
Internet Engineering Task Force A. Popov
Internet-Draft M. Nystroem
Intended status: Standards Track Microsoft Corp.
Expires: December 28, 2018 D. Balfanz, Ed.
 A. Langley
 N. Harper
 Google Inc.
 J. Hodges
 PayPal
 June 26, 2018

 Token Binding over HTTP
 draft-ietf-tokbind-https-18

Abstract

 This document describes a collection of mechanisms that allow HTTP
 servers to cryptographically bind security tokens (such as cookies
 and OAuth tokens) to TLS connections.

 We describe both first-party and federated scenarios. In a first-
 party scenario, an HTTP server is able to cryptographically bind the
 security tokens it issues to a client, and which the client
 subsequently returns to the server, to the TLS connection between the
 client and server. Such bound security tokens are protected from
 misuse since the server can generally detect if they are replayed
 inappropriately, e.g., over other TLS connections.

 Federated token bindings, on the other hand, allow servers to
 cryptographically bind security tokens to a TLS connection that the
 client has with a different server than the one issuing the token.

 This document is a companion document to The Token Binding Protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Popov, et al. Expires December 28, 2018 [Page 1]

Internet-Draft Token Binding over HTTP June 2018

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 28, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 2. The Sec-Token-Binding HTTP Request Header Field 4
 2.1. HTTPS Token Binding Key Pair Scoping 5
 3. TLS Renegotiation . 6
 4. First-Party Use Cases . 6
 5. Federation Use Cases . 7
 5.1. Introduction . 7
 5.2. Overview . 8
 5.3. HTTP Redirects . 10
 5.4. Negotiated Key Parameters 12
 5.5. Federation Example 12
 6. Implementation Considerations 15
 7. Security Considerations 15
 7.1. Security Token Replay 15
 7.2. Sensitivity of the Sec-Token-Binding Header 15
 7.3. Securing Federated Sign-On Protocols 17
 8. Privacy Considerations 19
 8.1. Scoping of Token Binding Key Pairs 19
 8.2. Lifetime of Token Binding Key Pairs 20
 8.3. Correlation . 20
 9. IANA Considerations . 21
 10. Acknowledgements . 21
 11. References . 21
 11.1. Normative References 21
 11.2. Informative References 23

Popov, et al. Expires December 28, 2018 [Page 2]

Internet-Draft Token Binding over HTTP June 2018

 Authors’ Addresses . 24

1. Introduction

 The Token Binding Protocol [I-D.ietf-tokbind-protocol] defines a
 Token Binding ID for a TLS connection between a client and a server.
 The Token Binding ID of a TLS connection is constructed using the
 public key of a private-public key pair. The client proves
 possession of the corresponding private key. This Token Binding key
 pair is long-lived. I.e., subsequent TLS connections between the
 same client and server have the same Token Binding ID, unless
 specifically reset, e.g., by the user. When issuing a security token
 (e.g., an HTTP cookie or an OAuth token [RFC6749]) to a client, the
 server can include the Token Binding ID in the token, thus
 cryptographically binding the token to TLS connections between that
 particular client and server, and inoculating the token against abuse
 (re-use, attempted impersonation, etc.) by attackers.

 While the Token Binding Protocol [I-D.ietf-tokbind-protocol] defines
 a message format for establishing a Token Binding ID, it does not
 specify how this message is embedded in higher-level protocols. The
 purpose of this specification is to define how TokenBindingMessages
 are embedded in HTTP (both versions 1.1 [RFC7230] and 2 [RFC7540]).
 Note that TokenBindingMessages are only defined if the underlying
 transport uses TLS. This means that Token Binding over HTTP is only
 defined when the HTTP protocol is layered on top of TLS (commonly
 referred to as HTTPS [RFC2818]).

 HTTP clients establish a Token Binding ID with a server by including
 a special HTTP header field in HTTP requests. The HTTP header field
 value is a base64url-encoded TokenBindingMessage.

 TokenBindingMessages allow clients to establish multiple Token
 Binding IDs with the server, by including multiple TokenBinding
 structures in the TokenBindingMessage. By default, a client will
 establish a provided Token Binding ID with the server, indicating a
 Token Binding ID that the client will persistently use with the
 server. Under certain conditions, the client can also include a
 referred Token Binding ID in the TokenBindingMessage, indicating a
 Token Binding ID that the client is using with a different server
 than the one that the TokenBindingMessage is sent to. This is useful
 in federation scenarios.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Popov, et al. Expires December 28, 2018 [Page 3]

Internet-Draft Token Binding over HTTP June 2018

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The Sec-Token-Binding HTTP Request Header Field

 Once a client and server have negotiated the Token Binding Protocol
 with HTTP/1.1 or HTTP/2 (see [I-D.ietf-tokbind-protocol] and
 [I-D.ietf-tokbind-negotiation]), clients MUST include a Sec-Token-
 Binding header field in their HTTP requests, and MUST include only
 one such header field per HTTP request. Also, The Sec-Token-Binding
 header field MUST NOT be included in HTTP responses. The ABNF of the
 Sec-Token-Binding header field is (in [RFC7230] style, see also
 Section 8.3 of [RFC7231]):

 Sec-Token-Binding = EncodedTokenBindingMessage

 The header field name is Sec-Token-Binding and its single value,
 EncodedTokenBindingMessage, is a base64url encoding of a single
 TokenBindingMessage, as defined in [I-D.ietf-tokbind-protocol]. The
 base64url encoding uses the URL- and filename-safe character set
 described in Section 5 of [RFC4648], with all trailing padding
 characters ’=’ omitted and without the inclusion of any line breaks,
 whitespace, or other additional characters.

 For example:

 Sec-Token-Binding: AIkAAgBBQFzK4_bhAqLDwRQxqJWte33d7hZ0hZWHwk-miKPg4E\
 9fcgs7gBPoz-9RfuDfN9WCw6keHEw1ZPQMGs9CxpuHm-YAQM_j\
 aOwwej6a-cQBGU7CJpUHOvXG4VvjNq8jDsvta9Y8_bPEPj25Gg\
 mKiPjhJEtZA6mJ_9SNifLvVBTi7fR9wSAAAA

 (Note that the backslashes and line breaks are provided to ease
 readability, they are not part of the actual encoded message.)

 If the server receives more than one Sec-Token-Binding header field
 in an HTTP request, then the server MUST reject the message with a
 400 (Bad Request) HTTP status code. Additionally, the Sec-Token-
 Binding header field:

 SHOULD NOT be stored by origin servers on PUT requests,

 MAY be listed by a server in a Vary response header field, and,

 MUST NOT be used in HTTP trailers.

 The TokenBindingMessage MUST contain exactly one TokenBinding
 structure with TokenBindingType of provided_token_binding, which MUST
 be signed with the Token Binding private key used by the client for

Popov, et al. Expires December 28, 2018 [Page 4]

Internet-Draft Token Binding over HTTP June 2018

 connections between itself and the server that the HTTP request is
 sent to (clients use different Token Binding key pairs for different
 servers, see Section 2.1 below). The Token Binding ID established by
 this TokenBinding is called a Provided Token Binding ID.

 The TokenBindingMessage MAY also contain exactly one TokenBinding
 structure with TokenBindingType of referred_token_binding, as
 specified in Section 5.3. In addition to the latter, or rather than
 the latter, the TokenBindingMessage MAY contain other TokenBinding
 structures. This is use case-specific, and such use cases are
 outside the scope of this specification.

 A TokenBindingMessage is validated by the server as described in
 Section 4.2 ("Server Processing Rules") of
 [I-D.ietf-tokbind-protocol]. If validation fails and a Token Binding
 is rejected, any associated bound tokens MUST also be rejected by the
 server. HTTP requests containing invalid tokens MUST be rejected.
 In this case, the server application MAY return HTTP status code 400
 (Bad Request) or proceed with an application-specific invalid token
 response (e.g., directing the client to re-authenticate and present a
 different token), or terminate the connection.

 In HTTP/2, the client SHOULD use Header Compression [RFC7541] to
 avoid the overhead of repeating the same header field in subsequent
 HTTP requests.

2.1. HTTPS Token Binding Key Pair Scoping

 HTTPS is used in conjunction with various application protocols and
 application contexts, in various ways. For example, general-purpose
 Web browsing is one such HTTP-based application context. Within that
 context, HTTP cookies [RFC6265] are typically utilized for state
 management, including client authentication. A related, though
 distinct, example of other HTTP-based application contexts is where
 OAuth tokens [RFC6749] are utilized to manage authorization for
 third-party application access to resources. The token scoping rules
 of these two examples can differ: the scoping rules for cookies are
 concisely specified in [RFC6265], whereas OAuth is a framework and
 defines various token types with various scopings, some of which are
 determined by the encompassing application.

 The scoping of Token Binding key pairs generated by Web browsers for
 the purpose of binding HTTP cookies MUST be no wider than the
 granularity of a "registered domain" (also known as "effective top-
 level domain + 1", or "eTLD+1"). An origin’s "registered domain" is
 the origin’s host’s public suffix plus the label to its left, with
 the term "public suffix" being defined in a note in Section 5.3 of
 [RFC6265] as "a domain that is controlled by a public registry". For

Popov, et al. Expires December 28, 2018 [Page 5]

Internet-Draft Token Binding over HTTP June 2018

 example, for "https://www.example.com", the public suffix (eTLD) is
 "com", and the registered domain (eTLD+1) is "example.com". User
 agents SHOULD use an up-to-date public suffix list, such as the one
 maintained by Mozilla [PSL].

 This means that in practice the scope of a Token Binding key pair is
 no larger than the scope of a cookie allowed by a Web browser. If a
 Web browser restricts cookies to a narrower scope than registered
 domains, the scope of Token Binding key pairs MAY also be more
 narrow. This applies to the use of Token Binding key pairs in first-
 party use cases, as well as in federation use cases defined in this
 specification (Section 5).

 Key pairs used to bind other application tokens, such as OAuth tokens
 or OpenID Connect ID Tokens, SHOULD adhere to the above eTLD+1
 scoping requirement for those tokens being employed in first-party or
 federation scenarios. Applications other than Web browsers MAY use
 different key pair scoping rules. See also Section 8.1, below.

 Scoping rules for other HTTP-based application contexts are outside
 the scope of this specification.

3. TLS Renegotiation

 Token Binding over HTTP/1.1 [RFC7230] can be performed in combination
 with TLS renegotiation. In this case, renegotiation MUST only occur
 between a client’s HTTP request and the server’s response, the client
 MUST NOT send any pipelined requests, and the client MUST NOT
 initiate renegotiation. (I.e., the client may only send a
 renegotiation ClientHello in response to the server’s HelloRequest.)
 These conditions ensure that both the client and the server can
 clearly identify which TLS Exported Keying Material value [RFC5705]
 to use when generating or verifying the TokenBindingMessage. This
 also prevents a TokenBindingMessage from being split across TLS
 renegotiation boundaries. (I.e., due to TLS message fragmentation -
 see Section 6.2.1 of [RFC5246].)

4. First-Party Use Cases

 In a first-party use case (also known as a "same-site" use case), an
 HTTP server issues a security token such as a cookie (or similar) to
 a client, and expects the client to return the security token at a
 later time, e.g., in order to authenticate. Binding the security
 token to the TLS connection between client and server protects the
 security token from misuse, since the server can detect if the
 security token is replayed inappropriately, e.g., over other TLS
 connections.

Popov, et al. Expires December 28, 2018 [Page 6]

Internet-Draft Token Binding over HTTP June 2018

 See Section 5 of [I-D.ietf-tokbind-protocol] for general guidance
 regarding binding of security tokens and their subsequent validation.

5. Federation Use Cases

5.1. Introduction

 For privacy reasons, clients use different Token Binding key pairs to
 establish Provided Token Binding IDs with different servers. As a
 result, a server cannot bind a security token (such as an OAuth token
 or an OpenID Connect ID Token [OpenID.Core]) to a TLS connection that
 the client has with a different server. This is, however, a common
 requirement in federation scenarios: For example, an Identity
 Provider may wish to issue an identity token to a client and
 cryptographically bind that token to the TLS connection between the
 client and a Relying Party.

 In this section, we describe mechanisms to achieve this. The common
 idea among these mechanisms is that a server (called the Token
 Consumer in this document) signals to the client that it should
 reveal the Provided Token Binding ID that is used between the client
 and itself to another server (called the Token Provider in this
 document). Also common across the mechanisms is how the Token
 Binding ID is revealed to the Token Provider: The client uses the
 Token Binding Protocol [I-D.ietf-tokbind-protocol], and includes a
 TokenBinding structure in the Sec-Token-Binding HTTP header field
 defined above. What differs between the various mechanisms is how
 the Token Consumer signals to the client that it should reveal the
 Token Binding ID to the Token Provider. Below, we specify one such
 mechanism, which is suitable for redirect-based interactions between
 Token Consumers and Token Providers.

Popov, et al. Expires December 28, 2018 [Page 7]

Internet-Draft Token Binding over HTTP June 2018

 Client Token Consumer Token Provider
 +--------+ +----+ +-----+
 | Client | | TC | | TP |
 +--------+ +----+ +-----+
 | | |
 | | |
 | | |
 | Client interacts w/TC | |
 | using TokenBindingID TBID1: | |
 | TBMSG[[provided_token_binding,| |
 | TBID1, signature]] | |
 |------------------------------>| |
 | | |
 | Client interacts w/TP |
 | using TokenBindingID TBID2: |
 | TBMSG[[provided_token_binding, |
 | TBID2, signature]] |
 |--->|
 | |
 | | |
 | TC signals permission to | |
 | reveal TBID1 to TP | |
 |<------------------------------| |
 | | |
 | |
 | Client interacts w/TP |
 | using TokenBindingID TBID1 and TBID2: |
 | TBMSG[[provided_token_binding, |
 | TBID2, signature], |
 | [referred_token_binding, |
 | TBID1, signature]] |
 |--->|
 | |
 | | |
 | | |

5.2. Overview

 In a Federated Sign-On protocol, an Identity Provider issues an
 identity token to a client, which sends the identity token to a
 Relying Party to authenticate itself. Examples of this include
 OpenID Connect (in which the identity token is called an "ID Token")
 and SAML [OASIS.saml-core-2.0-os] (in which the identity token is a
 SAML assertion).

 To better protect the security of the identity token, the Identity
 Provider may wish to bind the identity token to the TLS connection
 between the client and the Relying Party, thus ensuring that only

Popov, et al. Expires December 28, 2018 [Page 8]

Internet-Draft Token Binding over HTTP June 2018

 said client can use the identity token. The Relying Party will
 compare the Token Binding ID (or a cryptographic hash of it) in the
 identity token with the Token Binding ID (or a hash thereof) of the
 TLS connection between this Relying Party and the client.

 This is an example of a federation scenario, which more generally can
 be described as follows:

 o A Token Consumer causes the client to issue a token request to the
 Token Provider. The goal is for the client to obtain a token and
 then use it with the Token Consumer.

 o The client delivers the token request to the Token Provider.

 o The Token Provider issues the token. The token is issued for the
 specific Token Consumer who requested it (thus preventing
 malicious Token Consumers from using tokens with other Token
 Consumers). The token is, however, typically a bearer token,
 meaning that any client can use it with the Token Consumer, not
 just the client to which it was issued.

 o Therefore, in the previous step, the Token Provider may want to
 include in the token the Token Binding ID (or a cryptographic hash
 of it) that the client uses when communicating with the Token
 Consumer, thus binding the token to the client’s Token Binding key
 pair. The client proves possession of the private key when
 communicating with the Token Consumer through the Token Binding
 Protocol [I-D.ietf-tokbind-protocol], and uses the corresponding
 public key of this key pair as a component of the Token Binding
 ID. Comparing the Token Binding ID from the token to the Token
 Binding ID established with the client allows the Token Consumer
 to verify that the token was sent to it by the legitimate client.

 o To allow the Token Provider to include the Token Binding ID in the
 token, the Token Binding ID between client and Token Consumer must
 therefore be communicated to the Token Provider along with the
 token request. Communicating a Token Binding ID involves proving
 possession of a private key and is described in the Token Binding
 Protocol [I-D.ietf-tokbind-protocol].

 The client will perform this last operation only if the Token
 Consumer requests the client to do so.

 Below, we specify how Token Consumers can signal this request in
 redirect-based federation protocols. Note that this assumes that the
 federated sign-on flow starts at the Token Consumer, or at the very
 least, includes a redirect from the Token Consumer to the Token

Popov, et al. Expires December 28, 2018 [Page 9]

Internet-Draft Token Binding over HTTP June 2018

 Provider. It is outside the scope of this document to specify
 similar mechanisms for flows that do not include such redirects.

5.3. HTTP Redirects

 When a Token Consumer redirects the client to a Token Provider as a
 means to deliver the token request, it SHOULD include an Include-
 Referred-Token-Binding-ID HTTP response header field in its HTTP
 response. The ABNF of the Include-Referred-Token-Binding-ID header
 is (in [RFC7230] style, see also Section 8.3 of [RFC7231]):

 Include-Referred-Token-Binding-ID = "true"

 Where the header field name is "Include-Referred-Token-Binding-ID",
 and the field-value of "true" is case-insensitive. For example:

 Include-Referred-Token-Binding-ID: true

 Including this response header field signals to the client that it
 should reveal, to the Token Provider, the Token Binding ID used
 between itself and the Token Consumer. In the absence of this
 response header field, the client will not disclose any information
 about the Token Binding used between the client and the Token
 Consumer to the Token Provider.

 As illustrated in Section 5.5, when a client receives this header
 field, it should take the TokenBindingID of the provided TokenBinding
 from the referrer and create a referred TokenBinding with it to
 include in the TokenBindingMessage on the redirect request. In other
 words, the Token Binding message in the redirect request to the Token
 Provider now includes one provided binding and one referred binding,
 the latter constructed from the binding between the client and the
 Token Consumer.

 When a client receives the Include-Referred-Token-Binding-ID header,
 it includes the referred token binding even if both the Token
 Provider and the Token Consumer fall under the same eTLD+1 and the
 provided and referred token binding IDs are the same.

 The referred token binding is sent only on the initial request
 resulting from the HTTP response that included the Include-Referred-
 Token-Binding-ID header. Should the response to that initial request
 be a further redirect, the original referred token binding is no
 longer included in subsequent requests. (A new referred token
 binding may be included if the redirecting endpoint itself responded
 with a Include-Referred-Token-Binding-ID response header.)

Popov, et al. Expires December 28, 2018 [Page 10]

Internet-Draft Token Binding over HTTP June 2018

 If the Include-Referred-Token-Binding-ID header field is received in
 response to a request that did not include the Token-Binding header
 field, the client MUST ignore the Include-Referred-Token-Binding-ID
 header field.

 This header field has only meaning if the HTTP status code is a
 redirection code (300-399), and MUST be ignored by the client for any
 other status codes. If the client supports the Token Binding
 Protocol, and has negotiated the Token Binding Protocol with both the
 Token Consumer and the Token Provider, it already sends the Sec-
 Token-Binding header field to the Token Provider with each HTTP
 request (as described in Section 2 above).

 The TokenBindingMessage included in the redirect request to the Token
 Provider SHOULD contain a TokenBinding with TokenBindingType
 referred_token_binding. If included, this TokenBinding MUST be
 signed with the Token Binding private key used by the client for
 connections between itself and the Token Consumer (more specifically,
 the server that issued the Include-Referred-Token-Binding-ID response
 header field). The Token Binding ID established by this TokenBinding
 is called a Referred Token Binding ID.

 As described above, the TokenBindingMessage MUST additionally contain
 a Provided Token Binding ID, i.e., a TokenBinding structure with
 TokenBindingType of provided_token_binding, which MUST be signed with
 the Token Binding private key used by the client for connections
 between itself and the Token Provider (more specifically, the server
 that the token request is being sent to).

 If, for some deployment-specific reason, the initial Token Provider
 ("TP1") needs to redirect the client to another Token Provider
 ("TP2"), rather than directly back to the Token Consumer, it can be
 accommodated using the header fields defined in this specification in
 the following fashion ("the redirect-chain approach"):

 Initially, the client is redirected to TP1 by the Token Consumer
 ("TC"), as described above. Upon receiving the client’s request,
 containing a TokenBindingMessage which contains both provided and
 referred TokenBindings (for TP1 and TC, respectively), TP1
 responds to the client with a redirect response containing the
 Include-Referred-Token-Binding-ID header field and directing the
 client to send a request to TP2. This causes the client to follow
 the same pattern and send a request containing a
 TokenBindingMessage which contains both provided and referred
 TokenBindings (for TP2 and TP1, respectively) to TP2. Note that
 this pattern can continue to further Token Providers. In this
 case, TP2 issues a security token, bound to the client’s
 TokenBinding with TP1, and sends a redirect response to the client

Popov, et al. Expires December 28, 2018 [Page 11]

Internet-Draft Token Binding over HTTP June 2018

 pointing to TP1. TP1 in turn constructs a security token for the
 Token Consumer, bound to the TC’s referred TokenBinding which had
 been conveyed earlier, and sends a redirect response pointing to
 the TC, containing the bound security token, to the client.

 The above is intended as only a non-normative example. Details are
 specific to deployment contexts. Other approaches are possible, but
 are outside the scope of this specification.

5.4. Negotiated Key Parameters

 The TLS Extension for Token Binding Protocol Negotiation
 [I-D.ietf-tokbind-negotiation] allows the server and client to
 negotiate the parameters (signature algorithm, length) of the Token
 Binding key pair. It is possible that the Token Binding ID used
 between the client and the Token Consumer, and the Token Binding ID
 used between the client and Token Provider, use different key
 parameters. The client MUST use the key parameters negotiated with
 the Token Consumer in the referred_token_binding TokenBinding of the
 TokenBindingMessage, even if those key parameters are different from
 the ones negotiated with the server that the header field is sent to.

 Token Providers SHOULD support all the Token Binding key parameters
 specified in [I-D.ietf-tokbind-protocol]. If a token provider does
 not support the key parameters specified in the
 referred_token_binding TokenBinding in the TokenBindingMessage, it
 MUST NOT issue a bound token.

5.5. Federation Example

 The diagram below shows a typical HTTP Redirect-based Web Browser SSO
 Profile (no artifact, no callbacks), featuring binding of, e.g., a
 TLS Token Binding ID into an OpenID Connect ID Token.

Popov, et al. Expires December 28, 2018 [Page 12]

Internet-Draft Token Binding over HTTP June 2018

 Legend:

 +------------+--+
EKM:	TLS Exported Keying Material [RFC5705]
{EKMn}Ksm:	EKM for server "n", signed by private key of TBID
	"m", where "n" must represent server receiving the
	ETBMSG. If a conveyed TB’s type is
	provided_token_binding, then m = n, else if TB’s
	type is referred_token_binding, then m != n. E.g.,
	see step 1b in diagram below.
ETBMSG:	"Sec-Token-Binding" HTTP header field conveying an
	EncodedTokenBindingMessage, in turn conveying
	TokenBinding (TB)struct(s), e.g.: ETBMSG[[TB]] or
	ETBMSG[[TB1],[TB2]]
ID Token:	the ID Token in OpenID Connect, it is the semantic
	equivalent of a SAML "authentication assertion". "ID
	Token w/TBIDn" denotes a "token bound" ID Token
	containing TBIDn.
Ks & Kp:	private (aka secret) key, and public key,
	respectively, of client-side Token Binding key pair
OIDC:	OpenID Connect
TB:	TokenBinding struct containing signed EKM, TBID, and
	TB type, e.g.:
	[{EKM1}Ks1,TBID1,provided_token_binding]
TBIDn:	Token Binding ID for client and server n’s token-
	bound TLS association. TBIDn contains Kpn.
 +------------+--+

 Client, Token Consumer, Token Provider,
 aka: aka: aka:
 User Agent OpenID Client, OpenID Provider,
 OIDC Relying Party, OIDC Provider,
 SAML Relying Party SAML Identity Provider
 [server "1"] [server "2"]
 +--------+ +----+ +-----+
 | Client | | TC | | TP |
 +--------+ +----+ +-----+
 | | |
 | | |
 | | |
 | 0. Client interacts w/TC | |
 | over HTTPS, establishes Ks1 & Kp1, TBID1 |
 | ETBMSG[[{EKM1}Ks1,TBID1,provided_token_binding]] |
 |------------------------------>| |
 | | |
 | | |
 | | |
 | 1a. OIDC ID Token request, aka| |

Popov, et al. Expires December 28, 2018 [Page 13]

Internet-Draft Token Binding over HTTP June 2018

 | "Authentication Request", conveyed with |
 | HTTP response header field of: |
 | Include-Referred-Token-Binding-ID:true |
 | any security-relevant cookies | |
 | should contain TBID1 | |
 +<- - - - - - - - - - - - - - - - | |
 . | (redirect to TP via 301, 302, | |
 . | 303, 307, or 308) | |
 . | | |
 +--->|
 | 1b. opens HTTPS w/TP, |
 | establishes Ks2, Kp2, TBID2; |
 | sends GET or POST with |
 | ETBMSG[[{EKM2}Ks2,TBID2,provided_token_binding], |
 | [{EKM2}Ks1,TBID1,referred_token_binding]] |
 | as well as the ID Token request |
 | | |
 | | |
 | | |
 | 2. user authentication (if applicable, |
 | methods vary, particulars are out of scope) |
 |<==>|
 | (TP generates ID Token for TC containing TBID1, may |
 | also set cookie(s) containing TBID2 and/or TBID1, |
 | details vary, particulars are out of scope) |
 | | |
 | | |
 | | |
 | 3a. ID Token containing Kp1, issued for TC, |
 | conveyed via OIDC "Authentication Response" |
 +<- -|
 . | (redirect to TC) | |
 . | | |
 . | | |
 +-------------------------------->| |
 | 3b. HTTPS GET or POST with |
 | ETBMSG[[{EKM1}Ks1,TBID1,provided_token_binding]] |
 | conveying Authn Response containing |
 | ID Token w/TBID1, issued for TC |
 | | |
 | | |
 | | |
 | 4. user is signed-on, any security-relevant cookie(s)|
 | that are set SHOULD contain TBID1 |
 |<------------------------------| |
 | | |
 | | |

Popov, et al. Expires December 28, 2018 [Page 14]

Internet-Draft Token Binding over HTTP June 2018

6. Implementation Considerations

 HTTPS-based applications may have multi-party use cases other than,
 or in addition to, the HTTP redirect-based signaling-and-conveyance
 of referred token bindings, as presented above in Section 5.3.

 Thus, Token Binding implementations should provide APIs for such
 applications to generate Token Binding messages containing Token
 Binding IDs of various application-specified Token Binding types, to
 be conveyed by the Sec-Token-Binding header field.

 However, Token Binding implementations MUST only convey Token Binding
 IDs to servers if signaled to do so by an application. For example,
 a server can return an Include-Referred-Token-Binding-ID HTTP
 response header field to an application, which then signals to the
 Token Binding implementation that it intends to convey the Token
 Binding ID used with this server to another server. Other signaling
 mechanisms are possible, and are specific to the application layer
 protocol, but are outside the scope of this specification.

 NOTE: See Section 8 ("Privacy Considerations"), for privacy guidance
 regarding the use of this functionality.

7. Security Considerations

7.1. Security Token Replay

 The goal of the Federated Token Binding mechanisms is to prevent
 attackers from exporting and replaying tokens used in protocols
 between the client and Token Consumer, thereby impersonating
 legitimate users and gaining access to protected resources. Although
 bound tokens can still be replayed by any malware present in clients
 (which may be undetectable by a server), in order to export bound
 tokens to other machines and successfully replay them, attackers also
 need to export the corresponding Token Binding private keys. Token
 Binding private keys are therefore high-value assets and SHOULD be
 strongly protected, ideally by generating them in a hardware security
 module that prevents key export.

 This consideration is a special case of the Security Token Replay
 security consideration laid out in the The Token Binding Protocol
 [I-D.ietf-tokbind-protocol] specification.

7.2. Sensitivity of the Sec-Token-Binding Header

 The purpose of the Token Binding protocol is to convince the server
 that the client that initiated the TLS connection controls a certain
 key pair. For the server to correctly draw this conclusion after

Popov, et al. Expires December 28, 2018 [Page 15]

Internet-Draft Token Binding over HTTP June 2018

 processing the Sec-Token-Binding header field, certain secrecy and
 integrity requirements must be met.

 For example, the client’s Token Binding private key must be kept
 secret by the client. If the private key is not secret, then another
 actor in the system could create a valid Token Binding header field,
 impersonating the client. This can render the main purpose of the
 protocol - to bind bearer tokens to certain clients - moot.
 Consider, for example, an attacker who obtained (perhaps through a
 network intrusion) an authentication cookie that a client uses with a
 certain server. Consider further that the server bound that cookie
 to the client’s Token Binding ID precisely to thwart misuse of the
 cookie. If the attacker were to come into possession of the client’s
 private key, he could then establish a TLS connection with the server
 and craft a Sec-Token-Binding header field that matches the binding
 present in the cookie, thus successfully authenticating as the
 client, and gaining access to the client’s data at the server. The
 Token Binding protocol, in this case, did not successfully bind the
 cookie to the client.

 Likewise, we need integrity protection of the Sec-Token-Binding
 header field. A client should not be tricked into sending a Sec-
 Token-Binding header field to a server that contains Token Binding
 messages about key pairs that the client does not control. Consider
 an attacker A that somehow has knowledge of the exported keying
 material (EKM) for a TLS connection between a client C and a server
 S. (While that is somewhat unlikely, it is also not entirely out of
 the question, since the client might not treat the EKM as a secret -
 after all, a pre-image-resistant hash function has been applied to
 the TLS master secret, making it impossible for someone knowing the
 EKM to recover the TLS master secret. Such considerations might lead
 some clients to not treat the EKM as a secret.) Such an attacker A
 could craft a Sec-Token-Binding header field with A’s key pair over
 C’s EKM. If the attacker could now trick C into sending such a
 header field to S, it would appear to S as if C controls a certain
 key pair, when in fact it does not (the attacker A controls the key
 pair).

 If A has a pre-existing relationship with S (perhaps has an account
 on S), it now appears to the server S as if A is connecting to it,
 even though it is really C. (If the server S does not simply use
 Token Binding IDs to identify clients, but also uses bound
 authentication cookies, then A would also have to trick C into
 sending one of A’s cookies to S, which it can do through a variety of
 means - inserting cookies through Javascript APIs, setting cookies
 through related-domain attacks, etc.) In other words, A tricked C
 into logging into A’s account on S. This could lead to a loss of
 privacy for C, since A presumably has some other way to also access

Popov, et al. Expires December 28, 2018 [Page 16]

Internet-Draft Token Binding over HTTP June 2018

 the account, and can thus indirectly observe C’s behavior (for
 example, if S has a feature that lets account holders see their
 activity history on S).

 Therefore, we need to protect the integrity of the Sec-Token-Binding
 header field. One eTLD+1 should not be able to set the Sec-Token-
 Binding header field (through a DOM API or otherwise) that the User
 Agent uses with another eTLD+1. Employing the "Sec-" header field
 prefix helps to meet this requirement by denoting the header field
 name to be a "forbidden header name", see [fetch-spec].

7.3. Securing Federated Sign-On Protocols

 As explained above, in a federated sign-in scenario, a client will
 prove possession of two different Token Binding private keys to a
 Token Provider: One private key corresponds to the "provided" Token
 Binding ID (which the client normally uses with the Token Provider),
 and the other is the Token Binding private key corresponding to the
 "referred" Token Binding ID (which the client normally uses with the
 Token Consumer). The Token Provider is expected to issue a token
 that is bound to the referred Token Binding ID.

 Both proofs (that of the provided Token Binding private key and that
 of the referred Token Binding private key) are necessary. To show
 this, consider the following scenario:

 o The client has an authentication token with the Token Provider
 that is bound to the client’s Token Binding ID used with that
 Token Provider.

 o The client wants to establish a secure (i.e., free of men-in-the-
 middle) authenticated session with the Token Consumer, but has not
 done so yet (in other words, we are about to run the federated
 sign-on protocol).

 o A man-in-the-middle is allowed to intercept the connection between
 client and Token Consumer or between Client and Token Provider (or
 both).

 The goal is to detect the presence of the man-in-the-middle in these
 scenarios.

 First, consider a man-in-the-middle between the client and the Token
 Provider. Recall that we assume that the client possesses a bound
 authentication token (e.g., cookie) for the Token Provider. The man-
 in-the-middle can intercept and modify any message sent by the client
 to the Token Provider, and any message sent by the Token Provider to
 the client. (This means, among other things, that the man-in-the-

Popov, et al. Expires December 28, 2018 [Page 17]

Internet-Draft Token Binding over HTTP June 2018

 middle controls the Javascript running at the client in the origin of
 the Token Provider.) It is not, however, in possession of the
 client’s Token Binding private key. Therefore, it can either choose
 to replace the Token Binding ID in requests from the client to the
 Token Provider, and create a Sec-Token-Binding header field that
 matches the TLS connection between the man-in-the-middle and the
 Token Provider, or it can choose to leave the Sec-Token-Binding
 header field unchanged. If it chooses the latter, the signature in
 the Token Binding message (created by the original client on the
 exported keying material (EKM) for the connection between client and
 man-in-the-middle) will not match a signature on the EKM between man-
 in-the-middle and the Token Provider. If it chooses the former (and
 creates its own signature, using its own Token Binding private key,
 over the EKM for the connection between itself, the man-in-the-
 middle, and Token Provider), then the Token Binding message will
 match the connection between man-in-the-middle and Token Provider,
 but the Token Binding ID in the message will not match the Token
 Binding ID that the client’s authentication token is bound to.
 Either way, the man-in-the-middle is detected by the Token Provider,
 but only if the proof of possession of the provided Token Binding
 private key is required in the protocol (as is done above).

 Next, consider the presence of a man-in-the-middle between client and
 Token Consumer. That man-in-the-middle can intercept and modify any
 message sent by the client to the Token Consumer and any message sent
 by the Token Consumer to the client. The Token Consumer is the party
 that redirects the client to the Token Provider. In this case, the
 man-in-the-middle controls the redirect URL and can tamper with any
 redirect URL issued by the Token Consumer (as well as with any
 Javascript running in the origin of the Token Consumer). The goal of
 the man-in-the-middle is to trick the Token Provider into issuing a
 token bound to its Token Binding ID, not to the Token Binding ID of
 the legitimate client. To thwart this goal of the man-in-the-middle,
 the client’s referred Token Binding ID must be communicated to the
 Token Producer in a manner that cannot be affected by the man-in-the-
 middle (who, as we recall, can modify redirect URLs and Javascript at
 the client). Including the referred Token Binding structure in the
 Sec-Token-Binding header field (as opposed to, say, including the
 referred Token Binding ID in an application-level message as part of
 the redirect URL) is one way to assure that the man-in-the-middle
 between client and Token Consumer cannot affect the communication of
 the referred Token Binding ID to the Token Provider.

 Therefore, the Sec-Token-Binding header field in the federated sign-
 on use case contains both: a proof of possession of the provided
 Token Binding key, as well as a proof of possession of the referred
 Token Binding key.

Popov, et al. Expires December 28, 2018 [Page 18]

Internet-Draft Token Binding over HTTP June 2018

 Note that the presence of Token Binding does not relieve the Token
 Provider and Token Consumer from performing various checks to ensure
 the security of clients during federated sign-on protocols. These
 include the following:

 o The Token Provider should not issue tokens to Token Consumers that
 have been shown to act maliciously. To aid in this, the
 federation protocol should identify the Token Consumer to the
 Token Provider (e.g., through OAuth client IDs or similar
 mechanisms), and the Token Provider should ensure that tokens are
 indeed issued to the Token Consumer identified in the token
 request (e.g., by verifying that the redirect URI is associated
 with the OAuth client ID.)

 o The Token Consumer should verify that the tokens were issued for
 it, and not some other token consumer. To aid in this, the
 federation protocol should include an audience parameter in the
 token response, or apply equivalent mechanisms (the implicit OAuth
 flow requires Token Consumers to identify themselves when they
 exchange OAuth authorization codes for OAuth refresh tokens,
 leaving it up to the Token Provider to verify that the OAuth
 authorization was delivered to the correct Token Consumer).

8. Privacy Considerations

8.1. Scoping of Token Binding Key Pairs

 Clients use different Token Binding key pairs for different servers,
 so as to not allow Token Binding to become a tracking tool across
 different servers. However, the scoping of the Token Binding key
 pairs to servers varies according to the scoping rules of the
 application protocol (Section 4.1 of [I-D.ietf-tokbind-protocol]).

 In the case of HTTP cookies, servers may use Token Binding to secure
 their cookies. These cookies can be attached to any sub-domain of
 effective top-level domains (eTLDs), and clients therefore should use
 the same Token Binding key pair across such subdomains. This will
 ensure that any server capable of receiving the cookie will see the
 same Token Binding ID from the client, and thus be able to verify the
 token binding of the cookie. See Section 2.1, above.

 If the client application is not a Web browser, it may have
 additional knowledge about the relationship between different
 servers. For example, the client application might be aware of the
 fact that two servers play the role of Relying Party and Identity
 Provider in a federated sign-on protocol, and that they therefore
 share the identity of the user. In such cases, it is permissible to
 use different Token Binding key pair scoping rules, such as using the

Popov, et al. Expires December 28, 2018 [Page 19]

Internet-Draft Token Binding over HTTP June 2018

 same Token Binding key pair for both the Relying Party and the
 Identity Provider. Absent such special knowledge, conservative key-
 scoping rules should be used, assuring that clients use different
 Token Binding key pairs with different servers.

8.2. Lifetime of Token Binding Key Pairs

 Token Binding key pairs do not have an expiration time. This means
 that they can potentially be used by a server to track a user for an
 extended period of time (similar to a long-lived cookie). HTTPS
 clients such as Web user agents SHOULD therefore provide a user
 interface for discarding Token Binding key pairs (similar to the
 affordances provided to delete cookies).

 If a user agent provides modes such as private browsing mode in which
 the user is promised that browsing state such as cookies are
 discarded after the session is over, the user agent MUST also discard
 Token Binding key pairs from such modes after the session is over.
 Generally speaking, users should be given the same level of control
 over lifetime of Token Binding key pairs as they have over cookies or
 other potential tracking mechanisms.

8.3. Correlation

 An application’s various communicating endpoints that receive Token
 Binding IDs for TLS connections other than their own obtain
 information about the application’s other TLS connections. (In this
 context, "an application" is a combination of client-side and server-
 side components, communicating over HTTPS, where the client side may
 be either or both Web browser-based or native application-based.)
 These other Token Binding IDs can serve as correlation handles for
 the endpoints of the other connections. If the receiving endpoints
 are otherwise aware of these other connections, then no additional
 information is being exposed. For instance, if in a redirect-based
 federation protocol, the Identity Provider and Relying Party already
 possess URLs for one another, also having Token Binding IDs for these
 connections does not provide additional correlation information. If
 not, then, by providing the other Token Binding IDs, additional
 information is exposed that can be used to correlate the other
 endpoints. In such cases, a privacy analysis of enabled correlations
 and their potential privacy impacts should be performed as part of
 the application design decisions of how, and whether, to utilize
 Token Binding.

 Also, Token Binding implementations must take care to only reveal
 Token Binding IDs to other endpoints if the application associated
 with a Token Binding ID signals to do so, see Section 6
 ("Implementation Considerations").

Popov, et al. Expires December 28, 2018 [Page 20]

Internet-Draft Token Binding over HTTP June 2018

 Finally, care should be taken to ensure that unrelated applications
 do not obtain information about each other’s Token Bindings. For
 instance, a Token Binding implementation shared between multiple
 applications on a given system should prevent unrelated applications
 from obtaining each other’s Token Binding information. This may be
 accomplished by using techniques such as application isolation and
 key segregation, depending upon system capabilities.

9. IANA Considerations

 Below are the Internet Assigned Numbers Authority (IANA) Permanent
 Message Header Field registration information per [RFC3864].

 Header field name: Sec-Token-Binding
 Applicable protocol: HTTP
 Status: standard
 Author/Change controller: IETF
 Specification document(s): this one

 Header field name: Include-Referred-Token-Binding-ID
 Applicable protocol: HTTP
 Status: standard
 Author/Change controller: IETF
 Specification document(s): this one

10. Acknowledgements

 This document incorporates comments and suggestions offered by Eric
 Rescorla, Gabriel Montenegro, Martin Thomson, Vinod Anupam, Anthony
 Nadalin, Michael B. Jones, Bill Cox, Brian Campbell, and others.

 This document was produced under the chairmanship of John Bradley and
 Leif Johansson. The area directors included Eric Rescorla, Kathleen
 Moriarty and Stephen Farrell.

11. References

11.1. Normative References

 [I-D.ietf-tokbind-negotiation]
 Popov, A., Nystrom, M., Balfanz, D., and A. Langley,
 "Transport Layer Security (TLS) Extension for Token
 Binding Protocol Negotiation", draft-ietf-tokbind-
 negotiation-14 (work in progress), May 2018.

Popov, et al. Expires December 28, 2018 [Page 21]

Internet-Draft Token Binding over HTTP June 2018

 [I-D.ietf-tokbind-protocol]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J.
 Hodges, "The Token Binding Protocol Version 1.0", draft-
 ietf-tokbind-protocol-19 (work in progress), May 2018.

 [PSL] Mozilla, "Public Suffix List, https://publicsuffix.org/",
 <https://publicsuffix.org/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004,
 <https://www.rfc-editor.org/info/rfc3864>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

Popov, et al. Expires December 28, 2018 [Page 22]

Internet-Draft Token Binding over HTTP June 2018

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [fetch-spec]
 WhatWG, "Fetch", Living Standard ,
 <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-tokbind-tls13]
 Harper, N., "Token Binding for Transport Layer Security
 (TLS) Version 1.3 Connections", draft-ietf-tokbind-
 tls13-01 (work in progress), May 2018.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", OASIS Standard saml-core-
 2.0-os, March 2005, <http://docs.oasis-
 open.org/security/saml/v2.0/saml-core-2.0-os.pdf>.

 [OpenID.Core]
 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0", August 2015,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

Popov, et al. Expires December 28, 2018 [Page 23]

Internet-Draft Token Binding over HTTP June 2018

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS. IEEE
 Symposium on Security and Privacy", 2014.

Authors’ Addresses

 Andrei Popov
 Microsoft Corp.
 USA

 Email: andreipo@microsoft.com

 Magnus Nystroem
 Microsoft Corp.
 USA

 Email: mnystrom@microsoft.com

 Dirk Balfanz (editor)
 Google Inc.
 USA

 Email: balfanz@google.com

 Adam Langley
 Google Inc.
 USA

 Email: agl@google.com

 Nick Harper
 Google Inc.
 USA

 Email: nharper@google.com

Popov, et al. Expires December 28, 2018 [Page 24]

Internet-Draft Token Binding over HTTP June 2018

 Jeff Hodges
 PayPal
 USA

 Email: Jeff.Hodges@paypal.com

Popov, et al. Expires December 28, 2018 [Page 25]

