Alex Biryukov, Daniel Dinu,
Dmitry Khovratovich

University of Luxembourg

2nd April 2016

«0O» «Fr «=»r «

it
-
[y

DA

Motivation

Password-based authentication

Keyless password authentication:
o User registers with name / and password p;
e Server selects hash function H, generates salt s, and stores
(1,H(s, p));
e User sends (/, p) during the login;
e Server matches (/, H(s, p’)) with its password file.
Problems:

e Password files are often leaked
unencrypted;

o Passwords have low entropy
("123456");

e Regular cryptographic hash ASHLEY MADISoN"
functions are cracked on
GPU/FPGA/ASIC;

e Many iterations of SHA-256 do

little help as this slows down
avervone.

Understanding brute-force

Brute-force attacks (such as key guessing) are most efficient on
custom hardware: multiple computing cores on large ASICs.

Practical example of SHA-2 hashing (Bitcoin):
e 232 hashes/joule on ASIC;
e 217 hashes/joule on laptop.
Consequences
e Keys lose 15 bits;
e Passwords become 3 lowercase letters shorter;
e PINs lose 5 digits.
ASIC-equipped attackers are the threat from the near future.

ASICs have high entry costs, but FPGA and GPU are employed too.

Solution

Since 2003, memory-intensive computations have been proposed.

Computing with a lot of memory would require a very large and
expensive chip.

L0 O A O

Memory

Core

FETTETTTTT T TTTETT

With large memory on-chip, the ASIC advantage vanishes.

Scrypt

Scrypt [another IETF draft] — designed by Percival in 2009.
Memory-intensive but has problems:

e Too many distinct primitives involved (PBKDF2, SHA-256,
Salsa/ChaCha);

e Time and memory tied;
e Simple time-memory tradeoff;

e Timingattack-vulnerable.

Password Hashing Competition (2013-2015)

Requirements for a new scheme:
e Maximum cracking cost per password on all platforms;

e Tunable time, memory parameters.

Security against time-space tradeoffs;
e Transparent design;
Flexibility.

Ideally, side-channel protection (missing in scrypt) and tunable
parallelism.

Timeline
e 2013: Call for submissions.
e Feb 2014: 24 submissions.
e Dec 2014: 9 second-phase candidates.

e Jul 2015: 1 winner (Argon2), 4 special recognitions: Catena,
Lyra2, yescrypt and Makwa (delegation hashing).

Specification of Argon?2

Specification

Password e : T T

Saltl_, \\\

- ~.[] — - [
Context — S S J
u] R 0—

Two variants: Argon2d and Argon2i.

e Argon2d uses data-dependent addressing (¢(j) = X[j — 1]);

e Argon2i uses data-independent addressing
(6(j) = Blake2b(j));

e The block size is 8192 bits;

e The compression function is based on the Blake2b
permutation, enriched with 32-bit multiplications;

o Arbitrarily level of parallelism.

Password

Salt

Context

il

Technical details

..... 4dslices,
T ‘ B et -
—— . 0—
VD PEE—— \\\\ p lanes (—
L[] — = O
‘O— — 0—

Key (another input) — from 0 to 32 bytes;

Parallelism from 1 to 22 — 1 lanes.

Password — any length from 0 to 232 — 1 bytes;
Salt — any length from 8 to 232 — 1 bytes, MUST be unique;
Context (associated data) any length from 0 to 232 — 1 bytes;

Technical details Il

Password

Salt ([] N o planes [J—
D» S—— E—c -
. . . . 7 . . J

Context

L) fO— —1 T O

e H is a mode over Blake2b, which allows arbitrary output in
sponge-like fashion.
e Output tag — from 4 to 232 — 1 bytes.

e (not in the draft, but can be) Base64-encoded standard
password file string for Tag+Salt+Username+Parameters.

Tweak

e Total memory up to 4 TB;

e Different way to take pseudo-random data for the reference
block index from the previous block (Argon2i);

e In second and later passes over the memory, new blocks are
XORed into old ones, not overwrite (rules out some attacks,
see the last slide).

Several enhancements from the version that won the PHC;

- from121to13

Feedback requested

Password

Saltl_
a—|,
Context

_____ 4 slices
e ‘ & —— -

e i .

T~ \\\ lanes
VD " p lanes

10 S — 00

° ° ° e ,// - -

fo— |

Should there be any H other than Blake2b;
Should we specify context further?

Should we allow salts shorter than 8 bytes?

Should we restrict password hashing to Argon2i only?

Extra material

Memory-hardness

Time-space tradeoffs and memory-hardness

Clearly, there should be no memoryless equivalent (thus
memory-hardness).

Time-space tradeoff. how time grows if space is reduced.

Time A

T i Normal computation

Space

T = f(1/S).

Linear f means equal trading of space for time. We want f to be
superpolynomial.

Time-space tradeoffs and memory-hardness

Provable memory-hard schemes are known since 1970s (FFT and
pebble games), but are too slow for password time processing limits.

Fast but ad-hoc scrypt [Percival’09] has been the most advanced,
but it is very sophisticated (stack of heterogeneus components) and
admits a trivial time-memory tradeoff (thus allowing smaller chips).

Design rationale

Generic memory-hard function

The following configuration is easy to tune and analyze:

X[1] = G(in) X[61()] Xg2(7)] X[or ()] X[)
[] o o |] o o] o o |][]

L

F

e Filling memory array X[|;
e ¢; are some indexing functions;

e Computation is sequential.

Questions we solved

@ Should the memory addressing be data-dependent or
data-independent?

® How large the block should be?
© How to exploit multi-threading?
O How to design F?

Memory addressing

Input-independent addressing

X[1] = G(in) X1 ()] X[¢2(5)] X)) X[
|

Input-independent addressing:
e The adversary knows all addresses;

e Necessary inputs are prefetched or precomputed (if a tradeoff
is applied).

e Memory reduction by 3-4-5 factor with no time increase
(unless the bandwidth limits us).

Input-dependent addressing

Input-dependent addressing:

¢() = X[—1] (mod j)

e The input X[¢(j)] can not be prefetched/precomputed.
e Execution time increases with memory reduction.
e The scheme becomes vulnerable to cache timing attacks.

Memory fraction a: the time penalty is lower bounded by the depth
D of the recomputation tree, so the adversary wins as long as

aD(a) < 1.

How many blocks

X[1] = G(in) X[p1(5)] X[¢2(5)] X)) X[j]

How many blocks should form an input?

e Modern CPU (e.g., Haswell) have two read ports and one
write port;

e Assuming the last block is in registers, read of more than 2
random-address (RA) blocks would be slow.

How many blocks

X[1] = G(in) X[p1(5)] X[¢2(5)] X)) X[j]
] o o |] o o] o o |][|

F

How many blocks should form an input?
e Modern CPU (e.g., Haswell) have two read ports and one
write port;
e Assuming the last block is in registers, read of more than 2
random-address (RA) blocks would be slow.

Our experiments with 8192-bit blocks:

Cycles/block | Bandwidth (GB/sec)
One RA block 1194 4.3
Two RA blocks 1503 5.1

Thus extra block decreases the speed but increases.the bandwidth.

Parallelism and multiple passes

If the defender has t cores, he may want to load them all, also
increasing bandwidth.

Bad idea:

H(X) = G(X|1)® G(X]|]2) & --- & G(X]|t).

Here memory can be easily traded for time.

«0O>» «F»r «=>»

« =

DA

Better approach:

Parallelism

Password

SaltlL_,
a—,
Context

4 sh(f‘S
] v.‘ - o
o 0—

VD A N L D—%
i ey 8
: . . . e ’,’/ ¢ : J
T B

Tag

e Filling memory with p threads (usually 2 threads per core).

Memory is synchronized 4 times.

e A block in a slice can refer to the same slice or to any slice in
a previous column.

e Only the last column can be computed sequentially.

Block size and compression function

Block size

There is a tradeoff in the block size:

e Larger blocks are loaded faster (per byte) as CPU caches large
memory sections;

e Compression functions for smaller blocks are faster with the
same security.
Our experiments with the block size, compression function is
1-round Blake2b permutation:

Block size Cycles per byte

1024 2.4
2048 1.39
4096 1.15
8192 0.96

8192 (2 rounds) 1.19

State 8 times as big as Blake2b.

X %
— :]ll:].“ :.:] s Y :]‘
S B GG
ENORRE B I CN
\@/
_. ¥
R
. e
| c——
7 >
]
)
\
-z

1-round Blake2b first rowwise, then columnwise.

«O

>

DA

Applications

Systems with no online threats:

e Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU
using 1 core — Argon2d with 2 lanes and 250 MB of RAM;

e Backend server authentication, that takes 0.5 seconds on a 2
GHz CPU using 4 cores — Argon2d with 8 lanes and 4 GB of
RAM.

Systems with online attackers:

e Key derivation for hard-drive encryption, that takes 3 seconds
on a 2 GHz CPU using 2 cores — Argon2i with 4 lanes and 6
GB of RAM;

e Frontend server authentication, that takes 0.5 seconds on a 2
GHz CPU using 2 cores — Argon2i with 4 lanes and 1 GB of
RAM.

Security

Argon2d (1 pass, data-dependent):
e No generic attacks;
e Tradeoff attack: area-time product may be reduced by the
factor of 1.5 (ranking method).
Argon2i (1 or 2 passes, never recommended):
e Low storage attack [Corrigan-Gibbs et al. 2016], 1/5 of
memory with no penalty.
Argon2i (3 or more passes):
e Low storage attack [Corrigan-Gibbs et al. 2016], 1/3 of
memory with no penalty, patched in version 1.3.
e Sandwich attack [Alwen-Blocki'16]: no benefit due to large
constant in asymptotic.
e Our tradeoff attack: AT may be reduced by the factor of 3
(ranking method).

