
Network Working Group A. Bittau
Internet-Draft D. Boneh
Intended status: Informational D. Giffin
Expires: September 3, 2016 Stanford University
 M. Handley
 University College London
 D. Mazieres
 Stanford University
 E. Smith
 Kestrel Institute
 March 2, 2016

 Interface Extensions for TCP-ENO
 draft-bittau-tcpinc-api-01

Abstract

 TCP-ENO negotiates encryption at the transport layer. It also
 defines a few parameters that are intended to be used or configured
 by applications. This document specifies operating system interfaces
 for access to these TCP-ENO parameters. We describe the interfaces
 in terms of socket options, the de facto standard API for adjusting
 per-connection behavior in TCP/IP, and sysctl, a popular mechanism
 for setting global defaults. Operating systems that lack socket or
 sysctl functionality can implement similar interfaces in their native
 frameworks, but should ideally adapt their interfaces from those
 presented in this document.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 3, 2016.

Bittau, et al. Expires September 3, 2016 [Page 1]

Internet-Draft tcpinc-api March 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. API extensions . 3
 2.1. Per-connection options 3
 2.2. System-wide options 7
 3. Examples . 8
 3.1. Cookie-based authentication 8
 3.2. Signature-based authentication 9
 4. Security considerations 9
 5. Acknowledgments . 9
 6. References . 10
 6.1. Normative References 10
 6.2. Informative References 10
 Authors’ Addresses . 10

1. Introduction

 The TCP Encryption Negotiation Option (TCP-ENO)
 [I-D.ietf-tcpinc-tcpeno] permits hosts to negotiate encryption of a
 TCP connection. One of TCP-ENO’s use cases is to encrypt traffic
 transparently, unbeknownst to legacy applications. Transparent
 encryption requires no changes to existing APIs. However, other use
 cases require applications to interact with TCP-ENO. In particular:

 o Transparent encryption protects only against passive
 eavesdroppers. Stronger security requires applications to
 authenticate a _Session ID_ value associated with each encrypted
 connection.

 o Applications that have been updated to authenticate Session IDs
 must somehow advertise this fact to peers in a backward-compatible
 way. TCP-ENO carries a two-bit "application-aware" status for

Bittau, et al. Expires September 3, 2016 [Page 2]

Internet-Draft tcpinc-api March 2016

 this purpose, but this status is not accessible through existing
 interfaces.

 o Applications employing TCP’s simultaneous open feature need a way
 to supply a symmetry-breaking "role-override" bit to TCP-ENO.

 o System administrators and applications may wish to set and examine
 negotiation preferences, such as which encryption schemes (and
 perhaps versions) to enable and disable.

 o Applications that perform their own encryption may wish to disable
 TCP-ENO entirely.

 The remainder of this document describes an API through which systems
 can meet the above needs. The API extensions relate back to
 quantities defined by TCP-ENO.

2. API extensions

 This section describes an API for per-connection options, followed by
 a discussion of system-wide configuration options.

2.1. Per-connection options

 Application should access TCP-ENO options through the same mechanism
 they use to access other TCP configuration options, such as
 "TCP_NODELAY" [RFC0896]. With the popular sockets API, this
 mechanism consists of two socket options, "getsockopt" and
 "setsockopt", shown in Figure 1. Socket-based TCP-ENO
 implementations should define a set of new "option_name" values
 accessible at "level" "IPPROTO_TCP" (generally defined as 6, to match
 the IP protocol field).

 int getsockopt(int socket, int level, int option_name,
 void *option_value, socklen_t *option_len);

 int setsockopt(int socket, int level, int option_name,
 const void *option_value, socklen_t option_len);

 Figure 1: Socket option API

 Table 1 summarizes the new "option_name" arguments that TCP-ENO
 introduces to the socket option (or equivalent) system calls. For
 each option, the table lists whether it is read-only (R) or read-
 write (RW), as well as the type of the option’s value. Read-write
 options, when read, always return the previously successfully written
 value or the default if they have not been written. Options of type
 "bytes" consist of a variable-length array of bytes, while options of

Bittau, et al. Expires September 3, 2016 [Page 3]

Internet-Draft tcpinc-api March 2016

 type "int" consist of a small integer with the exact range indicated
 in parentheses. We discuss each option in more detail below.

 +----------------------+----+----------------+
 | Option name | RW | Type |
 +----------------------+----+----------------+
 | TCP_ENO_ENABLED | RW | int (-1 - 1) |
 | TCP_ENO_SESSID | R | bytes |
 | TCP_ENO_NEGSPEC | R | int (32 - 127) |
 | TCP_ENO_SPECS | RW | bytes |
 | TCP_ENO_SELF_AWARE | RW | int (0 - 3) |
 | TCP_ENO_PEER_AWARE | R | int (0 - 3) |
 | TCP_ENO_ROLEOVERRIDE | RW | int (0 - 1) |
 | TCP_ENO_ROLE | R | int (0 - 1) |
 | TCP_ENO_LOCAL_NAME | R | bytes |
 | TCP_ENO_PEER_NAME | R | bytes |
 | TCP_ENO_RAW | RW | bytes |
 | TCP_ENO_TRANSCRIPT | R | bytes |
 +----------------------+----+----------------+

 Table 1: Suggested new IPPROTO_TCP socket options

 The socket options must return errors under certain circumstances.
 These errors are mapped to three suggested error codes shown in
 Table 2. Most socket-based systems will already have constants for
 these errors. Non-socket systems should use existing error codes
 corresponding to the same conditions. "EINVAL" is the existing error
 returned when setting options on a closed socket. "EISCONN"
 corresponds to calling connect a second time, while "ENOTCONN"
 corresponds to requesting the peer address of an unconnected socket.

 +----------+---+
 | Symbol | Description |
 +----------+---+
 | EINVAL | General error signifying bad parameters |
 | EISCONN | Option no longer valid because socket is connected |
 | ENOTCONN | Option not (yet) valid because socket not connected |
 +----------+---+

 Table 2: Suggested error codes

 TCP_ENO_ENABLED When set to 0, completely disables TCP-ENO
 regardless of any other socket option settings except
 "TCP_ENO_RAW". When set to 1, enables TCP-ENO. If set to -1, use
 a system-wide default determined at the time of an "accept" or
 "connect" system call, as described in Section 2.2. This option
 must return an error ("EISCONN") after a SYN segment has already
 been sent.

Bittau, et al. Expires September 3, 2016 [Page 4]

Internet-Draft tcpinc-api March 2016

 TCP_ENO_SESSID Returns the session ID of the connection, as defined
 by the encryption spec in use. This option must return an error
 if encryption is disabled ("EINVAL"), the connection is not yet
 established ("ENOTCONN"), or the transport layer does not
 implement the negotiated spec ("EINVAL").

 TCP_ENO_NEGSPEC Returns the 7-bit code point of the negotiated
 encryption spec for the current connection. As defined by TCP-
 ENO, the negotiated spec is the last valid suboption in the "B"
 host’s SYN segment. This option must return an error if
 encryption is disabled ("EINVAL") or the connection is not yet
 established ("ENOTCONN").

 TCP_ENO_SPECS Allows the application to specify an ordered list of
 encryption specs different from the system default list. If the
 list is empty, TCP-ENO is disabled for the connection. Each byte
 in the list specifies one suboption type from 0x20-0xff. The list
 contains no suboption data for variable-length suboptions, only
 the one-byte spec identifier. The high bit ("v") in these bytes
 is ignored unless future implementations of encryption specs
 assign it special meaning. The order of the list matters only for
 the host playing the "B" role. Implementations must return an
 error ("EISCONN") if an application attempts to set this option
 after the SYN segment has been sent. Implementations should
 return an error ("EINVAL") if any of the bytes are below 0x20 or
 are not implemented by the TCP stack.

 TCP_ENO_SELF_AWARE The value is an integer from 0-3, allowing
 applications to specify the "aa" bits in the general suboption
 sent by the host. When listening on a socket, the value of this
 option applies to each accepted connection. The default value
 should be 0. Implementations must return an error ("EISCONN") if
 an application attempts to set this option after a SYN segment has
 been sent.

 TCP_ENO_PEER_AWARE The value is an integer from 0-3 reporting the
 "aa" bits in the general suboption of the peer’s segment.
 Implementations must return an error ("ENOTCONN") if an
 application attempts to read this value before the connection is
 established.

 TCP_ENO_ROLEOVERRIDE The value is a bit (0 or 1), indicating the
 value of the "b" bit to set in the host’s general suboption. The
 "b" bit breaks the symmetry of simultaneous open to assign a
 unique role "A" or "B" to each end of the connection. The host
 that sets the "b" bit assumes the "B" role (which in non-
 simultaneous open is by default assigned to the passive opener).
 Implementations must return an error ("EISCONN") for attempts to

Bittau, et al. Expires September 3, 2016 [Page 5]

Internet-Draft tcpinc-api March 2016

 set this option after the SYN segment has already been sent. The
 default value should be 0.

 TCP_ENO_ROLE The value is a bit (0 or 1). TCP-ENO defines two
 roles, "A" and "B", for the two ends of a connection. After a
 normal three-way handshake, the active opener is "A" and the
 passive opener is "B". Simultaneous open uses the role-override
 bit to assign unique roles. This option returns 0 when the local
 host has the "A" role, and 1 when the local host has the "B" role.
 This call must return an error before the connection is
 established ("ENOTCONN") or if TCP-ENO has failed ("EINVAL").

 TCP_ENO_LOCAL_NAME Returns the concatenation of the TCP_ENO_ROLE
 byte and the TCP_ENO_SESSID. This provides a unique name for the
 local end of the connection.

 TCP_ENO_PEER_NAME Returns the concatenation of the negation of the
 TCP_ENO_ROLE byte and the TCP_ENO_SESSID. This is the same value
 as returned by TCP_ENO_LOCAL_NAME on the other host, and hence
 provides a unique name for the remote end of the connection.

 TCP_ENO_RAW This option is for use by library-level implementations
 of encryption specs. It allows applications to make use of the
 TCP-ENO option, potentially including encryption specs not
 supported by the transport layer, and then entirely bypass any
 TCP-level encryption so as to encrypt above the transport layer.
 The default value of this option is a 0-byte vector, which
 disables RAW mode. If the option is set to any other value, it
 disables all other socket options described in this section except
 for TCP_ENO_TRANSCRIPT.

 The value of the option is a raw ENO option contents (without the
 kind and length) to be included in the host’s SYN segment. In raw
 mode, the TCP layer considers negotiation successful when the two
 SYN segments both contain a suboption with the same encryption
 spec value "cs" >= 0x20. For an active opener in raw mode, the
 TCP layer automatically sends a two-byte minimal ENO option when
 negotiation is successful. Note that raw mode performs no sanity
 checking on the "v" bits or any suboption data, and hence provides
 slightly less flexibility than a true TCP-level implementation.

 TCP_ENO_TRANSCRIPT Returns the negotiation transcript as specified
 by TCP-ENO. Implementations must return an error if negotiation
 failed ("EINVAL") or has not yet completed ("ENOTCONN").

Bittau, et al. Expires September 3, 2016 [Page 6]

Internet-Draft tcpinc-api March 2016

2.2. System-wide options

 In addition to these per-socket options, implementations should use
 "sysctl" or an equivalent mechanism to allow administrators to
 configure a default value for "TCP_ENO_SPECS", as well as default
 behavior for when "TCP_ENO_ENABLED" is -1. Table 3 provides a table
 of suggested parameters. The type "words" corresponds to a list of
 16-bit unsigned words representing TCP port numbers (similar to the
 "baddynamic" sysctls that, on some operating systems, blacklist
 automatic assignment of particular ports). These parameters should
 be placed alongside most TCP parameters. For example, on BSD derived
 systems a suitable name would be "net.inet.tcp.eno_specs", while on
 Linux a more appropriate name would be "net.ipv4.tcp_eno_specs".

 +-----------------------+-------------+
 | Name | Type |
 +-----------------------+-------------+
 | eno_specs | bytes |
 | eno_enable_connect | int (0 - 1) |
 | eno_enable_listen | int (0 - 1) |
 | eno_bad_connect_ports | words |
 | eno_bad_listen_ports | words |
 +-----------------------+-------------+

 Table 3: Suggested sysctl values

 "eno_specs" is simply a string of bytes, and provides the default
 value for the "TCP_ENO_SPECS" socket option. If "TCP_ENO_SPECS" is
 non-empty, the remaining sysctls determine whether to attempt TCP-ENO
 negotiation when the "TCP_ENO_ENABLED" option is -1 (the default),
 using the following rules.

 o On active openers: If "eno_enable_connect" is 0, then TCP-ENO is
 disabled. If the remote port number is in
 "eno_bad_connect_ports", then TCP-ENO is disabled. Otherwise, the
 host attempts to use TCP-ENO.

 o On passive openers: If "eno_enable_listen" is 0, then TCP-ENO is
 disabled. Otherwise, if the local port is in
 "eno_bad_listen_ports", then TCP-ENO is disabled. Otherwise, if
 the host receives an SYN segment with an ENO option containing
 compatible encryption specs, it attempts negotiation.

 Because initial deployment may run into issues with middleboxes or
 incur slowdown for unnecessary double-encryption, sites may wish to
 blacklist particular ports. For example the following command:

 sysctl net.inet.tcp.eno_bad_connect_ports=443,993

Bittau, et al. Expires September 3, 2016 [Page 7]

Internet-Draft tcpinc-api March 2016

 would disable ENO encryption on outgoing connections to ports 443 and
 993 (which use application-layer encryption for HTTP and IMAP,
 respectively). If the per-socket "TCP_ENO_ENABLED" is not -1, it
 overrides the sysctl values.

 On a server, running:

 sysctl net.inet.tcp.eno_bad_listen_ports=443

 makes it possible to disable TCP-ENO for incoming HTTPS connection
 without modifying the web server to set "TCP_ENO_ENABLED" to 0.

3. Examples

 This section provides examples of how applications might authenticate
 session IDs. Authentication requires exchanging messages over the
 TCP connection, and hence is not backwards compatible with existing
 application protocols. To fall back to opportunistic encryption in
 the event that both applications have not been updated to
 authenticate the session ID, TCP-ENO provides the application-aware
 bits. To signal it has been upgraded to support application-level
 authentication, an application should set "TCP_ENO_SELF_AWARE" to 1
 before opening a connection. An application should then check that
 "TCP_ENO_PEER_AWARE" is non-zero before attempting to send
 authenticators that would otherwise be misinterpreted as application
 data.

3.1. Cookie-based authentication

 In cookie-based authentication, a client and server both share a
 cryptographically strong random or pseudo-random secret known as a
 "cookie". Such a cookie is preferably at least 128 bits long. To
 authenticate a session ID using a cookie, each host computes and
 sends the following value to the other side:

 authenticator = PRF(cookie, local-name)

 Here "PRF" is a pseudo-random function such as HMAC-SHA-256
 [RFC6234]. "local-name" is the result of the "TCP_ENO_LOCAL_NAME"
 socket option. Each side must verify that the other side’s
 authenticator is correct. To do so, software obtains the remote
 host’s local name via the "TCP_ENO_PEER_NAME" socket option.
 Assuming the authenticators are correct, applications can rely on the
 TCP-layer encryption for resistance against active network attackers.

 Note that if the same cookie is used in other contexts besides
 session ID authentication, appropriate domain separation must be

Bittau, et al. Expires September 3, 2016 [Page 8]

Internet-Draft tcpinc-api March 2016

 employed, such as prefixing "local-name" with a unique prefix to
 ensure "authenticator" cannot be used out of context.

3.2. Signature-based authentication

 In signature-based authentication, one or both endpoints of a
 connection possess a private signature key the public half of which
 is known to or verifiable by the other endpoint. To authenticate
 itself, the host with a private key computes the following signature:

 authenticator = Sign(PrivKey, local-name)

 The other end verifies this value using the corresponding public key.
 Whichever side validates an authenticator in this way knows that the
 other side belongs to a host that possesses the appropriate signature
 key.

 Once again, if the same signature key is used in other contexts
 besides session ID authentication, appropriate domain separation
 should be employed, such as prefixing "local-name" with a unique
 prefix to ensure "authenticator" cannot be used out of context.

4. Security considerations

 The TCP-ENO specification discusses several important security
 considerations that this document incorporates by reference. The
 most important one, which bears reiterating, is that until and unless
 a session ID has been authenticated, TCP-ENO is vulnerable to an
 active network attacker, through either a downgrade or active man-in-
 the-middle attack.

 Because of this vulnerability to active network attackers, it is
 critical that implementations return appropriate errors for socket
 options when TCP-ENO is not enabled. Equally critical is that
 applications must never use these socket options without checking for
 errors.

 Applications with high security requirements that rely on TCP-ENO for
 security must either fail or fall back to application-layer
 encryption if TCP-ENO fails or session IDs authentication fails.

5. Acknowledgments

 This work was funded by DARPA CRASH under contract #N66001-10-2-4088.

Bittau, et al. Expires September 3, 2016 [Page 9]

Internet-Draft tcpinc-api March 2016

6. References

6.1. Normative References

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Boneh, D., Giffin, D., Handley, M., Mazieres,
 D., and E. Smith, "TCP-ENO: Encryption Negotiation
 Option", draft-ietf-tcpinc-tcpeno-01 (work in progress),
 February 2016.

6.2. Informative References

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
 RFC 896, DOI 10.17487/RFC0896, January 1984,
 <http://www.rfc-editor.org/info/rfc896>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

Authors’ Addresses

 Andrea Bittau
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: bittau@cs.stanford.edu

 Dan Boneh
 Stanford University
 353 Serra Mall, Room 475
 Stanford, CA 94305
 US

 Email: dabo@cs.stanford.edu

 Daniel B. Giffin
 Stanford University
 353 Serra Mall, Room 288
 Stanford, CA 94305
 US

 Email: dbg@scs.stanford.edu

Bittau, et al. Expires September 3, 2016 [Page 10]

Internet-Draft tcpinc-api March 2016

 Mark Handley
 University College London
 Gower St.
 London WC1E 6BT
 UK

 Email: M.Handley@cs.ucl.ac.uk

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Eric W. Smith
 Kestrel Institute
 3260 Hillview Avenue
 Palo Alto, CA 94304
 US

 Email: eric.smith@kestrel.edu

Bittau, et al. Expires September 3, 2016 [Page 11]

