Optimized 6LoWPAN Fragmentation Header for LPWAN

draft-gomez-lpwan-fragmentation-header-01

Carles Gomez, Josep Paradells
Universitat Politècnica de Catalunya (UPC)/Fundació i2cat
carlesgo@entel.upc.edu
Jon Crowcroft
University of Cambridge

With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336
Motivation (I/II)

• 6LoWPAN fragmentation (RFC 4944)
 – IPv6 MTU requirement (1280 bytes)
 – IEEE 802.15.4 (maximum frame size of 127 bytes)
 • 4-byte header (1st fragment)
 • 5-byte header (subsequent fragments)

• However, some LPWAN technologies:
 – Lack of L2 fragmentation support
 – Maximum payload size one order of magnitude less
 – Bit rate several orders of magnitude less
 – Further limited message rate
 • E.g. due to regulatory constraints on the duty cycle
Motivation (II/II)

• RFC 4944 fragmentation header
 – May represent high overhead for LPWAN

• Furthermore, the RFC 4944 offset field is expressed in increments of 8 octets
 – Only supports L2 payload size \geq 13 bytes
 – However, there are LPWAN technologies with a shorter maximum payload size
Proposed new format

- 6LoWPAN Fragmentation Header for LPWANs (6LoFHL)
- First fragment

 ![First Fragment Diagram]

- Subsequent fragments

 ![Subsequent Fragments Diagram]
Changes from RFC 4944 and rationale

• datagram_size field only included in the first fragment
 – Reordering is less likely in (star topology) LPWAN than in a mesh network
 – The format still supports reordering...

• datagram_tag field size reduced to 1 byte
 – Ambiguities due to wrapping not expected
 • Low message rate in LPWAN

• datagram_offset increased from 8 bits to 11 bits
 – Allows to express the offset in 1-byte increments
Benefits of 6LoFHL (I/II)

- Simple, byte-exact, short format
 - Supports maximum L2 payloads ≥ 4 bytes
- Overhead (L2 data units)

<table>
<thead>
<tr>
<th>L2 payload (bytes)</th>
<th>IPv6 datagram size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>4944</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>
Benefits of 6LoFHL (II/II)

- Overhead (adaptation layer fragmentation header bytes)

<table>
<thead>
<tr>
<th>L2 payload (bytes)</th>
<th>IPv6 datagram size (bytes)</th>
<th>11</th>
<th>40</th>
<th>100</th>
<th>1280</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>18</td>
<td>45</td>
<td>768</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>24</td>
<td>12</td>
<td>64</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>19</td>
<td>9</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>14</td>
<td>6</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>9</td>
<td>6</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>
Several considerations

• IANA: 6LoFHL allocates 16 Dispatch values:
 – 11001 000 through 11001 111
 – 11010 000 through 11010 111

• Security considerations
 – TBD
Thanks!

Questions?

Carles Gomez, Josep Paradells
Universitat Politècnica de Catalunya (UPC)/Fundació i2cat
carlesgo@entel.upc.edu

Jon Crowcroft
University of Cambridge

With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336

Remote presentation
IETF 95 – Buenos Aires, Apr 2015
Back-up slide: RFC 4944 fragmentation header format

• First fragment

• Subsequent fragments