Information Model of Interface to Network Security Functions
Capability Interface
draft-xia-i2nsf-capability-interface-im-05

Liang Xia Huawei
DaCheng Zhang Alibaba
Edward Lopez Fortinet
Nicolas BOUTHORS Qosmos
Luyuan Fang Microsoft

April 2016 Buenos Ayres
Monitoring Part of I2NSF Architecture

Service Layer
For clients or App Gateway to express and monitor security policies for their specific flows.

Capability Layer
For controller to define explicit rules for individual NSFs to treat packets, as well as methods to monitor the execution status of those functions.

NSF Registration
For NSF vendors to register their available security functions and set of policies (or Service Profiles) that can be dynamically set by 3rd parties.

Vendor management system
Design Goals

• **A standard information model of capability interface for NSF:**
 – To realize the security policy provisioning which governs how the packets are treated by the NSF;
 – By building on the packet/flows-based paradigm;

• In order to:
 – Decouple network security controller from vendor-specific NSFs, and vice versa;
 – Abstract general network security capability to be managed flexibly and efficiently;
 – Avoid potential constraints on the NSFs.
3 Categories of Security Capabilities

1. Network security control:
 – Inspecting and processing the network packet/flow;
 – Packet contents, context information, actions;
 – Use a “Event-Condition-Action" paradigm;

2. Content security control:
 – Detect the malicious contents in application layer: file, url, data block, etc;
 – Security profiles or signature files with standardized input/output parameters;
 – Possibly need the standardized interface for updating its intelligence: signature, and algorithm.

3. Attack mitigation control:
 – Detect and mitigate various types of network attacks: DDoS attacks, Single-packet attacks, ipv6 related attack;
 – A standard interface for the security controller to choose and customize the given security capability.
Overall Structure for Information Model for security capability management

![Diagram showing relationships between content security control, network security control, and attack mitigation control]

Information model for I2NSF capability interface

Figure 1. The overall structure of information model for I2NSF Capability Interface.
An example of an I2NSF ECA Policy Rule is, in pseudo-code:

```
IF <event-clause> is TRUE
  IF <condition-clause> is TRUE
    THEN execute <action-clause>
END-IF
END-IF
```

In the above example, the Event, Condition, and Action portions of a Policy Rule are all **Boolean Clauses**.
Match Condition Details

<table>
<thead>
<tr>
<th>Match Condition</th>
<th>Attributes: Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Event</td>
<td>TBD</td>
</tr>
<tr>
<td>User Actions</td>
<td>login, logout, violate ACL...</td>
</tr>
<tr>
<td>Ethernet Frame Header</td>
<td>Source/Destination address s-VID/c-VID/EtherType</td>
</tr>
<tr>
<td>IPv4 Packet Header</td>
<td>src/dst address protocol src/dst port length flags ttl</td>
</tr>
<tr>
<td>IPv6 Packet Header</td>
<td>src/dst address protocol/nh src/dst port length traffic class hop limit flow label</td>
</tr>
<tr>
<td>TCP SCTP DCCP</td>
<td>Port syn ack fin rst psh urg window sockstress</td>
</tr>
<tr>
<td>User</td>
<td>time span days, minutes, seconds,</td>
</tr>
<tr>
<td>Schedule</td>
<td>country, province, city IP address, network section, network domain</td>
</tr>
<tr>
<td>Region</td>
<td>service: TCP, UDP, ICMP, HTTP... application: Gmail, QQ, MySQL... device: mobile phone, tablet, PC...</td>
</tr>
<tr>
<td>Target</td>
<td>session state: new, established, related invalid, untracked access mode: WIFI, 802.1x, PPPOE, SSL...</td>
</tr>
<tr>
<td>State</td>
<td>Direction: from_client, from_server, bidirection, reversed</td>
</tr>
</tbody>
</table>
Information Model for Content Security Control

- Anti-Virus
- Intrusion Prevention
- URL Filtering
- File Blocking
- Data Filtering
- Application Behavior Control
- Mail Filtering
- Packet Capturing
- File Isolation

Information model for content security control
Information Model for Attack Mitigation Control

- Attack mitigation capabilities:
 - SYN flood,
 - UDP flood,
 - ICMP flood,
 - IP fragment flood,
 - IPv6 related attacks
 - HTTP flood,
 - HTTPS flood,
 - DNS flood,
 - DNS amplification,
 - SSL DDoS,
 - IP sweep,
 - Port scanning,
 - Ping of Death,
 - Oversized ICMP
 ...

- General Shared Parameters:

- Information model for attack mitigation control
Information Model Grammar Details

<Policy> ::= <policy-name> <policy-id> (<Rule> ...)
<Rule> ::= <rule-name> <rule-id> <Match> <Action>
<Match> ::= [<subject-based-match>] [<object-based-match>]
<subject-based-match> ::= [L234-packet-header] ... [packet-payload] ...
<L234-packet-header> ::= [address-scope] [layer-2-header] [layer-3-header] [layer-4-header]
<address-scope> ::= <route-type> (<ipv4-route> | <ipv6-route> | <mpls-route> | <mac-route> | <interface-route>)
<route-type> ::= <IPV4> | <IPV6> | <MLPS> | <IEEE_MAC> | <INTERFACE>
<ipv4-route> ::= <ip-route-type> (<destination-ipv4-address> | <source-ipv4-address> | <destination-ipv4-prefix-address> | <source-ipv4-prefix-address>)
<destination-ipv4-address> ::= <ipv4-prefix>
<source-ipv4-address> ::= <ipv4-prefix>
<ipv4-prefix> ::= <IPV4_ADDRESS> <IPV4_PREFIX_LENGTH>
<ipv6-route> ::= <ip-route-type> (<destination-ipv6-address> | <source-ipv6-address> | <destination-ipv6-address> | <source-ipv6-address>)
<destination-ipv6-address> ::= <ipv6-prefix>
<source-ipv6-address> ::= <ipv6-prefix>
<ipv6-prefix> ::= <IPV6_ADDRESS> <IPV6_PREFIX_LENGTH>
<ip-route-type> ::= <SRC> | <DEST> | <DEST_SRC>
<layer-3-header> ::= <ipv4-header> | <ipv6-header>
<ipv4-header> ::= <SOURCE_IPV4_ADDRESS> <DESTINATION_IPV4_ADDRESS> <PROTOCOL> [<TTL>] [<DSCP>]
<ipv6-header> ::= <SOURCE_IPV6_ADDRESS> <DESTINATION_IPV6_ADDRESS> <NEXT_HEADER> [TRAFFIC_CLASS] [FLOW_LABEL] [HOP_LIMIT]
<object-based-match> ::= [<user> ...] [<schedule>] [<region>] [<target>] [<state>]
<user> ::= (<login-name> <group-name> <parent-group> <password> <expired-date> <allow-multi-account-login> <address-binding>) | <tenant> | <VN-id>
<schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-time>
<type> ::= <once> | <periodic>
<target> ::= <service> <application> <device>

<service> ::= <name> <id> <protocol> [protocol-num] [src-port] [dest-port]
@protocol> ::= <TCP> | <UDP> | <ICMP> | <ICMPv6> | <IP>
<application> ::= <name> <id> <category> <subcategory>
<category> ::= <business-system> | <Entertainment> | <internet> | <network> | <general>
<subcategory> ::= <Finance> | <Email> | <Game> | <media-sharing> | <social-network> | <web-posting> | <proxy> | ...
<data-transmission-model> ::= <client-server> | <browser-based> | <networking> | <peer-to-peer> | <unassigned>
<risk-level> ::= <Exploitable> | <Productivity-loss> | <Evasive> | <Data-loss> | <Malware-vehicle> | <Bandwidth-consuming> | <Tunneling>
<signature> ::= <server-address> <protocol> <dest-port-num> <flow-direction> <object> <keyword>
<flow-direction> ::= <request> | <response> | <bidirection>
<object> ::= <packet> | <flow>
<context based-match> ::= [<user-group> ...] [<session-state>] [<schedule>] [<region-group>]
<user-group> ::= <user> ...
<user> ::= (<login-name> <group-name> <parent-group> <password> <expired-date> <allow-multi-account-login> <address-binding>) | <tenant> | <VN-id>
<session-state> ::= <new> | <established> | <related> | <invalid> | <untracked>
<schedule> ::= <name> <type> <start-time> <end-time> <weekly-validity-time>
<type> ::= <once> | <periodic>
<action> ::= <basic-action> [<advanced-action>]
<brasic-action> ::= <pass> | <deny> | <mirror> | <call-function> | <encapsulation>
<advanced-action> ::= <profile-antivirus> | <profile-IPS> | <profile-url-filtering> | <profile-file-blocking> | <profile-data-filtering> | <profile-application-control>
Next Step

• Solicit Comments

• More detailed contents, including:
 – content security control IM;
 – attack mitigation control IM;
 – others.

• Call for adoption
Thanks!

Liang Xia (Frank)