Public Notary Transparency Wrking G oup B. Laurie

I nternet-Draft A. Langl ey
I ntended status: Standards Track E. Kasper
Expi res: Septenber 22, 2016 E. Messeri
Googl e

R Stradling

Conodo

March 21, 2016

Certificate Transparency
draft-ietf-trans-rfc6962-bis-13

Abstract

Thi s docunent describes a protocol for publicly |ogging the existence
of Transport Layer Security (TLS) certificates as they are issued or
observed, in a manner that allows anyone to audit certification
authority (CA) activity and notice the issuance of suspect
certificates as well as to audit the certificate | ogs themnselves.

The intent is that eventually clients would refuse to honor
certificates that do not appear in a log, effectively forcing CAs to
add all issued certificates to the | ogs.

Logs are network services that inplenent the protocol operations for
submi ssions and queries that are defined in this docunent.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunments valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."

This Internet-Draft will expire on Septenber 22, 2016

Laurie, et al. Expi res Septenber 22, 2016 [Page 1]

Internet-Draft Certificate Transparency

Copyright Notice

March 2016

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent

Provisions Relating to | ETF Docunents

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

is subject to BCP 78 and the | ETF Trust’s Legal

in effect on the date of

Pl ease revi ew t hese documents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD Li cense text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1.

oo

Lauri e,

onpe

@@NF”P“F@!\’!“'_@!\’!"U!\’!—‘WNNNN!—‘

GEURG RS RERO G RO RS RORY

I nt roducti on

y
.1
.1
.1
.1
b

u

. 10.

et

Requi renment s Language .
Data Structures .

pt ogr aphi ¢ Conponent s

Mer kl e Hash Trees . . .
1 Mer kl e | ncl usi on Proofs .
2. Merkle Consistency Proofs .
3. Example . e
4. Signatures

mtters

Certrflcates
Precertificates .

ri vate Domai n Name Label s

Wl dcard Certificates .

Redacti ng Dormai n Name Lat)ei s in Pr ecert i f| cat es

Usi ng a Nane-Constrained Intermedi ate CA
Format and Operation

Accepting Subm ssions .

Log Entries .

Log ID . .

The Transltem Structure .

Merkl e Tree Leaves .

Signed Certificate Ti rrest arrp (SCT)
Merkle Tree Head . . .
Si gned Tree Head (STH) .

Mer kl e Consi stency Proofs .

Mer kl e I ncl usion Proofs .

Shutting dowmn a log .

Client Messages .

Add Chain to Log . . .

Add PreCertChain to Log .

al . Expi res Septenber 22, 2016

Provi sions and are provided wi thout warranty as

Co~NoOToro ol b

NNONNNNNRRRPREPREPRPRREPRREPRRERER
UORWNRPPRPOOONOURMADNWNRRRLROOO

[Page 2]

Internet-Draft Certificate Transparency March 2016
6.3. Retrieve Latest Signed Tree Head . 25
6.4. Retrieve Merkle Consistency Proof betmeen Tmo Slgned Tree

Heads 26
6.5. Retrieve Nbrkle IncIusion Proof fronfLog by Leaf Fbsh .. 27
6.6. Retrieve Merkle Inclusion Proof, Signed Tree Head and
Consi stency Proof by Leaf Hash 27
6.7. Retrieve Entries and STH from Log . 29
6.8. Retrieve Accepted Trust Anchors . 30
7. TLS Servers . . 30
7.1. Miltiple SCTs or |ncIus|on proofs . 31
7.2. TLS Extension . . . 32
8. Certification Authorrtres .o . 32
8.1. Transparency Information X 509v3 Exten5|on 32
8.1.1. COCSP Response Extension . 33
8.1.2. Certificate Extension . 33
8.2. TLS Feature Extension . 33
9. dients . 33
9.1. Metadata 34
9.2. TLS dient 35
9.2.1. Receiving SCTs or |nclu5|on proofs 35
9.2.2. Reconstructing the TBSCertificate . 35
9.2.3. Validating SCTs . . .o 35
9.2.4. Validating inclusion proofs . 36
9.2.5. Evaluating conpliance . 36
9.2.6. TLS Feature Extension . . 36
9.2.7. Handling of Non- conpllance 36
9.3. Mnitor e 37
9.4. Auditing 38
9.4.1. \Verifying an |ncIUS|on proof . . 38
9.4.2. Verifying consistency between two STFB 39
9.4.3. Verifying root hash given entries . 40
10. AlgorithmAgility . 41
11. 1 ANA Consi derations . 41
11.1. TLS Extension Type . 41
11.2. Hash Algorithms . . . 41
11.3. Signature Algorithns . 42
11.4. SCT Extensions . 42
11.5. STH Extensions . . . 42
11.6. CObject ldentifiers . 42
11.6.1. Log ID Registry 1 43
11.6.2. Log ID Registry 2 43
12. Security Considerations . 43
12.1. Msissued Certificates . 44
12.2. Detection of Msissue . . . 44
12.3. Avoiding Overly Redacting Donarn hhne Labels . 44
12. 4. M sbehaving Logs . . Co 44
12.5. Deterministic Slgnatures . 45
12.6. Miltiple SCTs or inclusion proofs 45
Laurie, et al. Expi res Septenber 22, 2016 [Page 3]

Internet-Draft Certificate Transparency March 2016

12.7. Threat Analysis . 45
13. Acknow edgerents . 45
14. References 46
14.1. Normative References 46
14.2. Informative References 47
Appendi x A. Supporting vl and v2 simultaneously 49

1. Introduction

Certificate transparency ainms to mtigate the problem of m sissued
certificates by providing append-only | ogs of issued certificates.
The | ogs do not need to be trusted because they are publicly

audi tabl e. Anyone may verify the correctness of each | og and nonitor
when new certificates are added to it. The |logs do not thensel ves
prevent m sissue, but they ensure that interested parties
(particularly those named in certificates) can detect such

m si ssuance. Note that this is a general nechanism but in this
docunent, we only describe its use for public TLS server certificates
i ssued by public certification authorities (CAs).

Each | og consists of certificate chains, which can be submtted by
anyone. It is expected that public CAs will contribute all their
newly issued certificates to one or nore | ogs, however certificate
hol ders can also contribute their own certificate chains, as can
third parties. In order to avoid | ogs being rendered usel ess by the
submi ssion of |arge nunbers of spurious certificates, it is required
that each chain ends with a trust anchor that is accepted by the |og.
When a chain is accepted by a log, a signed tinmestanp i s returned,
which can later be used to provide evidence to TLS clients that the
chai n has been subnmitted. TLS clients can thus require that al
certificates they accept as valid are acconpani ed by signed

ti mest anps.

Those who are concerned about m sissuance can nonitor the | ogs,
asking themregularly for all new entries, and can thus check whether
domai ns they are responsi ble for have had certificates issued that
they did not expect. What they do with this infornation,
particularly when they find that a m sissuance has happened, is
beyond the scope of this document, but broadly speaking, they can

i nvoke exi sting business nechanisns for dealing with m sissued
certificates, such as working with the CAto get the certificate
revoked, or with maintainers of trust anchor lists to get the CA
removed. O course, anyone who wants can nonitor the |logs and, if
they believe a certificate is incorrectly issued, take action as they
see fit.

Simlarly, those who have seen signed tinestanps froma particul ar
log can later demand a proof of inclusion fromthat log. |If the |og

Laurie, et al. Expi res Septenber 22, 2016 [Page 4]

Internet-Draft Certificate Transparency March 2016

is unable to provide this (or, indeed, if the corresponding
certificate is absent fromnonitors’ copies of that log), that is

evi dence of the incorrect operation of the log. The checking
operation is asynchronous to allow clients to proceed w thout delay,
despite possible issues such as network connectivity and the vagaries
of firewalls.

The append-only property of each log is technically achieved using
Merkl e Trees, which can be used to show that any particul ar instance
of the log is a superset of any particul ar previous instance.

Li kewi se, Merkle Trees avoid the need to blindly trust logs: if a log
attenpts to show different things to different people, this can be
efficiently detected by conparing tree roots and consi stency proofs.
Simlarly, other nisbehaviors of any log (e.g., issuing signed
timestanps for certificates they then don't |log) can be efficiently
detected and proved to the world at |arge.

1.1. Requirenents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [RFC2119].

1. 2. Data Structures

Data structures are defined according to the conventions laid out in
Section 4 of [RFC5246].

2. Cryptographi c Conponents
2.1. Merkle Hash Trees

Logs use a binary Merkle Hash Tree for efficient auditing. The
hashi ng al gorithm used by each log is expected to be specified as
part of the netadata relating to that log. W have established a
registry of acceptable algorithns, see Section 11.2. The hashing
algorithmin use is referred to as HASH throughout this docunment and
the size of its output in bytes as HASH SI ZE. The input to the
Merkle Tree Hash is a list of data entries; these entries will be
hashed to formthe | eaves of the Merkle Hash Tree. The output is a
single HASH SI ZE Merkl e Tree Hash. G ven an ordered list of n
inputs, Ofn] = {d(0), d(1), ..., d(n-1)}, the Merkle Tree Hash (MIH)
is thus defined as follows:

The hash of an enpty list is the hash of an enpty string:

MIH({}) = HASH().

Laurie, et al. Expi res Septenber 22, 2016 [Page 5]

Internet-Draft Certificate Transparency March 2016

The hash of a list with one entry (also known as a | eaf hash) is:
MIH({d(0)}) = HASH(Ox00 || d(0)).

For n > 1, let k be the largest power of two smaller than n (i.e., k
< n <= 2k). The Merkle Tree Hash of an n-elenent list Dn] is then
defined recursively as

MIH(D[n]) = HASH(Ox01 || MIH(D{ O:Kk]) || MIH(D{ k:n])),

where || is concatenation and DO k1: k2] denotes the list {d(kl),
d(k1+1),..., d(k2-1)} of length (k2 - k1). (Note that the hash
calcul ations for |eaves and nodes differ. This domain separation is
required to give second prei nage resistance.)

Note that we do not require the length of the input list to be a
power of two. The resulting Merkle Tree nay thus not be bal anced;
however, its shape is uniquely deternined by the nunber of |eaves.
(Note: This Merkle Tree is essentially the same as the history tree
[Crosbywal | ach] proposal, except our definition handles non-ful
trees differently.)

2.1.1. Merkle Inclusion Proofs

A Merkle inclusion proof for a leaf in a Merkle Hash Tree is the
shortest list of additional nodes in the Merkle Tree required to
compute the Merkle Tree Hash for that tree. Each node in the tree is
either a |l eaf node or is conputed fromthe two nodes i medi ately
below it (i.e., towards the |eaves). At each step up the tree
(towards the root), a node fromthe inclusion proof is conbined with
the node conputed so far. |In other words, the inclusion proof
consists of the list of mssing nodes required to conpute the nodes
leading froma leaf to the root of the tree. |If the root computed
fromthe inclusion proof matches the true root, then the inclusion
proof proves that the leaf exists in the tree

Gven an ordered list of n inputs to the tree, D[n] = {d(0), .
d(n-1)}, the Merkle inclusion proof PATH(m D[n]) for the (ml)th
input d(m, 0 <= m<n, is defined as foll ows:

The proof for Fhe single leaf in atree with a one-elenent input |ist
D 1] = {d(0)} is enpty:

PATH(O, {d(0)}) = {}
For n > 1, let k be the largest power of two snmaller than n. The

proof for the (mtl)th elenent d(m in alist of n > melenents is
then defined recursively as

Laurie, et al. Expi res Septenber 22, 2016 [Page 6]

Internet-Draft Certificate Transparency March 2016

PATH(m D[n])

PATH(m D[n])

PATH(m D[0:K]) : MIH(D k:n]) for m< k; and

PATH(m - k, D{k:n]) : MIH(D[0:k]) for m>= k,

where : is concatenation of lists and DO kl1: k2] denotes the I ength (k2
- k1) list {d(k1l), d(k1+1),..., d(k2-1)} as before.

2.1.2. Merkle Consistency Proofs

Mer kl e consi stency proofs prove the append-only property of the tree.
A Merkl e consistency proof for a Merkle Tree Hash MITH(D[n]) and a
previously advertised hash MTH(D[O: M) of the first mleaves, m<= n,
is the list of nodes in the Merkle Tree required to verify that the
first minputs D[0:n] are equal in both trees. Thus, a consistency
proof nust contain a set of internediate nodes (i.e., conmmtments to
i nputs) sufficient to verify MIH D[n]), such that (a subset of) the
same nodes can be used to verify MIHD[O:nj). W define an algorithm
that outputs the (unique) mnimal consistency proof.

G ven an ordered list of n inputs to the tree, Dn] = {d(0), ...,
d(n-1)}, the Merkle consistency proof PROOF(m D[n]) for a previous
Merkl e Tree Hash MIH(D[0:nj), 0 < m<n, is defined as:

PROOF(m D[n]) = SUBPROOF(m D[n], true)

I n SUBPROOF, the bool ean val ue represents whet her the subtree created
fromD0O:n] is a conplete subtree of the Merkle Tree created from

D n], and, consequently, whether the subtree Merkle Tree Hash
MIH(D[0: n]) is known. The initial call to SUBPROOF sets this to be
true, and SUBPROCF is then defined as foll ows:

The subproof for m=nis enpty if mis the value for which PROOF was
originally requested (neaning that the subtree created fromD0:n] is
a conplete subtree of the Merkle Tree created fromthe original D[n]
for which PROOF was requested, and the subtree Merkle Tree Hash
MIH(D[0: n]) is known):

SUBPROOF(m Dinm, true) = {}

O herwi se, the subproof for m=nis the Merkle Tree Hash comitting
inputs D[0:mM:

SUBPROOF(m D[nj, false) = {MH(D[n)}

For m< n, let k be the I argest power of two smaller than n. The
subproof is then defined recursively.

Laurie, et al. Expi res Septenber 22, 2016 [Page 7]

Internet-Draft Certificate Transparency

If m<=k, the right subtree entries D k:n] only exist

March 2016

in the current

tree. W prove that the left subtree entries D 0:k] are consistent

and add a conmitnent to D[k:n]:

SUBPROOF(m D[n], b) = SUBPROOF(m D[0:k], b)

If m>k, the left subtree entries D[0:k] are identical

MIH(D[k: n])

in both

trees. W prove that the right subtree entries D k:n] are consistent

and add a conmitnent to D[O:K].

SUBPROOF(m D[n], b) = SUBPROOF(m - k, D k:n],

MTH(D[0: k])

Here, : is a concatenation of lists, and D[kl: k2] denotes the |length

(k2 - k1) list {d(kl), d(ki+l),..., d(k2-1)} as before.

The nunber of nodes in the resulting proof is bounded above by

ceil (log2(n)) + 1.
2.1.3. Exanple

The binary Merkle Tree with 7 | eaves:

hash
/ \
/ \
/ \
/ \
/ \
k [
[\ [\
/ \ / \
/ \ / \
g h []
/[\ /[\ /[\ |
ab cd e f d6
[| | | [|
do di d2 d3 d4 d5

The inclusion proof for dO is [b, h, I].
The inclusion proof for d3 is [c, g, |].
The inclusion proof for d4 is [f, j, Kk].

The inclusion proof for d6 is [i, K].

Laurie, et al. Expi res Septenber 22, 2016

[Page 8]

Internet-Draft Certificate Transparency March 2016

The same tree, built increnmentally in four steps:

hashO hashl=k
I\ [\
/ \ / \
/ \ / \
g c g h
[\ | [\ [\
ab d2 ab c d
| | | | | |
do d1 do d1 d2 d3
hash?2 hash
[\ / \
/ \ / \
/ \ / \
/ \ / \
/ \ / \
k i k |
[\ [\ [\ [\
/ \ e f / \ / \
/ \ | | / \ / \
g h d4 d5 g h i i
I\ I\ I\ I\ I\ |
ab cd ab cd e f d6
[| [| [| [| [|
do di d2 d3 do di d2 d3 d4 d5

The consi stency proof between hashO and hash is PROOF(3, D 7]) = [c,
d, g, I]. ¢, g are used to verify hashO, and d, | are additionally
used to show hash is consistent wth hashO.

The consi stency proof between hashl and hash is PROOF(4, D[7]) =[I].
hash can be verified using hashl=k and |

The consi stency proof between hash2 and hash is PROOF(6, D[7]) = [i
j, Kl. k, i are used to verify hash2, and j is additionally used to
show hash is consistent with hash2.

2.1.4. Signatures

Various data structures are signed. A |log MJST use one of the
signature algorithnms defined in the Section 11.3 section

Laurie, et al. Expi res Septenber 22, 2016 [Page 9]

Internet-Draft Certificate Transparency March 2016

3.

3.

Submitters

Submitters submit certificates or preannouncenents of certificates
prior to issuance (precertificates) to logs for public auditing, as
described below. |In order to enable attribution of each | ogged
certificate or precertificate to its issuer, each subm ssion MJST be
acconpani ed by all additional certificates required to verify the
chain up to an accepted trust anchor. The trust anchor (a root or
intermedi ate CA certificate) MAY be omtted fromthe subm ssion

If a log accepts a subnmission, it will return a Signed Certificate

Ti mrestanp (SCT) (see Section 5.6). The subnmitter SHOULD validate the
returned SCT as described in Section 9.2 if they understand its
format and they intend to use it directly in a TLS handshake or to
construct a certificate. |If the submtter does not need the SCT (for
exanple, the certificate is being submtted sinply to nake it
available in the log), it MAY validate the SCT.

.1. Certificates

Any entity can submit a certificate (Section 6.1) to a log. Since
certificates may not be accepted by TLS clients unless |logged, it is
expected that certificate owners or their CAs will usually submnit

t hem

2. Precertificates

Alternatively, (root as well as internediate) CAs nay preannounce a
certificate prior to issuance by submtting a precertificate
(Section 6.2) that the log can use to create an entry that will be
val id against the issued certificate. The CA MAY incorporate the
returned SCT in the issued certificate. Exanples of situations where
the returned SCT is not incorporated into the issued certificate
woul d be when a CA sends the precertificate to nultiple |ogs, but
only incorporates the SCTs that are returned first, or the CAis
usi ng domai n nane redaction and intends to use another nechanismto
publish SCTs (such as an OCSP response (Section 8.1.1) or the TLS
extension (Section 7.2)).

A precertificate is a CM5 [RFC5652] "si gned-data" object that
conforns to the follow ng requirenents:

o |t MJST be DER encoded.

0 "SignedDat a. encapCont ent | nf 0. eCont ent Type" MJST be the O D
1.3.101. 78.

Laurie, et al. Expi res Septenber 22, 2016 [Page 10]

Internet-Draft Certificate Transparency March 2016

4.

4.

4.

1.

2

0 "SignedDat a. encapContent|nfo.eContent” MJST contain a
TBSCertificate [RFC5280], which MAY redact certain donmai n name
| abel s that will be present in the issued certificate (see
Section 4.2) and MJUST NOT contain any SCTs, but which will be
ot herwi se identical to the TBSCertificate in the issued
certificate.

0 "SignedDat a. signerlnfos" MJST contain a signature fromthe sane
(root or internmediate) CAthat will ultimately issue the
certificate. This signature indicates the CA's intent to issue
the certificate. This intent is considered binding (i.e.

m si ssuance of the precertificate is considered equivalent to

m si ssuance of the certificate). (Note that, because of the
structure of CM5, the signature on the CM5 object will not be a
valid X 509v3 signature and so cannot be used to construct a
certificate fromthe precertificate).

0 "SignedData.certificates" SHOULD be omitted
Private Domai n Nane Label s

Sone regard sonme DNS donain nane |abels within their registered
domai n space as private and security sensitive. Even though these
domai ns are often only accessible within the donmain owner’s private
network, it’s common for themto be secured using publicly trusted
TLS server certificates. W define a nmechanismto allow these
private | abels to not appear in public Iogs.

Wl dcard Certificates

A certificate containing a DNS-1D [RFC6125] of "*.exanple.com' could
be used to secure the domain "topsecret.exanple.cont, wthout
revealing the string "topsecret" publicly.

Since TLS clients only match the wildcard character to the conplete
| eftnost | abel of the DNS donain nane (see Section 6.4.3 of

[RFC6125]), a different approach is needed when nore than one of the
leftnost labels in a DNS-ID are considered private (e.qg.
"top.secret.example.cont). Also, wildcard certificates are
prohibited in sone cases, such as Extended Validation Certificates

[EVSSLQui del i nes] .

Redacting Domain Name Labels in Precertificates

When creating a precertificate, the CA MAY substitute one or nore
| abel s in each DNS-ID with a correspondi ng nunber of "?" | abels.
Every | abel to the left of a "?" |abel MJST al so be redacted. For
exanple, if a certificate contains a DNS-1D of

Laurie, et al. Expi res Septenber 22, 2016 [Page 11]

Internet-Draft Certificate Transparency March 2016

"top.secret.exanple.coni', then the corresponding precertificate could
contain "?.7?.exanple.cont instead, but not "top.?.exanple.cont
i nst ead.

Wldcard "*" |abels MUST NOT be redacted. However, if the conplete
| eftnost |abel of a DNS-IDis "*", it is considered redacted for the
purposes of deternmining if the label to the right nay be redacted.
For exanple, if a certificate contains a DNS-1D of

"* top.secret.exanple.conm, then the corresponding precertificate
could contain "*.?. ?. exanple.cont instead, but not
"?.7?.7?.exanpl e. cont instead.

When a precertificate contains one or nore redacted | abels, a non-
critical extension (O D 1.3.101.77, whose extnVal ue OCTET STRI NG
contains an ASN.1 SEQUENCE OF | NTEGERs) MJST be added to the
corresponding certificate: the first INTEGER i ndicates the tota
nunber of "?" labels in the precertificate's first DNS-1D; the second
| NTECER does the same for the precertificate' s second DNS-1D; etc.
There MUST NOT be nore | NTEGERs than there are DNS-1Ds. |If there are
fewer I NTEGCERs than there are DNS-1Ds, the shortfall is nmade up by
inplicitly repeating the last INTEGER Each | NTEGER MJUST have a

val ue of zero or nore. The purpose of this extension is to enable
TLS clients to reconstruct the TBSCertificate conponent of the
precertificate fromthe certificate, as described in Section 9.2.2.

When a precertificate contains that extension and contains a CN-1D

[RFC6125], the CN-1D MJUST match the first DNS-1D and have the sane

| abel s redacted. TLS clients will use the first entry in the
SEQUENCE OF | NTEGERs to reconstruct both the first DNS-1D and the CN
I D

4.3. Using a Nane-Constrained Intermediate CA

An internediate CA certificate or internediate CA precertificate that
contains the critical or non-critical Nane Constraints [RFC5280]

ext ensi on MAY be logged in place of end-entity certificates issued by
that internmediate CA, as long as all of the follow ng conditions are
net :

o there MUST be a non-critical extension (O D 1.3.101.76, whose
extnVal ue OCTET STRI NG contains ASN. 1 NULL data (0x05 0x00)).
This extension is an explicit indication that it is acceptable to
not log certificates issued by this internediate CA

0 permttedSubtrees MJIST specify one or nore dNSNanes.

0 excludedSubtrees MJST specify the entire IPv4 and | Pv6 address
ranges.

Laurie, et al. Expi res Septenber 22, 2016 [Page 12]

Internet-Draft Certificate Transparency March 2016

5.

Bel ow i s an exanpl e Name Constraints extension that neets these
condi tions:

SEQUENCE {
OBJECT IDENTIFIER *2 5 29 30
OCTET STRI NG encapsul ates {

SEQUENCE {
[0] {
SEQUENCE {
[2] ' exanple. con
}

}
[1]
SEQUENCE {
[7] 00 00 00 00 00 00 00 00

}
SEQUENCE {
[7]
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Log Format and Operation

Alog is a single, append-only Merkle Tree of subnitted certificate
and precertificate entries.

When it receives a valid submission, the log MIST return an SCT t hat
corresponds to the submtted certificate or precertificate. |If the
| og has previously seen this valid subm ssion, it SHOULD return the
same SCT as it returned before (to reduce the ability to track
clients as described in Section 12.5). Note that if a certificate
was previously logged as a precertificate, then the precertificate’'s
SCT of type "precert_sct” would not be appropriate; instead, a fresh
SCT of type "x509 sct" should be generat ed.

An SCT is the log's promise to incorporate the subnmitted entry in its
Merkle Tree no later than a fixed amount of time, known as the

Maxi mum Merge Delay (MVD), after the issuance of the SCT.
Periodically, the |l og MIST append all its new entries to its Merkle
Tree and sign the root of the tree.

Log operators MJST NOT i npose any conditions on retrieving or sharing
data fromthe | og

Laurie, et al. Expi res Septenber 22, 2016 [Page 13]

Internet-Draft Certificate Transparency March 2016

5.1. Accepting Subnissions

Logs MUST verify that each submtted certificate or precertificate
has a valid signature chain to an accepted trust anchor, using the
chain of internediate CA certificates provided by the subnmitter
Logs MUST accept certificates and precertificates that are fully
valid according to RFC 5280 [RFC5280] verification rules and are
submitted with such a chain. Logs MAY accept certificates and
precertificates that have expired, are not yet valid, have been
revoked, or are otherwise not fully valid according to RFC 5280
verification rules in order to accommpdate quirks of CA certificate-
i ssuing software. However, |ogs MJST reject subm ssions wthout a
valid signature chain to an accepted trust anchor. Logs MJST al so
reject precertificates that do not conformto the requirenents in
Section 3. 2.

Logs SHOULD limt the length of chain they will accept. The maxi num
chain length is specified in the | og’ s metadata.

The log SHALL allow retrieval of its list of accepted trust anchors
(see Section 6.8), each of which is a root or internediate CA
certificate. This list might usefully be the union of root
certificates trusted by major browser vendors

5.2. Log Entries

If a subnmission is accepted and an SCT issued, the accepting | og MIST
store the entire chain used for verification. This chain MJST
include the certificate or precertificate itself, the zero or nore
intermedi ate CA certificates provided by the submitter, and the trust
anchor used to verify the chain (even if it was onmtted fromthe
submi ssion). The log MIST present this chain for auditing upon
request (see Section 6.7). This chain is required to prevent a CA
fromavoi ding blame by logging a partial or enpty chain.

Laurie, et al. Expi res Septenber 22, 2016 [Page 14]

Internet-Draft Certificate Transparency March 2016

Each certificate entry in a log MJST include a "X509Chai nEntry"
structure, and each precertificate entry MJST include a
"Precert Chai nEnt ryV2" structure:

opaque ASN. 1Cert<1..2724-1>

struct {

ASN. 1Cert | eaf certificate;

ASN. 1Cert certificate_chain<0..2"24-1>
} X509Chai nEntry;

opaque CMSPrecert<l..2/724-1>
struct {

CVBPrecert pre_certificate;

ASN. 1Cert precertificate_chain<l..2"24-1>
} PrecertChai nEntryVv2

"leaf _certificate" is a submitted certificate that has been accepted
by the | og.

"certificate chain" is a vector of 0 or nore additional certificates

required to verify "leaf certificate". The first certificate MJST
certify "leaf _certificate". Each following certificate MIUST directly
certify the one preceding it. The final certificate MJST be a trust
anchor accepted by the log. |If "leaf _certificate" is an accepted

trust anchor, then this vector is enpty.

"pre_certificate" is a subnmitted precertificate that has been
accepted by the |og.

"precertificate_chain" is a vector of 1 or nore additiona
certificates required to verify "pre_certificate". The first
certificate MIUST certify "pre _certificate". Each follow ng
certificate MIUST directly certify the one preceding it. The fina
certificate MUST be a trust anchor accepted by the | og.

5.3. Log ID

Each log is uniquely identified by an OD. A log s operator MJST
either allocate the O D thensel ves or request an O D fromone of the
two Log I D Registries (see Section 11.6.1 and Section 11.6.2). The
ODis specified in the log's netadata. Various data structures

i nclude the DER encoding of this O D, excluding the ASN.1 tag and

| ength bytes, in an opaque vector

opaque Logl D<2..127>

Laurie, et al. Expi res Septenber 22, 2016 [Page 15]

Internet-Draft Certificate Transparency March 2016

Note that the ASN. 1 length and the opaque vector length are identica
in size (1 byte) and value, so the DER encoding of the O D can be
reproduced sinply by prepending an OBJECT | DENTI FI ER tag (0x06) to

t he opaque vector length and contents.

5.4. The Transltem Structure

Various data structures produced by |ogs are encapsulated in the
"Translteni structure to ensure that the type and version of each one
is identified in a common fashion

enum {
v1(0), v2(1l), (255)
} Version;

enum {
x509 entry(0), precert_entry(1l), x509 sct(2), precert_sct(3),
tree_head(4), signed tree_head(5), consistency_ proof(6),
i ncl usi on_proof (7), (65535)

} TransType;

struct {
Ver si on ver si on;
TransType type;
sel ect (type) {
case x509_entry: TinestanpedCertificateEntryDataV2;
case precert_entry: TinestanpedCertificateEntryDataVz;
case x509 sct: SignedCertificateTi mestanpDat aV2;
case precert_sct: SignedCertificateTi mestanpDat aV2;
case tree_head: TreeHeadDat aV2;
case signed_tree_head: SignedTreeHeadDat aV2;
case consi stency_proof: Consi st encyProof Dat aVz;
case inclusion_proof: InclusionProof DataV2;
} data;
} Transltem

"version" is the earliest version of this protocol to which the
encapsul ated data structure confornms. This docunent is v2. Note
that vl [RFC6962] did not define "Translten!, but this docunent

provi des guidelines (see Appendix A) on how v2 inplenmentations can
co-exist with vl inplenentations. Note also that, since each
"Transltem' object is individually versioned, the version should be
increased only if changes to it are made that are not backwards-
compati ble. The addition of encapsul ated data structures can be done
by addi ng "TransType" val ues w thout increasing the version

"type" is the type of the encapsul ated data structure. (Note that
"TransType" conbines the vl type enunerations "LogEntryType"

Laurie, et al. Expi res Septenber 22, 2016 [Page 16]

Internet-Draft Certificate Transparency March 2016

"Si gnat ureType" and "Merkl eLeaf Type"). Future revisions of this
protocol may add new "TransType" val ues.

"data" is the encapsul ated data structure. The various structures
nanmed with the "DataV2" suffix are defined in |ater sections of this
docunent .

5. 5. Merkl e Tree Leaves

The | eaves of a log’s Merkle Tree correspond to the log’'s entries
(see Section 5.2). Each leaf is the leaf hash (Section 2.1) of a
"Translteni structure of type "x509 entry" or "precert_entry", which
in this version (v2) encapsul ates a

"Ti mest anpedCertificateEntryDataV2" structure. Note that |eaf hashes
are cal cul ated as HASH(0x00 || Transltem), where the hashing
algorithmis specified in the | og’'s netadata.

opaque TBSCertificate<l..2"24-1>

struct {
ui nt 64 ti mestanp;
opaque i ssuer_key hash[HASH_SI ZE] ;
TBSCertificate tbs certificate;
Sct Ext ensi on sct _ext ensi ons<0. . 2"16- 1>;
} TimestanpedCertificat eEntryDat aVz,

"timestanp” is the NTP Tinme [RFC5905] at which the certificate or
precertificate was accepted by the log, neasured in mlliseconds
since the epoch (January 1, 1970, 00:00), ignoring |eap seconds.

Note that the leaves of a log’'s Merkle Tree are not required to be in
strict chronol ogi cal order.

"issuer_key_hash" is the HASH of the public key of the CA that issued
the certificate or precertificate, calcul ated over the DER encoding
of the key represented as Subject PublicKeylnfo [RFC5280]. This is
needed to bind the CAto the certificate or precertificate, making it
i mpossi ble for the corresponding SCT to be valid for any other
certificate or precertificate whose TBSCertificate nmatches
"tbs_certificate".

"tbs _certificate" is the DER encoded TBSCertificate fromeither the
"leaf _certificate" (in the case of an "X509Chai nEntry") or the
"pre_certificate" (in the case of a "PrecertChainEntryVv2"). (Note
that a precertificate’'s TBSCertificate can be reconstructed fromthe
corresponding certificate as described in Section 9.2.2).

"sct _extensions" natches the SCT extensions of the corresponding SCT

Laurie, et al. Expi res Septenber 22, 2016 [Page 17]

Internet-Draft Certificate Transparency March 2016

5.6. Signed Certificate Tinestanp (SCT)

An SCT is a "Transltent structure of type "x509 sct" or
"precert_sct", which in this version (v2) encapsul ates a
"Si gnedCertificateTi mestanpDat aV2" structure:

enum {
reserved(65535)
} Sct Ext ensi onType;

struct {
Sct Ext ensi onType sct_extension_type;
opaque sct_extensi on_dat a<0..2"16- 1>
} Sct Ext ensi on;

struct {
Logl D | og_i d;
ui nt 64 ti mestanp;
Sct Ext ensi on sct _ext ensi ons<0. . 2"16- 1>;
digitally-signed struct {
Transltem ti mest anped_entry;
} signature;
} SignedCertificateTi nest anpbat aV2;

"log_id" is this log’s unique ID, encoded in an opaque vector as
described in Section 5. 3.

"timestanp" is equal to the tinestanp fromthe
"Ti mest anpedCertificateEntryDataV2" structure encapsulated in the
"timestanped _entry".

"sct_extension_type" identifies a single extension fromthe | ANA
registry in Section 11.4. At the time of witing, no extensions are
speci fi ed.

The interpretation of the "sct_extension_data" field is deternined
solely by the value of the "sct_extension_type" field. Each docunent
that registers a new "sct_extension_type" nust describe howto
interpret the correspondi ng "sct_extension_data"

"sct_extensions" is a vector of 0 or nore SCT extensions. This
vector MJUST NOT include nore than one extension with the sane

"sct _extension_type". The extensions in the vector MJST be ordered
by the value of the "sct_extension_type" field, smallest value first.
If an inplenmentation sees an extension that it does not understand,
it SHOULD ignore that extension. Furthernore, an inplenentation MAY
choose to ignore any extension(s) that it does understand.

Laurie, et al. Expi res Septenber 22, 2016 [Page 18]

Internet-Draft Certificate Transparency March 2016

The encoding of the digitally-signed elenent is defined in [RFC5246].

"timestanped_entry” is a "Transltem structure that MJST be of type
"x509 entry" or "precert_entry" (see Section 5.5) and MJST have an
enpty "item extensions" vector

5.7. Merkle Tree Head

The I og stores information about its Merkle Tree in a "Transltent
structure of type "tree_head", which in this version (v2)
encapsul ates a "TreeHeadDat aV2" structure:

opaque NodeHash[HASH SI ZE] ;

struct {

ui nt 64 ti nmestanp;

uint64 tree_si ze;

NodeHash root hash

St hExt ensi on st h_ext ensi ons<0. . 2716- 1>
} TreeHeadDat aV2;

"timestanp" is the current NTP Tinme [RFC5905], neasured in
m | 1iseconds since the epoch (January 1, 1970, 00:00), ignoring |eap
seconds.

"tree_size" is the nunber of entries currently in the log's Merkle
Tr ee.

"root _hash" is the root of the Merkle Hash Tree.
"sth_extensions" matches the STH extensions of the corresponding STH
5.8. Signed Tree Head (STH)

Periodically each | og SHOULD sign its current tree head information
(see Section 5.7) to produce an STH. When a client requests a log's
| atest STH (see Section 6.3), the log MIUST return an STH that is no
ol der than the log's MVD. However, STHs could be used to mark

i ndividual clients (by producing a new one for each query), so |ogs
MUST NOT produce themnore frequently than is declared in their
metadata. | n general, there is no need to produce a new STH unl ess
there are new entries in the |og; however, in the unlikely event that
it receives no new subm ssions during an MVD period, the | og SHALL
sign the sane Merkle Tree Hash with a fresh tinmestanp.

Laurie, et al. Expi res Septenber 22, 2016 [Page 19]

Internet-Draft Certificate Transparency March 2016

An STH is a "Translten! structure of type "signed_ tree_head", which
in this version (v2) encapsul ates a "Si gnedTreeHeadDat aV2" structure:

enum {
reserved(65535)
} St hExt ensi onType;

struct {
St hExt ensi onType st h_ext ensi on_t ype;
opaque sth_extension_dat a<0..2"16-1>
} St hExt ensi on

struct {
Logl D | og_i d;
ui nt 64 ti mestanp;
uint 64 tree_si ze;
NodeHash root hash
St hExt ensi on st h_ext ensi ons<0..2"16- 1>
digitally-signed struct {
Transltem nerkl e_tree_head,
} signature;
} Si gnedTr eeHeadDat aV2;

"log_id" is this log’ s unique ID, encoded in an opaque vector as
described in Section 5. 3.

"timestanp” is equal to the tinestanp fromthe "TreeHeadDat av2"
structure encapsulated in "nerkle tree _head". This tinmestanp MJST be
at least as recent as the nost recent SCT tinmestanp in the tree.

Each subsequent tinestanp MJUST be nore recent than the tinestanp of

t he previ ous update.

"tree_size" is equal to the tree size fromthe "TreeHeadDat av2"
structure encapsulated in "nerkle_tree_head"

"root _hash" is equal to the root hash fromthe "TreeHeadDat av2"
structure encapsul ated in "nerkle_tree_head"

"sth_extension_type" identifies a single extension fromthe | ANA
registry in Section 11.5. At the tinme of witing, no extensions are
speci fi ed.

The interpretation of the "sth_extension_data" field is deternined
solely by the value of the "sth_extension_type" field. Each docunent
that registers a new "sth_extension_type" nust describe howto
interpret the corresponding "sth_extension_data"

Laurie, et al. Expi res Septenber 22, 2016 [Page 20]

Internet-Draft Certificate Transparency March 2016

"sth_extensions" is a vector of 0 or nore STH extensions. This
vector MJST NOT include nore than one extension with the same
"sth_extension_type". The extensions in the vector MJST be ordered
by the value of the "sth _extension type" field, snallest value first.
If an inplenmentation sees an extension that it does not understand,
it SHOULD ignore that extension. Furthernore, an inplenentation MAY
choose to ignore any extension(s) that it does understand.

"merkle_tree_head" is a "Transltent structure that MJST be of type
"tree_head" (see Section 5.7) and MJST have an enpty
"item extensions" vector.

5.9. Merkle Consistency Proofs

To prepare a Merkle Consistency Proof for distribution to clients,
the | og produces a "Translten structure of type "consistency proof",

which in this version (v2) encapsul ates a "Consi stencyProof Dat av2"
structure:

struct {

Logl D | og_i d;

uint64 tree_size 1,

uint64 tree_size 2;

NodeHash consi st ency_pat h<1..278-1>
} Consi st encyPr oof Dat aV2;

"log_id" is this log’s unique ID, encoded in an opaque vector as
described in Section 5.3.

"tree_size 1" is the size of the older tree
"tree_size 2" is the size of the newer tree.

"consistency_path" is a vector of Merkle Tree nodes proving the
consi stency of two STHs.

5.10. Merkle Inclusion Proofs

Laurie, et al. Expi res Septenber 22, 2016 [Page 21]

Internet-Draft Certificate Transparency March 2016

To prepare a Merkle Inclusion Proof for distribution to clients, the
| og produces a "Translten structure of type "inclusion_proof", which
in this version (v2) encapsul ates an "I ncl usi onPr oof Dat avV2"

structure:

struct {

Logl D l og_id;

uint64 tree_size;

ui nt 64 | eaf _i ndex;

NodeHash i ncl usi on_pat h<1..2"8-1>
} I'ncl usi onPr oof Dat aV2;

"log_id" is this log’s unique ID, encoded in an opaque vector as
described in Section 5.3.

"tree_size" is the size of the tree on which this inclusion proof is
based.

"l eaf _index" is the 0-based index of the log entry corresponding to
this inclusion proof.

"inclusion _path" is a vector of Merkle Tree nodes proving the
i nclusion of the chosen certificate or precertificate.

5.11. Shutting down a | og

Log operators may decide to shut down a |l og for various reasons, such
as deprecation of the signature algorithm |If there are entries in
the log for certificates that have not yet expired, sinply making TLS
clients stop recognizing that log will have the effect of
invalidating SCTs fromthat log. To avoid that, the follow ng
actions are suggested:

o Mke it known to clients and nonitors that the log will be frozen.

0 Stop accepting new subnissions (the error code "shutdown" shoul d
be returned for such requests).

0 Once MWD fromthe |ast accepted submi ssion has passed and al
pendi ng submi ssions are incorporated, issue a final STH and
publish it as a part of the log’'s netadata. Having an STHwith a
timestanp that is after the MVD has passed fromthe |ast SCT
i ssuance allows clients to audit this log regularly wthout
special handling for the final STH At this point the log' s
private key is no | onger needed and can be destroyed.

0 Keep the log running until the certificates in all of its entries
have expired or exist in other logs (this can be determ ned by

Laurie, et al. Expi res Septenber 22, 2016 [Page 22]

Internet-Draft Certificate Transparency March 2016

6

scanni ng other | ogs or connecting to domai ns mentioned in the
certificates and inspecting the SCTs served).

Log dient Messages

Messages are sent as HITPS GET or POST requests. Paraneters for
PCSTs and all responses are encoded as JavaScri pt Object Notation
(JSON) objects [RFC4627]. Paranmeters for GETs are encoded as order-
i ndependent key/val ue URL paraneters, using the "application/x-ww-
formurl encoded" fornmat described in the "HTM. 4.01 Specification”
[HTML401]. Binary data is base64 encoded [RFC4648] as specified in
t he individual nessages.

Note that JSON objects and URL paraneters may contain fields not
specified here. These extra fields should be ignored.

The <l og server> prefix, which is part of the log's netadata, MAY
include a path as well as a server name and a port.

In practice, log servers may include nmultiple front-end machi nes.
Since it is inpractical to keep these machines in perfect sync,
errors may occur that are caused by skew between the nmachines. Were
such errors are possible, the front-end will return additiona
informati on (as specified below) naking it possible for clients to
make progress, if progress is possible. Front-ends MJST only serve
data that is free of gaps (that is, for exanple, no front-end wll
respond with an STH unless it is also able to prove consistency from
all log entries logged within that STH).

For exanpl e, when a consistency proof between two STHs is requested,
the front-end reached may not yet be aware of one or both STHs. In
the case where it is unaware of both, it will return the latest STH
it is aware of. \Were it is aware of the first but not the second,
it will return the latest STHit is aware of and a consi stency proof
fromthe first STHto the returned STH. The case where it knows the
second but not the first should not arise (see the "no gaps"

requi renent above).

If the log is unable to process a client’s request, it MJST return an
HTTP response code of 4xx/5xx (see [RFC2616]), and, in place of the
responses outlined in the subsections bel ow, the body SHOULD be a
JSON structure containing at least the following field:

error_nessage: A human-readabl e string describing the error which
prevented the |l og from processing the request.

In the case of a nalforned request, the string SHOULD provide
sufficient detail for the error to be rectified.

Laurie, et al. Expi res Septenber 22, 2016 [Page 23]

Internet-Draft Certificate Transparency March 2016

error_code: An error code readable by the client. Sone codes are
generic and are detailed here. QOhers are detailed in the
i ndi vidual requests. FError codes are fixed text strings.

not conpliant The request is not conpliant with this RFC

e.g. In response to a request of "/ct/v2/get-
entries?start=100&nd=99", the log would return a "400 Bad Request"”
response code with a body simlar to the foll ow ng:

{

"error_message": start’ cannot be greater than 'end ",
"error_code": "not conpliant",

}

Clients SHOULD treat "500 Internal Server Error" and "503 Service
Unavai |l abl e" responses as transient failures and MAY retry the sane
request without nodification at a later date. Note that as per

[RFC2616], in the case of a 503 response the | og MAY include a
"Retry-After:" header in order to request a mininumtinme for the
client to wait before retrying the request.

6.1. Add Chain to Log
POST https://<log server>/ct/v2/add-chain
| nput s:
chain: An array of base64 encoded certificates. The first
element is the certificate for which the subnmitter desires an
SCT; the second certifies the first and so on to the |ast,
which either is, or is certified by, an accepted trust anchor.

Qut put s:

sct: A base64 encoded "Transltenm of type "x509 sct", signed by
this log, that corresponds to the subnitted certificate.

Error codes

unknown anchor The last certificate in the chain both is not, and
is not certified by, an accepted trust anchor

bad chain The alleged chain is not actually a chain of
certificates.

bad certificate One or nore certificates in the chain are not
valid (e.g. not properly encoded).

Laurie, et al. Expi res Septenber 22, 2016 [Page 24]

Internet-Draft Certificate Transparency March 2016

shutdown The | og has ceased operation and is not accepting new
submi ssi ons.

If the version of "sct" is not v2, then a v2 client nmay be unable to
verify the signature. |t MJST NOT construe this as an error. This
is to avoid forcing an upgrade of compliant v2 clients that do not
use the returned SCTs.
If alog detects bad encoding in a chain that otherw se verifies
correctly then the log MAY still log the certificate but SHOULD NOT
return an SCT. It should instead return the "bad certificate" error
Logging the certificate is useful, because nmonitors (Section 9.3) can
then detect these encoding errors, which nmay be accepted by some TLS
clients.
Note that not all certificate handling software is capabl e of
detecting all encoding errors (e.g. sone software will accept BER
i nstead of DER encodings in certificates, or incorrect character
encodi ngs, even though these are technically incorrect)
6.2. Add PreCertChain to Log
PCST https://<log server>/ct/v2/ add-pre-chain
I nput s:
precertificate: The base64 encoded precertificate.
chain: An array of base64 encoded CA certificates. The first
element is the signer of the precertificate; the second
certifies the first and so on to the last, which either is, or
is certified by, an accepted trust anchor.
Qut put s:

sct: A base64 encoded "Transltenm! of type "precert_sct", signed
by this log, that corresponds to the subnmitted precertificate.

Errors are the same as in Section 6.1

6.3. Retrieve Latest Signed Tree Head
GET https://<log server>/ct/v2/ get-sth
No i nputs.

CQut put s:

Laurie, et al. Expi res Septenber 22, 2016 [Page 25]

Internet-Draft Certificate Transparency March 2016

sth: A base64 encoded "Transltem of type "signed_tree_head"
signed by this log, that is no older than the log' s MWD.

6.4. Retrieve Merkle Consistency Proof between Two Signed Tree Heads
GET https://<log server>/ct/v2/get-sth-consistency
| nput s:
first: The tree_size of the older tree, in decinal
second: The tree_size of the newer tree, in decimal (optional).

Both tree sizes nust be fromexisting v2 STHs. However, because
of skew, the receiving front-end may not know one or both of the
existing STHs. |If both are known, then only the "consistency"
output is returned. |If the first is known but the second is not
(or has been onmitted), then the latest known STH is returned,
along with a consistency proof between the first STH and the
latest. |If neither are known, then the |atest known STH is
returned without a consistency proof.

CQut put s:
consi stency: A base64 encoded "Translteni of type
"consi stency_proof", whose "tree_size 1" MJST match the "first"
input. If the "sth" output is omtted, then "tree_size_ 2" MJST
mat ch the "second" input.

sth: A base64 encoded "Transltem of type "signed tree head"
signed by this Iog.

Note that no signature is required for the "consistency" output as
it is used to verify the consistency between two STHs, which are
si gned.

Error codes

first unknown "first" is before the |atest known STH but is not
froman existing STH.

second unknown "second" is before the |atest known STH but is not
froman existing STH

See Section 9.4.2 for an outline of howto use the "consistency"”
out put .

Laurie, et al. Expi res Septenber 22, 2016 [Page 26]

Internet-Draft Certificate Transparency March 2016

6.5. Retrieve Merkle Inclusion Proof fromLog by Leaf Hash
GET https://<log server>/ct/v2/get-proof-by-hash
I nput s:
hash: A base64 encoded v2 | eaf hash

tree_size: The tree_size of the tree on which to base the proof,
i n decinal.

The "hash" nust be cal cul ated as defined in Section 5.5. The
"tree_size" nust designate an existing v2 STH. Because of skew,
the front-end may not know the requested STH. In that case, it
wWill return the latest STH it knows, along with an inclusion proof
to that STH If the front-end knows the requested STH then only
"inclusion" is returned.

Cut put s:
inclusion: A base64 encoded "Transltem of type "inclusion_proof"
whose "inclusion_path" array of Merkle Tree nodes proves the
i nclusion of the chosen certificate in the selected STH

sth: A base64 encoded "Transltem of type "signed_tree_head"
signed by this Iog.

Note that no signature is required for the "inclusion" output as
it is used to verify inclusion in the selected STH, which is
si gned.

Error codes:

hash unknown "hash" is not the hash of a known |eaf (may be
caused by skew or by a known certificate not yet nerged).

tree_size unknown "hash" is before the |atest known STH but is
not froman existing STH

See Section 9.4.1 for an outline of how to use the "incl usion"
out put .

6.6. Retrieve Merkle Inclusion Proof, Signed Tree Head and Consi stency
Proof by Leaf Hash

GET https://<log server>/ct/v2/get-all-by-hash

I nputs:

Laurie, et al. Expi res Septenber 22, 2016 [Page 27]

Internet-Draft Certificate Transparency March 2016

hash: A base64 encoded v2 | eaf hash

tree_size: The tree_size of the tree on which to base the proofs,
i n decinal.

The "hash" nust be cal cul ated as defined in Section 5.5. The
"tree_size" nust designate an existing v2 STH

Because of skew, the front-end may not know the requested STH or
the requested hash, which leads to a nunber of cases.

| atest STH < requested STH Return |atest STH

| atest STH > requested STH Return |l atest STH and a consi stency
proof between it and the requested STH (see Section 6.4).

i ndex of requested hash < latest STH Return "inclusion"

Not e that nore than one case can be true, in which case the

returned data is their concatenation. It is also possible for
none to be true, in which case the front-end MJST return an enpty
response.

Cut put s:

inclusion: A base64 encoded "Translten! of type "inclusion_proof"
whose "inclusion_path" array of Merkle Tree nodes proves the
i nclusion of the chosen certificate in the selected STH

sth: A base64 encoded "Transltem of type "signed_tree_head"
signed by this Iog.

consi stency: A base64 encoded "Translteni of type
"consi stency_proof" that proves the consistency of the
requested STH and the returned STH

Note that no signature is required for the "inclusion" or
"consi stency" outputs as they are used to verify inclusion in and
consi stency of STHs, which are signed.

Errors are the same as in Section 6.5.

See Section 9.4.1 for an outline of howto use the "inclusion”

output, and see Section 9.4.2 for an outline of howto use the
"consi stency" output.

Laurie, et al. Expi res Septenber 22, 2016 [Page 28]

Internet-Draft Certificate Transparency March 2016

6.7. Retrieve Entries and STH from Log
GET https://<log server>/ct/v2/get-entries
I nput s:
start: O-based index of first entry to retrieve, in decinal.
end: O-based index of last entry to retrieve, in decimnal.
CQut put s:
entries: An array of objects, each consisting of

| eaf _input: The base64 encoded "Translteni structure of type
"x509 entry" or "precert_entry" (see Section 5.5).

log entry: The base64 encoded log entry (see Section 5.2). In
the case of an "x509 entry" entry, this is the whole
"X509Chai nEntry"; and in the case of a "precert_entry", this
is the whole "PrecertChai nEntryV2".

sct: A base64 encoded "Transltent of type "x509 sct" or
"precert_sct" corresponding to this log entry. Note that
nore than one SCT may have been returned for the sane entry
- only one of those is returned in this field. It nay not
be possible to retrieve others.

sth: A base64 encoded "Translten! of type "signed tree_head"
signed by this |og.

Note that this nmessage is not signed -- the "entries" data can be
verified by constructing the Merkle Tree Hash corresponding to a
retrieved STH Al |eaves MJST be v2. However, a conpliant v2
client MJUST NOT construe an unrecogni zed Transltemtype as an error
This neans it may be unable to parse sonme entries, but note that each
client can inspect the entries it does recognize as well as verify
the integrity of the data by treating unrecogni zed | eaves as opaque
input to the tree.

The "start" and "end" paraneters SHOULD be within the range 0 <= x <
"tree_size" as returned by "get-sth" in Section 6.3.

The "start" paraneter MJST be | ess than or equal to the "end"
par amet er .

Log servers MJST honor requests where 0 <= "start" < "tree_size" and
"end" >= "tree_size" by returning a partial response covering only

Laurie, et al. Expi res Septenber 22, 2016 [Page 29]

Internet-Draft Certificate Transparency March 2016

the valid entries in the specified range. "end" >= "tree_size" could
be caused by skew. Note that the following restriction may al so

appl y:

Logs MAY restrict the nunber of entries that can be retrieved per
"get-entries" request. If a client requests nore than the pernitted
number of entries, the log SHALL return the maxi mum nunber of entries
perm ssible. These entries SHALL be sequential beginning with the
entry specified by "start".

Because of skew, it is possible the |log server will not have any
entries between "start" and "end". In this case it MJST return an
enpty "entries" array.

In any case, the log server MIST return the latest STH it knows
about .

See Section 9.4.3 for an outline of howto use a conplete |ist of
"leaf _input" entries to verify the "root_hash"

6.8. Retrieve Accepted Trust Anchors
GET https://<log server>/ct/v2/ get-anchors
No i nputs.
Cut put s:

certificates: An array of base64 encoded trust anchors that are
acceptable to the | og.

max_chain: |If the server has chosen to linmt the length of chains
it accepts, this is the maxi num nunber of certificates in the
chain, in decimal. |If thereis nolinmt, this is onitted.

7. TLS Servers

TLS servers MJST use at |east one of the three nmechanisns |isted
bel ow to present one or nore SCTs or inclusion proofs fromone or
nore |l ogs to each TLS client during TLS handshakes, where each SCT or
i nclusion proof corresponds to the server certificate or to a nane-
constrained internediate the server certificate chains to. Three
mechani sms are provi ded because they have different tradeoffs.

0 A TLS extension (Section 7.4.1.4 of [RFC5246]) with type

"transparency_info" (see Section 7.2). This nechanismallows TLS
servers to participate in CT without the cooperation of CAs,

Laurie, et al. Expi res Septenber 22, 2016 [Page 30]

Internet-Draft Certificate Transparency March 2016

unli ke the other two nechanisns. It also allows SCTs and
i nclusion proofs to be updated on the fly.

0 An Online Certificate Status Protocol (OCSP) [RFC6960] response
extension (see Section 8.1.1), where the OCSP response is provided
inthe "CertificateStatus" nessage, provided that the TLS client
i ncluded the "status_request" extension in the (extended)
"ClientHell 0" (Section 8 of [RFC6066]). This nechanism popularly
known as OCSP stapling, is already widely (but not universally)
inmplemented. It also allows SCTs and inclusion proofs to be
updated on the fly.

0 An X509v3 certificate extension (see Section 8.1.2). This
mechani sm al |l ows the use of unnodified TLS servers, but the SCTs
and i ncl usion proofs cannot be updated on the fly. Since the |ogs
fromwhere the SCTs and inclusion proofs originated won't
necessarily be accepted by TLS clients for the full lifetinme of
the certificate, there is arisk that TLS clients wll
subsequently consider the certificate to be non-conpliant and in
need of re-issuance.

Additionally, a TLS server which supports presenting SCTs using an
OCSP response MAY provide it when the TLS client included the
"status_request _v2" extension ([RFC6961]) in the (extended)
"ClientHell o", but only in addition to at |east one of the three
mechani sns | i sted above.

7.1. Miltiple SCTs or inclusion proofs

TLS servers SHOULD send SCTs or inclusion proofs fromnmultiple |ogs
in case one or nore |ogs are not acceptable to the TLS client (for
exanple, if a log has been struck off for m sbehavior, has had a key
comprom se, or is not known to the TLS client). For exanple:

o If a CAand alog collude, it is possible to tenporarily hide
ni si ssuance fromclients. Including SCTs or inclusion proofs from
different logs makes it nore difficult to nount this attack

o If a log nmsbehaves, a consequence may be that clients cease to
trust it. Since the time an SCT or inclusion proof may be in use
can be considerable (several years is common in current practice
when enbedded in a certificate), servers may wi sh to reduce the
probability of their certificates being rejected as a result by
i ncluding SCTs or inclusion proofs fromdifferent |ogs.

0 TLS clients may have policies related to the above risks requiring

servers to present nultiple SCTs or inclusion proofs. For
exanple, at the tinme of witing, Chrom um [Chrom um Log. Poli cy]

Laurie, et al. Expi res Septenber 22, 2016 [Page 31]

Internet-Draft Certificate Transparency March 2016

requires multiple SCTs to be presented with EV certificates in
order for the EV indicator to be shown.

To select the logs fromwhich to obtain SCTs, a TLS server can, for
exanpl e, exanine the set of |ogs popular TLS clients accept and
recogni ze

Mul tiple SCTs, inclusion proofs, and indeed "Transltent structures of
any type, are conbined into a list as foll ows:

opaque SerializedTransltenxl..2"16-1>

struct {
SerializedTranslitemtrans_ itemlist<1..2"16-1>
} Transltenlist;

Here, "SerializedTransltem is an opaque byte string that contains
the serialized "Translten!' structure. This encoding ensures that TLS
clients can decode each "Transltem individually (so, for exanple, if
there is a version upgrade, out-of-date clients can still parse old
"Translten? structures while skipping over new "Translteni structures
whose versions they don't understand).

7.2. TLS Extension

Provided that a TLS client includes the "transparency_info" extension
type in the CientHello, the TLS server MAY include the
"transparency_info" extension in the ServerHello with
"extension_data" set to a "Transltenlist". The TLS server SHOULD

i gnore any "extension_data" sent by the TLS client. Additionally,
the TLS server MJST NOT process or include this extension when a TLS
session is resunmed, since session resunption uses the origina

session information.

8. Certification Authorities

8.1. Transparency Information X 509v3 Extension

Laurie, et al. Expi res Septenber 22, 2016 [Page 32]

Internet-Draft Certificate Transparency March 2016

The Transparency Information X 509v3 extension, which has O D
1.3.101. 75 and SHOULD be non-critical, contains one or nore
"Translteni structures in a "TransltenList”. This extension MAY be
i ncluded in OCSP responses (see Section 8.1.1) and certificates (see
Section 8.1.2). Since RFC5280 requires the "extnValue" field (an
OCTET STRING of each X 509v3 extension to include the DER encodi ng
of an ASN.1 value, a "Transltenlist"” MJST NOT be included directly.
Instead, it MJST be wapped inside an additional OCTET STRI NG which
is then put into the "extnVal ue" field:

Transparencyl nformati onSyntax ::= OCTET STRI NG
"Transpar encyl nformati onSynt ax" contains a "TransltenList".
8.1.1. COCSP Response Extension

A certification authority MAY include a Transparency |nfornation
X.509v3 extension in the "singleExtensions" of a "SingleResponse" in
an OCSP response. The included SCTs or inclusion proofs MJST be for
the certificate identified by the "certID' of that "Singl eResponse”
or for a precertificate that corresponds to that certificate, or for
a nane-constrained intermediate to which that certificate chains.

8.1.2. Certificate Extension

A certification authority MAY include a Transparency I nformation
X.509v3 extension in a certificate. Any included SCTs or inclusion
proofs MUST be either for a precertificate that corresponds to this
certificate, or for a name-constrained internmediate to which this
certificate chains.

8.2. TLS Feature Extension

A certification authority MAY include the transparency_info
(Section 7.2) TLS extension identifier in the TLS Feature [RFC7633]
certificate extension in root, intermediate and end-entity
certificates. Wen a certificate chain includes such a certificate,
this indicates that CT conpliance is required.

9. dients

There are various different functions clients of |ogs might perform
We describe here sone typical clients and how they should function
Any inconsistency may be used as evidence that a | og has not behaved
correctly, and the signatures on the data structures prevent the |og
from denyi ng that m sbehavi or

Laurie, et al. Expi res Septenber 22, 2016 [Page 33]

Internet-Draft Certificate Transparency March 2016

Al'l clients need various netadata in order to comrunicate with | ogs
and verify their responses. This netadata is described bel ow, but
note that this docunent does not describe how the nmetadata is
obt ai ned, which is inplenentation dependent (see, for exanple,

[Chrom um Policy]).

Clients shoul d sonehow exchange STHs they see, or nmeke them avail abl e
for scrutiny, in order to ensure that they all have a consistent
view. The exact mechanisnms will be in separate docunents, but it is
expected there will be a variety.

9.1. Metadata

In order to communicate with and verify a log, clients need netadata
about the |og.

Base URL: The URL to substitute for <log server> in Section 6.

Hash Al gorithm The hash algorithmused for the Merkle Tree (see
Section 11.2).

Signing Algorithm The signing algorithmused (see Section 2.1.4).

Public Key The public key used to verify signatures generated by the
log. A log MIUST NOT use the same keypair as any other |og.

Log ID The O D that uniquely identifies the |Iog
Maxi mum Merge Delay The MVD the | og has committed to.

Version The version of the protocol supported by the log (currently
1 or 2).

Maxi mum Chai n Length The | ongest chain subnmission the log is willing
to accept, if the log chose to limt it.

STH Frequency Count The naxi mum nunber of STHs the | og may produce
in any period equal to the "Mximum Merge Del ay" (see
Section 5.8).

Final STH If a log has been closed down (i.e. no | onger accepts new
entries), existing entries may still be valid. |In this case, the
client should know the final valid STHin the log to ensure no new
entries can be added w thout detection

[JSON. Met adata] is an exanple of a netadata format which includes the
above el enments.

Laurie, et al. Expi res Septenber 22, 2016 [Page 34]

Internet-Draft Certificate Transparency March 2016

9.2. TLS dient
9.2.1. Receiving SCTs or inclusion proofs

TLS clients receive SCTs or inclusion proofs alongside or in
certificates. TLS clients MJST inplenent all of the three nechanisns
by which TLS servers may present SCTs (see Section 7). TLS clients
MAY al so accept SCTs via the "status_request_v2" extension

([RFC6961]). TLS clients that support the "transparency_info" TLS
extension SHOULD include it in CientHell o nessages, with enpty
"extension_data".

9.2.2. Reconstructing the TBSCertificate

To reconstruct the TBSCertificate conponent of a precertificate from
a certificate, TLS clients shoul d:

0 Renove the non-critical extension nentioned in Section 4.2

0 Replace leftnost | abels of each DNS-ID with "?", based on the
I NTECER val ue corresponding to that DNS-1D in the extension

A certificate with redacted | abels where one of the redacted | abels
is "*" MJST NOT be considered conpliant.

If the SCT checked is for a Precertificate (where the "type" of the
"Translten? is "precert_sct"), then the client SHOULD al so renove
enbedded vl SCTs, identified by OD 1.3.6.1.4.1.11129.2.4.2 (See
Section 3.3. of [RFC6962]), in the process of reconstructing the
TBSCertificate. That is to allow enbedded vl and v2 SCTs to co-exi st
in a certificate (See Appendix A).

9.2.3. Validating SCTs

In addition to normal validation of the server certificate and its
chain, TLS clients SHOULD validate each received SCT for which they
have the corresponding log’'s nmetadata. To validate an SCT, a TLS
client conputes the signature input fromthe SCT data and the
corresponding certificate, and then verifies the signature using the
corresponding log’s public key. TLS clients MJST NOT consider valid
any SCT whose tinmestanp is in the future

Before considering any SCT to be invalid, the TLS client MJST attenpt
to validate it against the server certificate and agai nst each of the
zero or nore suitable name-constrained intermediates (Section 4.3) in
the chain. These certificates may be evaluated in the order they
appear in the chain, or, indeed, in any order

Laurie, et al. Expi res Septenber 22, 2016 [Page 35]

Internet-Draft Certificate Transparency March 2016

9.2.4. Validating inclusion proofs

TLS clients SHOULD al so verify each received inclusion proof (see
Section 9.4.1) for which they have the corresponding | og’s netadata,
to audit the log and gain confidence that the certificate is |ogged.

Bef ore considering any inclusion proof to be invalid, the TLS client
MJUST attenpt to validate it against the server certificate and

agai nst each of the zero or nore suitable name-constrained

internmedi ates (Section 4.3) in the chain. These certificates may be
eval uated in the order they appear in the chain, or, indeed, in any

order.

After validating a received SCT, a TLS client MAY request a
correspondi ng inclusion proof (if one is not already avail able) and
then verify it. An inclusion proof can be requested directly froma
| og using "get-proof-by-hash" (Section 6.5) or "get-all-by-hash"
(Section 6.6), but note that this will disclose to the | og which TLS
server the client has been comunicating wth.

If the TLS client holds an STH that predates the SCT, it MAY, in the
process of auditing, request a new STH fromthe |og (Section 6.3),
then verify it by requesting a consistency proof (Section 6.4). Note
that if the TLS client uses "get-all-by-hash", then it will already
have t he new STH.

9.2.5. Evaluating conpliance
To be considered conpliant, a certificate MJIST be acconpani ed by at
| east one valid SCT or at |east one valid inclusion proof. A
certificate not acconpani ed by any valid SCTs or any valid inclusion
proof s MUST NOT be considered conpliant by TLS clients.

9.2.6. TLS Feature Extension
If any certificate in a chain includes the transparency_info
(Section 7.2) TLS extension identifier in the TLS Feature [RFC7633]
certificate extension, then CT conpliance (using any of the
mechani sms from Section 7) is required

TLS clients MJST treat certificates which fail this requirenment as
non-conpl i ant.

9.2.7. Handling of Non-conpliance

If a TLS server presents a certificate chain that is non-conpliant,
there are two possibilities.

Laurie, et al. Expi res Septenber 22, 2016 [Page 36]

Internet-Draft Certificate Transparency March 2016

9.

3.

0 In the case that use of TLS with a valid certificate is nandated
by explicit security policy, application protocol specification
or other nmeans, the TLS client MJUST refuse the connection

o If the use of TLS with a valid certificate is optional, the TLS
client MAY accept the connection but MJST NOT treat the
certificate as valid.

Moni t or

Monitors watch | ogs to check that they behave correctly, for
certificates of interest, or both. For exanple, a nonitor nay be
configured to report on all certificates that apply to a specific
domai n nane when fetching new entries for consistency validation

A nonitor needs to, at least, inspect every newentry in each log it
wat ches. It may al so want to keep copies of entire logs. |n order
to do this, it should follow these steps for each |og:

1. Fetch the current STH (Section 6.3).

2. Verify the STH signature.

3. Fetch all the entries in the tree corresponding to the STH
(Section 6.7).

4. Confirmthat the tree made fromthe fetched entries produces the
same hash as that in the STH

5. Fetch the current STH (Section 6.3). Repeat until the STH
changes.

6. Verify the STH signature.

7. Fetch all the new entries in the tree corresponding to the STH

(Section 6.7). |If they remain unavail able for an extended
period, then this should be viewed as mi shehavior on the part of
the 1 og.

8. Either:

1. Verify that the updated list of all entries generates a tree
with the same hash as the new STH.

O, if it is not keeping all log entries

1. Fetch a consistency proof for the new STHwith the previous
STH (Section 6.4).

Laurie, et al. Expi res Septenber 22, 2016 [Page 37]

Internet-Draft Certificate Transparency March 2016

2. Verify the consistency proof.

3. Verify that the new entries generate the correspondi ng
el ements in the consistency proof.

9. CGoto Step 5.
9.4. Auditing

Auditing ensures that the current published state of a log is
reachabl e from previously published states that are known to be good,
and that the promises nade by the log in the formof SCTs have been
kept. Audits are performed by nonitors or TLS clients.

A beni gn, conformant |og publishes a series of STHs over time, each
derived fromthe previous STH and the submtted entries incorporated
into the log since publication of the previous STH. This can be
proven through auditing of STHs. SCTs returned to TLS clients can be
audi ted by verifying agai nst the acconpanying certificate, and using
Merkl e I nclusion Proofs, against the log’s Merkle tree.

The action taken by the auditor if an audit fails is not specified,
but note that in general if audit fails, the auditor is in possession
of signed proof of the | og s m sbehavior

A nmonitor (Section 9.3) can audit by verifying the consistency of
STHs it receives, ensure that each entry can be fetched and that the
STH is indeed the result of naking a tree fromall fetched entries.

A TLS client (Section 9.2) can audit by verifying an SCT agai nst any
STH dated after the SCT tinmestanp + the Maxi num Merge Del ay by
requesting a Merkle inclusion proof (Section 6.5). It can also
verify that the SCT corresponds to the certificate it arrived with
(i.e. the log entry is that certificate, is a precertificate for that
certificate or is an appropriate nane-constrained internedi ate [see
Section 4.3]).

The followi ng algorithmoutlines may be useful for clients that w sh
to performvarious audit operations.

9.4.1. Verifying an inclusion proof
When a client has received a "Transltent of type "inclusion_proof"
and wi shes to verify inclusion of an input "hash" for an STHwith a

given "tree_size" and "root_hash", the follow ng al gorithm may be
used to prove the "hash" was included in the "root hash"

Laurie, et al. Expi res Septenber 22, 2016 [Page 38]

Internet-Draft Certificate Transparency March 2016

9.4. 2.

Conpare "l eaf i ndex" against "tree_size". |If "leaf_index" is
greater than or equal to "tree_size" fail the proof verification

Set "fn" to "leaf index" and "sn" to "tree_size - 1".

Set "r" to "hash".

For each val ue in the "inclusion_path" array:

p
If "LSB(fn)" is set, or if "fn" is equal to "sn", then
1. Set "r" to "HASH(OxO1 || p |] r)"

2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
equal ly until either "LSB(fn)" is set or "fn" is "0O"

O herwi se:
Set "r" to "HASH(OxO1 || r |[] p)"

Finally, right-shift both "fn" and "sn" one tine.

Conpare "sn" to 0. Conpare "r" against the "root_hash". [If "sn"
is equal to 0, and "r" and the "root hash" are equal, then the
| og has proven the inclusion of "hash". Oherwise, fail the

proof verification.

Verifying consistency between two STHs

When a client has an STH "first_hash" for tree size "first", an STH
"second_hash" for tree size "second" where "0 < first < second", and

has

received a "Transltent' of type "consistency_proof" that they w sh

to use to verify both hashes, the follow ng algorithmmy be used

1.

Lauri e,

If "first" is an exact power of 2, then prepend "first _hash" to
the "consi stency_pat h" array.

Set "fn" to "first - 1" and "sn" to "second - 1".

If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally
until "LSB(fn)" is not set.

Set both "fr" and "sr" to the first value in the
"consi stency_pat h" array.

For each subsequent value "c" in the "consistency path" array:

If "sn" is O, stop the iteration and fail the proof verification

et al. Expi res Septenber 22, 2016 [Page 39]

Internet-Draft Certificate Transparency March 2016

9.4.3.

If "LSB(fn)" is set, or if "fn" is equal to "sn", then

1. Set "fr" to "HASH(OxO01 || c || fr)
Set "sr" to "HASH(Ox01 || ¢ || sr)"

2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
equally until either "LSB(fn)" is set or "fn" is "O"

O herw se:

Set "sr" to "HASH(OxO01 || sr || ¢)"
Finally, right-shift both "fn" and "sn" one tine.
After conpleting iterating through the "consistency_path" array
as described above, verify that the "fr" calculated is equal to
the "first_hash" supplied, that the "sr" calculated is equal to

the "second_hash" supplied and that "sn" is O.

Verifying root hash given entries

When a client has a conplete list of leaf input "entries" from"0" up

to "

tree_size - 1" and wishes to verify this |list against an STH

"root _hash" returned by the log for the sane "tree_size", the

foll
1.

2

Lauri e,

owi ng al gorithm may be used

Set "stack" to an enpty stack.

For each "i" from"0" up to "tree_size - 1":

1. Push "HASH(Ox00 || entries[i])" to "stack".

2. Set "merge_count” to the | owest value ("0" included) such
that "LSB(i >> nerge_count)" is not set. |In other words, set
"merge_count" to the nunmber of consecutive "1"s found
starting at the least significant bit of "i

3. Repeat "nerge_count" tines:
1. Pop "right" from "stack".
2. Pop "left" from"stack".
3. Push "HASH(O0x01 || left || right)" to "stack".

If there is nore than one elenent in the "stack", repeat the sane

merge procedure (Step 2.3 above) until only a single el enent
remai ns.

et al. Expi res Septenber 22, 2016 [Page 40]

Internet-Draft Certificate Transparency March 2016

10.

11.

11.

11.

4. The remaining elenent in "stack” is the Merkle Tree hash for the
given "tree_size" and should be conpared by equality against the
supplied "root_hash".

AlgorithmAgility

It is not possible for a log to change any of its algorithns part way
through its lifetinme:

Signature algorithm SCT signatures nust remain valid so signature
al gorithms can only be added, not renoved.

Hash al gorithm A log would have to support the old and new hash
algorithnms to all ow backwards-conpatibility with clients that are
not aware of a hash al gorithm change.

Allowing nmultiple signature or hash algorithns for a | og would
require that all data structures support it and would significantly
complicate client inplementation, which is why it is not supported by
thi s docunent.

If it should becone necessary to deprecate an algorithmused by a
live log, then the log should be frozen as specified in Section 9.1
and a new | og should be started. Certificates in the frozen |og that
have not yet expired and require new SCTs should be subnitted to the
new | og and the SCTs fromthat |og used instead.

| ANA Consi derati ons
1. TLS Extension Type
| ANA is asked to allocate an RFC 5246 ExtensionType value for the
"transparency_info" TLS extension. |ANA should update this extension
type to point at this docunent.

2. Hash Al gorithns

| ANA i s asked to establish a registry of hash values, initially
consi sting of:

SN oo +
| I'ndex | Hash [
S S o +
| O | SHA-256 [FI PS. 180- 4]

Fomm e e oo e e e e e e eaoo - +

Laurie, et al. Expi res Septenber 22, 2016 [Page 41]

Internet-Draft Certificate Transparency March 2016

11.

11.

11.

11.

3. Signature Al gorithns

I ANA is asked to establish a registry of signature algorithmval ues
initially consisting of:

| determnistic ECDSA [RFC6979] using the NI ST P-256 curve |
| (Section D.1.2.3 of the Digital Signature Standard [DSS]) |
| and HVAC- SHA256 |
| RSA signatures (RSASSA-PKCS1-v1l 5 with SHA-256, Section [
| 8.2 of [RFC3447]) using a key of at |east 2048 bits. [

4. SCT Extensions

| ANA is asked to establish a registry of SCT extensions, initially
consi sting of:

Fom e - Fom e e e e - - +
| Type | Extension |
Fom e e R +
| 65535 | reserved |
[R, R +

TBD: policy for adding to the registry
5. STH Extensions

| ANA is asked to establish a registry of STH extensions, initially
consi sting of:

Fom oo - [S +
| Type | Extension |
Fom e e Fom e e oo - +
| 65535 | reserved |
Fomm oo - B +

TBD: policy for adding to the registry
6. Object ldentifiers

Thi s docunment uses object identifiers (ODs) to identify Log I Ds (see
Section 5.3), the precertificate CM5 "eContent Type" (see

Section 3.2), and X 509v3 extensions in certificates (see

Section 4.2, Section 4.3 and Section 8.1.2) and OCSP responses (see

Laurie, et al. Expi res Septenber 22, 2016 [Page 42]

Internet-Draft Certificate Transparency March 2016

11.

11.

12.

Section 8.1.1). The O Ds are defined in an arc that was sel ected due
to its short encoding.

6.1. Log ID Registry 1

All ODs in the range from1.3.101.8192 to 1.3.101.16383 have been
reserved. This is a linmted resource of 8,192 O Ds, each of which
has an encoded | ength of 4 octets.

I ANA is requested to establish a registry that will allocate Log IDs
fromthis range.

TBD: policy for adding to the registry. Perhaps "Expert Review'?
6.2. Log ID Registry 2

The 1.3.101.80 arc has been delegated. This is an unlinmted
resource, but only the 128 O Ds from1.3.101.80.0 to 1.3.101.80.127
have an encoded length of only 4 octets.

I ANA is requested to establish a registry that will allocate Log IDs
fromthis arc.

TBD: policy for adding to the registry. Perhaps "Expert Review'?
Security Considerations

Wth CAs, |logs, and servers performng the actions described here,
TLS clients can use | ogs and signed tinmestanps to reduce the
likelihood that they will accept misissued certificates. |If a server
presents a valid signed tinmestanp for a certificate, then the client
knows that a I og has conmitted to publishing the certificate. From
this, the client knows that nonitors acting for the subject of the
certificate have had some tinme to notice the misissue and take sone
action, such as asking a CA to revoke a m sissued certificate, or
that the | og has m sbehaved, which will be discovered when the SCT is
audited. A signed tinmestanp is not a guarantee that the certificate
is not m sissued, since appropriate nonitors mght not have checked
the logs or the CA nmight have refused to revoke the certificate.

In addition, if TLS clients will not accept unlogged certificates,
then site owners will have a greater incentive to subnit certificates
to logs, possibly with the assistance of their CA, increasing the
overal |l transparency of the system

Laurie, et al. Expi res Septenber 22, 2016 [Page 43]

Internet-Draft Certificate Transparency March 2016

12.

12.

12.

12.

1. M sissued Certificates

M si ssued certificates that have not been publicly |ogged, and thus
do not have a valid SCT, are not considered conpliant (so TLS clients
may decide, for exanple, to reject then). Msissued certificates
that do have an SCT froma log will appear in that public log within
t he Maxi num Merge Del ay, assuming the log is operating correctly.
Thus, the maxi num period of time during which a nisissued certificate
can be used wi thout being available for audit is the MD.

2. Detection of Msissue

The |1 ogs do not thensel ves detect misissued certificates; they rely
instead on interested parties, such as donmain owners, to nonitor them
and take corrective action when a m sissue is detected.

3. Avoiding Overly Redacting Domain Nane Label s

Redacti on of domain name | abels carries the same risks as the use of
wi | dcards (See Section 7.2 of [RFC6125], for exanple). If the
entirety of the domain space bel ow the unredacted part of a domain
nane is not controlled by a single entity (e.g. "?.cont, "?.co.uk"
and other public suffixes [Public.Suffix.List]), then the domai n nanme
may be considered by clients to be overly redacted.

CAs shoul d take care to avoid overly redacting domai n names in
precertificates. It is expected that nonitors will treat
precertificates that contain overly redacted domai n nanes as
potentially msissued. TLS clients MAY consider a certificate to be
non-conpliant if the reconstructed TBSCertificate (Section 9.2.2)
contains any overly redacted domai n nanes.

4. M sbehavi ng Logs

A log can mi sbehave in several ways. Exanples include failing to
incorporate a certificate with an SCT in the Merkle Tree within the
MVD or by presenting different, conflicting views of the Merkle Tree
at different times and/or to different parties. Such m sbehavior is
detectable and the [I-D.ietf-trans-threat-anal ysis] provides nore
details on how this can be done.

Violation of the MVD contract is detected by log clients requesting a
Merkl e inclusion proof (Section 6.5) for each observed SCT. These
checks can be asynchronous and need only be done once per each
certificate. In order to protect the clients’ privacy, these checks
need not reveal the exact certificate to the log. dients can

i nstead request the proof froma trusted auditor (since anyone can

Laurie, et al. Expi res Septenber 22, 2016 [Page 44]

Internet-Draft Certificate Transparency March 2016

12.

12.

12.

13.

compute the proofs fromthe | og) or request Merkle inclusion proofs
for a batch of certificates around the SCT tinestanp.

Viol ation of the append-only property can be detected by clients
conmparing their instances of the Signed Tree Heads. As soon as two
conflicting Signed Tree Heads for the sane |log are detected, this is
crypt ographi c proof of that log s m sbehavior. There are various
ways this could be done, for exanple via gossip (see
[I-D.ietf-trans-gossip]) or peer-to-peer comrunications or by sending
STHs to nmonitors (who could then directly check against their own
copy of the relevant |o0g).

5. Determnistic Signatures

Logs are required to use determnistic signatures for the foll ow ng
reasons:

0 Using non-determnistic ECDSA with a predictable source of
randommess neans that each signature can potentially expose the
secret material of the signing key.

0 Cdients that gossip STHs or report back SCTs can be tracked or
traced if a log was to produce multiple STHs or SCTs with the sane
ti mestanp and data but different signatures.

6. Miltiple SCTs or inclusion proofs

By offering multiple SCTs or inclusion proofs, each froma different
| og, TLS servers reduce the effectiveness of an attack where a CA and
a log collude (see Section 7.1).

7. Threat Analysis

[I-D.ietf-trans-threat-analysis] provides a nore detailed threat
anal ysis of the Certificate Transparency architecture.

Acknow edgenent s

The authors would like to thank Erwann Abel ea, Robin Al den, Al

Cutter, Francis Dupont, Adam Eijdenberg, Stephen Farrell, Daniel Kahn
Gllnor, Paul Hadfield, Brad HilIl, Jeff Hodges, Paul Hoffnan, Jeffrey
Hut zel man, Kat Joyce, Stephen Kent, SM Al exey Mel ni kov, Linus
Nordberg, Chris Palmer, Trevor Perrin, Pierre Phaneuf, Melinda Shore,
Ryan Sleevi, Martin Smith, Carl Wallace and Paul Wuters for their

val uabl e contri buti ons.

A big thank you to Symantec for kindly donating the O Ds fromthe
1.3.101 arc that are used in this docunent.

Laurie, et al. Expi res Septenber 22, 2016 [Page 45]

Internet-Draft Certificate Transparency March 2016

14. Ref er ences
14. 1. Nor mati ve Ref erences

[DSS] National Institute of Standards and Technol ogy, "Digital
Signature Standard (DSS)", FIPS 186-3, June 2009,
<http://csrc.nist.gov/publications/fips/fipsl86-3/
fips_186-3. pdf >.

[FI PS. 180- 4]
National Institute of Standards and Technol ogy, "Secure
Hash Standard", FIPS PUB 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fipsl180-4/
fips-180-4. pdf >.

[HTML401] Raggett, D., Le Hors, A, and |I. Jacobs, "HTM. 4.01
Speci fication", Wrld Wde Wb Consorti um Recomendati on
REC- ht m 401- 19991224, Decenber 1999,
<http://www. w3. or g/ TR/ 1999/ REC- ht ml 401- 19991224>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R, GCettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HITP/1.1", RFC 2616, June 1999.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC5652] Housley, R, "Cryptographic Message Syntax (CvB)", STD 70,

RFC 5652, DO 10. 17487/ RFC5652, Septenber 2009,
<http://wwmv rfc-editor.org/info/rfc5652>.

Laurie, et al. Expi res Septenber 22, 2016 [Page 46]

Internet-Draft Certificate Transparency March 2016

[RFC5905] MIls, D, Martin, J., Burbank, J., and W Kasch, "Network
Ti me Protocol Version 4: Protocol and Al gorithns
Speci fication", RFC 5905, June 2010.

[RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
Ext ensi on Definitions", RFC 6066, January 2011.

[RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
Verification of Domai n-Based Application Service ldentity
within Internet Public Key Infrastructure Using X 509
(PKIX) Certificates in the Context of Transport Layer
Security (TLS)", RFC 6125, March 2011.

[RFC6960] Santesson, S., Myers, M, Ankney, R, Mlpani, A,
Gal perin, S., and C. Adans, "X. 509 Internet Public Key
Infrastructure Online Certificate Status Protocol - OCSP",
RFC 6960, DO 10. 17487/ RFC6960, June 2013,
<http://wwmv. rfc-editor.org/info/rfc6960>.

[RFC6961] Pettersen, Y., "The Transport Layer Security (TLS)
Multiple Certificate Status Request Extension", RFC 6961,
DO 10.17487/ RFC6961, June 2013,
<http://ww.rfc-editor.org/info/rfc6961>.

[RFC6979] Pornin, T., "Deterministic Usage of the Digital Signature
Al gorithm (DSA) and Elliptic Curve Digital Signature
Al gorithm (ECDSA)", RFC 6979, DO 10.17487/ RFC6979, August
2013, <http://ww.rfc-editor.org/info/rfc6979>.

[RFC7633] Hall am Baker, P., "X 509v3 Transport Layer Security (TLS)
Feature Extension", RFC 7633, DO 10.17487/ RFC7633,
Cct ober 2015, <http://ww.rfc-editor.org/info/rfc7633>.

14.2. Informmtive References

[Chroni um Log. Pol i cy]
The Chrom um Projects, "Chromium Certificate Transparency
Log Policy", 2014, <http://ww. chrom um or g/ Hore/
chromi um security/certificate-transparency/l og-policy>.

[Chrom um Pol i cy]
The Chrom um Projects, "Chromium Certificate
Transparency", 2014, <http://ww.chrom um or g/ Hone/
chrom um security/certificate-transparency>.

Laurie, et al. Expi res Septenber 22, 2016 [Page 47]

Internet-Draft Certificate Transparency March 2016

[CrosbyWal | ach]
Crosby, S. and D. Wallach, "Efficient Data Structures for
Tanper - Evi dent Loggi ng", Proceedings of the 18th USEN X
Security Synposium Mntreal, August 2009,
<http://static.usenix.org/event/sec09/tech/full papers/
croshy. pdf >.

[EVSSLCGui del i nes]
CA/ Browser Forum "CQuidelines For The |Issuance And
Managenment O Extended Validation Certificates", 2007,
<htt ps: // cabf orum or g/ wp- cont ent / upl oads/
EV Certificate_ Quidelines. pdf>.

[I-D.ietf-trans-gossip]
Nordberg, L., Gllnor, D, and T. Ritter, "Gossiping in
CT", draft-ietf-trans-gossip-01 (work in progress),
Cct ober 2015.

[I-D.ietf-trans-threat-anal ysis]
Kent, S., "Attack Mddel and Threat for Certificate
Transparency"”, draft-ietf-trans-threat-anal ysis-03 (work
in progress), Cctober 2015.

[JSON. Met adat a]
The Chromi um Projects, "Chromium Log Metadata JSON
Schema", 2014, <http://ww.certificate-transparency.org/
known-1ogs/log_|ist_schena.json>.

[Public. Suffix.List]
Mozil |l a Foundation, "Public Suffix List", 2016, <https://
publi csuffix. org>.

[RFC6962] Laurie, B., Langley, A, and E. Kasper, "Certificate
Transparency", RFC 6962, June 2013.

Laurie, et al. Expi res Septenber 22, 2016 [Page 48]

Internet-Draft Certificate Transparency March 2016

Appendi x A. Supporting vl and v2 simultaneously

Certificate Transparency | ogs have to be either vl (conformng to

[RFC6962]) or v2 (confornming to this docunent), as the data
structures are inconpatible and so a v2 log could not issue a valid
vl SCT.

CT clients, however, can support vl and v2 SCTs, for the sane
certificate, simultaneously, as vl SCTs are delivered in different
TLS, X 509 and OCSP extensions than v2 SCTs.

vl and v2 SCTs for X. 509 certificates can be validated i ndependently.
For precertificates, v2 SCTs shoul d be enbedded in the TBSCertificate
bef ore subnission of the TBSCertificate (inside a vl precertificate,
as described in Section 3.1. of [RFC6962]) to a vl log so that TLS
clients conform ng to [RFC6962] but not this docunent are oblivious
to the enbedded v2 SCTs. An issuer can follow these steps to produce
an X. 509 certificate with enbedded vl and v2 SCTs:

0 Create a CM5 precertificate as described in Section 3.2 and submt
it to v2 |ogs.

o Enbed the obtained v2 SCTs in the TBSCertificate, as described in
Section 8.1.2.

0 Use that TBSCertificate to create a vl precertificate, as
described in Section 3.1. of [RFC6962] and subnmit it to vl | ogs.

o Enbed the vl SCTs in the TBSCertificate, as described in
Section 3.3. of [RFC6962].

0 Sign that TBSCertificate (which now contains vl and v2 SCTs) to
i ssue the final X 509 certificate.

Aut hors’ Addr esses

Ben Laurie
Googl e WK Ltd.

EMai | : benl @oogl e. com
Adam Langl ey
Googl e Inc.

EMai | : agl @oogl e. com

Laurie, et al. Expi res Septenber 22, 2016 [Page 49]

Internet-Draft

Emi | ia Kasper
Googl e Switzerl and GrbH

EMai | : ekasper @oogl e. com

Eran Messeri
Googl e WK Ltd.

EMai | : eranm@oogl e. com

Rob Stradling
Conpdo CA, Ltd.

EMai | : rob. stradl i ng@onodo. com

Laurie, et al. Expi res Septenber 22, 2016

Certificate Transparency

March 2016

[Page 50]

