Thor update

High Efficiency, Moderate Complexity
Video Codec using only RF IPR

draft-fuldseth-netvc-thor-02
draft-midtskogen-netvc-clpf-02
draft-davies-netvc-qmtx-00

Steinar Midtskogen (Cisco)
IETF 95 — Buenos Aires, AR — April 2016

Thor, a simple and efficient codec

* Designed to be simple, efficient and pragmatic

* Simple both in terms of computation and description
* Uses techniques known to work & improves on those
* Many similarities with H.26x

* Royalty free IPR
- NOTE WELL: https://datatracker.ietf.org/ipr/2636/

Topics for this update

* Changes since IETF94/November 2015
— Support for 128x128 superblocks

— New constrained low pass filter
- Weighted quantisation matrices
- Rate control support

- Misc tuning

* Updated compression performance

128x128 superblocks

* The encoder can specify whether the SB size is 64x64
(as before) or 128x128.

* 128x128 inverse transform defined as a 32x32
transform and resulting pixels are duplicated (1->4x4)

* Bandwidth reductions: LD: 2.0%, HD: 2.6%
- Useful for low bitrates and VC (4-5% reductions),
mostly < 1% reductions for other material

* About half of the gain comes from 128x128 skip, so
the added complexity for the encoder can be kept low

Old constrained low-pass filter

* Previous filter:

X' = X + ((A>X)+(B>X)+(C>X)+(D>X) > 2) - A
((A<X)+(B<X)+(C<X)*+(D<X) > 2)

* |Increase/decrease by one if at least
three of the four neighbours are
larger/smaller.

* Very simple, yet effective if applied to the right blocks.

* Weakness: Only £1 adjustments. A conservative filter.

New constrained low-pass filter

A general way to modify a pixel x(i, j):

yli,jl=round(xli,jl+g(2. alm,n|f(xli,jl=blm,n|x(m,n)))
m,n€R
- R is the region of interest (e.g. a 3x3 neighbourhood)
- a(m,n) and b(m,n) are real-valued coefficients
- f() and g() are functions, possibly non-linear

- round(x) maps x to an integer in the desired range (e.g. to
the nearest integer in 0-255 for 8 bit input)

New constrained low-pass filter
yli,jl=round (x[i, jl+g(2. alm,n|f(xli,j|=blm,njx(m,n))))

m,n€R

* Special case 1 (almost identical to previous CLPF):
- R={x(i-1,j), x(i,-1), x(i+1,j), x(i,j*+1)}
- a(m,n)=0.25
- b(m,n)=1
- f(x) = clip(x, -1, 1)
- 9(x) =x
— round(x) maps x to the nearest integer
* Special case 2 (traditional FIR filter)
- b(m,n)=0
- f(x) = g(x) =X

New constrained low-pass filter

yli,j)=round(xli, jl+g(ZERa(m,n)f(x(i,j)—b(m,n)x(m,n))))
. New CLPF: |

— 6 pixels in a cross shape used as input,
horizontally oriented to minimise line buffer requirements.

- g(x) = x, round(x) maps to the nearest integer, and s is filter
strength

y(i, j) = round(x(ij) + 1/4%clip(x(i,j-1) — x(i,j), -s,) +
1/167clip(x(i-2,j) — x(i,j), -S, S) +

A 3/16%clip(x(i-1,j) — x(ij), -, S) +
B C X D E 3/16*Cllp(X(l+1,j) — X(i,j), =S, S) +
1/167clip(x(i+2,j) — x(i,j), -S, S) +

F 1/4%clip(x(i,j+1) — x(i,j), -s, s) or:

Y = X + (4*clip(A-X,-s,s) + clip(B-X,-s,s) + 3*clip(C-X,-s,s) +
3*clip(D-X,-s,s) + clip(E-X,-s,s) + 4*clip(F-X,-s,s))/16

New constrained low-pass filter

* Slightly more computationally complex:

#define clip(n,1l,h) ((h) < ((n)>(1) 2?2 (n) : (1)) 2 (h) : ((n)>(1) 2 (n) : (1)))
int clpf pixel(int X, int A, int B, int C, int D, int E, int F, int s)
{
int delta = 4*clip(A - X, -s, s) + clip(B - X, -s, s) + 3*clip(C - X, -s, s) +
3*clip(D - X, -s, s) + clip(E - X, -s, s) + 4*clip(F - X, -s, s);
return X + ((8 + delta - (delta < 0)) >> 4); // Assumes arithmetic shift
}

compared to the old CLPF:

int clpf pixel(int X, int A, int B, int C, int D)
{

return X + ((A>X)+ (B>X)+ (C>X)+ (D>X) > 2) - ((A<X)+ (B<X)+ (C<X)+ (D<X) > 2);
}

* But still SIMD friendly and simple:

— 8-bit only arithmetics possible for 8 bit content (offset +
saturating subtraction for 9 bit difference)

- 4.9 instructions per pixel to filter an 8x8 block on ARM/NEON
(armv7) using C with intrinsics (gcc 4.8.4).

New constrained low-pass filter

One of four different strengths signalled at frame level:
- 0 (off),1,2 or 4. Same strength for all filtered blocks in a frame

Coding blocks encoded as skip (InterQ) not filtered

The filter can be turned off for individual blocks. The
block size is 32, 64 or 128 selected at frame level

13 different filter options for the encoder:

- Off, filter frame with s=1,2 or 4, filter blocks with s=1,2 or 4
for block sizes 32x32, 64x64 or 128x128

RDO is fast but s=2 and QP dependent block sizes
work well

Details:

https://tools.ietf.org/id/draft-midtskogen-netvc-clpf-02.txt

Strength = 2

Strength = 0

Strength = 4

Strength = 0

Strength = 8

New constrained low-pass filter

PSNR results, uni-prediction only, low delay, medium complexity:

Sequence BDR BDR (low br) BDR (high br)
Kimono -2.7% -2.3% -3.4%
BasketballDrive -3.3% -2.5% -4.5%

BQTerrace -1.2% -4.9% -9.1%
FourPeople -5.7% -3.9% -8.6%

Johnny -5.9% -4.0% -9.0%
ChangeSeats -6.4% -3.4% -10.8%
HeadAndShoulder -8.6% -2.6% -18.8%
TelePresence -5.9% -3.1% -10.7%

Average -5.7% -3.3% -9.4%

Previous average -4.2% -1.7% -71.4%

New constrained low-pass filter

PSNR results, uni-/bi-prediction, low delay, medium complexity:

Sequence BDR BDR (low br) BDR (high br)
Kimono -2.2% -1.8% -2.7%
BasketballDrive -2.6% -2.5% -2.7%
BQTerrace -4.1% -3.1% -4.7%
FourPeople -4.0% -2.9% -5.3%
Johnny -3.5% -2.7% -4.6%
ChangeSeats -4.2% -3.0% -6.1%
HeadAndShoulder -4.1% -2.9% -6.1%
TelePresence -2.8% -1.9% -4.3%
Average -3.4% -2.6% -4.6%

Previous average -1.8% -0.9% -3.1%

Weighted quantisation matrices

The human contrast sensitivity varies with frequency:

Contrast sensitivity function

Contrast

Spatial frequency

Weighted quantisation matrices

Different scaling factors can be applied to each
coefficient during dequantisation

The aim is to use the contrast sensitivity function to
reduce the quantisation errors in some frequencies
and increase them in less important frequencies

One matrix for every combination of transform size
(6), inter/intra (2), video component (3), and
guantisation level (12) — 432 matrices in all (derivable
from a smaller set)

The range of QP-dependent matrices and ability to
signal strength reduce the need for custom matrices

Details:

https://tools.ietf.org/id/draft-davies-netvc-thor-gmtx-00.txt

Weighted quantisation matrices

BDR results for weighted matrices:

Fast-

SSIM Fast- PSNR PSNR

high SSIM high low
Sequence delay low delay delay delay
Kimono -5.4% -0.5% 2.7% 1.9%
BasketballDrive -6.7% -4.4% 2.5% 0.8%
BQTerrace -20.0% -15.2% 1.8% 0.9%
FourPeople -12.8% -12.7% -0.5% -1.4%
Johnny -18.9% -18.9% -1.2% -1.3%
ChangeSeats -15.4% -10.8% 2.3% 1.0%
HeadAndShoulder -9.1% -13.4% -0.6% -1.9%
TelePresence -27.9% -21.7% 3.9% 1.3%

Average -14.5% -12.2% 1.4% 0.2%

Rate control

* Constant quality or constant bitrate now configurable

* Delta-QP can be transmitted for every non-skip
superblock

* Sliding window operation

* Designed to react quickly (window size = one frame),
suitable for videoconferencing

Misc tuning

* Misc tuning giving small gains or simplifications:
— Interpolation filter coefficients reduced from 7 to 6 bits
— Reduced depth at which interpolated references are used
- Improved VLC for motion vectors
- efc
* Source code:

- Available at: github.com/cisco/thor

Performance, low delay

* Anchor:
— HM13.0 (HEVC reference software)
— Low-delay B configuration

* Thor:

— Same constraints as the anchor

¢ VPg --cpu-used=0 --end-usage=g --cg-level=$q --kf-min-
dist=999 —--frame-parallel=0 —--tile-columns=0 --threads=1 --
ivi -p 1 —-—auto-alt-ref=0 --lag-in-frames=0

X265: -1 -1 --no-wpp —--tune psnr -p veryslow
-—gp $q -bframes 0 —--gpfile $g.txt

* Complexity: FourPeople at QP 32 on a single core

Note: HM, Thor and x265 have fixed QP variation, VP9 adapts
dynamically.

Frame rate vs compression LD

Encoder frame rate vs. BDR - low delay

100
0
e}
E 10 - VP9
@ X265
E ——H.265 ref
l-t —t—Thor-
! IETF94
v
o] == Thor-
(o] I[ETFS5
v
e
LWlol
.
0.01 :

T T T T
0.0 % 10.0% 20.0% 30.0% 4D.D%BDRSD.D% 50.0 % 70.0% 80.0% 90.0% 100.0 %

24

Performance, low delay

BDR vs. HM13.0 (%)

Class Sequence Thor VP9 x265
Class B Kimono 14.4 20.9 14.1
ParkScene 18.6 28.9 16.4
Cactus 15.4 12.1 21.5
BasketballDrive 24 .4 33.0 14.0
BQTerrace 26.9 82.9 44 .9
Class E FourPeople 4.3 7.8 22.5
Johnny 7.3 34.9 30.8
KristenAndSara 1.5 9.6 20.3
Internal ChangeSeats 13.9 17.4 12.8
HeadAndShoulder -5.6 38.0 34.8
TelePresence 9.5 23.3 11.9
WhiteBoard 8.7 35.1 24.3

Average 11.4 28.7 22.4

Performance, high delay

* Anchor:
— HM13.0 (HEVC reference software)
— Random access without periodic | frames

* Thor:

— Same constraints as the anchor

* VPO9: —-cpu-used=0 --end-usage=q --cg-level=$Sq --kf-min-
dist=999 --frame-parallel=0 --tile-columns=0 --threads=1 --
ivi -p 2 —auto-alt-ref=1 -lag-in-frames=255

X265: -1 -1 —-no-wpp —--tune psnr -p veryslow —--gp $q

* Complexity: FourPeople at QP 32 on a single core

Note: HM and Thor have fixed QP variation, x265 and VP9 adapt
dynamically. VP9 did a two-pass encode, the others one-pass.

Frame rate vs compression HD

Encoder frame rate vs. BDR - high delay

100

o _ /_/,_—*
1'-!'10 — - -8-\/P9

b X265
Lo/] ——H.265 ref
E —she—Thor-
® IETF94
‘: 1 . =3=Thor-
T IETF95
=

(=]

v

=
L

21
*
0.01

T 1 1 1 1 1 1
0.0% 10.0% 20.0% 30.0% 40.0% BBDR:% G0.0% J0.0% 80.0% 90.0% 100.0%

27

Performance, high delay

BDR vs. HM13.0 (%)

Class Sequence Thor VP9 x265
Class B Kimono 17.0 14.8 20.3
ParkScene 18.1 16.7 26.5
Cactus 14.0 18.9 17.2
BasketballDrive 26.7 19.2 13.3
BQTerrace 30.1 24 1 19.7
Class E FourPeople 3.1 1.3 26.7
Johnny 6.1 13.2 28.4
KristenAndSara 0.0 11.4 23.0
Internal ChangeSeats 12.7 14 1 18.3
HeadAndShoulder -3.3 -1.9 21.0
TelePresence 11.8 14.9 20.0
WhiteBoard 6.0 4.8 24.9

Average 11.9 12.6 21.6

	Thor update
	Design principles
	Topics for this update
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Low pass filter results
	Low pass filter results 2
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Performance low delay
	Slide 24
	Performance low delay 2
	Performance high delay
	Slide 27
	Performance high delay 2

