Segment Routing TE Policy

draft-previdi-idr-segment-routing-te-policy

Stefano Previdi – sprevidi@cisco.com
Clarence Filsfils – cfilsfil@cisco.com
Arjun Sreekantiah – asreekan@cisco.com
Siva Sivabalan – msiva@cisco.com
Paul Mattes – pamattes@microsoft.com

IETF95 Buenos Aires, April 2016
Introduction

• What is it?
 – An ability to advertise in BGP a **TE policy** (e.g., low latency path, disjoint path, etc.) including a [u|e]cmp set of explicit paths
 – An ability to classify traffic into a TE policy

• What is the motivation?
 – Ever growing interest in simplifying network operations
 – TE policy is advertised by a BGP speaker as a list of segments
 – No need to configure tunnels and the associated traffic steering mechanisms such as PBR
 – Existing mechanisms like BGP PIC FRR are preserved.
 – Policies are ingress related, i.e., two ingress routers may have different policies for reaching the same egress
Creating an SRTE Policy

- Controller programs an SR TE policy at ingress
 - This could be anywhere in the network: vswitch, spine, DCI, PE, Agg …
- SR TE Policy defines the explicit path from ingress to policy endpoint
- An SR TE Policy is identified through:
 <Color, Endpoint>
Creating an SRTE Policy

- Same SR TE Policy may be expressed with different content for different ingress nodes

SR TE Policy:
- Endpoint: 4.4.4.4
- Color: green
- Segment List:
 - 16003
 - 24034
- Binding SID: 4001

SR TE Policy:
- Endpoint: 4.4.4.4
- Color: green
- Segment List:
 - Weight: 100
 - 16003
 - 24034
- Segment List:
 - Weight: 200
 - 16006
 - 16004
- Binding SID: 4001
SR TE Policy Advertisement in BGP

• A BGP speaker (router or controller) advertises SR TE policies in the form of SID list, Weight, etc.

• Multiple objects define a SR TE Policy
 – Segment List
 – Weight (unequal cost multipath)
 – Binding SID (request allocation of BSID)
Role of the client

• Receive the policy
• Program dataplane with SR TE Policy instantiation
• The client does not need to do any TE optimization. The SID list is given explicitly by the controller
Classification and Traffic Steering

• A steering mechanism is also needed so to use a SR TE Policy for a given traffic flow
 – Steering onto an SR Policy involves the classification of packets into the specified SR policy: color extended community

• A destination prefix is steered into a policy if
 – the color of the destination prefix matches the color of the policy AND
 – the next-hop of the destination prefix matches the endpoint of the policy (if present)
Steering traffic on an SR TE Policy

- Controller programs node12 to steer 50/8 via:
 - bgp nhop 4.4.4.4, color green
- As a result, TOR12 programs its FIB accordingly
WECMP within a (nhop, color) path

• When traffic is steered into a policy
 – Weighted ECMP ia used across SID lists, according to “weight” value
ECMP between Policies

• Traffic may be steered to different policies
 – E.g.: a destination prefix is advertised (add-paths) with different next-hops and different colors

• Traffic is steered into the two policies
 – WECMP between Segment Lists according to weights
IMPORTANT Aspects of SR TE Policy

• Advertising a TE Policy is new in BGP
 – SR TE Policy is NOT a prefix advertisement and it is not related to any prefix
 – SR TE Policy is NOT a tunnel advertisement and it is not related to any tunnel
 – SR TE Policy is NOT an attribute of a prefix and it is not related to any specific prefix
 – IOW: a SR TE Policy is a new and self-contained BGP advertisement
IMPORTANT Aspects of SR TE Policy

• Granularity is the policy, not the endpoint
 – Policy is identified by [<color><endpoint>}] tuple
 – NOTE WELL: <endpoint> may be a generic/wildcard one
 • IOW: a Policy may not have an endpoint. It’s valid.

• Scalability/Flexibility:
 – If a given policy changes (e.g., the Segment List) only that policy needs to be re-advertised
 – If a new policy is defined, only that new policy needs to be advertised

• Not bound to the BGP next-hop
 – Any destination can be steered to any policy. No need to honor BGP next-hop attribute
 – E.g.: a SR TE Policy may even not have any endpoint (service/application based)

• No message size (BGP MTU) issue
SR TE Policy Requirements

• Thousands of SR TE Policies may be advertised by a single node (controller)
 – The BGP speaker originating the SR TE Policies (typically a controller) will originate hundreds of policies for each ingress PE. In total the controller will originate several thousands of policies

• It MUST be possible to advertise, update, replace or withdrawn a single policy without requiring to re-advertise all of them.
 – While, in some cases, grouping policies within the same NLRI advertisement may be helpful, the implementation MUST be capable of originating and receiving a single policy per NLRI advertisement
Encoding Structure

- New SAFI: SR TE Policy
- New SR TE Policy SAFI NLRI

```
+-----------------------------------------------+
|           Policy Color (4 octets)             |
+-----------------------------------------------+
|           Endpoint (4 or 16 octets)           |
+-----------------------------------------------+
```

- Characteristics of the Explicit Path described in Tunnel-Encaps attribute
 - draft-ietf-idr-tunnel-encap
Encoding Structure

• Example of SR TE Policy encoding

<table>
<thead>
<tr>
<th>SR TE Policy SAFI NLRI: <Policy-Color, Endpoint></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes:</td>
</tr>
<tr>
<td>Tunnel Encaps Attribute (23)</td>
</tr>
<tr>
<td>Tunnel Type: SR TE Policy</td>
</tr>
<tr>
<td>Binding SID TLV</td>
</tr>
<tr>
<td>Segment List TLV</td>
</tr>
<tr>
<td>Weight TLV</td>
</tr>
<tr>
<td>Segment TLV</td>
</tr>
<tr>
<td>Segment TLV</td>
</tr>
<tr>
<td>Segment List TLV</td>
</tr>
<tr>
<td>Weight TLV</td>
</tr>
<tr>
<td>Segment TLV</td>
</tr>
<tr>
<td>Segment TLV</td>
</tr>
</tbody>
</table>
Encoding Structure

- In most of the cases, the SR TE Policy is intended for the receiver only
 - Use of NO_ADVERTISE community
- Therefore, a policy in the form of
 - <color, endpoint>

May have different content (i.e.: different segment lists)

<table>
<thead>
<tr>
<th>SR TE Policy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint: 4.4.4.4</td>
</tr>
<tr>
<td>Color: green</td>
</tr>
<tr>
<td>Segment List: 16003 24034</td>
</tr>
<tr>
<td>Binding SID: 4001</td>
</tr>
</tbody>
</table>

SR TE Policy:
Endpoint: 4.4.4.4
Color: green
Segment List:
 - Weight: 100
 16003 24034
 - Weight: 200
 16006 16004
Binding SID: 4001

Controller 9.9.9.9/32

WAN (IGP-SR)
Encoding Structure

- In most of the cases, the advertisement is originated and sent by a controller directly to the receiver
 - No RR in the middle

```
SR TE Policy:
Endpoint: 4.4.4.4
Color: green
Segment List:
  16003
  24034
Binding SID: 4001
```
```
SR TE Policy:
Endpoint: 4.4.4.4
Color: green
Segment List:
  Weight: 100
    16003
    24034
Segment List:
  Weight: 200
    16006
    16004
Binding SID: 4001
```
Encoding Structure

• However, any BGP extension SHOULD work in presence of standard BGP propagation mechanisms (RR, confed, iBGP/eBGP)

• Therefore, the SR TE Policy MUST make use of either:
 – Add-paths
 – A form of “distinguisher”

 in order to distinguish multiple instances of the same policy

• Work in progress...
 – Add a “distinguisher” to the NLRI
 – Add a route-target community based mechanism for advertisement control
 – Report allocated Binding SID to controller (BGP-LS)
SR TE Policy Sub-TLVs

• Weight TLV
 – Encoded before the ERO TLV(s) so to assign a weight to it

• SID TLV
 – Multiple occurrences of the SID TLV are used for expressing a segment list

• Binding SID TLV
 – Requires the receiver to bind a SID to the policy