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Goals:

1. Bufferbloat mitigation

2. Available capacity (fair) sharing



Bufferbloat in Regular ISPs:
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Traffic profiles for regular ISPs:
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Congestion Control and Flow control
for Regular ISPs

TCP: flow control limited

TCP: regular congestion control limited

Cache to Regular ISP1 throughput

Cache to Regular ISP2 throughput
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Opportunity

• Content servers and ISPs not currently fighting
bufferbloat caused by TCP
– Content servers: not using sender side congestion control 

– Local ISPs: not using AQM in rate limiting devices.

• End users could still fight it using recevier side
congestion control



Bottleneck feedback

Goal: estimate the

share of the joint available capacity

Proposed variable:

Proportional rate (Ra) response to In-flight size (Ca) variations

X𝑎 =
𝛥𝑅𝑎
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Estimating Bottleneck share with Xa
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Shared bottleneck:

Xa ≈ ( 1 – share of capacity )



Current Algorithm

• Grow receive window only on Xa above threshold.

• Decrease receive window when detecting other
connections leaving bottleneck

• Consider other connections induced noise in Xa
measurement

• If possible prevent bufferbloat, else revert to regular 
behavior

• Aim for fair sharing, avoiding starvation



Congestion Control comparison
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Sharing the bottleneck
with well behaved connections



Performance Comparison
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Performance Comparison for
Transaction oriented connections

Palermo versus DRS receiver
window control.
Measurements at university
proxy, Downloading from
major newspapers during
peak hours.
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Conclusions and Future Work

• Proposed algorithm:

– Valid option to use at hosts and organization proxies
to improve end user experience on incoming traffic.

• Next:

– Explore robustness and variants

– Develop sender side version

– Upcoming publication

For more information, or Linux kernel patches with the algorithm: 
apopov@palermo.edu


