
Argon2 for password hashing and cryptocurrencies

Alex Biryukov, Daniel Dinu,
Dmitry Khovratovich

University of Luxembourg

2nd April 2016

Motivation

Password-based authentication

Keyless password authentication:
• User registers with name l and password p;
• Server selects hash function H, generates salt s, and stores
(l ,H(s, p));

• User sends (l , p′) during the login;
• Server matches (l ,H(s, p′)) with its password �le.

Problems:

• Password �les are often leaked
unencrypted;

• Passwords have low entropy
("123456");

• Regular cryptographic hash
functions are cracked on
GPU/FPGA/ASIC;

• Many iterations of SHA-256 do
little help as this slows down
everyone.

Understanding brute-force

Brute-force attacks (such as key guessing) are most e�cient on
custom hardware: multiple computing cores on large ASICs.

Practical example of SHA-2 hashing (Bitcoin):

• 232 hashes/joule on ASIC;

• 217 hashes/joule on laptop.

Consequences

• Keys lose 15 bits;

• Passwords become 3 lowercase letters shorter;

• PINs lose 5 digits.

ASIC-equipped attackers are the threat from the near future.

ASICs have high entry costs, but FPGA and GPU are employed too.

Solution

Since 2003, memory-intensive computations have been proposed.

Computing with a lot of memory would require a very large and
expensive chip.

Memory

Core

With large memory on-chip, the ASIC advantage vanishes.

Scrypt

Scrypt [another IETF draft] � designed by Percival in 2009.
Memory-intensive but has problems:

• Too many distinct primitives involved (PBKDF2, SHA-256,
Salsa/ChaCha);

• Time and memory tied;

• Simple time-memory tradeo�;

• Timingattack-vulnerable.

Password Hashing Competition (2013-2015)

Requirements for a new scheme:

• Maximum cracking cost per password on all platforms;

• Tunable time, memory parameters.

• Security against time-space tradeo�s;

• Transparent design;

• Flexibility.

• Ideally, side-channel protection (missing in scrypt) and tunable
parallelism.

Timeline

• 2013: Call for submissions.

• Feb 2014: 24 submissions.

• Dec 2014: 9 second-phase candidates.

• Jul 2015: 1 winner (Argon2), 4 special recognitions: Catena,
Lyra2, yescrypt and Makwa (delegation hashing).

Speci�cation of Argon2

Speci�cation

p lanes

4 slices

Password

Salt

Context
H H

Tag

Two variants: Argon2d and Argon2i.
• Argon2d uses data-dependent addressing (φ(j) = X [j − 1]);
• Argon2i uses data-independent addressing
(φ(j) = Blake2b(j));

• The block size is 8192 bits;
• The compression function is based on the Blake2b
permutation, enriched with 32-bit multiplications;

• Arbitrarily level of parallelism.

Technical details

p lanes

4 slices

Password

Salt

Context
H H

Tag

• Password � any length from 0 to 232 − 1 bytes;

• Salt � any length from 8 to 232 − 1 bytes, MUST be unique;

• Context (associated data) any length from 0 to 232 − 1 bytes;

• Key (another input) � from 0 to 32 bytes;

• Parallelism from 1 to 224 − 1 lanes.

Technical details II

p lanes

4 slices

Password

Salt

Context
H H

Tag

• H is a mode over Blake2b, which allows arbitrary output in
sponge-like fashion.

• Output tag � from 4 to 232 − 1 bytes.

• (not in the draft, but can be) Base64-encoded standard
password �le string for Tag+Salt+Username+Parameters.

Tweak: from 1.2.1 to 1.3

p lanes

4 slices

Password

Salt

Context
H H

Tag

Several enhancements from the version that won the PHC:

• Total memory up to 4 TB;

• Di�erent way to take pseudo-random data for the reference
block index from the previous block (Argon2i);

• In second and later passes over the memory, new blocks are
XORed into old ones, not overwrite (rules out some attacks,
see the last slide).

Feedback requested

p lanes

4 slices

Password

Salt

Context
H H

Tag

• Should there be any H other than Blake2b;

• Should we specify context further?

• Should we allow salts shorter than 8 bytes?

• Should we restrict password hashing to Argon2i only?

Extra material

Memory-hardness

Time-space tradeo�s and memory-hardness

Clearly, there should be no memoryless equivalent (thus
memory-hardness).

Time-space tradeo�: how time grows if space is reduced.

Time

Space

Normal computation

S

T

T = f (1/S).

Linear f means equal trading of space for time. We want f to be
superpolynomial.

Time-space tradeo�s and memory-hardness

Provable memory-hard schemes are known since 1970s (FFT and
pebble games), but are too slow for password time processing limits.

Fast but ad-hoc scrypt [Percival'09] has been the most advanced,
but it is very sophisticated (stack of heterogeneus components) and
admits a trivial time-memory tradeo� (thus allowing smaller chips).

X[] :

A

X[A]

H

Design rationale

Generic memory-hard function

The following con�guration is easy to tune and analyze:

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

• Filling memory array X [];

• φi are some indexing functions;

• Computation is sequential.

Questions we solved

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

1 Should the memory addressing be data-dependent or
data-independent?

2 How large the block should be?

3 How to exploit multi-threading?

4 How to design F?

Memory addressing

Input-independent addressing

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

Input-independent addressing:

• The adversary knows all addresses;

• Necessary inputs are prefetched or precomputed (if a tradeo�
is applied).

• Memory reduction by 3-4-5 factor with no time increase
(unless the bandwidth limits us).

Input-dependent addressing

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

Input-dependent addressing:

φ(j) = X [j − 1] (mod j)

• The input X [φ(j)] can not be prefetched/precomputed.

• Execution time increases with memory reduction.

• The scheme becomes vulnerable to cache timing attacks.

Memory fraction α: the time penalty is lower bounded by the depth

D of the recomputation tree, so the adversary wins as long as

αD(α) ≤ 1.

How many blocks

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

How many blocks should form an input?

• Modern CPU (e.g., Haswell) have two read ports and one
write port;

• Assuming the last block is in registers, read of more than 2
random-address (RA) blocks would be slow.

Our experiments with 8192-bit blocks:

Cycles/block Bandwidth (GB/sec)

One RA block 1194 4.3

Two RA blocks 1503 5.1

Thus extra block decreases the speed but increases the bandwidth.

How many blocks

F

X[j]X[φk(j)]X[φ2(j)]X[φ1(j)]X[1] = G(in)

How many blocks should form an input?

• Modern CPU (e.g., Haswell) have two read ports and one
write port;

• Assuming the last block is in registers, read of more than 2
random-address (RA) blocks would be slow.

Our experiments with 8192-bit blocks:

Cycles/block Bandwidth (GB/sec)

One RA block 1194 4.3

Two RA blocks 1503 5.1

Thus extra block decreases the speed but increases the bandwidth.

Parallelism and multiple passes

Parallelism

If the defender has t cores, he may want to load them all, also
increasing bandwidth.

Bad idea:

H(X) = G (X ||1)⊕ G (X ||2)⊕ · · · ⊕ G (X ||t).

Here memory can be easily traded for time.

Parallelism

Better approach:

p lanes

4 slices

Password

Salt

Context
H H

Tag

• Filling memory with p threads (usually 2 threads per core).
Memory is synchronized 4 times.

• A block in a slice can refer to the same slice or to any slice in
a previous column.

• Only the last column can be computed sequentially.

Block size and compression function

Block size

There is a tradeo� in the block size:

• Larger blocks are loaded faster (per byte) as CPU caches large
memory sections;

• Compression functions for smaller blocks are faster with the
same security.

Our experiments with the block size, compression function is
1-round Blake2b permutation:

Block size Cycles per byte

1024 2.4
2048 1.39
4096 1.15
8192 0.96

8192 (2 rounds) 1.19

Our choice

State 8 times as big as Blake2b.

P
P

P

X Y

R

Q

P P P

Z

Blake2b
round

1-round Blake2b �rst rowwise, then columnwise.

Applications

Systems with no online threats:

• Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU
using 1 core � Argon2d with 2 lanes and 250 MB of RAM;

• Backend server authentication, that takes 0.5 seconds on a 2
GHz CPU using 4 cores � Argon2d with 8 lanes and 4 GB of
RAM.

Systems with online attackers:

• Key derivation for hard-drive encryption, that takes 3 seconds
on a 2 GHz CPU using 2 cores � Argon2i with 4 lanes and 6
GB of RAM;

• Frontend server authentication, that takes 0.5 seconds on a 2
GHz CPU using 2 cores � Argon2i with 4 lanes and 1 GB of
RAM.

Security

Argon2d (1 pass, data-dependent):

• No generic attacks;

• Tradeo� attack: area-time product may be reduced by the
factor of 1.5 (ranking method).

Argon2i (1 or 2 passes, never recommended):

• Low storage attack [Corrigan-Gibbs et al. 2016], 1/5 of
memory with no penalty.

Argon2i (3 or more passes):

• Low storage attack [Corrigan-Gibbs et al. 2016], 1/3 of
memory with no penalty, patched in version 1.3.

• Sandwich attack [Alwen-Blocki'16]: no bene�t due to large
constant in asymptotic.

• Our tradeo� attack: AT may be reduced by the factor of 3
(ranking method).

