VMs, Unikernels and Containers:
Experiences on the Performance of
Virtualization Technologies

Felipe Huici
NEC Europe Ltd. (Heidelberg)



In the Beginning...

by

N>




In the Beginning...

VMs” [0 o oo o o o

N>



In the Beginning...

VMs” [0 o oo o o o

N>




In the Beginning...

VMs” [0 o oo o o o
. .




In the Beginning...

“Tinyfied
VMs”

containers




Virt. Technology Benchmarking

e Metrics:

— VM Image and memory consumption
— VM creation time

— Delay

— Throughput



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time
— Delay
— Throughput

higher lower
overhead overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time
— Delay
— Throughput

o lower
overhead

higher
overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time
— Delay
— Throughput

lower
overhead

higher
overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time
— Delay
— Throughput

Q® ) \
> N S
L O ‘0
° «¥ B2
higher &,b(\ . (\* 0(\\ lower
overhead c|, T\ I overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time

— Delay
— Throughput
64 QQ N &
N O ) .Qz
P & ¢ @
hi N $ N v
gher «? & 0@ o(\ lower

overhead c|, T I |(J overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time
— Delay
— Throughput

O
@
64 49 N &
N O ) . Q@
P & ¢ @
hi ¥ L ¥ v
gher x? & 0@ o(\ lower
overhead ci’ ?\ i i(J overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time

— Delay
— Throughput
S & N O
> 3 S &
N O ) .Qz
P & " &
hi ¥ L ¥ &
gher «? & QO lower
overhead S A

ro |(J° overhead



Virt. Technology Benchmarking

* Metrics:
— VM Image and memory consumption
— VM creation time

— Delay
— Throughput
@ (]
64 A@ {9 \o
{ ' < Q@
P & N &
high N $ & A
igher £ & N ower
overhead S A

(Jo i)o overhead



Virtualization Technology
Benchmarking

* Metrics:
— VM image and memory consumption: Is, top, x|
— VM creation time: SYN flood + RST detection
— Throughput: iperf, guest to host (TCP traffic)
— RTT: ping flood

e VVM-based tests run on both Xen and KVM

 Hardware: x86_64 server with an Intel Xeon E5-1630
v3 3.7GHz CPU (4 cores), 32GB RAM.



Virtualization Technologies

“Standard” VM

— Standard Debian-based Linux VM
“Tinyfied” VM

— Tinyx, based on Linux kernel/busybox
Unikernel

— On Xen: MiniOS + miniperf

— On KVM: OSv + iperf

Containers

— Docker



Virtualization Technologies

“Standard” VM
— Standard Debian-based Linux VM

“Tinyfied” VM

— Tinyx, based on Linux kernel/busybox

Unikernel

— On Xen: MiniOS + miniperf
— On KVM: OSv + iperf
Containers

— Docker



Standard VM: Application on Top of Distro

User Application

34 Party Applications

Libraries

Services

Kernel




Most of the VM not Used...

memcached

ext4 netfront

blkfront

User Application

34 Party Applications

Libraries

Services

Kernel



Tinyx: Keep Only What’s Needed

memcached 3"d Party Applications

Libraries

Services

ext4 netfront
blkfront Kernel




Tinyx: Taylor-made Distro

memcached

bash

netfront

blkfront
ext4

User Application

3rd Party Applications

Libraries

Services

Kernel




Tinyx: Taylor-made Distro

—l |

006

# ps aux
USER
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
www-data
www-data
www-data
www-data
root
root
root

O~NOWULHE WN =

LU UELEDLELEL,WWWWNNNNR R e e e e e
NOWONOUVWONOUWNFEFOOUONOUAE WNREOW

3
|

TIME
0:

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
B
0:
0:
0:
0:
0:
R
0:
0:
0:
0:
0:
0:
e
0:
0:
0:
0:
R
0:

root@ucomputeré: ~

COMMAND

init

[kthreadd]
[ksoftirqd/0]
[kworker/0:0]
[kworker/0:0H]
[kworker/u2:0]
[rcu_sched]

[rcu bh]
[migration/0@]
[watchdog/0]
[khelper]

[kdevtmpTfs]
[xenwatch]

[xenbus]

[khungtaskd]
[writeback]

[crypto]

[bioset]

[kblockd]
[edac-poller]
[kworker/0:1]
[kswapd@]

[fsnotify mark]
[khvcd]
[ipv6_addrconf]
[deferwq]
[kworker/u2:1]

nginx: master process /usr/sbin/nginx
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
/usr/sbin/dropbear -R
-sh

ps aux




Tinyx: Taylor-made Distro

—l |

A A
QO0C

# ps aux
1ISFR
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
www-data
www-data
www-data
www-data
root
root
root

O~NOWULHE WN =

LU UELEDLELEBLBWWWWNNNNRF R R e e e e e
NOWONOUWONOUMWNFEFOUOVWONOUAEWNREOO

3
|

TIME

(<]

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
B
0:
0:
0:
0:
0:
R
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
R
0:

root@ucomputeré: ~

COMMAND

init

[kthreadd]
[ksoftirqd/0]
[kworker/0:0]
[kworker/0:0H]
[kworker/u2:0]
[rcu_sched]

[rcu bh]
[migration/0@]
[watchdog/0]
[khelper]

[kdevtmpTfs]
[xenwatch]

[xenbus]

[khungtaskd]
[writeback]

[crypto]

[bioset]

[kblockd]
[edac-poller]
[kworker/0:1]
[kswapd@]

[fsnotify mark]
[khvcd]
[ipv6_addrconf]
[deferwq]
[kworker/u2:1]

nginx: master process /usr/sbin/nginx
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
/usr/sbin/dropbear -R
-sh

ps aux




Tinyx: Taylor-made Distro

—l |

A A
QO0C

# ps aux
USER
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
www-data
www-data
www-data
www-data
root
root
root

O~NOWULHE WN =

ETy
LU UELEDLELEEWWWWNNNNRP R R e e e e
Bl NOOWONODUULWOONOUVMWNFEFOOUONOOUEWNREOO

TIME
0:

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
B
0:
0:
0:
0:
0:
R
0:
0:
0:
0:
0:
[V
0:
0:
0:
0:
0:
R
0:

root@ucomputeré: ~

COMMAND

init

[kthreadd]
[ksoftirqd/0]
[kworker/0:0]
[kworker/0:0H]
[kworker/u2:0]
[rcu_sched]

[rcu bh]
[migration/0@]
[watchdog/0]
[khelper]

[kdevtmpTfs]
[xenwatch]

[xenbus]

[khungtaskd]
[writeback]

[crypto]

[bioset]

[kblockd]
[edac-poller]
[kworker/0:1]
[kswapd@]

[fsnotify mark]
[khvcd]
[ipv6_addrconf]
[deferwq]
[kworker/u2:1]

Ng1nxX: master process /uUsr/sbin/nginx
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
/usr/sbin/dropbear -R
-sh

ps aux




Tinyx: Taylor-made Distro

—l |

# ps aux
USER
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
www-data
www-data
www-data
www-data
root
root
root

O~NOWULHE WN =

T VU DD DD LEWWWWNNNNKEERRRM K H H - -
LO WD ADNUOAODNWUN RO ODRANN D WN O O

#:
|

TIME
0:

0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
0:
B
0:
0:
0:
0:
0:
R
0:
0:
0:
0:
0:
[V
0:
0:
0:
0:
0:
R
0:

A S ® root@ucomputers: ~

COMMAND

init
[kthreadd]
[ksoftirqd/0]
[kworker/0:0]
[kworker/0:0H]
[kworker/u2:0]
[rcu_sched]
[rcu bh]
[migration/0@]
[watchdog/0]
[khelper]
[kdevtmpTfs]
[xenwatch]
[xenbus]
[khungtaskd]
[writeback]
[crypto]
[bioset]
[kblockd]
[edac-poller]
[kworker/0:1]
[kswapd@]
[fsnotify mark]
[khvcd]
[ipv6_addrconf]
[deferwq]
[kworker/u2:1]

J NgLnX: master process /jusr/soin/nginx

nginx:
nginx:
nginx:
nginx:

worker process
worker process
worker process
worker process

/usr/sbin/dropbear -R

-sh

ps aux

| Keep only the
necessary bits
and pieces

® Specialized
kernel build
containing only
the necessary
modules

® Root filesystem
populated with
only necessary
services, libraries
and 3 party
applications



Virtualization Technologies

“Standard” VM

— Standard Debian-based Linux VM
“Tinyfied” VM

— Tinyx, based on Linux kernel/busybox
Unikernel

— On Xen: MiniOS + miniperf

— On KVM: OSv + iperf

Containers

— Docker



Virtualization Technologies

“Standard” VM
— Standard Debian-based Linux VM

“Tinyfied” VM

— Tinyx, based on Linux kernel/busybox

Unikernel
— On Xen: MiniOS + miniperf
— On KVM: OSv + iperf

Containers
— Docker



What’s a Unikernel?

e Specialized VM: single
application +
minimalistic OS

* Single address space,

co-operative scheduler
so low overheads



What’'s a Unikernel?

* Specialized VM: single
application +
minimalistic OS

* Single address space,

co-operative scheduler
so low overheads

USER SPACE

KERNEL SPACE

driver?2

—
M~
(0]
>
- -
H
e

GENERAL-PURPOSE
OPERATING SYSTEM
(e.g., Linux, FreeBSD)



What’'s a Unikernel?

* Specialized VM: single
application +
minimalistic OS

* Single address space,

co-operative scheduler
so low overheads

USER SPACE

KERNEL SPACE

driver?2

GENERAL-PURPOSE
OPERATING SYSTEM
(e.g., Linux, FreeBSD)

MINIMALISTIC
OPERATING SYSTEM
(e.g., MiniOS, OSv)

I0VdS
$S34AAv I1ONIS



Unikernels for Benchmarking

apps

guest
OS

On Xen




Unikernels for Benchmarking

apps iperf

guest > mini
OS OS

On Xen




Unikernels for Benchmarking

apps iperf

c

V

X Joest | > | m
OS OS

o
X X
apps

>

4 guest

c OS

o
KVM




Unikernels for Benchmarking

apps iperf
c
)
X Joest | > | m
C OS oS
@)

X X

apps iperf
>
4 guest OSv
c OS
@)

KVM KVM




Nota Bene...

* Our unikernel numbers include optimizations
to the underlying virtualization platforms
(Xen, KVM)

— Toolstacks

— Back-end stores
— Hotplug scripts
— Network drivers (on Xen Tx)

 No time to go over these...



RESULTS



Image Size, Memory Usage (log scale)

1000
913 913  img size
“mem usage
100 -
12
2
o
=
10 -
1 - | | | |
((\.
S
S




10000

[EEY
o
o
o

100

Boot Time (ms)

[ERY
o

Boot Times (log scale)




RTT

(sw) L1Y



Throughput

T
“ Rx

o o o - o
O LN < o N

(s/a9) indys3noayy

10 -
0



Conclusions

* Common lore: VMs provide good isolation but
are heavyweight
— Results with standard VMs confirm this

* Containers provide lighter-weight
virtualization

— But tinyfied VMs and especially unikernels yield
comparable performance



Conclusions

* Common lore: VMs provide good isolation but
are heavyweight
— Results with standard VMs confirm this

* Containers provide lighter-weight
virtualization
— But tinyfied VMs and especially unikernels yield

comparable performance E
OO
[ [

N



Potential Contributions to
draft-natarajan-nfvrg-containers-for-nfv-01

2.1.1 Challenges
- VNF provisioning time
- Runtime performance (throughput, scaling up/down)

3. Benefits of Containers
- Service agility vs VMs
- Containers have better runtime performance
- Auto-scaling of VNFs
- Cross-VNF compatibility: container unikernel/minimalistic distro
- Overall performance: VMs -25% throughput vs containers

5. Conclusion
- Containers have significant advantages vs hypervisor-based solutions



