TCP-in-UDP
draft-welzl-irtf-iccrg-tcp-in-udp-00.txt

M. Welzl, S. Islam, K. Hiorth, J. You

IRTF ICCRG Meeting
n e a t IETF 95

Motivation

e Parallel TCP connections between two hosts:
Combining congestions controllers can be beneficial

— Very beneficial: short flows can immediately use an existing
large cwnd, skip slow start; also avoids competition in the
network, and can support priorities
(similar to some of the benefits of multi-streaming in e.g. SCTP)

* Previous methods were hard to implement + hard to turn
on/off (Congestion Manager)
— Can be made easier (minimize changes to TCP code)

* General problem with this: do parallel TCP connections
follow the same path all the way?

— Not necessarily, because of ECMP
(or: any form of per-flow load balancing in the net)

Encapsulation

* This draft makes one concrete proposal
(to be explained later)

e Other possibilities mentioned on the list
(thanks!!)

— Joe Touch: Not necessary .
Enables one-sided

— Tom Herbert: deployment?!?! | love this!!!
* |Pv6 flow label Does it really really work?
e GUE

e Our conclusion: don’t prescribe one method
— Mention the possibilities

Coupled congestion control for TCP

e Basicidea similar to FSE in draft-ietf-rmcat-coupled-cc

— Keep a table of all current connections c with their
priorities P(c); calculate each connection’s share as P(c) /
2(P) * Z(cwnd); react when a connection updates its cwnd
and use (cwnd(c) — previous cwnd(c)) to update (cwnd)

 Some TCP-specific differences

— SS shouldn’t happen as long as ACKs arrive on any flow =
only SS when all flows are in SS

— Avoid multiple congestion reactions to one loss event:
draft-ietf-rmcat-coupled-cc uses a timer
e TCP already has FR, use that instead

— Also, generally a slightly more conservative CC behavior
than the algorithm in draft-ietf-rmcat-coupled-cc

cwnd (pkts)

First simulation results
(ns-2 using TCP-Linux, kernel 3.17.4)

4 Reno flows, 10 Mb bottleneck, RTT 100ms; glen = BDP = 83 Pkts (DropTail)
TMIX traffic from 60-minute trace of campus traffic at Univ. North Carolina

(available from the TCP evaluation suite); RTT of bg TCP flows: 80~100 ms

Not coupled

Connection 1
Connection 2
Connection 3 +
Connection 4

50 100 150 200
Time (s}

 Link utilization: 68%
e Loss: 0.78%
* Average glen: 58 pkts

cwnd (pkts)

Coupled

Connection 1
Connection 2
Connection 3 +
Connection 4

50 100 150
Time (s)

Link utilization: 66%
Loss: 0.13%
Average glen: 37 pkts

First simulation results - prioritization

2 Reno flows, 10 Mb bottleneck, RTT 100ms; glen = BDP = 83 Pkts (DropTail)

* TMIX traffic from 60-minute trace of campus traffic at Univ. North Carolina
(available from the TCP evaluation suite); RTT of bg TCP flows: 80~100 ms

y
0.9+
0.8
0.7
0.6
0.5¢
0.4r
0.3
0.2}

Throughput Ratio

018099 18 17 16 15 14 13 12 1
Priority Ratio

Encapsulation: TCP-in-UDP (TiU)

 Avoid Packet size overhead
— Avoid MTU problems

 Some ideas on TCP-over-UDP encapsulation
shown in draft-denis-udp-transport-00 and draft-
cheshire-tcp-over-udp-00

— Suppress TCP checksum and TCP urgent pointer field
and set O for URG flag: we do that

— Suppress TCP src and dst ports (rely on UDP ports
only): we do that too, but... want to multiplex!
=>» still need ports in some form

Encapsulation: TiU (Contd.)

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

)
Source Port Destination Port
Sequence Number
TCP header,
Acknowledgment Number 20 bytes
C|E|U|A|P|R|S|F
Offset |Reserved|w|c|r|c|s|s|Y]|T Window Size
R|IE|G|K|H N | N
Checksum Urgent Pointer
/
Options (optional, variable length)
Figure 1: Standard TCP header. Fields on red background are removed by
TCP_ln_UDP’ those on Orange baCkground are mOdiﬁed- 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Source Port Destination Port UDP header
With Flow id (5 bits) we can Sbytes
. A Length Checksum
multiplex 275 = 32 parallel
] Offset Flowm%gfé‘;?if Window Si
connections (Type) | nignavies | |©[D]x|m|7|N|x e TCP-in-UDP
Sequence Number header,
. . 12 bytes
We use TiU SYN/SYN-ACK options Acknowledgement Number
to map ports to FID
Options (optional, variable length)
Offset change: related to STUN Figure 1: Compressed TCP-in-UDP header. The Flow Id split-field is high-
i : . " Noti : 3
[d raft-cheshi re-tcp-over-ud p_oo] lighted in green. Notice that the port numbers in the UDP header are those of

the tunnel, not the TCP connection.

Set up

Happy eyeball for TiU
— Put port-FID-mapping options in TiU-SYN and SYN/ACK

Client
1. Send UDP/TiU-SYN packet on TiU port
2. Send TCP SYN

Server (we write both)
— Process UDP/TiU-SYN before processing TCP SYN

UDP en-/de-capsulation added to TCP header
processing

— Just before sending, first when receiving
— Small code change; normal TCP otherwise!

What this encapsulation
(but also GUE) can give us

A TCP that can easily evolve ©
— Maybe good as an intermediate experiment platform?

Some benefits related to STUN
[draft-cheshire-tcp-over-udp-00]

Possible to support other transport protocols too
[draft-cheshire-tcp-over-udp-00]

In-line SPUD support without MTU problems:
when the sender inserts SPUD, take SPUD header size
into account for MSS calculation

Disadvantages

* Blocking / rate limiting of UDP

— QUIC is going to help here, but only for ports 80
and 443 ®

* Prevents ECMP, but ECMP can be a good thing

— It’s a socket option, maybe only use it when you
expect to have many short flows or when
priorities are important?

Current state

* Encapsulation
— Finished for FreeBSD kernel

* Coupled-cc
— Under development (simulations)

— Rudimentary code being developed for FreeBSD,
so should be easy to incorporate algorithm
updates

Questions?

