Trickle ICE

IETF 95, Buenos Aires
Justin Uberti
Peter St. Andre



Issue #1: Handling Duplicate Candidates

Problem: A trickled candidate already exists, but with a different priority
(for example: prflx then srflx)

Option A: First one wins (ignore the duplicate)
Option B: Last one wins

Option C: Update the priority to highest (like 5245: "The agent SHOULD eliminate the
redundant candidate with the lower priority:)

Recommendation: C

By the way, this is also an issue with 5245, not just trickle. So maybe we should putitin
5245bis.



Issue #2: Freezing Behavior

Problem: Candidates A and B share a foundation. A is "first", so B is frozen. But A never

comes, so B stays frozen.

Option A: Unfreeze B because it arrived before A (and also unfreeze A if it arrives)
Problem: Might have some "extra" unfrozen candidates.

Option B: Don't do freezing.
Problem: Unbundled apps might have slower connection time.

Option C: Only trickle in order. Unfreeze B because it's first.
Problem: Delays trickling. Can't be enforced by WebRTC apps.

Recommendation: Option A



Issue #3: Trickling After ICE Restart

Problem
An ICE restart happens before candidate gathering is complete. How do you trickle those
candidates?

Option A
Signal a way to tell whether the candidate is from before or after the ICE restart. For
example, signal the ufrag.

Option B

Don't trickle candidates unless they apply to the latest ufrag/pwd.

Problem 1: The ICE restart can be rejected (or possibly rolled back in WebRTC)
Problem 2: A suboptimal connection until the restart completes.

Recommendation
Option A. This makes it absolutely clear which candidates go with which ICE gather.



