
TCP-in-UDP	
dra$-welzl-ir+-iccrg-tcp-in-udp-00.txt	

M.	Welzl,	S.	Islam,	K.	Hiorth,	J.	You	

IRTF	ICCRG	MeeBng	
IETF	95	

1	

MoBvaBon	
•  Parallel	TCP	connecBons	between	two	hosts:	

Combining	congesBons	controllers	can	be	beneficial	
–  Very	beneficial:	short	flows	can	immediately	use	an	exisBng	
large	cwnd,	skip	slow	start;	also	avoids	compeBBon	in	the	
network,	and	can	support	prioriBes	
(similar	to	some	of	the	benefits	of	mulB-streaming	in	e.g.	SCTP)	

•  Previous	methods	were	hard	to	implement	+	hard	to	turn	
on/off	(CongesBon	Manager)	
–  Can	be	made	easier	(minimize	changes	to	TCP	code)	

•  General	problem	with	this:	do	parallel	TCP	connecBons	
follow	the	same	path	all	the	way?	
–  Not	necessarily,	because	of	ECMP	
(or:	any	form	of	per-flow	load	balancing	in	the	net)	

2	

EncapsulaBon	
•  This	dra_	makes	one	concrete	proposal	
(to	be	explained	later)	

•  Other	possibiliBes	menBoned	on	the	list	
(thanks!!)	
–  Joe	Touch:	Not	necessary	
–  Tom	Herbert:	

•  IPv6	flow	label	
•  GUE	

•  Our	conclusion:	don’t	prescribe	one	method	
– MenBon	the	possibiliBes	

Enables	one-sided	
deployment?!?!			I	love	this!!!	
Does	it	really	really	work?	

3	

Coupled	congesBon	control	for	TCP	
•  Basic	idea	similar	to	FSE	in	dra$-ie+-rmcat-coupled-cc	
–  Keep	a	table	of	all	current	connecBons	c	with	their	
prioriBes	P(c);	calculate	each	connecBon’s	share	as	P(c)	/	
Σ(P)	*	Σ(cwnd);	react	when	a	connecBon	updates	its	cwnd	
and	use	(cwnd(c)	–	previous	cwnd(c))	to	update	Σ(cwnd)	

•  Some	TCP-specific	differences	
–  SS	shouldn’t	happen	as	long	as	ACKs	arrive	on	any	flow	è	
only	SS	when	all	flows	are	in	SS	

–  Avoid	mulBple	congesBon	reacBons	to	one	loss	event:	
dra$-ie+-rmcat-coupled-cc	uses	a	Bmer	
•  TCP	already	has	FR,	use	that	instead	

–  Also,	generally	a	slightly	more	conservaBve	CC	behavior	
than	the	algorithm	in	dra$-ie+-rmcat-coupled-cc	 4	

First	simulaBon	results	
(ns-2	using	TCP-Linux,	kernel	3.17.4)	

•  4	Reno	flows,	10	Mb	bonleneck,	RTT	100ms;	qlen	=	BDP	=	83	Pkts	(DropTail)	
•  TMIX	traffic	from	60-minute	trace	of	campus	traffic	at	Univ.	North	Carolina	

(available	from	the	TCP	evaluaBon	suite);	RTT	of	bg	TCP	flows:	80∼100	ms	

Coupled	Not	coupled	

•  Link	uBlizaBon:	68%	
•  Loss:	0.78%	
•  Average	qlen:	58	pkts	

•  Link	uBlizaBon:	66%	
•  Loss:	0.13%	
•  Average	qlen:	37	pkts	 5	

First	simulaBon	results	-	prioriBzaBon	

6	

•  2	Reno	flows,	10	Mb	bonleneck,	RTT	100ms;	qlen	=	BDP	=	83	Pkts	(DropTail)	
•  TMIX	traffic	from	60-minute	trace	of	campus	traffic	at	Univ.	North	Carolina	

(available	from	the	TCP	evaluaBon	suite);	RTT	of	bg	TCP	flows:	80∼100	ms	

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1:11:21:31:41:51:61:71:81:91:10

T
h
ro

u
g
h
p
u
t
R

a
tio

Priority Ratio

EncapsulaBon:	TCP-in-UDP	(TiU)	
•  Avoid	Packet	size	overhead	
– Avoid	MTU	problems	

•  Some	ideas	on	TCP-over-UDP	encapsulaBon	
shown	in	dra$-denis-udp-transport-00	and	dra$-
cheshire-tcp-over-udp-00	
–  Suppress	TCP	checksum	and	TCP	urgent	pointer	field	
and	set	0	for	URG	flag:	we	do	that	

–  Suppress	TCP	src	and	dst	ports	(rely	on	UDP	ports	
only):	we	do	that	too,	but…	want	to	mulNplex!	
è	sNll	need	ports	in	some	form	

7	

EncapsulaBon:	TiU	(Contd.)	

With	Flow	id	(5	bits)	we	can	
mulBplex	2^5	=	32	parallel	
connecBons	
	
We	use	TiU	SYN/SYN-ACK	opBons	
to	map	ports	to	FID	
	
Offset	change:	related	to	STUN	
[dra_-cheshire-tcp-over-udp-00]	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Length Checksum

9
>=

>;
UDP header,
8 bytes

Offset
(Type)

Flow Id
high 4 bits

C
W
R

E
C
E

F
I
D

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Sequence Number

Acknowledgement Number

9
>>>>>=

>>>>>;

TCP-in-UDP
header,
12 bytes

Options (optional, variable length)

Figure 1: Compressed TCP-in-UDP header. The Flow Id split-field is high-
lighted in green. Notice that the port numbers in the UDP header are those of
the tunnel, not the TCP connection.

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port

Sequence Number

Acknowledgment Number

Offset Reserved
C
W
R

E
C
E

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

Checksum Urgent Pointer

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

TCP header,
20 bytes

Options (optional, variable length)

Figure 1: Standard TCP header. Fields on red background are removed by
TCP-in-UDP, those on orange background are modified.

8	

Set	up	
•  Happy	eyeball	for	TiU	
–  Put	port-FID-mapping	opBons	in	TiU-SYN	and	SYN/ACK	

•  Client	
1.  Send	UDP/TiU-SYN	packet	on	TiU	port	
2.  Send	TCP	SYN	

•  Server	(we	write	both)	
–  Process	UDP/TiU-SYN	before	processing	TCP	SYN	

•  UDP	en-/de-capsulaBon	added	to	TCP	header	
processing	
–  Just	before	sending,	first	when	receiving	
–  Small	code	change;	normal	TCP	otherwise!	

9	

What	this	encapsulaBon	
(but	also	GUE)	can	give	us	

•  A	TCP	that	can	easily	evolve		J	
– Maybe	good	as	an	intermediate	experiment	plaxorm?	

•  Some	benefits	related	to	STUN	
[dra_-cheshire-tcp-over-udp-00]	

•  Possible	to	support	other	transport	protocols	too	
[dra_-cheshire-tcp-over-udp-00]	

•  In-line	SPUD	support	without	MTU	problems:	
when	the	sender	inserts	SPUD,	take	SPUD	header	size	
into	account	for	MSS	calculaBon	

10	

Disadvantages	

•  Blocking	/	rate	limiBng	of	UDP	
– QUIC	is	going	to	help	here,	but	only	for	ports	80	
and	443		L	

•  Prevents	ECMP,	but	ECMP	can	be	a	good	thing	
–  It’s	a	socket	opBon,	maybe	only	use	it	when	you	
expect	to	have	many	short	flows	or	when	
prioriBes	are	important?	

11	

Current	state	

•  EncapsulaBon	
– Finished	for	FreeBSD	kernel	

•  Coupled-cc	
– Under	development	(simulaBons)	
– Rudimentary	code	being	developed	for	FreeBSD,	
so	should	be	easy	to	incorporate	algorithm	
updates	

12	

QuesBons?	

13	

