TRANS L. Nordberg

I nternet-Draft NORDUnet
I ntended status: Experinental D. Gl nor
Expi res: Septenber 22, 2016 ACLU

T. Ritter

March 21, 2016

Gossiping in CT
draft-ietf-trans-gossip-02

Abst ract

The logs in Certificate Transparency are untrusted in the sense that
the users of the systemdon’t have to trust that they behave
correctly since the behaviour of a |log can be verified to be correct.

This docunent tries to solve the problemw th | ogs presenting a
"split view' of their operations. It describes three gossiping
mechani sms for Certificate Transparency: SCT Feedback, STH

Pol I i nati on and Trusted Auditor Rel ationship.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 22, 2016
Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 1]

| nt er net -

public
carefu
to thi

Dr aft Gossiping in CT

March 2016

ation of this docunent. Please review these docunents

Ily, as they describe your rights and restrictions with respect
s docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

coco~N~NOOGTOTUThA B~ W

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.
Tabl e of Contents
1. Introduction
2. Defining the problem
3. Overview
4. Terninol ogy . . .
4.1. Pre-Loaded vs LocaIIy Added Anchors
5. Who gossips with whom. . . . -
6. What to gossip about and how
7. Data flow. .
8. GCossip hbchanlsns .
8.1. SCT Feedback
8.1.1. SCT Feedback data format
8.1.2. HITPS client to server
8.1.3. HITPS server operation
8.1.4. HITPS server to auditors
8.2. STH pollination .
8.2.1. HITPS dients and Proof Fetchlng .
8.2.2. STH Pol l'inati on without Proof Fetchlng
8.2.3. Auditor Action e
8.2.4. STH Pollination data fornat
8.3. Trusted Auditor Stream . .
8.3.1. Trusted Auditor data fornat
9. 3-Method Ecosystem
9.1. SCT Feedback
9.2. STH Pol lination . e
9.3. Trusted Auditor Relationship
9.4. Interaction . e
10. Security conS|derat|ons . . .
10.1. Attacks by actively naI|C|ous Iogs
10. 2. Dual - CA Conproni se . .
10. 3. Censorshi p/ Bl ocki ng conS|derat|ons
10. 4. Privacy considerations
10.4.1. Privacy and SCTs . . .
10.4.2. Privacy in SCT Feedback
10.4.3. Privacy for HITPS clients perfornlng STH Proof
Fet ching . . .
10.4. 4 Privacy in STH Polllnatlon.
10.4.5 Privacy in STH Interaction . . .
10.4.6 Trusted Auditors for HTTPS O |ents
10.4.7 HTTPS Clients as Auditors
Nor dberg, et al. Expi res Septenber 22, 2016

Internet-Draft Gossiping in CT March 2016

11. Policy Recommendations . . 24
11.1. Bl ocking Reconnendatlons 24
11.1.1. Frustrating blocking . . 24
11.1.2. Responding to possible bIock|ng A
11.2. Proof Fetching Recommendations 31
11.3. Record Distribution Recommendations 31
11.3.1. Mxing Algorithm. 32
11.3.2. Flushing Attacks . . . < I
11.3.3. The Del etion Algorlthn1 e 7

12. | ANA considerations . . . e)
13. Contributors 45
14. ChangeLog ... 45
14.1. Changes between ietf-01 and ietf-02 45
14.2. Changes between ietf-00 and ietf-02 46
14.3. Changes between -01 and -02 46
14. 4. Changes between -00 and -02 46
15. References . . . N 4
15.1. Nornmative References T 4
15.2. Informative References 47
Authors’ Addresseso Lo L4

1. Introduction

The purpose of the protocols in this docunent, collectively referred
to as CT Cossip, is to detect certain nisbehavior by CT logs. In
particular, CT Gossip ains to detect |ogs that are providing
inconsistent views to different log clients, and logs failing to
include subnmitted certificates within the time period stipulated by
MVD.

[TODO enunerate the interfaces used for detecting nisbehaviour?]

One of the major challenges of any gossip protocol is liniting damage
to user privacy. The goal of CT gossip is to publish and distribute
i nformati on about the logs and their operations, but not to expose
any additional information about the operation of any of the other
participants. Privacy of consuners of log information (in
particul ar, of web browsers and other TLS clients) should not be
under m ned by gossi p.

Thi s docunent presents three different, conplenentary nechani sns for
non-1og elenments of the CT ecosystemto exchange infornation about
logs in a manner that preserves the privacy of HITPS clients. They
shoul d provide protective benefits for the systemas a whole even if
their adoption is not universal

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 3]

Internet-Draft Gossiping in CT March 2016

2. Defining the problem

When a |l og provides different views of the log to different clients
this is described as a partitioning attack. Each client would be
able to verify the append-only nature of the log but, in the extrene
case, each client m ght see a unique view of the |og.

The CT logs are public, append-only and untrusted and thus have to be
audited for consistency, i.e., they should never rewite history.
Additionally, auditors and other log clients need to exchange

i nformati on about logs in order to be able to detect a partitioning
attack (as described above).

CGossi pi ng about | og behavi our hel ps address the probl em of detecting
mal i ci ous or conpromised logs with respect to a partitioning attack
We want sone side of the partitioned tree, and ideally both sides, to
see the other side.

D ssem nating i nformati on about a | og poses a potential threat to the
privacy of end users. Sone data of interest (e.g. SCTs) is linkable
to specific log entries and thereby to specific websites, which makes
sharing themw th others a privacy concern. Gossiping about this
data has to take privacy considerations into account in order not to
expose associ ati ons between users of the log (e.g., web browsers) and
certificate holders (e.g., web sites). Even sharing STHs (which do
not link to specific log entries) can be problematic - user tracking
by fingerprinting through rare STHs is one potential attack (see
Section 8.2).

3. Overview

SCT Feedback enables HTTPS clients to share Signed Certificate

Ti mestanps (SCTs) (Section 3.3 of [RFC-6962-BI S-09]) with CT auditors
in a privacy-preserving nmanner by sending SCTs to originating HITPS
servers, who in turn share themwith CT auditors

In STH Pol lination, HTTPS clients use HTTPS servers as pools to share
Si gned Tree Heads (STHs) (Section 3.6 of [RFC-6962-BIS-09]) with
other connecting clients in the hope that STHs will find their way to
CT auditors.

HTTPS clients in a Trusted Auditor Relationship share SCTs and STHs
with trusted CT auditors directly, with expectations of privacy
sensitive data being handled according to whatever privacy policy is
agreed on between client and trusted party.

Despite the privacy risks with sharing SCTs there is no loss in
privacy if a client sends SCTs for a given site to the site

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 4]

Internet-Draft Gossiping in CT March 2016

corresponding to the SCT. This is because the site’s logs would
already indicate that the client is accessing that site. In this way
a site can accumul ate records of SCTs that have been issued by
various logs for that site, providing a consolidated repository of
SCTs that could be shared with auditors. Auditors can use this
informati on to detect |ogs that nisbehave by not including
certificates within the tinme period stipulated by the MVD net adat a.

Sharing an STH is consi dered reasonably safe froma privacy
perspective as long as the sane STH is shared by a | arge nunber of
other log clients. This safety in nunbers can be achi eved by only
al | owi ng gossi ping of STHs issued in a certain window of tinme, while
al so refusing to gossip about STHs fromlogs with too high an STH
i ssuance frequency (see Section 8.2).

4. Term nol ogy
This docunent relies on terninology and data structures defined in
[RFC-6962- Bl S-09], including STH, SCT, Version, LoglD, SCT tinestanp,
Ct Ext ensi ons, SCT signature, Merkle Tree Hash

This docunent relies on terninology defined in
[draft-ietf-trans-threat-anal ysis-03], including Auditing.

4.1. Pre-Loaded vs Locally Added Anchors
Thr ough the docunent, we refer to both Trust Anchors (Certificate
Authorities) and Logs. Both Logs and Trust Anchors may be locally
added by an administrator. Unless otherwise clarified, in both cases
we refer to the set of Trust Anchors and Logs that cone pre-|oaded
and pre-trusted in a piece of client software.

5. Who gossips with whom
0 HTTPS clients and servers (SCT Feedback and STH Pol i nati on)
0 HITPS servers and CT auditors (SCT Feedback and STH Pol | i nati on)
0o CT auditors (Trusted Auditor Relationship)

Additionally, sone HITPS clients nmay engage with an auditor who they
trust with their privacy:

0 HTTPS clients and CT auditors (Trusted Auditor Relationship)

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 5]

Internet-Draft Gossiping in CT March 2016

6. What to gossip about and how
There are three separate gossip streans:

0 SCT Feedback - transporting SCTs and certificate chains from HTTPS
clients to CT auditors via HITPS servers.

0 STH Pollination - HTTPS clients and CT auditors using HTTPS
servers as STH pools for exchangi ng STHs.

0 Trusted Auditor Stream- HITPS clients communicating directly with
trusted CT auditors sharing SCTs, certificate chains and STHs.

It is worthwhile to note that when an HTTPS Cient or CT auditor
interact with a log, they may equivalently interact with a log mrror
or cache that replicates the |og.

7. Data flow
The follow ng picture shows how certificates, SCIs and STHs fl ow

through a CT systemw th SCT Feedback and STH Pollination. It does
not show what goes in the Trusted Auditor Relationship stream

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 6]

Internet-Draft Gossiping in CT March 2016

8.

8.

1.

+- Cert ---- H---------- +
| e +
| + SCT -> +---------- +
% [Cert [& SCT]
Fomm e + |
| Log | ---------- SCT ----------- +
N I T + %
| N S +
[SCT & Certs --- | Website |
sy | T +
| 1[2] STH " I
| |[3] v I I
| to-oo-ooo-- + I I
| +-------- > | Auditor | | HITPS traffic
I to-moo-oo-- + I I
STH [SCT
| SCT & Certs
Log entries | |
[STH STH
v I I
L + | \
| Monitor | Fome - +
e + | Browser |
N T +
Auditor Log
[1] |--- get-sth ----------mmmom- >|
[<-- STH --------mmmmie e - [
[2] |--- leaf hash + tree size ----- >|
| <-- index + inclusion proof --->
[3] |--- tree size 1 + tree size 2 ->|

| <-- consistency proof ---------- |
Gossi p Mechani sns
SCT Feedback

The goal of SCT Feedback is for clients to share SCTs and certificate
chains with CT auditors while still preserving the privacy of the end
user. The sharing of SCTs contribute to the overall goal of
detecting nmisbehaving | ogs by providing auditors with SCTs from nany
vantage points, making it nore likely to catch a violation of a log’ s
MVD or a |log presenting inconsistent views. The sharing of
certificate chains is beneficial to HITPS server operators interested
in direct feedback fromclients for detecting bogus certificates
issued in their name and therefore incentivises server operators to
take part in SCT Feedback.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 7]

Internet-Draft Gossiping in CT March 2016

SCT Feedback is the nost privacy-preserving gossip nechanism as it
does not directly expose any links between an end user and the sites
they’ ve visisted to any third party.

HTTPS clients store SCTs and certificate chains they see, and | ater
send themto the originating HTTPS server by posting themto a well -
known URL (associated with that server), as described in

Section 8.1.2. Note that clients will send the same SCTs and chai ns
to a server multiple times with the assunption that any man-in-the-
m ddl e attack eventually will cease, and an honest server wll
eventual ly receive collected malicious SCTs and certificate chains.

HTTPS servers store SCTs and certificate chains received from
clients, as described in Section 8.1.3. They later share themwth
CT auditors by either posting themto auditors or making them
available via a well-known URL. This is described in Section 8.1.4.

8.1.1. SCT Feedback data fornmat

The data shared between HTTPS clients and servers, as well as between
HTTPS servers and CT auditors, is a JSON array [RFC7159]. Each item
inthe array is a JSON object with the foll owing content:

o xb509_chain: An array of base64-encoded X 509 certificates. The
first element is the end-entity certificate, the second certifies
the first and so on.

0 sct_data: An array of objects consisting of the base64
representation of the binary SCT data as defined in
[RFC- 6962- Bl S-09] Section 3. 3.

We will refer to this object as 'sct_feedback’

The x509 chain el ement al ways contains at |east one elenent. It also
al ways contains a full chain froma leaf certificate to a self-signed
trust anchor.

[TBD: Be strict about what sct_data may contain or is this
sufficiently inplied by previous sections?]

8.1.2. HITPS client to server

When an HTTPS client connects to an HTTPS server, the client receives
a set of SCTs as part of the TLS handshake. SCTs are included in the
TLS handshake using one or nore of the three nechani sns described in
[RFC-6962- Bl S-09] section 3.4 - in the server certificate, in a TLS
extension, or in an OCSP extension. The client MJUST discard SCTs
that are not signed by a | og known to the client and SHOULD store the

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 8]

Internet-Draft Gossiping in CT March 2016

remai ni ng SCTs together with a locally constructed certificate chain
which is trusted (i.e. termnated in a pre-loaded or locally
installed Trust Anchor) in an sct_feedback object or equival ent data
structure for later use in SCT Feedback

The SCTs stored on the client MJST be keyed by the exact domai n nane
the client contacted. They MJST NOT be sent to any domai n not

mat ching the original domain (e.g. if the original domain is

sub. exanpl e. com t hey nust not be sent to sub.sub.exanple.comor to
exanpl e.com) They MJST NOT be sent to any Subject Alternate Nanes
specified in the certificate. |In the case of certificates that
validate nultiple domain names, the same SCT is expected to be stored
mul tiple tinmes.

Not follow ng these constraints would increase the risk for two types
of privacy breaches. First, the HTTPS server receiving the SCT woul d
| earn about other sites visited by the HITPS client. Second,
auditors receiving SCTs fromthe HTTPS server would |l earn information
about ot her HTTPS servers visited by its clients.

If the client |ater again connects to the sane HITPS server, it again
receives a set of SCTs and calculates a certificate chain, and again
creates an sct_feedback or similar object. |If this object does not
exactly match an existing object in the store, then the client MJST
add this new object to the store, associated with the exact domain
nane contacted, as described above. An exact conparison is needed to
ensure that attacks involving alternate chains are detected. An
exanpl e of such an attack is described in [TODO doubl e- CA- conprom se
attack]. However, at |east one optinization is safe and MAY be
performed: If the certificate chain exactly matches an existing
certificate chain, the client nay store the union of the SCTs from
the two objects in the first (existing) object.

If the client does connect to the sanme HITPS server a subsequent
time, it MIST send to the server sct_feedback objects in the store
that are associated with that donain nane. It is not necessary to
send an sct_feedback object constructed fromthe current TLS session

The client MJUST NOT send the same set of SCTs to the sanme server nore
often than TBD.

[TODO expand on rate/resource limiting notivation]
Refer to Section 11.3 for recomendati ons about strategies.
Because SCTs can be used as a tracki ng nechani sm (see

Section 10.4.2), they deserve special treatnent when they are
received from (and provided to) domai ns that are | oaded as

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 9]

Internet-Draft Gossiping in CT March 2016

subresources froman origin domain. Such domains are commonly called
"third party domains’. An HTTPS dient SHOULD store SCT Feedback
usi ng a ’'doubl e-keyi ng’ approach, which isolates third party domai ns
by the first party domain. This is described in XXX. Gossip would
be perfornmed nornmally for third party domai ns only when the user
revisits the first party domain. In lieu of ’'double-keying , an
HTTPS Cient MAY treat SCT Feedback in the same manner it treats
other security mechani sms that can enable tracking (such as HSTS and
HPKP.)

[XXX is currently https://ww.torproject.org/projects/torbrowser/
design/#identifier-linkability How should it be references? Do we
need to copy this out into another docunent? An appendix?]

If the HTTPS client has configuration options for not sending cookies
to third parties, SCIs of third parties MJST be treated as cookies
with respect to this setting. This prevents third party tracking

t hrough the use of SCTs/certificates, which would bypass the cookie

policy.

SCTs and corresponding certificates are POSTed to the originating
HTTPS server at the well-known URL:

https://<donai n>/.wel | - known/ ct - gossi p/ vl/ sct - f eedback

The data sent in the POST is defined in Section 8.1.1. This data
SHOULD be sent in an already established TLS session. This makes it
hard for an attacker to disrupt SCT Feedback w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

Some clients have trust anchors or logs that are locally added (e.qg.
by an administrator or by the user thenselves). These additions are
potentially privacy-sensitive because they can carry infornmation
about the specific configuration, conputer, or user

Certificates validated by locally added trust anchors will comonly
have no SCTs associated with them so in this case no action is
needed with respect to CT Gossip. SCTs issued by locally added | ogs
MUST NOT be reported via SCT Feedback

If acertificate is validated by SCTs that are issued by publicly
trusted | ogs, but chains to a local trust anchor, the client MAY
perfom SCT Feedback for this SCT and certificate chain bundle. If it
does so, the client MJUST include the full chain of certificates
chaining to the local trust anchor in the x509 chain array.

Perfom ng SCT Feedback in this scenari o nmay be advantageous for the
broader internet and CT ecosystem but may al so disclose infornmation

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 10]

Internet-Draft Gossiping in CT March 2016

about the client. |If the client elects to onit SCT Feedback, it can
still choose to perform STH Pol lination after fetching an inclusion
proof, as specified in Section 8. 2.

We require the client to send the full chain (or nothing at all) for
two reasons. Firstly, it sinplifies the operation on the server if
there are not two code paths. Secondly, onmtting the chain does not
actually preserve user privacy. The Issuer field in the certificate
describes the signing certificate. And if the certificate is being
submitted at all, it nmeans the certificate is | ogged, and has SCTs.
This nmeans that the |ssuer can be queried and obtained fromthe | og
so onitting the parent fromthe client’s subnission does not actually
hel p user privacy.

8.1.3. HITPS server operation

HTTPS servers can be configured (or omt configuration), resulting

in, broadly, two nodes of operation. |In the sinpler node, the server
will only track leaf certificates and SCTs applicable to those |eaf
certificates. 1In the nore conplex node, the server will confirmthe

client’s chain validation and store the certificate chain. The
| atter node requires nore configuration, but is necessary to prevent
deni al of service (DoS) attacks on the server’'s storage space.

In the sinple node of operation, upon recieving a subnission at the
sct - f eedback wel | -known URL, an HTTPS server will performa set of
operati ons, checking on each sct_feedback object before storing it:

1. the HITPS server MAY nodify the sct_feedback object, and discard
all items in the x509_chain array except the first item (which is
the end-entity certificate)

2. if a bit-wise conpare of the sct_feedback object matches one
already in the store, this sct_feedback object SHOULD be
di scarded

3. if the leaf cert is not for a domain for which the server is

authoritative, the SCT MJUST be di scarded

4., if an SCT in the sct_data array can’t be verified to be a valid
SCT for the acconpanying |eaf cert, and issued by a known | og,
the individual SCT SHOULD be di scarded

The nmodification in step nunber 1 is necessary to prevent a malicious
client from exhausting the server’s storage space. A client can
generate their own issuing certificate authorities, and create an
arbitrary nunber of chains that termnate in an end-entity
certificate with an existing SCT. By discarding all but the end-

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 11]

Internet-Draft Gossiping in CT March 2016

entity certificate, we prevent a sinple HITPS server from storing
this data. Note that operation in this node will not prevent the
attack described in Section 10.2. Skipping this step requires
addi tional configuration as described bel ow.

The check in step 2 is for detecting duplicates and minim zing
processing and storage by the server. As on the client, an exact
comparison is needed to ensure that attacks involving alternate
chains are detected. Again, at |least one optimization is safe and

MAY be perforned. |If the certificate chain exactly matches an
existing certificate chain, the server nay store the union of the
SCTs fromthe two objects in the first (existing) object. It should

do this after conpleting the validity check on the SCTs.

The check in step 3 is to help malfunctioning clients from exposing
which sites they visit. It additionally hel ps prevent DoS attacks on
t he server.

[TBD: Thinking about building this, how does the SCT Feedback app
know which sites it’s authoritative for?]

The check in step 4 is to prevent DoS attacks where an adversary
fills up the store prior to attacking a client (thus preventing the
client’s feedback from being recorded), or an attack where an
adversary sinply attenpts to fill up server’s storage space.

The nore advanced server configuration will detect the [TODO doubl e-
CA-conpromi se] attack. |In this configuration the server will not
nmodi fy the sct_feedback object prior to perform ng checks 2, 3, and
4.

To prevent a malicious client fromfilling the server’s data store,
the HTTPS Server SHOULD perform an additional check:

1. if the x509 chain consists of an invalid certificate chain, or
the culminating trust anchor is not recognized by the server, the
server SHOULD nodify the sct_feedback object, discarding all
items in the x509 chain array except the first item

The HTTPS server may choose to onit checks 4 or 5. This will place
the server at risk of having its data store filled up by invalid
data, but can also allow a server to identify interesting certificate
or certificate chains that onmt valid SCTs, or do not chain to a
trusted root. This information may enable an HTTPS server operator
to detect attacks or unusual behavior of Certificate Authorities even
outside the Certificate Transparency ecosystem

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 12]

Internet-Draft Gossiping in CT March 2016

8.1.4. HITPS server to auditors

HTTPS servers receiving SCTs fromclients SHOULD share SCTs and
certificate chains with CT auditors by either serving themon the
wel | - known URL:

htt ps://<domai n>/ . wel | - known/ ct - gossi p/ vl/col | ect ed- sct -f eedback

or by HTTPS POSTing themto a set of preconfigured auditors. This
all ows an HTTPS server to choose between an active push nodel or a
passi ve pull nodel

The data received in a GET of the well-known URL or sent in the POST
is defined in Section 8.1.1

HTTPS servers SHOULD share all sct_feedback objects they see that
pass the checks in Section 8.1.3. |If this is an infeasible anount of
data, the server nay choose to expire subnissions according to an
undefined policy. Suggestions for such a policy can be found in
Section 11. 3.

HTTPS servers MJST NOT share any other data that they may | earn from
t he subni ssion of SCT Feedback by HTTPS clients, |ike the HTTPS
client 1P address or the tine of subm ssion

As descri bed above, HTTPS servers can be configured (or omt
configuration), resulting in two nodes of operation. 1In one node,
the x509 chain array will contain a full certificate chain. This
chain may ternminate in a trust anchor the auditor may recogni ze, or
it my not. (One scenario where this could occur is if the client
subnmitted a chain terminiating in a locally added trust anchor, and
the server kept this chain.) 1In the other node, the x509 chain array
will consist of only a single elenent, which is the end-entity
certificate.

Audi tors SHOULD provide the follow ng URL accepting HTTPS POSTi ng of
SCT feedback dat a:

https://<auditor>/ct-gossip/vl/ sct-feedback

[TBD: Should that be .well-known? Depends on whether auditors will
operate in their own URL nane space or not.]

Audi tors SHOULD regul arly poll HTTPS servers at the well-known

col |l ected-sct-feedback URL. The frequency of the polling and how to
determ ne which donmains to poll is outside the scope of this
docunent. However, the selection MJST NOT be influenced by potential
HTTPS clients connecting directly to the auditor. For exanple, if a

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 13]

Internet-Draft Gossiping in CT March 2016

poll to exanple.comoccurs directly after a client subnmits an SCT for
exanpl e.com an adversary observing the auditor can trivially
conclude the activity of the client.

8.2. STH pollination

The goal of sharing Signed Tree Heads (STHs) through pollination is
to share STHs between HTTPS clients and CT auditors while stil
preserving the privacy of the end user. The sharing of STHs
contribute to the overall goal of detecting misbehaving | ogs by
providing CT auditors with STHs from nmany vantage points, nmaking it
possible to detect logs that are presenting inconsistent views.

HTTPS servers supporting the protocol act as STH pools. HITPS
clients and CT auditors in the possession of STHs can pollinate STH
pool s by sending STHs to them and retrieving new STHs to send to
other STH pools. CT auditors can inprove the value of their auditing
by retrieving STHs from pool s.

HTPS clients send STHs to HITPS servers by POSTing themto the well -
known URL:

htt ps://<donai n>/ . wel | - known/ ct - gossi p/ vl/ st h-pollination

The data sent in the POST is defined in Section 8.2.4. This data
SHOULD be sent in an already established TLS session. This makes it
hard for an attacker to disrupt STH gossiping w thout al so disturbing
ordinary secure browsing (https://). This is discussed nore in
Section 11.1.1.

The response contains zero or nore STHs in the sane format, described
in Section 8.2.4.

An HTTPS client may acquire STHs by several nethods:
0O inreplies to pollination PCSTs;

o asking logs that it recognises for the current STH, either
directly (v2/get-sth) or indirectly (for example over DNS)

0 resolving an SCT and certificate to an STH via an incl usion proof
o resolving one STH to another via a consistency proof
HTTPS clients (that have STHs) and CT auditors SHOULD pol |l inate STH

pools with STHs. Wich STHs to send and how often pollination should
happen is regarded as undefined policy with the exception of privacy

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 14]

Internet-Draft Gossiping in CT March 2016

concerns expl ai ned bel ow. Suggestions for the policy may be found in
Section 11. 3.

An HTTPS client could be tracked by giving it a unique or rare STH
To address this concern, we place restrictions on different
components of the systemto ensure an STH will not be rare.

0 HTTPS clients silently ignore STHs fromlogs with an STH i ssuance
frequency of nore than one STH per hour. Logs use the STH
Frequency Count netadata to express this ([RFC-6962-BI S-09]
sections 3.6 and 5.1).

0 HTTPS clients silently ignore STHs which are not fresh

An STH is considered fresh iff its tinestanp is less than 14 days in
the past. G ven a naxi mum STH i ssuance rate of one per hour, an
attacker has 336 unique STHs per log for tracking. dients MJST

i gnore STHs ol der than 14 days. W consider STHs within this
validity window not to be personally identifiable data, and STHs
outside this window to be personally identifiable.

When multiplied by the nunber of |1ogs fromwhich a client accepts
STHs, this nunber of unique STHs grow and the negative privacy
inmplications growwith it. It’s inmportant that this is taken into
account when | ogs are chosen for default settings in HTTPS clients.
This concern is discussed upon in Section 10.4.5.

A log nmay cease operation, in which case there will soon be no STH
within the validity window Cdients SHOULD performall three nethods
of gossip about a |log that has ceased operation since it is possible
the log was still conprom sed and gossip can detect that. STH
Pollination is the one nechanismwhere a client must know about a | og
shutdown. A client who does not know about a | og shutdown MJST NOT
attenpt any heuristic to detect a shutdown. Instead the client MJST
be i nformed about the shutdown froma verifiable source (e.g. a

sof tware update). The client SHOULD be provided the final STH issued
by the | og and SHOULD resolve SCTs and STHs to this final STH If an
SCT or STH cannot be resolved to the final STH, clients should foll ow
the requirenents and recommendations set forth in Section 11.1.2.

8.2.1. HITPS dients and Proof Fetching

There are two types of proofs a client may retrieve; inclusion proofs
and consi stency proofs.

An HTTPS client will retrieve SCTs froman HTTPS server, and nust

obtain an inclusion proof to an STH in order to verify the prom se
made by the SCT.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 15]

Internet-Draft Gossiping in CT March 2016

An HTTPS client may al so receive an SCT bundl ed with an inclusion
proof to a historical STH via an unspecified future nmechani sm
Because this historical STH is considered personally identifiable

i nformati on per above, the client nust obtain a consistency proof to
a nore recent STH

A client SHOULD perform proof fetching. A client MJUST NOT perform
proof fetching for any SCTs or STHs issued by a locally added log. A
client MAY fetch an inclusion proof for an SCT (issued by a pre-

| oaded | og) that validates a certificate chaining to a |locally added
trust anchor.

[TBD: Linus doesn’t like this because we’'re mandati ng behavi or that
is not necessarily safe. 1Is it unsafe? Not sure.]

If a client requested either proof directly froma log or auditor, it
woul d reveal the client’s browsing habits to a third party. To
nmtigate this risk, an HTTPS client MJST retrieve the proof in a
manner that disguises the client.

Depending on the client’s DNS provider, DNS nmay provide an
appropriate internediate | ayer that obfuscates the linkability

bet ween the user of the client and the request for inclusion (while
at the sane tine providing a caching |layer for oft-requested

i nclusion proofs.)

[TODO Add a reference to Google’s DNS nmechani sm nore proper than
http://ww. certificate-transparency. org/ august-2015-newsl etter]

Anonym ty networks such as Tor also present a nmechanismfor a client
to anonynously retrieve a proof from an auditor or |og.

Even when using a privacy-preserving | ayer between the client and the
| og, certain observations nmay be made about an anonynous client or
general user behavi or dependi ng on how proofs are fetched. For
exanple, if a client fetched all outstanding proofs at once, a | og
woul d know that SCTs or STHs recieved around the same time are nore
likely to cone froma particular client. This could potentially go
so far as correlation of activity at different times to a single
client. In aggregate the data could reveal what sites are conmnonly
visited together. HITPS clients SHOULD use a strategy of proof
fetching that attenpts to obfuscate these patterns. A suggestion of
such a policy can be found in Section 11.2.

Resol ving either SCTs and STHs may result in errors. These errors
may be routine downtime or other transient errors, or they may be

i ndicative of an attack. Cients should follow the requirenents and
recomendations set forth in Section 11.1.2 when handling these

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 16]

Internet-Draft Gossiping in CT March 2016
errors in order to give the CT ecosystemthe greatest chance of
detecting and responding to a conprom se.

8.2.2. STH Pol lination w thout Proof Fetching

An HTTPS client MAY participate in STH Pollination w thout fetching

proofs. In this situation, the client receives STHs froma server
applies the sane validation logic to them (signed by a known | og,
within the validity window) and will |ater pass themto an HTTPS
server.

When operating in this fashion, the HTTPS client is pronoting gossip
for Certificate Transparency, but derives no direct benefit itself.
In conparison, a client who resolves SCTs or historical STHs to
recent STHs and pollinates themis assured that if it was attacked,
there is a probability that the ecosystemw ||l detect and respond to
the attack (by distrusting the |og).

8.2.3. Auditor Action

CT auditors participate in STH pollination by retrieving STHs from
HTTPS servers. They verify that the STHis valid by checking the
signature, and requesting a consistency proof fromthe STHto the
nost recent STH.

After retrieving the consistency proof to the nmost recent STH, they
SHOULD pol linate this new STH anong participating HITPS Servers. In
this way, as STHs "age out" and are no longer fresh, their "lineage"
continues to be tracked in the system

8.2.4. STH Pollination data fornat

The data sent from HITPS clients and CT auditors to HITPS servers is
a JSON object [RFC7159] with the foll owi ng content:

0 sths - an array of 0 or nore fresh SignedTreeHead s as defined in
[RFC- 6962- Bl S-09] Section 3.6.1

8.3. Trusted Auditor Stream

HTTPS clients MAY send SCTs and cert chains, as well as STHs,
directly to auditors. |If sent, this data MAY include data that
reflects locally added | ogs or trust anchors. Note that there are
privacy inplications in doing so, these are outlined in

Section 10.4.1 and Section 10. 4. 6.

The nost natural trusted auditor arrangenent arguably is a web
browser that is "logged in to" a provider of various internet

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 17]

Internet-Draft Gossiping in CT March 2016

services. Another equivalent arrangenment is a trusted party like a
corporation to which an enpl oyee is connected through a VPN or by
other simlar neans. A third mght be individuals or smaller groups
of people running their own services. |n such a setting, retrieving
proofs fromthat third party could be considered reasonable froma
privacy perspective. The HITPS client may also do its own auditing
and might additionally share SCTs and STHs with the trusted party to
contribute to herd immunity. Here, the ordinary [RFC 6962-BI S-09]
protocol is sufficient for the client to do the auditing while SCT
Feedback and STH Pol lination can be used in whole or in parts for the
gossi p part.

Anot her wel| established trusted party arrangenment on the internet
today is the relation between internet users and their providers of
DNS resol ver services. DNS resolvers are typically provided by the

i nternet service provider (ISP) used, which by the nature of name
resol ving already know a great deal about which sites their users
visit. As mentioned in Section 8.2.1, in order for HTTPS clients to
be able to retrieve proofs in a privacy preserving nmanner, logs could
expose a DNS interface in addition to the ordinary HITPS interface.
An informal witeup of such a protocol can be found at XXX

8.3.1. Trusted Auditor data format
Trusted Auditors expose a REST APl at the fixed URI
https://<auditor>/ct-gossip/vl/trusted-auditor
Subni ssions are nade by sending an HTTPS PCST request, with the body
of the POST in a JSON object. Upon successful receipt the Trusted
Auditor returns 200 K
The JSON obj ect consists of two top-level keys: ’'sct_feedback’ and
"sths’. The 'sct_feedback’ value is an array of JSON objects as
defined in Section 8.1.1. The 'sths' value is an array of STHs as
defined in Section 8.2.4.

Exanpl e:

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 18]

Internet-Draft Gossiping in CT March 2016

{
"sct _feedback’
[
' x509_chain’
[
'----BEA N CERTI FI CATE---\n
AAA. ..,
'----BEA N CERTI FI CATE---\n
AAA. ..,
]1
'sct_data’
[
TAAA LT,
"AAA LT,
]
.o
]l
" st hs’
[
"AAA LT,
TAAA LT
]
}

9. 3-Method Ecosystem

The use of three distinct nmethods for auditing | ogs may seem
excessi ve, but each represents a needed conponent in the CT
ecosystem To understand why, the drawbacks of each conponent nust
be outlined. |In this discussion we assume that an attacker knows
whi ch nechani sns an HTTPS client and HTTPS server inplenent.

9.1. SCT Feedback

SCT Feedback requires the cooperation of HITPS clients and nore
importantly HTTPS servers. Although SCT Feedback does require a
significant anount of server-side logic to respond to the
corresponding APls, this functionality does not require

custom zation, so it may be pre-provided and work out of the box.
However, to take full advantage of the system an HITPS server woul d
wi sh to perform sonme configuration to optimze its operation:

0 Mnimze its disk commtnent by naintaining a |list of known SCTs
and certificate chains (or hashes thereof)

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 19]

Internet-Draft Gossiping in CT March 2016

0o Mximze its chance of detecting a nisissued certificate by
configuring a trust store of CAs

0 Establish a "push" nechanismfor POSTing SCTs to CT auditors

These configuration needs, and the sinple fact that it would require
some depl oynent of software, means that some percentage of HITPS
servers will not deploy SCT Feedback

It is worthwhile to note that an attacker nmay be able to prevent
detection of an attack on a webserver (in all cases) if SCT Feedback
is not inplemented. This attack is detailed in Section 10.1).

I f SCT Feedback was the only mechanismin the ecosystem any server
that did not inplenment the feature would open itself and its users to
attack wi thout any possibility of detection.

I f SCT Feedback is not deployed by a webserver, malicious logs wll
be able to attack all users of the webserver (who do not have a
Trusted Auditor relationship) with inpunity. Additionally, users who
wi sh to have the strongest neasure of privacy protection (by

di sabling STH Pol | i nati on Proof Fetching and forgoing a Trusted
Auditor) could be attacked wi thout risk of detection

9.2. STH Pollination

STH Pol l i nation requires the cooperation of HITPS clients, HITPS
servers, and | ogs.

For a client to fully participate in STH Pol linnation, and have this
mechani sm detect attacks against it, the client nust have a way to
safely perform Proof Fetching in a privacy preserving manner. (The
client may pollinate STHs it receives w thout perform ng Proof
Fetching, but we do not consider this option in this section.)

HTTPS Servers nust depl oy software (although, as in the case with SCT
Feedback this logic can be pre-provided) and conmit some configurable
anount of di sk space to the endeavor.

Logs (or a third party) nust provide access to clients to query
proofs in a privacy preserving nmanner, nost |ikely through DNS

Unl i ke SCT Feedback, the STH Pollination mechanismis not hanpered if
only a mnority of HTTPS servers deploy it. However, it makes an
assunption that an HTTPS client perforns Proof Fetching (such as the
DNS nechani sm di scussed). Unfortunately, any manner that is
anonynous for sonme (such as clients who use shared DNS services such
as a large ISP), nay not be anonynous for others.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 20]

Internet-Draft Gossiping in CT March 2016

For instance, DNS requests expose a consi derabl e amount of sensitive
i nformati on (including what data is already present in the cache) in
pl ai nt ext over the network. For this reason, sonme percentage of
HTTPS clients may choose to not enable the Proof Fetching conponent
of STH Pollination. (Al though they can still request and send STHs
anong participating HTTPS servers, even when this affords them no
direct benefit.)

If STH Pollination was the only mechani sm depl oyed, users that
disable it would be able to be attacked w thout risk of detection

If STH Pollination was not deployed, HTTPS dients visiting HTTPS
Servers who did not deploy SCT Feedback coul d be attacked without
ri sk of detection.

9.3. Trusted Auditor Relationship

The Trusted Auditor Relationship is expected to be the rarest gossip
nmechani sm as an HTTPS dient is providing an unadul terated report of
its browsing history to a third party. Wile there are valid and
comon reasons for doing so, there is no appropriate way to enter
into this relationship without retrieving infornmed consent fromthe
user.

However, the Trusted Auditor Rel ationship nechanismstill provides
value to a class of HITPS Cients. For exanple, web crawl ers have no
concept of a "user"” and no expectation of privacy. O ganizations

al ready perform ng network auditing for anonalies or attacks can run
their owm Trusted Auditor for the sane purpose with marginal increase
in privacy concerns.

The ability to change one’s Trusted Auditor is a formof Trust
Agility that allows a user to choose who to trust, and be able to
revise that decision |ater wi thout consequence. A Trusted Auditor
connection can be nade nore confidential than DNS (through the use of
TLS), and can even be nmade (sonmewhat) anonynous through the use of
anonymity services such as Tor. (Note that this does ignore the de-
anonymi zation possibilities available fromviewing a user’s browsing
history.)

If the Trusted Auditor relationship was the only nechani sm depl oyed,
users who do not enable it (the majority) would be able to be
attacked wi thout risk of detection.

If the Trusted Auditor relationship was not depl oyed, craw ers and
organi zations would build it thenselves for their own needs. By
standardizing it, users who wish to opt-in (for instance those
unwilling to participate fully in STH Pollination) can have an

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 21]

Internet-Draft Gossiping in CT March 2016

9. 4.

10.

10.

i nt eroperabl e standard they can use to choose and change their
trusted auditor.

I nteraction
The interactions of the nechanisns is thus outlined:

HTTPS Clients can be attacked w thout risk of detection if they do
not participate in any of the three nechanisns.

HTTPS Clients are afforded the greatest chance of detecting an attack
when they either participate in both SCT Feedback and STH Pol I i nati on
with Proof Fetching or if they have a Trusted Auditor relationship.
(Participating in SCT Feedback is required to prevent a malicious |og
fromrefusing to ever resolve an SCT to an STH, as put forward in
Section 10.1). Additionally, participating in SCT Feedback enabl es
an HTTPS Client to assist in detecting the exact target of an attack

HTTPS Servers that omit SCT Feedback enable nmalicious logs to carry
out attacks without risk of detection. |If these servers are targeted
specifically, even if the attack is detected, w thout SCT Feedback
they may never learn that they were specifically targeted. HITPS
servers wi thout SCT Feedback do gain sone neasure of herd immunity,
but only because their clients participate in STH Pollination (with
Proof Fetching) or have a Trusted Auditor Rel ationship.

When HTTPS Servers onmit SCT feedback, it allows their users to be
attacked without detection by a malicious |og; the vul nerabl e users
are those who do not have a Trusted Auditor relationship.

Security considerations
1. Attacks by actively malicious |ogs

One of the nost powerful attacks possible in the CT ecosystemis a
trusted log that has actively decided to be nmalicious. 1t can carry
out an attack in two ways:

In the first attack, the log can present a split view of the log for
all tine. The only way to detect this attack is to resolve each view
of the log to the two npst recent STHs and then force the log to
present a consistency proof. (Wiich it cannot.) This attack can be
detected by CT auditors participating in STH Pollination, as |long as
they are explicitly built to handle the situation of a |og
continuously presenting a split view

In the second attack, the log can sign an SCT, and refuse to ever
include the certificate that the SCT refers to in the tree

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 22]

Internet-Draft Gossiping in CT March 2016

10.

10.

(Alternately, it can include it in a branch of the tree and issue an
STH, but then abandon that branch.) Whenever soneone requests an

i nclusion proof for that SCT (or a consistency proof fromthat STH),
the I og would respond with an error, and a client may sinply regard
the response as a transient error. This attack can be detected using
SCT Feedback, or an Auditor of Last Resort, as presented in

Section 11.1.2.

2. Dual - CA Conpromn se

XXX describes an attack possible by an adversary who conproni ses two
Certificate Authorites and a Log. This attack is difficult to defend
against in the CT ecosystem and XXX describes a few approaches to
doing so. W note that Gossip is not intended to defend against this
attack, but can in certain nodes

Def endi ng agai nst the Dual - CA Conpromi se attack requires SCT
Feedback, and explicitly requires the server to save full certificate
chains (described in Section 8.1.3 as the '"conplex’ configuration.)
After CT auditors receive the full certificate chains fromservers
they must conpare the chain built by clients to the chain supplied by
the log. |If the chains differ significantly, the auditor can raise a
concern

[What does 'differ significantly’ mean? W should provi de gui dance.
I _think_ the correct algorithmto raise a concern is:

If one chain is not a subset of the other AND If the root
certificates of the chains are different THEN It’s suspici ous.

Justification: - Cross-Signatures could result in a different org
being treated as the "root’, but in this case, one chain would be a
subset of the other. - Internediate swapping (e.g. different

signature algorithns) could result in different chains, but the root
woul d be the sane.

(Hitting both those cases at once woul d cause a fal se positive
t hough.)

What did | miss? |

3. Censorship/ Bl ocki ng consi derations

We assune a network attacker who is able to fully control the
client’s internet connection for sone period of time, including

sel ectively bl ocking requests to certain hosts and truncating TLS
connecti ons based on infornmation observed or guessed about client

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 23]

Internet-Draft Gossiping in CT March 2016

behavior. |In order to successfully detect |og m sbehavior, the
gossi p mechani snms nmust still work even in these conditions.

There are several gossip connections that can be bl ocked:
1. dients sending SCTs to servers in SCT Feedback

2. Servers sending SCTs to auditors in SCT Feedback (server push
mechani sm

3. Servers naking SCTs available to auditors (auditor pul
mechani sm

4. Cdients fetching proofs in STH Pol lination

5. Cdients sending STHs to servers in STH Pol lination
6. Servers sending STHs to clients in STH Pollination
7. dients sending SCTs to Trusted Auditors

If a party cannot connect to another party, it can be assured that
the connection did not succeed. Wile it may not have been

mal i ci ously bl ocked, it knows the transaction did not succeed.
Mechani sns which result in a positive affirmati on fromthe recipient
that the transaction succeeded all ow confirmati on that a connection
was not blocked. |In this situation, the party can factor this into
strategi es suggested in Section 11.3 and in Section 11.1. 2.

The connections that allow positive affirmation are 1, 2, 4, 5, and
7

More insidious is blocking the connections that do not allow positive
confirmation: 3 and 6. An attacker may truncate or drop a response
froma server to a client, such that the server believes it has
shared data with the recipient, when it has not. However, in both
scenatios (3 and 6), the server cannot distinguish the client as a
cooperating nenber of the CT ecosystemor as an attacker performng a
sybil attack, aimng to flush the server’s data store. Therefore the
fact that these connections can be undetectably bl ocked does not
actually alter the threat nodel of servers responding to these
requests. The choice of algorithmto release data is crucial to
protect against these attacks; strategies are suggested in

Section 11. 3.

Handl i ng censorship and network bl ocking (which is indistinguishable
fromnetwork error) is relegated to the inplenentation policy chosen

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 24]

Internet-Draft Gossiping in CT March 2016

10.

10.

10.

by clients. Suggestions for client behavior are specified in
Section 11.1.

4. Privacy considerations

CT Cossip deals with HTTPS Cdients which are trying to share

i ndi cators that correspond to their browsing history. The nost
sensitive relationships in the CT ecosystemare the rel ati onships

bet ween HTTPS clients and HITPS servers. Cient-server relationships
can be aggregated into a network graph with potentially serious
inmplications for correlative de-anonyni sation of clients and

rel ati onshi p-mappi ng or clustering of servers or of clients.

There are, however, certain clients that do not require privacy
protection. Exanples of these clients are web craw ers or robots.
But even in this case, the nethod by which these clients crawl the
web may in fact be considered sensitive information. |In general, it
is better to err on the side of safety, and not assunme a client is
okay with giving up its privacy.

4.1. Privacy and SCTs

An SCT contains information that links it to a particular web site.
Because the client-server relationship is sensitive, gossip between
clients and servers about unrelated SCTs is risky. Therefore, a
client with an SCT for a given server should transmit that
information in only two channels: to the server associated with the
SCT itself; and to a Trusted Auditor, if one exists.

4.2. Privacy in SCT Feedback

SCTs introduce yet another nechanismfor HITPS servers to store state
on an HTTPS client, and potentially track users. HITPS clients which
all ow users to clear history or cookies associated with an origin
MUST cl ear stored SCTs and certificate chains associated with the
origin as well.

Auditors should treat all SCTs as sensitive data. SCTs received
directly froman HITPS client are especially sensitive, because the
auditor is a trusted by the client to not reveal their associations
with servers. Auditors MJUST NOT share such SCTs in any way,

i ncluding sending themto an external |log, w thout first mixing them
with multiple other SCTs | earned through submissions fromnultiple
other clients. Suggestions for mxing SCTs are presented in

Section 11. 3.

There is a possible fingerprinting attack where a |og i ssues a uni que
SCT for targeted log client(s). A colluding |log and HTTPS server

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 25]

Internet-Draft Gossiping in CT March 2016

10.

10.

operator could therefore be a threat to the privacy of an HTTPS
client. Gven all the other opportunities for HITPS servers to
fingerprint clients - TLS session tickets, HPKP and HSTS headers,
HTTP Cookies, etc. - this is considered acceptable.

The fingerprinting attack described above would be nmitigated by a
requi renent that |ogs MJST use a deterministic signature scheme when
signing SCTs ([RFC-6962-BI S-09] Section 2.1.4). A log signing using
RSA is not required to use a determnistic signature schene.

Since logs are allowed to issue a new SCT for a certificate already
present in the log, nmandating determ nistic signatures does not stop
this fingerprinting attack altogether. It does nake the attack
harder to pull off w thout being detected though

There is another sinmlar fingerprinting attack where an HTTPS server
tracks a client by using a unqgiue certificate or a variation of cert
chains. The risk for this attack is accepted on the sanme grounds as
the uni que SCT attack described above. [XXX any nitigations possible
her e?]

4.3. Privacy for HTTPS clients perform ng STH Proof Fetching

An HTTPS client perform ng Proof Fetching should only request proofs
froma CT log that it accepts SCTs from An HTTPS client MAY [TBD
SHOULD?] regularly request an STH fromall logs it is willing to
accept, even if it has seen no SCTs fromthat | og.

[TBD how regularly? This has operational inplications for |og
operators |

The actual nechani sm by which Proof Fetching is done carries

consi derabl e privacy concerns. Although out of scope for the
docunent, DNS is a nechanismcurrently discussed. DNS exposes data
in plaintext over the network (including what sites the user is
visiting and what sites they have previously visited) an may not be
suitabl e for sone.

4.4. Privacy in STH Pollination

An STH linked to an HTTPS client nmay indicate the follow ng about
that client:

o that the client gossips;

o that the client has been using CT at least until the tine that the
tinmestanp and the tree size indicate;

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 26]

Internet-Draft Gossiping in CT March 2016

10.

o that the client is talking, possibly indirectly, to the |og
i ndi cated by the tree hash

0 which software and software version is being used.

There is a possible fingerprinting attack where a | og i ssues a unique
STH for a targeted HTTPS client. This is sinilar to the
fingerprinting attack described in Section 10.4.2, but can operate
cross-origin. If alog (or HITPS Server cooperating with a |og)
provides a unique STHto a client, the targeted client will be the
only client pollinating that STH cross-origin.

It is mtigated partially because the log is limited in the nunber of
STHs it can issue. It must 'save’ one of its STHs each MVD to
performthe attack.

4.5, Privacy in STH Interaction

An HTTPS client may pollinate any STH within the [ast 14 days. An
HTTPS Client may also pollinate an STH for any log that it knows
about. When a client pollinates STHs to a server, it will rel ease
nore than one STHat a tine. It is unclear if a server may 'prine’ a
client and be able to reliably detect the client at a later tine.

It’s clear that a single site can track a user any way they w sh, but
this attack works cross-origin and is therefore nore concerning. Two
i ndependent sites A and B want to collaborate to track a user cross-
origin. A feeds a client Carol sone N specific STHs fromthe M ogs
Carol trusts, chosen to be older and | ess common, but still in the
validity window Carol visits B and chooses to rel ease sone of the
STHs she has stored, according to some policy.

Mbdeling a representation for how common ol der STHs are in the pools
of clients, and examining that with a given policy of how to choose
whi ch of those STHs to send to B, it should be possible to calcul ate
statistics about how uni que Carol |ooks when talking to B and how
useful /accurate such a tracking mechanismis.

Bui I ding such a nodel is likely inpossible wthout some real world
data, and requires a given inplenentation of a policy. To conbat
this attack, suggestions are provided in Section 11.3 to attenpt to
mnimze it, but followup testing with real world depl oynent to

i nprove the policy will be required.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 27]

Internet-Draft Gossiping in CT March 2016

10.

10.

4.6. Trusted Auditors for HTTPS Cients

Sone HITPS clients may choose to use a trusted auditor. This trust
rel ati onshi p exposes a | arge anount of information about the client
to the auditor. In particular, it will identify the web sites that
the client has visited to the auditor. Sone clients nmay already
share this information to a third party, for exanple, when using a
server to synchroni ze browser history across devices in a server-

vi si bl e way, or when doing DNS | ookups through a trusted DNS
resolver. For clients with such a relationship already established
sending SCTs to a trusted auditor run by the sane organi zati on does
not appear to expose any additional infornmation to the trusted third

party.

Clients who wish to contact a CT auditor w thout associating their
identities with their SCIs may wi sh to use an anonym zi ng networ k
like Tor to submt SCT Feedback to the auditor. Auditors SHOULD
accept SCT Feedback that arrives over such anonyni zi ng networKks.

Clients sending feedback to an auditor may prefer to reduce the
tenporal granularity of the history exposure to the auditor by
cachi ng and del ayi ng their SCT Feedback reports. This is el aborated
upon in Section 11.3. This strategy is only as effective as the
granularity of the timestanps enbedded in the SCTs and STHs.

4. 7. HTTPS Cients as Auditors

Sone HTTPS Cients nmay choose to act as CT auditors thenselves. A
Client taking on this role needs to consider the foll ow ng:

0 an Auditing HTTPS Cient potentially exposes its history to the
| ogs that they query. Querying the log through a cache or a proxy
with many other users may avoid this exposure, but may expose
information to the cache or proxy, in the sanme way that a non-
Auditing HTTPS dient exposes information to a Trusted Auditor

o an effective CT auditor needs a strategy about what to do in the
event that it discovers m sbehavior froma |log. M sbehavior from
a log involves the | og being unable to provide either (a) a
consi stency proof between two valid STHs or (b) an inclusion proof
for a certificate to an STH any tine after the log’s MVD has
el apsed fromthe issuance of the SCT. The log’'s inability to
provide either proof will not be externally cryptographically-
verifiable, as it may be indistinguishable froma network error.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 28]

Internet-Draft Gossiping in CT March 2016

11. Policy Reconmendati ons

This section is intended as suggestions to inplementors of HITPS
Clients, HTTPS Servers, and CT auditors. It is not a requirenent for
techni que of inplenentation, so long as privacy considerations

est abl i shed above are obeyed.

11.1. Bl ocki ng Recommendati ons
11.1.1. Frustrating bl ocking

When nmaki ng gossip connections to HTTPS Servers or Trusted Auditors,
it is desirable to mininize the plaintext nmetadata in the connection
that can be used to identify the connection as a gossip connection
and therefore be of interest to block. Additionally, introducing
some randommess into client behavior may be inportant. W assune
that the adversary is able to inspect the behavior of the HITPS
client and understand how it makes gossip connecti ons.

As an exanple, if a client, after establishing a TLS connection (and
recei ving an SCT, but not making its own HITP request yet),

i medi atel y opens a second TLS connection for the purpose of gossip,
the adversary can reliably block this second connection to bl ock
gossip without affecting normal browsing. For this reason it is
recomended to run the gossip protocols over an existing connection
to the server, making use of connection nultiplexing such as HITP
Keep- Al i ves or SPDY

Truncation is also a concern. |f a client always establishes a TLS
connection, nakes a request, receives a response, and then al ways
attenpts a gossip conmmuni cation inmrediately following the first
response, truncation will allow an attacker to bl ock gossip reliably.

For these reasons, we reconmmend that, if at all possible, clients
SHOULD send gossip data in an already established TLS session. This
can be done through the use of HTTP Pipelining, SPDY, or HTTP/ 2

11.1.2. Responding to possible bl ocking
In sone cirsunstances a client nmay have a piece of data that they
have attenpted to share (via SCT Feedback or STH Pollination), but
have been unable to do so: with every attenpt they recieve an error
These situations are:

1. The client has an SCT and a certificate, and attenpts to retrieve
an inclusion proof - but recieves an error on every attenpt.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 29]

Internet-Draft Gossiping in CT March 2016

2. The client has an STH, and attenpts to resolve it to a newer STH
via a consistency proof - but recieves an error on every attenpt.

3. The client has attenpted to share an SCT and constructed
certificate via SCT Feedback - but recieves an error on every
attenpt.

4. The client has attenpted to share an STH via STH Pol lination -
but recieves an error on every attenpt.

5. The client has attenpted to share a specific piece of data with a
Trusted Auditor - but recieves an error on every attenpt.

In the case of 1 or 2, it is conceivable that the reason for the
errors is that the log acted inproperly, either through malicious
actions or conpronise. A proof may not be able to be fetched because
it does not exist (and only errors or tinmeouts occur). One such
situation may arise because of an actively nalicious |og, as
presented in Section 10.1. This data is especially inportant to
share with the broader internet to detect this situation

If an SCT has attenpted to be resolved to an STH via an incl usion
proof multiple tines, and each tine has failed, a client SHOULD nake
every effort to send this SCT via SCT Feedback. However the client
MUST NOT share the data with any other third party (excepting a
Trusted Auditor should one exist).

If an STH has attenpted to be resolved to a newer STH via a

consi stency proof nmultiple tinmes, and each tine has failed, a client
MAY share the STH with an "Auditor of Last Resort" even if the STHin
qgquestion is no longer within the validity window. This auditor may
be pre-configured in the client, but the client SHOULD permit a user
to disable the functionality or change whom data is sent to. The
Auditor of Last Resort itself represents a point of failure, so if

i mpl emented, it should connect using public key pinning and not
considered an itemdelivered until it recieves a confirmation.

In the cases 3, 4, and 5, we assune that the webserver(s) or trusted
auditor in question is either experiencing an operational failure, or
being attacked. In both cases, a client SHOULD retain the data for

| at er submission (subject to Private Browsing or other history-
clearing actions taken by the user.) This is elaborated upon nore in
Section 11.3.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 30]

Internet-Draft Gossiping in CT March 2016

11.

11.

2. Proof Fetching Reconmendati ons

Proof fetching (both inclusion proofs and consistency proofs) should
be perfornmed at randomtine intervals. |f proof fetching occured al
at once, in a flurry of activity, a |l og would know that SCTs or STHs
reci eved around the sanme tinme are nore likely to cone froma
particular client. While proof fetching is required to be done in a
manner that attenpts to be anonynous fromthe perspective of the I|og,
the correlation of activity to a single client would still revea
patterns of user behavior we wish to keep confidential. These
patterns could be recogni zabl e as a single user, or could reveal what
sites are commonly visited together in the aggregate.

[TBD: \What other recomendati ons do we want to make here? W can
tal k nmore about the inadequecies of DNS... The first paragraph is 80%
i dentical between here and above]

3. Record Distribution Recommendati ons

In several conponents of the CT CGossip ecosystem the recomendati on
is made that data fromnultiple sources be ingested, mxed, stored
for an indetermnate period of tine, provided (nmultiple tines) to a
third party, and eventually deleted. The instances of these
recommendations in this draft are:

0 When a client receives SCTs during SCT Feedback, it should store
the SCTs and Certificate Chain for sone amount of time, provide
some of them back to the server at sone point, and nay eventually
remove themfromits store

0 When a client receives STHs during STH Pollination, it should
store them for sone anmount of tine, mix themwth other STHs,
rel ease sone of themthemto various servers at sonme point,
resol ve sone of themto new STHs, and eventually renove them from
its store

0 When a server receives SCTs during SCT Feedback, it should store
them for sone period of tine, provide themto auditors some nunber
of times, and may eventually rempve them

0 When a server receives STHs during STH Pollination, it should
store themfor sone period of tine, nmix themw th other STHs,
provi de sone of themto connecting clients, may resolve themto
new STHs via Proof Fetching, and eventually renove themfromits
store

o Wien a Trusted Auditor receives SCTs or historical STHs from
clients, it should store themfor sonme period of tine, mx them

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 31]

Internet-Draft Gossiping in CT March 2016

11.

with SCTs received fromother clients, and act upon them at sone
period of tine

Each of these instances have specific requirenments for user privacy,
and each have options that may not be invoked. As one exanple, an
HTTPS client should not mx SCTs fromserver Awith SCTs from server
B and rel ease server B's SCTs to Server A. As another exanple, an
HTTPS server may choose to resolve STHs to a single nore current STH
via proof fetching, but it is under no obligation to do so.

These requirenents should be net, but the general probl em of
aggregating nultiple pieces of data, choosing when and how nany to
rel ease, and when to renove themis shared. This problem has

previ ously been considered in the case of Mx Networks and Rerail ers,
i ncludi ng papers such as "Froma Trickle to a Fl ood: Active Attacks
on Several Mx Types", [Y], and [Z].

There are several concerns to be addressed in this area, outlined
bel ow.

3.1. Mxing A gorithm

When SCTs or STHs are recorded by a participant in CT Gossip and
|ater used, it is inportant that they are selected fromthe datastore
in a non-deterministic fashion.

This is nost inportant for servers, as they can be queried for SCTs
and STHs anonynously. |If the server used a predictable ordering
algorithm an attacker could exploit the predictability to learn

i nformati on about a client. One such nethod would be by observing
the (encrypted) traffic to a server. Wen a client of interest
connects, the attacker makes a note. They observe nore clients
connecting, and predicts at what point the client-of-interest’s data
wi Il be disclosed, and ensures that they query the server at that
poi nt .

Al t hough nost inportant for servers, randomordering is stil

strongly recommended for clients and Trusted Auditors. The above
attack can still occur for these entities, although the circunstances
are less straightforward. For clients, an attacker could observe
their behavior, note when they recieve an STH from a server, and use
javascript to cause a network connection at the correct tinme to force
a client to disclose the specific STH Trusted Auditors are stewards
of sensitive client data. |If an attacker had the ability to observe
the activities of a Trusted Auditor (perhaps by being a | og, or

anot her auditor), they could performthe sane attack - noting the

di scl osure of data froma client to the Trusted Auditor, and then

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 32]

Internet-Draft Gossiping in CT March 2016

11.

correlating a later disclosure fromthe Trusted Auditor as coming
fromthat client.

Random ordering can be ensured by several nechanisns. A datastore
can be shuffled, using a secure shuffling algorithmsuch as Fisher-
Yates. Alternately, a series of randomindexes into the data store
can be selected (if a collision occurs, a newindex is selected.) A
crypt ographyi cally secure random nunber generator nust be used in
either case. |If shuffling is performed, the datastore nust be marked
"dirty’ upon iteminsertion, and at |east one shuffle operation
occurs on a dirty datastore before data is retrieved fromit for use.

3.2. Flushing Attacks

A flushing attack is an attenpt by an adversary to flush a particul ar
piece of data froma pool. In the CT Gossip ecosystem an attacker
may have perforned an attack and | eft evidence of a conpronised | og
on a client or server. They would be interested in flushing that
data, i.e. tricking the target into gossiping or pollinating the
incrimnating evidence with only attacker-controlled clients or
servers with the hope they trick the target into deleting it.

Servers are nost vulnerable to flushing attacks, as they rel ease
records to anonynous connections. An attacker can perform a Sybi
attack - connecting to the server hundreds or thousands of tines in
an attenpt to trigger repeated release of a record, and then
deletion. For this reason, servers must be especially aggressive
about retaining data for a |onger period of tine.

Clients are vulnerable to flushing attacks targetting STHs, as these
can be given to any cooperating server and an attacker can generally
i nduce connections to random servers using javascript. It would be
more difficult to performa flushing attack agai nst SCTs, as the
target server nust be authenticated (and an attacker inpersonating an
aut hentic server presents a recursive problemfor the attacker).
Nonet hel ess, flushing SCTs should not be ruled inpossible. A Trusted
Auditor may al so be vulnerable to flushing attacks if it does not
perform auditing operations itself.

Fl ushing attacks are defended agai nst using non-determ ni smand dunmy
messages. The goal is to ensure that an adversary does not know for
certain if the data in question has been released or not, and if it
has been del eted or not.

[TBD: At present, we do not have any support for dummy nessages. Do
we want to define a dummy nessage that clients and servers alike know
to ignore? WII HITP Conpression | eak the presence of >1 dumy
nmessages?

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 33]

Internet-Draft Gossiping in CT March 2016

11.

Is it sufficient to define a dummy nmessage as _anything_ with an
invalid siganture? This would negatively inmpact SCT Feedback servers
that log all things just in case they're interesting.]

3.3. The Deletion Al gorithm

No entity in CT Gossip is required to delete SCTs or STHs at any
time, except to respect user’s wi shes such as private browsi ng node
or clearing history. However, requiring infinite storage space is
not a desirable characteristic in a protocol, so deletion is

expect ed.

Whil e del etion of SCTs and STHs will occur, proof fetching can ensure
that any m sbehavior froma log will still be detected, even after
the direct evidence fromthe attack is deleted. Proof fetching
ensures that if a log presents a split viewfor a client, they nust
mai ntain that split viewin perpetuity. An inclusion proof froman
SCT to an STH does not erase the evidence - the new STH is evidence
itself. A consistency proof fromthat STH to a new one |ikew se -
the new STH is every bit as incrimnating as the first. (dient
behavior in the situation where an SCT or STH cannot be resolved is
suggested in Section 11.1.2.) Because of this property, we reconmend
that if a client is perform ng proof fetching, that they nake every
effort to not delete an SCT or STH until it has been successfully
resolved to a new STH via a proof.

When it is tine to delete a record, it is inmportant that the decision
to do so not be done deterministicly. Introducing non-determnismin
the decision is absolutely necessary to prevent an adversary from
knowi ng with certainty that the record has been successfully flushed
froma target. Therefore, we speak of making a record 'eligible for
deletion’ and then being processed by the 'deletion algorithm.
Making a record eligible for deletion sinmply means that it will have
the deletion algorithmrun. The deletion algorithmwll use a
probability based system and a secure random nunber generator to
determine if the record will be deleted

Al t hough the deletion algorithmis specifically designed to be non-
determnistic, if the record has been resolved via proof to a new STH
the record nay be safely deleted, as long as the new STH is retained.

The actual deletion algorithmmy be [STATISTICS HERE]. [Sonething
as sinple as 'Pick an integer securely between 1 and 10. If it’'s
greater than 7, delete the record.” O something nore conplicated.]

[TODO Enunerating the problens of different types of m xes vs
Cottrell Mx]

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 34]

Internet-Draft Gossiping in CT March 2016

11.

11.

3.3.1. Experinental Al gorithms

More conplex algorithnms could be inserted at any step. Three
exanpl es are illustrated:

SCTs are not eligible to be subnmitted to an Auditor of Last Resort.
Therefore, it is nmore inportant that they be resolved to STHs and
reported via SCT feedback. |If fetching an inclusion proof regularly
fails for a particular SCT, one can require it be reported nore tines
than normal via SCT Feedback before beconing eligible for deletion

Before an itemis made eligible for deletion by a client, the client
could aimto make it difficult for a point-in-tine attacker to flush
the pool by not naking an itemeligible for deletion until the client
has noved networks (as seen by either the local IP address, or a
report-back providing the client with its observed public IP
address). The HTTPS client could also require reporting over a
timespan, e.g. it nmust be reported at least N tine, Mweeks apart.
This strategy coul d be enpl oyed al ways, or only when the client has
di sabl ed proof fetching and the Auditor of Last Resort, as those two
mechani sms (when used together) will enable a client to report nost
att acks.

3.3.2. Concrete Recommendati ons

The recomrendations for behavior are: - If proof fetching is enabled,
do not delete an SCT until it has had a proof resolving it to an STH
- If proof fetching continually fails for an SCT, do not nmke the
itemeligible for deletion of the SCT until it has been rel eased,

mul tiple tines, via SCT Feedback. - If proof fetching continually
fails for an STH, do not make the itemeligible for deletion until it
has been queued for release to an Auditor of Last Resort. - Do not
dequeue entries to an Auditor of Last Resort if reporting fails.

I nstead keep the items queued until they have been successfully sent.
- Use a probability based system wi th a cryptographically secure
random nunber generator, to determne if an item should be deleted

- Select itens fromthe datastores by selecting randomindexes into
the datastore. Use a cryptographically secure random nunber
gener at or.

[TBD: More? |

We present the follow ng pseudocode as a concrete outline of our
suggesti on.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 35]

Internet-Draft Gossiping in CT March 2016

11.3.3.2.1. STH Data Structures

The STH cl ass contains data pertaining specifically to the STH
itself.

class STH
{
ui nt 32 proof _attenpts
ui nt 32 proof failure_count
ui nt 32 numreports to thirdparty
datetine tinestanp
byt e[] dat a

}

The broader STH store itself would contain all the STHs known by an
entity participating in STH Pollination (either client or server).
This sinplistic view of the class does not take into account the
complicated locking that would likely be required for a data
structure being accessed by multiple threads. One thing to note
about this pseudocode is that it aggressively renpbves STHs once they
have been resolved to a newer STH (if proof fetching is configured).
The only STHs in the store are ones that have never been resolved to
a newer STH, either because proof fetching does not occur, has
failed, or because the STH is considered too new to request a proof
for. It seenms less likely that servers will perform proof fetching.
Therefore it would be recommended that the various constants in use
be increased considerably to ensure STHs are pollinated nore
aggressi vel y.

cl ass STHStore

{
STH] sth_list

[l This function is run after receiving a set of STHs from
/[l athird party in response to a pollination subm ssion
def insert(STH] new sths) {
foreach(new i n new sths) {
if(this.sth_list.contains(new))
conti nue
this.sth_list.insert(new
}
}

/1 This function is called to possibly delete the given STH
I/ fromthe data store
def del ete_maybe(STH s) {
[/ Performstatistical test and see if | should delete this bundle

}

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 36]

| nt er net -

/1
/1
def

Dr aft Gossiping in CT March 2016

This function is called to (certainly) delete the given STH

fromthe data store
del ete_now(STH s) {

this.sth_list.renove(s)

}

/1
/1
/1
def

When it is tine to perform STH Pollination, the HTTPS Cient
calls this function to get a selection of STHs to send as

f eedback

get _pollination_selection() {

if(len(this.sth list) < MAX STH TO GGCSSI P)

return this.sth_|ist

el se {

}
}
}

i ndexes = set ()
nmodul us = len(this.sth_Ilist)
whi |l e(l en(i ndexes) < MAX STH TO GCSSI P) {
r = random nt () % nodul us
if(r not in indexes
&% now() - this.sth_list[i].tinestanmp < ONE_VEEK)
i ndexes.insert(r)

}

return_selection =[]
foreach(i in indexes) {
return_selection.insert(this.sth_list[i])

}

return return_sel ection

We al so suggest a function that can be called periodically in the
background, iterating through the STH store, perform ng a cl eaning
operation and queui ng consistency proofs. This function can |live as
a nmenber functions of the STHStore cl ass.

Nor dber g,

et al. Expi res Septenber 22, 2016 [Page 37]

Internet-Draft Gossiping in CT March 2016

def clean_list() {
foreach(sth in this.sth_list) {
if(now() - sth.tinestanp > ONE VEEK) {
//STH is too old, we nust renove it
i f(proof_fetching_enabl ed
&& auditor_of |ast_resort_enabl ed
&& (sth.proof _failure_count / sth.proof_attenpts)
> M N_PROOF_FAI LURE_RATI O_CONSI DERED_SUSPI Cl QUS) {
queue_sth _for_auditor_of last resort(sth)
del et e_maybe(sth)
} else {
del et e_now(st h)
}
}

el se if(proof fetching_enabl ed
&% now() - sth.tinestanp > TWO DAYS
&% now() - sth.tinestanp > LOG MVD) {
st h. proof _attenpt s++
gqueue_consi st ency_proof (sth, consistency_proof cal |l back)
}
}
}

11.3.3.2.2. STH Del eti on Procedure

The STH Del etion Procedure is run after successfully subnmtting a
list of STHs to a third party during pollination. The follow ng
pseudocode woul d be included in the STHStore class, and called with
the result of get_pollination_selection(), after the STHs have been
(successfully) sent to the third party.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 38]

Internet-Draft Gossiping in CT March 2016

/1 This function is called after successfully pollinating STHs
/[l to athird party. It is passed the STHs sent to the third
/1 party, which is the output of get_gossip_sel ection()

def after_subnmit to thirdparty(STH] sth_list)

foreach(sth in sth |ist)
sth.numreports_to_thirdparty++

i f(proof fetching_enabled) {
if(now() - sth.tinestanp > LOG MVD) {
st h. proof _attenpts++
gqueue_consi st ency_proof (sth, consistency_proof call back)

}

i f(auditor_of last _resort_enabl ed
&& st h. proof failure_count >
M N_PROCF _ATTEMPTS CONSI DERED SUSPI CI QUS
&& (sth.proof _failure_count / sth.proof_attenpts) >
M N_PROCF_FAI LURE_RATI O_CONSI DERED _SUSPI Cl QUS) {
queue_sth_for_auditor_of _last_resort(sth)

}

el se { //proof fetching not enabled

if(sth.numreports to_thirdparty
> M N_STH _REPORTS_TO THI RDPARTY) {
del et e_maybe(sth)

}

}

}
}

def consistency_proof _cal | back(consi stency_proof,
ori gi nal _sth,
error) {
if(lerror) {
i nsert (consi stency_proof. current _sth)
del et e_now(consi st ency_proof . ori gi nal _sth)
} else {
original _sth.proof failure_count++
}
}

11.3.3.2.3. SCT Data Structures

TBD TBD This section is not well abstracted to be used for both
servers and clients. TKTK

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 39]

Internet-Draft Gossiping in CT March 2016

The SCT cl ass contains data pertaining specifically to the SCT
itself.

cl ass SCT
{
ui nt 32 proof _attenpts
ui nt 32 proof _failure_count
bool has_been resolved to sth
byte[] data

}

The SCT bundle will contain the trusted certificate chain the HTTPS
client built (chaining to a trusted root certificate.) It also
contains the list of associated SCTs, the exact domain it is
applicable to, and netadata pertaining to how often it has been
reported to the third party.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 40]

Internet-Draft Gossiping in CT March 2016

cl ass SCTBundl e
{
X509[] certificate_chain
SCT[] sct_list
string donmain
uint32 numreports to thirdparty

def equal s(sct_bundl e) {

i f(sct_bundl e.domain != this.domain)
return fal se

i f(sct_bundle.certificate chain != this.certificate_chain)
return fal se

i f(sct_bundle.sct_list !'=this.sct_list)

return fal se

return true

}
def approx_equal s(sct_bundle) {
i f(sct_bundle.domain != this.donain)
return fal se
i f(sct_bundle.certificate_chain !'= this.certificate_chain)

return false

return true

}

def insert_scts(sct[] sct_list) {
this.sct _list.union(sct _|ist)
this.numreports to thirdparty = 0

}

def has_been_fully_resolved_to_sths() {
foreach(s in this.sct_list) {
i f(!s.has_been resolved to_sth)
return fal se

}

return true

}

def nmax_proof failure count() {
uint32 max = 0
foreach(s in this.sct _list) {

i f(s.proof_failure_count > nax)
max = proof _failure_count

}
return nmax

}

}

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 41]

Internet-Draft Gossiping in CT March 2016

We suppose a large data structure is used, such as a hashmap, indexed
by the domain name. For each domain, the structure will contain a
data structure that holds the SCTBundl es seen for that domain, as
wel | as encapsul ating sone logic relating to SCT Feedback for that
particul ar donain.

cl ass SCTStore

{
string domai n
datetine |ast_contact for_domain
ui nt 32 num subm ssi ons_att enpted
ui nt 32 num subm ssi ons_succeeded
SCTBundl e[] observed_records

/1 This function is called after recieving an SCTBundl e.
/1l For Cients, this is after a successful connection to a
[l HTTPS Server, calling this function with an SCTBundl e
/1 constructed fromthat certificate chain and SCTs
/'l For Servers, this is after receiving SCT Feedback
def insert(SCTBundle b) {

i f(operator_is_server) {

i f(!passes_validity checks(b))
return

foreach(e in this.observed_records) {
i f(e.equal s(b))
return
el se if(e.approx_equal s(b)) {
e.insert_scts(b.sct _|ist)
return

}

this. observed_records.insert(b)

[l When it is time to perform SCT Feedback, the HTTPS dient
/1 calls this function to get a selection of SCTBundles to send
/1 as feedback
def get _gossip_selection() {
i f(len(observed records) > MAC SCT_RECORDS TO GCSSI P) {
i ndexes = set ()
nmodul us = | en(observed_records)
whi | e(l en(i ndexes) < MAX SCT_RECORDS TO GCSSI P) {
r = random nt () % nodul us
if(r not in indexes)
i ndexes.insert(r)

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 42]

Internet-Draft Gossiping in CT March 2016

return_selection =[]
foreach(i in indexes) {
return_sel ection.insert(this.observed records[i])

}

return return_sel ection

}

el se
return this.observed records

}

def del ete_maybe(SCTBundl e b) {
[/ Performstatistical test and see if | should delete this bundle

}

def del ete_now SCTBundl e b) {
this. observed_records. renove(b)

}

def passes_validity_checks(SCTBundl e b) {
/1 This function perforns the validity checks specified in
/1 {{feedback-srvop}}

}

We al so suggest a function that can be called periodically in the
background, iterating through all SCTStore objects in the |arge
hashmap (here called "all _sct_stores’) and renoving old data.

def clear_old data()
foreach(storeEntry in all_sct_stores)

i f(storeEntry. num subni ssions_succeeded ==
&& storeEntry. num subni ssions_attenpt ed
> M N_SCT_ATTEMPTS_FOR _DOVAI N_TO BE_| GNORED)
{

all _sct_stores.renove(storeEntry)

el se if(storeEntry. num subm ssi ons_succeeded > 0
&% now() - storeEntry.last contact for_donmain
> TI ME_UNTI L_OLD SCTDATA ERASED)

{

}
}
}

all _sct_stores.renove(storeEntry)

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 43]

Internet-Draft Gossiping in CT March 2016

11.3.3.2.4. SCT Del eti on Procedure

The SCT Del etion procedure is nore conplicated than the respective
STH procedure. This is because servers may elect not to participate
in SCT Feedback, and this mnmust be accounted for by being nore
conservative in sending SCT reports to them

The foll owi ng pseudocode woul d be included in the SCTStore cl ass, and
called with the result of get_gossip_selection() after the SCT
Feedback has been sent (successfully) to the server. W also note
that the first experinental algorithmfromabove is included in the
pseudocode as an illustration

/1 This function is called after successfully providing SCT Feedback
/[l to a server. It is passed the feedback sent to the server, which
/1l is the output of get gossip_selection()

def after_subnit to thirdparty(SCTBundl e[] subm ttedBundl es)

foreach(bundl e in subm ttedBundl es)
bundl e. num reports_to_thirdparty++

i f(proof fetching_enabled) {
i f(!bundl e.has_been fully resolved to sths()) {
foreach(s in bundle.sct_list) {
i f(!s.has_been_resolved_to_sth) {
S. proof _attenpts++
queue_i ncl usi on_proof (sct, inclusion_proof_ call back)
}
}

el se {
i f(run_ct_gossi p_experinent_one) {
i f(bundle.numreports to thirdparty
> M N_SCT_REPCORTS_TO_THI RDPARTY
&& bundl e.numreports_to_thirdparty * 1.5
> bundl e. max_proof failure_count()) {
maybe_del et e(bundl e)

}

else { // Do not run experinent
i f(bundle.numreports to thirdparty
> M N_SCT_REPORTS _TO THI RDPARTY) {
maybe_del et e(bundl e)
}
}

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 44]

Internet-Draft Gossiping in CT March 2016

12.

13.

14.

14.

el se {//proof fetching not enabl ed
i f(bundl e.numreports_to_thirdparty
> (M N_SCT_REPORTS_TO_THI RDPARTY
* NO_PROOF_FETCH NG_REPORT_I NCREASE_FACTOR)) {
maybe_del et e(bundl e)
}
}
}
}

/1 This function is a callback invoked after an inclusion proof
/'l has been retrieved
def inclusion_proof_call back(inclusion_proof, original_sct, error)

if(lerror) {
original _sct.has_been_ resolved to sth = True
insert _to_sth datastore(inclusion_proof.new sth)

} else {
original _sct.proof_failure_count ++
}
}
| ANA consi derations
[TBD]

Contri butors
The authors would like to thank the follow ng contributors for
val uabl e suggestions: Al Cutter, Ben Laurie, Benjanin Kaduk, Josef
Gust af sson, Karen Seo, Magnus Ahltorp, Steven Kent, Yan Zhu
Changelog
1. Changes between ietf-01 and ietf-02

0 Requiring full certificate chain in SCT Feedback

o Carifications on what clients store for and send in SCT Feedback
added.

0 SCT Feedback server operation updated to protect agai nst DoS
attacks on servers

0 Pre-Loaded vs Locally Added Anchors expl ai ned.

o Base for well-known URL's changed.

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 45]

Internet-Draft Gossiping in CT March 2016

14.

14.

14.

Renmove all nentions of nonitors - gossip deals with adutitors
New sections added: Trusted Auditor protocol, attacks by actively
mal i ci ous | og, the Dual - CA conpronise attack, policy
reconmendat i ons,

Changes between ietf-00 and ietf-01

I mprove | angugage and readability based on feedback from Stephen
Kent .

STH Pol i nati on Proof Fetching defined and indicated as optional
3- Met hod Ecosystem secti on added.

Cases with Logs ceasing operation handl ed.

Text on tracking via STH Interaction added.

Section with some early recomrendati ons for m xi ng added.

Section detailing blocking connections, frustrating it, and the
i mplications added.

Changes between -01 and -02
STH Pol i nati on defi ned.
Trusted Auditor Relationship defined.
Overvi ew section rewitten
Data fl ow picture added
Section on privacy considerati ons expanded.
Changes between -00 and -01

Add the SCT feedback nechanism Cients send SCTs to originating
web server which shares themwi th auditors.

Stop assuming that clients see STHs.

Don't use HTTP headers but instead .well-known URL's - avoid that
battl e.

Stop referring to trans-gossip and trans-gossip-transport-https -
too conplicated

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 46]

Internet-Draft Gossiping in CT March 2016
0 Renove all protocols but HITPS in order to sinplify - let’'s come
back and add nore |ater.
0 Add nore reasoni ng about privacy.
0 Do specify data fornats.
15. References
15.1. Nornmative References
[RFC- 6962- Bl S- 09]
Laurie, B., Langley, A, Kasper, E., Messeri, E., and R
Stradling, "Certificate Transparency", Cctober 2015,
<https://datatracker.ietf.org/doc/draft-ietf-trans-

rf c6962-bi s/ >.

[RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, March 2014.

15.2. Informative References
[draft-ietf-trans-threat-anal ysis-03]
Kent, S., "Attack Mddel and Threat for Certificate
Transparency”, October 2015,
<https://datatracker.ietf.org/doc/draft-ietf-trans-threat-
anal ysi s/ >.
Aut hors’ Addresses

Li nus Nordberg
NORDUnet

Email : |inus@ordu. net
Dani el Kahn G || nor
ACLU

Emai | : dkg@i f t hhor senan. net

Tom R tter

Email: tom@itter.vg

Nor dberg, et al. Expi res Septenber 22, 2016 [Page 47]

