
Peeking at the bottleneck:
bufferbloat prevention congestion control

Alejandro Popovsky <apopov@palermo.edu>
Universidad de Palermo

IETF 95 – ICCRG - April 2016 - Buenos Aires

Goals:

1. Bufferbloat mitigation

2. Available capacity (fair) sharing

Bufferbloat in Regular ISPs:

Thu Fri Sat Sun Mon Tue Wed

Thu Fri Sat Sun Mon Tue Wed

400ms

300ms

100ms

0ms

200ms

200ms

0ms

100ms

Average TCP
minimum RTT

Average
TCP RTT

Regular ISP, bottlenecks shared by several customers

Regular ISP, individual bottlenecks per customer

Argentine
Chamber of
Internet
(CABASE)

IXP1

ISP

ISP

UNIV
IXP2

ISP

UNIV

ISP IXP3

ISP

ISP

ISP

Content
Caches

Central
Routing

UpPerformance
Analyzer

Traffic profiles for regular ISPs:

Thu Fri Sat Sun Mon Tue Wed

Thu Fri Sat Sun Mon Tue Wed

Thu Fri Sat Sun Mon Tue Wed

Thu Fri Sat Sun Mon Tue Wed

400Mbps

300Mbps

200Mbps

100Mbps

0Mbps

300Mbps

200Mbps

100Mbps

0Mbps

3Mbps

2Mbps

1Mbps

0Mbps

4Mbps

500Mbps

4Mbps

2Mbps

0Mbps

6Mbps

TCP: congestion control limited

TCP: flow control limited (mostly no rwin scaling)

TCP: data generation rate limited

UDP: inelastic, or user space congestion control

Google Cache to Regular ISP traffic

Akamai Cache to Regular ISP traffic

Downstream

Downstream

Upstream

Upstream

???

Congestion Control and Flow control
for Regular ISPs

TCP: flow control limited

TCP: regular congestion control limited

Cache to Regular ISP1 throughput

Cache to Regular ISP2 throughput

Thu Fri Sat Sun Mon Tue Wed

Thu Fri Sat Sun Mon Tue Wed

1Mbps

1.5Mbps

0.5Mbps

0Mbps

0Mbps

1Mbps

2Mbps

Congestion control and
flow control are currently
getting similar throughput !!

Opportunity

• Content servers and ISPs not currently fighting
bufferbloat caused by TCP
– Content servers: not using sender side congestion control

– Local ISPs: not using AQM in rate limiting devices.

• End users could still fight it using recevier side
congestion control

Bottleneck feedback

Goal: estimate the

share of the joint available capacity

Proposed variable:

Proportional rate (Ra) response to In-flight size (Ca) variations

X𝑎 =
𝛥𝑅𝑎

𝛥𝐶𝑎

𝐶𝑎

𝑅𝑎

Estimating Bottleneck share with Xa

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Smaller
BDP

Share of joint available capacity

Xa

In-Flight size < BDP

Small share
of capacity

Big share
of capacity

Exclusive user of bottleneck:
In-Flight size<BDP => Xa=1

In-Flight size>BDP => Xa=0

Shared bottleneck:

Xa ≈ (1 – share of capacity)

Current Algorithm

• Grow receive window only on Xa above threshold.

• Decrease receive window when detecting other
connections leaving bottleneck

• Consider other connections induced noise in Xa
measurement

• If possible prevent bufferbloat, else revert to regular
behavior

• Aim for fair sharing, avoiding starvation

Congestion Control comparison

Cubic Sender
Regular DRS receiver

Cubic Sender
Palermo receiver

Sharing the bottleneck
with regular connections

Palermo
Receiver

Palermo
Receiver

Sharing the bottleneck
with well behaved connections

Performance Comparison

3KB 30KB 300KB 3MB 30MB

3KB 30KB 300KB 3MB 30MB
Download length

Palermo DRS

500ms

400ms

300ms

200ms

100ms

0ms

30Mbps

25Mbps

20Mbps

15Mbps

10Mbps

5Mbps

0Mbps

Average
Throughput

Average
Round trip time

Palermo versus DRS receiver
window control.
Measurements at university
proxy, averaging over several
Centos mirrors

Performance Comparison for
Transaction oriented connections

Palermo versus DRS receiver
window control.
Measurements at university
proxy, Downloading from
major newspapers during
peak hours.

54% improvement

Total
download

time

Conclusions and Future Work

• Proposed algorithm:

– Valid option to use at hosts and organization proxies
to improve end user experience on incoming traffic.

• Next:

– Explore robustness and variants

– Develop sender side version

– Upcoming publication

For more information, or Linux kernel patches with the algorithm:
apopov@palermo.edu

