
JSON as Platform
Phill Hallam-Baker

Now come the decorations…

• 80% of what takes time in a spec, isn’t the spec.
• Service Description

• Version

• Rate limiting ?

• Etc.

• Service Management

• Going to JSON has big advantages
• It’s a data serialization format, not a document description language

But we are among the first to come this way

• Lots of JSON specifications

• Very few designed to be mission critical

• We can’t follow an existing pattern
• We should try to set one.

Encoding details matter

POST /acme/new-authorization HTTP/1.1
Host: example.com

{ "resource": "new-authz",
 "identifier": {
 "type": "dns",
 "value": "example.org" } }
/* Signed as JWS */

What exactly is signed?

What if…

• We decide to move away from HTTP?

• We decide to support a new encoding?

• The messages go through a proxy that rewrites URL?

A better approach…

POST <nobody cares now> HTTP/1.1
Host: <Irrelevant>

/* Start of signed data */
{ "new-authorization” :
 { "resource": "new-authz",
 "identifier": {
 "type": "dns",
 "value": "example.org" } }
/* End of JWS signed data */

But CA substitution!!!!

POST <nobody cares now> HTTP/1.1
Host: <Irrelevant>

/* Start of signed data */
{ "new-authorization” :
 { "CA" : "example.com",
 "resource": "new-authz",
 "identifier": {
 "type": "dns",
 "value": "example.org" } }
/* End of JWS signed data */

We just corrected a bug

• In current spec, “example.com” is overloaded
• HTTP end point

• Identify CA to issue certificate

• In proposal, separate semantics have separate fields

Advantages

• Completely decouple from HTTP
• HTTP in Web Services is a Presentation Layer

• Layer separation is good design

• A Web Service that reacts to HTTP fields is like an application protocol using TCP
checksum.

• Simpler JWS approach
• Just one signed blob, no additional protected headers

• Can slot in CMS without difficulty

• Directory is no longer security sensitive

Nested vs Flat

"challenges": [
 { "type": "http-01",
 "uri": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A" },
 { "type": "new-01",
 "uri": "https://example.com/authz/asdf/1",
 "param-x" : "TBS" }}]

But this is equally valid

"challenges": [
 { "uri": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A",
 "type": "http-01" },
 { "uri": "https://example.com/authz/asdf/1",
 "type": "new-01",
 "param-x" : "TBS" }}]

Flat encoding assumes an implementation

• Parse JSON tree
• Bind to tree elements in scripting language

• We all write Web services in Perl, right?

• But Bobby Tables says the approach should be:
• Parse input data

• Validate against schema specification

• Reject if invalid

• Otherwise do stuff

Nested – actually shorter

"challenges": [
 { "http-01" : {
 "uri": "https://example.com/authz/asdf/0",
 "token": "IlirfxKKXAsHtmzK29Pj8A" }},
 { "new-01", : {
 "uri": "https://example.com/authz/asdf/1",
 "param-x " : " TBS" }}}]

Proposal

• Start every message with the ACME message type

• Eliminate all the ‘type” elements
• Replace with nested encoding

• Advantages
• Proper layer separation

• Clearer examples (can elide HTTP entirely)

• Allow for implementations in C, C#, Java

• Allow others to use our pattern

