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Virtualization Technology
Benchmarking

* Metrics:
— VM image and memory consumption: Is, top, x|
— VM creation time: SYN flood + RST detection
— Throughput: iperf, guest to host (TCP traffic)
— RTT: ping flood

e VVM-based tests run on both Xen and KVM

 Hardware: x86_64 server with an Intel Xeon E5-1630
v3 3.7GHz CPU (4 cores), 32GB RAM.
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“Standard” VM

— Standard Debian-based Linux VM
“Tinyfied” VM

— Tinyx, based on Linux kernel/busybox
Unikernel

— On Xen: MiniOS + miniperf

— On KVM: OSv + iperf

Containers

— Docker
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Standard VM: Application on Top of Distro
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Tinyx: Taylor-made Distro
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Tinyx: Taylor-made Distro
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root@ucomputeré: ~

COMMAND

init

[kthreadd]
[ksoftirqd/0]
[kworker/0:0]
[kworker/0:0H]
[kworker/u2:0]
[rcu_sched]

[rcu bh]
[migration/0@]
[watchdog/0]
[khelper]

[kdevtmpTfs]
[xenwatch]

[xenbus]

[khungtaskd]
[writeback]

[crypto]

[bioset]

[kblockd]
[edac-poller]
[kworker/0:1]
[kswapd@]

[fsnotify mark]
[khvcd]
[ipv6_addrconf]
[deferwq]
[kworker/u2:1]

nginx: master process /usr/sbin/nginx
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
/usr/sbin/dropbear -R
-sh

ps aux
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| Keep only the
necessary bits
and pieces

® Specialized
kernel build
containing only
the necessary
modules

® Root filesystem
populated with
only necessary
services, libraries
and 3 party
applications
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Nota Bene...

* Our unikernel numbers include optimizations
to the underlying virtualization platforms
(Xen, KVM)

— Toolstacks

— Back-end stores
— Hotplug scripts
— Network drivers (on Xen Tx)

 No time to go over these...
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Conclusions

* Common lore: VMs provide good isolation but
are heavyweight
— Results with standard VMs confirm this

* Containers provide lighter-weight
virtualization

— But tinyfied VMs and especially unikernels yield
comparable performance
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Potential Contributions to
draft-natarajan-nfvrg-containers-for-nfv-01

2.1.1 Challenges
- VNF provisioning time
- Runtime performance (throughput, scaling up/down)

3. Benefits of Containers
- Service agility vs VMs
- Containers have better runtime performance
- Auto-scaling of VNFs
- Cross-VNF compatibility: container unikernel/minimalistic distro
- Overall performance: VMs -25% throughput vs containers

5. Conclusion
- Containers have significant advantages vs hypervisor-based solutions



