GPE-VPN

• LISP-based architecture for SD-WAN
 – programmable **LISP control plane**
 – **VXLAN-GPE data plane** with optional:
 • **ESP** encryption
 • **NSH**-based support for Service Function Chaining

• Mapping System is dynamically programmed
 via **NorthBound API**
 – **Policy rendering** via dynamic **mapping**
 manipulation
Data Plane: GPE Encapsulated Frame

Outer Ethernet Header
Outer IP Header
Outer UDP Header

Reserved

Virtual Network Identifier (VNI) / Instance ID (IID) Reserved

Payload (ethernet, IPv4, IPv6, ESP, NSH, ...)

Next Protocol

GPE Header
Data Plane: GPE with AEAD (ESP-GCM)

Outer Ethernet Header
Outer IP Header
Outer UDP Header

R R V I P R O
Reserved
Virtual Network Identifier (VNI) / Instance ID (IID) Reserved
SPI (32)
Sequence Number (32)

Payload + Padding

ICV

NP = ESP

GPE

AAD

ICV Scope

ESP

NP = IP/Eth
Data Plane: GPE+NSH with ESP+GCM

Outer Ethernet Header

Outer IP Header

Outer UDP Header

Reserved

Virtual Network Identifier (VNI) / Instance ID (IID)

Reserved

SPI (32)

Sequence Number (32)

NSH Base Header

NSH Service Path Header

NSH Context Headers

Payload + Padding

ICV
Mapping Types

• GPE-VPN uses various mapping types to provide finer-grain policy control, and to support different policies
 – Per-destination mapping
 • EID -> RLOC
 – FlowMapping
 • <sEID, dEID, sPort, dPort, Protocol> -> RLOC
 • draft-rodrigueznatal-lisp-multi-tuple-eids
 – Generic Mapping
 • e.g. <NSH SPI, Index> -> RLOC
 • draft-ermagan-lisp-nsh
 • draft-rodrigueznatal-lisp-ms-smr
Dynamic Policy Rendering

- Dynamic mapping manipulation (via NB API) enables GPE-VPN generic policy rendering
 - Forwarding and In-bound load balancing
 - Overlay Re-encapsulation (via RTR)
 - Virtual topologies
 - Hierarchical VPNs
 - Group-based Access Control
 - Support for Service Function Chaining
Key Management Services

- SA provisioning is a **trade-off** between
 - **time** needed to set up the SA on demand
 - overall **security** afforded

- SA provisioning can be done with different mechanisms
 - Use **IKEv2** to negotiate pairwise SAs
 - Use Group Domain of Interpretation (GDOI) **for group key management**
 - Leverage **LISP map-request/reply** to accelerate on demand provisioning of SA
 - e.g. ietf-lisp-crypto
Q&A

Thanks!