
1

Thor update
High Efficiency, Moderate Complexity

Video Codec using only RF IPR

draft-fuldseth-netvc-thor-02

draft-midtskogen-netvc-clpf-02

draft-davies-netvc-qmtx-00

Steinar Midtskogen (Cisco)

IETF 95 – Buenos Aires, AR – April 2016

2

Thor, a simple and efficient codec

• Designed to be simple, efficient and pragmatic

• Simple both in terms of computation and description

• Uses techniques known to work & improves on those

• Many similarities with H.26x

• Royalty free IPR
– NOTE WELL: https://datatracker.ietf.org/ipr/2636/

3

Topics for this update

• Changes since IETF94/November 2015
– Support for 128x128 superblocks

– New constrained low pass filter

– Weighted quantisation matrices

– Rate control support

– Misc tuning

• Updated compression performance

4

128x128 superblocks

• The encoder can specify whether the SB size is 64x64
(as before) or 128x128.

• 128x128 inverse transform defined as a 32x32
transform and resulting pixels are duplicated (1->4x4)

• Bandwidth reductions: LD: 2.0%, HD: 2.6%
– Useful for low bitrates and VC (4-5% reductions),

mostly < 1% reductions for other material

• About half of the gain comes from 128x128 skip, so
the added complexity for the encoder can be kept low

5

Old constrained low-pass filter

● Previous filter:

X' = X + ((A>X)+(B>X)+(C>X)+(D>X) > 2) -
 ((A<X)+(B<X)+(C<X)+(D<X) > 2)

● Increase/decrease by one if at least

three of the four neighbours are

larger/smaller.
● Very simple, yet effective if applied to the right blocks.
● Weakness: Only ±1 adjustments. A conservative filter.

A

B X C

D

6

New constrained low-pass filter

A general way to modify a pixel x(i, j):

– R is the region of interest (e.g. a 3x3 neighbourhood)

– a(m,n) and b(m,n) are real-valued coefficients

– f() and g() are functions, possibly non-linear

– round(x) maps x to an integer in the desired range (e.g. to
the nearest integer in 0-255 for 8 bit input)

y (i , j)=round (x (i , j)+g (∑
m,n∈ R

a (m ,n) f (x (i , j)−b (m ,n) x (m ,n))))

7

New constrained low-pass filter

● Special case 1 (almost identical to previous CLPF):

– R = {x(i-1,j), x(i,-1), x(i+1,j), x(i,j+1)}

– a(m, n) = 0.25

– b(m, n) = 1

– f(x) = clip(x, -1, 1)

– g(x) = x

– round(x) maps x to the nearest integer

● Special case 2 (traditional FIR filter)

– b(m, n) = 0

– f(x) = g(x) = x

y (i , j)=round (x (i , j)+g (∑
m,n∈ R

a (m ,n) f (x (i , j)−b (m ,n) x (m ,n))))

8

New constrained low-pass filter

● New CLPF:

– 6 pixels in a cross shape used as input,
horizontally oriented to minimise line buffer requirements.

– g(x) = x, round(x) maps to the nearest integer, and s is filter
strength

y(i, j) = round(x(i,j) + 1/4*clip(x(i,j-1) – x(i,j), -s, s) +
 1/16*clip(x(i-2,j) – x(i,j), -s, s) +
 3/16*clip(x(i-1,j) – x(i,j), -s, s) +
 3/16*clip(x(i+1,j) – x(i,j), -s, s) +
 1/16*clip(x(i+2,j) – x(i,j), -s, s) +
 1/4*clip(x(i,j+1) – x(i,j), -s, s) or:

Y = X + (4*clip(A-X,-s,s) + clip(B-X,-s,s) + 3*clip(C-X,-s,s) +
 3*clip(D-X,-s,s) + clip(E-X,-s,s) + 4*clip(F-X,-s,s))/16

y (i , j)=round (x (i , j)+g (∑
m,n∈ R

a (m ,n) f (x (i , j)−b (m ,n) x (m ,n))))

A

X D

F

 B C B B E

9

New constrained low-pass filter
● Slightly more computationally complex:

#define clip(n,l,h) ((h) < ((n)>(l) ? (n) : (l)) ? (h) : ((n)>(l) ? (n) : (l)))
int clpf_pixel(int X, int A, int B, int C, int D, int E, int F, int s)
{
 int delta = 4*clip(A - X, -s, s) + clip(B - X, -s, s) + 3*clip(C - X, -s, s) +
 3*clip(D - X, -s, s) + clip(E - X, -s, s) + 4*clip(F - X, -s, s);
 return X + ((8 + delta - (delta < 0)) >> 4); // Assumes arithmetic shift
}

compared to the old CLPF:

int clpf_pixel(int X, int A, int B, int C, int D)
{
 return X + ((A>X)+(B>X)+(C>X)+(D>X) > 2) - ((A<X)+(B<X)+(C<X)+(D<X) > 2);
}

● But still SIMD friendly and simple:

– 8-bit only arithmetics possible for 8 bit content (offset +
saturating subtraction for 9 bit difference)

– 4.9 instructions per pixel to filter an 8x8 block on ARM/NEON
(armv7) using C with intrinsics (gcc 4.8.4).

10

New constrained low-pass filter
● One of four different strengths signalled at frame level:

– 0 (off),1,2 or 4. Same strength for all filtered blocks in a frame

● Coding blocks encoded as skip (Inter0) not filtered

● The filter can be turned off for individual blocks. The
block size is 32, 64 or 128 selected at frame level

● 13 different filter options for the encoder:

– Off, filter frame with s=1,2 or 4, filter blocks with s=1,2 or 4
for block sizes 32x32, 64x64 or 128x128

● RDO is fast but s=2 and QP dependent block sizes
work well

● Details:
 https://tools.ietf.org/id/draft-midtskogen-netvc-clpf-02.txt

11

12

13

14

15

16

New constrained low-pass filter

PSNR results, uni-prediction only, low delay, medium complexity:

Sequence BDR BDR (low br) BDR (high br)
Kimono -2.7% -2.3% -3.4%

BasketballDrive -3.3% -2.5% -4.5%

BQTerrace -7.2% -4.9% -9.1%

FourPeople -5.7% -3.9% -8.6%

Johnny -5.9% -4.0% -9.0%

ChangeSeats -6.4% -3.4% -10.8%

HeadAndShoulder -8.6% -2.6% -18.8%

TelePresence -5.9% -3.1% -10.7%

Average -5.7% -3.3% -9.4%

Previous average -4.2% -1.7% -7.4%

17

New constrained low-pass filter

PSNR results, uni-/bi-prediction, low delay, medium complexity:

Sequence BDR BDR (low br) BDR (high br)
Kimono -2.2% -1.8% -2.7%

BasketballDrive -2.6% -2.5% -2.7%

BQTerrace -4.1% -3.1% -4.7%

FourPeople -4.0% -2.9% -5.3%

Johnny -3.5% -2.7% -4.6%

ChangeSeats -4.2% -3.0% -6.1%

HeadAndShoulder -4.1% -2.9% -6.1%

TelePresence -2.8% -1.9% -4.3%

Average -3.4% -2.6% -4.6%

Previous average -1.8% -0.9% -3.1%

18

Weighted quantisation matrices

The human contrast sensitivity varies with frequency:

19

Weighted quantisation matrices
● Different scaling factors can be applied to each

coefficient during dequantisation

● The aim is to use the contrast sensitivity function to
reduce the quantisation errors in some frequencies
and increase them in less important frequencies

● One matrix for every combination of transform size
(6), inter/intra (2), video component (3), and
quantisation level (12) – 432 matrices in all (derivable
from a smaller set)

● The range of QP-dependent matrices and ability to
signal strength reduce the need for custom matrices

● Details:
 https://tools.ietf.org/id/draft-davies-netvc-thor-qmtx-00.txt

20

Weighted quantisation matrices

BDR results for weighted matrices:

Sequence

Fast-
SSIM
high
delay

Fast-
SSIM
low delay

PSNR
high
delay

PSNR
low
delay

Kimono -5.4% -0.5% 2.7% 1.9%

BasketballDrive -6.7% -4.4% 2.5% 0.8%

BQTerrace -20.0% -15.2% 1.8% 0.9%

FourPeople -12.8% -12.7% -0.5% -1.4%

Johnny -18.9% -18.9% -1.2% -1.3%

ChangeSeats -15.4% -10.8% 2.3% 1.0%

HeadAndShoulder -9.1% -13.4% -0.6% -1.9%

TelePresence -27.9% -21.7% 3.9% 1.3%

Average -14.5% -12.2% 1.4% 0.2%

21

Rate control
● Constant quality or constant bitrate now configurable

● Delta-QP can be transmitted for every non-skip
superblock

● Sliding window operation

● Designed to react quickly (window size = one frame),
suitable for videoconferencing

22

Misc tuning
● Misc tuning giving small gains or simplifications:

– Interpolation filter coefficients reduced from 7 to 6 bits

– Reduced depth at which interpolated references are used

– Improved VLC for motion vectors

– etc

● Source code:

– Available at: github.com/cisco/thor

23

Performance, low delay
• Anchor:

– HM13.0 (HEVC reference software)

– Low-delay B configuration

• Thor:
– Same constraints as the anchor

• VP9: --cpu-used=0 --end-usage=q --cq-level=$q -–kf-min-
dist=999 –-frame-parallel=0 –-tile-columns=0 --threads=1 -–
ivf -p 1 –-auto-alt-ref=0 --lag-in-frames=0

• x265: -I -1 --no-wpp --tune psnr -p veryslow
 --qp $q –bframes 0 –-qpfile $q.txt

• Complexity: FourPeople at QP 32 on a single core

Note: HM, Thor and x265 have fixed QP variation, VP9 adapts
dynamically.

24

Frame rate vs compression LD

25

Performance, low delay
BDR vs. HM13.0 (%)

Class Sequence Thor VP9 x265

Class B Kimono 14.4 20.9 14.1

 ParkScene 18.6 28.9 16.4

 Cactus 15.4 12.1 21.5

 BasketballDrive 24.4 33.0 14.0

 BQTerrace 26.9 82.9 44.9

Class E FourPeople 4.3 7.8 22.5

 Johnny 7.3 34.9 30.8

 KristenAndSara 1.5 9.6 20.3

Internal ChangeSeats 13.9 17.4 12.8

 HeadAndShoulder -5.6 38.0 34.8

 TelePresence 9.5 23.3 11.9

 WhiteBoard 8.7 35.1 24.3

 Average 11.4 28.7 22.4

26

Performance, high delay
• Anchor:

– HM13.0 (HEVC reference software)

– Random access without periodic I frames

• Thor:
– Same constraints as the anchor

• VP9: --cpu-used=0 --end-usage=q --cq-level=$q -–kf-min-
dist=999 –-frame-parallel=0 –-tile-columns=0 --threads=1 -–
ivf -p 2 –auto-alt-ref=1 –lag-in-frames=255

• x265: -I -1 --no-wpp --tune psnr -p veryslow --qp $q

• Complexity: FourPeople at QP 32 on a single core

Note: HM and Thor have fixed QP variation, x265 and VP9 adapt
dynamically. VP9 did a two-pass encode, the others one-pass.

27

Frame rate vs compression HD

28

Performance, high delay
BDR vs. HM13.0 (%)

Class Sequence Thor VP9 x265

Class B Kimono 17.0 14.8 20.3

 ParkScene 18.1 16.7 26.5

 Cactus 14.0 18.9 17.2

 BasketballDrive 26.7 19.2 13.3

 BQTerrace 30.1 24.1 19.7

Class E FourPeople 3.1 1.3 26.7

 Johnny 6.1 13.2 28.4

 KristenAndSara 0.0 11.4 23.0

Internal ChangeSeats 12.7 14.1 18.3

 HeadAndShoulder -3.3 -1.9 21.0

 TelePresence 11.8 14.9 20.0

 WhiteBoard 6.0 4.8 24.9

 Average 11.9 12.6 21.6

	Thor update
	Design principles
	Topics for this update
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Low pass filter results
	Low pass filter results 2
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Performance low delay
	Slide 24
	Performance low delay 2
	Performance high delay
	Slide 27
	Performance high delay 2

