Thor update

High Efficiency, Moderate Complexity Video Codec using only RF IPR

draft-fuldseth-netvc-thor-02 draft-midtskogen-netvc-clpf-02 draft-davies-netvc-qmtx-00

Steinar Midtskogen (Cisco) IETF 95 – Buenos Aires, AR – April 2016

1

Thor, a simple and efficient codec

- Designed to be simple, efficient and pragmatic
- Simple both in terms of computation and description
- Uses techniques known to work & improves on those
- Many similarities with H.26x
- Royalty free IPR
 - NOTE WELL: https://datatracker.ietf.org/ipr/2636/

Topics for this update

- Changes since IETF94/November 2015
 - Support for 128x128 superblocks
 - New constrained low pass filter
 - Weighted quantisation matrices
 - Rate control support
 - Misc tuning
- Updated compression performance

128x128 superblocks

- The encoder can specify whether the SB size is 64x64 (as before) or 128x128.
- 128x128 inverse transform defined as a 32x32 transform and resulting pixels are duplicated (1->4x4)
- Bandwidth reductions: LD: 2.0%, HD: 2.6%
 - Useful for low bitrates and VC (4-5% reductions), mostly < 1% reductions for other material
- About half of the gain comes from 128x128 skip, so the added complexity for the encoder can be kept low

• Previous filter:

 $\begin{aligned} \mathsf{X'} &= \mathsf{X} + ((\mathsf{A}{>}\mathsf{X}){+}(\mathsf{B}{>}\mathsf{X}){+}(\mathsf{C}{>}\mathsf{X}){+}(\mathsf{D}{>}\mathsf{X}) > 2) - \\ & ((\mathsf{A}{<}\mathsf{X}){+}(\mathsf{B}{<}\mathsf{X}){+}(\mathsf{C}{<}\mathsf{X}){+}(\mathsf{D}{<}\mathsf{X}) > 2) \end{aligned}$

- Increase/decrease by one if at least three of the four neighbours are larger/smaller.
- Very simple, yet effective if applied to the right blocks.
- Weakness: Only ±1 adjustments. A conservative filter.

A general way to modify a pixel x(i, j):

 $y(i, j) = round(x(i, j) + g(\sum_{m,n \in R} a(m,n)f(x(i, j) - b(m,n)x(m,n))))$

- R is the region of interest (e.g. a 3x3 neighbourhood)
- a(m,n) and b(m,n) are real-valued coefficients
- f() and g() are functions, possibly non-linear
- round(x) maps x to an integer in the desired range (e.g. to the nearest integer in 0-255 for 8 bit input)

- $y(i, j) = round(x(i, j) + g(\sum_{m,n \in R} a(m,n)f(x(i, j) b(m,n)x(m,n))))$
- Special case 1 (almost identical to previous CLPF):
 - $R = \{x(i-1,j), x(i,-1), x(i+1,j), x(i,j+1)\}$
 - a(m, n) = 0.25
 - b(m, n) = 1
 - f(x) = clip(x, -1, 1)
 - -g(x) = x
 - round(x) maps x to the nearest integer
- Special case 2 (traditional FIR filter)
 - b(m, n) = 0
 - f(x) = g(x) = x

 $y(i, j) = round(x(i, j) + g(\sum_{i=1}^{n} a(m, n)f(x(i, j) - b(m, n)x(m, n))))$ $m.n \in R$

- New CLPF:
 - 6 pixels in a cross shape used as input, horizontally oriented to minimise line buffer requirements.
 - -g(x) = x, round(x) maps to the nearest integer, and s is filter strength

		Α			
В	С	Х	D	Е	
		F			

y(i, j) = round(x(i, j) + 1/4*clip(x(i, j-1) - x(i, j), -s, s) + $1/16^{*}clip(x(i-2,j) - x(i,j), -s, s) +$ $3/16^{*}clip(x(i-1,j) - x(i,j), -s, s) +$ $3/16^{*}clip(x(i+1,j) - x(i,j), -s, s) +$ 1/16*clip(x(i+2.i) - x(i.i), -s. s) +1/4*clip(x(i,i+1) - x(i,i), -s, s) or:

Y = X + (4*clip(A-X,-s,s) + clip(B-X,-s,s) + 3*clip(C-X,-s,s) +3*clip(D-X,-s,s) + clip(E-X,-s,s) + 4*clip(F-X,-s,s))/16

• Slightly more computationally complex:

compared to the old CLPF:

```
int clpf_pixel(int X, int A, int B, int C, int D)
{
    return X + ((A>X)+(B>X)+(C>X)+(D>X) > 2) - ((A<X)+(B<X)+(C<X)+(D<X) > 2);
}
```

- But still SIMD friendly and simple:
 - 8-bit only arithmetics possible for 8 bit content (offset + saturating subtraction for 9 bit difference)
 - 4.9 instructions per pixel to filter an 8x8 block on ARM/NEON (armv7) using C with intrinsics (gcc 4.8.4).

- One of four different strengths signalled at frame level:
 - 0 (off),1,2 or 4. Same strength for all filtered blocks in a frame
- Coding blocks encoded as skip (Inter0) not filtered
- The filter can be turned off for individual blocks. The block size is 32, 64 or 128 selected at frame level
- 13 different filter options for the encoder:
 - Off, filter frame with s=1,2 or 4, filter blocks with s=1,2 or 4 for block sizes 32x32, 64x64 or 128x128
- RDO is fast but s=2 and QP dependent block sizes work well
- Details:

https://tools.ietf.org/id/draft-midtskogen-netvc-clpf-02.txt

I

PSNR results, uni-prediction only, low delay, medium complexity:

Sequence	BDR	BDR (low br)	BDR (high br)
Kimono	-2.7%	-2.3%	-3.4%
BasketballDrive	-3.3%	-2.5%	-4.5%
BQTerrace	-7.2%	-4.9%	-9.1%
FourPeople	-5.7%	-3.9%	-8.6%
Johnny	-5.9%	-4.0%	-9.0%
ChangeSeats	-6.4%	-3.4%	-10.8%
HeadAndShoulder	-8.6%	-2.6%	-18.8%
TelePresence	-5.9%	-3.1%	-10.7%
Average	-5.7%	-3.3%	-9.4%
Previous average	-4.2%	-1.7%	-7.4%

PSNR results, uni-/bi-prediction, low delay, medium complexity:

Sequence	BDR	BDR (low br)	BDR (high br)
Kimono	-2.2%	-1.8%	-2.7%
BasketballDrive	-2.6%	-2.5%	-2.7%
BQTerrace	-4.1%	-3.1%	-4.7%
FourPeople	-4.0%	-2.9%	-5.3%
Johnny	-3.5%	-2.7%	-4.6%
ChangeSeats	-4.2%	-3.0%	-6.1%
HeadAndShoulder	-4.1%	-2.9%	-6.1%
TelePresence	-2.8%	-1.9%	-4.3%
Average	-3.4%	-2.6%	-4.6%
Previous average	-1.8%	-0.9%	-3.1%

Weighted quantisation matrices

The human contrast sensitivity varies with frequency:

Weighted quantisation matrices

- Different scaling factors can be applied to each coefficient during dequantisation
- The aim is to use the contrast sensitivity function to reduce the quantisation errors in some frequencies and increase them in less important frequencies
- One matrix for every combination of transform size (6), inter/intra (2), video component (3), and quantisation level (12) – 432 matrices in all (derivable from a smaller set)
- The range of QP-dependent matrices and ability to signal strength reduce the need for custom matrices
- Details:

https://tools.ietf.org/id/draft-davies-netvc-thor-qmtx-00.txt

Weighted quantisation matrices

BDR results for weighted matrices:

Sequence	Fast- SSIM high delay	Fast- SSIM low delay	PSNR high delay	PSNR low delay
Kimono	-5.4%	-0.5%	2.7%	1.9%
BasketballDrive	-6.7%	-4.4%	2.5%	0.8%
BQTerrace	-20.0%	-15.2%	1.8%	0.9%
FourPeople	-12.8%	-12.7%	-0.5%	-1.4%
Johnny	-18.9%	-18.9%	-1.2%	-1.3%
ChangeSeats	-15.4%	-10.8%	2.3%	1.0%
HeadAndShoulder	-9.1%	-13.4%	-0.6%	-1.9%
TelePresence	-27.9%	-21.7%	3.9%	1.3%
Average	-14.5%	-12.2%	1.4%	0.2%

Rate control

- Constant quality or constant bitrate now configurable
- Delta-QP can be transmitted for every non-skip superblock
- Sliding window operation
- Designed to react quickly (window size = one frame), suitable for videoconferencing

Misc tuning

- Misc tuning giving small gains or simplifications:
 - Interpolation filter coefficients reduced from 7 to 6 bits
 - Reduced depth at which interpolated references are used
 - Improved VLC for motion vectors
 - etc
- Source code:
 - Available at: github.com/cisco/thor

Performance, low delay

- Anchor:
 - HM13.0 (HEVC reference software)
 - Low-delay B configuration
- Thor:
 - Same constraints as the anchor
- VP9: --cpu-used=0 --end-usage=q --cq-level=\$q --kf-mindist=999 --frame-parallel=0 --tile-columns=0 --threads=1 -ivf -p 1 --auto-alt-ref=0 --lag-in-frames=0
- x265: -I -1 --no-wpp --tune psnr -p veryslow --qp \$q -bframes 0 --qpfile \$q.txt
- Complexity: FourPeople at QP 32 on a single core

Note: HM, Thor and x265 have fixed QP variation, VP9 adapts dynamically.

Frame rate vs compression LD

Encoder frame rate vs. BDR - low delay

Performance, low delay

BDR vs. HM13.0 (%)					
Class	Sequence	Thor	VP9	x265	
Class B	Kimono	14.4	20.9	14.1	
	ParkScene	18.6	28.9	16.4	
	Cactus	15.4	12.1	21.5	
	BasketballDrive	24.4	33.0	14.0	
	BQTerrace	26.9	82.9	44.9	
Class E	FourPeople	4.3	7.8	22.5	
	Johnny	7.3	34.9	30.8	
	KristenAndSara	1.5	9.6	20.3	
Internal	ChangeSeats	13.9	17.4	12.8	
	HeadAndShoulder	-5.6	38.0	34.8	
	TelePresence	9.5	23.3	11.9	
	WhiteBoard	8.7	35.1	24.3	
	Average	11.4	28.7	22.4	

Performance, high delay

- Anchor:
 - HM13.0 (HEVC reference software)
 - Random access without periodic I frames
- Thor:
 - Same constraints as the anchor
- VP9: --cpu-used=0 --end-usage=q --cq-level=\$q --kf-mindist=999 --frame-parallel=0 --tile-columns=0 --threads=1 -ivf -p 2 -auto-alt-ref=1 -lag-in-frames=255
- x265: -I -1 --no-wpp --tune psnr -p veryslow --qp \$q
- Complexity: FourPeople at QP 32 on a single core

Note: HM and Thor have fixed QP variation, x265 and VP9 adapt dynamically. VP9 did a two-pass encode, the others one-pass.

Frame rate vs compression HD

Encoder frame rate vs. BDR - high delay

Performance, high delay

BDR vs. HM13.0 (%)					
Class	Sequence	Thor	VP9	x265	
Class B	Kimono	17.0	14.8	20.3	
	ParkScene	18.1	16.7	26.5	
	Cactus	14.0	18.9	17.2	
	BasketballDrive	26.7	19.2	13.3	
	BQTerrace	30.1	24.1	19.7	
Class E	FourPeople	3.1	1.3	26.7	
	Johnny	6.1	13.2	28.4	
	KristenAndSara	0.0	11.4	23.0	
Internal	ChangeSeats	12.7	14.1	18.3	
	HeadAndShoulder	-3.3	-1.9	21.0	
	TelePresence	11.8	14.9	20.0	
	WhiteBoard	6.0	4.8	24.9	
	Average	11.9	12.6	21.6	