Secure DHCPv6

draft-ietf-dhc-sedhcipv6-11
Presenter: Ted Lemon
Secure DHCPv6 Overview

- Client verifies server’s identity and obtains the server’s public key.
- After server authentication, first message sent from client (such as Solicit) contains client’s certificate information.

Diagram:
- DHCPv6 Client
- DHCPv6 Server
- Information-request
- Reply
- Certificate option
- Encryption-Query
- Encryption-Response
- Encrypted-message option
- Server Identifier option
- Encrypted DHCPv6 Configuration
- ...
Update after IETF94

• Remove the Signature option
 – For the Reply message, only content is Certificate option. The client is already expected to validate it directly (by comparing it with locally pre-configured info). So we do not necessarily need to provide additional integrity protection
 – The subsequent encrypted messages also don’t need the signature option for integrity check
Update after IETF94

• Reserve the timestamp option
 – Provide anti-reply protection for encrypted messages

• Add the encryption algorithm negotiation process;
 – The certificate option adds the EA-id (encryption algorithm identifier) field
Update after IETF94

• Rewrite the "Applicability" section
 – Deployment scenario
 • Clients and servers are pre-configured with trusted certificates info
 • Example scenario: enterprise network
 – Add explanation of advantage of secure DHCPv6 against security mechanism in RFC3315
 – More widely applicable with integration of generic PKI is subject to future study and out of scope
Update after IETF94

• Modify client behavior when there is no authenticated DHCPv6 server
 – The client should retry a number of times to beat out a busy “real” server
 – And then take some alternative action depending on its local policy, such as attempting to use an unsecured DHCPv6 server
Update after IETF94

• Add the DecryptionFail error code
 – If the message from client fails decryption, the server sends Reply message with DecryptionFail error code
 – Upon receiving a DecryptionFail error status code, the client MAY resend the message following normal retransmission routines defined in RFC3315
Open Issues

• Remove of public key
 – Reason
 • Self-signed certificate can replace public key if the device is pre-configured with public key, not certificate
 • According to locally pre-configured info, self-signed certificate can be verified
 – Disadvantage
 • Size of message is increased when public key is actually needed, not certificate
Open Issues

• Secure DHCPv6 changes DHCPv6 message exchanges
 – Caused changes
 • Server selection is done at key exchange phase (initial Information-request and Reply exchange)
 • Solicit can be sent only to a single server
 – Two choices
 • Make the server selection behavior more compatible
 • Accept we give up the previous server selection feature for privacy
Next Step

• Next Step?
• Thanks!