DetNet Requirements on Data Plane and Control Plane

draft-zha-detnet-requirments-00

Yiyong Zha, Liang Geng
Agenda

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM
DetNet Architecture

- **Service Layer** - Deploy DetNet service
 - Service model

- **Control Plane** – manage DetNet network
 - Controller or protocols
 - Interfaces

- **Data Plane** – manage devices
 - Multi-vendor NEs
 - Queuing, shaping, scheduling

- **DetNet Architecture**
Agenda

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM
Use MPLS to Support DetNet

- **MPLS**
 - Existing Layer-2.5 technique to support any network protocol

- **DetNet over MPLS**
 - Setup Label Switched Path (LSP) for DetNet flow with label definition and QoS mapping.
 - Latency-aware LSP installment and removing
 - Supporting Layer-2 techniques such as pseudowire

 Latency-aware MPLS?

![Diagram]

- MPLS Label
- DetNet Label
Flow Identification

- How to differentiate DetNet from BE flow
 - Tuple matching approach (VLAN, MAC, Src) is not applicable
 - Do proxy or transformation
 - Unique flow ID in the network

- How to differentiate multiple delay requirements
 - QoS mapping mechanisms
 - Service model with delay information
Deterministic Forwarding

- TSN is good candidate
 - Frame preemption (IEEE 802.1Qbu)
 - Time aware shaping (IEEE 802.1Qbv)

- Standard queuing, shaping, transmission selection mechanisms
 - Also related to the southbound interface and configuration model
Agenda

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM
Centralized or Distributed Control

- **Centralized**
 - Good for Deterministic service provisioning, OAM
 - Existing SDN controller
 - Lack of agility

- **Distributed**
 - Peer-to-peer protocols to manage multiple devices
 - Autonomic negotiation between NEs
Southbound/Northbound Interface

- **Northbound**
 - Service level delay requirement
 - Flow and service description, service model

- **Southbound**
 - Resource inventory, Topology. (Bandwidth e.g.)
 - The data plane information of NEs. (queuing, e.g.)

APP

Controller

NBI: communications between Apps and controller

SBI: communications between controller and NEs
Peer-to-Peer Reservation Protocol

- Peer-to-Peer Reservation Protocol
 - Good for sensor network, IOT, lightweight comm.
 - “Tell and go”: One way reservation, maybe?
 - Easy to be utilized via MPLS
 - RSVP-TE is not feasible

- Depending on the how to describe DetNet flow
 - Flow modeling, (time aware, application aware)
Agenda

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM
Modeling of DetNet

Information Model
- UML

Data Model
- YANG
- XML/Schema

Independent of vendor, language, protocol

Derivation/mapping

Independent of vendor, dependent on language, protocol,

Augment, extension

Dependent on vendor, language, protocol
Service / Configuration Model

- Service model to deploy service
 - L3VPN
 - DetNet service?

- Configuration model to config device
 - Config queuing
 - Config shaping
 - ….

- Flow model
 - Dependent on config model
 - Related to service model
Agenda

- DetNet Architecture
- Data Plane Design Requirements
- Control Plane Design Requirements
- DetNet Modeling
- Synchronization and OAM
Time Synchronization & OAM

- Time synchronization
 - Time aware shaper is good for LAN and Ethernet
 - Time sync is necessary for multi-hop networking
 - Absolute end-to-end delay bound requires time sync

- OAM
 - Latency measuring
 - Congestion control
 - Device failure
Questions?