
Internet Engineering Task Force A. Popov, Ed.
Internet-Draft M. Nystroem
Intended status: Standards Track Microsoft Corp.
Expires: November 24, 2018 D. Balfanz
 A. Langley
 Google Inc.
 J. Hodges
 PayPal
 May 23, 2018

 The Token Binding Protocol Version 1.0
 draft-ietf-tokbind-protocol-19

Abstract

 This document specifies Version 1.0 of the Token Binding protocol.
 The Token Binding protocol allows client/server applications to
 create long-lived, uniquely identifiable TLS bindings spanning
 multiple TLS sessions and connections. Applications are then enabled
 to cryptographically bind security tokens to the TLS layer,
 preventing token export and replay attacks. To protect privacy, the
 Token Binding identifiers are only conveyed over TLS and can be reset
 by the user at any time.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 24, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Popov, et al. Expires November 24, 2018 [Page 1]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Token Binding Protocol Overview 3
 3. Token Binding Protocol Message 4
 3.1. TokenBinding.tokenbinding_type 6
 3.2. TokenBinding.tokenbindingid 7
 3.3. TokenBinding.signature 7
 3.4. TokenBinding.extensions 8
 4. Establishing a Token Binding 9
 4.1. Client Processing Rules 9
 4.2. Server Processing Rules 9
 5. Bound Security Token Creation and Validation 10
 6. IANA Considerations . 11
 6.1. Token Binding Key Parameters Registry 11
 6.2. Token Binding Types Registry 12
 6.3. Token Binding Extensions Registry 13
 6.4. Registration of Token Binding TLS Exporter Label 13
 7. Security Considerations 14
 7.1. Security Token Replay 14
 7.2. Downgrade Attacks . 14
 7.3. Privacy Considerations 14
 7.4. Token Binding Key Sharing Between Applications 15
 7.5. Triple Handshake Vulnerability in TLS 1.2 and Older TLS
 Versions . 15
 8. Acknowledgements . 15
 9. References . 15
 9.1. Normative References 16
 9.2. Informative References 17
 Authors’ Addresses . 17

1. Introduction

 Servers often generate various security tokens (e.g. HTTP cookies,
 OAuth [RFC6749] tokens) for applications to present when accessing
 protected resources. In general, any party in possession of bearer
 security tokens gain access to certain protected resource(s).

Popov, et al. Expires November 24, 2018 [Page 2]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Attackers take advantage of this by exporting bearer tokens from
 user’s application connections or machines, presenting them to
 application servers, and impersonating authenticated users. The idea
 of Token Binding is to prevent such attacks by cryptographically
 binding application security tokens to the underlying TLS [RFC5246]
 layer.

 A Token Binding is established by a user agent generating a private-
 public key pair (possibly within a secure hardware module, such as a
 Trusted Platform Module) per target server, providing the public key
 to the server, and proving possession of the corresponding private
 key, on every TLS connection to the server. The proof of possession
 involves signing the exported keying material (EKM) [RFC5705] from
 the TLS connection with the private key. The corresponding public
 key is included in the Token Binding identifier structure (described
 in the Section 3.2 "TokenBinding.tokenbindingid"). Token Bindings
 are long-lived, i.e., they encompass multiple TLS connections and TLS
 sessions between a given client and server. To protect privacy,
 Token Binding IDs are never conveyed over insecure connections and
 can be reset by the user at any time, e.g., when clearing browser
 cookies.

 When issuing a security token to a client that supports Token
 Binding, a server includes the client’s Token Binding ID (or its
 cryptographic hash) in the token. Later on, when a client presents a
 security token containing a Token Binding ID, the server verifies
 that the ID in the token matches the ID of the Token Binding
 established with the client. In the case of a mismatch, the server
 rejects the token (details are application-specific).

 In order to successfully export and replay a bound security token, an
 attacker needs to also be able to use the client’s private key, which
 is hard to do if the key is specially protected, e.g., generated in a
 secure hardware module.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Token Binding Protocol Overview

 In the course of a TLS handshake, a client and server can use the
 Token Binding Negotiation TLS Extension
 [I-D.ietf-tokbind-negotiation] to negotiate the Token Binding

Popov, et al. Expires November 24, 2018 [Page 3]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 protocol version and the parameters (signature algorithm, length) of
 the Token Binding key. This negotiation does not require additional
 round-trips.

 As described in [I-D.ietf-tokbind-negotiation], version 1.0 of the
 Token Binding protocol is represented by TB_ProtocolVersion.major = 1
 and TB_ProtocolVersion.minor = 0 in the Token Binding Negotiation TLS
 Extension.

 The Token Binding protocol consists of one message sent by the client
 to the server, proving possession of one or more client-generated
 asymmetric private keys. This message is not sent if the Token
 Binding Negotiation has been unsuccessful. The Token Binding message
 is sent with the application protocol data over TLS.

 A server receiving the Token Binding message verifies that the key
 parameters in the message match the Token Binding parameters
 negotiated (e.g., via [I-D.ietf-tokbind-negotiation]), and then
 validates the signatures contained in the Token Binding message. If
 either of these checks fails, the server rejects the binding, along
 with all associated bound tokens. Otherwise, the Token Binding is
 successfully established with the ID contained in the Token Binding
 message.

 When a server supporting the Token Binding protocol receives a bound
 token, the server compares the Token Binding ID in the token with the
 Token Binding ID established with the client. If the bound token is
 received on a TLS connection without a Token Binding, or if the Token
 Binding IDs do not match, the token is rejected.

 This document defines the format of the Token Binding protocol
 message, the process of establishing a Token Binding, the format of
 the Token Binding ID, and the process of validating a bound token.
 Token Binding Negotiation TLS Extension
 [I-D.ietf-tokbind-negotiation] describes the negotiation of the Token
 Binding protocol and key parameters. Token Binding over HTTP
 [I-D.ietf-tokbind-https] explains how the Token Binding message is
 encapsulated within HTTP/1.1 [RFC7230] or HTTP/2 [RFC7540] messages.
 [I-D.ietf-tokbind-https] also describes Token Binding between
 multiple communicating parties: User Agent, Identity Provider and
 Relying Party.

3. Token Binding Protocol Message

 The Token Binding message is sent by the client to prove possession
 of one or more private keys held by the client. This message MUST be
 sent if the client and server successfully negotiated the use of the
 Token Binding protocol (e.g., via [I-D.ietf-tokbind-negotiation] or a

Popov, et al. Expires November 24, 2018 [Page 4]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 different mechanism), and MUST NOT be sent otherwise. This message
 MUST be sent in the client’s first application protocol message.
 This message MAY also be sent in subsequent application protocol
 messages, proving possession of additional private keys held by the
 same client, which can be used to facilitate token binding between
 more than two communicating parties. For example, Token Binding over
 HTTP [I-D.ietf-tokbind-https] specifies an encapsulation of the Token
 Binding message in HTTP application protocol messages, as well as
 scenarios involving more than two communicating parties.

 The Token Binding message format is defined using TLS Presentation
 Language (see Section 4 of [RFC5246]):

 enum {
 rsa2048_pkcs1.5(0), rsa2048_pss(1), ecdsap256(2), (255)
 } TokenBindingKeyParameters;

 struct {
 opaque modulus<1..2^16-1>;
 opaque publicexponent<1..2^8-1>;
 } RSAPublicKey;

 struct {
 opaque point <1..2^8-1>;
 } TB_ECPoint;

 struct {
 TokenBindingKeyParameters key_parameters;
 uint16 key_length; /* Length (in bytes) of the following
 TokenBindingID.TokenBindingPublicKey */
 select (key_parameters) {
 case rsa2048_pkcs1.5:
 case rsa2048_pss:
 RSAPublicKey rsapubkey;
 case ecdsap256:
 TB_ECPoint point;
 } TokenBindingPublicKey;
 } TokenBindingID;

 enum {
 (255) /* No initial TB_ExtensionType registrations */
 } TB_ExtensionType;

 struct {
 TB_ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } TB_Extension;

Popov, et al. Expires November 24, 2018 [Page 5]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 enum {
 provided_token_binding(0), referred_token_binding(1), (255)
 } TokenBindingType;

 struct {
 TokenBindingType tokenbinding_type;
 TokenBindingID tokenbindingid;
 opaque signature<64..2^16-1>; /* Signature over the concatenation
 of tokenbinding_type,
 key_parameters and exported
 keying material (EKM) */
 TB_Extension extensions<0..2^16-1>;
 } TokenBinding;

 struct {
 TokenBinding tokenbindings<132..2^16-1>;
 } TokenBindingMessage;

 The Token Binding message consists of a series of TokenBinding
 structures, each containing the type of the token binding, the
 TokenBindingID, a signature using the Token Binding key, optionally
 followed by TB_Extension structures.

3.1. TokenBinding.tokenbinding_type

 This document defines two Token Binding types:

 o provided_token_binding - used to establish a Token Binding when
 connecting to a server.

 o referred_token_binding - used when requesting tokens that are
 intended to be presented to a different server.

 Token Binding over HTTP [I-D.ietf-tokbind-https] describes a use case
 for referred_token_binding where Token Bindings are established
 between multiple communicating parties: User Agent, Identity Provider
 and Relying Party. User Agent sends referred_token_binding to the
 Identity Provider in order to prove possession of the Token Binding
 key it uses with the Relying Party. The Identity Provider can then
 bind the token it is supplying (for presentation to the Relying
 Party) to the Token Binding ID contained in the
 referred_token_binding.

 An implementation MUST ignore any unknown Token Binding types.

Popov, et al. Expires November 24, 2018 [Page 6]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

3.2. TokenBinding.tokenbindingid

 The ID of the Token Binding established as a result of Token Binding
 message processing contains the identifier of the negotiated key
 parameters, the length (in bytes) of the Token Binding public key,
 and the Token Binding public key itself. The Token Binding ID can be
 obtained from the TokenBinding structure by discarding the Token
 Binding type, signature and extensions.

 When rsa2048_pkcs1.5 or rsa2048_pss is used, RSAPublicKey.modulus and
 RSAPublicKey.publicexponent contain the modulus and exponent of a
 2048-bit RSA public key represented in big-endian format, with
 leading zero bytes omitted.

 When ecdsap256 is used, TB_ECPoint.point contains the X coordinate
 followed by the Y coordinate of a Curve P-256 key. The X and Y
 coordinates are unsigned 32-byte integers encoded in big-endian
 format, preserving any leading zero bytes. Future specifications may
 define Token Binding keys using other elliptic curves with their
 corresponding signature and point formats.

 Token Binding protocol implementations SHOULD make Token Binding IDs
 available to the application as opaque byte sequences, so that
 applications do not rely on a particular Token Binding ID structure.
 E.g., server applications will use Token Binding IDs when generating
 and verifying bound tokens.

3.3. TokenBinding.signature

 When rsa2048_pkcs1.5 is used, TokenBinding.signature contains the
 signature generated using the RSASSA-PKCS1-v1_5 signature scheme
 defined in [RFC8017] with SHA256 as the hash function.

 When rsa2048_pss is used, TokenBinding.signature contains the
 signature generated using the RSASSA-PSS signature scheme defined in
 [RFC8017] with SHA256 as the hash function. MGF1 with SHA256 MUST be
 used as the mask generation function, and the salt length MUST equal
 32 bytes.

 When ecdsap256 is used, TokenBinding.signature contains a pair of
 32-byte integers, R followed by S, generated with ECDSA using Curve
 P-256 and SHA256 as defined in [ANSI.X9-62.2005] and
 [FIPS.186-4.2013]. R and S are encoded in big-endian format,
 preserving any leading zero bytes.

 The signature is computed over the byte string representing the
 concatenation of:

Popov, et al. Expires November 24, 2018 [Page 7]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 o TokenBindingType value contained in the
 TokenBinding.tokenbinding_type field;

 o TokenBindingKeyParameters value contained in the
 TokenBindingID.key_parameters field;

 o Exported keying material (EKM) value obtained from the current TLS
 connection.

 Please note that TLS 1.2 and earlier versions support renegotiation,
 which produces a new TLS master secret for the same connection, with
 associated session keys and EKM value. TokenBinding.signature MUST
 be a signature of the EKM value derived from the TLS master secret
 that produced the session keys encrypting the TLS application_data
 record(s) containing this TokenBinding. Such use of the current EKM
 for the TLS connection makes replay of bound tokens within
 renegotiated TLS sessions detectable, but requires the application to
 synchronize Token Binding message generation and verification with
 the TLS handshake state.

 Specifications defining the use of Token Binding with application
 protocols, such as Token Binding over HTTP [I-D.ietf-tokbind-https],
 MAY prohibit the use of TLS renegotiation in combination with Token
 Binding, obviating the need for such synchronization. Alternatively,
 such specifications need to define a way to determine which EKM value
 corresponds to a given TokenBindingMessage, and a mechanism
 preventing a TokenBindingMessage from being split across TLS
 renegotiation boundaries (i.e., due to TLS message fragmentation -
 see Section 6.2.1 of [RFC5246]). Note that application layer
 messages conveying a TokenBindingMessage may cross renegotiation
 boundaries in ways that make processing difficult.

 The EKM is obtained using the Keying Material Exporters for TLS
 defined in [RFC5705], by supplying the following input values:

 o Label: The ASCII string "EXPORTER-Token-Binding" with no
 terminating NUL.

 o Context value: No application context supplied.

 o Length: 32 bytes.

3.4. TokenBinding.extensions

 A Token Binding message may optionally contain a series of
 TB_Extension structures, each consisting of an extension_type and
 extension_data. The structure and meaning of extension_data depends
 on the specific extension_type.

Popov, et al. Expires November 24, 2018 [Page 8]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Initially, no extension types are defined (see Section 6.3
 "Token Binding Extensions Registry"). One of the possible uses of
 extensions envisioned at the time of this writing is attestation:
 cryptographic proof that allows the server to verify that the Token
 Binding key is hardware-bound. The definitions of such Token Binding
 protocol extensions are outside the scope of this specification.

4. Establishing a Token Binding

4.1. Client Processing Rules

 The client MUST include at least one TokenBinding structure in the
 Token Binding message. The key parameters used in a
 provided_token_binding MUST match those negotiated with the server
 (e.g., via [I-D.ietf-tokbind-negotiation] or a different mechanism).

 The client MUST generate and store Token Binding keys in a secure
 manner that prevents key export. In order to prevent cooperating
 servers from linking user identities, the scope of the Token Binding
 keys MUST NOT be broader than the scope of the tokens, as defined by
 the application protocol.

 When the client needs to send a referred_token_binding to the
 Identity Provider, the client SHALL construct the referred
 TokenBinding structure in the following manner:

 o Set TokenBinding.tokenbinding_type to referred_token_binding.

 o Set TokenBinding.tokenbindingid to the Token Binding ID used with
 the Relying Party.

 o Generate TokenBinding.signature, using the EKM value of the TLS
 connection to the Identity Provider, the Token Binding key
 established with the Relying Party and the signature algorithm
 indicated by the associated key parameters. Note that these key
 parameters may differ from the key parameters negotiated with the
 Identity Provider.

 Conveying referred Token Bindings in this fashion allows the Identity
 Provider to verify that the client controls the Token Binding key
 used with the Relying Party.

4.2. Server Processing Rules

 The triple handshake vulnerability in TLS 1.2 and older TLS versions
 affects the security of the Token Binding protocol, as described in
 Section 7 "Security Considerations". Therefore, the server MUST NOT
 negotiate the use of the Token Binding protocol with these TLS

Popov, et al. Expires November 24, 2018 [Page 9]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 versions, unless the server also negotiates the Extended Master
 Secret [RFC7627] and Renegotiation Indication [RFC5746] TLS
 extensions.

 If the use of the Token Binding protocol was not negotiated, but the
 client sends the Token Binding message, the server MUST reject any
 contained bindings.

 If the Token Binding type is "provided_token_binding", the server
 MUST verify that the signature algorithm (including elliptic curve in
 the case of ECDSA) and key length in the Token Binding message match
 those negotiated with this client (e.g., via
 [I-D.ietf-tokbind-negotiation] or a different mechanism). In the
 case of a mismatch, the server MUST reject the binding. Token
 Bindings of type "referred_token_binding" may use different key
 parameters than those negotiated with this client.

 If the Token Binding message does not contain at least one
 TokenBinding structure, or if a signature contained in any
 TokenBinding structure is invalid, the server MUST reject the
 binding.

 Servers MUST ignore any unknown extensions. Initially, no extension
 types are defined (see Section 6.3
 "Token Binding Extensions Registry").

 If all checks defined above have passed successfully, the Token
 Binding between this client and server is established. The Token
 Binding ID(s) conveyed in the Token Binding Message can be provided
 to the server-side application. The application may then use the
 Token Binding IDs for bound security token creation and validation,
 see Section 5.

 If a Token Binding is rejected, any associated bound tokens presented
 on the current TLS connection MUST also be rejected by the server.
 The effect of this is application-specific, e.g., failing requests, a
 requirement for the client to re-authenticate and present a different
 token, or connection termination.

5. Bound Security Token Creation and Validation

 Security tokens can be bound to the TLS layer in a variety of ways:
 by embedding the Token Binding ID or its cryptographic hash in the
 token, or by maintaining a database mapping tokens to Token Binding
 IDs. The specific method of generating bound security tokens is
 application-defined and beyond the scope of this document. Note that
 applicable security considerations are outlined in Section 7.

Popov, et al. Expires November 24, 2018 [Page 10]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Either or both clients and servers MAY create bound security tokens.
 For example, HTTPS servers employing Token Binding for securing their
 HTTP cookies will bind these cookies. In the case of a server-
 initiated challenge-response protocol employing Token Binding and
 TLS, the client can, for example, incorporate the Token Binding ID
 within the signed object it returns, thus binding the object.

 Upon receipt of a security token, the server attempts to retrieve
 Token Binding ID information from the token and from the TLS
 connection with the client. Application-provided policy determines
 whether to honor non-bound (bearer) tokens. If the token is bound
 and a Token Binding has not been established for the client
 connection, the server MUST reject the token. If the Token Binding
 ID for the token does not match the Token Binding ID established for
 the client connection, the server MUST reject the token.

6. IANA Considerations

 This section establishes three IANA registries on a new registry page
 entitled "Token Binding Protocol": "Token Binding Key Parameters",
 "Token Binding Types" and "Token Binding Extensions". It also
 registers a new TLS exporter label in the TLS Exporter Label
 Registry.

6.1. Token Binding Key Parameters Registry

 This document establishes a registry for identifiers of Token Binding
 key parameters entitled "Token Binding Key Parameters" under the
 "Token Binding Protocol" heading.

 Entries in this registry require the following fields:

 o Value: The octet value that identifies a set of Token Binding key
 parameters (0-255).

 o Description: The description of the Token Binding key parameters.

 o Specification: A reference to a specification that defines the
 Token Binding key parameters.

 This registry operates under the "Specification Required" policy as
 defined in [RFC8126]. The designated expert will require the
 inclusion of a reference to a permanent and readily available
 specification that enables the creation of interoperable
 implementations using the identified set of Token Binding key
 parameters.

 An initial set of registrations for this registry follows:

Popov, et al. Expires November 24, 2018 [Page 11]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Value: 0

 Description: rsa2048_pkcs1.5

 Specification: this document

 Value: 1

 Description: rsa2048_pss

 Specification: this document

 Value: 2

 Description: ecdsap256

 Specification: this document

6.2. Token Binding Types Registry

 This document establishes a registry for Token Binding type
 identifiers entitled "Token Binding Types" under the "Token Binding
 Protocol" heading.

 Entries in this registry require the following fields:

 o Value: The octet value that identifies the Token Binding type
 (0-255).

 o Description: The description of the Token Binding type.

 o Specification: A reference to a specification that defines the
 Token Binding type.

 This registry operates under the "Specification Required" policy as
 defined in [RFC8126]. The designated expert will require the
 inclusion of a reference to a permanent and readily available
 specification that enables the creation of interoperable
 implementations using the identified Token Binding type.

 An initial set of registrations for this registry follows:

 Value: 0

Popov, et al. Expires November 24, 2018 [Page 12]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Description: provided_token_binding

 Specification: this document

 Value: 1

 Description: referred_token_binding

 Specification: this document

6.3. Token Binding Extensions Registry

 This document establishes a registry for Token Binding extensions
 entitled "Token Binding Extensions" under the "Token Binding
 Protocol" heading.

 Entries in this registry require the following fields:

 o Value: The octet value that identifies the Token Binding extension
 (0-255).

 o Description: The description of the Token Binding extension.

 o Specification: A reference to a specification that defines the
 Token Binding extension.

 This registry operates under the "Specification Required" policy as
 defined in [RFC8126]. The designated expert will require the
 inclusion of a reference to a permanent and readily available
 specification that enables the creation of interoperable
 implementations using the identified Token Binding extension. This
 document creates no initial registrations in the "Token Binding
 Extensions" registry.

6.4. Registration of Token Binding TLS Exporter Label

 This document adds the following registration in the TLS Exporter
 Label Registry:

 Value: EXPORTER-Token-Binding

 DTLS-OK: Y

 Reference: this document

Popov, et al. Expires November 24, 2018 [Page 13]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

7. Security Considerations

7.1. Security Token Replay

 The goal of the Token Binding protocol is to prevent attackers from
 exporting and replaying security tokens, thereby impersonating
 legitimate users and gaining access to protected resources. Bound
 tokens can be replayed by malware present in User Agents, which may
 be undetectable by a server. However, in order to export bound
 tokens to other machines and successfully replay them, attackers also
 need to export corresponding Token Binding private keys. Token
 Binding private keys are therefore high-value assets and SHOULD be
 strongly protected, ideally by generating them in a hardware security
 module that prevents key export.

 The manner in which a token is bound to the TLS layer is application-
 defined and beyond the scope of this document. However, the
 resulting bound token needs to be integrity-protected, so that an
 attacker cannot remove the binding or substitute a Token Binding ID
 of their choice without detection.

 The Token Binding protocol does not prevent cooperating clients from
 sharing a bound token. A client could intentionally export a bound
 token with the corresponding Token Binding private key, or perform
 signatures using this key on behalf of another client.

7.2. Downgrade Attacks

 The Token Binding protocol MUST be negotiated using a mechanism that
 prevents downgrade. E.g., [I-D.ietf-tokbind-negotiation] uses a TLS
 extension for Token Binding negotiation. TLS detects handshake
 message modification by active attackers, therefore it is not
 possible for an attacker to remove or modify the "token_binding"
 extension without breaking the TLS handshake. The signature
 algorithm and key length used in the TokenBinding of type
 "provided_token_binding" MUST match the negotiated parameters.

7.3. Privacy Considerations

 The Token Binding protocol uses persistent, long-lived Token Binding
 IDs. To protect privacy, Token Binding IDs are never transmitted in
 clear text and can be reset by the user at any time, e.g. when
 clearing browser cookies. Some applications offer a special privacy
 mode where they don’t store or use tokens supplied by the server,
 e.g., "in private" browsing. When operating in this special privacy
 mode, applications SHOULD use newly generated Token Binding keys and
 delete them when exiting this mode, or else SHOULD NOT negotiate
 Token Binding at all.

Popov, et al. Expires November 24, 2018 [Page 14]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 In order to prevent cooperating servers from linking user identities,
 the scope of the Token Binding keys MUST NOT be broader than the
 scope of the tokens, as defined by the application protocol.

 A server can use tokens and Token Binding IDs to track clients.
 Client applications that automatically limit the lifetime or scope of
 tokens to maintain user privacy SHOULD apply the same validity time
 and scope limits to Token Binding keys.

7.4. Token Binding Key Sharing Between Applications

 Existing systems provide a variety of platform-specific mechanisms
 for certain applications to share tokens, e.g. to enable single sign-
 on scenarios. For these scenarios to keep working with bound tokens,
 the applications that are allowed to share tokens will need to also
 share Token Binding keys. Care must be taken to restrict the sharing
 of Token Binding keys to the same group(s) of applications that share
 the same tokens.

7.5. Triple Handshake Vulnerability in TLS 1.2 and Older TLS Versions

 The Token Binding protocol relies on the TLS Exporters [RFC5705] to
 associate a TLS connection with a Token Binding. The triple
 handshake attack [TRIPLE-HS] is a known vulnerability in TLS 1.2 and
 older TLS versions, allowing the attacker to synchronize keying
 material between TLS connections. The attacker can then successfully
 replay bound tokens. For this reason, the Token Binding protocol
 MUST NOT be negotiated with these TLS versions, unless the Extended
 Master Secret [RFC7627] and Renegotiation Indication [RFC5746] TLS
 extensions have also been negotiated.

8. Acknowledgements

 This document incorporates comments and suggestions offered by Eric
 Rescorla, Gabriel Montenegro, Martin Thomson, Vinod Anupam, Anthony
 Nadalin, Michael B. Jones, Bill Cox, Nick Harper, Brian Campbell,
 Benjamin Kaduk, Alexey Melnikov and others.

 This document was produced under the chairmanship of John Bradley and
 Leif Johansson. The area directors included Eric Rescorla, Kathleen
 Moriarty and Stephen Farrell.

9. References

Popov, et al. Expires November 24, 2018 [Page 15]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

9.1. Normative References

 [ANSI.X9-62.2005]
 American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry, The
 Elliptic Curve Digital Signature Algorithm (ECDSA)",
 ANSI X9.62, 2005.

 [FIPS.186-4.2013]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS 186-4, 2013.

 [I-D.ietf-tokbind-https]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., Harper,
 N., and J. Hodges, "Token Binding over HTTP", draft-ietf-
 tokbind-https-15 (work in progress), May 2018.

 [I-D.ietf-tokbind-negotiation]
 Popov, A., Nystrom, M., Balfanz, D., and A. Langley,
 "Transport Layer Security (TLS) Extension for Token
 Binding Protocol Negotiation", draft-ietf-tokbind-
 negotiation-13 (work in progress), May 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

Popov, et al. Expires November 24, 2018 [Page 16]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",
 RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",
 RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS. IEEE
 Symposium on Security and Privacy", 2014.

Authors’ Addresses

 Andrei Popov (editor)
 Microsoft Corp.
 USA

 Email: andreipo@microsoft.com

Popov, et al. Expires November 24, 2018 [Page 17]

Internet-Draft The Token Binding Protocol Version 1.0 May 2018

 Magnus Nystroem
 Microsoft Corp.
 USA

 Email: mnystrom@microsoft.com

 Dirk Balfanz
 Google Inc.
 USA

 Email: balfanz@google.com

 Adam Langley
 Google Inc.
 USA

 Email: agl@google.com

 Jeff Hodges
 PayPal
 USA

 Email: Jeff.Hodges@paypal.com

Popov, et al. Expires November 24, 2018 [Page 18]

