
PCE Working Group H. Chen
Internet-Draft Huawei Technologies
Intended status: Standards Track M. Toy
Expires: September 19, 2016 Comcast
 L. Liu
 Fujitsu
 V. Liu
 China Mobile
 March 18, 2016

 PCE Hierarchical SDNs
 draft-chen-pce-h-sdns-00

Abstract

 This document presents extensions to the Path Computation Element
 Communication Protocol (PCEP) for supporting a hierarchical SDN
 control system, which comprises multiple SDN controllers controlling
 a network with a number of domains.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Chen, et al. Expires September 19, 2016 [Page 1]

Internet-Draft PCE-H-SDNs March 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 4
 3. Conventions Used in This Document 6
 4. Requirements . 6
 5. Overview of Hierarchical SDN Control System 6
 6. Extensions to PCEP . 9
 6.1. Capability Discovery 9
 6.2. New Messages for Hierarchical SDN Control System 10
 6.2.1. Contents of Messages 12
 6.2.2. Individual Encoding of Messages 24
 6.2.3. Group Encoding of Messages 25
 6.2.4. Embedded Encoding of Messages 26
 6.2.5. Mixed Encoding of Messages 27
 6.3. Controller Relation Discovery 27
 6.3.1. Using Open Message 27
 6.3.2. Using Discovery Message 29
 6.4. Connections and Accesses Advertisement 30
 6.5. Tunnel Creation . 30
 6.5.1. Computing Path in Two Rounds 31
 6.5.2. Computing Path in One Round 32
 6.5.3. Creating Tunnel along Path 34
 6.6. Objects and TLVs . 36
 6.6.1. CRP Objects . 36
 6.6.2. LOCAL-CONTROLLER Object 37
 6.6.3. REMOTE-CONTROLLER Object 38
 6.6.4. CONNECTION and ACCESS Object 40
 6.6.5. NODE Object . 47
 6.6.6. TUNNEL Object . 53
 6.6.7. STATUS Object . 54
 6.6.8. LABEL Object . 54
 6.6.9. INTERFACE Object 55
 7. Security Considerations 56
 8. IANA Considerations . 56
 9. Acknowledgement . 56
 10. References . 56
 10.1. Normative References 56
 10.2. Informative References 57
 Appendix A. Details on Embedded Encoding of Messages 58
 A.1. Message for Controller Relation Discovery 58
 A.2. Message for Connections and Accesses Advertisement 60
 A.3. Request for Computing Path Segments 60

Chen, et al. Expires September 19, 2016 [Page 2]

Internet-Draft PCE-H-SDNs March 2016

 A.4. Reply for Computing Path Segments 61
 A.5. Request for Removing Path Segments 61
 A.6. Reply for Removing Path Segments 62
 A.7. Request for Keeping Path Segments 62
 A.8. Reply for Keeping Path Segments 63
 A.9. Request for Creating Tunnel Segment 63
 A.10. Reply for Creating Tunnel Segment 64
 A.11. Request for Removing Tunnel Segment 64
 A.12. Reply for Removing Tunnel Segment 65

Chen, et al. Expires September 19, 2016 [Page 3]

Internet-Draft PCE-H-SDNs March 2016

1. Introduction

 A domain is a collection of network elements within a common sphere
 of address management or routing procedure which are operated by a
 single organization or administrative authority. Examples of such
 domains include IGP (OSPF or IS-IS) areas and Autonomous Systems.

 For scalability, security, interoperability and manageability, a big
 network is organized as a number of domains. For example, a big
 network running OSPF as routing protocol is organized as a number of
 OSPF areas. A network running BGP is organized as multiple
 Autonomous Systems, each of which has a number of IGP areas.

 The concepts of Software Defined Networks (SDN) have been shown to
 reduce the overall network CapEx and OpEx, whilst facilitating the
 deployment of services and enabling new features. The core
 principles of SDN include: centralized control to allow optimized
 usage of network resources and provisioning of network elements
 across domains.

 For a network with a number of domains, it is natural to have
 multiple SDN controllers, each of which controls a domain in the
 network. To achieve a centralized control on the network, a
 hierarchical architecture of controllers is a good fit. At top level
 of the hierarchy, it is a parent controller that is not a child
 controller. The parent controller controls a number of child
 controllers. Some of these child controllers are not parent
 controllers. Each of them controls a domain. Some other child
 controllers are also parent controllers, each of which controls
 multiple child controllers, and so on.

 This document presents extensions to the Path Computation Element
 Communication Protocol (PCEP) for supporting a hierarchical SDN
 control system, which comprises multiple SDN controllers controlling
 a network with a number of domains.

2. Terminology

 The following terminology is used in this document.

 ABR: Area Border Router. Router used to connect two IGP areas
 (Areas in OSPF or levels in IS-IS).

 ASBR: Autonomous System Border Router. Router used to connect
 together ASes of the same or different service providers via one
 or more inter-AS links.

Chen, et al. Expires September 19, 2016 [Page 4]

Internet-Draft PCE-H-SDNs March 2016

 BN: Boundary Node. A boundary node is either an ABR in the context
 of inter-area Traffic Engineering or an ASBR in the context of
 inter-AS Traffic Engineering. A Boundary Node is also called an
 Edge Node.

 Entry BN of domain(n): a BN connecting domain(n-1) to domain(n)
 along the path found from the source node to the BN, where
 domain(n-1) is the previous hop (or upstream) domain of domain(n).
 An Entry BN is also called an in-BN or in-edge node.

 Exit BN of domain(n): a BN connecting domain(n) to domain(n+1) along
 the path found from the source node to the BN, where domain(n+1)
 is the next hop (or downstream) domain of domain(n). An Exit BN
 is also called a out-BN or out-edge node.

 Source Domain: For a tunnel from a source to a destination, the
 domain containing the source is the source domain for the tunnel.

 Destination Domain: For a tunnel from a source to a destination, the
 domain containing the destination is the destination domain for
 the tunnel.

 Source Controller: A controller controlling the source domain.

 Destination Controller: A controller controlling the destination
 domain.

 Parent Controller: A parent controller is a controller that
 communicates with a number of child controllers and controls a
 network with multiple domains through the child controllers. A
 PCE can be enhanced to be a parent controller.

 Child Controller: A child controller is a controller that
 communicates with one parent controller and controls a domain in a
 network. A PCE can be enhanced to be a child controller.

 Exception list: An exception list for a domain contains the nodes in
 the domain and its adjacent domains that are on the shortest path
 tree (SPT) that the parent controller is building.

 GTID: Global Tunnel Identifier. It is used to identify a tunnel in
 a network.

 PID: Path Identifier. It is used to identify a path for a tunnel in
 a network.

Chen, et al. Expires September 19, 2016 [Page 5]

Internet-Draft PCE-H-SDNs March 2016

 Inter-area TE LSP: a TE LSP that crosses an IGP area boundary.

 Inter-AS TE LSP: a TE LSP that crosses an AS boundary.

 LSP: Label Switched Path

 LSR: Label Switching Router

 PCC: Path Computation Client. Any client application requesting a
 path computation to be performed by a Path Computation Element.

 PCE: Path Computation Element. An entity (component, application,
 or network node) that is capable of computing a network path or
 route based on a network graph and applying computational
 constraints.

 PCE(i): a PCE with the scope of domain(i).

 TED: Traffic Engineering Database.

 This document uses terminology defined in [RFC5440].

3. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

4. Requirements

 This section summarizes the requirements for Hierarchical SDN Control
 System (need more text here).

5. Overview of Hierarchical SDN Control System

 The Figure below illustrates a hierarchical SDN control system.
 There is one Parent Controller and four Child Controllers: Child
 Controller 1, Child Controller 2, Child Controller 3 and Child
 Controller 4.

Chen, et al. Expires September 19, 2016 [Page 6]

Internet-Draft PCE-H-SDNs March 2016

 +-------------------+
 | Parent Controller |
 +--+---------+----+-+
 _/| \ ____
 _/ | \ ____
 _/ | \ __
 __/ | +---------+---------+ \
 __/ | |Child Controller 3 | |
 / | +-------------------+ |
 +---------+---------+ | / \ |
 |Child Controller 1 | | .---. .---,\ |
 +-------------------+ | (’ ’) |
 / \ | (Domain 3) |
 .---. .---,\ | () +---------+---------+
 (’ ’) | ’-o-.--o) |Child Controller 4 |
 (Domain 1) | | +-------------------+
 () | | / ____
 ’-o-.---) +--------+----------+ \ / \ ____
 | |Child Controller 2 | \ /\ .---. .---+ \
 | +-------------------+ \ | \(’ |’.---. |
 | / ____ _ |---\ Domain 4 | ’+,
 \ / \ ____ (o \ | |)
 \ /\ .---. .---+ \ (| | o)
 \ | \(’ |’.---. | (| |)
 \ |---\ Domain 2 | ’+. (o o .-’
 ____(o \ | |) ’)
 (| | o)-------o---._.-.-----)
 (| |)
 (o o .-’
 ’)
 ’---._.-.-----)

 The parent controller communicates with these four child controllers
 and controls them, each of which controls (or is responsible for) a
 domain. Child controller 1 controls domain 1, Child controller 2
 controls domain 2, Child controller 3 controls domain 3, and Child
 controller 4 controls domain 4.

 One level of hierarchy of controllers is illustrated in the figure
 above. There is one parent controller at top level, which is not a
 child controller. Under the parent controller, there are four child
 controllers, which are not parent controllers.

 In a general case, at top level there is one parent controller that
 is not a child controller, there are some controllers that are both
 parent controllers and child controllers, and there are a number of
 child controllers that are not parent controllers. This is a system

Chen, et al. Expires September 19, 2016 [Page 7]

Internet-Draft PCE-H-SDNs March 2016

 of multiple levels of hierarchies, in which one parent controller
 controls or communicates with a first number of child controllers,
 some of which are also parent controllers, each of which controls or
 communicates with a second number of child controllers, and so on.

 Considering one parent controller and its child controllers, each of
 the child controllers controls a domain and has the topology
 information on the domain, the parent controller does not have the
 topology information on any domain controlled by a child controller
 normally. This is called parent without domain topology.

 In some special cases, the parent controller has the topology
 information on a region consisting of the domains controlled by its
 child controllers. In other words, the parent controller has the
 topology information on the domains controlled by its child
 controllers and the topology/inter-connections among these domains.
 This is called parent with domain topology.

 The parent controller receives requests for creating end to end
 tunnels from users or applications. For each request, the parent
 controller is responsible for obtaining a path for the tunnel and
 creating the tunnel along the path.

 For parent without domain topology, the parent controller asks each
 of its related child controllers to compute path segments from an
 entry boundary node to exit boundary nodes in the domain it controls
 or path segments from an exit boundary node in its domain to entry
 boundary nodes of other adjacent domains just using the inter-domain
 links attached to the exit boundary node. The details of the
 segments are hidden from the parent, which sees each of the segments
 as a link from a boundary node to another boundary node with a cost.
 The parent controller builds a shortest path tree (SPT) using the
 path segments computed as links to get the end to end path and then
 creates the tunnel along the path by asking its related child
 controllers.

 The end to end path does not have any details from the parent’s point
 of view. It can be considered as a sequence of domains containing
 the shortest path. Along this sequence of domains, the details of
 the end to end path can be obtained. And then the tunnel along the
 path with details can be created.

 For parent with domain topology, the parent controller computes a
 path for the tunnel using the topology information on the domains
 controlled by its child controllers. And then it creates the tunnel
 along the path computed through asking its related child controllers.

Chen, et al. Expires September 19, 2016 [Page 8]

Internet-Draft PCE-H-SDNs March 2016

6. Extensions to PCEP

 This section describes the extensions to PCEP for a Hierarchical SDN
 Control System (HSCS). The extensions include the definition of a
 new flag in the RP object, a global tunnel identifier (GTID), a path
 identifier (PID), a list of path segments and an exception list in
 the PCReq and PCRep message.

6.1. Capability Discovery

 During a PCEP session establishment between two PCEP speakers (PCE or
 PCC), each of them advertises its capabilities for HSCS through the
 Open Message with the Open Object containing a new TLV to indicate
 its capabilities for HSCS. This new TLV is called HSCS capability
 TLV. It has the following format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = TBD1 | Length |
 +-+
 | Capability Flags |
 +-+
 | (Optional Sub-TLVs) |
 ˜ ˜
 +-+

 The type of the TLV is TBD1. It has a length of 4 octets plus the
 size of optional Sub-TLVs. The value of the TLV comprises a
 capability flags field of 32 bits, which are numbered from the most
 significant as bit zero. Each bit represents a capability.

 o PC (Parent Controller - 1 bit): Bit 0 is used as PC flag. It is
 set to 1 indicating a parent controller.

 o CC (Child Controller - 1 bit): Bit 1 is used as PC flag. It is
 set to 1 indicating a child controller.

 o PS (Path Segments - 1 bit): Bit 2 is used as PS flag. It is set
 to 1 indicating support for computing path segments for HSCS

 o TS (Tunnel Segment - 1 bit): Bit 3 is used as TS flag. It is set
 to 1 indicating support for creating tunnel segment for HSCS

Chen, et al. Expires September 19, 2016 [Page 9]

Internet-Draft PCE-H-SDNs March 2016

 o ET (End to end Tunnel - 1 bit): Bit 4 is used as ET flag. It is
 set to 1 indicating support for creation and maintenance of end to
 end LSP tunnels

6.2. New Messages for Hierarchical SDN Control System

 This section describes the contents and semantics of the new
 messages, and presents a few of different encodings for the messages.

 There are a number of new messages for supporting HSCS. These new
 messages can be encoded in a few of ways as follows:

 o To use a new type at top level for each of the new messages. This
 is called individual encoding.

 o To use a new type at top level for each group of the new messages
 and a option/operation/sub-type value for every message in the
 group. This is called group encoding.

 o To use/re-use existing messages and a value of options/operations
 for each new message in an existing message. This is called
 embedded encoding.

 o To combine the ways above. This is called mixed encoding.

 Various types of messages for supporting HSCS are listed below. Note
 that many new messages may not be needed for some procedures/options.
 For example, four messages Request and Reply for Removing Path
 Segments and Request and Reply for Keeping Path Segments are not
 needed if path segments computed are not stored/remembered by a child
 controller. But in this case, the path segment in each domain along
 the end to end path computed needs to be re-computed when a tunnel
 along the path is set up.

 Message for Controller Relation Discovery: It is a message exchanged
 between a parent controller and a child controller for discovering
 their parent-child relation.

 Message for Connections and Accesses Advertisement: It is a message
 that a child controller sends its parent controller to describe
 the connections from the domain it controls to its adjacent
 domains and the access points in the domain to be accessible
 outside of the domain.

 Request for Computing Path Segments: It is a message that a parent
 controller sends a child controller to request the child
 controller for computing path segments in the domain the child
 controller controls.

Chen, et al. Expires September 19, 2016 [Page 10]

Internet-Draft PCE-H-SDNs March 2016

 Reply for Computing Path Segments: It is a message that a child
 controller sends a parent controller to reply the parent
 controller for a request message for computing path segments after
 receiving the request message from the parent controller for
 computing path segments and computing path segments as requested,
 which normally contains the path segments computed.

 Request for Removing Path Segments: It is a message that a parent
 controller sends a child controller to request the child
 controller for removing the path segments computed by the child
 controller and stored in the child controller.

 Reply for Removing Path Segments: It is a message that a child
 controller sends a parent controller to reply the parent
 controller for a request message for removing a set of path
 segments after receiving the request message from the parent
 controller for removing path segments and removing the path
 segments as requested, which normally contains a status of
 removing path segments.

 Request for Keeping Path Segments: It is a message that a parent
 controller sends a child controller to request the child
 controller for keeping a set of path segments computed by the
 child controller and stored in the child controller.

 Reply for Keeping Path Segments: It is a message that a child
 controller sends a parent controller to reply the parent
 controller for a request message for keeping path segments after
 receiving the request message from the parent controller for
 keeping path segments and keeping the path segments as requested,
 which normally contains a status of keeping path segments.

 Request for Creating Tunnel Segment: It is a message that a parent
 controller sends a child controller to request the child
 controller for creating tunnel segments related to the domain the
 child controller controls.

 Reply for Creating Tunnel Segment: It is a message that a child
 controller sends a parent controller to reply the parent
 controller for a request message for creating tunnel segment after
 receiving the request message from the parent controller for
 creating tunnel segment and creating tunnel segment as requested,
 which normally contains a status of creating tunnel segment and a
 label and an interface.

Chen, et al. Expires September 19, 2016 [Page 11]

Internet-Draft PCE-H-SDNs March 2016

 Request for Removing Tunnel Segment: It is a message that a parent
 controller sends a child controller to request the child
 controller for removing the tunnel segment created by the child
 controller.

 Reply for Removing Tunnel Segment: It is a message that a child
 controller sends a parent controller to reply the parent
 controller for a request message for removing tunnel segment after
 receiving the request message from the parent controller for
 removing tunnel segment and removing the tunnel segment as
 requested, which normally contains a status of removing tunnel
 segment.

6.2.1. Contents of Messages

 This section describes the contents in each of the messages and gives
 the format of each of messages in individual encoding, which is the
 same as in group encoding. Some of the objects in the messages are
 defined in the following sections.

6.2.1.1. Message for Controller Relation Discovery

 A message for controller relation discovery is exchanged between a
 parent controller and a child controller for discovering their
 parent-child relation.

 A message for controller relation discovery (CRDis message for short)
 sent from a local controller to a remote controller comprises:

 o Local controller attributes

 o Remote controller attributes after the local controller receives
 the remote controller attributes from a remote end and determines
 that the relation between the local controller and the remote
 controller can be formed.

 The format of the CRDis message is as follows:

 <CRDis Message> ::= <Common Header>
 <CRP>
 <Local-Controller>
 [<Remote-Controller>]

 where CRP (Controller Request Parameters) object is defined in
 section Objects and TLVs.

Chen, et al. Expires September 19, 2016 [Page 12]

Internet-Draft PCE-H-SDNs March 2016

6.2.1.2. Message for Connections and Accesses Advertisement

 After a child controller discovers its parent controller, it sends
 its parent controller a message for connections and accesses
 advertisement.

 A message for connections and accesses advertisement (CAAdv message
 for short) from a child controller comprises:

 o Inter-domain links from the domain the child controller controls
 to its adjacent domains.

 o The addresses in the domain to be accessible to the outside of the
 domain.

 o Attributes of each of the boundary nodes of the domain.

 The format of the CAAdv message is as follows:

 <CAAdv Message> ::= <Common Header>
 <CRP>
 <Inter-Domain-Link-List>
 [<Access-Address-List>]
 where:
 <Inter-Domain-Link-List> ::= <Inter-Domain-Link>
 [<Inter-Domain-Link-List>]
 <Access-Address-List> ::= <Access-Address>
 [<Access-Address-List>]

6.2.1.3. Request for Computing Path Segments

 After receiving a request for creating an end to end tunnel from
 source A to destination Z for a given set of constraints, a parent
 controller allocates a global tunnel identifier (GTID) for the end to
 end tunnel crossing domains and a path identifier (PID) for an end to
 end path to be computed for the tunnel. The parent controller sends
 a request message to each of its related child controllers for
 computing a set of path segments in the domain the child controller
 controls in a special order. The parent controller builds a shortest
 path tree (SPT) using these path segments and obtains a shortest path
 from source A to destination Z that satisfies the constraints.

 Note: The details of the path segments are hidden from the parent,
 which sees each of the segments as a link from one (boundary) node to
 another (boundary) node with a cost. The end to end path does not
 have any details from the parent’s point of view, which may be
 considered as a domain path.

Chen, et al. Expires September 19, 2016 [Page 13]

Internet-Draft PCE-H-SDNs March 2016

 A request message for computing path segments (PSReq message for
 short) from a parent controller to a child controller comprises:

 o The address or identifier of the start-node (saying X) in the
 domain controlled by the child controller. From this node, a
 number of path segments are to be computed.

 o The global tunnel identifier (GTID) and the path identifier (PID).
 For the path of the tunnel, a number of path segments are to be
 computed.

 o An exception list containing the nodes that are on the SPT and in
 the domain controlled by the child controller or its adjacent
 domains.

 o The constraints for the path such as bandwidth constraints and
 color constraints.

 o A destination node Z. If Z is in the domain controlled by the
 child controller, the child controller computes a shortest path
 segment satisfying the constraints from node X to node Z within
 the domain.

 o Options for computing path segments:

 E: E set to 1 indicating computing a shortest path segment
 satisfying the constraints from node X to each of the edge
 nodes of the domain controlled by the child controller except
 for the nodes in the exception list. E is set to 1 if there is
 not any previous hop of node X in the domain.

 After receiving the request message, the child controller computes a
 shortest path segment satisfying the constraints from node X to each
 of the edge nodes of the domain controlled by the child controller
 except for the nodes in the exception list if E is 1. In addition,
 it computes a shortest path segment satisfying the constraints from
 node X to each of the edge nodes of the adjacent domains except for
 the edge nodes in the exception list just using the inter-domain
 links attached to node X if node X is an edge node of the domain and
 an end point of an inter-domain link.

 The format of the PSReq message is as follows:

Chen, et al. Expires September 19, 2016 [Page 14]

Internet-Draft PCE-H-SDNs March 2016

 <PSReq Message> ::= <Common Header>
 [<svec-list>]
 <path-segment-request-list>
 where:
 <svec-list>::=<SVEC>[<svec-list>]
 <path-segment-request-list> ::=
 <path-segment-request>
 [<path-segment-request-list>]

 <path-segment-request> ::=
 <CRP>
 <Start-Node> <Tunnel-ID> <Path-ID>
 [<Destination>]
 [<OF>] [<LSPA>] [<BANDWIDTH>]
 [<metric-list>] [<RRO>[<BANDWIDTH>]] [<IRO>]
 [<LOAD-BALANCING>]
 <exception-list>

6.2.1.4. Reply for Computing Path Segments

 After receiving a request message from a parent controller for
 computing path segments, a child controller computes the path
 segments as requested in the message and sends the parent controller
 a reply message to reply the request message, which contains the path
 segments computed. The details of the path segments are hidden from
 the parent, which sees each of the path segments as a link with a
 cost.

 A reply message for computing path segments (PSRep message for short)
 comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).
 For the path of the tunnel, the path segments are computed.

 o The address or identifier of the start-node (saying X) in the
 domain controlled by the child controller. From this node, the
 path segments are computed.

 o For each shortest path segment from node X to node Y computed, the
 address or identifier of node Y and the cost of the shortest path
 segment from node X to node Y.

 The child controller stores the details about every shortest path
 segment computed under the global tunnel identifier (GTID) and the
 path identifier (PID) when it sends the reply message containing the
 path segments to the parent controller.

Chen, et al. Expires September 19, 2016 [Page 15]

Internet-Draft PCE-H-SDNs March 2016

 The child controller may delete the path segments computed for the
 global tunnel identifier (GTID) and the path identifier (PID) if it
 does not receive any request for keeping them from the parent
 controller for a given period of time.

 The format of the PSRep message is as follows:

 <PSRep Message> ::= <Common Header>
 <path-segment-reply-list>
 where:
 <path-segment-reply-list> ::=
 <path-segment-reply>
 [<path-segment-reply-list>]

 <path-segment-reply> ::=
 <CRP>
 <Tunnel-ID> <Path-ID>
 <Start-Node>
 [<NO-PATH> | <segment-end-List>]
 [<metric-list>]

6.2.1.5. Request for Removing Path Segments

 After a shortest path satisfying a set of constraints from source A
 to destination Z is computed, a parent controller may delete the path
 segments computed and stored in the related child controllers, which
 are not any part of the shortest path. A parent controller may send
 a child controller a request message for removing the path segments
 computed by the child controller and stored in the child controller.

 1). A request message for removing path segments (RPSReq message for
 short) comprises:

 o The global tunnel identifier (GTID).

 All the path segments stored under GTID in the child controller are
 to be removed.

 2). A request message for removing path segments comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 All the path segments stored under GTID and PID in the child
 controller are to be removed.

 3). A request message for removing path segments comprises:

Chen, et al. Expires September 19, 2016 [Page 16]

Internet-Draft PCE-H-SDNs March 2016

 o The global tunnel identifier (GTID) and the path identifier (PID)

 o A list of start point (or node) addresses or identifiers.

 All the path segments stored in the child controller under GTID and
 PID and with a start point or node from the list of start point (or
 node) addresses or identifiers are to be removed.

 4). A request message for removing path segments comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID)

 o A list of start point (or node) addresses or identifiers

 o A list of pairs (start point, a list of end points), which
 identifies the path segments from start point of each pair to each
 of the end points in the list of the pairs.

 In addition to the path segments as described in the previous
 message, the path segments stored in the child controller under GTID
 and PID and identified by the list of pairs are to be removed.

 The format of the RPSReq message is as follows:

 <RPSReq Message> ::= <Common Header>
 <remove-path-segment-request-list>
 where:
 <remove-path-segment-request-list> :: =
 <remove-path-segment-request>
 [<remove-path-segment-request-list>]

 <remove-path-segment-request> ::=
 <CRP>
 <Tunnel-ID> [<Path-ID>]
 [<start-node-list>]
 [<branch-List>]

 <start-node-list> ::= <Start-Node> [<start-node-list>]

 <branch-list> ::= <Branch> [<branch-list>]
 <Branch> ::= <Start-Node> <branch-end-list>

 <branch-end-list> ::= <Branch-End> [<branch-end-list>]

Chen, et al. Expires September 19, 2016 [Page 17]

Internet-Draft PCE-H-SDNs March 2016

6.2.1.6. Reply for Removing Path Segments

 After removing the path segments as requested by a request message
 for removing path segments from a parent controller, a child
 controller sends the parent controller a reply message for removing
 path segments.

 A reply message for removing path segments (RPSRep message for short)
 comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID)

 o Status of the path segments removal:

 Success: The path segments requested for removal are removed
 successfully.

 Fail: The path segments requested for removal can not be
 removed.

 o Error code and reasons for failure if the status is Fail.

 The format of the RPSRep message is as follows:

 <RPSRep Message> ::= <Common Header>
 <remove-path-segment-reply-list>
 where:
 <remove-path-segment-reply-list> ::=
 <remove-path-segment-reply>
 [<remove-path-segment-reply-list>]

 <remove-path-segment-reply> ::=
 <CRP>
 <Tunnel-ID> [<Path-ID>]
 <Status>
 [<Reasons>]

6.2.1.7. Request for Keeping Path Segments

 After a shortest path satisfying a set of constraints from source A
 to destination Z is computed, a parent controller may send a request
 message for keeping path segments to each of the related child
 controllers to keep the path segments on the shortest path.

 A request message for keeping path segments (KPSReq message for
 short) comprises:

Chen, et al. Expires September 19, 2016 [Page 18]

Internet-Draft PCE-H-SDNs March 2016

 o The global tunnel identifier (GTID) and the path identifier (PID).

 o A list of pairs (start point, end point), each of which identifies
 the path segment from the start point of the pair to the end point
 of the pair.

 The child controller will keep the path segments given by the list of
 pairs (start point, end point) stored under GTID and PID. It will
 remove all the other path segments stored under GTID and PID.

 The format of the KPSReq message is as follows:

 <KPSReq Message> ::= <Common Header>
 <keep-path-segment-request-list>
 where:
 <keep-path-segment-request-list> :: =
 <keep-path-segment-request>
 [<keep-path-segment-request-list>]

 <keep-path-segment-request> ::=
 <CRP>
 <Tunnel-ID> <Path-ID>
 <segment-list>

 <segment-list> ::= <Segment> [<segment-list>]
 <Segment> ::= <Segment-Start> <Segment-End>

6.2.1.8. Reply for Keeping Path Segments

 After keeping path segments as requested by a request message for
 keeping path segments from a parent controller, a child controller
 sends the parent controller a reply message for keeping path
 segments.

 A reply message for keeping path segments (KPSRep message for short)
 comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 o Status of the path segment retention:

 Success: The path segments requested for retention are retained
 successfully.

Chen, et al. Expires September 19, 2016 [Page 19]

Internet-Draft PCE-H-SDNs March 2016

 Fail: The path segments requested for retention can not be
 retained.

 o Error code and reasons for failure if the status is Fail.

 The format of the KPSRep message is as follows:

 <KPSRep Message> ::= <Common Header>
 <keep-path-segment-reply-list>
 where:
 <keep-path-segment-reply-list> ::=
 <keep-path-segment-reply>
 [<keep-path-segment-reply-list>]

 <keep-path-segment-reply> ::=
 <CRP>
 <Tunnel-ID> <Path-ID>
 <Status>
 [<Reasons>]

6.2.1.9. Request for Creating Tunnel Segment

 After obtaining the end to end shortest point to point (P2P) path, a
 parent controller creates a tunnel along the path crossing multiple
 domains through sending a request message for creating tunnel segment
 to each of the child controllers along the path in a reverse
 direction to create a tunnel segment.

 A request message for creating tunnel segment (CTSReq message for
 short) comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 o A path segment from a start point to an end point for parent
 without domain topology or a path segment details/ERO for parent
 with domain topology.

 o A label and an interface if the domain controlled by the child
 control is not a destination domain.

 For parent without domain topology, the child controller allocates
 and reserves link bandwidth along the path segment identified by the
 start point and end point, assigns labels along the path segment, and
 writes cross connects on each of the nodes along the path segment.

 For parent with domain topology, the child controller assigns labels
 along the path segment ERO and writes cross connects on each of the

Chen, et al. Expires September 19, 2016 [Page 20]

Internet-Draft PCE-H-SDNs March 2016

 nodes along the path segment. The link bandwidth along the path
 segment is allocated and reserved by the parent controller.

 For the non destination domain, the child controller writes the cross
 connect on the edge node to the downstream domain using the label and
 the interface from the downstream domain in the message.

 For the non source domain, the child controller will include a label
 and an interface in a message to be sent to the parent controller.
 The interface connects the edge node of the upstream domain along the
 path. The label is allocated for the interface on the node that is
 the next hop of the edge node.

 The format of the CTSReq message is as follows:

 <CTSReq Message> ::= <Common Header>
 <create-tunnel-segment-request-list>
 where:
 <create-tunnel-segment-request-list> ::=
 <create-tunnel-segment-request>
 [<create-tunnel-segment-request-list>]

 <create-tunnel-segment-request> ::=
 <CRP>
 <Tunnel-ID> <Path-ID>
 <Path-Segment>
 [<Label> <Interface>]

 <Path-Segment> ::= [<Segment-Start> <Segment-End> | <ERO>]

6.2.1.10. Reply for Creating Tunnel Segment

 After creating tunnel segment as requested by a request message for
 creating tunnel segment from a parent controller, a child controller
 sends the parent controller a reply message for creating tunnel
 segment.

 A reply message for creating tunnel segment (CTSRep message for
 short) comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 o Status of the tunnel segment creation:

Chen, et al. Expires September 19, 2016 [Page 21]

Internet-Draft PCE-H-SDNs March 2016

 Success: The tunnel segment requested is created successfully.

 Fail: The tunnel segments requested can not be created.

 o A label and an interface if the domain controlled by the child
 controller is not source domain and the status is Success.

 o Error code and reasons for failure if the status is Fail.

 For the non source domain controlled by the child controller, the
 interface in the message connects the edge node of the upstream
 domain along the path, the label is allocated for the interface on
 the node that is the next hop of the edge node.

 The format of the CTSRep message is as follows:

 <CTSRep Message> ::= <Common Header>
 <create-tunnel-segment-reply-list>
 where:
 <create-tunnel-segment-reply-list> ::=
 <create-tunnel-segment-reply>
 [<create-tunnel-segment-reply-list>]

 <create-tunnel-segment-reply> ::=
 <CRP>
 <Tunnel-ID> <Path-ID>
 <Status> [<Label> <Interface>]
 [<Reasons>]

6.2.1.11. Request for Removing Tunnel Segment

 When a parent controller receives a request for deleting a tunnel
 from a user or an application, or receives a reply message for
 creating tunnel segment with status of Fail from a child controller,
 the parent controller will delete the tunnel through sending a
 request message for removing tunnel segment to each of the related
 child controllers.

 A request message for removing tunnel segment (RTSReq message for
 short) comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 The child controller releases the labels assigned along the path
 segments under GTID and PID, and removes the cross connects on each
 of the nodes along the path segments. If the child controller
 reserved the link bandwidth along the path segments under GTID and

Chen, et al. Expires September 19, 2016 [Page 22]

Internet-Draft PCE-H-SDNs March 2016

 PID, it releases the link bandwidth reserved.

 The format of the RTSReq message is as follows:

 <RTSReq Message> ::= <Common Header>
 <remove-tunnel-segment-request-list>
 where:
 <remove-tunnel-segment-request-list> ::=
 <remove-tunnel-segment-request>
 [<remove-tunnel-segment-request-list>]

 <remove-tunnel-segment-request> ::
 <CRP>
 <Tunnel-ID> [<Path-ID>]

6.2.1.12. Reply for Removing Tunnel Segment

 After removing the tunnel segment as requested by a request message
 for removing tunnel segment from a parent controller, a child
 controller sends the parent controller a reply message for removing
 tunnel segment.

 A reply message for removing tunnel segment (RTSRep message for
 short) comprises:

 o The global tunnel identifier (GTID) and the path identifier (PID).

 o Status of the tunnel segment removal:

 Success: The tunnel segment requested is removed successfully.

 Fail: The tunnel segment requested can not be removed.

 o Error code and reasons for failure if the status is Fail.

 The format of the RTSRep message is as follows:

Chen, et al. Expires September 19, 2016 [Page 23]

Internet-Draft PCE-H-SDNs March 2016

 <RTSRep Message> ::= <Common Header>
 <remove-tunnel-segment-reply-list>
 where:
 <reply-tunnel-segment-reply-list> ::=
 <remove-tunnel-segment-reply>
 [<remove-tunnel-segment-reply-list>]

 <remove-tunnel-segment-reply> ::=
 <CRP>
 <Tunnel-ID> [<Path-ID>]
 <Status>
 [<Reasons>]

6.2.2. Individual Encoding of Messages

 The format of PCEP Message Common Header is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Ver | Flags | Message-Type | Message-Length |
 +-+

 Message-Type (8 bits): The following message types are currently
 defined (refer to RFC 5440):

 Message-Type Meaning
 1 Open
 2 Keepalive
 3 Path Computation Request
 4 Path Computation Reply
 5 Notification
 6 Error
 7 Close

 The new message types are defined as follows:

Chen, et al. Expires September 19, 2016 [Page 24]

Internet-Draft PCE-H-SDNs March 2016

 Message-Type Meaning
 mTBD1 Controller Relation Discovery
 mTBD2 Connections and Accesses Advertisement
 mTBD3 Path Segment Computation Request
 mTBD4 Path Segment Computation Reply
 mTBD5 Remove Path Segment Request
 mTBD6 Remove Path Segment Reply
 mTBD7 Keep Path Segment Request
 mTBD8 Keep Path Segment Reply
 mTBD9 Create Tunnel Segment Request
 mTBD10 Create Tunnel Segment Reply
 mTBD11 Remove Tunnel Segment Request
 mTBD12 Remove Tunnel Segment Reply

 Ver, Flags and Message-Length are defined as RFC 5440.

6.2.3. Group Encoding of Messages

 We can encode the tunnel related messages into two groups: one group
 comprises the request messages related to tunnel and the other
 comprises the reply messages related to tunnel. Thus we can have
 four new message types, which are defined in PCEP Message Common
 Header as follows:

 Message-Type Meaning
 mTBD1 Controller Relation Discovery
 mTBD2 Connections and Accesses Advertisement
 mTBD3 Tunnel Segment Operation Request
 mTBD4 Tunnel Segment Operation Reply

 Ver, Flags, other message types and Message-Length in PCEP Message
 Common Header are defined as RFC 5440.

 The Tunnel Segment Operation can be one of the followings:

 Create Tunnel Segment: Create a segment of an end to end tunnel.

 Remove Tunnel Segment: Remove a segment of an end to end tunnel.

 Compute Path Segments: Compute some path segments to find an end to
 end path for an end to end tunnel.

 Remove Path Segments: Remove some path segments.

Chen, et al. Expires September 19, 2016 [Page 25]

Internet-Draft PCE-H-SDNs March 2016

 Keep Path Segment: Keep path segments on an end to end path for an
 end to end tunnel.

 Each of these operations can be indicated by a value of options field
 of an object such as CRP object following PCEP Message Common Header
 in a message.

6.2.4. Embedded Encoding of Messages

 Each of the request messages can be encoded as a Path Computation
 Request message with a value of options/operations in an existing
 object. Each of the reply messages can be encoded as a Path
 Computation Reply message with a value of options/operations in an
 existing object.

 A new options/operations field of 3 bits may be defined in the
 existing RP object. Thus each of the five request messages for
 supporting HSCS can be represented by a Path Computation Request
 message with a corresponding Options value in the RP object listed
 below. Each of the five reply messages for supporting HSCS can be
 represented by a Path Computation Reply message with a corresponding
 Options value in the RP object listed below.

 Options Value Meaning
 oTBD1 Path Segment Computation Request/Reply
 oTBD2 Remove Path Segment Request/Reply
 oTBD3 Keep Path Segment Request/Reply
 oTBD4 Create Tunnel Segment Request/Reply
 oTBD5 Remove Tunnel Segment Request/Reply

 Each request/reply message contains the contents for the message
 described in the previous section.

 The Controller Relation Discovery message may be encoded as a Open
 message with a flag or a value of options/operations in an existing
 object. The Open message as a Controller Relation Discovery message
 contains the contents for the Discovery message described in the
 previous section.

 The Connections and Accesses Advertisement message may be encoded as
 a Report message with a flag or a value of options/operations in an
 existing object such as SRP object. The Report message as a
 Connections and Accesses Advertisement message contains the contents
 of the Connections and Accesses Advertisement message described in
 the previous section.

Chen, et al. Expires September 19, 2016 [Page 26]

Internet-Draft PCE-H-SDNs March 2016

6.2.5. Mixed Encoding of Messages

 Some of the above encodings can be combined to form a mixed encoding
 of the messages for supporting HSCS. For example, one mixed encoding
 of the messages is as follows:

 o Using Individual Encoding for Connections and Accesses
 Advertisement message and

 o Using Embedded Encoding for Controller Relation Discovery, all the
 request and reply messages for supporting HSCS.

 Another mixed encoding of messages is below:

 o Using Embedded Encoding for Controller Relation Discovery;

 o Using Individual Encoding for Connections and Accesses
 Advertisement message and

 o Using Group Encoding for all the request and reply messages for
 supporting HSCS.

6.3. Controller Relation Discovery

 This section presents two approaches for discovering controller
 relation. One uses the Open Message with some simple extensions.
 The other uses a new message for Controller Relation Discovery,
 called a discovery message.

6.3.1. Using Open Message

 For a parent controller P and a child controller C connected by a PCE
 session and having a normal PCE peer adjacency, their parent-child
 relation is discovered through Open Messages exchanged between the
 parent controller and the child controller. The following is a
 sequence of events related to a controller relation discovery.

 Controller P sends controller C an Open Message containing a
 capability TLV with parent flag PC set to 1 after controller C is
 configured as a child controller over the PCE session between P and
 C.

Chen, et al. Expires September 19, 2016 [Page 27]

Internet-Draft PCE-H-SDNs March 2016

 P C
 Configure C as Configure P as
 Child Controller Parent Controller

 Open Message (PC=1)
 ---------------------> Remote P is Parent and
 is same as configured
 Form Child-Parent relation
 Open Message (CC=1)
 <---------------------
 Remote C is Child and
 is same as configured
 Form Parent-Child relation

 When C receives the Open Message from P and determines that PC=1 in
 the message is consistent with the parent controller configured
 locally, it forms Child-Parent relation between C and P. It sends
 controller P an Open Message containing a capability TLV with child
 controller flag CC set to 1 after controller P is configured as a
 parent controller over the PCE session between C and P.

 When P receives the Open Message from C and determines that CC=1 in
 the message is consistent with the Child controller configured
 locally, it forms Parent-Child relation between P and C.

 After the Parent-Child relation between P and C is formed, this
 relation is broken if the configuration "C as Child Controller" on
 parent controller P is deleted or "P as Parent Controller" on child
 controller C is removed.

 When the configuration "C as Child Controller" is deleted from parent
 controller P, P breaks/removes the Parent-Child relation between P
 and C and sends C an Open Message with PC = 0. When child controller
 C receives the Open Message with PC = 0 from P, it determines that
 the remote end P is no longer its parent controller as configured
 locally and breaks/removes the Child-Parent relation between C and P.

 When the configuration "P as Parent Controller" is deleted from child
 controller C, C breaks/removes the Child-Parent relation between C
 and P and sends P an Open Message with CC = 0. When parent
 controller P receives the Open Message with CC = 0 from C, it
 determines that the remote end C is no longer its child controller as
 configured locally and breaks/removes the Parent-Child relation
 between P and C.

Chen, et al. Expires September 19, 2016 [Page 28]

Internet-Draft PCE-H-SDNs March 2016

6.3.2. Using Discovery Message

 For a parent controller P and a child controller C connected by a PCE
 session and having a normal PCE peer adjacency, their parent-child
 relation is discovered through messages for controller relation
 discovery exchanged between the parent controller and the child
 controller. The following is a sequence of events related to a
 controller relation discovery.

 Controller P sends controller C a message containing a local
 controller (LC=) P with a parent flag set to 1 after controller C is
 configured as a child controller over a PCE session between P and C.

 P C
 Configure C as child Configure P as parent
 message (LC=P)
 -------------------------> LC in Msg same as configured
 Add P as remote controller
 message (LC=C, RC=P)
 <-------------------------
 Remote see me and same as configured
 Form Parent-Child relation
 Add C as remote controller

 message (LC=P, RC=C)
 -------------------------> Remote see me
 Form Child-Parent relation

 When C receives the message from P and determines that the local
 controller (LC=) P in the message is the same as the parent
 controller configured locally, it sends controller P a message
 containing local controller (LC=) C and remote controller (RC=) P.

 When P receives the message from C and determines that the local
 controller (LC=) C in the message is the same as the child controller
 configured locally and the remote controller C sees me controller P
 (RC=P in the message), it forms a parent-child relation between P and
 C and sends controller C another message containing local controller
 (LC=) P and remote controller (RC=) C.

 When C receives the message from P and determines that the local
 controller (LC=) P in the message is the same as the parent
 controller configured locally and the remote controller P sees me
 controller C (RC=C in the message), it forms a child-parent relation
 between C and P.

Chen, et al. Expires September 19, 2016 [Page 29]

Internet-Draft PCE-H-SDNs March 2016

6.4. Connections and Accesses Advertisement

 A child controller sends its parent controller a message for
 connections and accesses, which contains the connections (i.e.,
 inter-domain links) connecting the domain that the child controller
 controls to other adjacent domains, and the addresses/prefixes (i.e.,
 the access points) in the domain to be accessible from outside of the
 domain.

 When there is a change on the connections and the accesses of the
 domain, the child controller sends its parent controller a updated
 message for the connections and accesses, which contains the latest
 connections and accesses of the domain.

 A parent controller stores the connections and accesses for each of
 its child controllers according to the messages for connections and
 accesses received from the child controllers. For a updated message,
 it updates the connections and accesses accordingly.

 When a child controller is down, its parent controller may remove the
 connections and accesses of the domain controlled by the child
 controller.

 After connections and accesses advertisement, a parent controller has
 the exterior information about all the domains controlled by its
 child controllers. In other words, a parent controller has the
 connections among the domains (i.e., the inter-domain links
 connecting the domains) controlled by its child controllers and the
 addresses/prefixes (i.e., access points) in the domains to be
 accessible.

 A connection comprises: the attributes for a link connecting domains
 and the attributes for the end points of the link. The attributes
 for an end point of a link comprises the type of the end point node
 such as ABR or ASBR, and the domain of the end point such AS number
 and area number.

 An access point comprises an address or a prefix of a domain to be
 accessible outside of the domain.

6.5. Tunnel Creation

 This section describes a couple of procedures for computing a
 shortest end to end path for a tunnel, and then a procedure for
 creating the tunnel along the path. One procedure for computing a
 end to end path takes two rounds of computations. The first round
 obtains an end to end path without any details on any of the path
 segments along the path. This path can be considered as a domain

Chen, et al. Expires September 19, 2016 [Page 30]

Internet-Draft PCE-H-SDNs March 2016

 path. In the second round, the details on each of the path segments
 along the domain path are computed. The other procedure is to get an
 end to end path in one round.

6.5.1. Computing Path in Two Rounds

 After a parent controller receives a request for creating an end to
 end tunnel from source A to destination Z for a given set of
 constraints, it computes an end to end path in two rounds as follows:

 Round 1: Obtain a domain path

 Roughly speaking, obtaining a domain path consists of the
 following three steps:

 Step 1: The parent controller sends a request message to each of
 its related child controllers for computing a set of path
 segments in the domain the child controller controls in a
 special order.

 Step 2: After a child controller receives the request message, it
 computes the path segments as requested and sends the parent
 controller a reply message with the path segments computed as
 links. It does not store any details about the path segments
 it computes. The details of the path segments are hidden from
 the parent controller, which sees each of the segments as a
 link from one (boundary) node to another (boundary) node with a
 cost.

 Step 3: The parent controller builds a shortest path tree (SPT)
 using these path segments and obtains a shortest path from
 source A to destination Z that satisfies the constraints.

 Details for obtaining a domain path are described below:

 Step 1: The parent controller selects the node just added to the
 SPT (Initially, it selects the source).

 Step 2: After selecting the node just added into the SPT, the
 parent controller chooses the child controller controlling the
 domain containing the node, and determines whether the node is
 destination.

 For destination node, the parent controller stops computing
 path since the end to end (domain) path from source to
 destination is in the SPT, which is from the root of the SPT
 to the node (destination node) in the SPT.

Chen, et al. Expires September 19, 2016 [Page 31]

Internet-Draft PCE-H-SDNs March 2016

 For non-destination node X, the parent controller sends the
 child controller a request message for computing path
 segments in the domain controlled by the child controller.

 o After receiving the request message, the child controller
 computes the path segments as requested and sends the
 parent controller a reply message with the path segments
 computed as links. It does not store any details about
 the path segments it computes. The details of the path
 segments are hidden from the parent controller, which
 sees each of the segments as a link from one (boundary)
 node to another (boundary) node with a cost.

 Step 3: After receiving the reply message from the child
 controller, the parent controller updates the candidate list
 with the links, picks up a node in the candidate list with the
 minimum cost and adds it into the SPT. Repeat step 1.

 Round 2: Obtain the path details

 After obtaining a domain path, the parent controller may
 initiate a BRPC procedure along the domain path to get the end
 to end path. Each of the child controllers controlling the
 domains along the domain path may store the details of the path
 segment it computes using a path key.

6.5.2. Computing Path in One Round

 For a top level parent without domain topology, the parent controller
 computes a shortest point to point (P2P) path for a tunnel from a
 source to a destination satisfying a set of constraints given to the
 tunnel through building a shortest path tree (SPT). The SPT is built
 from the source as the root of the SPT with an empty candidate list
 in the following steps.

 Step 1: The parent controller selects the node just added to the SPT
 (Initially, it selects the source).

 Step 2: After selecting the node just added into the SPT, the parent
 controller chooses the child controller controlling the domain
 containing the node, and determines whether the node is
 destination.

 For destination node, the parent controller stops computing path
 since the end to end path from source to destination is in the
 SPT, which is from the root of the SPT to the node (destination
 node) in the SPT.

Chen, et al. Expires September 19, 2016 [Page 32]

Internet-Draft PCE-H-SDNs March 2016

 For non-destination node X, the parent controller sends the child
 controller a request message for computing path segments
 related to the domain controlled by the child controller. The
 request contains the exception list for the domain and flag E.

 o After receiving the request message, the child controller
 computes a shortest path segment from node X to each of the
 edge nodes of the domain not in the exception list if E is
 1.

 o In addition, it computes a shortest path segment from node X
 to each of the edge nodes of the adjacent domains not in the
 exception list just using the inter-domain links attached to
 node X if node X is an edge node and there is an inter-
 domain link attached to it.

 o If node X is in the destination domain, it computes a
 shortest path segment from node X to the destination.

 o It sends the parent controller a reply message with the path
 segments computed as links and stores the details of the
 path segments temporarily.

 Step 3: After receiving the reply message from the child controller,
 the parent controller updates the candidate list with the links,
 picks up a node in the candidate list with the minimum cost and
 adds it into the SPT. Repeat step 1.

 For a parent without domain topology, if the parent controller is
 also a child controller of another upper level parent controller,
 after receiving a request for computing path segments from the upper
 level parent controller, the parent controller computes each of the
 path segments as requested in the same way as described above. It
 records and maintains the path segments computed under the GTID and
 PID in the request message received from the upper level parent
 controller.

 In addition, for each path segment to be computed, it allocates a new
 GTID and PID for the path segment and computes the path segment
 through sending a request message for computing path segments to each
 of its related child controllers using the new GTID and PID.

 When the parent as a child controller receives a request message for
 removing path segments from the upper level parent controller, it
 removes the path segments computed by each of its related child
 controllers through sending a request message for removing path
 segments to each of the related child controllers, and then it
 removes the path segments crossing multiple domains controlled by its

Chen, et al. Expires September 19, 2016 [Page 33]

Internet-Draft PCE-H-SDNs March 2016

 child controllers.

6.5.3. Creating Tunnel along Path

 After obtaining the end to end shortest point to point (P2P) path,
 the parent controller creates a tunnel along the path crossing
 multiple domains through requesting the child controllers along the
 path in a reverse direction.

 For a parent without domain topology, the following is the procedure
 for creating the tunnel along the path, which is initiated by the
 parent controller starting from domain X = destination domain.

 Step 1: The parent controller sends the child controller controlling
 domain X a request message for creating tunnel segment in domain
 X.

 o After receiving the request message from the parent controller,
 the child controller creates the tunnel segment in domain X it
 controls through reserving the resources such as link
 bandwidth, allocating labels along the path segment and writing
 a cross connect on every node in the domain along the path.

 o If the child controller is not destination controller, the
 request message contains an label and interface for the next
 hop of the edge node of domain X. The label is allocated by the
 controller that controls the downstream domain of domain X. The
 child controller uses this label and an incoming label
 allocated for the incoming interface on the edge node to write
 a cross connect on the edge node.

 o The child controller sends the parent controller a reply
 message with the status of the tunnel segment creation. The
 reply message contains an incoming label and interface for the
 next hop of the edge node of the upstream domain of domain X if
 domain X is not source domain.

 Step 2: The parent controller receives the reply message from child
 controller C. If the status in the message is Fail, then it
 removes the tunnel segments created for the tunnel and return with
 failure for creating the tunnel.

 Step 3: If child controller C is the source controller, then the end
 to end tunnel is created, and the parent controller and the child
 controllers along the tunnel maintain the information of the
 tunnel with the GTID and PID. The parent controller returns with
 success for creating the tunnel.

Chen, et al. Expires September 19, 2016 [Page 34]

Internet-Draft PCE-H-SDNs March 2016

 Step 4: Child controller C is not source controller. The reply
 message contains the label and interface, the parent controller
 repeats step 1 with domain X = the upstream domain of domain X.
 (In other words, it sends a request message to the child
 controller that controls the domain which is the upstream domain
 of the domain in which a tunnel segment is just created. The
 request contains the label and interface.)

 For a parent with domain topology, the procedure for creating the
 tunnel along the path initiated by the parent controller is similar
 to the one described above, but has a few of changes to it, which are
 listed as follows:

 o The request message for creating tunnel segment sent to a child
 controller from the parent controller contains the detailed
 information about the path segment (such as ERO comprising every
 hop of the path segment) along which the tunnel segment to be
 created.

 o The child controller does not check or reserve resources such as
 link bandwidth along the path segment if the parent controller is
 responsible for allocating and reserving the resources along the
 path for the tunnel.

 o The child controller does not assign any labels along the path
 segment if the parent controller is responsible for assigning
 labels along the path for the tunnel. In this case, the request
 message for creating tunnel segment contains an label for every
 hop of the path segment. The reply message from the child
 controller to the parent controller does not contain any label or
 interface.

 When the parent as a child controller receives a request message for
 creating tunnel segment along a path segment from the upper level
 parent controller, it gets the path segments for its related child
 controllers from the path segment in the message.

 For the parent with domain topology, it obtains the detailed hop to
 hop information crossing multiple domains about the path segment
 stored by the parent controller using the GTID, PID and start point
 and end point of the path segment in the message received. The
 parent controller creates the tunnel segments in the multiple domains
 through sending a request message for creating tunnel to each of its
 related child controllers along the path in a reverse direction.

 For the parent without domain topology, it obtains the detailed
 information about the path segment stored by the parent controller
 using the GTID, PID and start point and end point of the path segment

Chen, et al. Expires September 19, 2016 [Page 35]

Internet-Draft PCE-H-SDNs March 2016

 in the message received. The detailed information includes multiple
 path segments, each of which crosses a domain controlled by one of
 its related child controllers. These multiple path segments
 constitute the path segment in the message, which crosses multiple
 domains. The parent controller creates the tunnel segments in the
 multiple domains through sending a request message for creating
 tunnel to each of its related child controllers along the path in a
 reverse direction. For each of the path segments crossing a domain,
 the parent controller creates a tunnel segment along the path segment
 through sending a request message for creating tunnel to its child
 controller controlling the domain.

6.6. Objects and TLVs

6.6.1. CRP Objects

 A Controller Request Parameters (CRP) object carried within each of
 the new messages for supporting HSCS is used to specify various
 parameters of a tunnel related operation request. The CRP object has
 Object-Class ocTBD1 and CRP Object-Type = 1. The format of the CRP
 body is as follows

 Object-Class = ocTBD1 (CRP) Object-Type = 1
 0 1 C 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags |E|
 +-+
 | Request-ID |
 +-+
 ˜ Optional TLVs ˜
 +-+

 The following flags are currently defined:

 o E (Edges of Domain): E set to 1 indicating computing a shortest
 path segment satisfying a given set of constraints from a start
 node to each of the edge nodes of the domain controlled by a child
 controller except for the nodes in a given exception list.

 For Group Encoding of messages, a new Options field of 3 bits is
 defined in the flags field of the CRP object to tell the receiver of
 a message that the request/reply is for one of the five request/reply
 messages for supporting HSCS as follows:

Chen, et al. Expires September 19, 2016 [Page 36]

Internet-Draft PCE-H-SDNs March 2016

 Options Meaning
 1 Path Segment Computation Request/Reply
 2 Remove Path Segment Request/Reply
 3 Keep Path Segment Request/Reply
 4 Create Tunnel Segment Request/Reply
 5 Remove Tunnel Segment Request/Reply

6.6.2. LOCAL-CONTROLLER Object

 A LOCAL-CONTROLLER (LC) Object is carried within a Controller
 Relation Discovery message. Two LC objects are defined: one for IPv4
 and the other for IPv6. These two objects have the same Object-Class
 ocTBD2 but have different Object-Types.

6.6.2.1. LOCAL-CONTROLLER Object for IPv4

 The LOCAL-CONTROLLER Object for IPv4 (LC-IPv4 for short) has Object-
 Class ocTBD2 and Object-Type otTBD21. The format of the LC-IPv4 body
 is as follows:

 Object-Class = ocTBD2 Object-Type = otTBD21
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv4 Address |
 +-+
 ˜ Optional TLVs ˜
 +-+

 The LC-IPv4 object body has a 32-bit Flags field and a 32-bit
 Controller IPv4 Address. It may contain additional TLVs. No TLVs
 are currently defined.

 The following flags are currently defined:

 o P (Parent Controller): P set to 1 indicating that the local
 controller is a Parent controller.

 o Level (Level as Parent): Level indicates the level of a controller
 as a parent controller. Level 0 means the highest (i.e., top)
 level as a parent controller. Level i (i > 0) for a parent
 controller C means that C as a child controller has a parent
 controller of level (i - 1).

Chen, et al. Expires September 19, 2016 [Page 37]

Internet-Draft PCE-H-SDNs March 2016

 Unassigned bits in the Flags field are considered reserved. They
 MUST be set to zero on transmission and MUST be ignored on receipt.

 The Controller IPv4 Address indicates an IPv4 address of the local
 controller.

6.6.2.2. LOCAL-CONTROLLER Object for IPv6

 The LOCAL-CONTROLLER Object for IPv6 (LC-IPv6 for short) has Object-
 Class ocTBD2 and Object-Type otTBD22. The format of the LC-IPv6 body
 is as follows:

 Object-Class = ocTBD2 Object-Type = otTBD22
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 ˜ Optional TLVs ˜
 +-+

 The LC-IPv6 object body has a 32-bit Flags field and a 128-bit
 Controller IPv6 Address. It may contain additional TLVs. No TLVs
 are currently defined.

 The flag P (1 bit) and Level (4 bits) in the 32-bit Flags are the
 same as those defined in the LOCAL-CONTROLLER Object for IPv4.

 The Controller IPv6 Address indicates an IPv6 address of the local
 controller.

6.6.3. REMOTE-CONTROLLER Object

 When a local controller receives a Controller Relation Discovery
 message from a remote controller, the local controller MUST include a
 REMOTE-CONTROLLER (RC) Object with the remote controller in a
 Controller Relation Discovery message to be sent to the remote
 controller. Two RC objects are defined: one for IPv4 and the other
 for IPv6. These two objects have the same Object-Class ocTBD3 but
 have different Object-Types.

Chen, et al. Expires September 19, 2016 [Page 38]

Internet-Draft PCE-H-SDNs March 2016

6.6.3.1. REMOTE-CONTROLLER Object for IPv4

 The REMOTE-CONTROLLER Object for IPv4 (RC-IPv4 for short) has Object-
 Class ocTBD3 and Object-Type otTBD31. The format of the RC-IPv4 body
 is as follows:

 Object-Class = ocTBD3 Object-Type = otTBD31
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv4 Address |
 +-+
 ˜ Optional TLVs ˜
 +-+

 The RC-IPv4 object body has a 32-bit Flags field and a 32-bit
 Controller IPv4 Address. It may contain additional TLVs. No TLVs
 are currently defined.

 The following flags are currently defined:

 o P (Parent Controller): P set to 1 indicating that the remote
 controller is a Parent controller.

 o Level (Level as Parent): Level indicates the level of a controller
 as a parent controller. Level 0 means the highest (i.e., top)
 level as a parent controller. Level i (i > 0) for a parent
 controller C means that C as a child controller has a parent
 controller of level (i - 1).

 Unassigned bits in the Flags field are considered reserved. They
 MUST be set to zero on transmission and MUST be ignored on receipt.

 The Controller IPv4 Address indicates an IPv4 address of the remote
 controller.

6.6.3.2. REMOTE-CONTROLLER Object for IPv6

 The REMOTE-CONTROLLER Object for IPv6 (RC-IPv6 for short) has Object-
 Class ocTBD3 and Object-Type otTBD32. The format of the RC-IPv6 body
 is as follows:

Chen, et al. Expires September 19, 2016 [Page 39]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD3 Object-Type = otTBD32
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 ˜ Optional TLVs ˜
 +-+

 The LC-IPv6 object body has a 32-bit Flags field and a 128-bit
 Controller IPv6 Address. It may contain additional TLVs. No TLVs
 are currently defined.

 The flag P (1 bit) and Level (4 bits) in the 32-bit Flags are the
 same as those defined in the REMOTE-CONTROLLER Object for IPv4.

 The Controller IPv6 Address indicates an IPv6 address of the remote
 controller.

6.6.4. CONNECTION and ACCESS Object

 The CONNECTION and ACCESS Object (CA for short) has Object-Class
 ocTBD4. Three Object-Types are defined under CA object:

 o CA Inter-Domain Link: CA Object-Type is 1.

 o CA Access IPv4 Prefix: CA Object-Type is 2.

 o CA Access IPv6 Prefix: CA Object-Type is 3.

 The format of each of these object bodies is as follows:

Chen, et al. Expires September 19, 2016 [Page 40]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD4 (Connection and Access)
 Object-Type = 1 (CA Inter-Domain Link)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AS Number |
 +-+
 | Area-ID TLV |
 ˜ ˜
 +-+
 | IGP Router-ID TLV |
 ˜ ˜
 +-+
 | Inter-Domain Link TLVs |
 ˜ ˜
 +-+

 Each of the Inter-Domain Link TLVs describes an inter-domain link and
 comprises a number of inter-domain link Sub-TLVs.

 Object-Class = ocTBD4 (Connection and Access)
 Object-Type = 2 (CA Access IPv4 Prefix)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AS Number |
 +-+
 | Area-ID TLV |
 ˜ ˜
 +-+
 | Access IPv4 Prefix TLVs |
 ˜ ˜
 +-+

Chen, et al. Expires September 19, 2016 [Page 41]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD4 (Connection and Access)
 Object-Type = 3 (CA Access IPv6 Prefix)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | AS Number |
 +-+
 | Area-ID TLV |
 ˜ ˜
 +-+
 | Access IPv6 Prefix TLVs |
 ˜ ˜
 +-+

 The format of the Area-ID TLV is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD1) | Length (4) |
 +-+
 | Area Number |
 +-+

 The format of the OSPF Router-ID TLV is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD2) | Length (4) |
 +-+
 | OSPF Router ID |
 +-+

 The format of the ISIS Router-ID TLV is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD3) | Length (6) |
 +-+
 | ISO Node-ID ˜
 +-+

Chen, et al. Expires September 19, 2016 [Page 42]

Internet-Draft PCE-H-SDNs March 2016

 The format of the Access IPv4 Prefix TLV is shown as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD4) | Length |
 +-+
 | Prefix Length | IPv4 Prefix (variable) ˜
 +-+

 The format of the Access IPv6 Prefix TLV is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD5) | Length |
 +-+
 | Prefix Length | IPv6 Prefix (variable) ˜
 +-+

 The format of the Inter-Domain link TLV is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (tTBD6) | Length |
 +-+
 | Inter-Domain Link Sub-TLVs |
 ˜ ˜
 +-+

 The format of the Inter-Domain Link Type Sub-TLV is illustrated
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (1) | Length (1) |
 +-+
 | Inter-Domain Link Type |
 +-+

 The Inter-Domain Link Type sub-TLV defines the type of the inter-
 domain link:

Chen, et al. Expires September 19, 2016 [Page 43]

Internet-Draft PCE-H-SDNs March 2016

 1 - Point-to-point

 2 - Multi-access

 The Inter-Domain Link Type sub-TLV is TLV type 1, and is one octet in
 length.

 The format of the Remote AS Number ID Sub-TLV is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (2) | Length (4) |
 +-+
 | Remote AS Number |
 +-+

 The Remote AS Number field has 4 octets. When only two octets are
 used for the AS number, as in current deployments, the left (high-
 order) two octets MUST be set to zero.

 The format of the Remote Area-ID Sub-TLV is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (3) | Length (4) |
 +-+
 | Area Number |
 +-+

 The format of the Remote OSPF Router-ID Sub-TLV is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (4) | Length (4) |
 +-+
 | OSPF Router ID |
 +-+

 The format of the Remote ISIS Router-ID Sub-TLV is shown below:

Chen, et al. Expires September 19, 2016 [Page 44]

Internet-Draft PCE-H-SDNs March 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (5) | Length (6) |
 +-+
 | ISO Node-ID ˜
 +-+

 The format of the IPv4 Remote ASBR ID Sub-TLV is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (6) | Length (4) |
 +-+
 | IPv4 Remote ASBR ID |
 +-+

 The IPv4 Remote ASBR ID sub-TLV MUST be included if the neighboring
 ASBR has an IPv4 address.

 The format of the IPv6 Remote ASBR ID Sub-TLV is illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (7) | Length (16) |
 +-+
 | IPv6 Remote ASBR ID |
 ˜ (16 Bytes) ˜
 +-+

 The IPv6 Remote ASBR ID sub-TLV MUST be included if the neighboring
 ASBR has an IPv6 address.

 The format of the Local Interface IPv4 Address Sub-TLV is shown
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (8) | Length |
 +-+
 | Local Interface IPv4 Address(es) |
 ˜ ˜

Chen, et al. Expires September 19, 2016 [Page 45]

Internet-Draft PCE-H-SDNs March 2016

 +-+

 The Local Interface IPv4 Address sub-TLV specifies the IPv4
 address(es) of the interface corresponding to the inter-domain link.
 If there are multiple local addresses on the link, they are all
 listed in this sub-TLV.

 The Local Interface IPv4 Address sub-TLV is TLV type 8, and is 4N
 octets in length, where N is the number of local IPv4 addresses.

 The format of the Local Interface IPv6 Address Sub-TLV is illustrated
 below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (9) | Length |
 +-+
 | Local Interface IPv6 Address(es) |
 ˜ ˜
 +-+

 The Local Interface IPv6 Address sub-TLV specifies the IPv6
 address(es) of the interface corresponding to the inter-domain link.
 If there are multiple local addresses on the link, they are all
 listed in this sub-TLV.

 The Local Interface IPv6 Address sub-TLV is TLV type 9, and is 16N
 octets in length, where N is the number of local IPv6 addresses.

 The format of the Remote Interface IPv4 Address Sub-TLV is
 illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (10) | Length |
 +-+
 | Neighbor Interface IPv4 Address(es) |
 ˜ ˜
 +-+

 The Remote Interface IPv4 Address sub-TLV specifies the IPv4
 address(es) of the neighbor’s interface corresponding to the inter-
 domain link. This and the local address are used to discern multiple

Chen, et al. Expires September 19, 2016 [Page 46]

Internet-Draft PCE-H-SDNs March 2016

 parallel links between systems. If there are multiple remote
 addresses on the link, they are all listed in this sub-TLV.

 The Remote Interface IPv4 Address sub-TLV is TLV type 10, and is 4N
 octets in length, where N is the number of neighbor IPv4 addresses.

 The format of the Remote Interface IPv6 Address Sub-TLV is
 illustrated below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (11) | Length |
 +-+
 | Neighbor Interface IPv6 Address(es) |
 ˜ ˜
 +-+

 The Remote Interface IPv6 Address sub-TLV specifies the IPv6
 address(es) of the neighbor’s interface corresponding to the inter-
 domain link. If there are multiple neighbor addresses on the link,
 they are all listed in this sub-TLV.

 The Remote Interface IPv6 Address sub-TLV is TLV type 11, and is 16N
 octets in length, where N is the number of neighbor IPv6 addresses.

6.6.5. NODE Object

 The NODE Object has Object-Class ocTBD5. A nuber of Object-Types are
 defined under NODE object below:

 1. IPv4 START-NODE: NODE Object-Type is 1.

 2. IPv6 START-NODE: NODE Object-Type is 2.

 3. IPv4 DESTINATION-NODE-LIST: NODE Object-Type is 3.

 4. IPv6 DESTINATION-NODE-LIST: NODE Object-Type is 4.

 5. IPv4 SEGMENT-END-NODE-LIST: NODE Object-Type is 5.

 6. IPv6 SEGMENT-END-NODE-LIST: NODE Object-Type is 6.

 7. IPv4 EXCEPTION-NODE-LIST: NODE Object-Type is 7.

Chen, et al. Expires September 19, 2016 [Page 47]

Internet-Draft PCE-H-SDNs March 2016

 8. IPv6 EXCEPTION-NODE-LIST: NODE Object-Type is 8.

 9. NODE-IGP-METRIC-LIST: NODE Object-Type is 9.

 10. NODE-TE-METRIC-LIST: NODE Object-Type is 10.

 11. NODE-HOP-COUNT-LIST: NODE Object-Type is 11.

 The format of NODE object body for IPv4 START-NODE is as follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 1 (IPv4 START-NODE)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Start Node IPv4 Address |
 +-+

 The Start Node IPv4 Address is the IPv4 address of a start node.

 The format of NODE object body for IPv6 START-NODE is as follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 2 (IPv6 START-NODE)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Start Node IPv6 Address |
 ˜ (16 bytes) ˜
 +-+

 The Start Node IPv6 Address is the IPv6 address of a start node.

 The format of NODE object body for IPv4 DESTINATION-NODE-LIST is as
 follows:

Chen, et al. Expires September 19, 2016 [Page 48]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD5 (NODE)
 Object-Type = 3 (IPv4 DESTINATION-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Destination Node 1 IPv4 Address |
 +-+
 | |
 ˜ ˜
 +-+
 | Destination Node n IPv4 Address |
 +-+

 The IPv4 DESTINATION-NODE-LIST contains n destination node IPv4
 addresses. An IPv4 DESTINATION-NODE-LIST is also called an IPv4
 DESTINATION-NODES.

 The format of NODE object body for IPv6 DESTINATION-NODE-LIST is as
 follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 4 (IPv6 DESTINATION-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Destination Node 1 IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 | |
 ˜ ˜
 +-+
 | Destination Node n IPv6 Address |
 ˜ (16 bytes) ˜
 +-+

 The IPv6 DESTINATION-NODE-LIST contains n destination node IPv6
 addresses. An IPv6 DESTINATION-NODE-LIST is also called an IPv6
 DESTINATION-NODES.

 The format of NODE object body for IPv4 SEGMENT-END-NODE-LIST is as
 follows:

Chen, et al. Expires September 19, 2016 [Page 49]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD5 (NODE)
 Object-Type = 5 (IPv4 SEGMENT-END-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Segment End Node 1 IPv4 Address |
 +-+
 | |
 ˜ ˜
 +-+
 | Segment End Node n IPv4 Address |
 +-+

 The IPv4 SEGMENT-END-NODE-LIST contains n segment node IPv4
 addresses. An IPv4 SEGMENT-END-NODE-LIST is also called an IPv4
 SEGMENT-END-NODES.

 The format of NODE object body for IPv6 SEGMENT-END-NODE-LIST is as
 follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 6 (IPv6 SEGMENT-END-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Segment End Node 1 IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 | |
 ˜ ˜
 +-+
 | Segment End Node n IPv6 Address |
 ˜ (16 bytes) ˜
 +-+

 The IPv6 SEGMENT-END-NODE-LIST contains n segment end node IPv6
 addresses. An IPv6 SEGMENT-END-NODE-LIST is also called an IPv6
 SEGMENT-END-NODES.

 The format of NODE object body for IPv4 EXCEPTION-NODE-LIST is as
 follows:

Chen, et al. Expires September 19, 2016 [Page 50]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD5 (NODE)
 Object-Type = 7 (IPv4 EXCEPTION-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Exception Node 1 IPv4 Address |
 +-+
 | |
 ˜ ˜
 +-+
 | Exception Node n IPv4 Address |
 +-+

 The IPv4 SEGMENT-END-NODE-LIST contains n node IPv4 addresses in an
 exception list. An IPv4 EXCEPTION-NODE-LIST is also called an IPv4
 EXCEPTION-LIST.

 The format of NODE object body for IPv6 EXCEPTION-NODE-LIST is as
 follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 8 (IPv6 EXCEPTION-NODE-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Exception Node 1 IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 | |
 ˜ ˜
 +-+
 | Exception Node n IPv6 Address |
 ˜ (16 bytes) ˜
 +-+

 The IPv6 EXCEPTION-NODE-LIST contains n node IPv6 addresses in an
 exception list. An IPv6 EXCEPTION-NODE-LIST is also called an IPv6
 EXCEPTION-LIST.

 The format of NODE object body for NODE-IGP-METRIC-LIST is as
 follows:

Chen, et al. Expires September 19, 2016 [Page 51]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD5 (NODE)
 Object-Type = 9 (NODE-IGP-METRIC-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Segment End Node 1 IGP Metric Value |
 +-+
 | |
 ˜ ˜
 +-+
 | Segment End Node n IGP Metric Value |
 +-+

 The NODE-IGP-METRIC-LIST contains n IGP metrics for n segment end
 nodes.

 The format of NODE object body for NODE-TE-METRIC-LIST is as follows:

 Object-Class = ocTBD5 (NODE)
 Object-Type = 10 (NODE-TE-METRIC-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Segment End Node 1 TE Metric Value |
 +-+
 | |
 ˜ ˜
 +-+
 | Segment End Node n TE Metric Value |
 +-+

 The NODE-TE-METRIC-LIST contains n TE metrics for n segment end
 nodes.

 The format of NODE object body for NODE-HOP-COUNT-LIST is as follows:

Chen, et al. Expires September 19, 2016 [Page 52]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD5 (NODE)
 Object-Type = 11 (NODE-HOP-COUNT-LIST)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Segment End Node 1 Hop Counts Value |
 +-+
 | |
 ˜ ˜
 +-+
 | Segment End Node n Hop Counts Value |
 +-+

 The NODE-HOP-COUNT-LIST contains n hop counts values for n segment
 end nodes.

6.6.6. TUNNEL Object

 The TUNNEL Object has Object-Class ocTBD6. Two Object-Types are
 defined under TUNNEL object:

 1. TUNNEL-ID: TUNNEL Object-Type is 1.

 2. TUNNEL-PATH-ID: TUNNEL Object-Type is 2.

 The format of TUNNEL object body for TUNNEL-ID is as follows:

 Object-Class = ocTBD6 (TUNNEL)
 Object-Type = 1 (TUNNEL-ID)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Tunnel ID |
 +-+

 The Tunnel ID in the body is a 32-bit unique number for identifying a
 tunnel globally.

 The format of TUNNEL object body for TUNNEL-PATH-ID is as follows:

 Object-Class = ocTBD6 (TUNNEL) Object-Type = 2 (PATH-ID)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Path ID |
 +-+

Chen, et al. Expires September 19, 2016 [Page 53]

Internet-Draft PCE-H-SDNs March 2016

 The Path ID in the body is a 16-bit number for uniquely identifying a
 path under a tunnel.

6.6.7. STATUS Object

 The STATUS Object has Object-Class ocTBD7. The format of STATUS
 object body has following format:

 Object-Class = ocTBD7 (STATUS)
 Object-Type = 1
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Status Code | Reason | Reserved |
 +-+
 ˜ Optional TLVs ˜
 +-+

 The status code (or status for short) in a STATUS may be one of the
 followings:

 1 (SUCCESS): Indicating a request is successfully finished.

 2 (FAIL): Indicating a request can not be finished.

 When the status is FAIL, the Reason gives a reason for the failure
 and the Optional TLVs give some more details about failure.

6.6.8. LABEL Object

 The LABEL Object has Object-Class ocTBD8. The format of LABEL object
 body has following format:

 Object-Class = ocTBD8 (LABEL)
 Object-Type = 1
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | (top label) |
 +-+

 The contents of a LABEL is a single label, encoded in 4 octets.

Chen, et al. Expires September 19, 2016 [Page 54]

Internet-Draft PCE-H-SDNs March 2016

6.6.9. INTERFACE Object

 The INTERFACE Object has Object-Class ocTBD9. Three Object-Types are
 defined under INTERFACE object:

 1. Index: Object-Type is 1.

 2. IPv4 Address: Object-Type is 2.

 3. IPv6 Address: Object-Type is 3.

 The format of INTERFACE object body for interface index has following
 format:

 Object-Class = ocTBD9 (INTERFACE)
 Object-Type = 1 (Index)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface Index |
 +-+

 The Interface Index is a single interface index, encoded in 4 octets.

 The format of INTERFACE object body for interface IPv4 address has
 following format:

 Object-Class = ocTBD9 (INTERFACE)
 Object-Type = 2 (IPv4 Address)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface IPv4 Address |
 +-+

 The Interface IPv4 Address is a single interface IPv4 address,
 encoded in 4 octets.

 The format of INTERFACE object body for interface IPv6 address has
 following format:

Chen, et al. Expires September 19, 2016 [Page 55]

Internet-Draft PCE-H-SDNs March 2016

 Object-Class = ocTBD9 (INTERFACE)
 Object-Type = 3 (IPv6 Address)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Interface IPv6 Address |
 ˜ (16 bytes) ˜
 +-+

 The Interface IPv6 Address is a single interface IPv6 address,
 encoded in 16 octets.

7. Security Considerations

 The mechanism described in this document does not raise any new
 security issues for the PCEP protocols.

8. IANA Considerations

 This section specifies requests for IANA allocation.

9. Acknowledgement

 The authors would like to thank people for their valuable comments on
 this draft.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
 RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4655] Farrel, A., Vasseur, J., and J. Ash, "A Path Computation
 Element (PCE)-Based Architecture", RFC 4655, DOI 10.17487/
 RFC4655, August 2006,
 <http://www.rfc-editor.org/info/rfc4655>.

 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
 Element (PCE) Communication Protocol (PCEP)", RFC 5440,
 DOI 10.17487/RFC5440, March 2009,
 <http://www.rfc-editor.org/info/rfc5440>.

 [RFC5441] Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux,
 "A Backward-Recursive PCE-Based Computation (BRPC)

Chen, et al. Expires September 19, 2016 [Page 56]

Internet-Draft PCE-H-SDNs March 2016

 Procedure to Compute Shortest Constrained Inter-Domain
 Traffic Engineering Label Switched Paths", RFC 5441,
 DOI 10.17487/RFC5441, April 2009,
 <http://www.rfc-editor.org/info/rfc5441>.

 [RFC5392] Chen, M., Zhang, R., and X. Duan, "OSPF Extensions in
 Support of Inter-Autonomous System (AS) MPLS and GMPLS
 Traffic Engineering", RFC 5392, DOI 10.17487/RFC5392,
 January 2009, <http://www.rfc-editor.org/info/rfc5392>.

 [RFC5316] Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
 Support of Inter-Autonomous System (AS) MPLS and GMPLS
 Traffic Engineering", RFC 5316, DOI 10.17487/RFC5316,
 December 2008, <http://www.rfc-editor.org/info/rfc5316>.

 [RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic
 Engineering", RFC 5305, DOI 10.17487/RFC5305,
 October 2008, <http://www.rfc-editor.org/info/rfc5305>.

 [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
 (TE) Extensions to OSPF Version 2", RFC 3630,
 DOI 10.17487/RFC3630, September 2003,
 <http://www.rfc-editor.org/info/rfc3630>.

10.2. Informative References

 [RFC1136] Hares, S. and D. Katz, "Administrative Domains and Routing
 Domains: A model for routing in the Internet", RFC 1136,
 DOI 10.17487/RFC1136, December 1989,
 <http://www.rfc-editor.org/info/rfc1136>.

 [RFC4105] Le Roux, J., Ed., Vasseur, J., Ed., and J. Boyle, Ed.,
 "Requirements for Inter-Area MPLS Traffic Engineering",
 RFC 4105, DOI 10.17487/RFC4105, June 2005,
 <http://www.rfc-editor.org/info/rfc4105>.

 [RFC4216] Zhang, R., Ed. and J. Vasseur, Ed., "MPLS Inter-Autonomous
 System (AS) Traffic Engineering (TE) Requirements",
 RFC 4216, DOI 10.17487/RFC4216, November 2005,
 <http://www.rfc-editor.org/info/rfc4216>.

 [RFC6006] Zhao, Q., Ed., King, D., Ed., Verhaeghe, F., Takeda, T.,
 Ali, Z., and J. Meuric, "Extensions to the Path
 Computation Element Communication Protocol (PCEP) for
 Point-to-Multipoint Traffic Engineering Label Switched
 Paths", RFC 6006, DOI 10.17487/RFC6006, September 2010,
 <http://www.rfc-editor.org/info/rfc6006>.

Chen, et al. Expires September 19, 2016 [Page 57]

Internet-Draft PCE-H-SDNs March 2016

 [RFC6805] King, D., Ed. and A. Farrel, Ed., "The Application of the
 Path Computation Element Architecture to the Determination
 of a Sequence of Domains in MPLS and GMPLS", RFC 6805,
 DOI 10.17487/RFC6805, November 2012,
 <http://www.rfc-editor.org/info/rfc6805>.

Appendix A. Details on Embedded Encoding of Messages

 A new options field of 3 bits is defined in the flags field of the RP
 object to tell the receiver of the message that the request/reply is
 for one of the five request/reply messages for supporting HSCS as
 follows:

 Options Meaning
 1 Path Segment Computation Request/Reply
 2 Remove Path Segment Request/Reply
 3 Keep Path Segment Request/Reply
 4 Create Tunnel Segment Request/Reply
 5 Remove Tunnel Segment Request/Reply

 A new flag E of 1 bit is defined in the flags field of the RP object.
 Flag E set to 1 indicating computing a shortest path segment
 satisfying a given set of constraints from a start node to each of
 the edge nodes of the domain controlled by a child controller except
 for the nodes in a given exception list.

A.1. Message for Controller Relation Discovery

 The new TLV defined in the Open Object in section Capability
 Discovery is extended to contain Sub-TLVs for local controller and
 remote controller. Thus Open Message with the Open Object containing
 the new TLV can be used as Message for Controller Relation Discovery.
 Four optional Sub-TLVs are defined as follows:

 1. Local Controller IPv4 Sub-TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (1) | Length |
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv4 Address |
 +-+
 ˜ (Optional Sub-TLVs) ˜
 +-+

Chen, et al. Expires September 19, 2016 [Page 58]

Internet-Draft PCE-H-SDNs March 2016

 The meanings of each field in the Sub-TLV is the same as described in
 section LOCAL-CONTROLLER Object for IPv4.

 2. Local Controller IPv6 Sub-TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (2) | Length |
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 ˜ (Optional Sub-TLVs) ˜
 +-+

 The meanings of each field in the Sub-TLV is the same as described in
 section LOCAL-CONTROLLER Object for IPv6.

 3. Remote Controller IPv4 Sub-TLV

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (3) | Length |
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv4 Address |
 +-+
 ˜ (Optional Sub-TLVs) ˜
 +-+

 The meanings of each field in the Sub-TLV is the same as described in
 section REMOTE-CONTROLLER Object for IPv4.

 4. Remote Controller IPv6 Sub-TLV

Chen, et al. Expires September 19, 2016 [Page 59]

Internet-Draft PCE-H-SDNs March 2016

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type (4) | Length |
 +-+
 | Flags |P| Level |
 +-+
 | Controller IPv6 Address |
 ˜ (16 bytes) ˜
 +-+
 ˜ (Optional Sub-TLVs) ˜
 +-+

 The meanings of each field in the Sub-TLV is the same as described in
 section REMOTE-CONTROLLER Object for IPv6.

A.2. Message for Connections and Accesses Advertisement

 The format of the CAAdv message is as follows:

 <CAAdv Message> ::= <Common Header>
 <SRP>
 <Inter-Domain-Link-List>
 [<Access-Address-List>]
 where:
 <Inter-Domain-Link-List> ::= <Inter-Domain-Link>
 [<Inter-Domain-Link-List>]
 <Access-Address-List> ::= <Access-Address>
 [<Access-Address-List>]

A.3. Request for Computing Path Segments

 The format of the PSReq message is as follows:

Chen, et al. Expires September 19, 2016 [Page 60]

Internet-Draft PCE-H-SDNs March 2016

 <PSReq Message> ::= <Common Header>
 [<svec-list>]
 <path-segment-request-list>
 where:
 <svec-list>::=<SVEC>[<svec-list>]
 <path-segment-request-list> ::=
 <path-segment-request>
 [<path-segment-request-list>]

 <path-segment-request> ::=
 <RP> <END-POINTS> [<OF>] [<LSPA>] [<BANDWIDTH>]
 <Tunnel-ID> <Path-ID>
 [<metric-list>] [<RRO>[<BANDWIDTH>]] [<IRO>]
 [<LOAD-BALANCING>]
 <exception-list>

A.4. Reply for Computing Path Segments

 The format of the PSRep message is as follows:

 <PSRep Message> ::= <Common Header>
 <path-segment-reply-list>
 where:
 <path-segment-reply-list> ::=
 <path-segment-reply>
 [<path-segment-reply-list>]

 <path-segment-reply> ::=
 <RP> [<NO-PATH>] [<attribute-list>]
 <Tunnel-ID> <Path-ID>
 <Start-Node>
 [<NO-PATH> | <segment-end-List>]
 [<attribute-list>]

A.5. Request for Removing Path Segments

 The format of the RPSReq message is as follows:

Chen, et al. Expires September 19, 2016 [Page 61]

Internet-Draft PCE-H-SDNs March 2016

 <RPSReq Message> ::= <Common Header>
 <remove-path-segment-request-list>
 where:
 <remove-path-segment-request-list> :: =
 <remove-path-segment-request>
 [<remove-path-segment-request-list>]

 <remove-path-segment-request> ::=
 <RP>
 <Tunnel-ID> [<Path-ID>]
 [<start-node-list>]
 [<branch-List>]

 <start-node-list> ::= <Start-Node> [<start-node-list>]

 <branch-list> ::= <Branch> [<branch-list>]
 <Branch> ::= <Start-Node> <branch-end-list>

 <branch-end-list> ::= <Branch-End> [<branch-end-list>]

A.6. Reply for Removing Path Segments

 The format of the RPSRep message is as follows:

 <RPSRep Message> ::= <Common Header>
 <remove-path-segment-reply-list>
 where:
 <remove-path-segment-reply-list> ::=
 <remove-path-segment-reply>
 [<remove-path-segment-reply-list>]

 <remove-path-segment-reply> ::=
 <RP>
 <Tunnel-ID> [<Path-ID>]
 <Status>
 [<Reasons>]

A.7. Request for Keeping Path Segments

 The format of the KPSReq message is as follows:

Chen, et al. Expires September 19, 2016 [Page 62]

Internet-Draft PCE-H-SDNs March 2016

 <KPSReq Message> ::= <Common Header>
 <keep-path-segment-request-list>
 where:
 <keep-path-segment-request-list> :: =
 <keep-path-segment-request>
 [<keep-path-segment-request-list>]

 <keep-path-segment-request> ::=
 <RP>
 <Tunnel-ID> <Path-ID>
 <segment-list>

 <segment-list> ::= <Segment> [<segment-list>]
 <Segment> ::= <Segment-Start> <Segment-End>

A.8. Reply for Keeping Path Segments

 The format of the KPSRep message is as follows:

 <KPSRep Message> ::= <Common Header>
 <keep-path-segment-reply-list>
 where:
 <keep-path-segment-reply-list> ::=
 <keep-path-segment-reply>
 [<keep-path-segment-reply-list>]

 <keep-path-segment-reply> ::=
 <RP>
 <Tunnel-ID> <Path-ID>
 <Status>
 [<Reasons>]

A.9. Request for Creating Tunnel Segment

 The format of the CTSReq message is as follows:

Chen, et al. Expires September 19, 2016 [Page 63]

Internet-Draft PCE-H-SDNs March 2016

 <CTSReq Message> ::= <Common Header>
 <create-tunnel-segment-request-list>
 where:
 <create-tunnel-segment-request-list> ::=
 <create-tunnel-segment-request>
 [<create-tunnel-segment-request-list>]

 <create-tunnel-segment-request> ::=
 <RP>
 <Tunnel-ID> <Path-ID>
 <Path-Segment>
 [<Label> <Interface>]

 <Path-Segment> ::= [<Segment-Start> <Segment-End> | <ERO>]

A.10. Reply for Creating Tunnel Segment

 The format of the CTSRep message is as follows:

 <CTSRep Message> ::= <Common Header>
 <create-tunnel-segment-reply-list>
 where:
 <create-tunnel-segment-reply-list> ::=
 <create-tunnel-segment-reply>
 [<create-tunnel-segment-reply-list>]

 <create-tunnel-segment-reply> ::=
 <RP>
 <Tunnel-ID> <Path-ID>
 <Status> [<Label> <Interface>]
 [<Reasons>]

A.11. Request for Removing Tunnel Segment

 The format of the RTSReq message is as follows:

 <RTSReq Message> ::= <Common Header>
 <remove-tunnel-segment-request-list>
 where:
 <remove-tunnel-segment-request-list> ::=
 <remove-tunnel-segment-request>
 [<remove-tunnel-segment-request-list>]

 <remove-tunnel-segment-request> ::
 <RP>
 <Tunnel-ID> [<Path-ID>]

Chen, et al. Expires September 19, 2016 [Page 64]

Internet-Draft PCE-H-SDNs March 2016

A.12. Reply for Removing Tunnel Segment

 The format of the RTSRep message is as follows:

 <RTSRep Message> ::= <Common Header>
 <remove-tunnel-segment-reply-list>
 where:
 <reply-tunnel-segment-reply-list> ::=
 <remove-tunnel-segment-reply>
 [<remove-tunnel-segment-reply-list>]

 <remove-tunnel-segment-reply> ::=
 <RP>
 <Tunnel-ID> [<Path-ID>]
 <Status>
 [<Reasons>]

Authors’ Addresses

 Huaimo Chen
 Huawei Technologies
 Boston, MA,
 USA

 EMail: Huaimo.chen@huawei.com

 Mehmet Toy
 Comcast
 1800 Bishops Gate Blvd.
 Mount Laurel, NJ 08054
 USA

 EMail: mehmet_toy@cable.comcast.com

 Lei Liu
 Fujitsu
 USA

 EMail: lliu@us.fujitsu.com

Chen, et al. Expires September 19, 2016 [Page 65]

Internet-Draft PCE-H-SDNs March 2016

 Vic Liu
 China Mobile
 No.32 Xuanwumen West Street, Xicheng District
 Beijing, 100053
 China

 EMail: liuzhiheng@chinamobile.com

Chen, et al. Expires September 19, 2016 [Page 66]

