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PI recap 

Every  Tupdate  interval do: 

 

        ∆p = *(current_queue - TARGET) + *(current_queue–prev_queue) 

 

        p = p + ∆p  
TARGET 

error 

size of queue change 
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• Enhancements are: rate estimation, queue delay and gain scaling 
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Choosing  and  gains 
• Higher  and  values give faster response 

• To be stable, the phase and  

gain margins must be > 0 

 

• Gain margin evolves  

diagonally with p 

 

• Reason is           in 
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PIE solution:  and  scaling 
• PIE in Linux has extra internal  

alpha and beta parameters: 
if (p<1%) 

 at=a/8 

 bt=b/8 

else if (p<10%) 

 at=a/2 

 bt=b/2 

else 

 at=a 

 bt=b 

• Current PIE draft has more if’s 



 

think twice to drop: 

 

 

 
 

• Replaces gain scaling with a square: P[d] = (p')² = p 

• PI2 controls p‘ which is actually          so  

PI2 solution: remove the 
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PI2 also supports scalable TCP 

 

 

 

 
 

• Scalable TCP needs no scaling, nor squaring 

• Can use the same parameters as PI2 for Reno or Cubic 
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PI2 needs no  and  scaling 
• By squaring at the end, Reno can be controlled like a Scalable TCP 

 

• Models used for: 
 

– TCP Reno on PI:                                                                                    [1][2] 

 

 

– TCP Reno on PI2: 

 

– Scalable TCP on PI2: 
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PI2 needs no  and  scaling 
• By squaring at the end, Reno can be controlled like a Scalable TCP 

 

• Margins stay above 0 

independent from p'  

getting smaller 

 

• Gain margin evolves  

flat with p' 

 



Single Q PI2 experiments 
• Lunix implementation 

• DualQ option not used here 
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Evaluation with Cubic & DCTCP 

Steady state rate has been modeled for existing CC-AQM schemes: 

 

 

 

Deviations are DCTCP on non-step threshold: 

Cubic in Reno mode: 

 

Experiments:    Probability coupling used: 

• RTT: 5, 10, 20, 50, 100 ms 

• Rate: 4, 12, 40, 200, 400 Mbps 
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Dynamic tests 
Fig 8 in [3]: Note: plots show average queue delay over 1s intervals 

0-50s: 10 TCP flows; 50-100s: 30 TCP flows; 100-150s: 50 TCP flows; 150-200s: 30 TCP flows;  

200-250s: 10 TCP flows; RTT=100ms Link=20Mbps 

           Cubic          DCTCP 

[3] R. Pan et al., “PIE: A lightweight control scheme to address the bufferbloat problem,” in Proc. IEEE Int’l Conf. on High Performance Switching and 

Routing (HPSR), 2013, pp. 148–155. 
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Throughput ratio  
wrong ECN marking; one flow each 
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Queuing delay  
one flow each 

PI2 using basic  and  PIE parameters  less responsive 

Higher gain possible for PI2 
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DualQ is deployment goal 
• L4S (smoothing in the end system) and DualQ with immediate 

network marking is outperforming any smoothed AQM (such as PIE 

and PI2) 
 

• PI2 is useful to control Classic Q size, and signal can be applied on 

both Scalable (L4S) and Classic TCP 
 

• Experiments here without DualQ 

 no ultra low latency 

 show impact of one change at a time 

 focus on throughput fairness 



Conclusion 

• Scalable (L4S) and Classic TCPs can get equal 

throughput (tcp-fairness) 

 

• PI2 simplifies Classic queue control and supports 

Scalable queue / rate control 

 

• PI2 supports higher  and  values 

 



 

 

Questions 
 

 

 

koen.de_schepper@nokia.com 

 

 

mailto:koen.de_schepper@nokia.com

