Diameter End-to-End Security: Keyed Message Digests, Digital Signatures, and Encryption

draft-korhonen-dime-e2e-security-02
Jouni Korhonen
IEFT #95
Overview

• Overview
• Background
• Changes from -01 to -02
• Strawman solutions proposal
Background

• Charter:
 – Dec 2012 - Submit 'problem statement and requirements for Diameter end-to-end security framework' to the IESG for consideration as an Informational RFC -> done’ish.
 – Maintaining and/or progressing, along the standards track, the Diameter Base protocol and Diameter Applications. This includes extensions to Diameter Base protocol that can be considered as enhanced features or bug fixes -> end to end security falls in this category.

• Resurrecting old work in this area:
 – draft-korhonen-dime-e2e-security-02
Changes from -01 to -02

• Changes since IETF 85.. erm none really :)

Changes from -01 to -02

• Changes since IETF 85.. erm none really :)
Strawman solutions proposal

• In scope:
 – AVP integrity and confidentiality protection.

• Out of scope:
 – Authentication & authorization of end points.
 – Key management.
Two main deployment cases

Site-to-site

Protected AVPs

End-to-end protection over this path

End-to-end
Protecting AVPs

- Two new AVPs are defined for protecting other AVPs:
 - Signed-Data (octet string) for integrity protection of one or more AVPs.
 - Encrypted-Data (octet string) for confidentiality protection of one or more AVPs.

- Original proposal selected JSON-based approach:
 - JSON Web signature (JWS) for integrity protection.
 - JSON Web Encryption (JWE) for confidentiality protection.

- **New thinking:** what about CBOR/COSE instead of Diameterified use of JSON??
Signed-Data AVP

• The AVP carries JSON Web Signature (JWS) of one or more of AVPs. Each protected AVP is hashed and the hash is included into the JWS payload.

• Hashed AVPs are linked to “originals” using their AVP Code. If there are multiple instances of the same AVP, you hash them all and do one by one verification -> allows for rearranging AVPs and detection of addition/removal/modification of AVPs.

• Both JWS Payload and signature use the same hash algorithm of the cryptographic algorithm indicated in the JWS Header.

• Can be included into existing Diameter applications.
Encrypted-Data AVP

• The AVP carries JSON Web Encryption (JWE) data structure and the JWE Payload embeds one or more protected AVPs.

• Cannot be used with existing Diameter applications since encrypted AVPs are embedded inside the Encrypted-Data AVP(s).
Error Handling

• Transient failures:
 – DIAMETER_KEY_UNKNOWN – A Signed-Data or an Encrypted-Data AVP is received that was generated using a key that cannot be found in the key store. To recover a new end-to-end key establishment procedure may need to be invoked.
 – DIAMETER_HEADER_NAME_ERROR (TBD12 – This error code is returned when a Header Parameter Name is not understood in the JWSHeader AVP or in the JWE-Header AVP.

• Permanent failures:
 – DIAMETER_DECRYPTION_ERROR – This error code is returned when an Encrypted-Data AVP is received and the decryption fails for an unknown reason.
 – DIAMETER_SIGNATURE_ERROR – This error code is returned when a Signed-Data AVP is received and the verification fails for an unknown reason.
Anyway..

• For now this is just a resurrection of an old draft.

• What folks like the overall ‘framework’? Could it serve as a starting point for end to end security solution for Diameter (after some ‘minor’ tweaking)?

• I would welcome discussion and improvement proposal on this draft.