LP-WAN GAP ANALYSIS

draft-minaburo-lp-wan-gap-analysis

A. Minaburo, A. Pelov, L. Toutain

ANA MINABURO

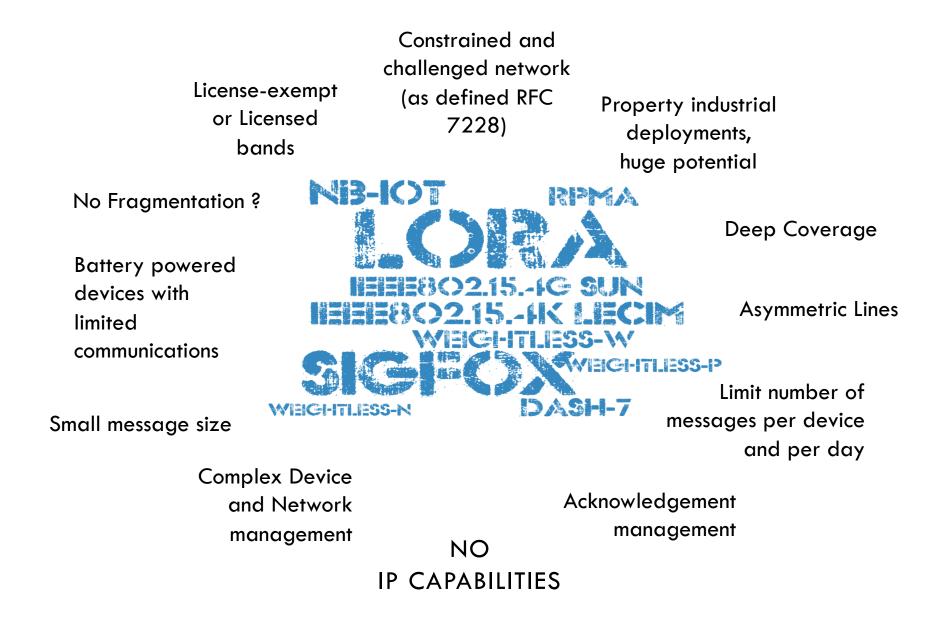
ana@ackl.io

THANKS FOR THE DISCUSSION AND FEEDBACK ON THE LP-WAN MAILING LIST

Pascal Thubert,	Dominique Barthel,	Joaquin Cabezas
Carles Gomez,	Carstern Bormann,	Bill Gage
Samita Chakrabarti,	Michael Richardson,	Patrick Wetterwald
Xavier Vilajosana,	Robert Cragie,	Oana Iova
Misha Dohler,	Gengyu WEI	Thomas Watteyne
Florian Meier,	Paul Duffy,	
Timothy J. Salo,	Pat Kinney,	

OUTLINE

- LP-WAN Characteristics
- LP-WAN at IETF
- GAPs in the actual IETF protocols


LP-WAN TECHNOLOGIES

Technology	Range	Spectrum	ISM	Symmetri c up/down	Data Rate	Throug hput	Battery Life	Max Nodes	Geographic coverage	Operati onal Mode	Cost	Standard Status	Packet size	Modulati on	Encrypti on	Authenticati on
LoRa LoRaWAN	2-5 km urban areas <15km suburban areas	868 MHz (EU) 915 MHz (US) 433 MHz (Asia)	Yes	Depends on mode	0.3 - 50kbps (adaptiv e)	256 bytes	10 years	millions/ hub	Excellent in remote and urban areas. Good penetration in ground and buildings	Public or private	Chea p	-LoRa: No - <u>LoRaWA</u> <u>N</u> : xeds	256B (max)	Spread spectrum	EUI128	
SIGFOX	50 km rural 10km urban	868 MHz (EU) 902 MHz (US)	Yes	No	100bps	max. 140 pkts/da y		millions/ hub		Public		No	12B (payloa d)	UNB		
IEEE802.15.4 k LECIM	< 20 km LoS < 5 km NLoS	169 MHz; 433 MHz; 470 MHz; 780 MHz; 863 MHz; 915 MHz; 2.4 GHz (different countries)	Yes	Yes	1.5 bps to 128 kbps	go	0.	gl/	ίS3ι	υS	Ρι	Yes	16/24/ 32 (payloa d)	DSSS and FSK		
IEEE802.15.4 g SUN	2-3km LoS	169 MHz 450 MHz 470 MHz 780 MHz 863 MHz 868 MHz 901 MHz 915 MHz 917 MHz 920 MHz 920 MHz 950 MHz 1427 MHz 2450 MHz	Yes	Yes	4.8 kbps to 800 kbps			MAC/P HY spec			Chea p	Yes	2047B (max)	MR-FSK MR-OFD MR-O-Q PSK	AES-CC M	AES-CCM
Qowisio	2km urban 50km rural													UNB		
RPMA	<65km line of sight <20km non line of <u>sght</u>	2.4GHz	Yes		Uplink: 624kbps Downlin k:156kb ps Mobile: 2kbps	19000 bps/MH z		500k/hu b		Private (also public in the future)				Spread spectrum	256-bit	two-way 16-byte hash

LP-WAN TECHNOLOGIES

Technology	Range	Spectrum	ISM	Symmetri c up/down	Data Rate	Throug hput	Battery Life	Max Nodes	Geographic coverage	Operati onal Mode	Cost	Standard Status	Packet size	Modulati on	Encrypti on	Authenticati on
DASH-7	2km	433 MHz 868 MHz (EU) 902 MHz (US)	Yes		9. kbps 55.55kb ps 166.66k bps							DASH7 full OSI layers specificat ion	256B (max)	GFSK		
Weightless-w	5km urban	TV whitespa ce 470- <u>790</u> MHz			1kbps-1 OMbps								min 10B		128-bit	based on a shared secret key
Weightless-n	<5km urban areas 20-30km suburban	800MHz- 1GHz (ISM)	Yes	Uplink only	30kpbs - 100			1M/hub		Public or		Yes	20B (max)	UNB	128-bit	based on a shared secret key
Weightless-p	>2km urban		Yes	Ć	900	D.Ç	JI/:	53	uSP	' U	-					
NB-IoT	<15km DL MCL: 164.1 dB UL MCL: 165.6 dB	<1GHz (licensed) 180 kHz channels	No	Yes	<150 kbps		>10 yrs	>50k per sector	Urban: deep in-building penetration Rural: long range	Public	<\$5	3GPP: 2016 completio n	<200B	DL: OFDMA UL: SC-FDM A	AKA (128 bit keys)	AKA (128 bit keys)
IEEE802.11a h (Aka Wi-Fi HaLow)	1km (outdoor)	<1GHz (license-e xempt bands below 1 GHz) -902-928 MHz(US) , 863-868. 6 MHz(EU) , 915.9-92 8.1MHz(J P), 755-787 MHz(CN)	Yes	Yes	150Kbp s to 346.6Mb ps		Battery life exceeds product life (multi-yr.)	8,191 per Access Point	Indoor: whole home coverage Outdoor: long range	Public or private	Chea p	IEEE: 2016 completio n	Up to 7,991 Bytes (withou t Aggreg ation) up to 797,16 0 Bytes (with Aggreg ation)	OFDM	AES-CC M (128 or 256 bit keys)	AES-CCM (128 or 256 bit keys)

LP-WAN TECHNOLOGIES

LP-WAN FAMILY CHARACTERISTICS

- Very small frame payload (15 100 bytes)
- Limit number of frames per day (10)
- Low bandwidth offering throughput between 50 bit/s to 250kbit/s
- High packet loss (caused by collisions or bad transmission conditions)
- MTU variable (changing with modulation)
- Highly asymmetric (up/down) links or unidirectional links only
- Thousand of nodes per gateway
- Sleepy nodes (not as DTN)
- No Fragmentation in L2 (not all)
- Mobility (not as mobile IP) and not all devices
- Star Topology

LP-WAN AT IETF

- IP communication
 - Preserve End to End communication
 - Independence from L2
 - Use or adapt actual protocols
 - Use existing addressing spaces and naming schemes
- Strong Security
 - Adapted to the LP-WAN applications as: health, personal usages (water, gas, bus timing, etc.)
- Scalability
- High Reliability
- Interoperability
- Header Compression to reduce overhead

IPv6 => LP-WAN

- The overhead of IPv6 is not compatible with LP-WAN
- The variable MTU gives a variable fragmentation solution
- Need to adapt NDP (Neighbor Discovery) to LP-WAN
- draft-gomez-lpwan-ipv6-analysis-00

6LoWPAN, 6Lo => LP-WAN

- 6LoWPAN reduces header overhead for reliable L2 protocols
- 6LoWPAN traditionally used for constrained node networks
 - The LP-WAN technologies are even more constrained than typical 6LoWPAN
- Challenge for 6LoWPAN mechanisms is that LP-WAN does not send ACK at L2
- 6Lo adapts 6LoWPAN for constrained devices
 - In LP-WAN the network is also constrained
 - In LP-WAN devices are challenged
- ROHC header compression reduces overhead (NB-IoT adopted)

6TISCH => LP-WAN

- Similar but different
- 6tisch use synchronization to performs determinism
- 6tisch infrastructure is MESH
 - LP-WAN does not have a slotted channel

ROUTING => LP-WAN

- LPWAN topology is a STAR
 - Not need routing for the moment
- Future topologies could need an adaptation of a routing protocol

CORE => LP-WAN

- Adapt CORE solution to:
 - Duty cycle
 - Limited throughput
 - To use CoAP

MOBILITY => LP-WAN

- Different mobility from MOBILE IP
 - Not real-time communications
 - Not high frequency

THANKS !!!

Ana Minaburo ana@ackl.io

LP-WAN AT IETF

- Variable MTU
 - Depends on encoding
- Fragmentation
- Acknowledgements Management
- Sleepy nodes (not as DTN)
- Functioning Mode
 - Authentication through the application and not through network
- Structure
 - Service made by sessions
- Network Management
- Reduce Number of packet per day, Small size of packets

Analysis of IPv6 over LPWAN: design space and challenges

draft-gomez-lpwan-ipv6-analysis-00

Carles Gomez, Josep Paradells

Universitat Politècnica de Catalunya (UPC)/Fundació i2cat

carlesgo@entel.upc.edu

Jon Crowcroft

University of Cambridge

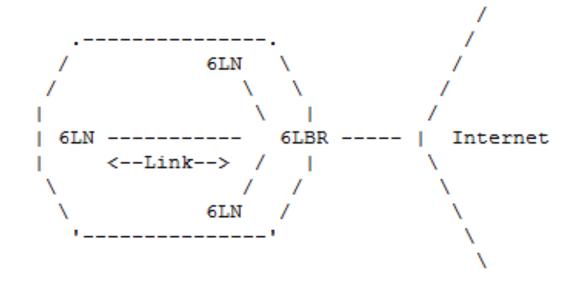
With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336

Remote presentation

Motivation

- Connecting LPWAN to the Internet
 - Use of IPv6 over LPWAN
- 6Lo(WPAN) traditionally used for constrained node networks
- However, some LPWAN technologies/setups even more constrained than typical 6Lo(WPAN) ones:
 - Lack of L2 fragmentation support
 - Maximum payload size one order of magnitude less
 - Bit rate several orders of magnitude less
 - Further limited message rate
 - E.g. due to regulatory constraints on the duty cycle
- Challenge for 6Lo(WPAN) mechanisms

Goals of this document


- Analysis of IPv6 over LPWAN
 - Analyze the applicability of existing 6Lo(WPAN) functionality
 - Identify possible challenges
- Guideline for future IPv6 over foo (LPWAN) technologies
 - Design space dimensions, aspects to consider, and recommendations

Protocol stack

- (If several options are possible) Which lower layer should interface with the adaptation layer?
 - Ability of enabling a link
 - Fragmentation support
 - Not necessarily better at the layer two
 - Multiplexing upper layer protocols

Network topology and subnet model

- LPWAN typically follow the star topology
- Multi-link subnet model

<---- Subnet ----> IPv6 connection -->

Address autoconfiguration

- IIDs traditionally derived from layer two address in 6Lo(WPAN)...
- Privacy concerns
 - LPWAN devices should not embed their link layer address in the IID by default

Fragmentation

- Needed to satisfy the IPv6 MTU requirement
- If LPWAN technology supports fragmentation
 - Analysis needed: fragmentation may be performed at L2 or at the adaptation layer
- Otherwise, fragmentation at the adaptation layer
- 6Lo(WPAN) fragmentation header
 - High overhead for LPWAN
 - Only supports maximum L2 payload size ≥ 13 bytes
- Optimized approach
 - E.g. draft-gomez-lpwan-fragmentation-header

Neighbor Discovery (ND) (I/III)

- RFC 6775 defined optimized ND for 6LoWPAN
 - Host-initiated interactions
 - Multicast-based host address resolution replaced by address registration mechanism
 - Multihop extensions (prefix dissemination, DAD)
 - Not needed in star topology networks
 - Optional support for header compression
- Suitable for LPWAN ?

Neighbor Discovery (ND) (II/III)

- OK for some not so challenged LPWAN setups
 - Maximum payload size above ≥ 60 bytes
 - Duty-cycle-free or equivalent operation
- High overhead for more challenged LPWAN setups
 - Maximum payload size ~ 10 bytes
 - Message rate ~ 0.1 message/minute

Neighbor Discovery (ND) (III/III)

- Behavior is tunable
 - Default Router Lifetime (RS/RA)
 - Max: 18 hours
 - Valid Lifetime in PIOs (RS/RA)
 - Max: infinity
 - Valid Lifetime in 6CO (RS/RA)
 - Max: 45 days
 - Address Registration Lifetime (NS/NA)
 - Max: 45 days
- More challenged LPWAN setups may need further functionality/ optimization beyond RFCC 6775

Header Compression (HC)

- RFC 6282 defines 6LoWPAN HC
 - Stateless and stateful
 - 2-byte base encoding
 - 1-byte encoding for context-based HC
 - 16 contexts may be defined
 - Context may be disseminated by using 6CO in RAs
 - Each 6CO adds 16-24 bytes
 - Minimum compressed header with fully compressed global addresses: 3 bytes
 - Limited to 16 global addresses
 - Minimum compressed header with compressed prefix of only source or only destination: 11 bytes
 - Minimum compressed header with compressed prefix of both source and destination: 19 bytes
- More challenged LPWAN setups may need further functionality/optimization beyond RFCC 6775

Header Compression (HC)

- RFC 6282 defines 6LoWPAN HC
 - Stateless and stateful
 - 2-byte base encoding
 - 1-byte encoding for context-based HC
 - 16 contexts may be defined
 - Context may be disseminated by using 6CO in RAs
 - Each 6CO adds 16-24 bytes
 - Minimum compressed header with fully compressed global addresses: 3 bytes
 - Limited to 16 global addresses
 - Minimum compressed header with compressed prefix of only source or only destination: 11 bytes
 - Minimum compressed header with compressed prefix of both source and destination: 19 bytes
- More challenged LPWAN setups may need further functionality/optimization beyond RFCC 6775

Thanks!

Questions?

Carles Gomez, Josep Paradells

Universitat Politècnica de Catalunya (UPC)/Fundació i2cat

carlesgo@entel.upc.edu

Jon Crowcroft

University of Cambridge

With the support of Ministerio de Educación, Cultura y Deporte, through the José Castillejo grant CAS15/00336

Remote presentation

IETF 95 – Buenos Aires, Apr 2015 ²⁹