I2NSF Framework - 05

April 2016

Edward Lopez (elopez@fortinet.com)
Diego Lopez (diego.r.lopez@telefonica.com)
XiaoJun Zhuang (zhuangxiaojun@chinamobile.com)
Linda Dunbar (linda.dunbar@huawei.com)
John Strassner (John.sc.Strassner@huawei.com)
Joe Parrott (joe.parrott@bt.com)
Ramki Krishnan (ramki.krishnan@dell.com)
Seetharama Rao Durbha (S.Durbha@cablelabs.com)
Major Components of I2NSF

Clients express and monitor security policies for their specific flows.

Controllers specify and monitor a number of attributes registered by NSF developers.

NSF developers register their available security functions and the attributes that can be dynamically set by third parties.

Policies

Capabilities

Registration

Developer’s Management System
Major Components as Shown in the Draft

Client or App Controller (e.g. Video conference Ctrl Admin, OSS/BSS, or Service Orchestration)

Client Facing: Service Layer Interface

Service Provider mgmt | Security Controller | < -------- > | Vendor | Vendor Facing | Sys | Interface

NSF Facing: Capability Layer Interface

Vendor A Vendor B
Major Changes in - 05

- Terminology updated to conform to draft-hares-i2nsf-terminology-01
- Align the rule provisioning structure
 - To Event-Condition-Action rather than Subject-Object-Action-Function
 - Still using a packet-oriented paradigm focused on flow-based NSFs
- Removed reference to Service Layer extension from PCIM (RFC3060 or ITU-T X.1036)
 - Doubts about some flaws associated with PCIM
A More Detailed List of Changes

- Clarification of clarified packet- and flow-based processing
 - "This draft proposes that a rule provisioning interface to NSFs can be developed on a packet- or flow-based paradigm."
- State that packet- and flow-based NSFs can be standardized by using Event - Condition - Action (ECA) policy rule sets
- Definition of what an event, condition, and action mean in the context of policy rules, with examples
- Definition of what a policy rule is, and how it is used in I2NSF
- Clarifying that the rule sets and software interfaces of I2NSF aim to standardize the form and function of profile and signature files while supporting vendor-specific functions of each
- More detail on the Capability Layer Interface
- Clarification of vendor facing interface
 - More detail about vendor registration of their NSFs
- Additional security requirements
Packet-Oriented Paradigm for Flow-Based NSFs

• Rather than attempting to create a standard based on NSF classes, leverage flow-based programmability (SDN, NFV,...)
 – *Attackers don’t follow standards*
 – Focus on rule provisioning for flow-based NSFs

• All NSFAs, regardless of their objective, process
 – Packet headers
 – Packet payloads
 – Contextual and state information associated with packets
Three Types of NSF Interfaces

• Configuration
 – NSF internal configuration
 – Network attachment configuration

• Signaling
 – Status
 – Counters
 – Queries
 – Alerts

• Rule Provisioning
 – Policies
 – Capabilities
 – Negotiation
I2NSF Event – Condition – Action Rules

Event

- Determine whether the condition clause can be evaluated
 - E.g. time == 08:00, packet-In...
 - Event objects, attributes, collection of objects

Conditions

- Match values based on packets & contextual information
 - E.g. packet header, packet payload, state,...
 - Many can (and should) be standardized, but many also from NSF capabilities

Actions

- Egress processing
 - Invoke signaling
 - Packet forwarding and/or transformation
 - Possibility for SDN/NFV integration

- NSF profile, function specific
 - E.g. IPS:<Profile>
 - Profile: signature, Anti-virus, URL filtering, etc.
Considerations for vNSFs

- Single NSF can have multiple instantiations that are distributed across the network.
- Different rules/policies could be imposed to different instantiations.
- Each NSF may have its own sub-controller for all its instantiations.
- Policies to one instantiation can be moved/copied to another NSF instantiation.
- Multiple vNSFs (of different types or same type) can share one physical server.
- Multiple vNSFs collectively together to enforce the rules for large flows.
Other Aspects of the Framework

• Network connection between controller and NSFs
 – Closed and open environments
 – AAA, remote attestation in an open environment
 – Shall we consider client-controller as well?

• Rule considerations at each layer
 – Monitoring at the capability layer
 – Hints on service layer policies

• Capability negotiation
 – Considering the extension of CPP/CPNP (RFC 72976)