
Network Working Group A. Keranen
Internet-Draft Ericsson
Intended status: Informational M. Kovatsch
Expires: March 18, 2018 ETH Zurich
 K. Hartke
 Universitaet Bremen TZI
 September 14, 2017

 RESTful Design for Internet of Things Systems
 draft-keranen-t2trg-rest-iot-05

Abstract

 This document gives guidance for designing Internet of Things (IoT)
 systems that follow the principles of the Representational State
 Transfer (REST) architectural style.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 18, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Keranen, et al. Expires March 18, 2018 [Page 1]

Internet-Draft RESTful Design for IoT Systems September 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Basics . 6
 3.1. Architecture . 6
 3.2. System design . 8
 3.3. Uniform Resource Identifiers (URIs) 9
 3.4. Representations . 10
 3.5. HTTP/CoAP Methods . 10
 3.5.1. GET . 11
 3.5.2. POST . 11
 3.5.3. PUT . 12
 3.5.4. DELETE . 12
 3.6. HTTP/CoAP Status/Response Codes 12
 4. REST Constraints . 13
 4.1. Client-Server . 13
 4.2. Stateless . 14
 4.3. Cache . 14
 4.4. Uniform Interface . 14
 4.5. Layered System . 15
 4.6. Code-on-Demand . 15
 5. Hypermedia-driven Applications 16
 5.1. Motivation . 16
 5.2. Knowledge . 17
 5.3. Interaction . 18
 6. Design Patterns . 18
 6.1. Collections . 18
 6.2. Calling a Procedure 19
 6.2.1. Instantly Returning Procedures 19
 6.2.2. Long-running Procedures 19
 6.2.3. Conversion . 20
 6.2.4. Events as State 20
 6.3. Server Push . 21
 7. Security Considerations 22
 8. Acknowledgement . 23
 9. References . 23
 9.1. Normative References 23
 9.2. Informative References 25
 Appendix A. Future Work . 26
 Authors’ Addresses . 26

Keranen, et al. Expires March 18, 2018 [Page 2]

Internet-Draft RESTful Design for IoT Systems September 2017

1. Introduction

 The Representational State Transfer (REST) architectural style [REST]
 is a set of guidelines and best practices for building distributed
 hypermedia systems. At its core is a set of constraints, which when
 fulfilled enable desirable properties for distributed software
 systems such as scalability and modifiability. When REST principles
 are applied to the design of a system, the result is often called
 RESTful and in particular an API following these principles is called
 a RESTful API.

 Different protocols can be used with RESTful systems, but at the time
 of writing the most common protocols are HTTP [RFC7230] and CoAP
 [RFC7252]. Since RESTful APIs are often simple and lightweight, they
 are a good fit for various IoT applications. The goal of this
 document is to give basic guidance for designing RESTful systems and
 APIs for IoT applications and give pointers for more information.
 Design of a good RESTful IoT system has naturally many commonalities
 with other Web systems. Compared to other systems, the key
 characteristics of many IoT systems include:

 o data formats, interaction patterns, and other mechanisms that
 minimize, or preferably avoid, the need for human interaction

 o preference for compact and simple data formats to facilitate
 efficient transfer over (often) constrained networks and
 lightweight processing in constrained nodes

2. Terminology

 This section explains some of the common terminology that is used in
 the context of RESTful design for IoT systems. For terminology of
 constrained nodes and networks, see [RFC7228].

 Cache: A local store of response messages and the subsystem that
 controls storage, retrieval, and deletion of messages in it.

 Client: A node that sends requests to servers and receives
 responses. In RESTful IoT systems it’s common for nodes to have
 more than one role (e.g., both server and client; see
 Section 3.1).

 Client State: The state kept by a client between requests. This
 typically includes the currently processed representation, the set
 of active requests, the history of requests, bookmarks (URIs
 stored for later retrieval), and application-specific state (e.g.,
 local variables). (Note that this is called "Application State"
 in [REST], which has some ambiguity in modern (IoT) systems where

Keranen, et al. Expires March 18, 2018 [Page 3]

Internet-Draft RESTful Design for IoT Systems September 2017

 the overall state of the distributed application (i.e.,
 application state) is reflected in the union of all Client States
 and Resource States of all clients and servers involved.)

 Content Negotiation: The practice of determining the "best"
 representation for a client when examining the current state of a
 resource. The most common forms of content negotiation are
 Proactive Content Negotiation and Reactive Content Negotiation.

 Form: A hypermedia control that enables a client to change the state
 of a resource or to construct a query locally.

 Forward Proxy: An intermediary that is selected by a client, usually
 via local configuration rules, and that can be tasked to make
 requests on behalf of the client. This may be useful, for
 example, when the client lacks the capability to make the request
 itself or to service the response from a cache in order to reduce
 response time, network bandwidth, and energy consumption.

 Gateway: A reverse proxy that provides an interface to a non-RESTful
 system such as legacy systems or alternative technologies such as
 Bluetooth ATT/GATT. See also "Reverse Proxy".

 Hypermedia Control: A component, such as a link or a form, embedded
 in a representation that identifies a resource for future
 hypermedia interactions. If the client engages in an interaction
 with the identified resource, the result may be a change to
 resource state and/or client state.

 Idempotent Method: A method where multiple identical requests with
 that method lead to the same visible resource state as a single
 such request.

 Link: A hypermedia control that enables a client to navigate between
 resources and thereby change the client state.

 Link Relation Type: An identifier that describes how the link target
 resource relates to the current resource (see [RFC5988]).

 Media Type: A string such as "text/html" or "application/json" that
 is used to label representations so that it is known how the
 representation should be interpreted and how it is encoded.

 Method: An operation associated with a resource. Common methods
 include GET, PUT, POST, and DELETE (see Section 3.5 for details).

 Origin Server: A server that is the definitive source for
 representations of its resources and the ultimate recipient of any

Keranen, et al. Expires March 18, 2018 [Page 4]

Internet-Draft RESTful Design for IoT Systems September 2017

 request that intends to modify its resources. In contrast,
 intermediaries (such as proxies caching a representation) can
 assume the role of a server, but are not the source for
 representations as these are acquired from the origin server.

 Proactive Content Negotiation: A content negotiation mechanism where
 the server selects a representation based on the expressed
 preference of the client. For example, an IoT application could
 send a request to a sensor with preferred media type "application/
 senml+json".

 Reactive Content Negotiation: A content negotiation mechanism where
 the client selects a representation from a list of available
 representations. The list may, for example, be included by a
 server in an initial response. If the user agent is not satisfied
 by the initial response representation, it can request one or more
 of the alternative representations, selected based on metadata
 (e.g., available media types) included in the response.

 Representation: A serialization that represents the current or
 intended state of a resource and that can be transferred between
 clients and servers. REST requires representations to be self-
 describing, meaning that there must be metadata that allows peers
 to understand which representation format is used. Depending on
 the protocol needs and capabilities, there can be additional
 metadata that is transmitted along with the representation.

 Representation Format: A set of rules for serializing resource
 state. On the Web, the most prevalent representation format is
 HTML. Other common formats include plain text and formats based
 on JSON [RFC7159], XML, or RDF. Within IoT systems, often compact
 formats based on JSON, CBOR [RFC7049], and EXI
 [W3C.REC-exi-20110310] are used.

 Representational State Transfer (REST): An architectural style for
 Internet-scale distributed hypermedia systems.

 Resource: An item of interest identified by a URI. Anything that
 can be named can be a resource. A resource often encapsulates a
 piece of state in a system. Typical resources in an IoT system
 can be, e.g., a sensor, the current value of a sensor, the
 location of a device, or the current state of an actuator.

 Resource State: A model of a resource’s possible states that is
 represented in a supported representation type, typically a media
 type. Resources can change state because of REST interactions
 with them, or they can change state for reasons outside of the
 REST model.

Keranen, et al. Expires March 18, 2018 [Page 5]

Internet-Draft RESTful Design for IoT Systems September 2017

 Resource Type: An identifier that annotates the application-
 semantics of a resource (see Section 3.1 of [RFC6690]).

 Reverse Proxy: An intermediary that appears as a server towards the
 client but satisfies the requests by forwarding them to the actual
 server (possibly via one or more other intermediaries). A reverse
 proxy is often used to encapsulate legacy services, to improve
 server performance through caching, and to enable load balancing
 across multiple machines.

 Safe Method: A method that does not result in any state change on
 the origin server when applied to a resource.

 Server: A node that listens for requests, performs the requested
 operation and sends responses back to the clients.

 Uniform Resource Identifier (URI): A global identifier for
 resources. See Section 3.3 for more details.

3. Basics

3.1. Architecture

 The components of a RESTful system are assigned one or both of two
 roles: client or server. Note that the terms "client" and "server"
 refer only to the roles that the nodes assume for a particular
 message exchange. The same node might act as a client in some
 communications and a server in others. Classic user agents (e.g.,
 Web browsers) are always in the client role and have the initiative
 to issue requests. Origin servers always have the server role and
 govern over the resources they host.

 ________ _________
 | | | |
 | User (C)-------------------(S) Origin |
 | Agent | | Server |
 |________| |_________|
 (Browser) (Web Server)

 Figure 1: Client-Server Communication

 Intermediaries (such as forward proxies, reverse proxies, and
 gateways) implement both roles, but only forward requests to other
 intermediaries or origin servers. They can also translate requests
 to different protocols, for instance, as CoAP-HTTP cross-proxies.

Keranen, et al. Expires March 18, 2018 [Page 6]

Internet-Draft RESTful Design for IoT Systems September 2017

 ________ __________ _________
 | | | | | |
 | User (C)---(S) Inter- (C)--------------------(S) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Forward Proxy) (Web Server)

 Figure 2: Communication with Forward Proxy

 Reverse proxies are usually imposed by the origin server. In
 addition to the features of a forward proxy, they can also provide an
 interface for non-RESTful services such as legacy systems or
 alternative technologies such as Bluetooth ATT/GATT. In this case,
 reverse proxies are usually called gateways. This property is
 enabled by the Layered System constraint of REST, which says that a
 client cannot see beyond the server it is connected to (i.e., it is
 left unaware of the protocol/paradigm change).

 ________ __________ _________
 | | | | | |
 | User (C)--------------------(S) Inter- (x)---(x) Origin |
 | Agent | | mediary | | Server |
 |________| |__________| |_________|
 (Browser) (Gateway) (Legacy System)

 Figure 3: Communication with Reverse Proxy

 Nodes in IoT systems often implement both roles. Unlike
 intermediaries, however, they can take the initiative as a client
 (e.g., to register with a directory, such as CoRE Resource Directory
 [I-D.ietf-core-resource-directory], or to interact with another
 thing) and act as origin server at the same time (e.g., to serve
 sensor values or provide an actuator interface).

 ________ _________
 | | | |
 | Thing (C)-------------------------------------(S) Origin |
 | (S) | Server |
 |________| \ |_________|
 (Sensor) \ ________ (Resource Directory)
 \ | |
 (C) Thing |
 |________|
 (Controller)

 Figure 4: Constrained RESTful environments

Keranen, et al. Expires March 18, 2018 [Page 7]

Internet-Draft RESTful Design for IoT Systems September 2017

3.2. System design

 When designing a RESTful system, the primary effort goes into
 modeling the state of the distributed application and assigning it to
 the different components (i.e., clients and servers). How clients
 can navigate through the resources and modify state to achieve their
 goals is defined through hypermedia controls, that is, links and
 forms. Hypermedia controls span a kind of a state machine where the
 nodes are resources and the transitions are links or forms. Clients
 run this state machine (i.e., the application) by retrieving
 representations, processing the data, and following the included
 hypermedia controls. In REST, remote state is changed by submitting
 forms. This is usually done by retrieving the current state,
 modifying the state on the client side, and transferring the new
 state to the server in the form of new representations - rather than
 calling a service and modifying the state on the server side.

 Client state encompasses the current state of the described state
 machine and the possible next transitions derived from the hypermedia
 controls within the currently processed representation (see
 Section 2). Furthermore, clients can have part of the state of the
 distributed application in local variables.

 Resource state includes the more persistent data of an application
 (i.e., independent of individual clients). This can be static data
 such as device descriptions, persistent data such as system
 configurations, but also dynamic data such as the current value of a
 sensor on a thing.

 It is important to distinguish between "client state" and "resource
 state" and keep them separate. Following the Stateless constraint,
 the client state must be kept only on clients. That is, there is no
 establishment of shared information about past and future
 interactions between client and server (usually called a session).
 On the one hand, this makes requests a bit more verbose since every
 request must contain all the information necessary to process it. On
 the other hand, this makes servers efficient and scalable, since they
 do not have to keep any state about their clients. Requests can
 easily be distributed over multiple worker threads or server
 instances. For IoT systems, this constraint lowers the memory
 requirements for server implementations, which is particularly
 important for constrained servers (e.g., sensor nodes) and servers
 serving large amount of clients (e.g., Resource Directory).

Keranen, et al. Expires March 18, 2018 [Page 8]

Internet-Draft RESTful Design for IoT Systems September 2017

3.3. Uniform Resource Identifiers (URIs)

 An important part of RESTful API design is to model the system as a
 set of resources whose state can be retrieved and/or modified and
 where resources can be potentially also created and/or deleted.

 Uniform Resource Identifiers (URIs) are used to indicate a resource
 for interaction, to reference a resource from another resource, to
 advertise or bookmark a resource, or to index a resource by search
 engines.

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
 scheme authority path query fragment

 A URI is a sequence of characters that matches the syntax defined in
 [RFC3986]. It consists of a hierarchical sequence of five
 components: scheme, authority, path, query, and fragment (from most
 significant to least significant). A scheme creates a namespace for
 resources and defines how the following components identify a
 resource within that namespace. The authority identifies an entity
 that governs part of the namespace, such as the server
 "www.example.org" in the "http" scheme. A host name (e.g., a fully
 qualified domain name) or an IP address, potentially followed by a
 transport layer port number, are usually used in the authority
 component for the "http" and "coap" schemes. The path and query
 contain data to identify a resource within the scope of the URI’s
 scheme and naming authority. The fragment allows to refer to some
 portion of the resource, such as a Record in a SenML Pack. However,
 fragments are processed only at client side and not sent on the wire.
 [RFC7320] provides more details on URI design and ownership with best
 current practices for establishing URI structures, conventions, and
 formats.

 For RESTful IoT applications, typical schemes include "https",
 "coaps", "http", and "coap". These refer to HTTP and CoAP, with and
 without Transport Layer Security (TLS) [RFC5246]. (CoAP uses
 Datagram TLS (DTLS) [RFC6347], the variant of TLS for UDP.) These
 four schemes also provide means for locating the resource; using the
 HTTP protocol for "http" and "https", and with the CoAP protocol for
 "coap" and "coaps". If the scheme is different for two URIs (e.g.,
 "coap" vs. "coaps"), it is important to note that even if the rest of
 the URI is identical, these are two different resources, in two
 distinct namespaces.

 The query parameters can be used to parametrize the resource. For
 example, a GET request may use query parameters to request the server

Keranen, et al. Expires March 18, 2018 [Page 9]

Internet-Draft RESTful Design for IoT Systems September 2017

 to send only certain kind data of the resource (i.e., filtering the
 response). Query parameters in PUT and POST requests do not have
 such established semantics and are not commonly used. Whether the
 order of the query parameters matters in URIs is unspecified and they
 can be re-ordered e.g., by proxies. Therefore applications should
 not rely on their order; see Section 3.3 of [RFC6943] for more
 details.

3.4. Representations

 Clients can retrieve the resource state from an origin server or
 manipulate resource state on the origin server by transferring
 resource representations. Resource representations have a media type
 that tells how the representation should be interpreted by
 identifying the representation format used.

 Typical media types for IoT systems include:

 o "text/plain" for simple UTF-8 text

 o "application/octet-stream" for arbitrary binary data

 o "application/json" for the JSON format [RFC7159]

 o "application/senml+json" [I-D.ietf-core-senml] for Sensor Markup
 Language (SenML) formatted data

 o "application/cbor" for CBOR [RFC7049]

 o "application/exi" for EXI [W3C.REC-exi-20110310]

 A full list of registered Internet Media Types is available at the
 IANA registry [IANA-media-types] and numerical media types registered
 for use with CoAP are listed at CoAP Content-Formats IANA registry
 [IANA-CoAP-media].

3.5. HTTP/CoAP Methods

 Section 4.3 of [RFC7231] defines the set of methods in HTTP;
 Section 5.8 of [RFC7252] defines the set of methods in CoAP. As part
 of the Uniform Interface constraint, each method can have certain
 properties that give guarantees to clients.

 Safe methods do not cause any state change on the origin server when
 applied to a resource. For example, the GET method only returns a
 representation of the resource state but does not change the
 resource. Thus, it is always safe for a client to retrieve a
 representation without affecting server-side state.

Keranen, et al. Expires March 18, 2018 [Page 10]

Internet-Draft RESTful Design for IoT Systems September 2017

 Idempotent methods can be applied multiple times to the same resource
 while causing the same visible resource state as a single such
 request. For example, the PUT method replaces the state of a
 resource with a new state; replacing the state multiple times with
 the same new state still results in the same state for the resource.
 However, the response from the server can be different when the same
 idempotent method is used multiple times. For example when DELETE is
 used twice on an existing resource, the first request would remove
 the association and return success acknowledgement whereas the second
 request would likely result in error response due to non-existing
 resource.

 The following lists the most relevant methods and gives a short
 explanation of their semantics.

3.5.1. GET

 The GET method requests a current representation for the target
 resource, while the origin server must ensure that there are no side-
 effects on the resource state. Only the origin server needs to know
 how each of its resource identifiers corresponds to an implementation
 and how each implementation manages to select and send a current
 representation of the target resource in a response to GET.

 A payload within a GET request message has no defined semantics.

 The GET method is safe and idempotent.

3.5.2. POST

 The POST method requests that the target resource process the
 representation enclosed in the request according to the resource’s
 own specific semantics.

 If one or more resources has been created on the origin server as a
 result of successfully processing a POST request, the origin server
 sends a 201 (Created) response containing a Location header field
 (with HTTP) or Location-Path and/or Location-Query Options (with
 CoAP) that provide an identifier for the resource created. The
 server also includes a representation that describes the status of
 the request while referring to the new resource(s).

 The POST method is not safe nor idempotent.

Keranen, et al. Expires March 18, 2018 [Page 11]

Internet-Draft RESTful Design for IoT Systems September 2017

3.5.3. PUT

 The PUT method requests that the state of the target resource be
 created or replaced with the state defined by the representation
 enclosed in the request message payload. A successful PUT of a given
 representation would suggest that a subsequent GET on that same
 target resource will result in an equivalent representation being
 sent.

 The fundamental difference between the POST and PUT methods is
 highlighted by the different intent for the enclosed representation.
 The target resource in a POST request is intended to handle the
 enclosed representation according to the resource’s own semantics,
 whereas the enclosed representation in a PUT request is defined as
 replacing the state of the target resource. Hence, the intent of PUT
 is idempotent and visible to intermediaries, even though the exact
 effect is only known by the origin server.

 The PUT method is not safe, but is idempotent.

3.5.4. DELETE

 The DELETE method requests that the origin server remove the
 association between the target resource and its current
 functionality.

 If the target resource has one or more current representations, they
 might or might not be destroyed by the origin server, and the
 associated storage might or might not be reclaimed, depending
 entirely on the nature of the resource and its implementation by the
 origin server.

 The DELETE method is not safe, but is idempotent.

3.6. HTTP/CoAP Status/Response Codes

 Section 6 of [RFC7231] defines a set of Status Codes in HTTP that are
 used by application to indicate whether a request was understood and
 satisfied, and how to interpret the answer. Similarly, Section 5.9
 of [RFC7252] defines the set of Response Codes in CoAP.

 The status codes consist of three digits (e.g., "404" with HTTP or
 "4.04" with CoAP) where the first digit expresses the class of the
 code. Implementations do not need to understand all status codes,
 but the class of the code must be understood. Codes starting with 1
 are informational; the request was received and being processed.
 Codes starting with 2 indicate a successful request. Codes starting
 with 3 indicate redirection; further action is needed to complete the

Keranen, et al. Expires March 18, 2018 [Page 12]

Internet-Draft RESTful Design for IoT Systems September 2017

 request. Codes stating with 4 and 5 indicate errors. The codes
 starting with 4 mean client error (e.g., bad syntax in the request)
 whereas codes starting with 5 mean server error; there was no
 apparent problem with the request, but server was not able to fulfill
 the request.

 Responses may be stored in a cache to satisfy future, equivalent
 requests. HTTP and CoAP use two different patterns to decide what
 responses are cacheable. In HTTP, the cacheability of a response
 depends on the request method (e.g., responses returned in reply to a
 GET request are cacheable). In CoAP, the cacheability of a response
 depends on the response code (e.g., responses with code 2.04 are
 cacheable). This difference also leads to slightly different
 semantics for the codes starting with 2; for example, CoAP does not
 have a 2.00 response code whereas 200 ("OK") is commonly used with
 HTTP.

4. REST Constraints

 The REST architectural style defines a set of constraints for the
 system design. When all constraints are applied correctly, REST
 enables architectural properties of key interest [REST]:

 o Performance

 o Scalability

 o Reliability

 o Simplicity

 o Modifiability

 o Visibility

 o Portability

 The following sub-sections briefly summarize the REST constraints and
 explain how they enable the listed properties.

4.1. Client-Server

 As explained in the Architecture section, RESTful system components
 have clear roles in every interaction. Clients have the initiative
 to issue requests, intermediaries can only forward requests, and
 servers respond requests, while origin servers are the ultimate
 recipient of requests that intent to modify resource state.

Keranen, et al. Expires March 18, 2018 [Page 13]

Internet-Draft RESTful Design for IoT Systems September 2017

 This improves simplicity and visibility, as it is clear which
 component started an interaction. Furthermore, it improves
 modifiability through a clear separation of concerns.

4.2. Stateless

 The Stateless constraint requires messages to be self-contained.
 They must contain all the information to process it, independent from
 previous messages. This allows to strictly separate the client state
 from the resource state.

 This improves scalability and reliability, since servers or worker
 threads can be replicated. It also improves visibility because
 message traces contain all the information to understand the logged
 interactions.

 Furthermore, the Stateless constraint enables caching.

4.3. Cache

 This constraint requires responses to have implicit or explicit
 cache-control metadata. This enables clients and intermediary to
 store responses and re-use them to locally answer future requests.
 The cache-control metadata is necessary to decide whether the
 information in the cached response is still fresh or stale and needs
 to be discarded.

 Cache improves performance, as less data needs to be transferred and
 response times can be reduced significantly. Less transfers also
 improves scalability, as origin servers can be protected from too
 many requests. Local caches furthermore improve reliability, since
 requests can be answered even if the origin server is temporarily not
 available.

4.4. Uniform Interface

 All RESTful APIs use the same, uniform interface independent of the
 application. This simple interaction model is enabled by exchanging
 representations and modifying state locally, which simplifies the
 interface between clients and servers to a small set of methods to
 retrieve, update, and delete state - which applies to all
 applications.

 In contrast, in a service-oriented RPC approach, all required ways to
 modify state need to be modeled explicitly in the interface resulting
 in a large set of methods - which differs from application to
 application. Moreover, it is also likely that different parties come
 up with different ways how to modify state, including the naming of

Keranen, et al. Expires March 18, 2018 [Page 14]

Internet-Draft RESTful Design for IoT Systems September 2017

 the procedures, while the state within an application is a bit easier
 to agree on.

 A REST interface is fully defined by:

 o URIs to identify resources

 o representation formats to represent (and retrieve and manipulate)
 resource state

 o self-descriptive messages with a standard set of methods (e.g.,
 GET, POST, PUT, DELETE with their guaranteed properties)

 o hypermedia controls within representations

 The concept of hypermedia controls is also known as HATEOAS:
 Hypermedia As The Engine Of Application State. The origin server
 embeds controls for the interface into its representations and
 thereby informs the client about possible next requests. The mostly
 used control for RESTful systems is Web Linking [RFC5590].
 Hypermedia forms are more powerful controls that describe how to
 construct more complex requests, including representations to modify
 resource state.

 While this is the most complex constraints (in particular the
 hypermedia controls), it improves many different key properties. It
 improves simplicity, as uniform interfaces are easier to understand.
 The self-descriptive messages improve visibility. The limitation to
 a known set of representation formats fosters portability. Most of
 all, however, this constraint is the key to modifiability, as
 hypermedia-driven, uniform interfaces allow clients and servers to
 evolve independently, and hence enable a system to evolve.

4.5. Layered System

 This constraint enforces that a client cannot see beyond the server
 with which it is interacting.

 A layered system is easier to modify, as topology changes become
 transparent. Furthermore, this helps scalability, as intermediaries
 such as load balancers can be introduced without changing the client
 side. The clean separation of concerns helps with simplicity.

4.6. Code-on-Demand

 This principle enables origin servers to ship code to clients.

Keranen, et al. Expires March 18, 2018 [Page 15]

Internet-Draft RESTful Design for IoT Systems September 2017

 Code-on-Demand improves modifiability, since new features can be
 deployed during runtime (e.g., support for a new representation
 format). It also improves performance, as the server can provide
 code for local pre-processing before transferring the data.

5. Hypermedia-driven Applications

 Hypermedia-driven applications take advantage of hypermedia controls,
 i.e., links and forms, embedded in the resource representations. A
 hypermedia client is a client that is capable of processing these
 hypermedia controls. Hypermedia links can be used to give additional
 information about a resource representation (e.g., the source URI of
 the representation) or pointing to other resources. The forms can be
 used to describe the structure of the data that can be sent (e.g.,
 with a POST or PUT method) to a server, or how a data retrieval
 (e.g., GET) request for a resource should be formed. In a
 hypermedia-driven application the client interacts with the server
 using only the hypermedia controls, instead of selecting methods and/
 or constructing URIs based on out-of-band information, such as API
 documentation.

5.1. Motivation

 The advantage of this approach is increased evolvability and
 extensibility. This is important in scenarios where servers exhibit
 a range of feature variations, where it’s expensive to keep evolving
 client knowledge and server knowledge in sync all the time, or where
 there are many different client and server implementations.
 Hypermedia controls serve as indicators in capability negotiation.
 In particular, they describe available resources and possible
 operations on these resources using links and forms, respectively.

 There are multiple reasons why a server might introduce new links or
 forms:

 o The server implements a newer version of the application. Older
 clients ignore the new links and forms, while newer clients are
 able to take advantage of the new features by following the new
 links and submitting the new forms.

 o The server offers links and forms depending on the current state.
 The server can tell the client which operations are currently
 valid and thus help the client navigate the application state
 machine. The client does not have to have knowledge which
 operations are allowed in the current state or make a request just
 to find out that the operation is not valid.

Keranen, et al. Expires March 18, 2018 [Page 16]

Internet-Draft RESTful Design for IoT Systems September 2017

 o The server offers links and forms depending on the client’s access
 control rights. If the client is unauthorized to perform a
 certain operation, then the server can simply omit the links and
 forms for that operation.

5.2. Knowledge

 A client needs to have knowledge of a couple of things for successful
 interaction with a server. This includes what resources are
 available, what representations of resource states are available,
 what each representation describes, how to retrieve a representation,
 what state changing operations on a resource are possible, how to
 perform these operations, and so on.

 Some part of this knowledge, such as how to retrieve the
 representation of a resource state, is typically hard-coded in the
 client software. For other parts, a choice can often be made between
 hard-coding the knowledge or acquiring it on-demand. The key to
 success in either case is the use in-band information for identifying
 the knowledge that is required. This enables the client to verify
 that is has all required knowledge and to acquire missing knowledge
 on-demand.

 A hypermedia-driven application typically uses the following
 identifiers:

 o URI schemes that identify communication protocols,

 o Internet Media Types that identify representation formats,

 o link relation types or resource types that identify link
 semantics,

 o form relation types that identify form semantics,

 o variable names that identify the semantics of variables in
 templated links, and

 o form field names that identify the semantics of form fields in
 forms.

 The knowledge about these identifiers as well as matching
 implementations have to be shared a priori in a RESTful system.

Keranen, et al. Expires March 18, 2018 [Page 17]

Internet-Draft RESTful Design for IoT Systems September 2017

5.3. Interaction

 A client begins interacting with an application through a GET request
 on an entry point URI. The entry point URI is the only URI a client
 is expected to know before interacting with an application. From
 there, the client is expected to make all requests by following links
 and submitting forms that are provided in previous responses. The
 entry point URI can be obtained, for example, by manual configuration
 or some discovery process (e.g., DNS-SD [RFC6763] or Resource
 Directory [I-D.ietf-core-resource-directory]). For Constrained
 RESTful environments "/.well-known/core" relative URI is defined as a
 default entry point for requesting the links hosted by servers with
 known or discovered addresses [RFC6690].

6. Design Patterns

 Certain kinds of design problems are often recurring in variety of
 domains, and often re-usable design patterns can be applied to them.
 Also some interactions with a RESTful IoT system are straightforward
 to design; a classic example of reading a temperature from a
 thermometer device is almost always implemented as a GET request to a
 resource that represents the current value of the thermometer.
 However, certain interactions, for example data conversions or event
 handling, do not have as straightforward and well established ways to
 represent the logic with resources and REST methods.

 The following sections describe how common design problems such as
 different interactions can be modeled with REST and what are the
 benefits of different approaches.

6.1. Collections

 A common pattern in RESTful systems across different domains is the
 collection. A collection can be used to combine multiple resources
 together by providing resources that consist of set of (often
 partial) representations of resources, called items, and links to
 resources. The collection resource also defines hypermedia controls
 for managing and searching the items in the collection.

 Examples of the collection pattern in RESTful IoT systems are the
 CoRE Resource Directory [I-D.ietf-core-resource-directory], CoAP pub/
 sub broker [I-D.ietf-core-coap-pubsub], and resource discovery via
 ".well-known/core". Collection+JSON [CollectionJSON] is an example
 of a generic collection Media Type.

Keranen, et al. Expires March 18, 2018 [Page 18]

Internet-Draft RESTful Design for IoT Systems September 2017

6.2. Calling a Procedure

 To modify resource state, clients usually use GET to retrieve a
 representation from the server, modify that locally, and transfer the
 resulting state back to the server with a PUT (see Section 4.4).
 Sometimes, however, the state can only be modified on the server
 side, for instance, because representations would be too large to
 transfer or part of the required information shall not be accessible
 to clients. In this case, resource state is modified by calling a
 procedure (or "function"). This is usually modeled with a POST
 request, as this method leaves the behavior semantics completely to
 the server. Procedure calls can be divided into two different
 classes based on how long they are expected to execute: "instantly"
 returning and long-running.

6.2.1. Instantly Returning Procedures

 When the procedure can return within the expected response time of
 the system, the result can be directly returned in the response. The
 result can either be actual content or just a confirmation that the
 call was successful. In either case, the response does not contain a
 representation of the resource, but a so-called action result.
 Action results can still have hypermedia controls to provide the
 possible transitions in the application state machine.

6.2.2. Long-running Procedures

 When the procedure takes longer than the expected response time of
 the system, or even longer than the response timeout, it is a good
 pattern to create a new resource to track the "task" execution. The
 server would respond instantly with a "Created" status (HTTP code 201
 or CoAP 2.01) and indicate the location of the task resource in the
 corresponding header field (or CoAP option) or as a link in the
 action result. The created resource can be used to monitor the
 progress, to potentially modify queued tasks or cancel tasks, and to
 eventually retrieve the result.

 Monitoring information would be modeled as state of the task
 resource, and hence be retrievable as representation. The result -
 when available - can be embedded in the representation or given as a
 link to another sub-resource. Modifying tasks can be modeled with
 forms that either update sub-resources via PUT or do a partial write
 using PATCH or POST. Canceling a task would be modeled with a form
 that uses DELETE to remove the task resource.

Keranen, et al. Expires March 18, 2018 [Page 19]

Internet-Draft RESTful Design for IoT Systems September 2017

6.2.3. Conversion

 A conversion service is a good example where REST resources need to
 behave more like a procedure call. The knowledge of converting from
 one representation to another is located only at the server to
 relieve clients from high processing or storing lots of data. There
 are different approaches that all depend on the particular conversion
 problem.

 As mentioned in the previous sections, POST request are a good way to
 model functionality that does not necessarily affect resource state.
 When the input data for the conversion is small and the conversion
 result is deterministic, however, it can be better to use a GET
 request with the input data in the URI query part. The query is
 parameterizing the conversion resource, so that it acts like a look-
 up table. The benefit is that results can be cached also for HTTP
 (where responses to POST are not cacheable). In CoAP, cacheability
 depends on the response code, so that also a response to a POST
 request can be made cacheable through a 2.05 Content code.

 When the input data is large or has a binary encoding, it is better
 to use POST requests with a proper Media Type for the input
 representation. A POST request is also more suitable, when the
 result is time-dependent and the latest result is expected (e.g.,
 exchange rates).

6.2.4. Events as State

 In event-centric paradigms such as pub/sub, events are usually
 represented by an incoming message that might even be identical for
 each occurrence. Since the messages are queued, the receiver is
 aware of each occurrence of the event and can react accordingly. For
 instance, in an event-centric system, ringing a door bell would
 result in a message being sent that represents the event that it was
 rung.

 In resource-oriented paradigms such as REST, messages usually carry
 the current state of the remote resource, independent from the
 changes (i.e., events) that have lead to that state. In a naive yet
 natural design, a door bell could be modeled as a resource that can
 have the states unpressed and pressed. There are, however, a few
 issues with this approach. Polling is not an option, as it is highly
 unlikely to be able to observe the pressed state with any realistic
 polling interval. When using CoAP Observe with Confirmable
 notifications, the server will usually send two notifications for the
 event that the door bell was pressed: notification for changing from
 unpressed to pressed and another one for changing back to unpressed.
 If the time between the state changes is very short, the server might

Keranen, et al. Expires March 18, 2018 [Page 20]

Internet-Draft RESTful Design for IoT Systems September 2017

 drop the first notification, as Observe only guarantees only eventual
 consistency (see Section 1.3 of [RFC7641]).

 The solution is to pick a state model that fits better to the
 application. In the case of the door bell - and many other event-
 driven resources - the solution could be a counter that counts how
 often the bell was pressed. The corresponding action is taken each
 time the client observes a change in the received representation.

 In the case of a network outage, this could lead to a ringing sound
 10 minutes after the bell was rung. Also including a timestamp of
 the last counter increment in the state can help to suppress ringing
 a sound when the event has become obsolete.

6.3. Server Push

 Overall, a universal mechanism for server push, that is, change-of-
 state notifications and stand-alone event notifications, is still an
 open issue that is being discussed in the Thing-to-Thing Research
 Group. It is connected to the state-event duality problem and
 custody transfer, that is, the transfer of the responsibility that a
 message (e.g., event) is delivered successfully.

 A proficient mechanism for change-of-state notifications is currently
 only available for CoAP: Observing resources [RFC7641]. It offers
 enventual consistency, which guarantees "that if the resource does
 not undergo a new change in state, eventually all registered
 observers will have a current representation of the latest resource
 state". It intrinsically deals with the challenges of lossy
 networks, where notifications might be lost, and constrained
 networks, where there might not be enough bandwidth to propagate all
 changes.

 For stand-alone event notifications, that is, where every single
 notification contains an identifiable event that must not be lost,
 observing resources is not a good fit. A better strategy is to model
 each event as a new resource, whose existence is notified through
 change-of-state notifications of an index resource (cf. Collection
 pattern). Large numbers of events will cause the notification to
 grow large, as it needs to contain a large number of Web links.
 Blockwise transfers [RFC7959] can help here. When the links are
 ordered by freshness of the events, the first block can already
 contain all links to new events. Then, observers do not need to
 retrieve the remaining blocks from the server, but only the
 representations of the new event resources.

 An alternative pattern is to exploit the dual roles of IoT devices,
 in particular when using CoAP: they are usually client and server at

Keranen, et al. Expires March 18, 2018 [Page 21]

Internet-Draft RESTful Design for IoT Systems September 2017

 the same time. A client observer would subscribe to events by
 registering a callback URI at the origin server, e.g., using a POST
 request and receiving the location of a temporary subscription
 resource as handle. The origin server would then publish events by
 sending POST requests containing the event to the observer. The
 cancellation can be modeled through deleting the subscription
 resource. This pattern makes the origin server responsible for
 delivering the event notifications. This goes beyond retransmissions
 of messages; the origin server is usually supposed to queue all
 undelivered events and to retry until successful delivery or explicit
 cancellation. In HTTP, this pattern is known as REST Hooks.

 In HTTP, there exist a number of workarounds to enable server push,
 e.g., long polling and streaming [RFC6202] or server-sent events
 [W3C.REC-html5-20141028]. Long polling as an extension that both
 server and client need to be aware of. In IoT systems, long polling
 can introduce a considerable overhead, as the request has to be
 repeated for each notification. Streaming and server-sent events (in
 fact an evolved version of streaming) are more efficient, as only one
 request is sent. However, there is only one response header and
 subsequent notifications can only have content. There are no means
 for individual status and metadata, and hence no means for proficient
 error handling (e.g., when the resource is deleted).

7. Security Considerations

 This document does not define new functionality and therefore does
 not introduce new security concerns. We assume that system designers
 apply classic Web security on top of the basic RESTful guidance given
 in this document. Thus, security protocols and considerations from
 related specifications apply to RESTful IoT design. These include:

 o Transport Layer Security (TLS): [RFC5246] and [RFC6347]

 o Internet X.509 Public Key Infrastructure: [RFC5280]

 o HTTP security: Section 9 of [RFC7230], Section 9 of [RFC7231],
 etc.

 o CoAP security: Section 11 of [RFC7252]

 o URI security: Section 7 of [RFC3986]

 IoT-specific security is mainly work in progress at the time of
 writing. First specifications include:

 o (D)TLS Profiles for the Internet of Things: [RFC7925]

Keranen, et al. Expires March 18, 2018 [Page 22]

Internet-Draft RESTful Design for IoT Systems September 2017

 Further IoT security considerations are available in
 [I-D.irtf-t2trg-iot-seccons].

8. Acknowledgement

 The authors would like to thank Mert Ocak, Heidi-Maria Back, Tero
 Kauppinen, Michael Koster, Robby Simpson, Ravi Subramaniam, Dave
 Thaler, Erik Wilde, and Niklas Widell for the reviews and feedback.

9. References

9.1. Normative References

 [I-D.ietf-core-object-security]
 Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security of CoAP (OSCOAP)", draft-ietf-core-
 object-security-04 (work in progress), July 2017.

 [I-D.ietf-core-resource-directory]
 Shelby, Z., Koster, M., Bormann, C., Stok, P., and C.
 Amsuess, "CoRE Resource Directory", draft-ietf-core-
 resource-directory-11 (work in progress), July 2017.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine , 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-
 editor.org/info/rfc5246>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5590] Harrington, D. and J. Schoenwaelder, "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)",
 STD 78, RFC 5590, DOI 10.17487/RFC5590, June 2009,
 <https://www.rfc-editor.org/info/rfc5590>.

Keranen, et al. Expires March 18, 2018 [Page 23]

Internet-Draft RESTful Design for IoT Systems September 2017

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988,
 DOI 10.17487/RFC5988, October 2010, <https://www.rfc-
 editor.org/info/rfc5988>.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 DOI 10.17487/RFC6202, April 2011, <https://www.rfc-
 editor.org/info/rfc6202>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-
 editor.org/info/rfc7231>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015, <https://www.rfc-
 editor.org/info/rfc7641>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016, <https://www.rfc-
 editor.org/info/rfc7959>.

 [W3C.REC-exi-20110310]
 Schneider, J. and T. Kamiya, "Efficient XML Interchange
 (EXI) Format 1.0", World Wide Web Consortium
 Recommendation REC-exi-20110310, March 2011,
 <http://www.w3.org/TR/2011/REC-exi-20110310>.

Keranen, et al. Expires March 18, 2018 [Page 24]

Internet-Draft RESTful Design for IoT Systems September 2017

 [W3C.REC-html5-20141028]
 Hickson, I., Berjon, R., Faulkner, S., Leithead, T.,
 Navara, E., O'Connor, T., and S. Pfeiffer, "HTML5",
 World Wide Web Consortium Recommendation REC-
 html5-20141028, October 2014,
 <http://www.w3.org/TR/2014/REC-html5-20141028>.

9.2. Informative References

 [CollectionJSON]
 Amundsen, M., "Collection+JSON - Document Format",
 February 2013,
 <http://amundsen.com/media-types/collection/format/>.

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-02 (work in
 progress), July 2017.

 [I-D.ietf-core-senml]
 Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.
 Bormann, "Media Types for Sensor Measurement Lists
 (SenML)", draft-ietf-core-senml-10 (work in progress),
 July 2017.

 [I-D.irtf-t2trg-iot-seccons]
 Garcia-Morchon, O., Kumar, S., and M. Sethi, "State-of-
 the-Art and Challenges for the Internet of Things
 Security", draft-irtf-t2trg-iot-seccons-05 (work in
 progress), September 2017.

 [IANA-CoAP-media]
 "CoAP Content-Formats", n.d.,
 <http://www.iana.org/assignments/core-parameters/
 core-parameters.xhtml#content-formats>.

 [IANA-media-types]
 "Media Types", n.d., <http://www.iana.org/assignments/
 media-types/media-types.xhtml>.

 [RFC6763] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", RFC 6763, DOI 10.17487/RFC6763, February 2013,
 <https://www.rfc-editor.org/info/rfc6763>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/info/rfc6943>.

Keranen, et al. Expires March 18, 2018 [Page 25]

Internet-Draft RESTful Design for IoT Systems September 2017

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014, <https://www.rfc-
 editor.org/info/rfc7228>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014, <https://www.rfc-
 editor.org/info/rfc7252>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 7320, DOI 10.17487/RFC7320, July 2014,
 <https://www.rfc-editor.org/info/rfc7320>.

 [RFC7925] Tschofenig, H., Ed. and T. Fossati, "Transport Layer
 Security (TLS) / Datagram Transport Layer Security (DTLS)
 Profiles for the Internet of Things", RFC 7925,
 DOI 10.17487/RFC7925, July 2016, <https://www.rfc-
 editor.org/info/rfc7925>.

Appendix A. Future Work

 o Interface semantics: shared knowledge among system components (URI
 schemes, media types, relation types, well-known locations; see
 core-apps)

 o Unreliable (best effort) communication, robust communication in
 network with high packet loss, 3-way commit

 o Discuss directories, such as CoAP Resource Directory

 o More information on how to design resources; choosing what is
 modeled as a resource, etc.

Authors’ Addresses

 Ari Keranen
 Ericsson
 Jorvas 02420
 Finland

 Email: ari.keranen@ericsson.com

Keranen, et al. Expires March 18, 2018 [Page 26]

Internet-Draft RESTful Design for IoT Systems September 2017

 Matthias Kovatsch
 ETH Zurich
 Universitaetstrasse 6
 Zurich CH-8092
 Switzerland

 Email: kovatsch@inf.ethz.ch

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Email: hartke@tzi.org

Keranen, et al. Expires March 18, 2018 [Page 27]

