i.e., without any encapsulation hander,
        and that "Plain Mode MPTCP Option" is carried in the packet.

   Figure 3: Flow Example (No NAT between the CPE and the Concentrator)

5.  UDP Traffic

   From an application standpoint, there may be a value to distribute
   UDP datagrams among available network attachments for the sake of
   network resource optimisation, for example.

   Unlike existing proposals that rely upon encapsulation schemes such
   as IP-in-IP or GRE, this document suggests the use of MPTCP features
   to control how UDP datagrams are distributed among existing network
   attachments.  UDP datagrams are therefore transformed into TCP-
   formatted packets.
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   The CPE and the Concentrator establish a set of MPTCP subflows.
   These subflows are used to transport UDP datagrams that are
   distributed among existent subflows.  TCP session tracking may not be
   enabled for the set of subflows that are dedicated to transport UDP
   traffic.  The establishment of these subflows is not conditioned by
   the receipt of UDP packets; instead, these subflows are initiated
   upon CPE reboot or when network conditions change (e.g., whenever a
   new Concentrator is discovered or a new IP address is assigned to the
   Concentrator).  Additional MPTCP connections may be established to
   anticipate UDP traffic to be distributed among several paths.  The
   maximum number of MPTCP connections that can be dedicated to UDP
   traffic may be configured locally to the CPE and the Concentrator.
   How this parameter is configured is implementation and deployment-
   specific.

   When the CPE (or the Concentrator) transforms a UDP packet into a TCP
   one, it must insert the Plain Mode MPTCP Option with the U-bit set.
   When setting the source IP address, the destination IP address, and
   the IP address enclosed in the Plain Mode MPTCP Option, the same
   considerations specified in Section 4.3 must be followed.

   In addition, the CPE (or the Concentrator) must replace the UDP
   header with a TCP header.  Upon receipt of the packet with the U-bit
   set, the Concentrator (or the CPE) transforms the packet into a UDP
   packet and follows the same considerations specified in Section 4.3.
   Both the CPE and the Concentrator may be configured to disable some
   features (e.g., reordering).  Enabling these features is deployment
   and implementation-specific.

   Relaying UDP packets is not conditioned by TCP session establishment
   because the required subflows that are dedicated to transport UDP
   traffic are already in place (either at the CPE or the Concentrator).

   A flow example is shown in Figure 4.
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        +--------+                                    +------------+
        |  CPE   |                                    |Concentrator|
        +--------+                                    +------------+
             | /------------------------------------------\ |
             ||    Dedicated MPTCP SubFlows for UDP        ||
             | \------------------------------------------/ |
             |                                              |
      src=s_@|src=cpe_@1                         dst=conc_@1|src=conc_@
    ---UDP-->|---------------------TCP--------------------->|---UDP-->
      dst=d_@|        Plain Mode MPTCP Option(U,d_@)        |dst=d_@
                                      ....
      src=s_@|src=cpe_@2                         dst=conc_@2|src=conc_@
    ---UDP-->|---------------------TCP--------------------->|---UDP-->
      dst=d_@|        Plain Mode MPTCP Option(U,d_@)        |dst=d_@
             |                                              |
                                      ....
      src=s_@|src=cpe_@1                         dst=conc_@1|src=conc_@
    ---UDP-->|---------------------TCP--------------------->|---UDP-->
     dst=d1_@|        Plain Mode MPTCP Option(U,d_@)        |dst=d1_@
             |                                              |
      src=s_@|src=cpe_@1                         dst=conc_@2|src=conc_@
    ---UDP-->|---------------------TCP--------------------->|---UDP-->
     dst=d1_@|        Plain Mode MPTCP Option(U,d_@)        |dst=d1_@
             |                                              |

          Figure 4: Distributing UDP packets over multiple paths

6.  IANA Considerations

   This document requests an MPTCP subtype code for this option:

   o  Plain Mode MPTCP Option

7.  Security Considerations

   The concentrator may have access to privacy-related information
   (e.g., IMSI, link identifier, subscriber credentials, etc.).  The
   concentrator must not leak such sensitive information outside a local
   domain.

   Means to protect the MPTCP concentrator against Denial-of-Service
   (DoS) attacks must be enabled.  Such means include the enforcement of
   ingress filtering policies at the boundaries of the network.  In
   order to prevent exhausting the resources of the concentrator by
   creating an aggressive number of simultaneous subflows for each MPTCP
   connection, the administrator should limit the number of allowed
   subflows per host for a given connection.
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   Attacks outside the domain can be prevented if ingress filtering is
   enforced.  Nevertheless, attacks from within the network between a
   host and a concentrator instance are yet another actual threat.
   Means to ensure that illegitimate nodes cannot connect to a network
   should be implemented.

   Traffic theft is also a risk if an illegitimate concentrator is
   inserted in the path.  Indeed, inserting an illegitimate concentrator
   in the forwarding path allows to intercept traffic and can therefore
   provide access to sensitive data issued by or destined to a host.  To
   mitigate this threat, secure means to discover a concentrator (for
   non-transparent modes) should be enabled.
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Abstract

   Because of the lack of Multipath TCP (MPTCP) support at the server
   side, some service providers now consider a network-assisted model
   that relies upon the activation of a dedicated function called MPTCP
   Conversion Point (MCP).  Network-Assisted MPTCP deployment models are
   designed to facilitate the adoption of MPTCP for the establishment of
   multi-path communications without making any assumption about the
   support of MPTCP by the communicating peers.  MCPs located in the
   network are responsible for establishing multi-path communications on
   behalf of endpoints, thereby taking advantage of MPTCP capabilities
   to achieve different goals that include (but are not limited to)
   optimization of resource usage (e.g., bandwidth aggregation), of
   resiliency (e.g., primary/backup communication paths), and traffic
   offload management.
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   This document specifies extensions for Network-Assisted MPTCP
   deployment models.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 10, 2017.

Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The overall quality of connectivity services can be enhanced by
   combining several access network links for various purposes -
   resource optimization, better resiliency, etc.  Some transport
   protocols, such as Multipath TCP [RFC6824], can help achieve such
   better quality, but failed to be massively deployed so far.

   The support of multipath transport capabilities by communicating
   hosts remains a privileged target design so that such hosts can
   directly use the available resources provided by a variety of access
   networks they can connect to.  Nevertheless, network operators do not
   control end hosts while the support of MPTCP by content servers
   remains close to zero.
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   Network-Assisted MPTCP deployment models are designed to facilitate
   the adoption of MPTCP for the establishment of multi-path
   communications without making any assumption about the support of
   MPTCP capabilities by communicating peers.  Network-Assisted MPTCP
   deployment models rely upon MPTCP Conversion Points (MCPs) that act
   on behalf of hosts so that they can take advantage of establishing
   communications over multiple paths.  MCPs can be deployed in CPEs
   (Customer Premises Equipment), as well as in the provider’s network.
   MCPs are responsible for establishing multi-path communications on
   behalf of endpoints.  Further details about the target use cases are
   provided in Section 3.

   Most of the current operational deployments that take advantage of
   multi-interfaced devices rely upon the use of an encapsulation scheme
   (such as [I-D.zhang-gre-tunnel-bonding], [TR-348]).  The use of
   encapsulation is motivated by the need to steer traffic towards the
   concentrator and also to allow the distribution of any kind of
   traffic besides TCP (e.g., UDP) among the available paths without
   requiring any advanced traffic engineering tweaking technique in the
   network to intercept traffic and redirect it towards the appropriate
   MCP.

   Current operational MPTCP deployments by network operators are
   focused on the forwarding of TCP traffic.  The design of such
   deployments sometimes assumes the use of extra signalling provided by
   SOCKS [RFC1928], at the cost of additional management complexity and
   possible service degradation (e.g., up to 6 SOCKS messages may have
   to be exchanged between two MCPs before actual payload data to be
   transferred, thereby yielding several tens of milliseconds of extra
   delay before the connection is established) .

   To avoid the burden of encapsulation and additional signalling
   between MCPs, this document explains how a plain transport mode is
   enabled, so that packets are exchanged between a device and its
   upstream MCP without requiring the activation of any encapsulation
   scheme (e.g., IP-in-IP [RFC2473], GRE [RFC1701]).  This plain
   transport mode also avoids the need for out-of-band signalling,
   unlike the aforementioned SOCKS context.

   The solution described in this document also works properly when NATs
   are present in the communication path between a device and its
   upstream MCP.  In particular, the solution in this document
   accommodates deployments that involve CGN (Carrier Grade NAT)
   upstream the MCP.

   Network-Assisted MPTCP deployment and operational considerations are
   discussed in [I-D.nam-mptcp-deployment-considerations].

Boucadair, et al.      Expires September 10, 2017               [Page 4]



Internet-Draft         Plain MPTCP Transport Mode             March 2017

   The plain transport mode is characterized as follows:

   o  0-RTT proxy.
   o  No encapsulation required (no tunnels, whatsoever).
   o  No out-of-band signaling for each MPTCP subflow is required.
   o  Targets both on-path and off-path MCPs.
   o  Avoids interference with native MPTCP connections.
   o  Assists MPTCP connections even if endpoints are MPTCP-capable.
   o  Accommodates various deployment contexts, such as those that
      require the preservation of the source IP address and others
      characterized by an address sharing design.  In particular:

      *  This solution is compatible with IPv4/IPv6.
      *  This solution does not impose any constraint on the addressing
         scheme to be used by the client.
      *  This solution does not require nor exclude the use of distinct
         IP prefix pools for network-assisted MPTCP deployments.
      *  This solution supports both transparent and non-transparent
         operations.

2.  Terminology

   The reader should be familiar with the terminology defined in
   [RFC6824].

   This document makes use of the following terms:

   o  Client: an endhost that initiates transport flows forwarded along
      a single path.  Such endhost is not assumed to support multipath
      transport capabilities.

   o  Server: an endhost that communicates with a client.  Such endhost
      is not assumed to support multipath transport capabilities.

   o  Multipath Client: a Client that supports multipath transport
      capabilities.

   o  Multipath Server: a Server that supports multipath transport
      capabilities.  Both the client and the server can be single-homed
      or multi-homed.  However, for the use cases discussed in this
      document, the number of interfaces available at the endhosts is
      not relevant.

   o  Transport flow: a sequence of packets that belong to a
      unidirectional transport flow and which share at least one common
      characteristic (e.g., the same destination address).  TCP and SCTP
      flows are composed of packets that have the same source and
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      destination addresses, the same protocol number and the same
      source and destination ports.

   o  Multipath Conversion Point (MCP): a function that terminates a
      transport flow and relays all data carried in the flow into
      another transport flow.

      MCP is a function that converts a multipath transport flow and
      relays it over a single path transport flow and vice versa.

3.  Target Use Cases

   We consider two important use cases in this document.  We briefly
   introduce them in this section and leave the details to Section 6 and
   Section 7.  The first use case is a Multipath Client that interacts
   with a remote Server through a MCP (Section 3.1).  The second use
   case is a multi-homed CPE that includes a MCP and interacts with a
   remote Server through a downstream MCP (Section 3.2).

3.1.  Multipath Client

   In this use case, the Multipath Client would like to take advantage
   of MPTCP even if the Server does not support MPTCP.  A typical
   example is a smartphone that could use both WLAN and LTE access
   networks to reach a server in order to achieve higher bandwidth or
   better resilience.

   +--+                                      +-----+      +--+
   |C |                                      | MCP |      |S |
   +--+                                      +-----+      +--+
    |                                           |           |
    |<==================MPTCP Leg==============>|<---TCP -->|
    |                                           |           |

   Legend:
       C: Client
     MCP: Multipath Conversion Point
       S: Server

            Figure 1: Network-assisted MPTCP (Host-based Model)

   In reference to Figure 1, the MCP terminates the MPTCP connection
   established by the client and binds it to a TCP connection towards
   the remote server.  Two deployments of this use case are possible.

   A first deployment is when the MCP is on the path between the
   Multipath Client and the Server.  In this case, the MCP can terminate
   the MPTCP connection initiated by the Client and binds it to a TCP
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   connection that the MCP establishes with the Server.  When the MCP is
   not located on all default forwarding paths, the MPTCP connection
   must be initiated by using the path where the MCP is located.

   A second deployment is when the MCP is not on the path between the
   Multipath Client and the Server.  In this case, the Client must first
   initiate a connection towards the MCP and request it to initiate a
   TCP connection towards the Server.  This is what the SOCKS protocol
   performs by exchanging control messages to create appropriate
   mappings to handle the connection.  Unfortunately, this requires
   additional round-trip-time that affects the performance of the end-
   to-end data transfer, in particular for short-lived connections.

   This document specifies the MP_CONVERT Information Element that is
   carried in the SYN segment of the initial subflow.  This SYN segment
   is sent towards the MCP.  The MP_CONVERT Information Element contains
   the destination address (and optionally a port number) of the Server.
   Thanks to this information, the MCP can immediately establish the TCP
   connection with the Server without any additional round-trip-time,
   unlike a SOCKS-based MPTCP design.

3.2.  Multipath CPE

   In this use case, neither the Client nor the Server support MPTCP.
   Two MCPs are used as illustrated in Figure 2.  The upstream MCP is
   embedded in the CPE while the downstream MCP is located in the
   provider’s network.  The CPE is attached to multiple access networks
   (e.g., xDSL and LTE).  The upstream MCP transparently terminates the
   TCP connections initiated by the Client and converts them into MPTCP
   connections.

                  Upstream                      Downstream
        +--+      +-----+                         +-----+      +--+
        |H1|      | MCP |                         | MCP |      |RM|
        +--+      +-----+                         +-----+      +--+
         |           |                              |           |
         |<---TCP--->|<========MPTCP Leg===========>|<---TCP--->|
         |           |                              |           |

            Figure 2: Network-assisted MPTCP (CPE-based Model)

   The same considerations detailed in Section 3.1 apply for the
   insertion of the downstream MCP in an MPTCP connection.
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4.  The MP_PREFER_PROXY MPTCP Option

   The implicit mode assumes that the MCP is located on a default
   forwarding path (Section 5.2.2 of
   [I-D.nam-mptcp-deployment-considerations]).  In such mode, the first
   subflow must always be placed over that primary path so that the MCP
   can intercept MPTCP flows.  Once intercepted, the MCP advertises its
   reachability information by means of MPTCP signals (MP_JOIN or
   ADD_ADDR).

   In order to distinguish native MPTCP connections from proxied ones, a
   new MPTCP option, called MP_PREFER_PROXY, is defined.  This option is
   meant to inform an on-path MCP that the connection should be proxied.
   The absence of the MP_PREFER_PROXY option is an indication that the
   corresponding MPTCP connection is native: an on-path MCP must not be
   involved in such connection.  If no explicit signal is included in
   the initial SYN message, the MCP cannot distinguish "native" MPTCP
   connections from "proxied" ones.

4.1.  Option Format

   The format of the MP_PREFER_PROXY is shown in Figure 3.

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +---------------+---------------+-------+-----------------------+
       |     Kind      |    Length     |Subtype|         Reserved      |
       +---------------+---------------+-------+-----------------------+

                  Figure 3: MP_PREFER_PROXY MPTCP Option

   o  Kind and Length: are the same as those defined in Section 3 of
      [RFC6824].  The size of this option is 4 bytes.

   o  Subtype: must be allocated by IANA (Section 9).

   o  "Reserved" bits: are reserved bits for future assignment as
      additional flag bits.  These additional flag bits MUST each be set
      to zero and MUST be ignored upon receipt.

4.2.  Option Processing

   The MP_PREFER_PROXY option MUST only appear in the SYN message used
   to create the initial subflow of a Multipath TCP connection.

   If the MP_PREFER_PROXY appears in either a SYN segment that does not
   include the MP_CAPABLE option or a segment whose SYN flag is unset,
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   it MUST be ignored.  An implementation MAY log this event since it
   likely indicates an operational issue.

   The sender inserts the MP_PREFER_PROXY option for MPTCP connections
   that it wants to be proxied by an on-path MCP.  Such insertion is
   possible only when there is enough space left in the dedicated TCP
   option space.

   Upon receipt of a SYN message with an MP_CAPABLE, the MCP MUST check
   whether an MP_PREFER_PROXY option is present:

   o  If no such option is included, the MCP MUST NOT interfere with
      that MPTCP connection (that is, it must not track this MPTCP
      connection).  Processing subsequent subflows of this connection
      will be handled directly by the endpoints.

   o  If the MP_PREFER_PROXY option is present, the MCP MUST track the
      establishment of the connection.  That means that the MCP must be
      prepared to insert itself for the establishment of subsequent
      subflows, in particular.

   Section 5.2.2.1 of [I-D.nam-mptcp-deployment-considerations] details
   the use of the MP_PREFER_PROXY option.

5.  Supplying Data to MCPs

   This section focuses mainly on th explicit mode (Section 5.2.1 of
   [I-D.nam-mptcp-deployment-considerations]) which assumes that the IP
   reachability information of an MCP is explicitly configured on a
   device, e.g., by means of a specific DHCP option
   [I-D.boucadair-mptcp-dhc].

5.1.  The MP_CONVERT Information Element

   In order to avoid extra delays when establishing a proxied MPTCP
   connection, specific information are provided to an MCP during the
   3WHS.  Such information is meant to help the MCP instantiate the
   required states to process the connection upstream.  The supply of
   such information is achieved by means of an object called the
   MP_CONVERT (MC) Information Element (IE).  This information element
   typically carries the source/destination IP addresses and/or port
   numbers of the used by the source and destination endpoints.  Other
   information may also be supplied to an MCP; future extensions may be
   defined.

   The format of the MP_CONVERT Information Element is shown in
   Figure 4.
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   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------------------------------------------------------+
   |                        Magic Number                           |
   +---------------+---------------+---------------------------+-+-+
   |     Type      |     Length    |         Reserved          |D|M|
   +---------------+---------------+---------------------------+-+-+
   |          Address (IPv4 - 4 octets / IPv6 - 16 octets)         |
   +-------------------------------+-------------------------------+
   |   Port (2 octets, optional)   |
   +-------------------------------+

                 Figure 4: MP_CONVERT Information Element

   The description of the fields is as follows:

   o  Magic Number: This field MUST be set to "0xFAA8 0xFAA8" to
      indicate this is an MP_CONVERT Information Element.  This field is
      meant to unambiguously distinguish any data supplied by an
      application from the one injected by an MCP.  Other magic numbers
      are considered by the authors (e.g., 64 bits that include in
      addition to "0xFAA8 0xFAA8" 32 bits to enclose the RFC number).

   o  Type: This field indicates the type of the MP_CONVERT Information
      Element.  It MUST be set to 0 to indicate this element includes an
      IP address and, eventually, a port number.  Other type values MAY
      be defined in the future.

   o  Length: Indicates, in bytes, the length of MP_CONVERT Information
      Element.  The minimum size of this option is 4 bytes.

   o  "Reserved" bits: are reserved bits for future assignment as
      additional flag bits.  These additional flag bits MUST each be set
      to zero and MUST be ignored upon receipt.

   o  D-bit (Direction bit): this flag indicates whether the enclosed IP
      address (and port number) reflects the source or the destination
      IP address (and port number).  When the D-bit is set, the enclosed
      IP address must be interpreted as the source IP address.  When the
      D-bit is unset, the enclosed IP address must be interpreted as the
      destination IP address.

   o  M-bit (More bit): When the M-bit is unset, it indicates that
      another MP_CONVERT IE is included.  When the M-bit is set, it
      indicates this is the last MP_CONVERT IE included in the payload;
      if any data is placed right after this MP_CONVERT IE, it is
      application data.
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   o  Address: includes a source or destination IP address.  The address
      family is determined by the "Length" field.  Concretely, a
      MP_CONVERT Information Element that carries an IPv4 address has a
      Length field of 8 bytes (or 10, if a port number is included).  A
      MP_CONVERT Information Element that carries an IPv6 address has a
      Length of 20 bytes (or 22, if a port number is included).

   o  Port: If the D-bit is set (resp. unset), a source (resp.
      destination) port number may be associated with the IP address.
      This field is valid for protocols that use a 16 bit port number
      (e.g., UDP, TCP, SCTP).  This field is optional.

   If the length of MP_CONVERT Information Element is not a multiple of
   4 bytes, padding MUST be added to preserve 32 bits boundaries.

5.2.  Processing an MP_CONVERT Information Element

   The MP_CONVERT Information Element is a variable length object that
   MUST NOT be used in TCP segments whose SYN flag is unset.  This IE
   can only appear in the TCP control messages with SYN flag set.  The
   information carried in the MP_CONVERT IE is used by an MCP to create
   the initial subflow of a Multipath TCP connection (see the example in
   Figure 5).

   Up to two MP_CONVERT Information Elements with type set to zero can
   appear inside a SYN segment.  If two MP_CONVERT Information Elements
   with type zero are included, these options MUST NOT have the same
   D-bit value.
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          +----+                              +-----+       +--+
          |  C |                              | MCP |       |S |
          +----+                              +-----+       +--+
           |  | ________________________________|             |
           |  /       Initial subflow           \             |
           |  |========SYN(MP_CAPABLE+MC(S))===>|             |
           |  |                                 |--SYN------->|
           |  |                                 |<--SYN/ACK---|
           |  |<====SYN/ACK(MP_CAPABLE)=========|             |
           |  |             ...                 |             |
           |  \ ________________________________/             |
                           ....                      ....
           |  | ________________________________|             |
           |  /       Additional subflow        \             |
           |  \ ________________________________/             |

          Legend:
               <===>: MPTCP leg
               <--->: TCP leg
                MC(): MP_CONVERT Information Element

           Figure 5: Carrying the MP_CONVERT Information Element

   The MP_CONVERT Information Element MUST be included in the payload of
   a TCP segment whose SYN flag is set.

   If the MP_CONVERT Information Element appears in either a SYN segment
   that does not include the MP_CAPABLE option or a segment whose SYN
   flag is reset, it MUST be ignored.  An implementation MAY log this
   event since it likely indicates an operational issue.

   If the original SYN message contains data in its payload (e.g.,
   [RFC7413]), that data MUST be placed right after the MP_CONVERT IEs
   when generating the SYN in the MPTCP leg.

   An implementation MUST ignore MP_CONVERT Information Elements that
   include multicast, broadcast, and host loopback addresses [RFC6890].
   Concretely, an implementation that receives an MP_CONVERT Information
   Element with such addresses MUST silently tear down the MPTCP
   connection.

   An implementation that supports the MP_CONVERT Information Element
   with type zero MUST echo in the SYN/ACK the instances of the
   MP_CONVERT Information Elements included in a SYN received from the
   sender.  A sender that does not receive in a SYN/ACK a copy of the
   MP_CONVERT Information Elements it included in a SYN message MUST
   terminate the MPTCP connection and falls back to TCP or native MPTCP
   connection.  Furthermore, the sender MUST add an entry to its local
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   cache to record the MCPs that do not support the MP_CONVERT
   Information Element.  This cache MUST be flushed out under the
   following conditions: a new network attachment is detected by the
   host, a new MCP is configured, the host gets a new IP address/prefix,
   or a TTL has expired.  Subsequent connections to an MCP in the cache
   MUST NOT be placed using the explicit proxy mode.  This procedure is
   denoted as MCP capability discovery.

   In the following sections, MP_CONVERT Information Element is used to
   refer to the MP_CONVERT Information Element with the type field set
   to zero.  Future documents will specify the exact behavior of
   processing MP_CONVERT Information Elements with a non zero type
   field.

6.  MPTCP Connections from a Multipath TCP Client

6.1.  Description

   The simplest usage of the MP_CONVERT Information Element is when a
   Multipath TCP Client wants to use MPTCP to efficiently utilise
   different network paths (e.g., WLAN and LTE from a smartphone) to
   reach a server that does not support Multipath TCP.  The basic
   operation is illustrated in Figure 6.

   To use its multipath capabilities to establish an MPTCP connection
   over the available networks, the Client splits its end-to-end
   connection towards the TCP Server into two:

   (1)  An MPTCP connection, that typically relies upon the
        establishment of one subflow per network path, is established
        between the client and the MCP.

   (2)  A TCP connection that is established by the MCP with the server.

   Any data that is eligible to be transported over the MPTCP connection
   is sent by the Client towards the MCP over the MPTCP connection.  The
   MCP then forwards these data over the regular TCP connection until
   they reach the server.  The same forwarding principle applies for the
   data sent by the Server over the TCP connection with the MCP.
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        C <===========>MCP <------------> S
        +<============>+

   Legend:
     <===>: subflows of the upstream MPTCP connection
     <--->: downstream TCP connection

    Figure 6: A Multipath TCP Client interacts with a Server through a
                        Multipath Conversion Point

6.2.  Theory of Operation

   We assume in this section that the Multipath TCP Client has been
   configured with the IP address of one or more MCPs which convert the
   Multipath TCP connection into a regular TCP connection.  The address
   of such MCPs can be statically configured on the Client, dynamically
   provisioned to the MPTCP Client by means of a DHCP option
   [I-D.boucadair-mptcp-dhc], or by any other means that are outside the
   scope of this document.

   Conceptually, the MCP acts as a relay between an upstream MPTCP
   connection and a downstream TCP connection.  The MCP has at least a
   single IP address that is reachable from the Multipath TCP Client.
   It may be assigned other IP addresses.  For the sake of simplicity,
   we assume in this section that the MCP has a single IP address
   denoted MCP@. Similarly, we assume that the client has two addresses
   C@1 and C@2 while address S@ is assigned to the server.

   The MCP maps an upstream MPTCP connection (and its associated
   subflows) onto a downstream TCP connection.  On the MCP, an
   established Multipath TCP connection can be identified by the local
   Token that was assigned upon reception of the SYN segment.

   This Token is guaranteed to be unique on the MCP (provided that it
   has a single IP address) during the entire lifetime of the MPTCP
   connection.  The 4-tuple (IP src, IP dst, Port src, Port dst) is used
   to identify the downstream TCP connection.

   To initiate a connection to a remote server S, the Multipath TCP
   Client sends a SYN segment towards the MCP that includes the
   MP_CONVERT Information Element described in Figure 4.  The
   destination address of the SYN segment is the IP address of the MCP.
   The MP_CONVERT Information Element included in the SYN contains the
   IP address and optionally the destination port of the Server (see
   Figure 7).
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            +----+                              +-----+    +--+
            |  C |                              | MCP |    |S |
            +----+                              +-----+    +--+
            C@1 C@2                              MCP@       S@
             |  | ________________________________|          |
             |  /       Initial subflow           \          |
             |  |=======SYN(MP_CAPABLE+MC(S@))===>|          |
             |  |                                 |--SYN---->|
             |  |                                 |<-SYN/ACK-|
             |  |<====SYN/ACK(MP_CAPABLE)=========|          |
             |  |             ...                 |          |
             |  \ ________________________________/          |
                             ....                    ....
             |  |________________________________ |          |
             | /       Additional subflow        \|          |
             | \ ________________________________/           |

            Legend:
                 <===>: MPTCP leg
                 <--->: TCP leg

                  Figure 7: Single-ended MCP Flow Example

   The MCP processes this SYN segment as follows.  First, it generates
   the local key and a unique Token for the Multipath TCP connection.
   This Token identifies the MPTCP connection.  It is passed to the MCP
   together with the contents of the MP_CONVERT Information Element
   (i.e., the address of the destination server) and the destination
   port.

   The MCP then establishes a TCP connection with the destination
   server.  If the received MP_CONVERT Information Element contains a
   port number, it is used as the destination port of the outgoing TCP
   connection that is being established by the MCP.  Otherwise, the
   destination port of the upstream MPTCP connection is used as the
   destination port of the downstream TCP connection.  The MCP creates a
   flow entry for the downstream TCP connection and maps the upstream
   MPTCP connection onto the downstream TCP connection.

   The downstream TCP connection is considered to be active upon
   reception of the SYN/ACK segment sent by the destination server.  The
   reception of this segment triggers the MCP that confirms the
   establishment of the upstream MPTCP connection by sending a SYN/ACK
   segment towards the Multipath TCP Client (including MP_Convert).

   At this point, there are two established connections.  The endpoints
   of the upstream Multipath TCP connection are the Multipath TCP Client
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   and the MCP.  The endpoints of the downstream TCP connection are the
   MCP and the Server.  These two connections are bound by the MCP.

   All the techniques defined in [RFC6824] can be used by the upstream
   Multipath TCP connection.  In particular, the subflows established
   over the different network paths can be controlled by either the
   Multipath TCP Client or the MCP.  It is likely that the network
   operators that deploy MCPs will define policies for the utilisation
   of the MCP.  These policies are discussed in Section 5.6 of
   [I-D.nam-mptcp-deployment-considerations].

   Any data received by the MCP on the upstream Multipath TCP connection
   will be forwarded by the MCP over the bound downstream TCP
   connection.  The same applies for data received over the downstream
   TCP connection which will be forwarded by the MCP over the upstream
   Multipath TCP connection.

   One of the functions of the MCP is to maintain the binding between
   the upstream Multipath TCP connection and the downstream TCP
   connection.  If the downstream TCP connection fails for some reason
   (excessive retransmissions, reception of a RST segment, etc.), then
   the MCP SHOULD force the teardown of the upstream Multipath TCP
   connection by transmitting a FASTCLOSE.  Similarly, if the upstream
   Multipath TCP connection fails for some reason (e.g., reception of a
   FASTCLOSE), the MCP SHOULD tear the downstream TCP connection down
   and remove the flow entries.

   The same reasoning applies when the upstream Multipath TCP connection
   ends with the transmission of DATA_FINs.  In this case, the MCP
   SHOULD also terminate the bound downstream TCP connection by using
   FIN segments.  If the downstream TCP connection terminates with the
   exchange of FIN segments, the MCP SHOULD initiate a graceful
   termination of the bound upstream Multipath TCP connection.

   An MCP SHOULD associate a lifetime with the Multipath TCP and TCP
   flow entries.  In this case, it SHOULD use the same lifetime for each
   pair of bounded connections.

7.  MPTCP Connections Between Single Path Client and Server

7.1.  Description

   There are situations where neither the client nor the server can use
   multipath transport protocols albeit network providers would want to
   optimize network resource usage by means of multi-path communication
   techniques.  Hybrid access service offerings are typical business
   incentives for such situations, where network operators combine a
   fixed network (e.g., xDSL) with a wireless network (e.g., LTE).  In
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   this case, as illustrated in Figure 8, two MCPs are used for each
   flow.  The first MCP, located downstream of the client, converts the
   single path TCP connection originated from the client into a
   Multipath TCP connection established with a second MCP.  The latter
   will then establish a TCP connection with the destination server.

             Upstream        Downstream
        C <---> MCP <===========> MCP <------------> S
                  +<=============>+

   Legend:
        <===>: MPTCP leg
        <--->: TCP leg

   Figure 8: A Client interacts with a Server through an upstream and a
                  downstream Multipath Conversion Points

7.2.  Theory of Operation

7.2.1.  Downstream MCP

   The downstream MCP can be deployed on-path or off-path.  If the
   downstream MCP is deployed off-path, its behavior is described in
   Section 6.2.

   If the downstream MCP is deployed on-path, it only terminates MPTCP
   connections that carry an empty MP_PREFER_PROXY option inside their
   SYN (i.e., no address is conveyed).  If the MCP receives a SYN
   segment that contains the MP_CAPABLE option but no MP_PREFER_PROXY,
   it MUST forward the SYN to its final destination without any
   modification.

7.2.2.  Upstream MCP

   The upstream and downstream MCPs cooperate.  The upstream MCP may be
   configured with the addresses of downstream MCPs.  If the downstream
   MCP is deployed on-path, the upstream MCP inserts an MP_PREFER_PROXY
   option.

   In this section, we assume that the upstream MCP has been configured
   with one address of the downstream MCP.  This address can be
   configured statically, dynamically distributed by means of a DHCP
   option [I-D.boucadair-mptcp-dhc], or by any other means that are
   outside the scope of this document.

   We assume that the upstream MCP has two addresses uMCP@1 and uMCP@2
   while the downstream MCP is assigned a single IP address dMCP@.
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   The upstream MCP maps an upstream TCP connection onto a downstream
   MPTCP connection (and its associated subflows) . On the upstream MCP,
   an established MPTCP connection can be identified by the local Token
   that was assigned upon reception of the SYN segment from the Client.

   The Client sends a SYN segment addressed to the Server and it is
   intercepted by the upstream MCP which in turns initiates an MPTCP
   connection towards its downstream MCP that includes the MP_CONVERT
   Information Element described in Figure 4.  The destination address
   of the SYN segment is the IP address of the downstream MCP.  The
   MP_CONVERT Information Element included in the SYN contains the IP
   address and optionally the destination port of the Server; this
   information is extracted from the SYN message received over the
   upstream TCP connection.

   Concretely, the upstream MCP processes the SYN segment received from
   the Client as follows.

   First, it generates the local key and a unique Token for the
   Multipath TCP connection to identify the MPTCP connection.  It
   extracts the destination IP address and, optionally, the destination
   port that will then be carried in a MP_CONVERT Information Element.
   The upstream MCP establishes an MPTCP connection with the downstream
   MCP.  The upstream MCP creates a flow entry for the downstream MPTCP
   connection and maps the upstream TCP connection onto the downstream
   MPTCP connection.

   The downstream MPTCP connection is considered to be active upon
   reception of the SYN+ACK segment from the downstream MCP.  The
   reception of this segment triggers the upstream MCP that confirms the
   establishment of the upstream TCP connection by sending a SYN+ACK
   segment towards the TCP Client.

   At this point, there are two established connections maintained by
   the upstream MCP:

   (1)  The endpoints of the upstream TCP connection are the Client and
        the upstream MCP.

   (2)  The endpoints of the downstream MPTCP connection are the
        upstream MCP and the downstream MCP.

   These two connections are bound by the upstream MCP.  An example is
   shown in Figure 9.
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             Upstream                     Downstream
   +--+      +-----+                        +-----+      +--+
   |C1|      | MCP |                        | MCP |      |S1|
   +--+      +-----+                        +-----+      +--+
    C@1   uMCP@1 uMCP@2                       dMCP@       S@
     |         | |______________________________|          |
     |--SYN--->|/       Initial subflow         \          |
     |         |=======SYN(MP_CAPABLE+MC(S@))==>|          |
     |         |                                |--SYN---->|
     |         |                                |<-SYN/ACK-|
     |         |<====SYN/ACK(MP_CAPABLE)========|          |
     |<SYN/ACK-|              ...               |          |
     |          \ ______________________________/          |
                            ....                    ....
     |         | | ____________________________ |          |
     |         | |/       Additional subflow   \|          |
     |         | |\ ___________________________/|          |
                                ....

                   Figure 9: Dual-Ended MCP Flow Example

   All the techniques defined in [RFC6824] can be used by the MPTCP
   connection.  In particular, the utilisation of the different network
   paths can be controlled by one MCP or the other.

   Any data received by the upstream MCP over the upstream TCP
   connection will be forwarded by the MCP over the bound downstream
   MPTCP connection, assuming such data are eligible to MPTCP transport.
   The same applies for data received over the downstream MPTCP
   connection which will be forwarded by the upstream MCP over the
   upstream TCP connection.

   The same considerations as in Section 6.2 apply for the maintenance
   of the connections by the upstream MCP.

8.  Interaction with TFO

   This section discusses the implications of using MP_CONVERT
   Information Elements with TCP Fast Open (TFO).  We distinguish
   between TFO negotiation (i.e., a Fast Open option with an empty
   cookie field to request a cookie) and TFO data (i.e., SYN with data
   and the cookie in the Fast Open option).

   This section focuses on the implications of using MP_CONVERT
   Information Element on TFO efficiency.  Implications related to MPTCP
   options and TFO negotiation are not specific to this document; the
   reader may refer to [I-D.barre-mptcp-tfo].
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   Distinct implications are assessed depending whether TFO negotiation
   and usage occurs before MCP capability discovery phase is completed
   or not (Section 5.2).  Concretely, the following cases are discussed:

   1.  MCP capability discovery was already completed prior to receiving
       a message with TFO negotiation or TFO data: For this case, the
       host has already contacted its MCP in the context of a prior
       connection.  The outcome of such connections is used to determine
       the capabilities of its MCP (Section 5.2).

       A.  The MCP supports MP_CONVERT Information Element: Any
           information provided to an MCP to facilitate MPTCP operation
           is unambiguously distinguished from TFO data that are also
           included in the SYN payload.  An upstream MCP will remove the
           MP_CONVERT Information Elements before relaying the SYN
           message (with TFO data) to the next hop.

       B.  The MCP does not support MP_CONVERT Information Element: No
           additional issue is raised for obvious reasons.

   2.  MCP capability discovery is not completed prior to receiving a
       message with TFO negotiation or TFO data.

       A.  If the same message is used to negotiate TFO and to retrieve
           the capabilities of the MCP, extra delay may be observed
           before negotiating TFO if the MCP does not support the
           MP_CONVERT Information Element.  Obviously, no concern is
           raised when the MCP supports the MP_CONVERT Information
           Element.

       B.  If the same message includes TFO data and is used to retrieve
           the capabilities of the MCP, extra delay may be observed
           before negotiating TFO if the MCP does not support the
           MP_CONVERT Information Element.  Obviously, no concern is
           raised when the MCP supports the MP_CONVERT Information
           Element.

   To mitigate cases where extra delays are experienced when TFO is
   present, it is RECOMMENDED to not proxy connections with TFO before
   the MCP capability discovery procedure is completed.

9.  IANA Considerations

   This document requests an MPTCP subtype code for this option:

   o  MP_PREFER_PROXY
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10.  Security Considerations

   MPTCP-related security threats are discussed in [RFC6181] and
   [RFC6824].  Additional considerations are discussed in the following
   sub-sections.

10.1.  Privacy

   The MCP may have access to privacy-related information (e.g., IMSI,
   link identifier, subscriber credentials, etc.).  The MCP MUST NOT
   leak such sensitive information outside a local domain.

10.2.  Denial-of-Service (DoS)

   Means to protect the MCP against Denial-of-Service (DoS) attacks MUST
   be enabled.  Such means include the enforcement of ingress filtering
   policies at the network boundaries [RFC2827].

   In order to prevent the exhaustion of MCP resources by establishing a
   great number of simultaneous subflows for each MPTCP connection, the
   MCP administrator SHOULD limit the number of allowed subflows per CPE
   for a given connection.  Means to protect against SYN flooding
   attacks MUST also be enabled ([RFC4987]).

   Attacks that originate outside of the domain can be prevented if
   ingress filtering policies are enforced.  Nevertheless, attacks from
   within the network between a host and an MCP instance are yet another
   actual threat.  Means to ensure that illegitimate nodes cannot
   connect to a network should be implemented.

10.3.  Illegitimate MCP

   Traffic theft is a risk if an illegitimate MCP is inserted in the
   path.  Indeed, inserting an illegitimate MCP in the forwarding path
   allows traffic intercept and can therefore provide access to
   sensitive data issued by or destined to a host.  To mitigate this
   threat, secure means to discover an MCP should be enabled.
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Abstract

   This document discusses both use cases and operational experience
   with Multipath TCP in real world networks.  It lists several
   prominent use cases for which Multipath TCP has been considered and
   is being used.  It also gives insight to some heuristics and
   decisions that have helped to realize these use cases.
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1.  Introduction

   Multipath TCP was standardized in [RFC6824] and five independant
   implementations have been developed
   [I-D.eardley-mptcp-implementations-survey].  As of September 2015,
   Multipath TCP has been or is being implemented on the following
   platforms :

   o  Linux kernel [MultipathTCP-Linux]

   o  Apple iOS and MacOS [Apple-MPTCP]

   o  Citrix load balancers

   o  FreeBSD [FreeBSD-MPTCP]

   o  Oracle
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   The first three implementations
   [I-D.eardley-mptcp-implementations-survey] are known to interoperate.
   The last two are currently being tested and improved against the
   Linux implementation.  Three of these implementations are open-
   source.  Apple’s implementation is widely deployed.

   Since the publication of [RFC6824], experience has been gathered by
   various network researchers and users about the operational issues
   that arise when Multipath TCP is used in today’s Internet.

   When the MPTCP working group was created, several use cases for
   Multipath TCP were identified [RFC6182].  Since then, other use cases
   have been proposed and some have been tested and even deployed.  We
   describe these use cases in Section 2.

   Section 3 focuses on the operational experience with Multipath TCP.
   Most of this experience comes from the utilisation of the Multipath
   TCP implementation in the Linux kernel [MultipathTCP-Linux].  This
   open-source implementation has been downloaded and is used by
   thousands of users all over the world.  Many of these users have
   provided direct or indirect feedback by writing documents (scientific
   articles or blog messages) or posting to the mptcp-dev mailing list
   (see https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev ).  This
   Multipath TCP implementation is actively maintained and continuously
   improved.  It is used on various types of hosts, ranging from
   smartphones or embedded routers to high-end servers.

   The Multipath TCP implementation in the Linux kernel is not, by far,
   the most widespread deployment of Multipath TCP.  Since September
   2013, Multipath TCP is also supported on smartphones and tablets
   running iOS7 [IOS7].  There are likely hundreds of millions of
   Multipath TCP enabled devices.  However, this particular Multipath
   TCP implementation is currently only used to support a single
   application.  Unfortunately, there is no public information about the
   lessons learned from this large scale deployment.

   Section 3 is organized as follows.  Supporting the middleboxes was
   one of the difficult issues in designing the Multipath TCP protocol.
   We explain in Section 3.1 which types of middleboxes the Linux Kernel
   implementation of Multipath TCP supports and how it reacts upon
   encountering these.  Section 3.2 summarises the MPTCP specific
   congestion controls that have been implemented.  Section 3.3 and
   Section 3.7 discuss heuristics and issues with respect to subflow
   management as well as the scheduling across the subflows.
   Section 3.8 explains some problems that occurred with subflows having
   different Maximum Segment Size (MSS) values.  Section 3.9 presents
   issues with respect to content delivery networks and suggests a
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   solution to this issue.  Finally, Section 3.10 documents an issue
   with captive portals where MPTCP will behave suboptimally.

2.  Use cases

   Multipath TCP has been tested in several use cases.  There is already
   an abundant scientific literature on Multipath TCP [MPTCPBIB].
   Several of the papers published in the scientific literature have
   identified possible improvements that are worth being discussed here.

2.1.  Datacenters

   A first, although initially unexpected, documented use case for
   Multipath TCP has been in datacenters [HotNets][SIGCOMM11].  Today’s
   datacenters are designed to provide several paths between single-
   homed servers.  The multiplicity of these paths comes from the
   utilization of Equal Cost Multipath (ECMP) and other load balancing
   techniques inside the datacenter.  Most of the deployed load
   balancing techniques in datacenters rely on hashes computed over the
   five tuple.  Thus all packets from the same TCP connection follow the
   same path and so are not reordered.  The results in [HotNets]
   demonstrate by simulations that Multipath TCP can achieve a better
   utilization of the available network by using multiple subflows for
   each Multipath TCP session.  Although [RFC6182] assumes that at least
   one of the communicating hosts has several IP addresses, [HotNets]
   demonstrates that Multipath TCP is beneficial when both hosts are
   single-homed.  This idea is analysed in more details in [SIGCOMM11]
   where the Multipath TCP implementation in the Linux kernel is
   modified to be able to use several subflows from the same IP address.
   Measurements in a public datacenter show the quantitative benefits of
   Multipath TCP [SIGCOMM11] in this environment.

   Although ECMP is widely used inside datacenters, this is not the only
   environment where there are different paths between a pair of hosts.
   ECMP and other load balancing techniques such as Link Aggregation
   Groups (LAG) are widely used in today’s networks and having multiple
   paths between a pair of single-homed hosts is becoming the norm
   instead of the exception.  Although these multiple paths have often
   the same cost (from an IGP metrics viewpoint), they do not
   necessarily have the same performance.  For example, [IMC13c] reports
   the results of a long measurement study showing that load balanced
   Internet paths between that same pair of hosts can have huge delay
   differences.

Bonaventure, et al.      Expires April 21, 2016                 [Page 4]



Internet-Draft              MPTCP Experience                October 2015

2.2.  Cellular/WiFi Offload

   A second use case that has been explored by several network
   researchers is the cellular/WiFi offload use case.  Smartphones or
   other mobile devices equipped with two wireless interfaces are a very
   common use case for Multipath TCP.  In September 2015, this is also
   the largest deployment of Multipath-TCP enabled devices [IOS7].  It
   has been briefly discussed during IETF88 [ietf88], but there is no
   published paper or report that analyses this deployment.  For this
   reason, we only discuss published papers that have mainly used the
   Multipath TCP implementation in the Linux kernel for their
   experiments.

   The performance of Multipath TCP in wireless networks was briefly
   evaluated in [NSDI12].  One experiment analyzes the performance of
   Multipath TCP on a client with two wireless interfaces.  This
   evaluation shows that when the receive window is large, Multipath TCP
   can efficiently use the two available links.  However, if the window
   becomes smaller, then packets sent on a slow path can block the
   transmission of packets on a faster path.  In some cases, the
   performance of Multipath TCP over two paths can become lower than the
   performance of regular TCP over the best performing path.  Two
   heuristics, reinjection and penalization, are proposed in [NSDI12] to
   solve this identified performance problem.  These two heuristics have
   since been used in the Multipath TCP implementation in the Linux
   kernel.  [CONEXT13] explored the problem in more detail and revealed
   some other scenarios where Multipath TCP can have difficulties in
   efficiently pooling the available paths.  Improvements to the
   Multipath TCP implementation in the Linux kernel are proposed in
   [CONEXT13] to cope with some of these problems.

   The first experimental analysis of Multipath TCP in a public wireless
   environment was presented in [Cellnet12].  These measurements explore
   the ability of Multipath TCP to use two wireless networks (real WiFi
   and 3G networks).  Three modes of operation are compared.  The first
   mode of operation is the simultaneous use of the two wireless
   networks.  In this mode, Multipath TCP pools the available resources
   and uses both wireless interfaces.  This mode provides fast handover
   from WiFi to cellular or the opposite when the user moves.
   Measurements presented in [CACM14] show that the handover from one
   wireless network to another is not an abrupt process.  When a host
   moves, there are regions where the quality of one of the wireless
   networks is weaker than the other, but the host considers this
   wireless network to still be up.  When a mobile host enters such
   regions, its ability to send packets over another wireless network is
   important to ensure a smooth handover.  This is clearly illustrated
   from the packet trace discussed in [CACM14].
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   Many cellular networks use volume-based pricing and users often
   prefer to use unmetered WiFi networks when available instead of
   metered cellular networks.  [Cellnet12] implements support for the
   MP_PRIO option to explore two other modes of operation.

   In the backup mode, Multipath TCP opens a TCP subflow over each
   interface, but the cellular interface is configured in backup mode.
   This implies that data only flows over only the WiFi interface when
   both interfaces are considered to be active.  If the WiFi interface
   fails, then the traffic switches quickly to the cellular interface,
   ensuring a smooth handover from the user’s viewpoint [Cellnet12].
   The cost of this approach is that the WiFi and cellular interfaces
   are likely to remain active all the time since all subflows are
   established over the two interfaces.

   The single-path mode is slightly different.  This mode benefits from
   the break-before-make capability of Multipath TCP.  When an MPTCP
   session is established, a subflow is created over the WiFi interface.
   No packet is sent over the cellular interface as long as the WiFi
   interface remains up [Cellnet12].  This implies that the cellular
   interface can remain idle and battery capacity is preserved.  When
   the WiFi interface fails, a new subflow is established over the
   cellular interface in order to preserve the established Multipath TCP
   sessions.  Compared to the backup mode described earlier,
   measurements reported in [Cellnet12] indicate that this mode of
   operation is characterised by a throughput drop while the cellular
   interface is brought up and the subflows are reestablished.

   From a protocol viewpoint, [Cellnet12] discusses the problem posed by
   the unreliability of the ADD_ADDR option and proposes a small
   protocol extension to allow hosts to reliably exchange this option.
   It would be useful to analyze packet traces to understand whether the
   unreliability of the REMOVE_ADDR option poses an operational problem
   in real deployments.

   Another study of the performance of Multipath TCP in wireless
   networks was reported in [IMC13b].  This study uses laptops connected
   to various cellular ISPs and WiFi hotspots.  It compares various file
   transfer scenarios.  [IMC13b] observes that 4-path MPTCP outperforms
   2-path MPTCP, especially for larger files.  The comparison between
   LIA, OLIA and Reno does not reveal a significant performance
   difference for file sizes smaller than 4MB.

   A different study of the performance of Multipath TCP with two
   wireless networks is presented in [INFOCOM14].  In this study the two
   networks had different qualities : a good network and a lossy
   network.  When using two paths with different packet loss ratios, the
   Multipath TCP congestion control scheme moves traffic away from the
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   lossy link that is considered to be congested.  However, [INFOCOM14]
   documents an interesting scenario that is summarised in Figure 1.

   client ----------- path1 -------- server
     |                                  |
     +--------------- path2 ------------+

                     Figure 1: Simple network topology

   Initially, the two paths have the same quality and Multipath TCP
   distributes the load over both of them.  During the transfer, the
   second path becomes lossy, e.g. because the client moves.  Multipath
   TCP detects the packet losses and they are retransmitted over the
   first path.  This enables the data transfer to continue over the
   first path.  However, the subflow over the second path is still up
   and transmits one packet from time to time.  Although the N packets
   have been acknowledged over the first subflow (at the MPTCP level),
   they have not been acknowledged at the TCP level over the second
   subflow.  To preserve the continuity of the sequence numbers over the
   second subflow, TCP will continue to retransmit these segments until
   either they are acknowledged or the maximum number of retransmissions
   is reached.  This behavior is clearly inefficient and may lead to
   blocking since the second subflow will consume window space to be
   able to retransmit these packets.  [INFOCOM14] proposes a new
   Multipath TCP option to solve this problem.  In practice, a new TCP
   option is probably not required.  When the client detects that the
   data transmitted over the second subflow has been acknowledged over
   the first subflow, it could decide to terminate the second subflow by
   sending a RST segment.  If the interface associated to this subflow
   is still up, a new subflow could be immediately reestablished.  It
   would then be immediately usable to send new data and would not be
   forced to first retransmit the previously transmitted data.  As of
   this writing, this dynamic management of the subflows is not yet
   implemented in the Multipath TCP implementation in the Linux kernel.

2.3.  Multipath TCP proxies

   As Multipath TCP is not yet widely deployed on both clients and
   servers, several deployments have used various forms of proxies.  Two
   families of solutions are currently being used or tested
   [I-D.deng-mptcp-proxy].

   A first use case is when a Multipath TCP enabled client wants to use
   several interfaces to reach a regular TCP server.  A typical use case
   is a smartphone that needs to use both its WiFi and its cellular
   interface to transfer data.  Several types of proxies are possible
   for this use case.  An HTTP proxy deployed on a Multipath TCP capable

Bonaventure, et al.      Expires April 21, 2016                 [Page 7]



Internet-Draft              MPTCP Experience                October 2015

   server would enable the smartphone to use Multipath TCP to access
   regular web servers.  Obviously, this solution only works for
   applications that rely on HTTP.  Another possibility is to use a
   proxy that can convert any Multipath TCP connection into a regular
   TCP connection.  Multipath TCP-specific proxies have been proposed
   [I-D.wei-mptcp-proxy-mechanism] [HotMiddlebox13b]
   [I-D.hampel-mptcp-proxies-anchors].

   Another possibility leverages the SOCKS protocol [RFC1928].  SOCKS is
   often used in enterprise networks to allow clients to reach external
   servers.  For this, the client opens a TCP connection to the SOCKS
   server that relays it to the final destination.  If both the client
   and the SOCKS server use Multipath TCP, but not the final
   destination, then Multipath TCP can still be used on the path between
   the client and the SOCKS server.  At IETF’93, Korea Telecom announced
   that they have deployed in June 2015 a commercial service that uses
   Multipath TCP on smartphones.  These smartphones access regular TCP
   servers through a SOCKS proxy.  This enables them to achieve
   throughputs of up to 850 Mbps [KT].

   Measurements performed with Android smartphones [Mobicom15] show that
   popular applications work correctly through a SOCKS proxy and
   Multipath TCP enabled smartphones.  Thanks to Multipath TCP, long-
   lived connections can be spread over the two available interfaces.
   However, for short-lived connections, most of the data is sent over
   the initial subflow that is created over the interface corresponding
   to the default route and the second subflow is almost not used.

   A second use case is when Multipath TCP is used by middleboxes,
   typically inside access networks.  Various network operators are
   discussing and evaluating solutions for hybrid access networks
   [BBF-WT348].  Such networks arise when a network operator controls
   two different access network technologies, e.g. wired and cellular,
   and wants to combine them to improve the bandwidth offered to the
   endusers [I-D.lhwxz-hybrid-access-network-architecture].  Several
   solutions are currently investigated for such networks [BBF-WT348].
   Figure 2 shows the organisation of such a network.  When a client
   creates a normal TCP connection, it is intercepted by the Hybrid CPE
   (HPCE) that converts it in a Multipath TCP connection so that it can
   use the available access networks (DSL and LTE in the example).  The
   Hybrid Access Gateway (HAG) does the opposite to ensure that the
   regular server sees a normal TCP connection.  Some of the solutions
   that are currently discussed for hybrid networks use Multipath TCP on
   the HCPE and the HAG.  Other solutions rely on tunnels between the
   HCPE and the HAG [I-D.lhwxz-gre-notifications-hybrid-access].
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   client --- HCPE ------ DSL ------- HAG --- internet --- server
               |                       |
               +------- LTE -----------+

                      Figure 2: Hybrid Access Network

3.  Operational Experience

3.1.  Middlebox interference

   The interference caused by various types of middleboxes has been an
   important concern during the design of the Multipath TCP protocol.
   Three studies on the interactions between Multipath TCP and
   middleboxes are worth discussing.

   The first analysis appears in [IMC11].  This paper was the main
   motivation for Multipath TCP incorporating various techniques to cope
   with middlebox interference.  More specifically, Multipath TCP has
   been designed to cope with middleboxes that :

   o  change source or destination addresses

   o  change source or destination port numbers

   o  change TCP sequence numbers

   o  split or coalesce segments

   o  remove TCP options

   o  modify the payload of TCP segments

   These middlebox interferences have all been included in the MBtest
   suite [MBTest].  This test suite is used in [HotMiddlebox13] to
   verify the reaction of the Multipath TCP implementation in the Linux
   kernel when faced with middlebox interference.  The test environment
   used for this evaluation is a dual-homed client connected to a
   single-homed server.  The middlebox behavior can be activated on any
   of the paths.  The main results of this analysis are :

   o  the Multipath TCP implementation in the Linux kernel is not
      affected by a middlebox that performs NAT or modifies TCP sequence
      numbers

   o  when a middlebox removes the MP_CAPABLE option from the initial
      SYN segment, the Multipath TCP implementation in the Linux kernel
      falls back correctly to regular TCP
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   o  when a middlebox removes the DSS option from all data segments,
      the Multipath TCP implementation in the Linux kernel falls back
      correctly to regular TCP

   o  when a middlebox performs segment coalescing, the Multipath TCP
      implementation in the Linux kernel is still able to accurately
      extract the data corresponding to the indicated mapping

   o  when a middlebox performs segment splitting, the Multipath TCP
      implementation in the Linux kernel correctly reassembles the data
      corresponding to the indicated mapping.  [HotMiddlebox13] shows on
      figure 4 in section 3.3 a corner case with segment splitting that
      may lead to a desynchronisation between the two hosts.

   The interactions between Multipath TCP and real deployed middleboxes
   is also analyzed in [HotMiddlebox13] and a particular scenario with
   the FTP application level gateway running on a NAT is described.

   Middlebox interference can also be detected by analysing packet
   traces on Multipath TCP enabled servers.  A closer look at the
   packets received on the multipath-tcp.org server [TMA2015] shows that
   among the 184,000 Multipath TCP connections, only 125 of them were
   falling back to regular TCP.  These connections originated from 28
   different client IP addresses.  These include 91 HTTP connections and
   34 FTP connections.  The FTP interference is expected and due to
   Application Level Gateways running home routers.  The HTTP
   interference appeared only on the direction from server to client and
   could have been caused by transparent proxies deployed in cellular or
   enterprise networks.

   From an operational viewpoint, knowing that Multipath TCP can cope
   with various types of middlebox interference is important.  However,
   there are situations where the network operators need to gather
   information about where a particular middlebox interference occurs.
   The tracebox software [tracebox] described in [IMC13a] is an
   extension of the popular traceroute software that enables network
   operators to check at which hop a particular field of the TCP header
   (including options) is modified.  It has been used by several network
   operators to debug various middlebox interference problems. tracebox
   includes a scripting language that enables its user to specify
   precisely which packet (including IP and TCP options) is sent by the
   source. tracebox sends packets with an increasing TTL/HopLimit and
   compares the information returned in the ICMP messages with the
   packet that it sent.  This enables tracebox to detect any
   interference caused by middleboxes on a given path. tracebox works
   better when routers implement the ICMP extension defined in
   [RFC1812].
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   Users of the Multipath TCP implementation have reported some
   experience with middlebox interference.  The strangest scenario has
   been a middlebox that accepts the Multipath TCP options in the SYN
   segment but later replaces Multipath TCP options with a TCP EOL
   option [StrangeMbox].  This causes Multipath TCP to perform a
   fallback to regular TCP without any impact on the application.

3.2.  Congestion control

   Congestion control has been an important problem for Multipath TCP.
   The standardised congestion control scheme for Multipath TCP is
   defined in [RFC6356] and [NSDI11].  This congestion control scheme
   has been implemented in the Linux implementation of Multipath TCP.
   Linux uses a modular architecture to support various congestion
   control schemes.  This architecture is applicable for both regular
   TCP and Multipath TCP.  While the coupled congestion control scheme
   defined in [RFC6356] is the default congestion control scheme in the
   Linux implementation, other congestion control schemes have been
   added.  The second congestion control scheme is OLIA [CONEXT12].
   This congestion control scheme is also an adaptation of the NewReno
   single path congestion control scheme to support multiple paths.
   Simulations and measurements have shown that it provides some
   performance benefits compared to the the default congestion control
   scheme [CONEXT12].  Measurements over a wide range of parameters
   reported in [CONEXT13] also indicate some benefits with the OLIA
   congestion control scheme.  Recently, a delay-based congestion
   control scheme has been ported to the Multipath TCP implementation in
   the Linux kernel.  This congestion control scheme has been evaluated
   by using simulations in [ICNP12].  The fourth congestion control
   scheme that has been included in the Linux implementation of
   Multipath TCP is the BALIA scheme
   [I-D.walid-mptcp-congestion-control].

   These different congestion control schemes have been compared in
   several articles.  [CONEXT13] and [PaaschPhD] compare these
   algorithms in an emulated environment.  The evaluation showed that
   the delay-based congestion control scheme is less able to efficiently
   use the available links than the three other schemes.  Reports from
   some users indicate that they seem to favor OLIA.

3.3.  Subflow management

   The multipath capability of Multipath TCP comes from the utilisation
   of one subflow per path.  The Multipath TCP architecture [RFC6182]
   and the protocol specification [RFC6824] define the basic usage of
   the subflows and the protocol mechanisms that are required to create
   and terminate them.  However, there are no guidelines on how subflows
   are used during the lifetime of a Multipath TCP session.  Most of the
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   published experiments with Multipath TCP have been performed in
   controlled environments.  Still, based on the experience running them
   and discussions on the mptcp-dev mailing list, interesting lessons
   have been learned about the management of these subflows.

   From a subflow viewpoint, the Multipath TCP protocol is completely
   symmetrical.  Both the clients and the server have the capability to
   create subflows.  However in practice the existing Multipath TCP
   implementations [I-D.eardley-mptcp-implementations-survey] have opted
   for a strategy where only the client creates new subflows.  The main
   motivation for this strategy is that often the client resides behind
   a NAT or a firewall, preventing passive subflow openings on the
   client.  Although there are environments such as datacenters where
   this problem does not occur, as of this writing, no precise
   requirement has emerged for allowing the server to create new
   subflows.

3.4.  Implemented subflow managers

   The Multipath TCP implementation in the Linux kernel includes several
   strategies to manage the subflows that compose a Multipath TCP
   session.  The basic subflow manager is the full-mesh.  As the name
   implies, it creates a full-mesh of subflows between the communicating
   hosts.

   The most frequent use case for this subflow manager is a multihomed
   client connected to a single-homed server.  In this case, one subflow
   is created for each interface on the client.  The current
   implementation of the full-mesh subflow manager is static.  The
   subflows are created immediately after the creation of the initial
   subflow.  If one subflow fails during the lifetime of the Multipath
   TCP session (e.g. due to excessive retransmissions, or the loss of
   the corresponding interface), it is not always reestablished.  There
   is ongoing work to enhance the full-mesh path manager to deal with
   such events.

   When the server is multihomed, using the full-mesh subflow manager
   may lead to a large number of subflows being established.  For
   example, consider a dual-homed client connected to a server with
   three interfaces.  In this case, even if the subflows are only
   created by the client, 6 subflows will be established.  This may be
   excessive in some environments, in particular when the client and/or
   the server have a large number of interfaces.  A recent draft has
   proposed a Multipath TCP option to negotiate the maximum number of
   subflows.  However, it should be noted that there have been reports
   on the mptcp-dev mailing indicating that users rely on Multipath TCP
   to aggregate more than four different interfaces.  Thus, there is a
   need for supporting many interfaces efficiently.
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   Creating subflows between multihomed clients and servers may
   sometimes lead to operational issues as observed by discussions on
   the mptcp-dev mailing list.  In some cases the network operators
   would like to have a better control on how the subflows are created
   by Multipath TCP [I-D.boucadair-mptcp-max-subflow].  This might
   require the definition of policy rules to control the operation of
   the subflow manager.  The two scenarios below illustrate some of
   these requirements.

           host1 ----------  switch1 ----- host2
             |                   |            |
             +--------------  switch2 --------+

                Figure 3: Simple switched network topology

   Consider the simple network topology shown in Figure 3.  From an
   operational viewpoint, a network operator could want to create two
   subflows between the communicating hosts.  From a bandwidth
   utilization viewpoint, the most natural paths are host1-switch1-host2
   and host1-switch2-host2.  However, a Multipath TCP implementation
   running on these two hosts may sometimes have difficulties to obtain
   this result.

   To understand the difficulty, let us consider different allocation
   strategies for the IP addresses.  A first strategy is to assign two
   subnets : subnetA (resp. subnetB) contains the IP addresses of
   host1’s interface to switch1 (resp. switch2) and host2’s interface to
   switch1 (resp. switch2).  In this case, a Multipath TCP subflow
   manager should only create one subflow per subnet.  To enforce the
   utilization of these paths, the network operator would have to
   specify a policy that prefers the subflows in the same subnet over
   subflows between addresses in different subnets.  It should be noted
   that the policy should probably also specify how the subflow manager
   should react when an interface or subflow fails.

   A second strategy is to use a single subnet for all IP addresses.  In
   this case, it becomes more difficult to specify a policy that
   indicates which subflows should be established.

   The second subflow manager that is currently supported by the
   Multipath TCP implementation in the Linux kernel is the ndiffport
   subflow manager.  This manager was initially created to exploit the
   path diversity that exists between single-homed hosts due to the
   utilization of flow-based load balancing techniques [SIGCOMM11].
   This subflow manager creates N subflows between the same pair of IP
   addresses.  The N subflows are created by the client and differ only
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   in the source port selected by the client.  It was not designed to be
   used on multihomed hosts.

3.5.  Subflow destination port

   The Multipath TCP protocol relies on the token contained in the
   MP_JOIN option to associate a subflow to an existing Multipath TCP
   session.  This implies that there is no restriction on the source
   address, destination address and source or destination ports used for
   the new subflow.  The ability to use different source and destination
   addresses is key to support multihomed servers and clients.  The
   ability to use different destination port numbers is worth discussing
   because it has operational implications.

   For illustration, consider a dual-homed client that creates a second
   subflow to reach a single-homed server as illustrated in Figure 4.

           client ------- r1 --- internet --- server
               |                   |
               +----------r2-------+

       Figure 4: Multihomed-client connected to single-homed server

   When the Multipath TCP implementation in the Linux kernel creates the
   second subflow it uses the same destination port as the initial
   subflow.  This choice is motivated by the fact that the server might
   be protected by a firewall and only accept TCP connections (including
   subflows) on the official port number.  Using the same destination
   port for all subflows is also useful for operators that rely on the
   port numbers to track application usage in their network.

   There have been suggestions from Multipath TCP users to modify the
   implementation to allow the client to use different destination ports
   to reach the server.  This suggestion seems mainly motivated by
   traffic shaping middleboxes that are used in some wireless networks.
   In networks where different shaping rates are associated to different
   destination port numbers, this could allow Multipath TCP to reach a
   higher performance.  As of this writing, we are not aware of any
   implementation of this kind of tweaking.

   However, from an implementation point-of-view supporting different
   destination ports for the same Multipath TCP connection can cause
   some issues.  A legacy implementation of a TCP stack creates a
   listening socket to react upon incoming SYN segments.  The listening
   socket is handling the SYN segments that are sent on a specific port
   number.  Demultiplexing incoming segments can thus be done solely by
   looking at the IP addresses and the port numbers.  With Multipath TCP
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   however, incoming SYN segments may have an MP_JOIN option with a
   different destination port.  This means, that all incoming segments
   that did not match on an existing listening-socket or an already
   established socket must be parsed for an eventual MP_JOIN option.
   This imposes an additional cost on servers, previously not existent
   on legacy TCP implementations.

3.6.  Closing subflows

                    client                       server
                       |                           |
   MPTCP: established  |                           | MPTCP: established
   Sub: established    |                           | Sub: established
                       |                           |
                       |         DATA_FIN          |
   MPTCP: close-wait   | <------------------------ | close()   (step 1)
   Sub: established    |         DATA_ACK          |
                       | ------------------------> | MPTCP: fin-wait-2
                       |                           | Sub: established
                       |                           |
                       |  DATA_FIN + subflow-FIN   |
   close()/shutdown()  | ------------------------> | MPTCP: time-wait
   (step 2)            |        DATA_ACK           | Sub: close-wait
   MPTCP: closed       | <------------------------ |
   Sub: fin-wait-2     |                           |
                       |                           |
                       |        subflow-FIN        |
   MPTCP: closed       | <------------------------ | subflow-close()
   Sub: time-wait      |        subflow-ACK        |
   (step 3)            | ------------------------> | MPTCP: time-wait
                       |                           | Sub: closed
                       |                           |

     Figure 5: Multipath TCP may not be able to avoid time-wait state
                  (even if enforced by the application).

   Figure 5 shows a very particular issue within Multipath TCP.  Many
   high-performance applications try to avoid Time-Wait state by
   deferring the closure of the connection until the peer has sent a
   FIN.  That way, the client on the left of Figure 5 does a passive
   closure of the connection, transitioning from Close-Wait to Last-ACK
   and finally freeing the resources after reception of the ACK of the
   FIN.  An application running on top of a Multipath TCP enabled Linux
   kernel might also use this approach.  The difference here is that the
   close() of the connection (Step 1 in Figure 5) only triggers the
   sending of a DATA_FIN.  Nothing guarantees that the kernel is ready
   to combine the DATA_FIN with a subflow-FIN.  The reception of the
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   DATA_FIN will make the application trigger the closure of the
   connection (step 2), trying to avoid Time-Wait state with this late
   closure.  This time, the kernel might decide to combine the DATA_FIN
   with a subflow-FIN.  This decision will be fatal, as the subflow’s
   state machine will not transition from Close-Wait to Last-Ack, but
   rather go through Fin-Wait-2 into Time-Wait state.  The Time-Wait
   state will consume resources on the host for at least 2 MSL (Maximum
   Segment Lifetime).  Thus, a smart application that tries to avoid
   Time-Wait state by doing late closure of the connection actually ends
   up with one of its subflows in Time-Wait state.  A high-performance
   Multipath TCP kernel implementation should honor the desire of the
   application to do passive closure of the connection and successfully
   avoid Time-Wait state - even on the subflows.

   The solution to this problem lies in an optimistic assumption that a
   host doing active-closure of a Multipath TCP connection by sending a
   DATA_FIN will soon also send a FIN on all its subflows.  Thus, the
   passive closer of the connection can simply wait for the peer to send
   exactly this FIN - enforcing passive closure even on the subflows.
   Of course, to avoid consuming resources indefinitely, a timer must
   limit the time our implementation waits for the FIN.

3.7.  Packet schedulers

   In a Multipath TCP implementation, the packet scheduler is the
   algorithm that is executed when transmitting each packet to decide on
   which subflow it needs to be transmitted.  The packet scheduler
   itself does not have any impact on the interoperability of Multipath
   TCP implementations.  However, it may clearly impact the performance
   of Multipath TCP sessions.  The Multipath TCP implementation in the
   Linux kernel supports a pluggable architecture for the packet
   scheduler [PaaschPhD].  As of this writing, two schedulers have been
   implemented: round-robin and lowest-rtt-first.  The second scheduler
   relies on the round-trip-time (rtt) measured on each TCP subflow and
   sends first segments over the subflow having the lowest round-trip-
   time.  They are compared in [CSWS14].  The experiments and
   measurements described in [CSWS14] show that the lowest-rtt-first
   scheduler appears to be the best compromise from a performance
   viewpoint.  Another study of the packet schedulers is presented in
   [PAMS2014].  This study relies on simulations with the Multipath TCP
   implementation in the Linux kernel.  They compare the lowest-rtt-
   first with the round-robin and a random scheduler.  They show some
   situations where the lowest-rtt-first scheduler does not perform as
   well as the other schedulers, but there are many scenarios where the
   opposite is true.  [PAMS2014] notes that "it is highly likely that
   the optimal scheduling strategy depends on the characteristics of the
   paths being used."
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3.8.  Segment size selection

   When an application performs a write/send system call, the kernel
   allocates a packet buffer (sk_buff in Linux) to store the data the
   application wants to send.  The kernel will store at most one MSS
   (Maximum Segment Size) of data per buffer.  As the MSS can differ
   amongst subflows, an MPTCP implementation must select carefully the
   MSS used to generate application data.  The Linux kernel
   implementation had various ways of selecting the MSS: minimum or
   maximum amongst the different subflows.  However, these heuristics of
   MSS selection can cause significant performance issues in some
   environment.  Consider the following example.  An MPTCP connection
   has two established subflows that respectively use a MSS of 1420 and
   1428 bytes.  If MPTCP selects the maximum, then the application will
   generate segments of 1428 bytes of data.  An MPTCP implementation
   will have to split the segment in two (a 1420-byte and 8-byte
   segments) when pushing on the subflow with the smallest MSS.  The
   latter segment will introduce a large overhead as for a single data
   segment 2 slots will be used in the congestion window (in packets)
   therefore reducing by roughly twice the potential throughput (in
   bytes/s) of this subflow.  Taking the smallest MSS does not solve the
   issue as there might be a case where the subflow with the smallest
   MSS only sends a few packets therefore reducing the potential
   throughput of the other subflows.

   The Linux implementation recently took another approach [DetalMSS].
   Instead of selecting the minimum and maximum values, it now
   dynamically adapts the MSS based on the contribution of all the
   subflows to the connection’s throughput.  For this it computes, for
   each subflow, the potential throughput achieved by selecting each MSS
   value and by taking into account the lost space in the cwnd.  It then
   selects the MSS that allows to achieve the highest potential
   throughput.

3.9.  Interactions with the Domain Name System

   Multihomed clients such as smartphones can send DNS queries over any
   of their interfaces.  When a single-homed client performs a DNS
   query, it receives from its local resolver the best answer for its
   request.  If the client is multihomed, the answer returned to the DNS
   query may vary with the interface over which it has been sent.
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                      cdn1
                       |
           client -- cellular -- internet -- cdn3
              |                   |
              +----- wifi --------+
                       |
                     cdn2

                     Figure 6: Simple network topology

   If the client sends a DNS query over the WiFi interface, the answer
   will point to the cdn2 server while the same request sent over the
   cellular interface will point to the cdn1 server.  This might cause
   problems for CDN providers that locate their servers inside ISP
   networks and have contracts that specify that the CDN server will
   only be accessed from within this particular ISP.  Assume now that
   both the client and the CDN servers support Multipath TCP.  In this
   case, a Multipath TCP session from cdn1 or cdn2 would potentially use
   both the cellular network and the WiFi network.  Serving the client
   from cdn2 over the cellular interface could violate the contract
   between the CDN provider and the network operators.  A similar
   problem occurs with regular TCP if the client caches DNS replies.
   For example the client obtains a DNS answer over the cellular
   interface and then stops this interface and starts to use its WiFi
   interface.  If the client retrieves data from cdn1 over its WiFi
   interface, this may also violate the contract between the CDN and the
   network operators.

   A possible solution to prevent this problem would be to modify the
   DNS resolution on the client.  The client subnet EDNS extension
   defined in [I-D.ietf-dnsop-edns-client-subnet] could be used for this
   purpose.  When the client sends a DNS query from its WiFi interface,
   it should also send the client subnet corresponding to the cellular
   interface in this request.  This would indicate to the resolver that
   the answer should be valid for both the WiFi and the cellular
   interfaces (e.g., the cdn3 server).

3.10.  Captive portals

   Multipath TCP enables a host to use different interfaces to reach a
   server.  In theory, this should ensure connectivity when at least one
   of the interfaces is active.  In practice however, there are some
   particular scenarios with captive portals that may cause operational
   problems.  The reference environment is shown in Figure 7.
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           client -----  network1
                |
                +------- internet ------------- server

                    Figure 7: Issue with captive portal

   The client is attached to two networks : network1 that provides
   limited connectivity and the entire Internet through the second
   network interface.  In practice, this scenario corresponds to an open
   WiFi network with a captive portal for network1 and a cellular
   service for the second interface.  On many smartphones, the WiFi
   interface is preferred over the cellular interface.  If the
   smartphone learns a default route via both interfaces, it will
   typically prefer to use the WiFi interface to send its DNS request
   and create the first subflow.  This is not optimal with Multipath
   TCP.  A better approach would probably be to try a few attempts on
   the WiFi interface and then try to use the second interface for the
   initial subflow as well.

3.11.  Stateless webservers

   MPTCP has been designed to interoperate with webservers that benefit
   from SYN-cookies to protect against SYN-flooding attacks [RFC4987].
   MPTCP achieves this by echoing the keys negotiated during the
   MP_CAPABLE handshake in the third ACK of the 3-way handshake.
   Reception of this third ACK then allows the server to reconstruct the
   state specific to MPTCP.

   However, one caveat to this mechanism is the non-reliable nature of
   the third ACK.  Indeed, when the third ACK gets lost, the server will
   not be able to reconstruct the MPTCP-state.  MPTCP will fallback to
   regular TCP in this case.  This is in contrast to regular TCP, as
   clients usually start the application’s transaction by sending data
   to the server.  This data-segment (that is sent reliably by TCP)
   enables stateless servers to create the TCP-related state, even in
   case the third ACK has been lost.

   This issue might be considered as a minor one for MPTCP.  Losing the
   third ACK should only happen when packet loss is high.  However, when
   packet-loss is high MPTCP provides a lot of benefits as it can move
   traffic away from the lossy link.  It is undesirable that MPTCP has a
   higher chance to fall back to regular TCP in those lossy
   environments.

   [I-D.paasch-mptcp-syncookies] discusses this issue and suggests a
   modified handshake mechanism that ensures reliable delivery of the
   MP_CAPABLE, following the 3-way handshake.  This modification will
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   make MPTCP reliable, even in lossy environments when servers need to
   use SYN-cookies to protect against SYN-flooding attacks.

3.12.  Loadbalanced serverfarms

   Large-scale serverfarms typically deploy thousands of servers behind
   a single virtual IP (VIP).  Steering traffic to these servers is done
   through layer-4 loadbalancers that ensure that a TCP-flow will always
   be routed to the same server [Presto08].

   As Multipath TCP uses multiple different TCP subflows to steer the
   traffic across the different paths, loadbalancers need to ensure that
   all these subflows are routed to the same server.  This implies that
   the loadbalancers need to track the MPTCP-related state, allowing
   them to parse the token in the MP_JOIN and assign those subflows to
   the appropriate server.  However, serverfarms typically deploy
   multiple of these loadbalancers for reliability and capacity reasons.
   As a TCP subflow might get routed to any of these loadbalancers, they
   would need to synchronize the MPTCP-related state - a solution that
   is not feasible at large scale.

   The token (carried in the MP_JOIN) contains the information
   indicating which MPTCP-session the subflow belongs to.  As the token
   is a hash of the key, servers are not able to generate the token in
   such a way that the token can provide the necessary information to
   the loadbalancers which would allow them to route TCP subflows to the
   appropriate server.  [I-D.paasch-mptcp-loadbalancer] discusses this
   issue in detail and suggests two alternative MP_CAPABLE handshakes to
   overcome these.  As of September 2015, it is not yet clear how MPTCP
   might accomodate such use-case to enable its deployment within
   loadbalanced serverfarms.

4.  Conclusion

   In this document, we have documented a few years of experience with
   Multipath TCP.  The information presented in this document was
   gathered from scientific publications and discussions with various
   users of the Multipath TCP implementation in the Linux kernel.
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Abstract

   This document discusses both use cases and operational experience
   with Multipath TCP in real networks.  It lists several prominent use
   cases where Multipath TCP has been considered and is being used.  It
   also gives insight to some heuristics and decisions that have helped
   to realize these use cases and suggests possible improvements.
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1.  Introduction

   Multipath TCP was specified in [RFC6824] and five independent
   implementations have been developed.  As of November 2016, Multipath
   TCP has been or is being implemented on the following platforms:

   o  Linux kernel [MultipathTCP-Linux]

   o  Apple iOS and macOS [Apple-MPTCP]

   o  Citrix load balancers

   o  FreeBSD [FreeBSD-MPTCP]

   o  Oracle Solaris

   The first three implementations are known to interoperate.  Three of
   these implementations are open-source (Linux kernel, FreeBSD and
   Apple’s iOS and macOS).  Apple’s implementation is widely deployed.

   Since the publication of [RFC6824] as an experimental RFC, experience
   has been gathered by various network researchers and users about the
   operational issues that arise when Multipath TCP is used in today’s
   Internet.

   When the MPTCP working group was created, several use cases for
   Multipath TCP were identified [RFC6182].  Since then, other use cases
   have been proposed and some have been tested and even deployed.  We
   describe these use cases in Section 2.

   Section 3 focuses on the operational experience with Multipath TCP.
   Most of this experience comes from the utilization of the Multipath
   TCP implementation in the Linux kernel [MultipathTCP-Linux].  This
   open-source implementation has been downloaded and is used by
   thousands of users all over the world.  Many of these users have
   provided direct or indirect feedback by writing documents (scientific
   articles or blog messages) or posting to the mptcp-dev mailing list
   (see https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev ).  This
   Multipath TCP implementation is actively maintained and continuously
   improved.  It is used on various types of hosts, ranging from
   smartphones or embedded routers to high-end servers.

   The Multipath TCP implementation in the Linux kernel is not, by far,
   the most widespread deployment of Multipath TCP.  Since September
   2013, Multipath TCP is also supported on smartphones and tablets
   since iOS7 [IOS7].  There are likely hundreds of millions of
   Multipath TCP enabled devices.  This Multipath TCP implementation is
   currently only used to support the Siri voice recognition/control

Bonaventure, et al.      Expires April 30, 2017                 [Page 3]



Internet-Draft              MPTCP Experience                October 2016

   application.  Some lessons learned from this deployment are described
   in [IETFJ].

   Section 3 is organized as follows.  Supporting the middleboxes was
   one of the difficult issues in designing the Multipath TCP protocol.
   We explain in Section 3.1 which types of middleboxes the Linux Kernel
   implementation of Multipath TCP supports and how it reacts upon
   encountering these.  Section 3.2 summarizes the MPTCP specific
   congestion controls that have been implemented.  Section 3.3 to
   Section 3.7 discuss heuristics and issues with respect to subflow
   management as well as the scheduling across the subflows.
   Section 3.8 explains some problems that occurred with subflows having
   different Maximum Segment Size (MSS) values.  Section 3.9 presents
   issues with respect to content delivery networks and suggests a
   solution to this issue.  Finally, Section 3.10 documents an issue
   with captive portals where MPTCP will behave sub optimally.
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2.  Use cases

   Multipath TCP has been tested in several use cases.  There is already
   an abundant scientific literature on Multipath TCP [MPTCPBIB].
   Several of the papers published in the scientific literature have
   identified possible improvements that are worth being discussed here.

2.1.  Datacenters

   A first, although initially unexpected, documented use case for
   Multipath TCP has been in datacenters [HotNets][SIGCOMM11].  Today’s
   datacenters are designed to provide several paths between single-
   homed servers.  The multiplicity of these paths comes from the
   utilization of Equal Cost Multipath (ECMP) and other load balancing
   techniques inside the datacenter.  Most of the deployed load
   balancing techniques in datacenters rely on hashes computed over the
   five tuple.  Thus all packets from the same TCP connection follow the
   same path and so are not reordered.  The results in [HotNets]
   demonstrate by simulations that Multipath TCP can achieve a better
   utilization of the available network by using multiple subflows for
   each Multipath TCP session.  Although [RFC6182] assumes that at least
   one of the communicating hosts has several IP addresses, [HotNets]
   demonstrates that Multipath TCP is beneficial when both hosts are
   single-homed.  This idea is analyzed in more details in [SIGCOMM11]
   where the Multipath TCP implementation in the Linux kernel is
   modified to be able to use several subflows from the same IP address.
   Measurements in a public datacenter show the quantitative benefits of
   Multipath TCP [SIGCOMM11] in this environment.

   Although ECMP is widely used inside datacenters, this is not the only
   environment where there are different paths between a pair of hosts.
   ECMP and other load balancing techniques such as Link Aggregation
   Groups (LAG) are widely used in today’s networks and having multiple
   paths between a pair of single-homed hosts is becoming the norm
   instead of the exception.  Although these multiple paths have often
   the same cost (from an IGP metrics viewpoint), they do not
   necessarily have the same performance.  For example, [IMC13c] reports
   the results of a long measurement study showing that load balanced
   Internet paths between that same pair of hosts can have huge delay
   differences.

2.2.  Cellular/WiFi Offload

   A second use case that has been explored by several network
   researchers is the cellular/WiFi offload use case.  Smartphones or
   other mobile devices equipped with two wireless interfaces are a very
   common use case for Multipath TCP.  In September 2015, this is also
   the largest deployment of Multipath-TCP enabled devices [IOS7].  It
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   has been briefly discussed during IETF88 [ietf88], but there is no
   published paper or report that analyses this deployment.  For this
   reason, we only discuss published papers that have mainly used the
   Multipath TCP implementation in the Linux kernel for their
   experiments.

   The performance of Multipath TCP in wireless networks was briefly
   evaluated in [NSDI12].  One experiment analyzes the performance of
   Multipath TCP on a client with two wireless interfaces.  This
   evaluation shows that when the receive window is large, Multipath TCP
   can efficiently use the two available links.  However, if the window
   becomes smaller, then packets sent on a slow path can block the
   transmission of packets on a faster path.  In some cases, the
   performance of Multipath TCP over two paths can become lower than the
   performance of regular TCP over the best performing path.  Two
   heuristics, reinjection and penalization, are proposed in [NSDI12] to
   solve this identified performance problem.  These two heuristics have
   since been used in the Multipath TCP implementation in the Linux
   kernel.  [CONEXT13] explored the problem in more detail and revealed
   some other scenarios where Multipath TCP can have difficulties in
   efficiently pooling the available paths.  Improvements to the
   Multipath TCP implementation in the Linux kernel are proposed in
   [CONEXT13] to cope with some of these problems.

   The first experimental analysis of Multipath TCP in a public wireless
   environment was presented in [Cellnet12].  These measurements explore
   the ability of Multipath TCP to use two wireless networks (real WiFi
   and 3G networks).  Three modes of operation are compared.  The first
   mode of operation is the simultaneous use of the two wireless
   networks.  In this mode, Multipath TCP pools the available resources
   and uses both wireless interfaces.  This mode provides fast handover
   from WiFi to cellular or the opposite when the user moves.
   Measurements presented in [CACM14] show that the handover from one
   wireless network to another is not an abrupt process.  When a host
   moves, there are regions where the quality of one of the wireless
   networks is weaker than the other, but the host considers this
   wireless network to still be up.  When a mobile host enters such
   regions, its ability to send packets over another wireless network is
   important to ensure a smooth handover.  This is clearly illustrated
   from the packet trace discussed in [CACM14].

   Many cellular networks use volume-based pricing and users often
   prefer to use unmetered WiFi networks when available instead of
   metered cellular networks.  [Cellnet12] implements support for the
   MP_PRIO option to explore two other modes of operation.

   In the backup mode, Multipath TCP opens a TCP subflow over each
   interface, but the cellular interface is configured in backup mode.
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   This implies that data flows only over the WiFi interface when both
   interfaces are considered to be active.  If the WiFi interface fails,
   then the traffic switches quickly to the cellular interface, ensuring
   a smooth handover from the user’s viewpoint [Cellnet12].  The cost of
   this approach is that the WiFi and cellular interfaces are likely to
   remain active all the time since all subflows are established over
   the two interfaces.

   The single-path mode is slightly different.  This mode benefits from
   the break-before-make capability of Multipath TCP.  When an MPTCP
   session is established, a subflow is created over the WiFi interface.
   No packet is sent over the cellular interface as long as the WiFi
   interface remains up [Cellnet12].  This implies that the cellular
   interface can remain idle and battery capacity is preserved.  When
   the WiFi interface fails, a new subflow is established over the
   cellular interface in order to preserve the established Multipath TCP
   sessions.  Compared to the backup mode described earlier,
   measurements reported in [Cellnet12] indicate that this mode of
   operation is characterized by a throughput drop while the cellular
   interface is brought up and the subflows are reestablished.

   From a protocol viewpoint, [Cellnet12] discusses the problem posed by
   the unreliability of the REMOVE_ADDR option and proposes a small
   protocol extension to allow hosts to reliably exchange this option.
   It would be useful to analyze packet traces to understand whether the
   unreliability of the REMOVE_ADDR option poses an operational problem
   in real deployments.

   Another study of the performance of Multipath TCP in wireless
   networks was reported in [IMC13b].  This study uses laptops connected
   to various cellular ISPs and WiFi hotspots.  It compares various file
   transfer scenarios.  [IMC13b] observes that 4-path MPTCP outperforms
   2-path MPTCP, especially for larger files.  However, for three
   congestion control algorithms (LIA, OLIA and Reno - see Section 3.2),
   there is no significant performance difference for file sizes smaller
   than 4MB.

   A different study of the performance of Multipath TCP with two
   wireless networks is presented in [INFOCOM14].  In this study the two
   networks had different qualities : a good network and a lossy
   network.  When using two paths with different packet loss ratios, the
   Multipath TCP congestion control scheme moves traffic away from the
   lossy link that is considered to be congested.  However, [INFOCOM14]
   documents an interesting scenario that is summarized hereafter.
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   client ----------- path1 -------- server
     |                                  |
     +--------------- path2 ------------+

                     Figure 1: Simple network topology

   Initially, the two paths in Figure 1 have the same quality and
   Multipath TCP distributes the load over both of them.  During the
   transfer, the path2 becomes lossy, e.g. because the client moves.
   Multipath TCP detects the packet losses and they are retransmitted
   over path1.  This enables the data transfer to continue over this
   path.  However, the subflow over path2 is still up and transmits one
   packet from time to time.  Although the N packets have been
   acknowledged over the first subflow (at the MPTCP level), they have
   not been acknowledged at the TCP level over the second subflow.  To
   preserve the continuity of the sequence numbers over the second
   subflow, TCP will continue to retransmit these segments until either
   they are acknowledged or the maximum number of retransmissions is
   reached.  This behavior is clearly inefficient and may lead to
   blocking since the second subflow will consume window space to be
   able to retransmit these packets.  [INFOCOM14] proposes a new
   Multipath TCP option to solve this problem.  In practice, a new TCP
   option is probably not required.  When the client detects that the
   data transmitted over the second subflow has been acknowledged over
   the first subflow, it could decide to terminate the second subflow by
   sending a RST segment.  If the interface associated to this subflow
   is still up, a new subflow could be immediately reestablished.  It
   would then be immediately usable to send new data and would not be
   forced to first retransmit the previously transmitted data.  As of
   this writing, this dynamic management of the subflows is not yet
   implemented in the Multipath TCP implementation in the Linux kernel.

   Some studies have started to analyze the performance of Multipath TCP
   on smartphones with real applications.  In contrast with the bulk
   transfers that are used by many publications, many deployed
   applications do not exchange huge amounts of data and mainly use
   small connections.  [COMMAG2016] proposes a software testing
   framework that allows to automate Android applications to study their
   interactions with Multipath TCP.  [PAM2016] analyses a one-month
   packet trace of all the packets exchanged by a dozen of smartphones
   used by regular users.  This analysis reveals that short connections
   are important on smartphones and that the main benefit of using
   Multipath TCP on smartphones is the ability to perform seamless
   handovers between different wireless networks.  Long connections
   benefit from these handovers.
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2.3.  Multipath TCP proxies

   As Multipath TCP is not yet widely deployed on both clients and
   servers, several deployments have used various forms of proxies.  Two
   families of solutions are currently being used or tested.

   A first use case is when a Multipath TCP enabled client wants to use
   several interfaces to reach a regular TCP server.  A typical use case
   is a smartphone that needs to use both its WiFi and its cellular
   interface to transfer data.  Several types of proxies are possible
   for this use case.  An HTTP proxy deployed on a Multipath TCP capable
   server would enable the smartphone to use Multipath TCP to access
   regular web servers.  Obviously, this solution only works for
   applications that rely on HTTP.  Another possibility is to use a
   proxy that can convert any Multipath TCP connection into a regular
   TCP connection.  Multipath TCP-specific proxies have been proposed
   [HotMiddlebox13b] [HAMPEL].

   Another possibility leverages the SOCKS protocol [RFC1928].  SOCKS is
   often used in enterprise networks to allow clients to reach external
   servers.  For this, the client opens a TCP connection to the SOCKS
   server that relays it to the final destination.  If both the client
   and the SOCKS server use Multipath TCP, but not the final
   destination, then Multipath TCP can still be used on the path between
   the clients and the SOCKS server.  At IETF’93, Korea Telecom
   announced that they have deployed in June 2015 a commercial service
   that uses Multipath TCP on smartphones.  These smartphones access
   regular TCP servers through a SOCKS proxy.  This enables them to
   achieve throughputs of up to 850 Mbps [KT].

   Measurements performed with Android smartphones [Mobicom15] show that
   popular applications work correctly through a SOCKS proxy and
   Multipath TCP enabled smartphones.  Thanks to Multipath TCP, long-
   lived connections can be spread over the two available interfaces.
   However, for short-lived connections, most of the data is sent over
   the initial subflow that is created over the interface corresponding
   to the default route and the second subflow is almost not used
   [PAM2016].

   A second use case is when Multipath TCP is used by middleboxes,
   typically inside access networks.  Various network operators are
   discussing and evaluating solutions for hybrid access networks
   [TR-348].  Such networks arise when a network operator controls two
   different access network technologies, e.g. wired and cellular, and
   wants to combine them to improve the bandwidth offered to the
   endusers [I-D.lhwxz-hybrid-access-network-architecture].  Several
   solutions are currently investigated for such networks [TR-348].
   Figure 2 shows the organization of such a network.  When a client
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   creates a normal TCP connection, it is intercepted by the Hybrid CPE
   (HPCE) that converts it in a Multipath TCP connection so that it can
   use the available access networks (DSL and LTE in the example).  The
   Hybrid Access Gateway (HAG) does the opposite to ensure that the
   regular server sees a normal TCP connection.  Some of the solutions
   currently discussed for hybrid networks use Multipath TCP on the HCPE
   and the HAG.  Other solutions rely on tunnels between the HCPE and
   the HAG [I-D.lhwxz-gre-notifications-hybrid-access].

   client --- HCPE ------ DSL ------- HAG --- internet --- server
               |                       |
               +------- LTE -----------+

                      Figure 2: Hybrid Access Network
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3.  Operational Experience

3.1.  Middlebox interference

   The interference caused by various types of middleboxes has been an
   important concern during the design of the Multipath TCP protocol.
   Three studies on the interactions between Multipath TCP and
   middleboxes are worth discussing.

   The first analysis appears in [IMC11].  This paper was the main
   motivation for Multipath TCP incorporating various techniques to cope
   with middlebox interference.  More specifically, Multipath TCP has
   been designed to cope with middleboxes that :

   o  change source or destination addresses

   o  change source or destination port numbers

   o  change TCP sequence numbers

   o  split or coalesce segments

   o  remove TCP options

   o  modify the payload of TCP segments

   These middlebox interferences have all been included in the MBtest
   suite [MBTest].  This test suite is used in [HotMiddlebox13] to
   verify the reaction of the Multipath TCP implementation in the Linux
   kernel [MultipathTCP-Linux] when faced with middlebox interference.
   The test environment used for this evaluation is a dual-homed client
   connected to a single-homed server.  The middlebox behavior can be
   activated on any of the paths.  The main results of this analysis are
   :

   o  the Multipath TCP implementation in the Linux kernel, is not
      affected by a middlebox that performs NAT or modifies TCP sequence
      numbers

   o  when a middlebox removes the MP_CAPABLE option from the initial
      SYN segment, the Multipath TCP implementation in the Linux kernel
      falls back correctly to regular TCP

   o  when a middlebox removes the DSS option from all data segments,
      the Multipath TCP implementation in the Linux kernel falls back
      correctly to regular TCP
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   o  when a middlebox performs segment coalescing, the Multipath TCP
      implementation in the Linux kernel is still able to accurately
      extract the data corresponding to the indicated mapping

   o  when a middlebox performs segment splitting, the Multipath TCP
      implementation in the Linux kernel correctly reassembles the data
      corresponding to the indicated mapping.  [HotMiddlebox13] shows on
      figure 4 in section 3.3 a corner case with segment splitting that
      may lead to a desynchronization between the two hosts.

   The interactions between Multipath TCP and real deployed middleboxes
   is also analyzed in [HotMiddlebox13] and a particular scenario with
   the FTP application level gateway running on a NAT is described.

   Middlebox interference can also be detected by analyzing packet
   traces on Multipath TCP enabled servers.  A closer look at the
   packets received on the multipath-tcp.org server [TMA2015] shows that
   among the 184,000 Multipath TCP connections, only 125 of them were
   falling back to regular TCP.  These connections originated from 28
   different client IP addresses.  These include 91 HTTP connections and
   34 FTP connections.  The FTP interference is expected since
   Application Level Gateways used for FTP modify the TCP payload and
   the DSS Checksum detects these modifications.  The HTTP interference
   appeared only on the direction from server to client and could have
   been caused by transparent proxies deployed in cellular or enterprise
   networks.  A longer trace is discussed in [COMCOM2016] and similar
   conclusions about the middlebox interference are provided.

   From an operational viewpoint, knowing that Multipath TCP can cope
   with various types of middlebox interference is important.  However,
   there are situations where the network operators need to gather
   information about where a particular middlebox interference occurs.
   The tracebox software [tracebox] described in [IMC13a] is an
   extension of the popular traceroute software that enables network
   operators to check at which hop a particular field of the TCP header
   (including options) is modified.  It has been used by several network
   operators to debug various middlebox interference problems.
   Experience with tracebox indicates that supporting the ICMP extension
   defined in [RFC1812] makes it easier to debug middlebox problems in
   IPv4 networks.

   Users of the Multipath TCP implementation have reported some
   experience with middlebox interference.  The strangest scenario has
   been a middlebox that accepts the Multipath TCP options in the SYN
   segment but later replaces Multipath TCP options with a TCP EOL
   option [StrangeMbox].  This causes Multipath TCP to perform a
   fallback to regular TCP without any impact on the application.
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3.2.  Congestion control

   Congestion control has been an important challenge for Multipath TCP.
   The congestion control scheme specified for Multipath TCP is defined
   in [RFC6356].  A detailed description of this algorithm is provided
   in [NSDI11].  This congestion control scheme has been implemented in
   the Linux implementation of Multipath TCP.  Linux uses a modular
   architecture to support various congestion control schemes.  This
   architecture is applicable for both regular TCP and Multipath TCP.
   While the coupled congestion control scheme defined in [RFC6356] is
   the default congestion control scheme in the Linux implementation,
   other congestion control schemes have been added.  The second
   congestion control scheme is OLIA [CONEXT12].  This congestion
   control scheme is also an adaptation of the NewReno single path
   congestion control scheme to support multiple paths.  Simulations and
   measurements have shown that it provides some performance benefits
   compared to the default congestion control scheme [CONEXT12].
   Measurements over a wide range of parameters reported in [CONEXT13]
   also indicate some benefits with the OLIA congestion control scheme.
   Recently, a delay-based congestion control scheme has been ported to
   the Multipath TCP implementation in the Linux kernel.  This
   congestion control scheme has been evaluated by using simulations in
   [ICNP12] and measurements in [PaaschPhD].  The fourth congestion
   control scheme that has been included in the Linux implementation of
   Multipath TCP is the BALIA scheme that provides a better balance
   between TCP friendliness, responsiveness, and window oscillation
   [BALIA].

   These different congestion control schemes have been compared in
   several articles.  [CONEXT13] and [PaaschPhD] compare these
   algorithms in an emulated environment.  The evaluation showed that
   the delay-based congestion control scheme is less able to efficiently
   use the available links than the three other schemes.

3.3.  Subflow management

   The multipath capability of Multipath TCP comes from the utilization
   of one subflow per path.  The Multipath TCP architecture [RFC6182]
   and the protocol specification [RFC6824] define the basic usage of
   the subflows and the protocol mechanisms that are required to create
   and terminate them.  However, there are no guidelines on how subflows
   are used during the lifetime of a Multipath TCP session.  Most of the
   published experiments with Multipath TCP have been performed in
   controlled environments.  Still, based on the experience running them
   and discussions on the mptcp-dev mailing list, interesting lessons
   have been learned about the management of these subflows.

   From a subflow viewpoint, the Multipath TCP protocol is completely

Bonaventure, et al.      Expires April 30, 2017                [Page 13]



Internet-Draft              MPTCP Experience                October 2016

   symmetrical.  Both the clients and the server have the capability to
   create subflows.  However in practice the existing Multipath TCP
   implementations have opted for a strategy where only the client
   creates new subflows.  The main motivation for this strategy is that
   often the client resides behind a NAT or a firewall, preventing
   passive subflow openings on the client.  Although there are
   environments such as datacenters where this problem does not occur,
   as of this writing, no precise requirement has emerged for allowing
   the server to create new subflows.

3.4.  Implemented subflow managers

   The Multipath TCP implementation in the Linux kernel includes several
   strategies to manage the subflows that compose a Multipath TCP
   session.  The basic subflow manager is the full-mesh.  As the name
   implies, it creates a full-mesh of subflows between the communicating
   hosts.

   The most frequent use case for this subflow manager is a multihomed
   client connected to a single-homed server.  In this case, one subflow
   is created for each interface on the client.  The current
   implementation of the full-mesh subflow manager is static.  The
   subflows are created immediately after the creation of the initial
   subflow.  If one subflow fails during the lifetime of the Multipath
   TCP session (e.g. due to excessive retransmissions, or the loss of
   the corresponding interface), it is not always reestablished.  There
   is ongoing work to enhance the full-mesh path manager to deal with
   such events.

   When the server is multihomed, using the full-mesh subflow manager
   may lead to a large number of subflows being established.  For
   example, consider a dual-homed client connected to a server with
   three interfaces.  In this case, even if the subflows are only
   created by the client, 6 subflows will be established.  This may be
   excessive in some environments, in particular when the client and/or
   the server have a large number of interfaces.  Implementations should
   limit the number of subflows that are used.

   Creating subflows between multihomed clients and servers may
   sometimes lead to operational issues as observed by discussions on
   the mptcp-dev mailing list.  In some cases the network operators
   would like to have a better control on how the subflows are created
   by Multipath TCP [I-D.boucadair-mptcp-max-subflow].  This might
   require the definition of policy rules to control the operation of
   the subflow manager.  The two scenarios below illustrate some of
   these requirements.
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           host1 ----------  switch1 ----- host2
             |                   |            |
             +--------------  switch2 --------+

                Figure 3: Simple switched network topology

   Consider the simple network topology shown in Figure 3.  From an
   operational viewpoint, a network operator could want to create two
   subflows between the communicating hosts.  From a bandwidth
   utilization viewpoint, the most natural paths are host1-switch1-host2
   and host1-switch2-host2.  However, a Multipath TCP implementation
   running on these two hosts may sometimes have difficulties to obtain
   this result.

   To understand the difficulty, let us consider different allocation
   strategies for the IP addresses.  A first strategy is to assign two
   subnets : subnetA (resp. subnetB) contains the IP addresses of
   host1’s interface to switch1 (resp. switch2) and host2’s interface to
   switch1 (resp. switch2).  In this case, a Multipath TCP subflow
   manager should only create one subflow per subnet.  To enforce the
   utilization of these paths, the network operator would have to
   specify a policy that prefers the subflows in the same subnet over
   subflows between addresses in different subnets.  It should be noted
   that the policy should probably also specify how the subflow manager
   should react when an interface or subflow fails.

   A second strategy is to use a single subnet for all IP addresses.  In
   this case, it becomes more difficult to specify a policy that
   indicates which subflows should be established.

   The second subflow manager that is currently supported by the
   Multipath TCP implementation in the Linux kernel is the ndiffport
   subflow manager.  This manager was initially created to exploit the
   path diversity that exists between single-homed hosts due to the
   utilization of flow-based load balancing techniques [SIGCOMM11].
   This subflow manager creates N subflows between the same pair of IP
   addresses.  The N subflows are created by the client and differ only
   in the source port selected by the client.  It was not designed to be
   used on multihomed hosts.

   A more flexible subflow manager has been proposed, implemented and
   evaluated in [CONEXT15].  This subflow manager exposes various kernel
   events to a user space daemon that decides when subflows need to be
   created and terminated based on various policies.
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3.5.  Subflow destination port

   The Multipath TCP protocol relies on the token contained in the
   MP_JOIN option to associate a subflow to an existing Multipath TCP
   session.  This implies that there is no restriction on the source
   address, destination address and source or destination ports used for
   the new subflow.  The ability to use different source and destination
   addresses is key to support multihomed servers and clients.  The
   ability to use different destination port numbers is worth discussing
   because it has operational implications.

   For illustration, consider a dual-homed client that creates a second
   subflow to reach a single-homed server as illustrated in Figure 4.

           client ------- r1 --- internet --- server
               |                   |
               +----------r2-------+

       Figure 4: Multihomed-client connected to single-homed server

   When the Multipath TCP implementation in the Linux kernel creates the
   second subflow it uses the same destination port as the initial
   subflow.  This choice is motivated by the fact that the server might
   be protected by a firewall and only accept TCP connections (including
   subflows) on the official port number.  Using the same destination
   port for all subflows is also useful for operators that rely on the
   port numbers to track application usage in their network.

   There have been suggestions from Multipath TCP users to modify the
   implementation to allow the client to use different destination ports
   to reach the server.  This suggestion seems mainly motivated by
   traffic shaping middleboxes that are used in some wireless networks.
   In networks where different shaping rates are associated to different
   destination port numbers, this could allow Multipath TCP to reach a
   higher performance.  This behavior is valid according to the
   Multipath TCP specification [RFC6824].  An application could used an
   enhanced socket API [SOCKET] to behave in this way.

   However, from an implementation point-of-view supporting different
   destination ports for the same Multipath TCP connection can cause
   some issues.  A legacy implementation of a TCP stack creates a
   listening socket to react upon incoming SYN segments.  The listening
   socket is handling the SYN segments that are sent on a specific port
   number.  Demultiplexing incoming segments can thus be done solely by
   looking at the IP addresses and the port numbers.  With Multipath TCP
   however, incoming SYN segments may have an MP_JOIN option with a
   different destination port.  This means, that all incoming segments
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   that did not match on an existing listening-socket or an already
   established socket must be parsed for an eventual MP_JOIN option.
   This imposes an additional cost on servers, previously not existent
   on legacy TCP implementations.

3.6.  Closing subflows

                    client                       server
                       |                           |
   MPTCP: established  |                           | MPTCP: established
   Sub: established    |                           | Sub: established
                       |                           |
                       |         DATA_FIN          |
   MPTCP: close-wait   | <------------------------ | close()   (step 1)
   Sub: established    |         DATA_ACK          |
                       | ------------------------> | MPTCP: fin-wait-2
                       |                           | Sub: established
                       |                           |
                       |  DATA_FIN + subflow-FIN   |
   close()/shutdown()  | ------------------------> | MPTCP: time-wait
   (step 2)            |        DATA_ACK           | Sub: close-wait
   MPTCP: closed       | <------------------------ |
   Sub: fin-wait-2     |                           |
                       |                           |
                       |        subflow-FIN        |
   MPTCP: closed       | <------------------------ | subflow-close()
   Sub: time-wait      |        subflow-ACK        |
   (step 3)            | ------------------------> | MPTCP: time-wait
                       |                           | Sub: closed
                       |                           |

    Figure 5: Multipath TCP may not be able to avoid time-wait state on
    the subflow (indicated as Sub in the drawing), even if enforced by
                    the application on the client-side.

   Figure 5 shows a very particular issue within Multipath TCP.  Many
   high-performance applications try to avoid Time-Wait state by
   deferring the closure of the connection until the peer has sent a
   FIN.  That way, the client on the left of Figure 5 does a passive
   closure of the connection, transitioning from Close-Wait to Last-ACK
   and finally freeing the resources after reception of the ACK of the
   FIN.  An application running on top of a Multipath TCP enabled Linux
   kernel might also use this approach.  The difference here is that the
   close() of the connection (Step 1 in Figure 5) only triggers the
   sending of a DATA_FIN.  Nothing guarantees that the kernel is ready
   to combine the DATA_FIN with a subflow-FIN.  The reception of the
   DATA_FIN will make the application trigger the closure of the
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   connection (step 2), trying to avoid Time-Wait state with this late
   closure.  This time, the kernel might decide to combine the DATA_FIN
   with a subflow-FIN.  This decision will be fatal, as the subflow’s
   state machine will not transition from Close-Wait to Last-Ack, but
   rather go through Fin-Wait-2 into Time-Wait state.  The Time-Wait
   state will consume resources on the host for at least 2 MSL (Maximum
   Segment Lifetime).  Thus, a smart application that tries to avoid
   Time-Wait state by doing late closure of the connection actually ends
   up with one of its subflows in Time-Wait state.  A high-performance
   Multipath TCP kernel implementation should honor the desire of the
   application to do passive closure of the connection and successfully
   avoid Time-Wait state - even on the subflows.

   The solution to this problem lies in an optimistic assumption that a
   host doing active-closure of a Multipath TCP connection by sending a
   DATA_FIN will soon also send a FIN on all its subflows.  Thus, the
   passive closer of the connection can simply wait for the peer to send
   exactly this FIN - enforcing passive closure even on the subflows.
   Of course, to avoid consuming resources indefinitely, a timer must
   limit the time our implementation waits for the FIN.

3.7.  Packet schedulers

   In a Multipath TCP implementation, the packet scheduler is the
   algorithm that is executed when transmitting each packet to decide on
   which subflow it needs to be transmitted.  The packet scheduler
   itself does not have any impact on the interoperability of Multipath
   TCP implementations.  However, it may clearly impact the performance
   of Multipath TCP sessions.  The Multipath TCP implementation in the
   Linux kernel supports a pluggable architecture for the packet
   scheduler [PaaschPhD].  As of this writing, two schedulers have been
   implemented: round-robin and lowest-rtt-first.  The second scheduler
   relies on the round-trip-time (rtt) measured on each TCP subflow and
   sends first segments over the subflow having the lowest round-trip-
   time.  They are compared in [CSWS14].  The experiments and
   measurements described in [CSWS14] show that the lowest-rtt-first
   scheduler appears to be the best compromise from a performance
   viewpoint.  Another study of the packet schedulers is presented in
   [PAMS2014].  This study relies on simulations with the Multipath TCP
   implementation in the Linux kernel.  They compare the lowest-rtt-
   first with the round-robin and a random scheduler.  They show some
   situations where the lowest-rtt-first scheduler does not perform as
   well as the other schedulers, but there are many scenarios where the
   opposite is true.  [PAMS2014] notes that "it is highly likely that
   the optimal scheduling strategy depends on the characteristics of the
   paths being used."
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3.8.  Segment size selection

   When an application performs a write/send system call, the kernel
   allocates a packet buffer (sk_buff in Linux) to store the data the
   application wants to send.  The kernel will store at most one MSS
   (Maximum Segment Size) of data per buffer.  As the MSS can differ
   amongst subflows, an MPTCP implementation must select carefully the
   MSS used to generate application data.  The Linux kernel
   implementation had various ways of selecting the MSS: minimum or
   maximum amongst the different subflows.  However, these heuristics of
   MSS selection can cause significant performance issues in some
   environment.  Consider the following example.  An MPTCP connection
   has two established subflows that respectively use a MSS of 1420 and
   1428 bytes.  If MPTCP selects the maximum, then the application will
   generate segments of 1428 bytes of data.  An MPTCP implementation
   will have to split the segment in two ( 1420-byte and 8-byte)
   segments when pushing on the subflow with the smallest MSS.  The
   latter segment will introduce a large overhead as for a single data
   segment 2 slots will be used in the congestion window (in packets)
   therefore reducing by roughly twice the potential throughput (in
   bytes/s) of this subflow.  Taking the smallest MSS does not solve the
   issue as there might be a case where the subflow with the smallest
   MSS only sends a few packets therefore reducing the potential
   throughput of the other subflows.

   The Linux implementation recently took another approach [DetalMSS].
   Instead of selecting the minimum and maximum values, it now
   dynamically adapts the MSS based on the contribution of all the
   subflows to the connection’s throughput.  For this it computes, for
   each subflow, the potential throughput achieved by selecting each MSS
   value and by taking into account the lost space in the congestion
   window.  It then selects the MSS that allows to achieve the highest
   potential throughput.

   Given the prevalence of middleboxes that clamp the MSS, Multipath TCP
   implementations must be able to efficiently support subflows with
   different MSS values.  The strategy described above is a possible
   solution to this problem.

3.9.  Interactions with the Domain Name System

   Multihomed clients such as smartphones can send DNS queries over any
   of their interfaces.  When a single-homed client performs a DNS
   query, it receives from its local resolver the best answer for its
   request.  If the client is multihomed, the answer in response to the
   DNS query may vary with the interface over which it has been sent.
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                      cdn1
                       |
           client -- cellular -- internet -- cdn3
              |                   |
              +----- wifi --------+
                       |
                     cdn2

                     Figure 6: Simple network topology

   If the client sends a DNS query over the WiFi interface, the answer
   will point to the cdn2 server while the same request sent over the
   cellular interface will point to the cdn1 server.  This might cause
   problems for CDN providers that locate their servers inside ISP
   networks and have contracts that specify that the CDN server will
   only be accessed from within this particular ISP.  Assume now that
   both the client and the CDN servers support Multipath TCP.  In this
   case, a Multipath TCP session from cdn1 or cdn2 would potentially use
   both the cellular network and the WiFi network.  Serving the client
   from cdn2 over the cellular interface could violate the contract
   between the CDN provider and the network operators.  A similar
   problem occurs with regular TCP if the client caches DNS replies.
   For example the client obtains a DNS answer over the cellular
   interface and then stops this interface and starts to use its WiFi
   interface.  If the client retrieves data from cdn1 over its WiFi
   interface, this may also violate the contract between the CDN and the
   network operators.

   A possible solution to prevent this problem would be to modify the
   DNS resolution on the client.  The client subnet EDNS extension
   defined in [RFC7871] could be used for this purpose.  When the client
   sends a DNS query from its WiFi interface, it should also send the
   client subnet corresponding to the cellular interface in this
   request.  This would indicate to the resolver that the answer should
   be valid for both the WiFi and the cellular interfaces (e.g., the
   cdn3 server).

3.10.  Captive portals

   Multipath TCP enables a host to use different interfaces to reach a
   server.  In theory, this should ensure connectivity when at least one
   of the interfaces is active.  In practice however, there are some
   particular scenarios with captive portals that may cause operational
   problems.  The reference environment is shown in Figure 7.
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           client -----  network1
                |
                +------- internet ------------- server

                    Figure 7: Issue with captive portal

   The client is attached to two networks : network1 that provides
   limited connectivity and the entire Internet through the second
   network interface.  In practice, this scenario corresponds to an open
   WiFi network with a captive portal for network1 and a cellular
   service for the second interface.  On many smartphones, the WiFi
   interface is preferred over the cellular interface.  If the
   smartphone learns a default route via both interfaces, it will
   typically prefer to use the WiFi interface to send its DNS request
   and create the first subflow.  This is not optimal with Multipath
   TCP.  A better approach would probably be to try a few attempts on
   the WiFi interface and then, upon failure of these attempts, try to
   use the second interface for the initial subflow as well.

3.11.  Stateless webservers

   MPTCP has been designed to interoperate with webservers that benefit
   from SYN-cookies to protect against SYN-flooding attacks [RFC4987].
   MPTCP achieves this by echoing the keys negotiated during the
   MP_CAPABLE handshake in the third ACK of the 3-way handshake.
   Reception of this third ACK then allows the server to reconstruct the
   state specific to MPTCP.

   However, one caveat to this mechanism is the non-reliable nature of
   the third ACK.  Indeed, when the third ACK gets lost, the server will
   not be able to reconstruct the MPTCP-state.  MPTCP will fallback to
   regular TCP in this case.  This is in contrast to regular TCP.  When
   the client starts sending data, the first data segment also includes
   the SYN-cookie, which allows the server to reconstruct the TCP-state.
   Further, this data segment will be retransmitted by the client in
   case it gets lost and thus is resilient against loss.  MPTCP does not
   include the keys in this data segment and thus the server cannot
   reconstruct the MPTCP state.

   This issue might be considered as a minor one for MPTCP.  Losing the
   third ACK should only happen when packet loss is high.  However, when
   packet-loss is high MPTCP provides a lot of benefits as it can move
   traffic away from the lossy link.  It is undesirable that MPTCP has a
   higher chance to fall back to regular TCP in those lossy
   environments.

   [I-D.paasch-mptcp-syncookies] discusses this issue and suggests a
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   modified handshake mechanism that ensures reliable delivery of the
   MP_CAPABLE, following the 3-way handshake.  This modification will
   make MPTCP reliable, even in lossy environments when servers need to
   use SYN-cookies to protect against SYN-flooding attacks.

3.12.  Loadbalanced server farms

   Large-scale server farms typically deploy thousands of servers behind
   a single virtual IP (VIP).  Steering traffic to these servers is done
   through layer-4 load balancers that ensure that a TCP-flow will
   always be routed to the same server [Presto08].

   As Multipath TCP uses multiple different TCP subflows to steer the
   traffic across the different paths, load balancers need to ensure
   that all these subflows are routed to the same server.  This implies
   that the load balancers need to track the MPTCP-related state,
   allowing them to parse the token in the MP_JOIN and assign those
   subflows to the appropriate server.  However, server farms typically
   deploy several load balancers for reliability and capacity reasons.
   As a TCP subflow might get routed to any of these load balancers,
   they would need to synchronize the MPTCP-related state - a solution
   that is not feasible at large scale.

   The token (carried in the MP_JOIN) contains the information
   indicating which MPTCP-session the subflow belongs to.  As the token
   is a hash of the key, servers are not able to generate the token in
   such a way that the token can provide the necessary information to
   the load balancers, which would allow them to route TCP subflows to
   the appropriate server.  [I-D.paasch-mptcp-loadbalancer] discusses
   this issue in detail and suggests two alternative MP_CAPABLE
   handshakes to overcome these.
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4.  IANA Considerations

   There are no IANA considerations in this informational document.

Bonaventure, et al.      Expires April 30, 2017                [Page 23]



Internet-Draft              MPTCP Experience                October 2016

5.  Security Considerations

   This informational document discusses use-cases and operational
   experience with Multipath TCP.  An extensive analysis of the
   remaining security issues in the Multipath TCP specification has been
   published in [RFC7430], together with suggestions for possible
   solutions.

   From a security viewpoint, it is important to note that Multipath
   TCP, like other multipath solutions such as SCTP, has the ability to
   send packets belonging to a single connection over different paths.
   This design feature of Multipath TCP implies that middleboxes that
   have been deployed on-path assuming that they would observe all the
   packets exchanged for a given connection in both directions may not
   function correctly anymore.  A typical example are firewalls, IDS or
   DPIs deployed in enterprise networks.  Those devices expect to
   observe all the packets from all TCP connections.  With Multipath
   TCP, those middleboxes may not observe anymore all packets since some
   of them may follow a different path.  The two examples below
   illustrate typical deployments of such middleboxes.  The first
   example, Figure 8, shows a Multipath TCP enabled smartphone attached
   to both an enterprise and a cellular network.  If a Multipath TCP
   connection is established by the smartphone towards a server, some of
   the packets sent by the smartphone or the server may be transmitted
   over the cellular network and thus be invisible for the enterprise
   middlebox.

     smartphone +----- entreprise net --- MBox----+------ server
                |                                 |
                +----- cellular net  -------------+

      Figure 8: Enterprise Middlebox may not observe all packets from
                              multihomed host

   The second example, Figure 9, shows a possible issue when multiple
   middleboxes are deployed inside a network.  For simplicity, we assume
   that network1 is the default IPv4 path while network2 is the default
   IPv6 path.  A similar issue could occur with per-flow load balancing
   such as ECMP [RFC2992].  With regular TCP, all packets from each
   connection would either pass through Mbox1 or Mbox2.  With Multipath
   TCP, the client can easily establish a subflow over network1 and
   another over network2 and each middlebox would only observe a part of
   the traffic of the end-to-end Multipath TCP connection.
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     client ----R-- network1  --- MBox1 -----R------------- server
                |                            |
                +-- network2  --- MBox2 -----+

        Figure 9: Interactions between load balancing and security
                                Middleboxes

   In these two cases, it is possible for an attacker to evade some
   security measures operating on the TCP byte stream and implemented on
   the middleboxes by controlling the bytes that are actually sent over
   each subflow and there are tools that ease those kinds of evasion
   [PZ15] [PT14].  This is not a security issue for Multipath TCP itself
   since Multipath TCP behaves correctly.  However, this demonstrates
   the difficulty of enforcing security policies by relying only on on-
   path middleboxes instead of enforcing them directly on the endpoints.
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Appendix A.  Changelog

   This section should be removed before final publication

   o  initial version : September 16th, 2014 : Added section Section 3.8
      that discusses some performance problems that appeared with the
      Linux implementation when using subflows having different MSS
      values

   o  update with a description of the middlebox that replaces an
      unknown TCP option with EOL [StrangeMbox]

   o  version ietf-02 : July 2015, answer to last call comments

      *  Reorganised text to better separate use cases and operational
         experience

      *  New use case on Multipath TCP proxies in Section 2.3

      *  Added some text on middleboxes in Section 3.1

      *  Removed the discussion on SDN

      *  Restructured text and improved writing in some parts

   o  version ietf-03 : September 2015, answer to comments from Phil
      Eardley

      *  Improved introduction

      *  Added details about using SOCKS and Korea Telecom’s use-case in
         Section 2.3.

      *  Added issue around clients caching DNS-results in Section 3.9

      *  Explained issue of MPTCP with stateless webservers Section 3.11

      *  Added description of MPTCP’s use behind layer-4 load balancers
         Section 3.12

      *  Restructured text and improved writing in some parts

   o  version ietf-04 : April 2016, answer to last comments

      *  Updated text on measurements with smartphones

      *  Updated conclusion
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Abstract

   TCP/IP communication is currently restricted to a single path per
   connection, yet multiple paths often exist between peers.  The
   simultaneous use of these multiple paths for a TCP/IP session would
   improve resource usage within the network and, thus, improve user
   experience through higher throughput and improved resilience to
   network failure.

   Multipath TCP provides the ability to simultaneously use multiple
   paths between peers.  This document presents a set of extensions to
   traditional TCP to support multipath operation.  The protocol offers
   the same type of service to applications as TCP (i.e., reliable
   bytestream), and it provides the components necessary to establish
   and use multiple TCP flows across potentially disjoint paths.

   This document specifies v1 of Multipath TCP, obsoleting v0 as
   specified in RFC6824, through clarifications and modifications
   primarily driven by deployment experience.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
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   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 10, 2019.
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1.  Introduction

   Multipath TCP (MPTCP) is a set of extensions to regular TCP [RFC0793]
   to provide a Multipath TCP [RFC6182] service, which enables a
   transport connection to operate across multiple paths simultaneously.
   This document presents the protocol changes required to add multipath
   capability to TCP; specifically, those for signaling and setting up
   multiple paths ("subflows"), managing these subflows, reassembly of
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   data, and termination of sessions.  This is not the only information
   required to create a Multipath TCP implementation, however.  This
   document is complemented by three others:

   o  Architecture [RFC6182], which explains the motivations behind
      Multipath TCP, contains a discussion of high-level design
      decisions on which this design is based, and an explanation of a
      functional separation through which an extensible MPTCP
      implementation can be developed.

   o  Congestion control [RFC6356] presents a safe congestion control
      algorithm for coupling the behavior of the multiple paths in order
      to "do no harm" to other network users.

   o  Application considerations [RFC6897] discusses what impact MPTCP
      will have on applications, what applications will want to do with
      MPTCP, and as a consequence of these factors, what API extensions
      an MPTCP implementation should present.

   This document is an update to, and obsoletes, the v0 specification of
   Multipath TCP (RFC6824).  This document specifies MPTCP v1, which is
   not backward compatible with MPTCP v0.  This document additionally
   defines version negotiation procedures for implementations that
   support both versions.

1.1.  Design Assumptions

   In order to limit the potentially huge design space, the mptcp
   working group imposed two key constraints on the Multipath TCP design
   presented in this document:

   o  It must be backwards-compatible with current, regular TCP, to
      increase its chances of deployment.

   o  It can be assumed that one or both hosts are multihomed and
      multiaddressed.

   To simplify the design, we assume that the presence of multiple
   addresses at a host is sufficient to indicate the existence of
   multiple paths.  These paths need not be entirely disjoint: they may
   share one or many routers between them.  Even in such a situation,
   making use of multiple paths is beneficial, improving resource
   utilization and resilience to a subset of node failures.  The
   congestion control algorithms defined in [RFC6356] ensure this does
   not act detrimentally.  Furthermore, there may be some scenarios
   where different TCP ports on a single host can provide disjoint paths
   (such as through certain Equal-Cost Multipath (ECMP) implementations
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   [RFC2992]), and so the MPTCP design also supports the use of ports in
   path identifiers.

   There are three aspects to the backwards-compatibility listed above
   (discussed in more detail in [RFC6182]):

   External Constraints:  The protocol must function through the vast
      majority of existing middleboxes such as NATs, firewalls, and
      proxies, and as such must resemble existing TCP as far as possible
      on the wire.  Furthermore, the protocol must not assume the
      segments it sends on the wire arrive unmodified at the
      destination: they may be split or coalesced; TCP options may be
      removed or duplicated.

   Application Constraints:  The protocol must be usable with no change
      to existing applications that use the common TCP API (although it
      is reasonable that not all features would be available to such
      legacy applications).  Furthermore, the protocol must provide the
      same service model as regular TCP to the application.

   Fallback:  The protocol should be able to fall back to standard TCP
      with no interference from the user, to be able to communicate with
      legacy hosts.

   The complementary application considerations document [RFC6897]
   discusses the necessary features of an API to provide backwards-
   compatibility, as well as API extensions to convey the behavior of
   MPTCP at a level of control and information equivalent to that
   available with regular, single-path TCP.

   Further discussion of the design constraints and associated design
   decisions are given in the MPTCP Architecture document [RFC6182] and
   in [howhard].

1.2.  Multipath TCP in the Networking Stack

   MPTCP operates at the transport layer and aims to be transparent to
   both higher and lower layers.  It is a set of additional features on
   top of standard TCP; Figure 1 illustrates this layering.  MPTCP is
   designed to be usable by legacy applications with no changes;
   detailed discussion of its interactions with applications is given in
   [RFC6897].
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                                   +-------------------------------+
                                   |           Application         |
      +---------------+            +-------------------------------+
      |  Application  |            |             MPTCP             |
      +---------------+            + - - - - - - - + - - - - - - - +
      |      TCP      |            | Subflow (TCP) | Subflow (TCP) |
      +---------------+            +-------------------------------+
      |      IP       |            |       IP      |      IP       |
      +---------------+            +-------------------------------+

      Figure 1: Comparison of Standard TCP and MPTCP Protocol Stacks

1.3.  Terminology

   This document makes use of a number of terms that are either MPTCP-
   specific or have defined meaning in the context of MPTCP, as follows:

   Path:  A sequence of links between a sender and a receiver, defined
      in this context by a 4-tuple of source and destination address/
      port pairs.

   Subflow:  A flow of TCP segments operating over an individual path,
      which forms part of a larger MPTCP connection.  A subflow is
      started and terminated similar to a regular TCP connection.

   (MPTCP) Connection:  A set of one or more subflows, over which an
      application can communicate between two hosts.  There is a one-to-
      one mapping between a connection and an application socket.

   Data-level:  The payload data is nominally transferred over a
      connection, which in turn is transported over subflows.  Thus, the
      term "data-level" is synonymous with "connection level", in
      contrast to "subflow-level", which refers to properties of an
      individual subflow.

   Token:  A locally unique identifier given to a multipath connection
      by a host.  May also be referred to as a "Connection ID".

   Host:  An end host operating an MPTCP implementation, and either
      initiating or accepting an MPTCP connection.

   In addition to these terms, note that MPTCP’s interpretation of, and
   effect on, regular single-path TCP semantics are discussed in
   Section 4.
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1.4.  MPTCP Concept

   This section provides a high-level summary of normal operation of
   MPTCP, and is illustrated by the scenario shown in Figure 2.  A
   detailed description of operation is given in Section 3.

   o  To a non-MPTCP-aware application, MPTCP will behave the same as
      normal TCP.  Extended APIs could provide additional control to
      MPTCP-aware applications [RFC6897].  An application begins by
      opening a TCP socket in the normal way.  MPTCP signaling and
      operation are handled by the MPTCP implementation.

   o  An MPTCP connection begins similarly to a regular TCP connection.
      This is illustrated in Figure 2 where an MPTCP connection is
      established between addresses A1 and B1 on Hosts A and B,
      respectively.

   o  If extra paths are available, additional TCP sessions (termed
      MPTCP "subflows") are created on these paths, and are combined
      with the existing session, which continues to appear as a single
      connection to the applications at both ends.  The creation of the
      additional TCP session is illustrated between Address A2 on Host A
      and Address B1 on Host B.

   o  MPTCP identifies multiple paths by the presence of multiple
      addresses at hosts.  Combinations of these multiple addresses
      equate to the additional paths.  In the example, other potential
      paths that could be set up are A1<->B2 and A2<->B2.  Although this
      additional session is shown as being initiated from A2, it could
      equally have been initiated from B1 or B2.

   o  The discovery and setup of additional subflows will be achieved
      through a path management method; this document describes a
      mechanism by which a host can initiate new subflows by using its
      own additional addresses, or by signaling its available addresses
      to the other host.

   o  MPTCP adds connection-level sequence numbers to allow the
      reassembly of segments arriving on multiple subflows with
      differing network delays.

   o  Subflows are terminated as regular TCP connections, with a four-
      way FIN handshake.  The MPTCP connection is terminated by a
      connection-level FIN.
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               Host A                               Host B
      ------------------------             ------------------------
      Address A1    Address A2             Address B1    Address B2
      ----------    ----------             ----------    ----------
          |             |                      |             |
          |     (initial connection setup)     |             |
          |----------------------------------->|             |
          |<-----------------------------------|             |
          |             |                      |             |
          |            (additional subflow setup)            |
          |             |--------------------->|             |
          |             |<---------------------|             |
          |             |                      |             |
          |             |                      |             |

                  Figure 2: Example MPTCP Usage Scenario

1.5.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Operation Overview

   This section presents a single description of common MPTCP operation,
   with reference to the protocol operation.  This is a high-level
   overview of the key functions; the full specification follows in
   Section 3.  Extensibility and negotiated features are not discussed
   here.  Considerable reference is made to symbolic names of MPTCP
   options throughout this section -- these are subtypes of the IANA-
   assigned MPTCP option (see Section 8), and their formats are defined
   in the detailed protocol specification that follows in Section 3.

   A Multipath TCP connection provides a bidirectional bytestream
   between two hosts communicating like normal TCP and, thus, does not
   require any change to the applications.  However, Multipath TCP
   enables the hosts to use different paths with different IP addresses
   to exchange packets belonging to the MPTCP connection.  A Multipath
   TCP connection appears like a normal TCP connection to an
   application.  However, to the network layer, each MPTCP subflow looks
   like a regular TCP flow whose segments carry a new TCP option type.
   Multipath TCP manages the creation, removal, and utilization of these
   subflows to send data.  The number of subflows that are managed
   within a Multipath TCP connection is not fixed and it can fluctuate
   during the lifetime of the Multipath TCP connection.
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   All MPTCP operations are signaled with a TCP option -- a single
   numerical type for MPTCP, with "sub-types" for each MPTCP message.
   What follows is a summary of the purpose and rationale of these
   messages.

2.1.  Initiating an MPTCP Connection

   This is the same signaling as for initiating a normal TCP connection,
   but the SYN, SYN/ACK, and initial ACK (and data) packets also carry
   the MP_CAPABLE option.  This option has a variable length and serves
   multiple purposes.  Firstly, it verifies whether the remote host
   supports Multipath TCP; secondly, this option allows the hosts to
   exchange some information to authenticate the establishment of
   additional subflows.  Further details are given in Section 3.1.

      Host A                                  Host B
      ------                                  ------
      MP_CAPABLE                ->
      [flags]
                                <-            MP_CAPABLE
                                              [B’s key, flags]
      ACK + MP_CAPABLE (+ data) ->
      [A’s key, B’s key, flags, (data-level details)]

   Retransmission of the ACK + MP_CAPABLE can occur if it is not known
   if it has been received.  The following diagrams show all possible
   exchanges for the initial subflow setup to ensure this reliability.
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      Host A (with data to send immediately)  Host B
      ------                                  ------
      MP_CAPABLE                ->
      [flags]
                                <-            MP_CAPABLE
                                              [B’s key, flags]
      ACK + MP_CAPABLE + data   ->
      [A’s key, B’s key, flags, data-level details]

      Host A (with data to send later)        Host B
      ------                                  ------
      MP_CAPABLE                ->
      [flags]
                                <-            MP_CAPABLE
                                              [B’s key, flags]
      ACK + MP_CAPABLE          ->
      [A’s key, B’s key, flags]

      ACK + MP_CAPABLE + data   ->
      [A’s key, B’s key, flags, data-level details]

      Host A                                  Host B (sending first)
      ------                                  ------
      MP_CAPABLE                ->
      [flags]
                                <-            MP_CAPABLE
                                              [B’s key, flags]
      ACK + MP_CAPABLE          ->
      [A’s key, B’s key, flags]

                                <-            ACK + DSS + data
                                              [data-level details]

2.2.  Associating a New Subflow with an Existing MPTCP Connection

   The exchange of keys in the MP_CAPABLE handshake provides material
   that can be used to authenticate the endpoints when new subflows will
   be set up.  Additional subflows begin in the same way as initiating a
   normal TCP connection, but the SYN, SYN/ACK, and ACK packets also
   carry the MP_JOIN option.

   Host A initiates a new subflow between one of its addresses and one
   of Host B’s addresses.  The token -- generated from the key -- is
   used to identify which MPTCP connection it is joining, and the HMAC
   is used for authentication.  The Hash-based Message Authentication
   Code (HMAC) uses the keys exchanged in the MP_CAPABLE handshake, and
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   the random numbers (nonces) exchanged in these MP_JOIN options.
   MP_JOIN also contains flags and an Address ID that can be used to
   refer to the source address without the sender needing to know if it
   has been changed by a NAT.  Further details are in Section 3.2.

      Host A                                  Host B
      ------                                  ------
      MP_JOIN               ->
      [B’s token, A’s nonce,
       A’s Address ID, flags]
                            <-                MP_JOIN
                                              [B’s HMAC, B’s nonce,
                                               B’s Address ID, flags]
      ACK + MP_JOIN         ->
      [A’s HMAC]

                            <-                ACK

2.3.  Informing the Other Host about Another Potential Address

   The set of IP addresses associated to a multihomed host may change
   during the lifetime of an MPTCP connection.  MPTCP supports the
   addition and removal of addresses on a host both implicitly and
   explicitly.  If Host A has established a subflow starting at address/
   port pair IP#-A1 and wants to open a second subflow starting at
   address/port pair IP#-A2, it simply initiates the establishment of
   the subflow as explained above.  The remote host will then be
   implicitly informed about the new address.

   In some circumstances, a host may want to advertise to the remote
   host the availability of an address without establishing a new
   subflow, for example, when a NAT prevents setup in one direction.  In
   the example below, Host A informs Host B about its alternative IP
   address/port pair (IP#-A2).  Host B may later send an MP_JOIN to this
   new address.  The ADD_ADDR option contains a HMAC to authenticate the
   address as having been sent from the originator of the connection.
   The receiver of this option echoes it back to the client to indicate
   successful receipt.  Further details are in Section 3.4.1.
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      Host A                                 Host B
      ------                                 ------
      ADD_ADDR                  ->
      [Echo-flag=0,
       IP#-A2,
       IP#-A2’s Address ID,
       HMAC of IP#-A2]

                                <-          ADD_ADDR
                                            [Echo-flag=1,
                                             IP#-A2,
                                             IP#-A2’s Address ID,
                                             HMAC of IP#-A2]

   There is a corresponding signal for address removal, making use of
   the Address ID that is signaled in the add address handshake.
   Further details in Section 3.4.2.

      Host A                                 Host B
      ------                                 ------
      REMOVE_ADDR               ->
      [IP#-A2’s Address ID]

2.4.  Data Transfer Using MPTCP

   To ensure reliable, in-order delivery of data over subflows that may
   appear and disappear at any time, MPTCP uses a 64-bit data sequence
   number (DSN) to number all data sent over the MPTCP connection.  Each
   subflow has its own 32-bit sequence number space, utilising the
   regular TCP sequence number header, and an MPTCP option maps the
   subflow sequence space to the data sequence space.  In this way, data
   can be retransmitted on different subflows (mapped to the same DSN)
   in the event of failure.

   The Data Sequence Signal (DSS) carries the Data Sequence Mapping.
   The Data Sequence Mapping consists of the subflow sequence number,
   data sequence number, and length for which this mapping is valid.
   This option can also carry a connection-level acknowledgment (the
   "Data ACK") for the received DSN.

   With MPTCP, all subflows share the same receive buffer and advertise
   the same receive window.  There are two levels of acknowledgment in
   MPTCP.  Regular TCP acknowledgments are used on each subflow to
   acknowledge the reception of the segments sent over the subflow
   independently of their DSN.  In addition, there are connection-level
   acknowledgments for the data sequence space.  These acknowledgments
   track the advancement of the bytestream and slide the receiving
   window.
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   Further details are in Section 3.3.

      Host A                                 Host B
      ------                                 ------
      DSS                       ->
      [Data Sequence Mapping]
      [Data ACK]
      [Checksum]

2.5.  Requesting a Change in a Path’s Priority

   Hosts can indicate at initial subflow setup whether they wish the
   subflow to be used as a regular or backup path -- a backup path only
   being used if there are no regular paths available.  During a
   connection, Host A can request a change in the priority of a subflow
   through the MP_PRIO signal to Host B.  Further details are in
   Section 3.3.8.

      Host A                                 Host B
      ------                                 ------
      MP_PRIO                   ->

2.6.  Closing an MPTCP Connection

   When a host wants to close an existing subflow, but not the whole
   connection, it can initiate a regular TCP FIN/ACK exchange.

   When Host A wants to inform Host B that it has no more data to send,
   it signals this "Data FIN" as part of the Data Sequence Signal (see
   above).  It has the same semantics and behavior as a regular TCP FIN,
   but at the connection level.  Once all the data on the MPTCP
   connection has been successfully received, then this message is
   acknowledged at the connection level with a Data ACK.  Further
   details are in Section 3.3.3.

      Host A                                 Host B
      ------                                 ------
      DSS                       ->
      [Data FIN]
                                <-           DSS
                                             [Data ACK]

   There is an additional method of connection closure, referred to as
   "Fast Close", which is analogous to closing a single-path TCP
   connection with a RST signal.  The MP_FASTCLOSE signal is used to
   indicate to the peer that the connection will be abruptly closed and
   no data will be accepted anymore.  This can be used on an ACK
   (ensuring reliability of the signal), or a RST (which is not).  Both
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   examples are shown in the following diagrams.  Further details are in
   Section 3.5.

      Host A                                 Host B
      ------                                 ------
      ACK + MP_FASTCLOSE          ->
      [B’s key]

      [RST on all other subflows] ->

                                  <-         [RST on all subflows]

      Host A                                 Host B
      ------                                 ------
      RST + MP_FASTCLOSE          ->
      [B’s key] [on all subflows]

                                  <-         [RST on all subflows]

2.7.  Notable Features

   It is worth highlighting that MPTCP’s signaling has been designed
   with several key requirements in mind:

   o  To cope with NATs on the path, addresses are referred to by
      Address IDs, in case the IP packet’s source address gets changed
      by a NAT.  Setting up a new TCP flow is not possible if the
      receiver of the SYN is behind a NAT; to allow subflows to be
      created when either end is behind a NAT, MPTCP uses the ADD_ADDR
      message.

   o  MPTCP falls back to ordinary TCP if MPTCP operation is not
      possible, for example, if one host is not MPTCP capable or if a
      middlebox alters the payload.  This is discussed in Section 3.7.

   o  To address the threats identified in [RFC6181], the following
      steps are taken: keys are sent in the clear in the MP_CAPABLE
      messages; MP_JOIN messages are secured with HMAC-SHA256
      ([RFC2104], [RFC6234]) using those keys; and standard TCP validity
      checks are made on the other messages (ensuring sequence numbers
      are in-window [RFC5961]).  Residual threats to MPTCP v0 were
      identified in [RFC7430], and those affecting the protocol (i.e.
      modification to ADD_ADDR) have been incorporated in this document.
      Further discussion of security can be found in Section 5.
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3.  MPTCP Protocol

   This section describes the operation of the MPTCP protocol, and is
   subdivided into sections for each key part of the protocol operation.

   All MPTCP operations are signaled using optional TCP header fields.
   A single TCP option number ("Kind") has been assigned by IANA for
   MPTCP (see Section 8), and then individual messages will be
   determined by a "subtype", the values of which are also stored in an
   IANA registry (and are also listed in Section 8).  As with all TCP
   options, the Length field is specified in bytes, and includes the 2
   bytes of Kind and Length.

   Throughout this document, when reference is made to an MPTCP option
   by symbolic name, such as "MP_CAPABLE", this refers to a TCP option
   with the single MPTCP option type, and with the subtype value of the
   symbolic name as defined in Section 8.  This subtype is a 4-bit field
   -- the first 4 bits of the option payload, as shown in Figure 3.  The
   MPTCP messages are defined in the following sections.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-----------------------+
      |     Kind      |    Length     |Subtype|                       |
      +---------------+---------------+-------+                       |
      |                     Subtype-specific data                     |
      |                       (variable length)                       |
      +---------------------------------------------------------------+

                       Figure 3: MPTCP Option Format

   Those MPTCP options associated with subflow initiation are used on
   packets with the SYN flag set.  Additionally, there is one MPTCP
   option for signaling metadata to ensure segmented data can be
   recombined for delivery to the application.

   The remaining options, however, are signals that do not need to be on
   a specific packet, such as those for signaling additional addresses.
   Whilst an implementation may desire to send MPTCP options as soon as
   possible, it may not be possible to combine all desired options (both
   those for MPTCP and for regular TCP, such as SACK (selective
   acknowledgment) [RFC2018]) on a single packet.  Therefore, an
   implementation may choose to send duplicate ACKs containing the
   additional signaling information.  This changes the semantics of a
   duplicate ACK; these are usually only sent as a signal of a lost
   segment [RFC5681] in regular TCP.  Therefore, an MPTCP implementation
   receiving a duplicate ACK that contains an MPTCP option MUST NOT
   treat it as a signal of congestion.  Additionally, an MPTCP
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   implementation SHOULD NOT send more than two duplicate ACKs in a row
   for the purposes of sending MPTCP options alone, in order to ensure
   no middleboxes misinterpret this as a sign of congestion.

   Furthermore, standard TCP validity checks (such as ensuring the
   sequence number and acknowledgment number are within window) MUST be
   undertaken before processing any MPTCP signals, as described in
   [RFC5961], and initial subflow sequence numbers SHOULD be generated
   according to the recommendations in [RFC6528].

3.1.  Connection Initiation

   Connection initiation begins with a SYN, SYN/ACK, ACK exchange on a
   single path.  Each packet contains the Multipath Capable (MP_CAPABLE)
   MPTCP option (Figure 4).  This option declares its sender is capable
   of performing Multipath TCP and wishes to do so on this particular
   connection.

   The MP_CAPABLE exchange in this specification (v1) is different to
   that specified in v0.  If a host supports multiple versions of MPTCP,
   the sender of the MP_CAPABLE option SHOULD signal the highest version
   number it supports.  In return, in its MP_CAPABLE option, the
   receiver will signal the version number it wishes to use, which MUST
   be equal to or lower than the version number indicated in the initial
   MP_CAPABLE.  There is a caveat though with respect to this version
   negotiation with old listeners that only support v0.  A listener that
   supports v0 expects that the MP_CAPABLE option in the SYN-segment
   includes the initiator’s key.  If the initiator however already
   upgraded to v1, it won’t include the key in the SYN-segment.  Thus,
   the listener will ignore the MP_CAPABLE of this SYN-segment and reply
   with a SYN/ACK that does not include an MP_CAPABLE.  The initiator
   MAY choose to immediately fall back to TCP or MAY choose to attempt a
   connection using MPTCP v0 (if the initiator supports v0), in order to
   discover whether the listener supports the earlier version of MPTCP.
   In general a MPTCP v0 connection is likely to be preferred to a TCP
   one, however in a particular deployment scenario it may be known that
   the listener is unlikely to support MPTCPv0 and so the initiator may
   prefer not to attempt a v0 connection.  An initiator MAY cache
   information for a peer about what version of MPTCP it supports if
   any, and use this information for future connection attempts.

   The MP_CAPABLE option is variable-length, with different fields
   included depending on which packet the option is used on.  The full
   MP_CAPABLE option is shown in Figure 4.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-------+---------------+
      |     Kind      |    Length     |Subtype|Version|A|B|C|D|E|F|G|H|
      +---------------+---------------+-------+-------+---------------+
      |                   Option Sender’s Key (64 bits)               |
      |                      (if option Length > 4)                   |
      |                                                               |
      +---------------------------------------------------------------+
      |                  Option Receiver’s Key (64 bits)              |
      |                      (if option Length > 12)                  |
      |                                                               |
      +-------------------------------+-------------------------------+
      |  Data-Level Length (16 bits)  |  Checksum (16 bits, optional) |
      +-------------------------------+-------------------------------+

              Figure 4: Multipath Capable (MP_CAPABLE) Option

   The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK packets
   that start the first subflow of an MPTCP connection, as well as the
   first packet that carries data, if the initiator wishes to send
   first.  The data carried by each option is as follows, where A =
   initiator and B = listener.

   o  SYN (A->B): only the first four octets (Length = 4).

   o  SYN/ACK (B->A): B’s Key for this connection (Length = 12).

   o  ACK (no data) (A->B): A’s Key followed by B’s Key (Length = 20).

   o  ACK (with first data) (A->B): A’s Key followed by B’s Key followed
      by Data-Level Length, and optional Checksum (Length = 22 or 24).

   The contents of the option is determined by the SYN and ACK flags of
   the packet, along with the option’s length field.  For the diagram
   shown in Figure 4, "sender" and "receiver" refer to the sender or
   receiver of the TCP packet (which can be either host).

   The initial SYN, containing just the MP_CAPABLE header, is used to
   define the version of MPTCP being requested, as well as exchanging
   flags to negotiate connection features, described later.

   This option is used to declare the 64-bit keys that the end hosts
   have generated for this MPTCP connection.  These keys are used to
   authenticate the addition of future subflows to this connection.
   This is the only time the key will be sent in clear on the wire
   (unless "fast close", Section 3.5, is used); all future subflows will
   identify the connection using a 32-bit "token".  This token is a
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   cryptographic hash of this key.  The algorithm for this process is
   dependent on the authentication algorithm selected; the method of
   selection is defined later in this section.

   Upon reception of the initial SYN-segment, a stateful server
   generates a random key and replies with a SYN/ACK.  The key’s method
   of generation is implementation specific.  The key MUST be hard to
   guess, and it MUST be unique for the sending host across all its
   current MPTCP connections.  Recommendations for generating random
   numbers for use in keys are given in [RFC4086].  Connections will be
   indexed at each host by the token (a one-way hash of the key).
   Therefore, an implementation will require a mapping from each token
   to the corresponding connection, and in turn to the keys for the
   connection.

   There is a risk that two different keys will hash to the same token.
   The risk of hash collisions is usually small, unless the host is
   handling many tens of thousands of connections.  Therefore, an
   implementation SHOULD check its list of connection tokens to ensure
   there is no collision before sending its key, and if there is, then
   it should generate a new key.  This would, however, be costly for a
   server with thousands of connections.  The subflow handshake
   mechanism (Section 3.2) will ensure that new subflows only join the
   correct connection, however, through the cryptographic handshake, as
   well as checking the connection tokens in both directions, and
   ensuring sequence numbers are in-window.  So in the worst case if
   there was a token collision, the new subflow would not succeed, but
   the MPTCP connection would continue to provide a regular TCP service.

   Since key generation is implementation-specific, there is no
   requirement that they be simply random numbers.  An implementation is
   free to exchange cryptographic material out-of-band and generate
   these keys from this, in order to provide additional mechanisms by
   which to verify the identity of the communicating entities.  For
   example, an implementation could choose to link its MPTCP keys to
   those used in higher-layer TLS or SSH connections.

   If the server behaves in a stateless manner, it has to generate its
   own key in a verifiable fashion.  This verifiable way of generating
   the key can be done by using a hash of the 4-tuple, sequence number
   and a local secret (similar to what is done for the TCP-sequence
   number [RFC4987]).  It will thus be able to verify whether it is
   indeed the originator of the key echoed back in the later MP_CAPABLE
   option.  As for a stateful server, the tokens SHOULD be checked for
   uniqueness, however if uniqueness is not met, and there is no way to
   generate an alternative verifiable key, then the connection MUST fall
   back to using regular TCP by not sending a MP_CAPABLE in the SYN/ACK.
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   The ACK carries both A’s key and B’s key.  This is the first time
   that A’s key is seen on the wire, although it is expected that A will
   have generated a key locally before the initial SYN.  The echoing of
   B’s key allows B to operate statelessly, as described above.
   Therefore, A’s key must be delivered reliably to B, and in order to
   do this, the transmission of this packet must be made reliable.

   If B has data to send first, then the reliable delivery of the
   ACK+MP_CAPABLE can be inferred by the receipt of this data with a
   MPTCP Data Sequence Signal (DSS) option (Section 3.3).  If, however,
   A wishes to send data first, it has two options to ensure the
   reliable delivery of the ACK+MP_CAPABLE.  If it immediately has data
   to send, then the third ACK (with data) would also contain an
   MP_CAPABLE option with additional data parameters (the Data-Level
   Length and optional Checksum as shown in Figure 4).  If A does not
   immediately have data to send, it MUST include the MP_CAPABLE on the
   third ACK, but without the additional data parameters.  When A does
   have data to send, it must repeat the sending of the MP_CAPABLE
   option from the third ACK, with additional data parameters.  This
   MP_CAPABLE option is in place of the DSS, and simply specifies the
   data-level length of the payload, and the checksum (if the use of
   checksums is negotiated).  This is the minimal data required to
   establish a MPTCP connection - it allows validation of the payload,
   and given it is the first data, the Initial Data Sequence Number
   (IDSN) is also known (as it is generated from the key, as described
   below).  Conveying the keys on the first data packet allows the TCP
   reliability mechanisms to ensure the packet is successfully
   delivered.  The receiver will acknowledge this data at the connection
   level with a Data ACK, as if a DSS option has been received.

   There could be situations where both A and B attempt to transmit
   initial data at the same time.  For example, if A did not initially
   have data to send, but then needed to transmit data before it had
   received anything from B, it would use a MP_CAPABLE option with data
   parameters (since it would not know if the MP_CAPABLE on the ACK was
   received).  In such a situation, B may also have transmitted data
   with a DSS option, but it had not yet been received at A.  Therefore,
   B has received data with a MP_CAPABLE mapping after it has sent data
   with a DSS option.  To ensure these situations can be handled, it
   follows that the data parameters in a MP_CAPABLE are semantically
   equivalent to those in a DSS option and can be used interchangeably.
   Similar situations could occur when the MP_CAPABLE with data is lost
   and retransmitted.  Furthermore, in the case of TCP Segmentation
   Offloading, the MP_CAPABLE with data parameters may be duplicated
   across multiple packets, and implementations must also be able to
   cope with duplicate MP_CAPABLE mappings as well as duplicate DSS
   mappings.
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   Additionally, the MP_CAPABLE exchange allows the safe passage of
   MPTCP options on SYN packets to be determined.  If any of these
   options are dropped, MPTCP will gracefully fall back to regular
   single-path TCP, as documented in Section 3.7.  If at any point in
   the handshake either party thinks the MPTCP negotiation is
   compromised, for example by a middlebox corrupting the TCP options,
   or unexpected ACK numbers being present, the host MUST stop using
   MPTCP and no longer include MPTCP options in future TCP packets.  The
   other host will then also fall back to regular TCP using the fall
   back mechanism.  Note that new subflows MUST NOT be established
   (using the process documented in Section 3.2) until a Data Sequence
   Signal (DSS) option has been successfully received across the path
   (as documented in Section 3.3).

   Like all MPTCP options, the MP_CAPABLE option starts with the Kind
   and Length to specify the TCP-option kind and its length.  Followed
   by that is the MP_CAPABLE option.  The first 4 bits of the first
   octet in the MP_CAPABLE option (Figure 4) define the MPTCP option
   subtype (see Section 8; for MP_CAPABLE, this is 0x0), and the
   remaining 4 bits of this octet specify the MPTCP version in use (for
   this specification, this is 1).

   The second octet is reserved for flags, allocated as follows:

   A: The leftmost bit, labeled "A", SHOULD be set to 1 to indicate
      "Checksum Required", unless the system administrator has decided
      that checksums are not required (for example, if the environment
      is controlled and no middleboxes exist that might adjust the
      payload).

   B: The second bit, labeled "B", is an extensibility flag, and MUST be
      set to 0 for current implementations.  This will be used for an
      extensibility mechanism in a future specification, and the impact
      of this flag will be defined at a later date.  It is expected, but
      not mandated, that this flag would be used as part of an
      alternative security mechanism that does not require a full
      version upgrade of the protocol, but does require redefining some
      elements of the handshake.  If receiving a message with the ’B’
      flag set to 1, and this is not understood, then the MP_CAPABLE in
      this SYN MUST be silently ignored, which triggers a fallback to
      regular TCP; the sender is expected to retry with a format
      compatible with this legacy specification.  Note that the length
      of the MP_CAPABLE option, and the meanings of bits "D" through
      "H", may be altered by setting B=1.

   C: The third bit, labeled "C", is set to "1" to indicate that the
      sender of this option will not accept additional MPTCP subflows to
      the source address and port, and therefore the receiver MUST NOT
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      try to open any additional subflows towards this address and port.
      This is an efficiency improvement for situations where the sender
      knows a restriction is in place, for example if the sender is
      behind a strict NAT, or operating behind a legacy Layer 4 load
      balancer.

   D through H:  The remaining bits, labeled "D" through "H", are used
      for crypto algorithm negotiation.  In this specification only the
      rightmost bit, labeled "H", is assigned.  Bit "H" indicates the
      use of HMAC-SHA256 (as defined in Section 3.2).  An implementation
      that only supports this method MUST set bit "H" to 1, and bits "D"
      through "G" to 0.

   A crypto algorithm MUST be specified.  If flag bits D through H are
   all 0, the MP_CAPABLE option MUST be treated as invalid and ignored
   (that is, it must be treated as a regular TCP handshake).

   The selection of the authentication algorithm also impacts the
   algorithm used to generate the token and the Initial Data Sequence
   Number (IDSN).  In this specification, with only the SHA-256
   algorithm (bit "H") specified and selected, the token MUST be a
   truncated (most significant 32 bits) SHA-256 hash ([RFC6234]) of the
   key.  A different, 64-bit truncation (the least significant 64 bits)
   of the SHA-256 hash of the key MUST be used as the IDSN.  Note that
   the key MUST be hashed in network byte order.  Also note that the
   "least significant" bits MUST be the rightmost bits of the SHA-256
   digest, as per [RFC6234].  Future specifications of the use of the
   crypto bits may choose to specify different algorithms for token and
   IDSN generation.

   Both the crypto and checksum bits negotiate capabilities in similar
   ways.  For the Checksum Required bit (labeled "A"), if either host
   requires the use of checksums, checksums MUST be used.  In other
   words, the only way for checksums not to be used is if both hosts in
   their SYNs set A=0.  This decision is confirmed by the setting of the
   "A" bit in the third packet (the ACK) of the handshake.  For example,
   if the initiator sets A=0 in the SYN, but the responder sets A=1 in
   the SYN/ACK, checksums MUST be used in both directions, and the
   initiator will set A=1 in the ACK.  The decision whether to use
   checksums will be stored by an implementation in a per-connection
   binary state variable.  If A=1 is received by a host that does not
   want to use checksums, it MUST fall back to regular TCP by ignoring
   the MP_CAPABLE option as if it was invalid.

   For crypto negotiation, the responder has the choice.  The initiator
   creates a proposal setting a bit for each algorithm it supports to 1
   (in this version of the specification, there is only one proposal, so
   bit "H" will be always set to 1).  The responder responds with only 1
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   bit set -- this is the chosen algorithm.  The rationale for this
   behavior is that the responder will typically be a server with
   potentially many thousands of connections, so it may wish to choose
   an algorithm with minimal computational complexity, depending on the
   load.  If a responder does not support (or does not want to support)
   any of the initiator’s proposals, it MUST respond without an
   MP_CAPABLE option, thus forcing a fallback to regular TCP.

   The MP_CAPABLE option is only used in the first subflow of a
   connection, in order to identify the connection; all following
   subflows will use the "Join" option (see Section 3.2) to join the
   existing connection.

   If a SYN contains an MP_CAPABLE option but the SYN/ACK does not, it
   is assumed that sender of the SYN/ACK is not multipath capable; thus,
   the MPTCP session MUST operate as a regular, single-path TCP.  If a
   SYN does not contain a MP_CAPABLE option, the SYN/ACK MUST NOT
   contain one in response.  If the third packet (the ACK) does not
   contain the MP_CAPABLE option, then the session MUST fall back to
   operating as a regular, single-path TCP.  This is to maintain
   compatibility with middleboxes on the path that drop some or all TCP
   options.  Note that an implementation MAY choose to attempt sending
   MPTCP options more than one time before making this decision to
   operate as regular TCP (see Section 3.9).

   If the SYN packets are unacknowledged, it is up to local policy to
   decide how to respond.  It is expected that a sender will eventually
   fall back to single-path TCP (i.e., without the MP_CAPABLE option) in
   order to work around middleboxes that may drop packets with unknown
   options; however, the number of multipath-capable attempts that are
   made first will be up to local policy.  It is possible that MPTCP and
   non-MPTCP SYNs could get reordered in the network.  Therefore, the
   final state is inferred from the presence or absence of the
   MP_CAPABLE option in the third packet of the TCP handshake.  If this
   option is not present, the connection SHOULD fall back to regular
   TCP, as documented in Section 3.7.

   The initial data sequence number on an MPTCP connection is generated
   from the key.  The algorithm for IDSN generation is also determined
   from the negotiated authentication algorithm.  In this specification,
   with only the SHA-256 algorithm specified and selected, the IDSN of a
   host MUST be the least significant 64 bits of the SHA-256 hash of its
   key, i.e., IDSN-A = Hash(Key-A) and IDSN-B = Hash(Key-B).  This
   deterministic generation of the IDSN allows a receiver to ensure that
   there are no gaps in sequence space at the start of the connection.
   The SYN with MP_CAPABLE occupies the first octet of data sequence
   space, although this does not need to be acknowledged at the
   connection level until the first data is sent (see Section 3.3).
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3.2.  Starting a New Subflow

   Once an MPTCP connection has begun with the MP_CAPABLE exchange,
   further subflows can be added to the connection.  Hosts have
   knowledge of their own address(es), and can become aware of the other
   host’s addresses through signaling exchanges as described in
   Section 3.4.  Using this knowledge, a host can initiate a new subflow
   over a currently unused pair of addresses.  It is permitted for
   either host in a connection to initiate the creation of a new
   subflow, but it is expected that this will normally be the original
   connection initiator (see Section 3.9 for heuristics).

   A new subflow is started as a normal TCP SYN/ACK exchange.  The Join
   Connection (MP_JOIN) MPTCP option is used to identify the connection
   to be joined by the new subflow.  It uses keying material that was
   exchanged in the initial MP_CAPABLE handshake (Section 3.1), and that
   handshake also negotiates the crypto algorithm in use for the MP_JOIN
   handshake.

   This section specifies the behavior of MP_JOIN using the HMAC-SHA256
   algorithm.  An MP_JOIN option is present in the SYN, SYN/ACK, and ACK
   of the three-way handshake, although in each case with a different
   format.

   In the first MP_JOIN on the SYN packet, illustrated in Figure 5, the
   initiator sends a token, random number, and address ID.

   The token is used to identify the MPTCP connection and is a
   cryptographic hash of the receiver’s key, as exchanged in the initial
   MP_CAPABLE handshake (Section 3.1).  In this specification, the
   tokens presented in this option are generated by the SHA-256
   [RFC6234] algorithm, truncated to the most significant 32 bits.  The
   token included in the MP_JOIN option is the token that the receiver
   of the packet uses to identify this connection; i.e., Host A will
   send Token-B (which is generated from Key-B).  Note that the hash
   generation algorithm can be overridden by the choice of cryptographic
   handshake algorithm, as defined in Section 3.1.

   The MP_JOIN SYN sends not only the token (which is static for a
   connection) but also random numbers (nonces) that are used to prevent
   replay attacks on the authentication method.  Recommendations for the
   generation of random numbers for this purpose are given in [RFC4086].

   The MP_JOIN option includes an "Address ID".  This is an identifier
   generated by the sender of the option, used to identify the source
   address of this packet, even if the IP header has been changed in
   transit by a middlebox.  The numeric value of this field is generated
   by the sender and must map uniquely to a source IP address for the
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   sending host.  The Address ID allows address removal (Section 3.4.2)
   without needing to know what the source address at the receiver is,
   thus allowing address removal through NATs.  The Address ID also
   allows correlation between new subflow setup attempts and address
   signaling (Section 3.4.1), to prevent setting up duplicate subflows
   on the same path, if an MP_JOIN and ADD_ADDR are sent at the same
   time.

   The Address IDs of the subflow used in the initial SYN exchange of
   the first subflow in the connection are implicit, and have the value
   zero.  A host MUST store the mappings between Address IDs and
   addresses both for itself and the remote host.  An implementation
   will also need to know which local and remote Address IDs are
   associated with which established subflows, for when addresses are
   removed from a local or remote host.

   The MP_JOIN option on packets with the SYN flag set also includes 4
   bits of flags, 3 of which are currently reserved and MUST be set to
   zero by the sender.  The final bit, labeled "B", indicates whether
   the sender of this option wishes this subflow to be used as a backup
   path (B=1) in the event of failure of other paths, or whether it
   wants it to be used as part of the connection immediately.  By
   setting B=1, the sender of the option is requesting the other host to
   only send data on this subflow if there are no available subflows
   where B=0.  Subflow policy is discussed in more detail in
   Section 3.3.8.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-----+-+---------------+
      |     Kind      |  Length = 12  |Subtype|(rsv)|B|   Address ID  |
      +---------------+---------------+-------+-----+-+---------------+
      |                   Receiver’s Token (32 bits)                  |
      +---------------------------------------------------------------+
      |                Sender’s Random Number (32 bits)               |
      +---------------------------------------------------------------+

       Figure 5: Join Connection (MP_JOIN) Option (for Initial SYN)

   When receiving a SYN with an MP_JOIN option that contains a valid
   token for an existing MPTCP connection, the recipient SHOULD respond
   with a SYN/ACK also containing an MP_JOIN option containing a random
   number and a truncated (leftmost 64 bits) Hash-based Message
   Authentication Code (HMAC).  This version of the option is shown in
   Figure 6.  If the token is unknown, or the host wants to refuse
   subflow establishment (for example, due to a limit on the number of
   subflows it will permit), the receiver will send back a reset (RST)
   signal, analogous to an unknown port in TCP, containing a MP_TCPRST
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   option (Section 3.6) with a "MPTCP specific error" reason code.
   Although calculating an HMAC requires cryptographic operations, it is
   believed that the 32-bit token in the MP_JOIN SYN gives sufficient
   protection against blind state exhaustion attacks; therefore, there
   is no need to provide mechanisms to allow a responder to operate
   statelessly at the MP_JOIN stage.

   An HMAC is sent by both hosts -- by the initiator (Host A) in the
   third packet (the ACK) and by the responder (Host B) in the second
   packet (the SYN/ACK).  Doing the HMAC exchange at this stage allows
   both hosts to have first exchanged random data (in the first two SYN
   packets) that is used as the "message".  This specification defines
   that HMAC as defined in [RFC2104] is used, along with the SHA-256
   hash algorithm [RFC6234], and that the output is truncated to the
   leftmost 160 bits (20 octets).  Due to option space limitations, the
   HMAC included in the SYN/ACK is truncated to the leftmost 64 bits,
   but this is acceptable since random numbers are used; thus, an
   attacker only has one chance to correctly guess the HMAC that matches
   the random number previously sent by the peer (if the HMAC is
   incorrect, the TCP connection is closed, so a new MP_JOIN negotiation
   with a new random number is required).

   The initiator’s authentication information is sent in its first ACK
   (the third packet of the handshake), as shown in Figure 7.  This data
   needs to be sent reliably, since it is the only time this HMAC is
   sent; therefore, receipt of this packet MUST trigger a regular TCP
   ACK in response, and the packet MUST be retransmitted if this ACK is
   not received.  In other words, sending the ACK/MP_JOIN packet places
   the subflow in the PRE_ESTABLISHED state, and it moves to the
   ESTABLISHED state only on receipt of an ACK from the receiver.  It is
   not permitted to send data while in the PRE_ESTABLISHED state.  The
   reserved bits in this option MUST be set to zero by the sender.

   The key for the HMAC algorithm, in the case of the message
   transmitted by Host A, will be Key-A followed by Key-B, and in the
   case of Host B, Key-B followed by Key-A.  These are the keys that
   were exchanged in the original MP_CAPABLE handshake.  The "message"
   for the HMAC algorithm in each case is the concatenations of random
   number for each host (denoted by R): for Host A, R-A followed by R-B;
   and for Host B, R-B followed by R-A.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-----+-+---------------+
      |     Kind      |  Length = 16  |Subtype|(rsv)|B|   Address ID  |
      +---------------+---------------+-------+-----+-+---------------+
      |                                                               |
      |                Sender’s Truncated HMAC (64 bits)              |
      |                                                               |
      +---------------------------------------------------------------+
      |                Sender’s Random Number (32 bits)               |
      +---------------------------------------------------------------+

    Figure 6: Join Connection (MP_JOIN) Option (for Responding SYN/ACK)

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-----------------------+
      |     Kind      |  Length = 24  |Subtype|      (reserved)       |
      +---------------+---------------+-------+-----------------------+
      |                                                               |
      |                                                               |
      |              Sender’s Truncated HMAC (160 bits)               |
      |                                                               |
      |                                                               |
      +---------------------------------------------------------------+

        Figure 7: Join Connection (MP_JOIN) Option (for Third ACK)

   These various MPTCP options fit together to enable authenticated
   subflow setup as illustrated in Figure 8.
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              Host A                                  Host B
     ------------------------                       ----------
     Address A1    Address A2                       Address B1
     ----------    ----------                       ----------
         |             |                                |
         |             |  SYN + MP_CAPABLE              |
         |--------------------------------------------->|
         |<---------------------------------------------|
         |          SYN/ACK + MP_CAPABLE(Key-B)         |
         |             |                                |
         |        ACK + MP_CAPABLE(Key-A, Key-B)        |
         |--------------------------------------------->|
         |             |                                |
         |             |   SYN + MP_JOIN(Token-B, R-A)  |
         |             |------------------------------->|
         |             |<-------------------------------|
         |             | SYN/ACK + MP_JOIN(HMAC-B, R-B) |
         |             |                                |
         |             |     ACK + MP_JOIN(HMAC-A)      |
         |             |------------------------------->|
         |             |<-------------------------------|
         |             |             ACK                |

   HMAC-A = HMAC(Key=(Key-A+Key-B), Msg=(R-A+R-B))
   HMAC-B = HMAC(Key=(Key-B+Key-A), Msg=(R-B+R-A))

               Figure 8: Example Use of MPTCP Authentication

   If the token received at Host B is unknown or local policy prohibits
   the acceptance of the new subflow, the recipient MUST respond with a
   TCP RST for the subflow.  If appropriate, a MP_TCPRST option with a
   "Administratively prohibited" reason code (Section 3.6) should be
   included.

   If the token is accepted at Host B, but the HMAC returned to Host A
   does not match the one expected, Host A MUST close the subflow with a
   TCP RST.  In this, and all following cases of sending a RST in this
   section, the sender SHOULD send a MP_TCPRST option (Section 3.6) on
   this RST packet with the reason code for a "MPTCP specific error".

   If Host B does not receive the expected HMAC, or the MP_JOIN option
   is missing from the ACK, it MUST close the subflow with a TCP RST.

   If the HMACs are verified as correct, then both hosts have verified
   each other as being the same peers as existed at the start of the
   connection, and they have agreed of which connection this subflow
   will become a part.
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   If the SYN/ACK as received at Host A does not have an MP_JOIN option,
   Host A MUST close the subflow with a TCP RST.

   This covers all cases of the loss of an MP_JOIN.  In more detail, if
   MP_JOIN is stripped from the SYN on the path from A to B, and Host B
   does not have a listener on the relevant port, it will respond with a
   RST in the normal way.  If in response to a SYN with an MP_JOIN
   option, a SYN/ACK is received without the MP_JOIN option (either
   since it was stripped on the return path, or it was stripped on the
   outgoing path but Host B responded as if it were a new regular TCP
   session), then the subflow is unusable and Host A MUST close it with
   a RST.

   Note that additional subflows can be created between any pair of
   ports (but see Section 3.9 for heuristics); no explicit application-
   level accept calls or bind calls are required to open additional
   subflows.  To associate a new subflow with an existing connection,
   the token supplied in the subflow’s SYN exchange is used for
   demultiplexing.  This then binds the 5-tuple of the TCP subflow to
   the local token of the connection.  A consequence is that it is
   possible to allow any port pairs to be used for a connection.

   Demultiplexing subflow SYNs MUST be done using the token; this is
   unlike traditional TCP, where the destination port is used for
   demultiplexing SYN packets.  Once a subflow is set up, demultiplexing
   packets is done using the 5-tuple, as in traditional TCP.  The
   5-tuples will be mapped to the local connection identifier (token).
   Note that Host A will know its local token for the subflow even
   though it is not sent on the wire -- only the responder’s token is
   sent.

3.3.  General MPTCP Operation

   This section discusses operation of MPTCP for data transfer.  At a
   high level, an MPTCP implementation will take one input data stream
   from an application, and split it into one or more subflows, with
   sufficient control information to allow it to be reassembled and
   delivered reliably and in order to the recipient application.  The
   following subsections define this behavior in detail.

   The data sequence mapping and the Data ACK are signaled in the Data
   Sequence Signal (DSS) option (Figure 9).  Either or both can be
   signaled in one DSS, depending on the flags set.  The data sequence
   mapping defines how the sequence space on the subflow maps to the
   connection level, and the Data ACK acknowledges receipt of data at
   the connection level.  These functions are described in more detail
   in the following two subsections.
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                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +---------------+---------------+-------+----------------------+
     |     Kind      |    Length     |Subtype| (reserved) |F|m|M|a|A|
     +---------------+---------------+-------+----------------------+
     |           Data ACK (4 or 8 octets, depending on flags)       |
     +--------------------------------------------------------------+
     |   Data sequence number (4 or 8 octets, depending on flags)   |
     +--------------------------------------------------------------+
     |              Subflow Sequence Number (4 octets)              |
     +-------------------------------+------------------------------+
     |  Data-Level Length (2 octets) |      Checksum (2 octets)     |
     +-------------------------------+------------------------------+

                Figure 9: Data Sequence Signal (DSS) Option

   The flags, when set, define the contents of this option, as follows:

   o  A = Data ACK present

   o  a = Data ACK is 8 octets (if not set, Data ACK is 4 octets)

   o  M = Data Sequence Number (DSN), Subflow Sequence Number (SSN),
      Data-Level Length, and Checksum (if negotiated) present

   o  m = Data sequence number is 8 octets (if not set, DSN is 4 octets)

   The flags ’a’ and ’m’ only have meaning if the corresponding ’A’ or
   ’M’ flags are set; otherwise, they will be ignored.  The maximum
   length of this option, with all flags set, is 28 octets.

   The ’F’ flag indicates "Data FIN".  If present, this means that this
   mapping covers the final data from the sender.  This is the
   connection-level equivalent to the FIN flag in single-path TCP.  A
   connection is not closed unless there has been a Data FIN exchange, a
   MP_FASTCLOSE (Section 3.5) message, or an implementation-specific,
   connection-level send timeout.  The purpose of the Data FIN and the
   interactions between this flag, the subflow-level FIN flag, and the
   data sequence mapping are described in Section 3.3.3.  The remaining
   reserved bits MUST be set to zero by an implementation of this
   specification.

   Note that the checksum is only present in this option if the use of
   MPTCP checksumming has been negotiated at the MP_CAPABLE handshake
   (see Section 3.1).  The presence of the checksum can be inferred from
   the length of the option.  If a checksum is present, but its use had
   not been negotiated in the MP_CAPABLE handshake, the receiver MUST
   close the subflow with a RST as it not behaving as negotiated.  If a
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   checksum is not present when its use has been negotiated, the
   receiver MUST close the subflow with a RST as it is considered
   broken.  In both cases, this RST SHOULD be accompanied with a
   MP_TCPRST option (Section 3.6) with the reason code for a "MPTCP
   specific error".

3.3.1.  Data Sequence Mapping

   The data stream as a whole can be reassembled through the use of the
   data sequence mapping components of the DSS option (Figure 9), which
   define the mapping from the subflow sequence number to the data
   sequence number.  This is used by the receiver to ensure in-order
   delivery to the application layer.  Meanwhile, the subflow-level
   sequence numbers (i.e., the regular sequence numbers in the TCP
   header) have subflow-only relevance.  It is expected (but not
   mandated) that SACK [RFC2018] is used at the subflow level to improve
   efficiency.

   The data sequence mapping specifies a mapping from subflow sequence
   space to data sequence space.  This is expressed in terms of starting
   sequence numbers for the subflow and the data level, and a length of
   bytes for which this mapping is valid.  This explicit mapping for a
   range of data was chosen rather than per-packet signaling to assist
   with compatibility with situations where TCP/IP segmentation or
   coalescing is undertaken separately from the stack that is generating
   the data flow (e.g., through the use of TCP segmentation offloading
   on network interface cards, or by middleboxes such as performance
   enhancing proxies).  It also allows a single mapping to cover many
   packets, which may be useful in bulk transfer situations.

   A mapping is fixed, in that the subflow sequence number is bound to
   the data sequence number after the mapping has been processed.  A
   sender MUST NOT change this mapping after it has been declared;
   however, the same data sequence number can be mapped to by different
   subflows for retransmission purposes (see Section 3.3.6).  This would
   also permit the same data to be sent simultaneously on multiple
   subflows for resilience or efficiency purposes, especially in the
   case of lossy links.  Although the detailed specification of such
   operation is outside the scope of this document, an implementation
   SHOULD treat the first data that is received at a subflow for the
   data sequence space as that which should be delivered to the
   application, and any later data for that sequence space SHOULD be
   ignored.

   The data sequence number is specified as an absolute value, whereas
   the subflow sequence numbering is relative (the SYN at the start of
   the subflow has relative subflow sequence number 0).  This is to
   allow middleboxes to change the initial sequence number of a subflow,
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   such as firewalls that undertake Initial Sequence Number (ISN)
   randomization.

   The data sequence mapping also contains a checksum of the data that
   this mapping covers, if use of checksums has been negotiated at the
   MP_CAPABLE exchange.  Checksums are used to detect if the payload has
   been adjusted in any way by a non-MPTCP-aware middlebox.  If this
   checksum fails, it will trigger a failure of the subflow, or a
   fallback to regular TCP, as documented in Section 3.7, since MPTCP
   can no longer reliably know the subflow sequence space at the
   receiver to build data sequence mappings.  Without checksumming
   enabled, corrupt data may be delivered to the application if a
   middlebox alters segment boundaries, alters content, or does not
   deliver all segments covered by a data sequence mapping.  It is
   therefore RECOMMENDED to use checksumming unless it is known the
   network path contains no such devices.

   The checksum algorithm used is the standard TCP checksum [RFC0793],
   operating over the data covered by this mapping, along with a pseudo-
   header as shown in Figure 10.

                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +--------------------------------------------------------------+
     |                                                              |
     |                Data Sequence Number (8 octets)               |
     |                                                              |
     +--------------------------------------------------------------+
     |              Subflow Sequence Number (4 octets)              |
     +-------------------------------+------------------------------+
     |  Data-Level Length (2 octets) |        Zeros (2 octets)      |
     +-------------------------------+------------------------------+

                 Figure 10: Pseudo-Header for DSS Checksum

   Note that the data sequence number used in the pseudo-header is
   always the 64-bit value, irrespective of what length is used in the
   DSS option itself.  The standard TCP checksum algorithm has been
   chosen since it will be calculated anyway for the TCP subflow, and if
   calculated first over the data before adding the pseudo-headers, it
   only needs to be calculated once.  Furthermore, since the TCP
   checksum is additive, the checksum for a DSN_MAP can be constructed
   by simply adding together the checksums for the data of each
   constituent TCP segment, and adding the checksum for the DSS pseudo-
   header.

   Note that checksumming relies on the TCP subflow containing
   contiguous data; therefore, a TCP subflow MUST NOT use the Urgent
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   Pointer to interrupt an existing mapping.  Further note, however,
   that if Urgent data is received on a subflow, it SHOULD be mapped to
   the data sequence space and delivered to the application analogous to
   Urgent data in regular TCP.

   To avoid possible deadlock scenarios, subflow-level processing should
   be undertaken separately from that at connection level.  Therefore,
   even if a mapping does not exist from the subflow space to the data-
   level space, the data SHOULD still be ACKed at the subflow (if it is
   in-window).  This data cannot, however, be acknowledged at the data
   level (Section 3.3.2) because its data sequence numbers are unknown.
   Implementations MAY hold onto such unmapped data for a short while in
   the expectation that a mapping will arrive shortly.  Such unmapped
   data cannot be counted as being within the connection level receive
   window because this is relative to the data sequence numbers, so if
   the receiver runs out of memory to hold this data, it will have to be
   discarded.  If a mapping for that subflow-level sequence space does
   not arrive within a receive window of data, that subflow SHOULD be
   treated as broken, closed with a RST, and any unmapped data silently
   discarded.

   Data sequence numbers are always 64-bit quantities, and MUST be
   maintained as such in implementations.  If a connection is
   progressing at a slow rate, so protection against wrapped sequence
   numbers is not required, then an implementation MAY include just the
   lower 32 bits of the data sequence number in the data sequence
   mapping and/or Data ACK as an optimization, and an implementation can
   make this choice independently for each packet.  An implementation
   MUST be able to receive and process both 64-bit or 32-bit sequence
   number values, but it is not required that an implementation is able
   to send both.

   An implementation MUST send the full 64-bit data sequence number if
   it is transmitting at a sufficiently high rate that the 32-bit value
   could wrap within the Maximum Segment Lifetime (MSL) [RFC7323].  The
   lengths of the DSNs used in these values (which may be different) are
   declared with flags in the DSS option.  Implementations MUST accept a
   32-bit DSN and implicitly promote it to a 64-bit quantity by
   incrementing the upper 32 bits of sequence number each time the lower
   32 bits wrap.  A sanity check MUST be implemented to ensure that a
   wrap occurs at an expected time (e.g., the sequence number jumps from
   a very high number to a very low number) and is not triggered by out-
   of-order packets.

   As with the standard TCP sequence number, the data sequence number
   should not start at zero, but at a random value to make blind session
   hijacking harder.  This specification requires setting the initial
   data sequence number (IDSN) of each host to the least significant 64
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   bits of the SHA-256 hash of the host’s key, as described in
   Section 3.1.  This is required also in order for the receiver to know
   what the expected IDSN is, and thus determine if any initial
   connection-level packets are missing; this is particularly relevant
   if two subflows start transmitting simultaneously.

   A data sequence mapping does not need to be included in every MPTCP
   packet, as long as the subflow sequence space in that packet is
   covered by a mapping known at the receiver.  This can be used to
   reduce overhead in cases where the mapping is known in advance; one
   such case is when there is a single subflow between the hosts,
   another is when segments of data are scheduled in larger than packet-
   sized chunks.

   An "infinite" mapping can be used to fall back to regular TCP by
   mapping the subflow-level data to the connection-level data for the
   remainder of the connection (see Section 3.7).  This is achieved by
   setting the Data-Level Length field of the DSS option to the reserved
   value of 0.  The checksum, in such a case, will also be set to zero.

3.3.2.  Data Acknowledgments

   To provide full end-to-end resilience, MPTCP provides a connection-
   level acknowledgment, to act as a cumulative ACK for the connection
   as a whole.  This is the "Data ACK" field of the DSS option
   (Figure 9).  The Data ACK is analogous to the behavior of the
   standard TCP cumulative ACK -- indicating how much data has been
   successfully received (with no holes).  This is in comparison to the
   subflow-level ACK, which acts analogous to TCP SACK, given that there
   may still be holes in the data stream at the connection level.  The
   Data ACK specifies the next data sequence number it expects to
   receive.

   The Data ACK, as for the DSN, can be sent as the full 64-bit value,
   or as the lower 32 bits.  If data is received with a 64-bit DSN, it
   MUST be acknowledged with a 64-bit Data ACK.  If the DSN received is
   32 bits, an implementation can choose whether to send a 32-bit or
   64-bit Data ACK, and an implementation MUST accept either in this
   situation.

   The Data ACK proves that the data, and all required MPTCP signaling,
   has been received and accepted by the remote end.  One key use of the
   Data ACK signal is that it is used to indicate the left edge of the
   advertised receive window.  As explained in Section 3.3.4, the
   receive window is shared by all subflows and is relative to the Data
   ACK.  Because of this, an implementation MUST NOT use the RCV.WND
   field of a TCP segment at the connection level if it does not also
   carry a DSS option with a Data ACK field.  Furthermore, separating
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   the connection-level acknowledgments from the subflow level allows
   processing to be done separately, and a receiver has the freedom to
   drop segments after acknowledgment at the subflow level, for example,
   due to memory constraints when many segments arrive out of order.

   An MPTCP sender MUST NOT free data from the send buffer until it has
   been acknowledged by both a Data ACK received on any subflow and at
   the subflow level by all subflows on which the data was sent.  The
   former condition ensures liveness of the connection and the latter
   condition ensures liveness and self-consistence of a subflow when
   data needs to be retransmitted.  Note, however, that if some data
   needs to be retransmitted multiple times over a subflow, there is a
   risk of blocking the sending window.  In this case, the MPTCP sender
   can decide to terminate the subflow that is behaving badly by sending
   a RST, using an appropriate MP_TCPRST (Section 3.6) error code.

   The Data ACK MAY be included in all segments; however, optimizations
   SHOULD be considered in more advanced implementations, where the Data
   ACK is present in segments only when the Data ACK value advances, and
   this behavior MUST be treated as valid.  This behavior ensures the
   sender buffer is freed, while reducing overhead when the data
   transfer is unidirectional.

3.3.3.  Closing a Connection

   In regular TCP, a FIN announces the receiver that the sender has no
   more data to send.  In order to allow subflows to operate
   independently and to keep the appearance of TCP over the wire, a FIN
   in MPTCP only affects the subflow on which it is sent.  This allows
   nodes to exercise considerable freedom over which paths are in use at
   any one time.  The semantics of a FIN remain as for regular TCP;
   i.e., it is not until both sides have ACKed each other’s FINs that
   the subflow is fully closed.

   When an application calls close() on a socket, this indicates that it
   has no more data to send; for regular TCP, this would result in a FIN
   on the connection.  For MPTCP, an equivalent mechanism is needed, and
   this is referred to as the DATA_FIN.

   A DATA_FIN is an indication that the sender has no more data to send,
   and as such can be used to verify that all data has been successfully
   received.  A DATA_FIN, as with the FIN on a regular TCP connection,
   is a unidirectional signal.

   The DATA_FIN is signaled by setting the ’F’ flag in the Data Sequence
   Signal option (Figure 9) to 1.  A DATA_FIN occupies 1 octet (the
   final octet) of the connection-level sequence space.  Note that the
   DATA_FIN is included in the Data-Level Length, but not at the subflow
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   level: for example, a segment with DSN 80, and Data-Level Length 11,
   with DATA_FIN set, would map 10 octets from the subflow into data
   sequence space 80-89, the DATA_FIN is DSN 90; therefore, this segment
   including DATA_FIN would be acknowledged with a DATA_ACK of 91.

   Note that when the DATA_FIN is not attached to a TCP segment
   containing data, the Data Sequence Signal MUST have a subflow
   sequence number of 0, a Data-Level Length of 1, and the data sequence
   number that corresponds with the DATA_FIN itself.  The checksum in
   this case will only cover the pseudo-header.

   A DATA_FIN has the semantics and behavior as a regular TCP FIN, but
   at the connection level.  Notably, it is only DATA_ACKed once all
   data has been successfully received at the connection level.  Note,
   therefore, that a DATA_FIN is decoupled from a subflow FIN.  It is
   only permissible to combine these signals on one subflow if there is
   no data outstanding on other subflows.  Otherwise, it may be
   necessary to retransmit data on different subflows.  Essentially, a
   host MUST NOT close all functioning subflows unless it is safe to do
   so, i.e., until all outstanding data has been DATA_ACKed, or until
   the segment with the DATA_FIN flag set is the only outstanding
   segment.

   Once a DATA_FIN has been acknowledged, all remaining subflows MUST be
   closed with standard FIN exchanges.  Both hosts SHOULD send FINs on
   all subflows, as a courtesy to allow middleboxes to clean up state
   even if an individual subflow has failed.  It is also encouraged to
   reduce the timeouts (Maximum Segment Lifetime) on subflows at end
   hosts after receiving a DATA_FIN.  In particular, any subflows where
   there is still outstanding data queued (which has been retransmitted
   on other subflows in order to get the DATA_FIN acknowledged) MAY be
   closed with a RST with MP_TCPRST (Section 3.6) error code for "too
   much outstanding data".

   A connection is considered closed once both hosts’ DATA_FINs have
   been acknowledged by DATA_ACKs.

   As specified above, a standard TCP FIN on an individual subflow only
   shuts down the subflow on which it was sent.  If all subflows have
   been closed with a FIN exchange, but no DATA_FIN has been received
   and acknowledged, the MPTCP connection is treated as closed only
   after a timeout.  This implies that an implementation will have
   TIME_WAIT states at both the subflow and connection levels (see
   Appendix D).  This permits "break-before-make" scenarios where
   connectivity is lost on all subflows before a new one can be re-
   established.
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3.3.4.  Receiver Considerations

   Regular TCP advertises a receive window in each packet, telling the
   sender how much data the receiver is willing to accept past the
   cumulative ack.  The receive window is used to implement flow
   control, throttling down fast senders when receivers cannot keep up.

   MPTCP also uses a unique receive window, shared between the subflows.
   The idea is to allow any subflow to send data as long as the receiver
   is willing to accept it.  The alternative, maintaining per subflow
   receive windows, could end up stalling some subflows while others
   would not use up their window.

   The receive window is relative to the DATA_ACK.  As in TCP, a
   receiver MUST NOT shrink the right edge of the receive window (i.e.,
   DATA_ACK + receive window).  The receiver will use the data sequence
   number to tell if a packet should be accepted at the connection
   level.

   When deciding to accept packets at subflow level, regular TCP checks
   the sequence number in the packet against the allowed receive window.
   With multipath, such a check is done using only the connection-level
   window.  A sanity check SHOULD be performed at subflow level to
   ensure that the subflow and mapped sequence numbers meet the
   following test: SSN - SUBFLOW_ACK <= DSN - DATA_ACK, where SSN is the
   subflow sequence number of the received packet and SUBFLOW_ACK is the
   RCV.NXT (next expected sequence number) of the subflow (with the
   equivalent connection-level definitions for DSN and DATA_ACK).

   In regular TCP, once a segment is deemed in-window, it is put either
   in the in-order receive queue or in the out-of-order queue.  In
   Multipath TCP, the same happens but at the connection level: a
   segment is placed in the connection level in-order or out-of-order
   queue if it is in-window at both connection and subflow levels.  The
   stack still has to remember, for each subflow, which segments were
   received successfully so that it can ACK them at subflow level
   appropriately.  Typically, this will be implemented by keeping per
   subflow out-of-order queues (containing only message headers, not the
   payloads) and remembering the value of the cumulative ACK.

   It is important for implementers to understand how large a receiver
   buffer is appropriate.  The lower bound for full network utilization
   is the maximum bandwidth-delay product of any one of the paths.
   However, this might be insufficient when a packet is lost on a slower
   subflow and needs to be retransmitted (see Section 3.3.6).  A tight
   upper bound would be the maximum round-trip time (RTT) of any path
   multiplied by the total bandwidth available across all paths.  This
   permits all subflows to continue at full speed while a packet is
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   fast-retransmitted on the maximum RTT path.  Even this might be
   insufficient to maintain full performance in the event of a
   retransmit timeout on the maximum RTT path.  It is for future study
   to determine the relationship between retransmission strategies and
   receive buffer sizing.

3.3.5.  Sender Considerations

   The sender remembers receiver window advertisements from the
   receiver.  It should only update its local receive window values when
   the largest sequence number allowed (i.e., DATA_ACK + receive window)
   increases, on the receipt of a DATA_ACK.  This is important to allow
   using paths with different RTTs, and thus different feedback loops.

   MPTCP uses a single receive window across all subflows, and if the
   receive window was guaranteed to be unchanged end-to-end, a host
   could always read the most recent receive window value.  However,
   some classes of middleboxes may alter the TCP-level receive window.
   Typically, these will shrink the offered window, although for short
   periods of time it may be possible for the window to be larger
   (however, note that this would not continue for long periods since
   ultimately the middlebox must keep up with delivering data to the
   receiver).  Therefore, if receive window sizes differ on multiple
   subflows, when sending data MPTCP SHOULD take the largest of the most
   recent window sizes as the one to use in calculations.  This rule is
   implicit in the requirement not to reduce the right edge of the
   window.

   The sender MUST also remember the receive windows advertised by each
   subflow.  The allowed window for subflow i is (ack_i, ack_i +
   rcv_wnd_i), where ack_i is the subflow-level cumulative ACK of
   subflow i.  This ensures data will not be sent to a middlebox unless
   there is enough buffering for the data.

   Putting the two rules together, we get the following: a sender is
   allowed to send data segments with data-level sequence numbers
   between (DATA_ACK, DATA_ACK + receive_window).  Each of these
   segments will be mapped onto subflows, as long as subflow sequence
   numbers are in the allowed windows for those subflows.  Note that
   subflow sequence numbers do not generally affect flow control if the
   same receive window is advertised across all subflows.  They will
   perform flow control for those subflows with a smaller advertised
   receive window.

   The send buffer MUST, at a minimum, be as big as the receive buffer,
   to enable the sender to reach maximum throughput.
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3.3.6.  Reliability and Retransmissions

   The data sequence mapping allows senders to resend data with the same
   data sequence number on a different subflow.  When doing this, a host
   MUST still retransmit the original data on the original subflow, in
   order to preserve the subflow integrity (middleboxes could replay old
   data, and/or could reject holes in subflows), and a receiver will
   ignore these retransmissions.  While this is clearly suboptimal, for
   compatibility reasons this is sensible behavior.  Optimizations could
   be negotiated in future versions of this protocol.  Note also that
   this property would also permit a sender to always send the same
   data, with the same data sequence number, on multiple subflows, if
   desired for reliability reasons.

   This protocol specification does not mandate any mechanisms for
   handling retransmissions, and much will be dependent upon local
   policy (as discussed in Section 3.3.8).  One can imagine aggressive
   connection-level retransmissions policies where every packet lost at
   subflow level is retransmitted on a different subflow (hence, wasting
   bandwidth but possibly reducing application-to-application delays),
   or conservative retransmission policies where connection-level
   retransmits are only used after a few subflow-level retransmission
   timeouts occur.

   It is envisaged that a standard connection-level retransmission
   mechanism would be implemented around a connection-level data queue:
   all segments that haven’t been DATA_ACKed are stored.  A timer is set
   when the head of the connection-level is ACKed at subflow level but
   its corresponding data is not ACKed at data level.  This timer will
   guard against failures in retransmission by middleboxes that
   proactively ACK data.

   The sender MUST keep data in its send buffer as long as the data has
   not been acknowledged at both connection level and on all subflows on
   which it has been sent.  In this way, the sender can always
   retransmit the data if needed, on the same subflow or on a different
   one.  A special case is when a subflow fails: the sender will
   typically resend the data on other working subflows after a timeout,
   and will keep trying to retransmit the data on the failed subflow
   too.  The sender will declare the subflow failed after a predefined
   upper bound on retransmissions is reached (which MAY be lower than
   the usual TCP limits of the Maximum Segment Life), or on the receipt
   of an ICMP error, and only then delete the outstanding data segments.

   If multiple retransmissions are triggered that indicate that a
   subflow performs badly, this MAY lead to a host resetting the subflow
   with a RST.  However, additional research is required to understand
   the heuristics of how and when to reset underperforming subflows.
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   For example, a highly asymmetric path may be misdiagnosed as
   underperforming.  A RST for this purpose SHOULD be accompanied with
   an "Unacceptable performance" MP_TCPRST option (Section 3.6).

3.3.7.  Congestion Control Considerations

   Different subflows in an MPTCP connection have different congestion
   windows.  To achieve fairness at bottlenecks and resource pooling, it
   is necessary to couple the congestion windows in use on each subflow,
   in order to push most traffic to uncongested links.  One algorithm
   for achieving this is presented in [RFC6356]; the algorithm does not
   achieve perfect resource pooling but is "safe" in that it is readily
   deployable in the current Internet.  By this, we mean that it does
   not take up more capacity on any one path than if it was a single
   path flow using only that route, so this ensures fair coexistence
   with single-path TCP at shared bottlenecks.

   It is foreseeable that different congestion controllers will be
   implemented for MPTCP, each aiming to achieve different properties in
   the resource pooling/fairness/stability design space, as well as
   those for achieving different properties in quality of service,
   reliability, and resilience.

   Regardless of the algorithm used, the design of the MPTCP protocol
   aims to provide the congestion control implementations sufficient
   information to take the right decisions; this information includes,
   for each subflow, which packets were lost and when.

3.3.8.  Subflow Policy

   Within a local MPTCP implementation, a host may use any local policy
   it wishes to decide how to share the traffic to be sent over the
   available paths.

   In the typical use case, where the goal is to maximize throughput,
   all available paths will be used simultaneously for data transfer,
   using coupled congestion control as described in [RFC6356].  It is
   expected, however, that other use cases will appear.

   For instance, a possibility is an ’all-or-nothing’ approach, i.e.,
   have a second path ready for use in the event of failure of the first
   path, but alternatives could include entirely saturating one path
   before using an additional path (the ’overflow’ case).  Such choices
   would be most likely based on the monetary cost of links, but may
   also be based on properties such as the delay or jitter of links,
   where stability (of delay or bandwidth) is more important than
   throughput.  Application requirements such as these are discussed in
   detail in [RFC6897].
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   The ability to make effective choices at the sender requires full
   knowledge of the path "cost", which is unlikely to be the case.  It
   would be desirable for a receiver to be able to signal their own
   preferences for paths, since they will often be the multihomed party,
   and may have to pay for metered incoming bandwidth.

   To enable this, the MP_JOIN option (see Section 3.2) contains the ’B’
   bit, which allows a host to indicate to its peer that this path
   should be treated as a backup path to use only in the event of
   failure of other working subflows (i.e., a subflow where the receiver
   has indicated B=1 SHOULD NOT be used to send data unless there are no
   usable subflows where B=0).

   In the event that the available set of paths changes, a host may wish
   to signal a change in priority of subflows to the peer (e.g., a
   subflow that was previously set as backup should now take priority
   over all remaining subflows).  Therefore, the MP_PRIO option, shown
   in Figure 11, can be used to change the ’B’ flag of the subflow on
   which it is sent.

   Another use of the MP_PRIO option is to set the ’B’ flag on a subflow
   to cleanly retire its use before closing it and removing it with
   REMOVE_ADDR Section 3.4.2, for example to support make-before-break
   session continuity, where new subflows are added before the
   previously used ones are closed.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-----+-+
      |     Kind      |     Length    |Subtype|(rsv)|B|
      +---------------+---------------+-------+-----+-+

            Figure 11: Change Subflow Priority (MP_PRIO) Option

   It should be noted that the backup flag is a request from a data
   receiver to a data sender only, and the data sender SHOULD adhere to
   these requests.  A host cannot assume that the data sender will do
   so, however, since local policies -- or technical difficulties -- may
   override MP_PRIO requests.  Note also that this signal applies to a
   single direction, and so the sender of this option could choose to
   continue using the subflow to send data even if it has signaled B=1
   to the other host.

3.4.  Address Knowledge Exchange (Path Management)

   We use the term "path management" to refer to the exchange of
   information about additional paths between hosts, which in this
   design is managed by multiple addresses at hosts.  For more detail of
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   the architectural thinking behind this design, see the MPTCP
   Architecture document [RFC6182].

   This design makes use of two methods of sharing such information, and
   both can be used on a connection.  The first is the direct setup of
   new subflows, already described in Section 3.2, where the initiator
   has an additional address.  The second method, described in the
   following subsections, signals addresses explicitly to the other host
   to allow it to initiate new subflows.  The two mechanisms are
   complementary: the first is implicit and simple, while the explicit
   is more complex but is more robust.  Together, the mechanisms allow
   addresses to change in flight (and thus support operation through
   NATs, since the source address need not be known), and also allow the
   signaling of previously unknown addresses, and of addresses belonging
   to other address families (e.g., both IPv4 and IPv6).

   Here is an example of typical operation of the protocol:

   o  An MPTCP connection is initially set up between address/port A1 of
      Host A and address/port B1 of Host B.  If Host A is multihomed and
      multiaddressed, it can start an additional subflow from its
      address A2 to B1, by sending a SYN with a Join option from A2 to
      B1, using B’s previously declared token for this connection.
      Alternatively, if B is multihomed, it can try to set up a new
      subflow from B2 to A1, using A’s previously declared token.  In
      either case, the SYN will be sent to the port already in use for
      the original subflow on the receiving host.

   o  Simultaneously (or after a timeout), an ADD_ADDR option
      (Section 3.4.1) is sent on an existing subflow, informing the
      receiver of the sender’s alternative address(es).  The recipient
      can use this information to open a new subflow to the sender’s
      additional address.  In our example, A will send ADD_ADDR option
      informing B of address/port A2.  The mix of using the SYN-based
      option and the ADD_ADDR option, including timeouts, is
      implementation specific and can be tailored to agree with local
      policy.

   o  If subflow A2-B1 is successfully set up, Host B can use the
      Address ID in the Join option to correlate this with the ADD_ADDR
      option that will also arrive on an existing subflow; now B knows
      not to open A2-B1, ignoring the ADD_ADDR.  Otherwise, if B has not
      received the A2-B1 MP_JOIN SYN but received the ADD_ADDR, it can
      try to initiate a new subflow from one or more of its addresses to
      address A2.  This permits new sessions to be opened if one host is
      behind a NAT.
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   Other ways of using the two signaling mechanisms are possible; for
   instance, signaling addresses in other address families can only be
   done explicitly using the Add Address option.

3.4.1.  Address Advertisement

   The Add Address (ADD_ADDR) MPTCP option announces additional
   addresses (and optionally, ports) on which a host can be reached
   (Figure 12).  This option can be used at any time during a
   connection, depending on when the sender wishes to enable multiple
   paths and/or when paths become available.  As with all MPTCP signals,
   the receiver MUST undertake standard TCP validity checks, e.g.
   [RFC5961], before acting upon it.

   Every address has an Address ID that can be used for uniquely
   identifying the address within a connection for address removal.  The
   Address ID is also used to identify MP_JOIN options (see Section 3.2)
   relating to the same address, even when address translators are in
   use.  The Address ID MUST uniquely identify the address for the
   sender of the option (within the scope of the connection), but the
   mechanism for allocating such IDs is implementation specific.

   All address IDs learned via either MP_JOIN or ADD_ADDR SHOULD be
   stored by the receiver in a data structure that gathers all the
   Address ID to address mappings for a connection (identified by a
   token pair).  In this way, there is a stored mapping between Address
   ID, observed source address, and token pair for future processing of
   control information for a connection.  Note that an implementation
   MAY discard incoming address advertisements at will, for example, for
   avoiding updating mapping state, or because advertised addresses are
   of no use to it (for example, IPv6 addresses when it has IPv4 only).
   Therefore, a host MUST treat address advertisements as soft state,
   and it MAY choose to refresh advertisements periodically.  Note also
   that an implementation MAY choose to cache these address
   advertisements even if they are not currently relevant but may be
   relevant in the future, such as IPv4 addresses when IPv6 connectivity
   is available but IPv4 is awaiting DHCP.

   This option is shown in Figure 12.  The illustration is sized for
   IPv4 addresses.  For IPv6, the length of the address will be 16
   octets (instead of 4).

   The 2 octets that specify the TCP port number to use are optional and
   their presence can be inferred from the length of the option.
   Although it is expected that the majority of use cases will use the
   same port pairs as used for the initial subflow (e.g., port 80
   remains port 80 on all subflows, as does the ephemeral port at the
   client), there may be cases (such as port-based load balancing) where
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   the explicit specification of a different port is required.  If no
   port is specified, MPTCP SHOULD attempt to connect to the specified
   address on the same port as is already in use by the subflow on which
   the ADD_ADDR signal was sent; this is discussed in more detail in
   Section 3.9.

   The Truncated HMAC present in this Option is the rightmost 64 bits of
   an HMAC, negotiated and calculated in the same way as for MP_JOIN as
   described in Section 3.2.  For this specification of MPTCP, as there
   is only one hash algorithm option specified, this will be HMAC as
   defined in [RFC2104], using the SHA-256 hash algorithm [RFC6234].  In
   the same way as for MP_JOIN, the key for the HMAC algorithm, in the
   case of the message transmitted by Host A, will be Key-A followed by
   Key-B, and in the case of Host B, Key-B followed by Key-A.  These are
   the keys that were exchanged in the original MP_CAPABLE handshake.
   The message for the HMAC is the Address ID, IP Address, and Port
   which precede the HMAC in the ADD_ADDR option.  If the port is not
   present in the ADD_ADDR option, the HMAC message will nevertheless
   include two octets of value zero.  The rationale for the HMAC is to
   prevent unauthorized entities from injecting ADD_ADDR signals in an
   attempt to hijack a connection.  Note that additionally the presence
   of this HMAC prevents the address being changed in flight unless the
   key is known by an intermediary.  If a host receives an ADD_ADDR
   option for which it cannot validate the HMAC, it SHOULD silently
   ignore the option.

   A set of four flags are present after the subtype and before the
   Address ID.  Only the rightmost bit - labelled ’E’ - is assigned in
   this specification.  The other bits are currently unassigned and MUST
   be set to zero by a sender and MUST be ignored by the receiver.

   The ’E’ flag exists to provide reliability for this option.  Because
   this option will often be sent on pure ACKs, there is no guarantee of
   reliability.  Therefore, a receiver receiving a fresh ADD_ADDR option
   (where E=0), will send the same option back to the sender, but not
   including the HMAC, and with E=1, to indicate receipt.  The lack of
   this echo can be used by the initial ADD_ADDR sender to retransmit
   the ADD_ADDR according to local policy.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-------+---------------+
      |     Kind      |     Length    |Subtype|(rsv)|E|  Address ID   |
      +---------------+---------------+-------+-------+---------------+
      |          Address (IPv4 - 4 octets / IPv6 - 16 octets)         |
      +-------------------------------+-------------------------------+
      |   Port (2 octets, optional)   |                               |
      +-------------------------------+                               |
      |                Truncated HMAC (8 octets, if E=0)              |
      |                               +-------------------------------+
      |                               |
      +-------------------------------+

                 Figure 12: Add Address (ADD_ADDR) Option

   Due to the proliferation of NATs, it is reasonably likely that one
   host may attempt to advertise private addresses [RFC1918].  It is not
   desirable to prohibit this, since there may be cases where both hosts
   have additional interfaces on the same private network, and a host
   MAY advertise such addresses.  The MP_JOIN handshake to create a new
   subflow (Section 3.2) provides mechanisms to minimize security risks.
   The MP_JOIN message contains a 32-bit token that uniquely identifies
   the connection to the receiving host.  If the token is unknown, the
   host will return with a RST.  In the unlikely event that the token is
   valid at the receiving host, subflow setup will continue, but the
   HMAC exchange must occur for authentication.  This will fail, and
   will provide sufficient protection against two unconnected hosts
   accidentally setting up a new subflow upon the signal of a private
   address.  Further security considerations around the issue of
   ADD_ADDR messages that accidentally misdirect, or maliciously direct,
   new MP_JOIN attempts are discussed in Section 5.

   A host that receives an ADD_ADDR but finds a connection set up to
   that IP address and port number is unsuccessful SHOULD NOT perform
   further connection attempts to this address/port combination for this
   connection.  A sender that wants to trigger a new incoming connection
   attempt on a previously advertised address/port combination can
   therefore refresh ADD_ADDR information by sending the option again.

   A host can therefore send an ADD_ADDR message with an already
   assigned Address ID, but the Address MUST be the same as previously
   assigned to this Address ID.  A new ADD_ADDR may have the same, or
   different, port number.  If the port number is different, the
   receiving host SHOULD try to set up a new subflow to this new
   address/port combination.
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   A host wishing to replace an existing Address ID MUST first remove
   the existing one (Section 3.4.2).

   During normal MPTCP operation, it is unlikely that there will be
   sufficient TCP option space for ADD_ADDR to be included along with
   those for data sequence numbering (Section 3.3.1).  Therefore, it is
   expected that an MPTCP implementation will send the ADD_ADDR option
   on separate ACKs.  As discussed earlier, however, an MPTCP
   implementation MUST NOT treat duplicate ACKs with any MPTCP option,
   with the exception of the DSS option, as indications of congestion
   [RFC5681], and an MPTCP implementation SHOULD NOT send more than two
   duplicate ACKs in a row for signaling purposes.

3.4.2.  Remove Address

   If, during the lifetime of an MPTCP connection, a previously
   announced address becomes invalid (e.g., if the interface disappears,
   or an IPv6 address is no longer preferred), the affected host SHOULD
   announce this so that the peer can remove subflows related to this
   address.  Even if an address is not in use by a MPTCP connection, if
   it has been previously announced, an implementation SHOULD announce
   its removal.  A host MAY also choose to announce that a valid IP
   address should not be used any longer, for example for make-before-
   break session continuity.

   This is achieved through the Remove Address (REMOVE_ADDR) option
   (Figure 13), which will remove a previously added address (or list of
   addresses) from a connection and terminate any subflows currently
   using that address.

   For security purposes, if a host receives a REMOVE_ADDR option, it
   must ensure the affected path(s) are no longer in use before it
   instigates closure.  The receipt of REMOVE_ADDR SHOULD first trigger
   the sending of a TCP keepalive [RFC1122] on the path, and if a
   response is received the path SHOULD NOT be removed.  If the path is
   found to still be alive, the receiving host SHOULD no longer use the
   specified address for future connections, but it is the
   responsibility of the host which sent the REMOVE_ADDR to shut down
   the subflow.  The requesting host MAY also use MP_PRIO
   (Section 3.3.8) to request a path is no longer used, before removal.
   Typical TCP validity tests on the subflow (e.g., ensuring sequence
   and ACK numbers are correct) MUST also be undertaken.  An
   implementation can use indications of these test failures as part of
   intrusion detection or error logging.

   The sending and receipt (if no keepalive response was received) of
   this message SHOULD trigger the sending of RSTs by both hosts on the
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   affected subflow(s) (if possible), as a courtesy to cleaning up
   middlebox state, before cleaning up any local state.

   Address removal is undertaken by ID, so as to permit the use of NATs
   and other middleboxes that rewrite source addresses.  If there is no
   address at the requested ID, the receiver will silently ignore the
   request.

   A subflow that is still functioning MUST be closed with a FIN
   exchange as in regular TCP, rather than using this option.  For more
   information, see Section 3.3.3.

                        1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +---------------+---------------+-------+-------+---------------+
   |     Kind      |  Length = 3+n |Subtype|(resvd)|   Address ID  | ...
   +---------------+---------------+-------+-------+---------------+
                              (followed by n-1 Address IDs, if required)

              Figure 13: Remove Address (REMOVE_ADDR) Option

3.5.  Fast Close

   Regular TCP has the means of sending a reset (RST) signal to abruptly
   close a connection.  With MPTCP, a regular RST only has the scope of
   the subflow and will only close the concerned subflow but not affect
   the remaining subflows.  MPTCP’s connection will stay alive at the
   data level, in order to permit break-before-make handover between
   subflows.  It is therefore necessary to provide an MPTCP-level
   "reset" to allow the abrupt closure of the whole MPTCP connection,
   and this is the MP_FASTCLOSE option.

   MP_FASTCLOSE is used to indicate to the peer that the connection will
   be abruptly closed and no data will be accepted anymore.  The reasons
   for triggering an MP_FASTCLOSE are implementation specific.  Regular
   TCP does not allow sending a RST while the connection is in a
   synchronized state [RFC0793].  Nevertheless, implementations allow
   the sending of a RST in this state, if, for example, the operating
   system is running out of resources.  In these cases, MPTCP should
   send the MP_FASTCLOSE.  This option is illustrated in Figure 14.
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                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +---------------+---------------+-------+-----------------------+
       |     Kind      |    Length     |Subtype|      (reserved)       |
       +---------------+---------------+-------+-----------------------+
       |                      Option Receiver’s Key                    |
       |                            (64 bits)                          |
       |                                                               |
       +---------------------------------------------------------------+

                Figure 14: Fast Close (MP_FASTCLOSE) Option

   If Host A wants to force the closure of an MPTCP connection, it has
   two different options:

   o  Option A (ACK) : Host A sends an ACK containing the MP_FASTCLOSE
      option on one subflow, containing the key of Host B as declared in
      the initial connection handshake.  On all the other subflows, Host
      A sends a regular TCP RST to close these subflows, and tears them
      down.  Host A now enters FASTCLOSE_WAIT state.

   o  Option R (RST) : Host A sends a RST containing the MP_FASTCLOSE
      option on all subflows, containing the key of Host B as declared
      in the initial connection handshake.  Host A can tear the subflows
      and the connection down immediately.

   If host A decides to force the closure by using Option A and sending
   an ACK with the MP_FASTCLOSE option, the connection shall proceed as
   follows:

   o  Upon receipt of an ACK with MP_FASTCLOSE by Host B, containing the
      valid key, Host B answers on the same subflow with a TCP RST and
      tears down all subflows also through sending TCP RST signals.
      Host B can now close the whole MPTCP connection (it transitions
      directly to CLOSED state).

   o  As soon as Host A has received the TCP RST on the remaining
      subflow, it can close this subflow and tear down the whole
      connection (transition from FASTCLOSE_WAIT to CLOSED states).  If
      Host A receives an MP_FASTCLOSE instead of a TCP RST, both hosts
      attempted fast closure simultaneously.  Host A should reply with a
      TCP RST and tear down the connection.

   o  If Host A does not receive a TCP RST in reply to its MP_FASTCLOSE
      after one retransmission timeout (RTO) (the RTO of the subflow
      where the MP_FASTCLOSE has been sent), it SHOULD retransmit the
      MP_FASTCLOSE.  The number of retransmissions SHOULD be limited to
      avoid this connection from being retained for a long time, but
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      this limit is implementation specific.  A RECOMMENDED number is 3.
      If no TCP RST is received in response, Host A SHOULD send a TCP
      RST with the MP_FASTCLOSE option itself when it releases state in
      order to clear any remaining state at middleboxes.

   If however host A decides to force the closure by using Option R and
   sending a RST with the MP_FASTCLOSE option, Host B will act as
   follows: Upon receipt of a RST with MP_FASTCLOSE, containing the
   valid key, Host B tears down all subflows by sending a TCP RST.  Host
   B can now close the whole MPTCP connection (it transitions directly
   to CLOSED state).

3.6.  Subflow Reset

   An implementation of MPTCP may also need to send a regular TCP RST to
   force the closure of a subflow.  A host sends a TCP RST in order to
   close a subflow or reject an attempt to open a subflow (MP_JOIN).  In
   order to inform the receiving host why a subflow is being closed or
   rejected, the TCP RST packet MAY include the MP_TCPRST Option.  The
   host MAY use this information to decide, for example, whether it
   tries to re-establish the subflow immediately, later, or never.

                            1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +---------------+---------------+-------+-----------------------+
       |     Kind      |    Length     |Subtype|U|V|W|T|    Reason     |
       +---------------+---------------+-------+-----------------------+

               Figure 15: TCP RST Reason (MP_TCPRST) Option

   The MP_TCPRST option contains a reason code that allows the sender of
   the option to provide more information about the reason for the
   termination of the subflow.  Using 12 bits of option space, the first
   four bits are reserved for flags (only one of which is currently
   defined), and the remaining octet is used to express a reason code
   for this subflow termination, from which a receiver MAY infer
   information about the usability of this path.

   The "T" flag is used by the sender to indicate whether the error
   condition that is reported is Transient (T bit set to 1) or Permanent
   (T bit set to 0).  If the error condition is considered to be
   Transient by the sender of the RST segment, the recipient of this
   segment MAY try to reestablish a subflow for this connection over the
   failed path.  The time at which a receiver may try to re-establish
   this is implementation-specific, but SHOULD take into account the
   properties of the failure defined by the following reason code.  If
   the error condition is considered to be permanent, the receiver of
   the RST segment SHOULD NOT try to reestablish a subflow for this
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   connection over this path.  The "U", "V" and "W" flags are not
   defined by this specification and are reserved for future use.  An
   implementation of this specification MUST set these flags to 0, and a
   receiver MUST ignore them.

   The "Reason" code is an 8-bit field that indicates the reason for the
   termination of the subflow.  The following codes are defined in this
   document:

   o  Unspecified error (code 0x0).  This is the default error implying
      the subflow is no longer available.  The presence of this option
      shows that the RST was generated by a MPTCP-aware device.

   o  MPTCP specific error (code 0x01).  An error has been detected in
      the processing of MPTCP options.  This is the usual reason code to
      return in the cases where a RST is being sent to close a subflow
      for reasons of an invalid response.

   o  Lack of resources (code 0x02).  This code indicates that the
      sending host does not have enough resources to support the
      terminated subflow.

   o  Administratively prohibited (code 0x03).  This code indicates that
      the requested subflow is prohibited by the policies of the sending
      host.

   o  Too much outstanding data (code 0x04).  This code indicates that
      there is an excessive amount of data that need to be transmitted
      over the terminated subflow while having already been acknowledged
      over one or more other subflows.  This may occur if a path has
      been unavailable for a short period and it is more efficient to
      reset and start again than it is to retransmit the queued data.

   o  Unacceptable performance (code 0x05).  This code indicates that
      the performance of this subflow was too low compared to the other
      subflows of this Multipath TCP connection.

   o  Middlebox interference (code 0x06).  Middlebox interference has
      been detected over this subflow making MPTCP signaling invalid.
      For example, this may be sent if the checksum does not validate.

3.7.  Fallback

   Sometimes, middleboxes will exist on a path that could prevent the
   operation of MPTCP.  MPTCP has been designed in order to cope with
   many middlebox modifications (see Section 6), but there are still
   some cases where a subflow could fail to operate within the MPTCP
   requirements.  These cases are notably the following: the loss of
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   MPTCP options on a path, and the modification of payload data.  If
   such an event occurs, it is necessary to "fall back" to the previous,
   safe operation.  This may be either falling back to regular TCP or
   removing a problematic subflow.

   At the start of an MPTCP connection (i.e., the first subflow), it is
   important to ensure that the path is fully MPTCP capable and the
   necessary MPTCP options can reach each host.  The handshake as
   described in Section 3.1 SHOULD fall back to regular TCP if either of
   the SYN messages do not have the MPTCP options: this is the same, and
   desired, behavior in the case where a host is not MPTCP capable, or
   the path does not support the MPTCP options.  When attempting to join
   an existing MPTCP connection (Section 3.2), if a path is not MPTCP
   capable and the MPTCP options do not get through on the SYNs, the
   subflow will be closed according to the MP_JOIN logic.

   There is, however, another corner case that should be addressed.
   That is one of MPTCP options getting through on the SYN, but not on
   regular packets.  This can be resolved if the subflow is the first
   subflow, and thus all data in flight is contiguous, using the
   following rules.

   A sender MUST include a DSS option with data sequence mapping in
   every segment until one of the sent segments has been acknowledged
   with a DSS option containing a Data ACK.  Upon reception of the
   acknowledgment, the sender has the confirmation that the DSS option
   passes in both directions and may choose to send fewer DSS options
   than once per segment.

   If, however, an ACK is received for data (not just for the SYN)
   without a DSS option containing a Data ACK, the sender determines the
   path is not MPTCP capable.  In the case of this occurring on an
   additional subflow (i.e., one started with MP_JOIN), the host MUST
   close the subflow with a RST, which SHOULD contain a MP_TCPRST option
   (Section 3.6) with a "Middlebox interference" reason code.

   In the case of such an ACK being received on the first subflow (i.e.,
   that started with MP_CAPABLE), before any additional subflows are
   added, the implementation MUST drop out of an MPTCP mode, back to
   regular TCP.  The sender will send one final data sequence mapping,
   with the Data-Level Length value of 0 indicating an infinite mapping
   (to inform the other end in case the path drops options in one
   direction only), and then revert to sending data on the single
   subflow without any MPTCP options.

   If a subflow breaks during operation, e.g. if it is re-routed and
   MPTCP options are no longer permitted, then once this is detected (by
   the subflow-level receive buffer filling up, since there is no
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   mapping available in order to DATA_ACK this data), the subflow SHOULD
   be treated as broken and closed with a RST, since no data can be
   delivered to the application layer, and no fallback signal can be
   reliably sent.  This RST SHOULD include the MP_TCPRST option
   (Section 3.6) with a "Middlebox interference" reason code.

   These rules should cover all cases where such a failure could happen:
   whether it’s on the forward or reverse path and whether the server or
   the client first sends data.

   So far this section has discussed the loss of MPTCP options, either
   initially, or during the course of the connection.  As described in
   Section 3.3, each portion of data for which there is a mapping is
   protected by a checksum, if checksums have been negotiated.  This
   mechanism is used to detect if middleboxes have made any adjustments
   to the payload (added, removed, or changed data).  A checksum will
   fail if the data has been changed in any way.  This will also detect
   if the length of data on the subflow is increased or decreased, and
   this means the data sequence mapping is no longer valid.  The sender
   no longer knows what subflow-level sequence number the receiver is
   genuinely operating at (the middlebox will be faking ACKs in return),
   and it cannot signal any further mappings.  Furthermore, in addition
   to the possibility of payload modifications that are valid at the
   application layer, there is the possibility that such modifications
   could be triggered across MPTCP segment boundaries, corrupting the
   data.  Therefore, all data from the start of the segment that failed
   the checksum onwards is not trustworthy.

   Note that if checksum usage has not been negotiated, this fallback
   mechanism cannot be used unless there is some higher or lower layer
   signal to inform the MPTCP implementation that the payload has been
   tampered with.

   When multiple subflows are in use, the data in flight on a subflow
   will likely involve data that is not contiguously part of the
   connection-level stream, since segments will be spread across the
   multiple subflows.  Due to the problems identified above, it is not
   possible to determine what adjustment has done to the data (notably,
   any changes to the subflow sequence numbering).  Therefore, it is not
   possible to recover the subflow, and the affected subflow must be
   immediately closed with a RST, featuring an MP_FAIL option
   (Figure 16), which defines the data sequence number at the start of
   the segment (defined by the data sequence mapping) that had the
   checksum failure.  Note that the MP_FAIL option requires the use of
   the full 64-bit sequence number, even if 32-bit sequence numbers are
   normally in use in the DSS signals on the path.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+----------------------+
      |     Kind      |   Length=12   |Subtype|      (reserved)      |
      +---------------+---------------+-------+----------------------+
      |                                                              |
      |                 Data Sequence Number (8 octets)              |
      |                                                              |
      +--------------------------------------------------------------+

                   Figure 16: Fallback (MP_FAIL) Option

   The receiver of this option MUST discard all data following the data
   sequence number specified.  Failed data MUST NOT be DATA_ACKed and so
   will be retransmitted on other subflows (Section 3.3.6).

   A special case is when there is a single subflow and it fails with a
   checksum error.  If it is known that all unacknowledged data in
   flight is contiguous (which will usually be the case with a single
   subflow), an infinite mapping can be applied to the subflow without
   the need to close it first, and essentially turn off all further
   MPTCP signaling.  In this case, if a receiver identifies a checksum
   failure when there is only one path, it will send back an MP_FAIL
   option on the subflow-level ACK, referring to the data-level sequence
   number of the start of the segment on which the checksum error was
   detected.  The sender will receive this, and if all unacknowledged
   data in flight is contiguous, will signal an infinite mapping.  This
   infinite mapping will be a DSS option (Section 3.3) on the first new
   packet, containing a data sequence mapping that acts retroactively,
   referring to the start of the subflow sequence number of the most
   recent segment that was known to be delivered intact (i.e. was
   successfully DATA_ACKed).  From that point onwards, data can be
   altered by a middlebox without affecting MPTCP, as the data stream is
   equivalent to a regular, legacy TCP session.  Whilst in theory paths
   may only be damaged in one direction, and the MP_FAIL signal affects
   only one direction of traffic, for implementation simplicity, the
   receiver of an MP_FAIL MUST also respond with an MP_FAIL in the
   reverse direction and entirely revert to a regular TCP session.

   In the rare case that the data is not contiguous (which could happen
   when there is only one subflow but it is retransmitting data from a
   subflow that has recently been uncleanly closed), the receiver MUST
   close the subflow with a RST with MP_FAIL.  The receiver MUST discard
   all data that follows the data sequence number specified.  The sender
   MAY attempt to create a new subflow belonging to the same connection,
   and, if it chooses to do so, SHOULD place the single subflow
   immediately in single-path mode by setting an infinite data sequence
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   mapping.  This mapping will begin from the data-level sequence number
   that was declared in the MP_FAIL.

   After a sender signals an infinite mapping, it MUST only use subflow
   ACKs to clear its send buffer.  This is because Data ACKs may become
   misaligned with the subflow ACKs when middleboxes insert or delete
   data.  The receive SHOULD stop generating Data ACKs after it receives
   an infinite mapping.

   When a connection has fallen back with an infinite mapping, only one
   subflow can send data; otherwise, the receiver would not know how to
   reorder the data.  In practice, this means that all MPTCP subflows
   will have to be terminated except one.  Once MPTCP falls back to
   regular TCP, it MUST NOT revert to MPTCP later in the connection.

   It should be emphasized that MPTCP is not attempting to prevent the
   use of middleboxes that want to adjust the payload.  An MPTCP-aware
   middlebox could provide such functionality by also rewriting
   checksums.

3.8.  Error Handling

   In addition to the fallback mechanism as described above, the
   standard classes of TCP errors may need to be handled in an MPTCP-
   specific way.  Note that changing semantics -- such as the relevance
   of a RST -- are covered in Section 4.  Where possible, we do not want
   to deviate from regular TCP behavior.

   The following list covers possible errors and the appropriate MPTCP
   behavior:

   o  Unknown token in MP_JOIN (or HMAC failure in MP_JOIN ACK, or
      missing MP_JOIN in SYN/ACK response): send RST (analogous to TCP’s
      behavior on an unknown port)

   o  DSN out of window (during normal operation): drop the data, do not
      send Data ACKs

   o  Remove request for unknown address ID: silently ignore

3.9.  Heuristics

   There are a number of heuristics that are needed for performance or
   deployment but that are not required for protocol correctness.  In
   this section, we detail such heuristics.  Note that discussion of
   buffering and certain sender and receiver window behaviors are
   presented in Sections 3.3.4 and 3.3.5, as well as retransmission in
   Section 3.3.6.
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3.9.1.  Port Usage

   Under typical operation, an MPTCP implementation SHOULD use the same
   ports as already in use.  In other words, the destination port of a
   SYN containing an MP_JOIN option SHOULD be the same as the remote
   port of the first subflow in the connection.  The local port for such
   SYNs SHOULD also be the same as for the first subflow (and as such,
   an implementation SHOULD reserve ephemeral ports across all local IP
   addresses), although there may be cases where this is infeasible.
   This strategy is intended to maximize the probability of the SYN
   being permitted by a firewall or NAT at the recipient and to avoid
   confusing any network monitoring software.

   There may also be cases, however, where a host wishes to signal that
   a specific port should be used, and this facility is provided in the
   ADD_ADDR option as documented in Section 3.4.1.  It is therefore
   feasible to allow multiple subflows between the same two addresses
   but using different port pairs, and such a facility could be used to
   allow load balancing within the network based on 5-tuples (e.g., some
   ECMP implementations [RFC2992]).

3.9.2.  Delayed Subflow Start and Subflow Symmetry

   Many TCP connections are short-lived and consist only of a few
   segments, and so the overheads of using MPTCP outweigh any benefits.
   A heuristic is required, therefore, to decide when to start using
   additional subflows in an MPTCP connection.  Experimental deployments
   have shown that MPTCP can be applied in a range of scenarios so an
   implementation is likely to need to take into account factors
   including the type of traffic being sent and duration of session, and
   this information MAY be signalled by the application layer.

   However, for standard TCP traffic, a suggested general-purpose
   heuristic that an implementation MAY choose to employ is as follows.

   If a host has data buffered for its peer (which implies that the
   application has received a request for data), the host opens one
   subflow for each initial window’s worth of data that is buffered.

   Consideration should also be given to limiting the rate of adding new
   subflows, as well as limiting the total number of subflows open for a
   particular connection.  A host may choose to vary these values based
   on its load or knowledge of traffic and path characteristics.

   Note that this heuristic alone is probably insufficient.  Traffic for
   many common applications, such as downloads, is highly asymmetric and
   the host that is multihomed may well be the client that will never
   fill its buffers, and thus never use MPTCP according to this
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   heuristic.  Advanced APIs that allow an application to signal its
   traffic requirements would aid in these decisions.

   An additional time-based heuristic could be applied, opening
   additional subflows after a given period of time has passed.  This
   would alleviate the above issue, and also provide resilience for low-
   bandwidth but long-lived applications.

   Another issue is that both communicating hosts may simultaneously try
   to set up a subflow between the same pair of addresses.  This leads
   to an inefficient use of resources.

   If the same ports are used on all subflows, as recommended above,
   then standard TCP simultaneous open logic should take care of this
   situation and only one subflow will be established between the
   address pairs.  However, this relies on the same ports being used at
   both end hosts.  If a host does not support TCP simultaneous open, it
   is RECOMMENDED that some element of randomization is applied to the
   time to wait before opening new subflows, so that only one subflow is
   created between a given address pair.  If, however, hosts signal
   additional ports to use (for example, for leveraging ECMP on-path),
   this heuristic is not appropriate.

   This section has shown some of the considerations that an implementer
   should give when developing MPTCP heuristics, but is not intended to
   be prescriptive.

3.9.3.  Failure Handling

   Requirements for MPTCP’s handling of unexpected signals have been
   given in Section 3.8.  There are other failure cases, however, where
   a hosts can choose appropriate behavior.

   For example, Section 3.1 suggests that a host SHOULD fall back to
   trying regular TCP SYNs after one or more failures of MPTCP SYNs for
   a connection.  A host may keep a system-wide cache of such
   information, so that it can back off from using MPTCP, firstly for
   that particular destination host, and eventually on a whole
   interface, if MPTCP connections continue failing.  The duration of
   such a cache would be implementation-specific.

   Another failure could occur when the MP_JOIN handshake fails.
   Section 3.8 specifies that an incorrect handshake MUST lead to the
   subflow being closed with a RST.  A host operating an active
   intrusion detection system may choose to start blocking MP_JOIN
   packets from the source host if multiple failed MP_JOIN attempts are
   seen.  From the connection initiator’s point of view, if an MP_JOIN
   fails, it SHOULD NOT attempt to connect to the same IP address and
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   port during the lifetime of the connection, unless the other host
   refreshes the information with another ADD_ADDR option.  Note that
   the ADD_ADDR option is informational only, and does not guarantee the
   other host will attempt a connection.

   In addition, an implementation may learn, over a number of
   connections, that certain interfaces or destination addresses
   consistently fail and may default to not trying to use MPTCP for
   these.  Behavior could also be learned for particularly badly
   performing subflows or subflows that regularly fail during use, in
   order to temporarily choose not to use these paths.

4.  Semantic Issues

   In order to support multipath operation, the semantics of some TCP
   components have changed.  To aid clarity, this section collects these
   semantic changes as a reference.

   Sequence number:  The (in-header) TCP sequence number is specific to
      the subflow.  To allow the receiver to reorder application data,
      an additional data-level sequence space is used.  In this data-
      level sequence space, the initial SYN and the final DATA_FIN
      occupy 1 octet of sequence space.  This is to ensure these signals
      are acknowledged at the connection level.  There is an explicit
      mapping of data sequence space to subflow sequence space, which is
      signaled through TCP options in data packets.

   ACK:  The ACK field in the TCP header acknowledges only the subflow
      sequence number, not the data-level sequence space.
      Implementations SHOULD NOT attempt to infer a data-level
      acknowledgment from the subflow ACKs.  This separates subflow- and
      connection-level processing at an end host.

   Duplicate ACK:  A duplicate ACK that includes any MPTCP signaling
      (with the exception of the DSS option) MUST NOT be treated as a
      signal of congestion.  To limit the chances of non-MPTCP-aware
      entities mistakenly interpreting duplicate ACKs as a signal of
      congestion, MPTCP SHOULD NOT send more than two duplicate ACKs
      containing (non-DSS) MPTCP signals in a row.

   Receive Window:  The receive window in the TCP header indicates the
      amount of free buffer space for the whole data-level connection
      (as opposed to for this subflow) that is available at the
      receiver.  This is the same semantics as regular TCP, but to
      maintain these semantics the receive window must be interpreted at
      the sender as relative to the sequence number given in the
      DATA_ACK rather than the subflow ACK in the TCP header.  In this
      way, the original flow control role is preserved.  Note that some
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      middleboxes may change the receive window, and so a host SHOULD
      use the maximum value of those recently seen on the constituent
      subflows for the connection-level receive window, and also needs
      to maintain a subflow-level window for subflow-level processing.

   FIN:  The FIN flag in the TCP header applies only to the subflow it
      is sent on, not to the whole connection.  For connection-level FIN
      semantics, the DATA_FIN option is used.

   RST:  The RST flag in the TCP header applies only to the subflow it
      is sent on, not to the whole connection.  The MP_FASTCLOSE option
      provides the fast close functionality of a RST at the MPTCP
      connection level.

   Address List:  Address list management (i.e., knowledge of the local
      and remote hosts’ lists of available IP addresses) is handled on a
      per-connection basis (as opposed to per subflow, per host, or per
      pair of communicating hosts).  This permits the application of
      per-connection local policy.  Adding an address to one connection
      (either explicitly through an Add Address message, or implicitly
      through a Join) has no implication for other connections between
      the same pair of hosts.

   5-tuple:  The 5-tuple (protocol, local address, local port, remote
      address, remote port) presented by kernel APIs to the application
      layer in a non-multipath-aware application is that of the first
      subflow, even if the subflow has since been closed and removed
      from the connection.  This decision, and other related API issues,
      are discussed in more detail in [RFC6897].

5.  Security Considerations

   As identified in [RFC6181], the addition of multipath capability to
   TCP will bring with it a number of new classes of threat.  In order
   to prevent these, [RFC6182] presents a set of requirements for a
   security solution for MPTCP.  The fundamental goal is for the
   security of MPTCP to be "no worse" than regular TCP today, and the
   key security requirements are:

   o  Provide a mechanism to confirm that the parties in a subflow
      handshake are the same as in the original connection setup.

   o  Provide verification that the peer can receive traffic at a new
      address before using it as part of a connection.

   o  Provide replay protection, i.e., ensure that a request to add/
      remove a subflow is ’fresh’.
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   In order to achieve these goals, MPTCP includes a hash-based
   handshake algorithm documented in Sections 3.1 and 3.2.

   The security of the MPTCP connection hangs on the use of keys that
   are shared once at the start of the first subflow, and are never sent
   again over the network (unless used in the fast close mechanism,
   Section 3.5).  To ease demultiplexing while not giving away any
   cryptographic material, future subflows use a truncated cryptographic
   hash of this key as the connection identification "token".  The keys
   are concatenated and used as keys for creating Hash-based Message
   Authentication Codes (HMACs) used on subflow setup, in order to
   verify that the parties in the handshake are the same as in the
   original connection setup.  It also provides verification that the
   peer can receive traffic at this new address.  Replay attacks would
   still be possible when only keys are used; therefore, the handshakes
   use single-use random numbers (nonces) at both ends -- this ensures
   the HMAC will never be the same on two handshakes.  Guidance on
   generating random numbers suitable for use as keys is given in
   [RFC4086] and discussed in Section 3.1.  The nonces are valid for the
   lifetime of the TCP connection attempt.  HMAC is also used to secure
   the ADD_ADDR option, due to the threats identified in [RFC7430].

   The use of crypto capability bits in the initial connection handshake
   to negotiate use of a particular algorithm allows the deployment of
   additional crypto mechanisms in the future.  This negotiation would
   nevertheless be susceptible to a bid-down attack by an on-path active
   attacker who could modify the crypto capability bits in the response
   from the receiver to use a less secure crypto mechanism.  The
   security mechanism presented in this document should therefore
   protect against all forms of flooding and hijacking attacks discussed
   in [RFC6181].

   The version negotiation specified in Section 3.1, if differing MPTCP
   versions shared a common negotiation format, would allow an on-path
   attacker to apply a theoretical bid-down attack.  Since the v1 and v0
   protocols have a different handshake, such an attack would require
   the client to re-establish the connection using v0, and this being
   supported by the server.  Note that an on-path attacker would have
   access to the raw data, negating any other TCP-level security
   mechanisms.  Also a change from RFC6824 has removed the subflow
   identifier from the MP_PRIO option (Section 3.3.8), to remove the
   theoretical attack where a subflow could be placed in "backup" mode
   by an attacker.

   During normal operation, regular TCP protection mechanisms (such as
   ensuring sequence numbers are in-window) will provide the same level
   of protection against attacks on individual TCP subflows as exists
   for regular TCP today.  Implementations will introduce additional
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   buffers compared to regular TCP, to reassemble data at the connection
   level.  The application of window sizing will minimize the risk of
   denial-of-service attacks consuming resources.

   As discussed in Section 3.4.1, a host may advertise its private
   addresses, but these might point to different hosts in the receiver’s
   network.  The MP_JOIN handshake (Section 3.2) will ensure that this
   does not succeed in setting up a subflow to the incorrect host.
   However, it could still create unwanted TCP handshake traffic.  This
   feature of MPTCP could be a target for denial-of-service exploits,
   with malicious participants in MPTCP connections encouraging the
   recipient to target other hosts in the network.  Therefore,
   implementations should consider heuristics (Section 3.9) at both the
   sender and receiver to reduce the impact of this.

   To further protect against malicious ADD_ADDR messages sent by an
   off-path attacker, the ADD_ADDR includes an HMAC using the keys
   negotiated during the handshake.  This effectively prevents an
   attacker from diverting an MPTCP connection through an off-path
   ADD_ADDR injection into the stream.

   A small security risk could theoretically exist with key reuse, but
   in order to accomplish a replay attack, both the sender and receiver
   keys, and the sender and receiver random numbers, in the MP_JOIN
   handshake (Section 3.2) would have to match.

   Whilst this specification defines a "medium" security solution,
   meeting the criteria specified at the start of this section and the
   threat analysis ([RFC6181]), since attacks only ever get worse, it is
   likely that a future version of MPTCP would need to be able to
   support stronger security.  There are several ways the security of
   MPTCP could potentially be improved; some of these would be
   compatible with MPTCP as defined in this document, whilst others may
   not be.  For now, the best approach is to get experience with the
   current approach, establish what might work, and check that the
   threat analysis is still accurate.

   Possible ways of improving MPTCP security could include:

   o  defining a new MPCTP cryptographic algorithm, as negotiated in
      MP_CAPABLE.  A sub-case could be to include an additional
      deployment assumption, such as stateful servers, in order to allow
      a more powerful algorithm to be used.

   o  defining how to secure data transfer with MPTCP, whilst not
      changing the signaling part of the protocol.
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   o  defining security that requires more option space, perhaps in
      conjunction with a "long options" proposal for extending the TCP
      options space (such as those surveyed in [TCPLO]), or perhaps
      building on the current approach with a second stage of MPTCP-
      option-based security.

   o  revisiting the working group’s decision to exclusively use TCP
      options for MPTCP signaling, and instead look at also making use
      of the TCP payloads.

   MPTCP has been designed with several methods available to indicate a
   new security mechanism, including:

   o  available flags in MP_CAPABLE (Figure 4);

   o  available subtypes in the MPTCP option (Figure 3);

   o  the version field in MP_CAPABLE (Figure 4);

6.  Interactions with Middleboxes

   Multipath TCP was designed to be deployable in the present world.
   Its design takes into account "reasonable" existing middlebox
   behavior.  In this section, we outline a few representative
   middlebox-related failure scenarios and show how Multipath TCP
   handles them.  Next, we list the design decisions multipath has made
   to accommodate the different middleboxes.

   A primary concern is our use of a new TCP option.  Middleboxes should
   forward packets with unknown options unchanged, yet there are some
   that don’t.  These we expect will either strip options and pass the
   data, drop packets with new options, copy the same option into
   multiple segments (e.g., when doing segmentation), or drop options
   during segment coalescing.

   MPTCP uses a single new TCP option "Kind", and all message types are
   defined by "subtype" values (see Section 8).  This should reduce the
   chances of only some types of MPTCP options being passed, and instead
   the key differing characteristics are different paths, and the
   presence of the SYN flag.

   MPTCP SYN packets on the first subflow of a connection contain the
   MP_CAPABLE option (Section 3.1).  If this is dropped, MPTCP SHOULD
   fall back to regular TCP.  If packets with the MP_JOIN option
   (Section 3.2) are dropped, the paths will simply not be used.

   If a middlebox strips options but otherwise passes the packets
   unchanged, MPTCP will behave safely.  If an MP_CAPABLE option is
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   dropped on either the outgoing or the return path, the initiating
   host can fall back to regular TCP, as illustrated in Figure 17 and
   discussed in Section 3.1.

   Subflow SYNs contain the MP_JOIN option.  If this option is stripped
   on the outgoing path, the SYN will appear to be a regular SYN to Host
   B.  Depending on whether there is a listening socket on the target
   port, Host B will reply either with SYN/ACK or RST (subflow
   connection fails).  When Host A receives the SYN/ACK it sends a RST
   because the SYN/ACK does not contain the MP_JOIN option and its
   token.  Either way, the subflow setup fails, but otherwise does not
   affect the MPTCP connection as a whole.

        Host A                             Host B
         |              Middlebox M            |
         |                   |                 |
         |  SYN(MP_CAPABLE)  |        SYN      |
         |-------------------|---------------->|
         |                SYN/ACK              |
         |<------------------------------------|
     a) MP_CAPABLE option stripped on outgoing path

       Host A                               Host B
         |            SYN(MP_CAPABLE)          |
         |------------------------------------>|
         |             Middlebox M             |
         |                 |                   |
         |    SYN/ACK      |SYN/ACK(MP_CAPABLE)|
         |<----------------|-------------------|
     b) MP_CAPABLE option stripped on return path

   Figure 17: Connection Setup with Middleboxes that Strip Options from
                                  Packets

   We now examine data flow with MPTCP, assuming the flow is correctly
   set up, which implies the options in the SYN packets were allowed
   through by the relevant middleboxes.  If options are allowed through
   and there is no resegmentation or coalescing to TCP segments,
   Multipath TCP flows can proceed without problems.

   The case when options get stripped on data packets has been discussed
   in the Fallback section.  If only some MPTCP options are stripped,
   behavior is not deterministic.  If some data sequence mappings are
   lost, the connection can continue so long as mappings exist for the
   subflow-level data (e.g., if multiple maps have been sent that
   reinforce each other).  If some subflow-level space is left unmapped,
   however, the subflow is treated as broken and is closed, through the
   process described in Section 3.7.  MPTCP should survive with a loss
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   of some Data ACKs, but performance will degrade as the fraction of
   stripped options increases.  We do not expect such cases to appear in
   practice, though: most middleboxes will either strip all options or
   let them all through.

   We end this section with a list of middlebox classes, their behavior,
   and the elements in the MPTCP design that allow operation through
   such middleboxes.  Issues surrounding dropping packets with options
   or stripping options were discussed above, and are not included here:

   o  NATs [RFC3022] (Network Address (and Port) Translators) change the
      source address (and often source port) of packets.  This means
      that a host will not know its public-facing address for signaling
      in MPTCP.  Therefore, MPTCP permits implicit address addition via
      the MP_JOIN option, and the handshake mechanism ensures that
      connection attempts to private addresses [RFC1918], since they are
      authenticated, will only set up subflows to the correct hosts.
      Explicit address removal is undertaken by an Address ID to allow
      no knowledge of the source address.

   o  Performance Enhancing Proxies (PEPs) [RFC3135] might proactively
      ACK data to increase performance.  MPTCP, however, relies on
      accurate congestion control signals from the end host, and non-
      MPTCP-aware PEPs will not be able to provide such signals.  MPTCP
      will, therefore, fall back to single-path TCP, or close the
      problematic subflow (see Section 3.7).

   o  Traffic Normalizers [norm] may not allow holes in sequence
      numbers, and may cache packets and retransmit the same data.
      MPTCP looks like standard TCP on the wire, and will not retransmit
      different data on the same subflow sequence number.  In the event
      of a retransmission, the same data will be retransmitted on the
      original TCP subflow even if it is additionally retransmitted at
      the connection level on a different subflow.

   o  Firewalls [RFC2979] might perform initial sequence number
      randomization on TCP connections.  MPTCP uses relative sequence
      numbers in data sequence mapping to cope with this.  Like NATs,
      firewalls will not permit many incoming connections, so MPTCP
      supports address signaling (ADD_ADDR) so that a multiaddressed
      host can invite its peer behind the firewall/NAT to connect out to
      its additional interface.

   o  Intrusion Detection/Prevention Systems (IDS/IPS) observe packet
      streams for patterns and content that could threaten a network.
      MPTCP may require the instrumentation of additional paths, and an
      MPTCP-aware IDS/IPS would need to read MPTCP tokens to correlate
      data from mutliple subflows to maintain comparable visibility into
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      all of the traffic between devices.  Without such changes, an IDS
      would get an incomplete view of the traffic, increasing the risk
      of missing traffic of interest (false negatives), and increasing
      the chances of erroneously identifying a subflow as a risk due to
      only seeing partial data (false positives).

   o  Application-level middleboxes such as content-aware firewalls may
      alter the payload within a subflow, such as rewriting URIs in HTTP
      traffic.  MPTCP will detect these using the checksum and close the
      affected subflow(s), if there are other subflows that can be used.
      If all subflows are affected, multipath will fall back to TCP,
      allowing such middleboxes to change the payload.  MPTCP-aware
      middleboxes should be able to adjust the payload and MPTCP
      metadata in order not to break the connection.

   In addition, all classes of middleboxes may affect TCP traffic in the
   following ways:

   o  TCP options may be removed, or packets with unknown options
      dropped, by many classes of middleboxes.  It is intended that the
      initial SYN exchange, with a TCP option, will be sufficient to
      identify the path capabilities.  If such a packet does not get
      through, MPTCP will end up falling back to regular TCP.

   o  Segmentation/Coalescing (e.g., TCP segmentation offloading) might
      copy options between packets and might strip some options.
      MPTCP’s data sequence mapping includes the relative subflow
      sequence number instead of using the sequence number in the
      segment.  In this way, the mapping is independent of the packets
      that carry it.

   o  The receive window may be shrunk by some middleboxes at the
      subflow level.  MPTCP will use the maximum window at data level,
      but will also obey subflow-specific windows.
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8.  IANA Considerations

   This document obsoletes RFC6824 and as such IANA is requested to
   update the TCP option space registry to point to this document for
   Multipath TCP, as follows:

         +------+--------+-----------------------+---------------+
         | Kind | Length |        Meaning        |   Reference   |
         +------+--------+-----------------------+---------------+
         |  30  |   N    | Multipath TCP (MPTCP) | This document |
         +------+--------+-----------------------+---------------+

                     Table 1: TCP Option Kind Numbers

8.1.  MPTCP Option Subtypes

   The 4-bit MPTCP subtype sub-registry ("MPTCP Option Subtypes" under
   the "Transmission Control Protocol (TCP) Parameters" registry) was
   defined in RFC6824.  Since RFC6824 was an Experimental not Standards
   Track RFC, and since no further entries have occurred beyond those
   pointing to RFC6824, IANA is requested to replace the existing
   registry with Table 2 and with the following explanatory note.

   Note: This registry specifies the MPTCP Option Subtypes for MPTCP v1,
   which obsoletes the Experimental MPTCP v0.  For the MPTCP v0
   subtypes, please refer to RFC6824.
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   +-------+-----------------+-------------------------+---------------+
   | Value |      Symbol     |           Name          |   Reference   |
   +-------+-----------------+-------------------------+---------------+
   |  0x0  |    MP_CAPABLE   |    Multipath Capable    |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         |  Section 3.1  |
   |  0x1  |     MP_JOIN     |     Join Connection     |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         |  Section 3.2  |
   |  0x2  |       DSS       |   Data Sequence Signal  |      This     |
   |       |                 |    (Data ACK and data   |   document,   |
   |       |                 |    sequence mapping)    |  Section 3.3  |
   |  0x3  |     ADD_ADDR    |       Add Address       |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         | Section 3.4.1 |
   |  0x4  |   REMOVE_ADDR   |      Remove Address     |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         | Section 3.4.2 |
   |  0x5  |     MP_PRIO     | Change Subflow Priority |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         | Section 3.3.8 |
   |  0x6  |     MP_FAIL     |         Fallback        |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         |  Section 3.7  |
   |  0x7  |   MP_FASTCLOSE  |        Fast Close       |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         |  Section 3.5  |
   |  0x8  |    MP_TCPRST    |      Subflow Reset      |      This     |
   |       |                 |                         |   document,   |
   |       |                 |                         |  Section 3.6  |
   |  0xf  | MP_EXPERIMENTAL |   Reserved for private  |               |
   |       |                 |       experiments       |               |
   +-------+-----------------+-------------------------+---------------+

                      Table 2: MPTCP Option Subtypes

   Values 0x9 through 0xe are currently unassigned.  Option 0xf is
   reserved for use by private experiments.  Its use may be formalized
   in a future specification.  Future assignments in this registry are
   to be defined by Standards Action as defined by [RFC8126].
   Assignments consist of the MPTCP subtype’s symbolic name and its
   associated value, and a reference to its specification.

8.2.  MPTCP Handshake Algorithms

   The "MPTCP Handshake Algorithms" sub-registry under the "Transmission
   Control Protocol (TCP) Parameters" registry was defined in RFC6824.
   Since RFC6824 was an Experimental not Standards Track RFC, and since
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   no further entries have occurred beyond those pointing to RFC6824,
   IANA is requested to replace the existing registry with Table 3 and
   with the following explanatory note.

   Note: This registry specifies the MPTCP Handshake Algorithms for
   MPTCP v1, which obsoletes the Experimental MPTCP v0.  For the MPTCP
   v0 subtypes, please refer to RFC6824.

   +-------+----------------------------------------+------------------+
   |  Flag |                Meaning                 |    Reference     |
   |  Bit  |                                        |                  |
   +-------+----------------------------------------+------------------+
   |   A   |           Checksum required            |  This document,  |
   |       |                                        |   Section 3.1    |
   |   B   |             Extensibility              |  This document,  |
   |       |                                        |   Section 3.1    |
   |   C   |    Do not attempt to establish new     |  This document,  |
   |       |    subflows to the source address.     |   Section 3.1    |
   |  D-G  |               Unassigned               |                  |
   |   H   |              HMAC-SHA256               |  This document,  |
   |       |                                        |   Section 3.2    |
   +-------+----------------------------------------+------------------+

                    Table 3: MPTCP Handshake Algorithms

   Note that the meanings of bits D through H can be dependent upon bit
   B, depending on how Extensibility is defined in future
   specifications; see Section 3.1 for more information.

   Future assignments in this registry are also to be defined by
   Standards Action as defined by [RFC8126].  Assignments consist of the
   value of the flags, a symbolic name for the algorithm, and a
   reference to its specification.

8.3.  MP_TCPRST Reason Codes

   IANA is requested to create a further sub-registry, "MPTCP MP_TCPRST
   Reason Codes" under the "Transmission Control Protocol (TCP)
   Parameters" registry, based on the reason code in MP_TCPRST
   (Section 3.6) message.  Initial values for this registry are given in
   Table 4; future assignments are to be defined by Specification
   Required as defined by [RFC8126].  Assignments consist of the value
   of the code, a short description of its meaning, and a reference to
   its specification.  The maximum value is 0xff.

   As guidance to the Designated Expert [RFC8126], assignments should
   not normally be refused unless codepoint space is becoming scarce,
   providing that there is a clear distinction from other, already-

Ford, et al.            Expires December 10, 2019              [Page 66]



Internet-Draft                Multipath TCP                    June 2019

   existing codes, and also providing there is sufficient guidance for
   implementors both sending and receiving these codes.

    +------+-----------------------------+----------------------------+
    | Code |           Meaning           |         Reference          |
    +------+-----------------------------+----------------------------+
    | 0x00 |    Unspecified TCP error    | This document, Section 3.6 |
    | 0x01 |     MPTCP specific error    | This document, Section 3.6 |
    | 0x02 |      Lack of resources      | This document, Section 3.6 |
    | 0x03 | Administratively prohibited | This document, Section 3.6 |
    | 0x04 |  Too much outstanding data  | This document, Section 3.6 |
    | 0x05 |   Unacceptable performance  | This document, Section 3.6 |
    | 0x06 |    Middlebox interference   | This document, Section 3.6 |
    +------+-----------------------------+----------------------------+

                   Table 4: MPTCP MP_TCPRST Reason Codes
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Appendix A.  Notes on Use of TCP Options

   The TCP option space is limited due to the length of the Data Offset
   field in the TCP header (4 bits), which defines the TCP header length
   in 32-bit words.  With the standard TCP header being 20 bytes, this
   leaves a maximum of 40 bytes for options, and many of these may
   already be used by options such as timestamp and SACK.

   We have performed a brief study on the commonly used TCP options in
   SYN, data, and pure ACK packets, and found that there is enough room
   to fit all the options we propose using in this document.

   SYN packets typically include Maximum Segment Size (MSS) (4 bytes),
   window scale (3 bytes), SACK permitted (2 bytes), and timestamp (10
   bytes) options.  Together these sum to 19 bytes.  Some operating
   systems appear to pad each option up to a word boundary, thus using
   24 bytes (a brief survey suggests Windows XP and Mac OS X do this,
   whereas Linux does not).  Optimistically, therefore, we have 21 bytes
   spare, or 16 if it has to be word-aligned.  In either case, however,
   the SYN versions of Multipath Capable (12 bytes) and Join (12 or 16
   bytes) options will fit in this remaining space.

   Note that due to the use of a 64-bit data-level sequence space, it is
   feasible that MPTCP will not require the timestamp option for
   protection against wrapped sequence numbers (PAWS [RFC7323]), since
   the data-level sequence space has far less chance of wrapping.
   Confirmation of the validity of this optimisation is for further
   study.

   TCP data packets typically carry timestamp options in every packet,
   taking 10 bytes (or 12 with padding).  That leaves 30 bytes (or 28,
   if word-aligned).  The Data Sequence Signal (DSS) option varies in
   length depending on whether the data sequence mapping and DATA_ACK
   are included, and whether the sequence numbers in use are 4 or 8
   octets.  The maximum size of the DSS option is 28 bytes, so even that
   will fit in the available space.  But unless a connection is both
   bidirectional and high-bandwidth, it is unlikely that all that option
   space will be required on each DSS option.

   Within the DSS option, it is not necessary to include the data
   sequence mapping and DATA_ACK in each packet, and in many cases it
   may be possible to alternate their presence (so long as the mapping
   covers the data being sent in the following packet).  It would also
   be possible to alternate between 4- and 8-byte sequence numbers in
   each option.

   On subflow and connection setup, an MPTCP option is also set on the
   third packet (an ACK).  These are 20 bytes (for Multipath Capable)
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   and 24 bytes (for Join), both of which will fit in the available
   option space.

   Pure ACKs in TCP typically contain only timestamps (10 bytes).  Here,
   Multipath TCP typically needs to encode only the DATA_ACK (maximum of
   12 bytes).  Occasionally, ACKs will contain SACK information.
   Depending on the number of lost packets, SACK may utilize the entire
   option space.  If a DATA_ACK had to be included, then it is probably
   necessary to reduce the number of SACK blocks to accommodate the
   DATA_ACK.  However, the presence of the DATA_ACK is unlikely to be
   necessary in a case where SACK is in use, since until at least some
   of the SACK blocks have been retransmitted, the cumulative data-level
   ACK will not be moving forward (or if it does, due to retransmissions
   on another path, then that path can also be used to transmit the new
   DATA_ACK).

   The ADD_ADDR option can be between 16 and 30 bytes, depending on
   whether IPv4 or IPv6 is used, and whether or not the port number is
   present.  It is unlikely that such signaling would fit in a data
   packet (although if there is space, it is fine to include it).  It is
   recommended to use duplicate ACKs with no other payload or options in
   order to transmit these rare signals.  Note this is the reason for
   mandating that duplicate ACKs with MPTCP options are not taken as a
   signal of congestion.

Appendix B.  TCP Fast Open and MPTCP

   TCP Fast Open (TFO) is an experimental TCP extension, described in
   [RFC7413], which has been introduced to allow sending data one RTT
   earlier than with regular TCP.  This is considered a valuable gain as
   very short connections are very common, especially for HTTP request/
   response schemes.  It achieves this by sending the SYN-segment
   together with the application’s data and allowing the listener to
   reply immediately with data after the SYN/ACK.  [RFC7413] secures
   this mechanism, by using a new TCP option that includes a cookie
   which is negotiated in a preceding connection.

   When using TCP Fast Open in conjunction with MPTCP, there are two key
   points to take into account, detailed hereafter.

B.1.  TFO cookie request with MPTCP

   When a TFO initiator first connects to a listener, it cannot
   immediately include data in the SYN for security reasons [RFC7413].
   Instead, it requests a cookie that will be used in subsequent
   connections.  This is done with the TCP cookie request/response
   options, of respectively 2 bytes and 6-18 bytes (depending on the
   chosen cookie length).

Ford, et al.            Expires December 10, 2019              [Page 72]



Internet-Draft                Multipath TCP                    June 2019

   TFO and MPTCP can be combined provided that the total length of all
   the options does not exceed the maximum 40 bytes possible in TCP:

   o  In the SYN: MPTCP uses a 4-bytes long MP_CAPABLE option.  The
      MPTCP and TFO options sum up to 6 bytes.  With typical TCP-options
      using up to 19 bytes in the SYN (24 bytes if options are padded at
      a word boundary), there is enough space to combine the MP_CAPABLE
      with the TFO Cookie Request.

   o  In the SYN+ACK: MPTCP uses a 12-bytes long MP_CAPABLE option, but
      now TFO can be as long as 18 bytes.  Since the maximum option
      length may be exceeded, it is up to the listener to solve this by
      using a shorter cookie.  As an example, if we consider that 19
      bytes are used for classical TCP options, the maximum possible
      cookie length would be of 7 bytes.  Note that the same limitation
      applies to subsequent connections, for the SYN packet (because the
      initiator then echoes back the cookie to the listener).  Finally,
      if the security impact of reducing the cookie size is not deemed
      acceptable, the listener can reduce the amount of other TCP-
      options by omitting the TCP timestamps (as outlined in
      Appendix A).

B.2.  Data sequence mapping under TFO

   MPTCP uses, in the TCP establishment phase, a key exchange that is
   used to generate the Initial Data Sequence Numbers (IDSNs).  In
   particular, the SYN with MP_CAPABLE occupies the first octet of the
   data sequence space.  With TFO, one way to handle the data sent
   together with the SYN would be to consider an implicit DSS mapping
   that covers that SYN segment (since there is not enough space in the
   SYN to include a DSS option).  The problem with that approach is that
   if a middlebox modifies the TFO data, this will not be noticed by
   MPTCP because of the absence of a DSS-checksum.  For example, a TCP
   (but not MPTCP)-aware middlebox could insert bytes at the beginning
   of the stream and adapt the TCP checksum and sequence numbers
   accordingly.  With an implicit mapping, this would give to initiator
   and listener a different view on the DSS-mapping, with no way to
   detect this inconsistency as the DSS checksum is not present.

   To solve this, the TFO data must not be considered part of the Data
   Sequence Number space: the SYN with MP_CAPABLE still occupies the
   first octet of data sequence space, but then the first non-TFO data
   byte occupies the second octet.  This guarantees that, if the use of
   DSS-checksum is negotiated, all data in the data sequence number
   space is checksummed.  We also note that this does not entail a loss
   of functionality, because TFO-data is always only sent on the initial
   subflow before any attempt to create additional subflows.
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B.3.  Connection establishment examples

   The following shows a few examples of possible TFO+MPTCP
   establishment scenarios.

   Before an initiator can send data together with the SYN, it must
   request a cookie to the listener, as shown in Figure 18.  This is
   done by simply combining the TFO and MPTCP options.

initiator                                                       listener
    |                                                              |
    |    S Seq=0(Length=0) <MP_CAPABLE>, <TFO cookie request>      |
    | -----------------------------------------------------------> |
    |                                                              |
    |    S. 0(0) ack 1 <MP_CAPABLE>, <TFO cookie>                  |
    | <----------------------------------------------------------- |
    |                                                              |
    |    .  0(0) ack 1 <MP_CAPABLE>                                |
    | -----------------------------------------------------------> |
    |                                                              |

   Figure 18: Cookie request - sequence number and length are annotated
             as Seq(Length) and used hereafter in the figures.

   Once this is done, the received cookie can be used for TFO, as shown
   in Figure 19.  In this example, the initiator first sends 20 bytes in
   the SYN.  The listener immediately replies with 100 bytes following
   the SYN-ACK upon which the initiator replies with 20 more bytes.
   Note that the last segment in the figure has a TCP sequence number of
   21, while the DSS subflow sequence number is 1 (because the TFO data
   is not part of the data sequence number space, as explained in
   Section Appendix B.2.
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initiator                                                       listener
    |                                                              |
    |    S  0(20) <MP_CAPABLE>, <TFO cookie>                       |
    | -----------------------------------------------------------> |
    |                                                              |
    |    S. 0(0) ack 21 <MP_CAPABLE>                               |
    | <----------------------------------------------------------- |
    |                                                              |
    |    .  1(100) ack 21 <DSS ack=1 seq=1 ssn=1 dlen=100>         |
    | <----------------------------------------------------------- |
    |                                                              |
    |    .  21(0) ack 1 <MP_CAPABLE>                               |
    | -----------------------------------------------------------> |
    |                                                              |
    |    .  21(20) ack 101 <DSS ack=101 seq=1 ssn=1 dlen=20>       |
    | -----------------------------------------------------------> |
    |                                                              |

                   Figure 19: The listener supports TFO

   In Figure 20, the listener does not support TFO.  The initiator
   detects that no state is created in the listener (as no data is
   acked), and now sends the MP_CAPABLE in the third ack, in order for
   the listener to build its MPTCP context at then end of the
   establishment.  Now, the tfo data, retransmitted, becomes part of the
   data sequence mapping because it is effectively sent (in fact re-
   sent) after the establishment.

initiator                                                       listener
    |                                                              |
    |    S  0(20) <MP_CAPABLE>, <TFO cookie>                       |
    | -----------------------------------------------------------> |
    |                                                              |
    |    S. 0(0) ack 1 <MP_CAPABLE>                                |
    | <----------------------------------------------------------- |
    |                                                              |
    |    .  1(0) ack 1 <MP_CAPABLE>                                |
    | -----------------------------------------------------------> |
    |                                                              |
    |    .  1(20) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=20>            |
    | -----------------------------------------------------------> |
    |                                                              |
    |    .  0(0) ack 21 <DSS ack=21 seq=1 ssn=1 dlen=0>            |
    | <----------------------------------------------------------- |
    |                                                              |

               Figure 20: The listener does not support TFO

Ford, et al.            Expires December 10, 2019              [Page 75]



Internet-Draft                Multipath TCP                    June 2019

   It is also possible that the listener acknowledges only part of the
   TFO data, as illustrated in Figure 21.  The initiator will simply
   retransmit the missing data together with a DSS-mapping.

initiator                                                       listener
    |                                                              |
    |  S  0(1000) <MP_CAPABLE>, <TFO cookie>                       |
    | -----------------------------------------------------------> |
    |                                                              |
    |  S. 0(0) ack 501 <MP_CAPABLE>                                |
    | <----------------------------------------------------------- |
    |                                                              |
    |    .  501(0) ack 1 <MP_CAPABLE>                              |
    | -----------------------------------------------------------> |
    |                                                              |
    |   .  501(500) ack 1 <DSS ack=1 seq=1 ssn=1 dlen=500>         |
    | -----------------------------------------------------------> |
    |                                                              |

                  Figure 21: Partial data acknowledgement

Appendix C.  Control Blocks

   Conceptually, an MPTCP connection can be represented as an MPTCP
   protocol control block (PCB) that contains several variables that
   track the progress and the state of the MPTCP connection and a set of
   linked TCP control blocks that correspond to the subflows that have
   been established.

   RFC 793 [RFC0793] specifies several state variables.  Whenever
   possible, we reuse the same terminology as RFC 793 to describe the
   state variables that are maintained by MPTCP.

C.1.  MPTCP Control Block

   The MPTCP control block contains the following variable per
   connection.

C.1.1.  Authentication and Metadata

   Local.Token (32 bits):  This is the token chosen by the local host on
      this MPTCP connection.  The token must be unique among all
      established MPTCP connections, and is generated from the local
      key.

   Local.Key (64 bits):  This is the key sent by the local host on this
      MPTCP connection.
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   Remote.Token (32 bits):  This is the token chosen by the remote host
      on this MPTCP connection, generated from the remote key.

   Remote.Key (64 bits):  This is the key chosen by the remote host on
      this MPTCP connection

   MPTCP.Checksum (flag):  This flag is set to true if at least one of
      the hosts has set the A bit in the MP_CAPABLE options exchanged
      during connection establishment, and is set to false otherwise.
      If this flag is set, the checksum must be computed in all DSS
      options.

C.1.2.  Sending Side

   SND.UNA (64 bits):  This is the data sequence number of the next byte
      to be acknowledged, at the MPTCP connection level.  This variable
      is updated upon reception of a DSS option containing a DATA_ACK.

   SND.NXT (64 bits):  This is the data sequence number of the next byte
      to be sent.  SND.NXT is used to determine the value of the DSN in
      the DSS option.

   SND.WND (32 bits with RFC 7323, 16 bits otherwise):  This is the
      sending window.  MPTCP maintains the sending window at the MPTCP
      connection level and the same window is shared by all subflows.
      All subflows use the MPTCP connection level SND.WND to compute the
      SEQ.WND value that is sent in each transmitted segment.

C.1.3.  Receiving Side

   RCV.NXT (64 bits):  This is the data sequence number of the next byte
      that is expected on the MPTCP connection.  This state variable is
      modified upon reception of in-order data.  The value of RCV.NXT is
      used to specify the DATA_ACK that is sent in the DSS option on all
      subflows.

   RCV.WND (32 bits with RFC 7323, 16 bits otherwise):  This is the
      connection-level receive window, which is the maximum of the
      RCV.WND on all the subflows.

C.2.  TCP Control Blocks

   The MPTCP control block also contains a list of the TCP control
   blocks that are associated with the MPTCP connection.

   Note that the TCP control block on the TCP subflows does not contain
   the RCV.WND and SND.WND state variables as these are maintained at
   the MPTCP connection level and not at the subflow level.
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   Inside each TCP control block, the following state variables are
   defined.

C.2.1.  Sending Side

   SND.UNA (32 bits):  This is the sequence number of the next byte to
      be acknowledged on the subflow.  This variable is updated upon
      reception of each TCP acknowledgment on the subflow.

   SND.NXT (32 bits):  This is the sequence number of the next byte to
      be sent on the subflow.  SND.NXT is used to set the value of
      SEG.SEQ upon transmission of the next segment.

C.2.2.  Receiving Side

   RCV.NXT (32 bits):  This is the sequence number of the next byte that
      is expected on the subflow.  This state variable is modified upon
      reception of in-order segments.  The value of RCV.NXT is copied to
      the SEG.ACK field of the next segments transmitted on the subflow.

   RCV.WND (32 bits with RFC 7323, 16 bits otherwise):  This is the
      subflow-level receive window that is updated with the window field
      from the segments received on this subflow.

Appendix D.  Finite State Machine

   The diagram in Figure 22 shows the Finite State Machine for
   connection-level closure.  This illustrates how the DATA_FIN
   connection-level signal (indicated in the diagram as the DFIN flag on
   a DATA_ACK) interacts with subflow-level FINs, and permits "break-
   before-make" handover between subflows.
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                              +---------+
                              | M_ESTAB |
                              +---------+
                     M_CLOSE    |     |    rcv DATA_FIN
                      -------   |     |    -------
 +---------+       snd DATA_FIN /       \ snd DATA_ACK[DFIN] +---------+
 |  M_FIN  |<-----------------           ------------------->| M_CLOSE |
 | WAIT-1  |---------------------------                      |   WAIT  |
 +---------+               rcv DATA_FIN \                    +---------+
   | rcv DATA_ACK[DFIN]         ------- |                   M_CLOSE |
   | --------------        snd DATA_ACK |                   ------- |
   | CLOSE all subflows                 |              snd DATA_FIN |
   V                                    V                           V
 +-----------+              +-----------+                  +-----------+
 |M_FINWAIT-2|              | M_CLOSING |                  | M_LAST-ACK|
 +-----------+              +-----------+                  +-----------+
   |              rcv DATA_ACK[DFIN] |           rcv DATA_ACK[DFIN] |
   | rcv DATA_FIN     -------------- |               -------------- |
   |  -------     CLOSE all subflows |           CLOSE all subflows |
   | snd DATA_ACK[DFIN]              V            delete MPTCP PCB  V
   \                          +-----------+                  +---------+
     ------------------------>|M_TIME WAIT|----------------->| M_CLOSED|
                              +-----------+                  +---------+
                                         All subflows in CLOSED
                                             ------------
                                         delete MPTCP PCB

          Figure 22: Finite State Machine for Connection Closure

Appendix E.  Changes from RFC6824

   This section lists the key technical changes between RFC6824,
   specifying MPTCP v0, and this document, which obsoletes RFC6824 and
   specifies MPTCP v1.  Note that this specification is not backwards
   compatible with RFC6824.

   o  The document incorporates lessons learnt from the various
      implementations, deployments and experiments gathered in the
      documents "Use Cases and Operational Experience with Multipath
      TCP" [RFC8041] and the IETF Journal article "Multipath TCP
      Deployments" [deployments].

   o  Connection initiation, through the exchange of the MP_CAPABLE
      MPTCP option, is different from RFC6824.  The SYN no longer
      includes the initiator’s key, allowing the MP_CAPABLE option on
      the SYN to be shorter in length, and to avoid duplicating the
      sending of keying material.
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   o  This also ensures reliable delivery of the key on the MP_CAPABLE
      option by allowing its transmission to be combined with data and
      thus using TCP’s in-built reliability mechanism.  If the initiator
      does not immediately have data to send, the MP_CAPABLE option with
      the keys will be repeated on the first data packet.  If the other
      end is first to send, then the presence of the DSS option
      implicitly confirms the receipt of the MP_CAPABLE.

   o  In the Flags field of MP_CAPABLE, C is now assigned to mean that
      the sender of this option will not accept additional MPTCP
      subflows to the source address and port.  This is an efficiency
      improvement, for example where the sender is behind a strict NAT.

   o  In the Flags field of MP_CAPABLE, H now indicates the use of HMAC-
      SHA256 (rather than HMAC-SHA1).

   o  Connection initiation also defines the procedure for version
      negotiation, for implementations that support both v0 (RFC6824)
      and v1 (this document).

   o  The HMAC-SHA256 (rather than HMAC-SHA1) algorithm is used, as the
      algorithm provides better security.  It is used to generate the
      token in the MP_JOIN and ADD_ADDR messages, and to set the initial
      data sequence number.

   o  A new subflow-level option exists to signal reasons for sending a
      RST on a subflow (MP_TCPRST Section 3.6), which can help an
      implementation decide whether to attempt later re-connection.

   o  The MP_PRIO option (Section 3.3.8), which is used to signal a
      change of priority for a subflow, no longer includes the AddrID
      field.  Its purpose was to allow the changed priority to be
      applied on a subflow other than the one it was sent on.  However,
      it has been realised that this could be used by a man-in-the-
      middle to divert all traffic on to its own path, and MP_PRIO does
      not include a token or other security mechanism.

   o  The ADD_ADDR option (Section 3.4.1), which is used to inform the
      other host about another potential address, is different in
      several ways.  It now includes an HMAC of the added address, for
      enhanced security.  In addition, reliability for the ADD_ADDR
      option has been added: the IPVer field is replaced with a flag
      field, and one flag is assigned (E) which is used as an ’Echo’ so
      a host can indicate that it has received the option.

   o  An additional way of performing a Fast Close is described, by
      sending a MP_FASTCLOSE option on a RST on all subflows.  This
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      allows the host to tear down the subflows and the connection
      immediately.

   o  In the IANA registry a new MPTCP subtype option, MP_EXPERIMENTAL,
      is reserved for private experiments.  However, the document
      doesn’t define how to use the subtype option.

   o  A new Appendix discusses the usage of both the MPTCP and TCP Fast
      Open on the same packet (Appendix B).
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Abstract

   Multipath TCP relies on the existence of multiple paths between end-
   systems.  These are typically provided by using different IP
   addresses obtained by different ISPs at the end-systems.  While this
   scenario is certainly becoming increasingly a reality (e.g. mobile
   devices), currently most end-systems are single-homed (e.g. desktop
   PCs in an enterprise).  It seems also likely that a lot of network
   sites will insist on having all traffic pass a single network element
   (e.g. for security reasons) before traffic is split across multiple
   paths.  This memo therefore describes mechanisms to make multiple
   paths available to multipath TCP-capable end-systems that are not
   available directly at the end-systems but somewhere within the
   network.
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1.  Introduction

   The IETF has specified a multipath TCP (MPTCP) architecture and
   protocol where end-systems operate a modified standard TCP stack
   which allows packets of the same TCP connection to be sent via
   different paths to an MPTCP-capable destination ([RFC6824],
   [RFC6182]).  Paths are defined by sets of source and destination IP
   addresses.  Using multiple paths has a number of benefits such as an
   increased reliability of the transport connection and an effect known
   as resource pooling [resource_pooling].  Most end-systems today do
   not have multiple paths/interfaces available in order to make use of
   multipath TCP, however further within the network multiple paths are
   the norm rather than the exception.  This memo therefore describes
   ways how these multiple paths in the network could potentially be
   made available to multipath TCP-capable hosts that are single-homed.
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   In order to illustrate the general mechanism we make use of a simple
   reference scenario shown in Figure 1.

                               +-------+
                               | DHCP  |
     +-------+      +----------+ Server|
     |       |      |          |       |
     | Host  +------+          +-------+
     |       |      |      +-------+        ISP 1
     +-------+      +------+       |----------
                           | Gatew.|
                           |       |----------
                           +-------+        ISP 2

                       Figure 1: Reference Scenario

   The scenario in Figure 1 depicts e.g. a possible SOHO or enterprise
   setup where a gateway/router is connected to two ISPs and a DHCP
   server gives out leases to hosts connected to the local network.
   Note that both, the gateway and the DHCP server could be on the same
   device (similar to current home gateway implementations).  Also, the
   two ISPs could really be two different access technologies (e.g.  LTE
   and DSL) provided by a single ISP.

   The host is running a multipath-capable IP stack, however it only has
   a single interface.  The methods described in the following sections
   will let the host make use of the gateway’s two interfaces without
   requiring modifications to the MPTCP implementation.

2.  Approaches to Use Multiple Paths in the Network

   All approaches in this document do not require changes to the wire
   format of MPTCP and both communicating hosts need to be MPTCP-
   capable.  The benefit this approach has is that a) it has no
   implications on MPTCP standards, b) it will hopefully encourage the
   deployment of MPTCP as the number of scenarios where MPTCP brings
   benefits vastly increases and c) these approaches do not require
   complex middle-boxes to implement MPTCP-like functionality in the
   network as other approaches have suggested before.

2.1.  Exposing Multiple Paths Through End-host Auto-configuration

   Multipath TCP distinguishes paths by their source and destination IP
   addresses.  Assuming a certain level of path diversity in the
   Internet, using different source and destination IP addresses for a
   given subflow of a multipath TCP connection will, with a certain
   probability, result in different paths taken by packets of different
   subflows.  Even in case subflows share a common bottleneck, the
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   proposed multipath congestion control algorithm [RFC6356] will make
   sure that multipath TCP will play nicely with regular TCP flows.

   In order to not require changes to the TCP implementation, we keep
   the above assumptions multipath TCP makes, i.e. working with
   different IP addresses to use different paths.  Since the end-system
   is single-homed, all IP addresses are bound to the same physical
   interface.  In our reference scenario in Figure 1, the host would
   e.g. receive more than one RFC1918 [RFC1918] private IP address from
   the DHCP server as depicted in Figure 2.

       Host                Gateway

                         +-----------------+     ISP1
     +--------+          | src.            |
     |  virt. | 10.1.2.5 | 10.1.0.0/16  __.+----------
     |        +---+      |        __.--’   |
     |  phys. |   |      |  __.--’      N  |
     |        +----------+.:_           A  |
     |        | 10.2.2.6 |   ‘-.._      T  |
     +--------+          | src.   ‘-.._    |     ISP2
                         | 10.2.0.0/16 ‘-..+----------
                         |                 |
                         +-----------------+

                        Figure 2: Gateway internals

   The gateway that is shown in Figure 2 has received two IP addresses,
   one from each ISP that it is connected to (ISP1 and ISP2).  The NAT
   that the gateway is implementing needs to "map" each private IP
   address of the host consistently to a one of the addresses received
   by the ISPs, i.e. each private IP to a different public IP.  Packets
   sent by the host to the gateway are then routed based on the source
   address found in the packets as illustrated in the figure.  In other
   words, depending on the source address of the host, the packets will
   either go through ISP 1 or ISP 2 and TCP will balance the traffic
   across those two links using its built-in congestion control
   mechanism.

   The way the gateway has received its public IP addresses is not
   relevant.  It could be via DHCP, IPCP or static configuration.  In
   order to configure the hosts behind the gateway, we propose to make
   use of provisioning domains [RFC7556], more specifically one
   provisioning domain per external gateway interface (the two
   interfaces to ISP1 and ISP2 in Figure 2).  The DHCPv6 specification
   for encoding provisioning domains can be found in
   [I-D.ietf-mif-mpvd-dhcp-support].
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   In order to signal to the host, that each provisioning domain will
   result in a different path towards the Internet, this memo introduces
   a new DHCP option called EXT_ROUTE, which will be included in each
   provisioning domain sent by the server.  The option value will
   determine which external interface is used to sent the traffic when
   using the configuration information present in the respective
   provisioning domain.

   Upon receipt of a DHCP offer including multiple provisioning domains,
   or multiple offers each including one or more provisioning domains,
   the client SHOULD create up to n virtual interfaces, where n is one
   less than the number of different EXT_ROUTE option values found in
   all received provisioning domains.  Each virtual interface will
   contact the DHCP server and will request configuration information
   for the respective provisioning domains, excluding the configuration
   of the physical interface.

2.2.  Heuristic Use of Multiple Paths

   The auto-configuration mechanism above has the advantage that
   available paths and information on how to use them are directly sent
   to the end-host.  In other words, there is an explicit signalling of
   the availability of multiple paths to the end-host.  This has the
   advantage that the host can efficiently use these paths.

   This method works well when multiple paths are available close to the
   end-host and means for auto-configuration are available.  But that is
   not always the case.  Another method to use different paths in the
   network without prior knowledge of their existence is to apply
   heuristics in order to exploit setups where Equal Cost Multi-path
   [RFC2991], a widely deployed technology [ECMP_DEPLOYMENT], or similar
   per-flow load-balancing algorithms are employed.

   The ADD_ADDR option defined in [RFC6824] can be used to advertise the
   same address but a different port to open another subflow.
   Additionally, the MP_JOIN option can also be used to open another
   subflow with the same IP address and e.g. a different source port
   given that a different address ID is used.  This means there are
   multiple scenarios possible (e.g. either sender-initated or receiver-
   initiated) where single-homed end-hosts can influence the 5-tuple
   (source and destination IP addresses and port numbers plus protocol
   number) which is often used as the basis for per-flow load balancing.
   Changing the 5-tuple will only with a certain probability result in
   using a different path unless the load-balancing algorithm that is
   used is known to the MPTCP implementation (an assumption we cannot
   generally make).  This means that a number of subflows might end up
   on the same path.  Fortunately, the MPTCP congestion control
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   algorithm will make sure that the collection of subflows on that path
   will not be more agressive than a single TPC flow.

3.  Other scenarios and extensions

   The reference scenario is only one conceivable setting.  Other
   scenarios such as DSL broadband customers or mobile phones are
   conceivable as well.  As an example, take the DSL scenario.  The home
   gateway could be provided with multiple IP addresses using extensions
   to IPCP.  The home gateway in turn can then implement the DHCP server
   and gateway functionality as described before.  More scenarios will
   be described in future versions of this document.

4.  Alternative approaches

   One alternative is that a DHCP server always sends n offers, where n
   is the number of interfaces at the gateway to different ISPs.  The
   client could then accept all or a subset of these offers.  This
   approach seems interesting in environments where there are multiple
   DHCP servers, one for each ISP connection (think multiple home
   gateways).  However, accepting multiple offers based on a single DHCP
   request is not standard’s compliant behavior (at least for the DHCPv4
   case).  Also, to cater for a scenario that only contains a single
   DHCP server, server changes are needed in any case.  Finally, correct
   routing is not always guaranteed in these scenarios.

   An interesting alternative is the use of ECMP at the gateway for load
   distribution and let MPTCP use different port numbers for subflows.
   Assuming that ECMP is available at the gateway, this approach would
   work fine today.  The only drawback of the approach is that it
   involves a little trial and error to find port numbers that actually
   hash to different paths used by ECMP [RFC2991].
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6.  IANA Considerations

   One new DHCP options is required by this version of this document.
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7.  Security Considerations

   TBD.
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