
Internet Engineering Task Force A. Popov
Internet-Draft M. Nystroem
Intended status: Standards Track Microsoft Corp.
Expires: September 22, 2016 D. Balfanz, Ed.
 A. Langley
 Google Inc.
 J. Hodges
 Paypal
 March 21, 2016

 Token Binding over HTTP
 draft-ietf-tokbind-https-03

Abstract

 This document describes a collection of mechanisms that allow HTTP
 servers to cryptographically bind authentication tokens (such as
 cookies and OAuth tokens) to a TLS [RFC5246] connection.

 We describe both _first-party_ as well as _federated_ scenarios. In
 a first-party scenario, an HTTP server issues a security token (such
 as a cookie) to a client, and expects the client to send the security
 token back to the server at a later time in order to authenticate.
 Binding the token to the TLS connection between client and server
 protects the security token from theft, and ensures that the security
 token can only be used by the client that it was issued to.

 Federated token bindings, on the other hand, allow servers to
 cryptographically bind security tokens to a TLS [RFC5246] connection
 that the client has with a _different_ server than the one issuing
 the token.

 This Internet-Draft is a companion document to The Token Binding
 Protocol [TBPROTO]

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Popov, et al. Expires September 22, 2016 [Page 1]

Internet-Draft Token Binding over HTTP March 2016

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 2. The Sec-Token-Binding Header 4
 3. Federation Use Cases . 4
 3.1. Introduction . 4
 3.2. Overview . 5
 3.3. HTTP Redirects . 6
 3.4. Negotiated Key Parameters 7
 3.5. Federation Example 7
 4. Security Considerations 10
 4.1. Security Token Replay 10
 4.2. Triple Handshake Vulnerability in TLS 10
 4.3. Sensitivity of the Sec-Token-Binding Header 10
 4.4. Securing Federated Sign-On Protocols 11
 5. Privacy Considerations 13
 5.1. Scoping of Token Binding Keys 13
 5.2. Life Time of Token Binding Keys 14
 6. References . 14
 6.1. Normative References 14
 6.2. Informative References 15
 Authors’ Addresses . 15

Popov, et al. Expires September 22, 2016 [Page 2]

Internet-Draft Token Binding over HTTP March 2016

1. Introduction

 The Token Binding Protocol [TBPROTO] defines a Token Binding ID for a
 TLS connection between a client and a server. The Token Binding ID
 of a TLS connection is related to a private key that the client
 proves possession of to the server, and is long-lived (i.e.,
 subsequent TLS connections between the same client and server have
 the same Token Binding ID). When issuing a security token (e.g. an
 HTTP cookie or an OAuth token) to a client, the server can include
 the Token Binding ID in the token, thus cryptographically binding the
 token to TLS connections between that particular client and server,
 and inoculating the token against theft by attackers.

 While the Token Binding Protocol [TBPROTO] defines a message format
 for establishing a Token Binding ID, it doesn’t specify how this
 message is embedded in higher-level protocols. The purpose of this
 specification is to define how TokenBindingMessages are embedded in
 HTTP (both versions 1.1 [RFC2616] and 2 [I-D.ietf-httpbis-http2]).
 Note that TokenBindingMessages are only defined if the underlying
 transport uses TLS. This means that Token Binding over HTTP is only
 defined when the HTTP protocol is layered on top of TLS (commonly
 referred to as HTTPS).

 HTTP clients establish a Token Binding ID with a server by including
 a special HTTP header in HTTP requests. The HTTP header value is a
 TokenBindingMessage.

 TokenBindingMessages allow clients to establish multiple Token
 Binding IDs with the server, by including multiple TokenBinding
 structures in the TokenBindingMessage. By default, a client will
 establish a _provided_ Token Binding ID with the server, indicating a
 Token Binding ID that the client will persistently use with the
 server. Under certain conditions, the client can also include a
 referred Token Binding ID in the TokenBindingMessage, indicating a
 Token Binding ID that the client is using with a _different_ server
 than the one that the TokenBindingMessage is sent to. This is useful
 in federation scenarios.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Popov, et al. Expires September 22, 2016 [Page 3]

Internet-Draft Token Binding over HTTP March 2016

2. The Sec-Token-Binding Header

 Once a client and server have negotiated the Token Binding Protocol
 with HTTP/1.1 or HTTP/2 (see The Token Binding Protocol [TBPROTO]),
 clients MUST include the Sec-Token-Binding header in their HTTP
 requests. The ABNF of the Sec-Token-Binding header is:

 Sec-Token-Binding = "Sec-Token-Binding" ":" [CFWS] EncodedTokenBindingMessage

 The EncodedTokenBindingMessage is a web-safe Base64-encoding of the
 TokenBindingMessage as defined in the TokenBindingProtocol [TBPROTO].

 The TokenBindingMessage MUST contain a TokenBinding with
 TokenBindingType provided_token_binding, which MUST be signed with
 the Token Binding key used by the client for connections between
 itself and the server that the HTTP request is sent to (clients use
 different Token Binding keys for different servers). The Token
 Binding ID established by this TokenBinding is called a _Provided
 Token Binding ID_

 In HTTP/2, the client SHOULD use Header Compression
 [I-D.ietf-httpbis-header-compression] to avoid the overhead of
 repeating the same header in subsequent HTTP requests.

3. Federation Use Cases

3.1. Introduction

 For privacy reasons, clients use different private keys to establish
 Provided Token Binding IDs with different servers. As a result, a
 server cannot bind a security token (such as an OAuth token or an
 OpenID Connect identity token) to a TLS connection that the client
 has with a different server. This is, however, a common requirement
 in federation scenarios: For example, an Identity Provider may wish
 to issue an identity token to a client and cryptographically bind
 that token to the TLS connection between the client and a Relying
 Party.

 In this section we describe mechanisms to achieve this. The common
 idea among these mechanisms is that a server (called the _Token
 Consumer_ in this document) gives the client permission to reveal the
 Provided Token Binding ID that is used between the client and itself,
 to another server (called the _Token Provider_ in this document).
 Also common across the mechanisms is how the Token Binding ID is
 revealed to the Token Provider: The client uses the Token Binding
 Protocol [TBPROTO], and includes a TokenBinding structure in the Sec-
 Token-Binding HTTP header defined above. What differs between the

Popov, et al. Expires September 22, 2016 [Page 4]

Internet-Draft Token Binding over HTTP March 2016

 various mechanisms is _how_ the Token Consumer grants the permission
 to reveal the Token Binding ID to the Token Provider. Below we
 specify one such mechanism, which is suitable for redirect-based
 interactions between Token Consumers and Token Providers.

3.2. Overview

 In a Federated Sign-On protocol, an Identity Provider issues an
 identity token to a client, which sends the identity token to a
 Relying Party to authenticate itself. Examples of this include
 OpenID Connect (where the identity token is called "ID Token") and
 SAML (where the identity token is a SAML assertion).

 To better protect the security of the identity token, the Identity
 Provider may wish to bind the identity token to the TLS connection
 between the client and the Relying Party, thus ensuring that only
 said client can use the identity token: The Relying Party will
 compare the Token Binding ID in the identity token with the Token
 Binding ID of the TLS connection between it an the client.

 This is an example of a federation scenario, which more generally can
 be described as follows:

 o A Token Consumer causes the client to issue a token request to the
 Token Provider. The goal is for the client to obtain a token and
 then use it with the Token Consumer.

 o The client delivers the token request to the Token Provider.

 o The Token Provider issues the token. The token is issued for the
 specific Token Consumer who requested it (thus preventing
 malicious Token Consumers from using tokens with other Token
 Consumers). The token is, however, typically a bearer token,
 meaning that any client can use it with the Token Consumer, not
 just the client to which it was issued.

 o Therefore, in the previous step, the Token Provider may want to
 include in the token the Token-Binding public key that the client
 uses when communicating with the Token Consumer, thus _binding_
 the token to client’s Token-Binding keypair. The client proves
 possession of the private key when communicating with the Token
 Consumer through the Token Binding Protocol [TBPROTO], and reveals
 the corresponding public key of this keypair as part of the Token
 Binding ID. Comparing the public key from the token with the
 public key from the Token Binding ID allows the Token Consumer to
 verify that the token was sent to it by the legitimate client.

Popov, et al. Expires September 22, 2016 [Page 5]

Internet-Draft Token Binding over HTTP March 2016

 o To allow the Token Provider to include the Token-Binding public
 key in the token, the Token Binding ID (between client and Token
 Consumer) must therefore be communicated to the Token Provider
 along with the token request. Communicating a Token Binding ID
 involves proving possession of a private key and is described in
 the Token Binding Protocol [TBPROTO].

 The client will perform this last operation (proving possession of a
 private key that corresponds to a Token Binding ID between the client
 and the Token Consumer while delivering the token request to the
 Token Provider) only if the Token Consumer permits the client to do
 so.

 Below, we specify how Token Consumers can grant this permission.
 during redirect-based federation protocols.

3.3. HTTP Redirects

 When a Token Consumer redirects the client to a Token Provider as a
 means to deliver the token request, it SHOULD include a Include-
 Referer-Token-Binding-ID HTTP response header in its HTTP response.
 The ABNF of the Include-Referer-Token-Binding-ID header is:

 Include-Referer-Token-Binding-ID = "Include-Referer-Token-Binding-ID" ":"
 [CFWS] %x74.72.75.65 ; "true", case-sensiti
ve

 Including this response header signals to the client that it should
 reveal, to the Token Provider, the Token Binding ID used between
 itself and the Token Consumer. In the absence of this response
 header, the client will not disclose any information about the Token
 Binding used between the client and the Token Consumer to the Token
 Provider.

 When a client receives this header, it should take the TokenBindingID
 of the provided TokenBinding from the referrer and create a referred
 TokenBinding with it to include in the TokenBindingMessage on the
 redirect request. In other words, the Token Binding message in the
 redirect request to the Token Provider includes one provided binding
 and one referred binding, the latter constructed from the binding
 between the client and the Token Consumer.

 If the Include-Referer-Token-Binding-ID header is received in
 response to a request that did not include the Token-Binding header,
 the client MUST ignore the Include-Referer-Token-Binding-ID header.

 This header has only meaning if the HTTP status code is 301, 302,
 303, 307 or 308, and MUST be ignored by the client for any other

Popov, et al. Expires September 22, 2016 [Page 6]

Internet-Draft Token Binding over HTTP March 2016

 status codes. If the client supports the Token Binding Protocol, and
 has negotiated the Token Binding Protocol with both the Token
 Consumer and the Token Provider, it already sends the following
 header to the Token Provider with each HTTP request (see above):

 Sec-Token-Binding: EncodedTokenBindingMessage

 The TokenBindingMessage SHOULD contain a TokenBinding with
 TokenBindingType referred_token_binding. If included, this
 TokenBinding MUST be signed with the Token Binding key used by the
 client for connections between itself and the Token Consumer (more
 specifically, the web origin that issued the Include-Referer-Token-
 Binding-ID response header). The Token Binding ID established by
 this TokenBinding is called a _Referred Token Binding ID_.

 As described above, the TokenBindingMessage MUST additionally contain
 a Provided Token Binding ID, i.e., a TokenBinding structure with
 TokenBindingType provided_token_binding, which MUST be signed with
 the Token Binding key used by the client for connections between
 itself and the Token Privider (more specifically, the web origin that
 the token request sent to).

3.4. Negotiated Key Parameters

 The Token Binding Protocol [TBPROTO] allows the server and client to
 negotiate a signature algorithm used in the TokenBindingMessage. It
 is possible that the Token Binding ID used between the client and the
 Token Consumer, and the Token Binding ID used between the client and
 Token Provider, use different signature algorithms. The client MUST
 use the signature algorithm negotiated with the Token Consumer in the
 referred_token_binding TokenBinding of the TokenBindingMessage, even
 if that signature algorithm is different from the one negotiated with
 the origin that the header is sent to.

 Token Providers SHOULD support all the SignatureAndHashAlgorithms
 specified in the Token Binding Protocol [TBPROTO]. If a token
 provider does not support the SignatureAndHashAlgorithm specified in
 the referred_token_binding TokenBinding in the TokenBindingMessage,
 it MUST issue an unbound token.

3.5. Federation Example

 The diagram below shows a typical HTTP Redirect-based Web Browser SSO
 Profile (no artifact, no callbacks), featuring binding of, e.g., a
 TLS Token Binding ID into an OpenID Connect "ID Token".

Popov, et al. Expires September 22, 2016 [Page 7]

Internet-Draft Token Binding over HTTP March 2016

 Legend:

 +------------+--+
EKM:	TLS Exported Keying Material [RFC5705]
{EKMn}Ksm:	EKM for server "n", signed by private key of TBID
	"m", where "n" must represent server receiving the
	ETBMSG, if a conveyed TB’s type is
	provided_token_binding, then m = n, else if TB’s
	type is referred_token_binding, then m != n. E.g.,
	see step 1b in diagram below.
ETBMSG:	"Sec-Token-Binding" HTTP header field conveying an
	EncodedTokenBindingMessage, in turn conveying
	TokenBinding (TB)struct(s), e.g.: ETBMSG[[TB]] or
	ETBMSG[[TB1],[TB2]]
ID Token:	the "ID Token" in OIDC, it is the semantic
	equivalent of a SAML "authentication assertion". "ID
	Token w/TBIDn" denotes a "token bound" ID Token
	containing TBIDn.
Ks & Kp:	private (aka secret) key, and public key,
	respectively, of client-side Token Binding key pair
OIDC:	Open ID Connect
TB:	TokenBinding struct containing signed EKM, TBID, and
	TB type, e.g.:
	[{EKM1}Ks1,TBID1,provided_token_binding]
TBIDn:	Token Binding ID for client and server n’s token-
	bound TLS association. TBIDn contains Kpn.
 +------------+--+

 Client, Token Consumer, Token Provider,
 aka: aka: aka:
 User Agent OpenID Client, OpenID Provider,
 OIDC Relying Party, OIDC Provider,
 SAML Relying Party SAML Identity Provider
 [server "1"] [server "2"]
 +--------+ +----+ +-----+
 | Client | | TC | | TP |
 +--------+ +----+ +-----+
 | | |
 | | |
 | | |
 | 0. Client interacts w/TC | |
 | over HTTPS, establishes Ks1 & Kp1, TBID1 |
 | ETBMSG[[{EKM1}Ks1,TBID1,provided_token_binding]] |
 |------------------------------>| |
 | | |
 | | |
 | | |
 | 1a. OIDC ID Token request, aka| |

Popov, et al. Expires September 22, 2016 [Page 8]

Internet-Draft Token Binding over HTTP March 2016

 | "Authentication Request", conveyed with |
 | HTTP response header field of: |
 | Include-Referer-Token-Binding-ID:true |
 | any security-relevant cookies | |
 | should contain TBID1 | |
 +<- - - - - - - - - - - - - - - - | |
 . | (redirect to TP via 301, 302, | |
 . | 303, 307, or 308) | |
 . | | |
 +--->|
 | 1b. opens HTTPS w/ TP, |
 | establishes Ks2, Kp2, TBID2; |
 | sends GET or POST with |
 | ETBMSG[[{EKM2}Ks2,TBID2,provided_token_binding], |
 | [{EKM2}Ks1,TBID1,referred_token_binding]] |
 | as well as the ID Token request |
 | | |
 | | |
 | | |
 | 2. user authentication (if applicable, |
 | methods vary, particulars are out of scope) |
 |<==>|
 | (TP generates ID Token for TC containing TBID1, may |
 | also set cookie(s) containing TBID2 and/or TBID1, |
 | details vary, particulars are out of scope) |
 | | |
 | | |
 | | |
 | 3a. ID Token containing Kp1, issued for TC, |
 | conveyed via OIDC "Authentication Response" |
 +<- -|
 . | (redirect to TC) | |
 . | | |
 . | | |
 +-------------------------------->| |
 | 3b. HTTPS GET or POST with |
 | ETBMSG[[{EKM1}Ks1,TBID1,provided_token_binding]] |
 | conveying Authn Reponse containing |
 | ID Token w/TBID1, issued for TC |
 | | |
 | | |
 | | |
 | 4. user is signed-on, any security-relevant cookie(s)|
 | that are set SHOULD contain TBID1 |
 |<------------------------------| |
 | | |
 | | |

Popov, et al. Expires September 22, 2016 [Page 9]

Internet-Draft Token Binding over HTTP March 2016

4. Security Considerations

4.1. Security Token Replay

 The goal of the Federated Token Binding mechanisms is to prevent
 attackers from exporting and replaying tokens used in protocols
 between the client and Token Consumer, thereby impersonating
 legitimate users and gaining access to protected resources. Bound
 tokens can still be replayed by malware present in the client. In
 order to export the token to another machine and successfully replay
 it, the attacker also needs to export the corresponding private key.
 The Token Binding private key is therefore a high-value asset and
 MUST be strongly protected, ideally by generating it in a hardware
 security module that prevents key export.

4.2. Triple Handshake Vulnerability in TLS

 The Token Binding protocol relies on the exported key material (EKM)
 value [RFC5705] to associate a TLS connection with a TLS Token
 Binding. The triple handshake attack [TRIPLE-HS] is a known TLS
 protocol vulnerability allowing the attacker to synchronize keying
 manterial between TLS connections. The attacker can then
 successfully replay bound tokens. For this reason, the Token Binding
 protocol MUST NOT be negotiated unless the Extended Master Secret TLS
 extension [I-D.ietf-tls-session-hash] has also been negotiated.

4.3. Sensitivity of the Sec-Token-Binding Header

 The purpose of the Token Binding protocol is to convince the server
 that the client that initiated the TLS connection controls a certain
 key pair. For the server to correctly draw this conclusion after
 processing the Sec-Token-Binding header, certain secrecy and
 integrity requirements must be met.

 For example, the client’s private Token Binding key must be kept
 secret by the client. If the private key is not secret, then another
 actor in the system could create a valid Token Binding header,
 impersonating the client. This can render the main purpose of the
 protocol - to bind bearer tokens to certain clients - moot: Consider,
 for example, an attacker who obtained (perhaps through a network
 intrusion) an authentication cookie that a client uses with a certain
 server. Consider further that the server bound that cookie to the
 client’s Token Binding ID precisely to thwart cookie theft. If the
 attacker were to come into possession of the client’s private key, he
 could then establish a TLS connection with the server and craft a
 Sec-Token-Binding header that matches the binding present in the
 cookie, thus successfully authenticating as the client, and gaining
 access to the client’s data at the server. The Token Binding

Popov, et al. Expires September 22, 2016 [Page 10]

Internet-Draft Token Binding over HTTP March 2016

 protocol, in this case, didn’t successfully bind the cookie to the
 client.

 Likewise, we need integrity protection of the Sec-Token-Binding
 header: A client shouldn’t be tricked into sending a Sec-Token-
 Binding header to a server that contains Token Binding messages about
 key pairs that the client doesn’t control. Consider an attacker A
 that somehow has knowledge of the exported keying material (EKM) for
 a TLS connection between a client C and a server S. (While that is
 somewhat unlikely, it’s also not entirely out of the question, since
 the client might not treat the EKM as a secret - after all, a pre-
 image-resistant hash function has been applied to the TLS master
 secret, making it impossible for someone knowing the EKM to recover
 the TLS master secret. Such considerations might lead some clients
 to not treat the EKM as a secret.) Such an attacker A could craft a
 Sec-Token-Binding header with A’s key pair over C’s EKM. If the
 attacker could now trick C to send such a header to S, it would
 appear to S as if C controls a certain key pair when in fact it
 doesn’t (the attacker A controls the key pair).

 If A has a pre-existing relationship with S (perhaps has an account
 on S), it now appears to the server S as if A is connecting to it,
 even though it is really C. (If the server S doesn’t simply use
 Token Binding keys to identify clients, but also uses bound
 authentication cookies, then A would also have to trick C into
 sending one of A’s cookies to S, which it can do through a variety of
 means - inserting cookies through Javascript APIs, setting cookies
 through related-domain attacks, etc.) In other words, A tricked C
 into logging into A’s account on S. This could lead to a loss of
 privacy for C, since A presumably has some other way to also access
 the account, and can thus indirectly observe A’s behavior (for
 example, if S has a feature that lets account holders see their
 activity history on S).

 Therefore, we need to protect the integrity of the Sec-Token-Binding
 header. One origin should not be able to set the Sec-Token-Binding
 header (through a DOM API or otherwise) that the User Agent uses with
 another origin.

4.4. Securing Federated Sign-On Protocols

 As explained above, in a federated sign-in scenario a client will
 prove possession of two different key pairs to a Token Provider: One
 key pair is the "provided" Token Binding key pair (which the client
 normally uses with the Token Provider), and the other is the
 "referred" Token Binding key pair (which the client normally uses
 with the Token Consumer). The Token Provider is expected to issue a
 token that is bound to the referred Token Binding key.

Popov, et al. Expires September 22, 2016 [Page 11]

Internet-Draft Token Binding over HTTP March 2016

 Both proofs (that of the provided Token Binding key and that of the
 referred Token Binding key) are necessary. To show this, consider
 the following scenario:

 o The client has an authentication token with the Token Provider
 that is bound to the client’s Token Binding key.

 o The client wants to establish a secure (i.e., free of men-in-the-
 middle) authenticated session with the Token Consumer, but hasn’t
 done so yet (in other words, we’re about to run the federated
 sign-on protocol).

 o A man-in-the-middle is allowed to intercept the connection between
 client and Token Consumer or between Client and Token Provider (or
 both).

 The goal is to detect the presence of the man-in-the-middle in these
 scenarios.

 First, consider a man-in-the-middle between the client and the Token
 Provider. Recall that we assume that the client possesses a bound
 authentication token (e.g., cookie) for the Token Provider. The man-
 in-the-middle can intercept and modify any message sent by the client
 to the Token Provider, and any message sent by the Token Provider to
 the client. (This means, among other things, that the man-in-the-
 middle controls the Javascript running at the client in the origin of
 the Token Provider.) It is not, however, in possession of the
 client’s Token Binding key. Therefore, it can either choose to
 replace the Token Binding key in requests from the client to the
 Token Provider, and create a Sec-Token-Binding header that matches
 the TLS connection between the man-in-the-middle and the Token
 Provider; or it can choose to leave the Sec-Token-Binding header
 unchanged. If it chooses the latter, the signature in the Token
 Binding message (created by the original client on the exported
 keying material (EKM) for the connection between client and man-in-
 the-middle) will not match the EKM between man-in-the-middle and the
 Token Provider. If it chooses the former (and creates its own
 signature, with its own Token Binding key, over the EKM for the
 connection between man-in-the-middle and Token Provider), then the
 Token Binding message will match the connection between man-in-the-
 middle and Token Provider, but the Token Binding key in the message
 will not match the Token Binding key that the client’s authentication
 token is bound to. Either way, the man-in-the-middle is detected by
 the Token Provider, but only if the proof of key possession of the
 provided Token Binding key is required in the protocol (as we do
 above).

Popov, et al. Expires September 22, 2016 [Page 12]

Internet-Draft Token Binding over HTTP March 2016

 Next, consider the presence of a man-in-the-middle between client and
 Token Consumer. That man-in-the-middle can intercept and modify any
 message sent by the client to the Token Consumer, and any message
 sent by the Token Consumer to the client. The Token Consumer is the
 party that redirects the client to the Token Provider. In this case,
 the man-in-the-middle controls the redirect URL, and can tamper with
 any redirect URL issued by the Token Consumer (as well as with any
 Javascript running in the origin of the Token Consumer). The goal of
 the man-in-the-middle is to trick the Token Issuer to issue a token
 bound to _its_ Token Binding key, not to the Token Binding key of the
 legitimate client. To thwart this goal of the man-in-the-middle, the
 client’s referred Token Binding key must be communicated to the Token
 Producer in a manner that can not be affected by the man-in-the-
 middle (who, as we recall, can modify redirect URLs and Javascript at
 the client). Including the referred Token Binding message in the
 Sec-Token-Binding header (as opposed to, say, including the referred
 Token Binding key in an application-level message as part of the
 redirect URL) is one way to assure that the man-in-the-middle between
 client and Token Consumer cannot affect the communication of the
 referred Token Binding key to the Token Provider.

 Therefore, the Sec-Token-Binding header in the federated sign-on use
 case contains both, a proof of possession of the provided Token
 Binding key, as well as a proof of possession of the referred Token
 Binding key.

5. Privacy Considerations

5.1. Scoping of Token Binding Keys

 Clients must use different Token Binding keys for different servers,
 so as to not allow Token Binding to become a tracking tool across
 different servers. When Token Binding is used over HTTPS, this key
 scoping should in particular happen at the granularity of "effective
 top-level domain (public suffix) + 1", i.e., at the same granularity
 at which cookies can be set.

 The reason for this is that servers may use Token Binding to secure
 their cookies. These cookies can be attached to any sub-domain of
 public suffixes, and clients therefore should use the same Token
 Binding key across such subdomains. This will ensure that any server
 capable of receiving the cookie will see the same Token Binding ID
 from the client, and thus be able to verify the token binding of the
 cookie.

Popov, et al. Expires September 22, 2016 [Page 13]

Internet-Draft Token Binding over HTTP March 2016

5.2. Life Time of Token Binding Keys

 Token Binding keys don’t have an expiration time. This means that
 they can potentially be used by a server to track a user across an
 extended period of time (similar to a long-lived cookie). HTTPS
 clients such as web user agents should therefore provide a user
 interface for discarding Token Binding keys (similar to the
 affordances provided to delete cookies).

 If a user agent provides modes such as private browsing mode in which
 the user is promised that browsing state such as cookies are
 discarded after the session is over, the user agent should also
 discard Token Binding keys from such modes after the session is over.
 Generally speaking, users should be given the same level of control
 over life time of Token Binding keys as they have over cookies or
 other potential tracking mechanisms.

6. References

6.1. Normative References

 [I-D.ietf-httpbis-header-compression]
 Peon, R. and H. Ruellan, "HPACK - Header Compression for
 HTTP/2", draft-ietf-httpbis-header-compression-12 (work in
 progress), February 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

 [TBPROTO] Popov, A., "The Token Binding Protocol Version 1.0", 2014.

Popov, et al. Expires September 22, 2016 [Page 14]

Internet-Draft Token Binding over HTTP March 2016

6.2. Informative References

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-17 (work in
 progress), February 2015.

 [I-D.ietf-tls-session-hash]
 Bhargavan, K., Delignat-Lavaud, A., Pironti, A., Langley,
 A., and M. Ray, "Transport Layer Security (TLS) Session
 Hash and Extended Master Secret Extension", draft-ietf-
 tls-session-hash-06 (work in progress), July 2015.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS. IEEE
 Symposium on Security and Privacy", 2014.

Authors’ Addresses

 Andrei Popov
 Microsoft Corp.
 USA

 Email: andreipo@microsoft.com

 Magnus Nystroem
 Microsoft Corp.
 USA

 Email: mnystrom@microsoft.com

 Dirk Balfanz (editor)
 Google Inc.
 USA

 Email: balfanz@google.com

 Adam Langley
 Google Inc.
 USA

 Email: agl@google.com

Popov, et al. Expires September 22, 2016 [Page 15]

Internet-Draft Token Binding over HTTP March 2016

 Jeff Hodges
 Paypal
 USA

 Email: Jeff.Hodges@paypal.com

Popov, et al. Expires September 22, 2016 [Page 16]

