Peeking at the bottleneck: bufferbloat prevention congestion control

Alejandro Popovsky <apopov@palermo.edu>
Universidad de Palermo

IETF 95 – ICCRG - April 2016 - Buenos Aires
Goals:

1. Bufferbloat mitigation
2. Available capacity (fair) sharing
Bufferbloat in Regular ISPs:

- Argentine Chamber of Internet (CABASE)

Regular ISP, bottlenecks shared by several customers

Regular ISP, individual bottlenecks per customer

- Average TCP minimum RTT
- Average TCP RTT
Traffic profiles for regular ISPs:

Google Cache to Regular ISP traffic

Akamai Cache to Regular ISP traffic

TCP: congestion control limited
TCP: flow control limited (mostly no rwin scaling)
TCP: data generation rate limited
UDP: inelastic, or user space congestion control
Congestion Control and Flow control for Regular ISPs

TCP: flow control limited

TCP: regular congestion control limited

Congestion control and flow control are currently getting similar throughput!!
Opportunity

• Content servers and ISPs not currently fighting bufferbloat caused by TCP
 – Content servers: not using sender side congestion control
 – Local ISPs: not using AQM in rate limiting devices.

• End users could still fight it using receiver side congestion control
Goal: estimate the share of the joint available capacity

Proposed variable:

Proportional rate (Ra) response to In-flight size (Ca) variations

$$Xa = \left(\frac{\Delta Ra}{\Delta Ca} \right) \left(\frac{Ca}{Ra} \right)$$
Estimating Bottleneck share with X_a

Exclusive user of bottleneck:
- In-Flight size $<$ BDP $\Rightarrow X_a = 1$
- In-Flight size $>$ BDP $\Rightarrow X_a = 0$

Shared bottleneck:
- $X_a \approx (1 - \text{share of capacity})$
Current Algorithm

• Grow receive window only on Xa above threshold.

• Decrease receive window when detecting other connections leaving bottleneck

• Consider other connections induced noise in Xa measurement

• If possible prevent bufferbloat, else revert to regular behavior

• Aim for fair sharing, avoiding starvation
Congestion Control comparison

Cubic Sender
Regular DRS receiver

Cubic Sender
Palermo receiver
Sharing the bottleneck with regular connections
Sharing the bottleneck with well behaved connections
Performance Comparison

Palermo versus DRS receiver window control. Measurements at university proxy, averaging over several Centos mirrors.

Average Round trip time

Average Throughput

Nominal Contract Capacity
Performance Comparison for Transaction oriented connections

Palermo versus DRS receiver window control.
Measurements at university proxy, Downloading from major newspapers during peak hours.

54% improvement
Conclusions and Future Work

• Proposed algorithm:
 – Valid option to use at hosts and organization proxies to improve end user experience on incoming traffic.

• Next:
 – Explore robustness and variants
 – Develop sender side version
 – Upcoming publication

For more information, or Linux kernel patches with the algorithm: apopov@palermo.edu