
Thing-to-Thing Research Group K. Hartke

Internet-Draft Ericsson

Intended status: Informational October 22, 2018

Expires: April 25, 2019

 CoRE Applications

 draft-hartke-core-apps-08

Abstract

 The application programmable interfaces of RESTful, hypermedia-driven

 Web applications consist of a number of reusable components such as

 Internet media types and link relation types. This document proposes

 "CoRE Applications", a convention for application designers to build

 the interfaces of their applications in a structured way, so that

 implementers can easily build interoperable clients and servers, and

 other designers can reuse the components in their own applications.

Note to Readers

 This Internet-Draft should be discussed on the Thing-to-Thing

 Research Group (T2TRG) mailing list <t2trg@irtf.org>

 <https://www.irtf.org/mailman/listinfo/t2trg>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Hartke Expires April 25, 2019 [Page 1]

Internet-Draft CoRE Applications October 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. CoRE Applications . 3

 2.1. Communication Protocols 4

 2.1.1. URI Schemes . 4

 2.2. Representation Formats 5

 2.2.1. Internet Media Types 5

 2.3. Links . 7

 2.3.1. Link Relation Types 8

 2.3.2. Template Variable Names 8

 2.4. Forms . 8

 2.4.1. Form Relation Types 9

 2.4.2. Form Field Names 9

 2.5. Well-Known Locations 10

 3. CoRE Application Descriptions 10

 3.1. Template . 11

 4. URI Design Considerations 12

 5. Security Considerations 14

 6. IANA Considerations . 14

 7. References . 14

 7.1. Normative References 14

 7.2. Informative References 15

 Acknowledgements . 16

 Author’s Address . 17

1. Introduction

 Representational State Transfer (REST) [16] is an architectural style

 for distributed hypermedia systems. Over the years, REST has gained

 popularity not only as an approach for large-scale information

 dissemination, but also as the basic principle for designing and

 building Internet-based applications in general.

 In the coming years, the size and scope of the Internet is expected

 to increase greatly as physical-world objects become smart enough to

 communicate over the Internet -- a phenomenon known as the Internet

 of Things (IoT). As things learn to speak the languages of the net,

Hartke Expires April 25, 2019 [Page 2]

Internet-Draft CoRE Applications October 2018

 the idea of applying REST principles to the design of IoT application

 architectures suggests itself. To this end, the Constrained

 Application Protocol (CoAP) [23] was created, an application-layer

 protocol that enables RESTful applications in constrained-node

 networks [10], giving rise to a new setting for Internet-based

 applications: the Constrained RESTful Environment (CoRE).

 To realize the full benefits and advantages of the REST architectural

 style, a set of constraints needs to be maintained when designing

 applications and their application programming interfaces (APIs).

 One of the fundamental principles of REST is that "REST APIs must be

 hypertext-driven" [17]. However, this principle is often ignored by

 application designers. Instead, APIs are specified out-of-band in

 terms of fixed URI patterns (e.g., in the API documentation or in a

 machine-readable format that facilitates code generation). Although

 this approach may appear easy for clients to use, the fixed resource

 names and data formats lead to a tight coupling between client and

 server implementations and make the system less flexible [5].

 Violations of REST design principles like this result in APIs that

 may not be as scalable, extensible, and interoperable as promised by

 REST.

 REST is intended for network-based applications that are long-lived

 and span multiple organizations [17]. Principled REST APIs require

 some design effort, since application designers do not only have to

 take current requirements into consideration, but also have to

 anticipate changes that may be required in the future -- years or

 even decades after the application has been deployed for the first

 time. The reward is long-term stability and evolvability, both of

 which are very desirable features in the Internet of Things.

 To aid application designers in the design process, this document

 proposes "CoRE Applications", a convention for building the APIs of

 RESTful, hypermedia-driven Web applications. The goal is to help

 application designers avoid common mistakes by focusing almost all of

 the descriptive effort on defining the Internet media type(s) that

 are used for representing resources and driving application state.

 A template for a "CoRE Application Description" provides a consistent

 format for the description of APIs so that implementers can easily

 build interoperable clients and servers, and other application

 designers can reuse the components in their own applications.

2. CoRE Applications

 A CoRE Application API is a named set of reusable components. It

 describes a contract between a server hosting an instance of the

Hartke Expires April 25, 2019 [Page 3]

Internet-Draft CoRE Applications October 2018

 described application and clients that wish to interface with that

 instance.

 The API is generally comprised of:

 o communication protocols, identified by URI schemes,

 o representation formats, identified by Internet media types,

 o link relation types,

 o form relation types,

 o template variables in templated links,

 o form field names in forms, and

 o well-known locations.

 Together, these components provide the specific, in-band instructions

 to a client for interfacing with a given application.

2.1. Communication Protocols

 The foundation of a hypermedia-driven REST API are the communication

 protocol(s) spoken between a client and a server. Although HTTP/1.1

 [14] is by far the most common communication protocol for REST APIs,

 a REST API should typically not be dependent on any specific

 communication protocol.

2.1.1. URI Schemes

 The usage of a particular protocol by a client is guided by URI

 schemes [7]. URI schemes specify the syntax and semantics of URI

 references [1] that the server includes in hypermedia controls such

 as links and forms.

 A URI scheme refers to a family of protocols, typically distinguished

 by a version number. For example, the "http" URI scheme refers to

 the two members of the HTTP family of protocols: HTTP/1.1 [14] and

 HTTP/2 [8] (as well as some predecessors). The specific HTTP version

 used is negotiated between a client and a server in-band using the

 version indicator in the HTTP request-line or the TLS Application-

 Layer Protocol Negotiation (ALPN) extension [18].

 IANA maintains a list of registered URI schemes at

 <http://www.iana.org/assignments/uri-schemes>.

Hartke Expires April 25, 2019 [Page 4]

Internet-Draft CoRE Applications October 2018

2.2. Representation Formats

 In RESTful applications, clients and servers exchange representations

 that capture the current or intended state of a resource and that are

 labeled with a media type. A representation is a sequence of bytes

 whose structure and semantics are specified by a representation

 format: a set of rules for encoding information.

 Representation formats should generally allow clients with different

 goals, so they can do different things with the same data. The

 specification of a representation format "describes a problem space,

 not a prescribed relationship between client and server. Client and

 server must share an understanding of the representations they’re

 passing back and forth, but they don’t need to have the same idea of

 what the problem is that needs to be solved." [21]

 Representation formats and their specifications frequently evolve

 over time. It is part of the responsibility of the designer of a new

 version to insure both forward and backward compatibility: new

 representations should work reasonably (with some fallback) with old

 processors and old representations should work reasonably with new

 processors [20].

 Representation formats enable hypermedia-driven applications when

 they support the expression of hypermedia controls such as links

 (Section 2.3) and forms (Section 2.4).

2.2.1. Internet Media Types

 One of the most important aspect of hypermedia-driven communications

 is the concept of Internet media types [2]. Media types are used to

 label representations so that it is known how the representation

 should be interpreted and how it is encoded. The centerpiece of a

 CoRE Application Description should be one or more media types.

 Note: The terms media type and representation format are often used

 interchangeably. In this document, the term "media type" refers

 specifically to a string of characters such as "application/xml"

 that is used to label representations; the term "representation

 format" refers to the definition of the syntax and semantics of

 representations, such as XML 1.0 [12] or XML 1.1 [13].

 A media type identifies a versioned series of representation formats

 (Section 2.2): a media type does not identify a particular version of

 a representation format; rather, the media type identifies the

 family, and includes provisions for version indicator(s) embedded in

 the representations themselves to determine more precisely the nature

Hartke Expires April 25, 2019 [Page 5]

Internet-Draft CoRE Applications October 2018

 of how the data is to be interpreted [20]. A new media type is only

 needed to designate a completely incompatible format [20].

 Media types consist of a top-level type and a subtype, structured

 into trees [2]. Optionally, media types can have parameters. For

 example, the media type "text/plain; charset=utf-8" is a subtype for

 plain text under the "text" top-level type in the standards tree and

 has a parameter "charset" with the value "utf-8".

 Media types can be further refined by

 o structured type name suffixes (e.g., "+xml" appended to the base

 subtype name; see Section 4.2.8 of RFC 6838 [2]),

 o a "profile" parameter (see Section 3.1 of RFC 6906 [24]),

 o subtype information embedded in the representations themselves

 (e.g., "xmlns" declarations in XML documents [11]),

 or a similar annotation. An annotation directly in the media type is

 generally preferable, since subtype information embedded in

 representations can typically not be negotiated during content

 negotiation (e.g., using the CoAP Accept option).

 In CoAP, media types are paired with a content coding [15] to

 indicate the "content format" [23] of a representation. Each content

 format is assigned a numeric identifier that can be used instead of

 the (more verbose) textual name of the media type in representation

 formats with size constraints. The flat number space loses the

 structural information that the textual names have, however.

 The media type of a representation must be determined from in-band

 information (e.g., from the CoAP Content-Format option). Clients

 must not assume a structure from the application context or other

 out-of-band information.

 IANA maintains a list of registered Internet media types at

 <http://www.iana.org/assignments/media-types>.

 IANA maintains a list of registered structured suffixes at

 <http://www.iana.org/assignments/media-type-structured-suffix>.

 IANA maintains a list of registered CoAP content formats at

 <http://www.iana.org/assignments/core-parameters>.

Hartke Expires April 25, 2019 [Page 6]

Internet-Draft CoRE Applications October 2018

2.3. Links

 As defined in RFC 8288 [6], a link is a typed connection between two

 resources. Additionally, a link is the primary means for a client to

 navigate from one resource to another.

 A link is comprised of:

 o a link context,

 o a link relation type that identifies the semantics of the link

 (see Section 2.3.1),

 o a link target, identified by a URI, and

 o optionally, target attributes that further describe the link or

 the link target.

 A link can be viewed as a statement of the form "{link context} has a

 {link relation type} resource at {link target}, which has {target

 attributes}" [6]. For example, the resource <http://example.com/>

 could have a "terms-of-service" resource at <http://example.com/tos>,

 which has a representation with the media type "text/html".

 There are two special kinds of links:

 o An embedding link is a link with an additional hint: when the link

 is processed, it should be substituted with the representation of

 the referenced resource rather than cause the client to navigate

 away from the current resource. Thus, traversing an embedding

 link adds to the current state rather than replacing it.

 The most well known example for an embedding link is the HTML

 element. When a Web browser processes this element, it

 automatically dereferences the "src" and renders the resulting

 image in place of the element.

 o A templated link is a link where the client constructs the link

 target URI from provided in-band instructions. The specific rules

 for such instructions are described by the representation format.

 URI Templates [3] provide a generic way to construct URIs through

 variable expansion.

 Templated links allow a client to construct resource URIs without

 being coupled to the resource structure at the server, provided

 that the client learns the template from a representation sent by

 the server and does not have the template hard-coded.

Hartke Expires April 25, 2019 [Page 7]

Internet-Draft CoRE Applications October 2018

2.3.1. Link Relation Types

 A link relation type identifies the semantics of a link [6]. For

 example, a link with the relation type "copyright" indicates that the

 resource identified by the target URI is a statement of the copyright

 terms applying to the link context.

 Relation types are not to be confused with media types; they do not

 identify the format of the representation that results when the link

 is dereferenced [6]. Rather, they only describe how the link context

 is related to another resource [6].

 IANA maintains a list of registered link relation types at

 <http://www.iana.org/assignments/link-relations>.

 Applications that don’t wish to register a link relation type can use

 an extension link relation type [6]: a URI that uniquely identifies

 the link relation type. For example, an application can use the

 string "http://example.com/foo" as link relation type without having

 to register it. Using a URI to identify an extension link relation

 type, rather than a simple string, reduces the probability of

 different link relation types using the same identifiers.

2.3.2. Template Variable Names

 A templated link enables clients to construct the target URI of a

 link, for example, when the link refers to a space of resources

 rather than a single resource. The most prominent mechanisms for

 this are URI Templates [3] and the HTML <form> element with a

 submission method of GET.

 To enable an automated client to construct an URI reference from a

 URI Template, the name of the variable in the template can be used to

 identify the semantics of the variable. For example, when retrieving

 the representation of a collection of temperature readings, a

 variable named "threshold" could indicate the variable for setting a

 threshold of the readings to retrieve.

 Template variable names are scoped to link relation types, i.e., two

 variables with the same name can have different semantics if they

 appear in links with different link relation types.

2.4. Forms

 A form is the primary means for a client to submit information to a

 server, typically in order to change resource state.

 A form is comprised of:

Hartke Expires April 25, 2019 [Page 8]

Internet-Draft CoRE Applications October 2018

 o a form context,

 o a form relation type that identifies the semantics of the form

 (see Section 2.4.1),

 o a request method (e.g., PUT, POST, DELETE),

 o a submission URI,

 o a description of a representation that the server expects as part

 of the form submission, and

 o optionally, target attributes that further describe the form or

 the form target.

 A form can be viewed as an instruction of the form "To perform a

 {form relation type} operation on {form context}, make a {request

 method} request to {submission URI}, which has {target attributes}".

 For example, to "update" the resource <http://example.com/config>, a

 client would make a PUT request to <http://example.com/config>. (In

 many cases, the target of a form is the same resource as the context,

 but this is not required.)

 The description of the expected representation can be a set of form

 fields (see Section 2.4.2) or simply a list of acceptable media

 types.

 Note: A form with a submission method of GET is, strictly speaking,

 a templated link, since it provides a way to construct a URI and

 does not submit a representation to the server.

2.4.1. Form Relation Types

 A form relation type identifies the semantics of a form. For

 example, a form with the form relation type "create" indicates that a

 new item can be created within the form context by making a request

 to the resource identified by the target URI.

 Similarly to extension link relation types, applications can use

 extension form relation types when they don’t wish to register a form

 relation type.

2.4.2. Form Field Names

 Forms can have a detailed description of the representation expected

 by the server as part of form submission. This description typically

 consists of a set of form fields where each form field is comprised

Hartke Expires April 25, 2019 [Page 9]

Internet-Draft CoRE Applications October 2018

 of a field name, a field type, and optionally a number of attributes

 such as a default value, a validation rule or a human-readable label.

 To enable an automated client to fill out a form, the field name can

 be used to identify the semantics of the form field. For example,

 when controlling a smart light bulb, the field name "brightness"

 could indicate the field for setting the desired brightness of the

 light bulb.

 Field names are scoped to form relation types, i.e., two form fields

 with the same name can have different semantics if they appear in

 forms with different form relation types.

 The type of a form field is a data type such as "an integer between 1

 and 100" or "an RGB color". The type is orthogonal to the field

 name, i.e., the type should not be determined from the field name

 even though the client can identify the semantics of the field from

 the name. This separation makes it easy to change the set of

 acceptable values in the future.

2.5. Well-Known Locations

 Some applications may require the discovery of information about a

 host, known as "site-wide metadata" in RFC 5785 [4]. For example,

 RFC 6415 [19] defines a metadata document format for describing a

 host; similarly, RFC 6690 [22] defines a link format for the

 discovery of resources hosted by a server.

 Applications that need to define a resource for this kind of metadata

 can register new "well-known locations". RFC 5785 [4] defines the

 path prefix "/.well-known/" in "http" and "https" URIs for this

 purpose. RFC 7252 [23] extends this convention to "coap" and "coaps"

 URIs.

 IANA maintains a list of registered well-known URIs at

 <http://www.iana.org/assignments/well-known-uris>.

3. CoRE Application Descriptions

 As applications are implemented and deployed, it becomes important to

 describe them in some structured way. This section provides a simple

 template for CoRE Application Descriptions. A uniform structure

 allows implementers to easily determine the components that make up

 the interface of an application.

 The template below lists all components of applications that both the

 client and the server implementation of the application need to

 understand in order to interoperate. Crucially, items not listed in

Hartke Expires April 25, 2019 [Page 10]

Internet-Draft CoRE Applications October 2018

 the template are not part of the contract between clients and servers

 -- they are implementation details. This includes in particular the

 URIs of resources (see Section 4).

 CoRE Application Descriptions are intended to be published in human-

 readable format by designers of applications and by operators of

 deployed application instances. Application designers may publish an

 application description as a general specification of all application

 instances, so that implementers can create interoperable clients and

 servers. Operators of application instances may publish an

 application description as part of the API documentation of the

 service, which should also include instructions how the service can

 be located and which communication protocols and security modes are

 used.

3.1. Template

 The fields of the template are as follows:

 Application name:

 Name of the application. The name is not used to negotiate

 capabilities; it is purely informational. A name may include a

 version number or, for example, refer to a living standard that is

 updated continuously.

 URI schemes:

 URI schemes identifying the communication protocols that need to

 be understood by clients and servers. This information is mostly

 relevant for deployed instances of the application rather than for

 the general specification of the application.

 Media types:

 Internet media types that identify the representation formats that

 need to be understood by clients and servers. An application

 description must comprise at least one media type. Additional

 media types may be required or optional.

 Link relation types:

 Link relation types that identify the semantics of links. An

 application description may comprise IANA-registered link relation

 types and extension link relation types. Both may be required or

 optional.

 Template variable names:

 For each link relation type, variable names that identify the

 semantics of variables in templated links with that link relation

 type. Whether a template variable is required or optional is

 indicated in-band inside the templated link.

Hartke Expires April 25, 2019 [Page 11]

Internet-Draft CoRE Applications October 2018

 Form relation types:

 Form relation types that identify the semantics of forms and, for

 each form relation type, the submission method(s) to be used. An

 application description may comprise IANA-registered form relation

 types and extension form relation types. Both may be required or

 optional.

 Form field names:

 For each form relation type, form field names that identify the

 semantics of form fields in forms with that form relation type.

 Whether a form field is required or optional is indicated in-band

 inside the form.

 Well-known locations:

 Well-known locations in the resource identifier space of servers

 that clients can use to discover information given the DNS name or

 IP address of a server.

 Interoperability considerations:

 Any issues regarding the interoperable use of the components of

 the application should be given here.

 Security considerations:

 Security considerations for the security of the application must

 be specified here.

 Contact:

 Person (including contact information) to contact for further

 information.

 Author/Change controller:

 Person (including contact information) authorized to change this

 application description.

 Each field should include full citations for all specifications

 necessary to understand the application components.

4. URI Design Considerations

 URIs [1] are a cornerstone of RESTful applications. They enable

 uniform identification of resources via URI schemes [7] and are used

 every time a client interacts with a particular resource or when a

 resource representation references another resource.

 URIs often include structured application data in the path and query

 components, such as paths in a filesystem or keys in a database. It

 is common for many RESTful applications to use these structures not

 only as an implementation detail but also make them part of the

Hartke Expires April 25, 2019 [Page 12]

Internet-Draft CoRE Applications October 2018

 public REST API, prescribing a fixed format for this data. However,

 there are a number of problems with this practice [5], in particular

 if the application designer and the server owner are not the same

 entity.

 In hypermedia-driven applications, URIs are therefore not included in

 the application interface. A CoRE Application Description must not

 mandate any particular form of URI substructure.

 RFC 7320 [5] describes the problematic practice of fixed URI

 structures in detail and provides some acceptable alternatives.

 Nevertheless, the design of the URI structure on a server is an

 essential part of implementing a RESTful application, even though it

 is not part of the application interface. The server implementer is

 responsible for binding the resources identified by the application

 designer to URIs.

 A good RESTful URI is:

 o Short. Short URIs are easier to remember and cause less overhead

 in requests and representations.

 o Meaningful. A URI should describe the resource in a way that is

 meaningful and useful to humans.

 o Consistent. URIs should follow a consistent pattern to make it

 easy to reason about the application.

 o Bookmarkable. Cool URIs don’t change [9]. However, in practice,

 application resource structures do change. That should cause URIs

 to change as well so they better reflect reality. Implementations

 should not depend on unchanging URIs.

 o Shareable. A URI should not be context sensitive, e.g., to the

 currently logged-in user. It should be possible to share a URI

 with third parties so they can access the same resource.

 o Extension-less. Some applications return different data for

 different extensions, e.g., for "contacts.xml" or "contacts.json".

 But different URIs imply different resources. RESTful URIs should

 identify a single resource. Different representations of the

 resource can be negotiated (e.g., using the CoAP Accept option).

Hartke Expires April 25, 2019 [Page 13]

Internet-Draft CoRE Applications October 2018

5. Security Considerations

 The security considerations of RFC 3986 [1], RFC 5785 [4], RFC 6570

 [3], RFC 6838 [2], RFC 7320 [5], RFC 7595 [7], and RFC 8288 [6] are

 inherited.

 All components of an application description are expected to contain

 clear security considerations. CoRE Application Descriptions should

 furthermore contain security considerations that need to be taken

 into account for the security of the overall application.

6. IANA Considerations

 This document has no IANA actions.

7. References

7.1. Normative References

 [1] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

 Resource Identifier (URI): Generic Syntax", STD 66,

 RFC 3986, DOI 10.17487/RFC3986, January 2005,

 <https://www.rfc-editor.org/info/rfc3986>.

 [2] Freed, N., Klensin, J., and T. Hansen, "Media Type

 Specifications and Registration Procedures", BCP 13,

 RFC 6838, DOI 10.17487/RFC6838, January 2013,

 <https://www.rfc-editor.org/info/rfc6838>.

 [3] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,

 and D. Orchard, "URI Template", RFC 6570,

 DOI 10.17487/RFC6570, March 2012,

 <https://www.rfc-editor.org/info/rfc6570>.

 [4] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known

 Uniform Resource Identifiers (URIs)", RFC 5785,

 DOI 10.17487/RFC5785, April 2010,

 <https://www.rfc-editor.org/info/rfc5785>.

 [5] Nottingham, M., "URI Design and Ownership", BCP 190,

 RFC 7320, DOI 10.17487/RFC7320, July 2014,

 <https://www.rfc-editor.org/info/rfc7320>.

 [6] Nottingham, M., "Web Linking", RFC 8288,

 DOI 10.17487/RFC8288, October 2017,

 <https://www.rfc-editor.org/info/rfc8288>.

Hartke Expires April 25, 2019 [Page 14]

Internet-Draft CoRE Applications October 2018

 [7] Thaler, D., Ed., Hansen, T., and T. Hardie, "Guidelines

 and Registration Procedures for URI Schemes", BCP 35,

 RFC 7595, DOI 10.17487/RFC7595, June 2015,

 <https://www.rfc-editor.org/info/rfc7595>.

7.2. Informative References

 [8] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015,

 <https://www.rfc-editor.org/info/rfc7540>.

 [9] Berners-Lee, T., "Cool URIs don’t change", 1998,

 <http://www.w3.org/Provider/Style/URI.html>.

 [10] Bormann, C., Ersue, M., and A. Keranen, "Terminology for

 Constrained-Node Networks", RFC 7228,

 DOI 10.17487/RFC7228, May 2014,

 <https://www.rfc-editor.org/info/rfc7228>.

 [11] Bray, T., Hollander, D., Layman, A., Tobin, R., and H.

 Thompson, "Namespaces in XML 1.0 (Third Edition)", World

 Wide Web Consortium Recommendation REC-xml-names-20091208,

 December 2009,

 <http://www.w3.org/TR/2009/REC-xml-names-20091208>.

 [12] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and

 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth

 Edition)", World Wide Web Consortium Recommendation REC-

 xml-20081126, November 2008,

 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [13] Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E.,

 Yergeau, F., and J. Cowan, "Extensible Markup Language

 (XML) 1.1 (Second Edition)", World Wide Web Consortium

 Recommendation REC-xml11-20060816, August 2006,

 <http://www.w3.org/TR/2006/REC-xml11-20060816>.

 [14] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

 Protocol (HTTP/1.1): Message Syntax and Routing",

 RFC 7230, DOI 10.17487/RFC7230, June 2014,

 <https://www.rfc-editor.org/info/rfc7230>.

 [15] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer

 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,

 DOI 10.17487/RFC7231, June 2014,

 <https://www.rfc-editor.org/info/rfc7231>.

Hartke Expires April 25, 2019 [Page 15]

Internet-Draft CoRE Applications October 2018

 [16] Fielding, R., "Architectural Styles and the Design of

 Network-based Software Architectures", Ph.D. Dissertation,

 University of California, Irvine, 2000,

 <http://www.ics.uci.edu/˜fielding/pubs/dissertation/

 fielding_dissertation.pdf>.

 [17] Fielding, R., "REST APIs must be hypertext-driven",

 October 2008, <http://roy.gbiv.com/untangled/2008/

 rest-apis-must-be-hypertext-driven>.

 [18] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [19] Hammer-Lahav, E., Ed. and B. Cook, "Web Host Metadata",

 RFC 6415, DOI 10.17487/RFC6415, October 2011,

 <https://www.rfc-editor.org/info/rfc6415>.

 [20] Masinter, L., "MIME and the Web", draft-masinter-mime-web-

 info-02 (work in progress), January 2011.

 [21] Richardson, L. and M. Amundsen, "RESTful Web APIs",

 O’Reilly Media, ISBN 978-1-4493-5806-8, September 2013.

 [22] Shelby, Z., "Constrained RESTful Environments (CoRE) Link

 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,

 <https://www.rfc-editor.org/info/rfc6690>.

 [23] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained

 Application Protocol (CoAP)", RFC 7252,

 DOI 10.17487/RFC7252, June 2014,

 <https://www.rfc-editor.org/info/rfc7252>.

 [24] Wilde, E., "The ’profile’ Link Relation Type", RFC 6906,

 DOI 10.17487/RFC6906, March 2013,

 <https://www.rfc-editor.org/info/rfc6906>.

Acknowledgements

 Jan Algermissen, Mike Amundsen, Mike Kelly, Julian Reschke, and Erik

 Wilde provided valuable input on link and form relation types.

 Thanks to Olaf Bergmann, Carsten Bormann, Stefanie Gerdes, Ari

 Keranen, Michael Koster, Matthias Kovatsch, Teemu Savolainen, and

 Bilhanan Silverajan for helpful comments and discussions that have

 shaped the document.

Hartke Expires April 25, 2019 [Page 16]

Internet-Draft CoRE Applications October 2018

 Some of the text in this document has been borrowed from [5], [6],

 [17], and [20]. All errors are my own.

 This work was funded in part by Nokia.

Author’s Address

 Klaus Hartke

 Ericsson

 Torshamnsgatan 23

 Stockholm SE-16483

 Sweden

 Email: klaus.hartke@ericsson.com

Hartke Expires April 25, 2019 [Page 17]

