
PI2
AQM for classic and scalable

congestion control

Koen De Schepper

Bob Briscoe

Olga Bondarenko

Inton Tsang

April 4th, 2016

PI recap

Every Tupdate interval do:

 ∆p = *(current_queue - TARGET) + *(current_queue–prev_queue)

 p = p + ∆p
TARGET

error

size of queue change

PIE

• Enhancements are: rate estimation, queue delay and gain scaling

pr 1

p

Drop/Mark

Drop/Mark Feedback P[d] = p

p > R

TCP

Receiver

Classic TCP

Sender
d

queue

delay
PI

Queue length

Scaling

α β
Target Delay

rate
estimation

random()

R

Choosing  and  gains
• Higher  and  values give faster response

• To be stable, the phase and

gain margins must be > 0

• Gain margin evolves

diagonally with p

• Reason is in

.RTT

22.1

p
rreno 

Unstable

Unstable

PIE solution:  and  scaling
• PIE in Linux has extra internal

alpha and beta parameters:
if (p<1%)

 at=a/8

 bt=b/8

else if (p<10%)

 at=a/2

 bt=b/2

else

 at=a

 bt=b

• Current PIE draft has more if’s

think twice to drop:

• Replaces gain scaling with a square: P[d] = (p')² = p

• PI2 controls p‘ which is actually so

PI2 solution: remove the

pr 1

p'

Drop/mark

Drop/Mark Feedback P[d] = (p')² = p

p' > R²

TCP

Receiver

Classic TCP

Sender
d

queue

delay
PI

Queue length

α β
Target Delay

rate
estimation

p '1 pr 

max()

R²

random()

PI2 also supports scalable TCP

• Scalable TCP needs no scaling, nor squaring

• Can use the same parameters as PI2 for Reno or Cubic

'1 pr 

p'

Mark

Mark Feedback P[d] = p'

p' > R

TCP

Receiver

Scalable

TCP Sender
d

queue

delay
PI

Queue length

α β
Target Delay

rate
estimation

random()

R

PI2 needs no  and  scaling
• By squaring at the end, Reno can be controlled like a Scalable TCP

• Models used for:

– TCP Reno on PI: [1][2]

– TCP Reno on PI2:

– Scalable TCP on PI2:

[1] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED,” SIGCOMM Computer Comms.. Review, vol. 30, no. 4,

pp. 151–160, Aug. 2000.

[2] C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong, “A Control Theoretic Analysis of RED,” in Proc. INFOCOM 2001. 20th Annual Joint Conf. of the IEEE Computer and Communications Societies., vol.

3, 2001, pp. 1510—19.

PI2 needs no  and  scaling
• By squaring at the end, Reno can be controlled like a Scalable TCP

• Margins stay above 0

independent from p'

getting smaller

• Gain margin evolves

flat with p'

Single Q PI2 experiments
• Lunix implementation

• DualQ option not used here

ECN

Classifier

p'

Mark²

p‘/2 > R²

p'²

queue

delay
PI

Queue length

α β
Target Delay

rate
estimation

p' > R

Drop²

p'

Mark
ECT(1)

Non-ECT

ECT(0)

Evaluation with Cubic & DCTCP

Steady state rate has been modeled for existing CC-AQM schemes:

Deviations are DCTCP on non-step threshold:

Cubic in Reno mode:

Experiments: Probability coupling used:

• RTT: 5, 10, 20, 50, 100 ms

• Rate: 4, 12, 40, 200, 400 Mbps

RTT

2
_




p
r pdc

4143 RTT

17.1

p
rcubic RTT

22.1
21p

rreno 

RTT

2
2 


p

rdc

RTT

68.1
21p

rcreno 

2

_

2 









pdc

creno

p
p

Dynamic tests
Fig 8 in [3]: Note: plots show average queue delay over 1s intervals

0-50s: 10 TCP flows; 50-100s: 30 TCP flows; 100-150s: 50 TCP flows; 150-200s: 30 TCP flows;

200-250s: 10 TCP flows; RTT=100ms Link=20Mbps

 Cubic DCTCP

[3] R. Pan et al., “PIE: A lightweight control scheme to address the bufferbloat problem,” in Proc. IEEE Int’l Conf. on High Performance Switching and

Routing (HPSR), 2013, pp. 148–155.

PIE

=0.125*t

=1,25*t

PI2

=0.5

=10

Throughput ratio
one flow each

PIE PI2

Cubic ECT(0)

Cubic Non-ECT

Cubic ECT(0)

Cubic Non-ECT

DCTCP ECT(1)

Cubic Non-ECT

Reno mode Cubic mode

Throughput ratio
wrong ECN marking; one flow each

PIE PI2

Cubic ECT(1)

Cubic Non-ECT

DCTCP ECT(0)

Cubic Non-ECT

Reno mode Cubic mode

Queuing delay
one flow each

PI2 using basic  and  PIE parameters  less responsive

Higher gain possible for PI2

PIE PI2

Cubic ECT(0)

Cubic Non-ECT

DCTCP ECT(1)

=0.125

=1,25

=99th

Average Q delay:

DualQ is deployment goal
• L4S (smoothing in the end system) and DualQ with immediate

network marking is outperforming any smoothed AQM (such as PIE

and PI2)

• PI2 is useful to control Classic Q size, and signal can be applied on

both Scalable (L4S) and Classic TCP

• Experiments here without DualQ

 no ultra low latency

 show impact of one change at a time

 focus on throughput fairness

Conclusion

• Scalable (L4S) and Classic TCPs can get equal

throughput (tcp-fairness)

• PI2 simplifies Classic queue control and supports

Scalable queue / rate control

• PI2 supports higher  and  values

Questions

koen.de_schepper@nokia.com

mailto:koen.de_schepper@nokia.com

