Application of Machine Learning to Flow-based Network Monitoring

Josep Sanjuas – jsanjuas@polygraph.io
Network Monitoring: Approaches

• Deep Packet Inspection
 – Dedicated hardware to intercept & scan packets
 – High cost, high visibility

• Flow-based monitoring
 – Data collection performed by routers
 – Lower cost, but less information available
Cloud-based Flow Monitoring

Customer A

Customer B

Customer C

ISP

Access network
distr./core network
Flow-level data

cloud

Flow-level data

POLYGRAPH.io

POLYGRAPH.io
Flow-based Monitoring Protocols

- **sFlow**
 - Samples individual packets, sends them to a monitor
- **NetFlow (Cisco), IPFIX (IETF standard)**
 - Send flow aggregates to software collector
 - Support for packet sampling to reduce overhead

 `<src_ip, dst_ip, sport, dport, proto: ts₀, ts₉, #bytes, #pkts>`
Requirement: Application Identification

- Packet payloads are not available
- How to identify applications w/o payloads?
 - e.g., identify Netflix, BitTorrent, Skype..
- Naïve approach: port-based classification
 - misses apps using dynamic ports
 - port 80 and 443 carry wildly different apps
- Solution: machine learning!
Deployment Architecture

NetFlow

Packet trace

Classification process

Cloud

Training process
High-level Approach

1. Continuous training process:
 - Collect traffic (with payload), run through DPI
 - Build “NetFlow-derived features -> app” dataset
 - Machine learning to build a classifier

2. Classification process:
 - Collect NetFlow and extract features,
 - Run through classifier
ML-based Traffic Classification

Packet Stream

Generation of NetFlow

Feature Extraction

DPI-based application labeling

DPI-labeled NetFlow

Training

NetFlow

Feature Extraction

clssfr

ML-labeled NetFlow
Self-Assessment of Accuracy

Packet Stream

Generation of NetFlow

Feature Extraction

DPI-based application labeling

DPI-labeled NetFlow

NetFlow labeled both by DPI and ML

Self-assessment of accuracy
Results

Avg. accuracy = 96.76 % -- 5 retrainings -- 94% threshold
Avg. accuracy = 97.5 % -- 15 retrainings -- 96% threshold
Avg. accuracy = 98.26 % -- 108 retrainings -- 98% threshold
Summary

• Environment: flow-based network monitoring in the cloud
• Objective: per-application traffic classification
• Challenge: packet contents not available
• Solution:
 – collect packet payloads, use ML algorithms to generate a classifier based on NetFlow info
 – Use the model to classify NetFlow traffic
Future Work

• Enhance accuracy for web apps (& CDN traffic)
• Automated generation of traffic datasets for popular applications
• Combining ground truths / classification models from several vantage points
Network Polygraph

Talaia Networks, S.L.
K2M – Parc UPC Campus Nord
Jordi Girona, 1-3
Barcelona (08034)
Spain

Telephone: +34 93 405 45 87
contact@polygraph.io
https://polygraph.io