# VMs, Unikernels and Containers: Experiences on the Performance of Virtualization Technologies

Felipe Huici, Filipe Manco, Jose Mendes, Simon Kuenzer NEC Europe Ltd. (Heidelberg)





















containers



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput

#### Metrics:

- VM Image and memory consumption
- VM creation time
- Delay
- Throughput

higher overhead

lower overhead

#### Metrics:

- VM Image and memory consumption
- VM creation time
- Delay
- Throughput

higher overhead Standard VN

lower overhead

- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



- VM Image and memory consumption
- VM creation time
- Delay
- Throughput



## Virtualization Technology Benchmarking

- Metrics:
  - VM image and memory consumption: ls, top, xl
  - VM creation time: SYN flood + RST detection
  - Throughput: iperf, guest to host (TCP traffic)
  - RTT: ping flood
- VM-based tests run on both Xen and KVM
- Hardware: x86\_64 server with an Intel Xeon E5-1630 v3 3.7GHz CPU (4 cores), 32GB RAM.

#### Virtualization Technologies

- "Standard" VM
  - Standard Debian-based Linux VM
- "Tinyfied" VM
  - Tinyx, based on Linux kernel/busybox
- Unikernel
  - On Xen: MiniOS + miniperf
  - On KVM: OSv + iperf
- Containers
  - Docker

#### Virtualization Technologies

- "Standard" VM
  - Standard Debian-based Linux VM
- "Tinyfied" VM
  - Tinyx, based on Linux kernel/busybox
- Unikernel
  - On Xen: MiniOS + miniperf
  - On KVM: OSv + iperf
- Containers
  - Docker

#### Standard VM: Application on Top of Distro



#### Most of the VM not Used...



#### Tinyx: Keep Only What's Needed





**User Application** 

**3rd Party Applications** 

**Libraries** 

**Services** 

Kernel



```
root@ucomputer6: ~
# ps aux
             TIME
    USER
                    COMMAND
  1 root
               0:02 init
               0:00 [kthreadd]
  2 root
               0:00 [ksoftirqd/0]
  3 root
               0:00 [kworker/0:0]
  4 root
  5 root
               0:00 [kworker/0:0H]
               0:00 [kworker/u2:0]
  6 root
  7 root
               0:00 [rcu sched]
               0:00 [rcu bh]
  8 root
               0:00 [migration/0]
  9 root
               0:00 [watchdog/0]
 10 root
 11 root
               0:00 [khelper]
               0:00 [kdevtmpfs]
 12 root
               0:00 [xenwatch]
 13 root
 14 root
               0:00 [xenbus]
 15 root
               0:00 [khungtaskd]
 16 root
               0:00 [writeback]
               0:00 [crypto]
 17 root
 18 root
               0:00 [bioset]
 19 root
               0:00 [kblockd]
 20 root
               0:00 [edac-poller]
               0:00 [kworker/0:1]
 21 root
 22 root
               0:00 [kswapd0]
               0:00 [fsnotify mark]
 23 root
 35 root
               0:00 [khvcd]
               0:00 [ipv6 addrconf]
 36 root
               0:00 [deferwa]
 37 root
               0:00 [kworker/u2:1]
 38 root
               0:00 nginx: master process /usr/sbin/nginx
 43 root
               0:00 nginx: worker process
 45 www-data
               0:00 nginx: worker process
 46 www-data
               0:00 nginx: worker process
 47 www-data
 48 www-data
               0:00 nginx: worker process
 53 root
               0:00 /usr/sbin/dropbear -R
               0:00 -sh
 56 root
 57 root
               0:00 ps aux
```



```
root@ucomputer6: ~
 # ps aux
PID USER
               TIME COMMAND
    1 root
                 0:02 init
                 0:00 [kthreadd]
   2 root
                 0:00 [ksoftirqd/0]
    3 root
                 0:00 [kworker/0:0]
    4 root
    5 root
                 0:00 [kworker/0:0H]
                 0:00 [kworker/u2:0]
    6 root
   7 root
                 0:00 [rcu sched]
   8 root
                 0:00 [rcu bh]
                 0:00 [migration/0]
   9 root
  10 root
                 0:00 [watchdog/0]
  11 root
                 0:00 [khelper]
                 0:00 [kdevtmpfs]
  12 root
                 0:00 [xenwatch]
  13 root
  14 root
                 0:00 [xenbus]
  15 root
                 0:00 [khungtaskd]
  16 root
                 0:00 [writeback]
                 0:00 [crypto]
  17 root
  18 root
                 0:00 [bioset]
  19 root
                 0:00 [kblockd]
  20 root
                 0:00 [edac-poller]
  21 root
                 0:00 [kworker/0:1]
  22 root
                 0:00 [kswapd0]
                 0:00 [fsnotify mark]
  23 root
  35 root
                 0:00 [khvcd]
                 0:00 [ipv6 addrconf]
  36 root
  37 root
                 0:00 [deferwa]
                 0:00 [kworker/u2:1]
  38 root
  43 root
                 0:00 nginx: master process /usr/sbin/nginx
  45 www-data
                 0:00 nginx: worker process
  46 www-data
                 0:00 nginx: worker process
                 0:00 nginx: worker process
  47 www-data
  48 www-data
                 0:00 nginx: worker process
  53 root
                 0:00 /usr/sbin/dropbear -R
                 0:00 -sh
  56 root
  57 root
                 0:00 ps aux
```



```
root@ucomputer6: ~
# ps aux
    USER
             TIME
                    COMMAND
  1 root
               0:02 init
               0:00 [kthreadd]
  2 root
               0:00 [ksoftirqd/0]
  3 root
  4 root
               0:00 [kworker/0:0]
  5 root
               0:00 [kworker/0:0H]
               0:00 [kworker/u2:0]
  6 root
  7 root
               0:00 [rcu sched]
               0:00 [rcu bh]
  8 root
               0:00 [migration/0]
  9 root
 10 root
               0:00 [watchdog/0]
 11 root
               0:00 [khelper]
               0:00 [kdevtmpfs]
 12 root
               0:00 [xenwatch]
 13 root
 14 root
               0:00 [xenbus]
 15 root
               0:00 [khungtaskd]
 16 root
               0:00 [writeback]
               0:00 [crypto]
 17 root
 18 root
               0:00 [bioset]
 19 root
               0:00 [kblockd]
 20 root
               0:00 [edac-poller]
               0:00 [kworker/0:1]
 21 root
 22 root
               0:00 [kswapd0]
               0:00 [fsnotify mark]
 23 root
 35 root
               0:00 [khvcd]
               0:00 [ipv6 addrconf]
 36 root
               0:00 [deferwq]
 37 root
               0:00 [kworker/u2:1]
 38 root
               0:00 nginx: master process /usr/sbin/nginx
 43 root
 45 www-data
               0:00 nginx: worker process
               0:00 nginx: worker process
 46 www-data
 47 www-data
               0:00 nginx: worker process
 48 www-data
               0:00 nginx: worker process
               0:00 /usr/sbin/dropbear -R
 53 root
               0:00 -sh
 56 root
 57 root
               0:00 ps aux
```



```
root@ucomputer6: ~
# ps aux
    USER
             TIME
                     COMMAND
               0:02 init
  1 root
               0:00 [kthreadd]
  2 root
               0:00 [ksoftirgd/0]
  3 root
               0:00 [kworker/0:0]
  4 root
  5 root
               0:00 [kworker/0:0H]
  6 root
               0:00 [kworker/u2:0]
  7 root
               0:00 [rcu sched]
  8 root
               0:00 [rcu bh]
  9 root
               0:00 [migration/0]
               0:00 [watchdog/0]
 10 root
 11 root
               0:00 [khelper]
 12 root
               0:00 [kdevtmpfs]
 13 root
               0:00 [xenwatch]
 14 root
               0:00 [xenbus]
 15 root
               0:00 [khungtaskd]
 16 root
               0:00 [writeback]
 17 root
               0:00 [crypto]
 18 root
               0:00 [bioset]
 19 root
               0:00 [kblockd]
 20 root
               0:00 [edac-poller]
 21 root
               0:00 [kworker/0:1]
 22 root
               0:00 [kswapd0]
 23 root
               0:00 [fsnotify mark]
 35 root
               0:00 [khvcd]
               0:00 [ipv6 addrconf]
 36 root
 37 root
               0:00 [deferwa]
 38 root
               0:00 [kworker/u2:1]
               0:00 nginx: master process /usr/sbin/nginx
 43 root
               0:00 nginx: worker process
 45 www-data
 46 www-data
               0:00 nginx: worker process
 47 www-data
               0:00 nginx: worker process
 48 www-data
               0:00 nginx: worker process
 53 root
               0:00 /usr/sbin/dropbear -R
               0:00 -sh
 56 root
 57 root
               0:00 ps aux
```

- Keep only the necessary bits and pieces
  - Specialized kernel build containing only the necessary modules
  - Root filesystem populated with only necessary services, libraries and 3<sup>rd</sup> party applications

#### Virtualization Technologies

- "Standard" VM
  - Standard Debian-based Linux VM
- "Tinyfied" VM
  - Tinyx, based on Linux kernel/busybox
- Unikernel
  - On Xen: MiniOS + miniperf
  - On KVM: OSv + iperf
- Containers
  - Docker

#### Virtualization Technologies

- "Standard" VM
  - Standard Debian-based Linux VM
- "Tinyfied" VM
  - Tinyx, based on Linux kernel/busybox
- Unikernel
  - On Xen: MiniOS + miniperf
  - On KVM: OSv + iperf
- Containers
  - Docker

#### What's a Unikernel?

- Specialized VM: single application + minimalistic OS
- Single address space, co-operative scheduler so *low* overheads

#### What's a Unikernel?

- Specialized VM: single application + minimalistic OS
- Single address space, co-operative scheduler so low overheads



#### What's a Unikernel?

- Specialized VM: single application + minimalistic OS
- Single address space, co-operative scheduler so low overheads



(e.g., Linux, FreeBSD)



MINIMALISTIC **OPERATING SYSTEM** (e.g., MiniOS, OSv)

On Xen









#### Nota Bene...

- Our unikernel numbers include optimizations to the underlying virtualization platforms (Xen, KVM)
  - Toolstacks
  - Back-end stores
  - Hotplug scripts
  - Network drivers (on Xen Tx)
- No time to go over these...

#### **RESULTS**

#### Image Size, Memory Usage (log scale)



#### Boot Times (log scale)



#### RTT



#### Throughput



#### Conclusions

- Common lore: VMs provide good isolation but are heavyweight
  - Results with standard VMs confirm this
- Containers provide lighter-weight virtualization
  - But tinyfied VMs and especially unikernels yield comparable performance

#### Conclusions

- Common lore: VMs provide good isolation but are heavyweight
  - Results with standard VMs confirm this
- Containers provide lighter-weight virtualization
  - But tinyfied VMs and especially unikernels yield comparable performance

## Potential Contributions to draft-natarajan-nfvrg-containers-for-nfv-01

#### 2.1.1 Challenges

- VNF provisioning time
- Runtime performance (throughput, scaling up/down)

#### 3. Benefits of Containers

- Service agility vs VMs
- Containers have better runtime performance
- Auto-scaling of VNFs
- Cross-VNF compatibility: container unikernel/minimalistic distro
- Overall performance: VMs -25% throughput vs containers

#### 5. Conclusion

- Containers have significant advantages vs hypervisor-based solutions