Lo/La
A Loss/Latency Tradeoff Bit

draft-you-tsvwg-latency-loss-tradeoff
ACCORD BoF – Thursday 7 April 2016
IETF 95 – Buenos Aires, Argentina
Brian Trammell
Why?

- Most networks built/configured to minimize loss.
- Some transports/apps more sensitive to latency.
- Current approach: guess which traffic is which.
- Proposal: have source tag packets as explicitly preferring loss to latency, or vice-versa.
DSCP in Review

• Six bits in the IP header (4-9 in v6, 8-13 in v4) to allow classification of traffic for per-hop QoS:
 • Default: best-effort traffic
 • Class Selector: simple priority, backward-compatible with old IPv4 TOS byte
 • Expedited Forwarding (EF): low loss, low delay, low jitter, implemented w/priority queue
 • Voice Admit: EF with admission control
 • Assured Forwarding (AF): bandwidth-limited forwarding guarantee, four classes, three drop probabilities
Issues with DSCP

• Incentive to lie means DSCP often gets bleached to “default” at network borders
 • AF needs configuration of limits per class
 • EF is a “very important packet” flag
• Both can be used to disadvantage default traffic
 • Internet deployment requires external consideration (contracts, payments, etc.)
Explicit Tradeoff

- Lo/La is based on an explicit tradeoff:
 - Lo: I prefer latency to loss
 - La: I prefer loss to latency
 - no incentive to lie
 - no incentive to bleach

- Alternate approach to making DSCP deployable
- General principle: declarative, tradeoff-based signaling
 (draft-trammell-stackevo-explicit-coop)
One implementation

- Two DSCP codepoints in Pool 3:
 - 0b000001 **Lo**: minimize loss at expense of latency
 - 0b000101 **La**: minimize latency at expense of loss
- Two queues at likely bottlenecks:
 - Short queue for Lo (handled as DF)
 - Extremely short queue for La
- Fast deployment possible:
 - queue selection based on DSCP is deployed today
 - specific codepoint cutouts for bleaching at border