NV03 OAM DT Status report
Reported by Erik Nordmark

• Started by the WG chairs at IETF94

• Invited members (in alphabetical order):
 – Ignas Bagdonas
 – Matthew Bocci
 – Philips Chenhao
 – Saumya Dikshit
 – Diego Garcia del Rio
 – Anoop Ghanwani
 – Pradeep Jain
 – Deepak Kumar (lead)
 – Erik Nordmark
 – Reshad Rahman
 – Benson Schliesser
 – Ravi Shekhar
 – Tina Tsou
 – Li Yizhou

• Scheduled weekly phone calls
NVO3 DT Activity

• Deployment Scenario and Use Cases
• Data Packet Encapsulation Scenarios
• Different OAM Proposal(s) Header Format
• Use case of Reserved Extra OAM bit (Marking Bit)
• Questions for Working Group (Overlay Data plane Encapsulation)
Deployment Scenarios and Use cases

Data Center (Including Call Flows and Packet Encapsulation)

Leaf-&-Spine (3-tier fat tree) – Massively Scalable Data Center (MSDC): Leaves are L2/L3 NVE Edge with SVI configuration for routing.

Two Tier Leaf-&-Spine Data Center Architecture

Leaf-&-Spine (3-tier fat tree) – Massively Scalable Data Center (MSDC): Leaves are L2 NVE Edge without any SVI configuration for routing. Super Spines are Default Gateway

Intra-POD connect (L2) with and without Redundancy Flows

Inter-POD connect (L2) with and without Redundancy flows

Intra-DC L3 connect (same DC-core network)

Inter-DC L3 connect over DCI with NVO3 encapsulation supported

L2 or L3 connects over DCI (Wan gateway) with non-NVO3 encapsulation supported in remote DC-core

SDN based DC deployment topologies

Service Provider

NVO3 tunnel as a service chaining building component

Overlay tunnel as a service handoff mechanism

Overlay tunnel with same functionality as L3VPN

Redundancy active-active (all links are used, all links are available) as compared to active-standby

Interworking:

- NVO3 – IP/MPLS – TRILL (Define Interworking) – It goes over existing transport
- NVO3 – Pseudowire – MPLS – NVO3 (Interworking)
- NVO3 – LISP – NVO3
Datacenter Layout

Encapsulation end-points (NVE)

Intra-DC: ToR/Leaf – ToR/Leaf
ToR/Leaf – WAN-gateway
ToR/Leaf – DCI gateway

Inter-DC: ToR – ToR
ToR/vPE – DC Edge Router (non vxlan)

North/South Communication (Internet)
Generic Queries Across All Deployments

Generic Open Items and Queries

- **Knowledge about Underlay Capabilities or agnostic to same?** Open item for inter-op with other layer OAM (application level and underlay)

- **Tunnel Depth in the core. Or should it be generic and unaffected**

- **Scope of Administrative Domains?**

- **Congruent support across all NVO3 encapsulation to carry and identify OAM Common Header Encapsulation?**

- **Operational Mechanics shouldn't change based on overlay Mechanism**
 - Generic Requirements and verify whether they can be covered by all encapsulation
 - pro-active BFD use case from Customer Edge Point
 - Scenario to detect high loss link due to optics issues

- **SFC OAM <-> Overlay OAM Interworking**
M bit – M for marking

- O bit – OAM control message
- M bit - Marking bit is normally set in the real user traffic. Forwarding should be as usual. Affects counters.
OAM Functionality

- Continuity Check
- Continuity Verification/Reachability Verification
- Trace/Path Verification
 - Underlay visibility is important (Can’t just rely on TTL expiry for all scenarios)
 - Telemetry with Trace/Path
- ECMP Verification
- Path MTU
- Delay/Loss
 - Delay and Loss using markers
- Logging/Tracing – (Which Events that need to be logged, @ NVE and NVA)
- Control Plane Verification (EVPN Scenario)
- Multicast Tracing
- Interworking
- Telemetry
OAM Headers

• Need OAM identification bits and few extra reserved bit for Marking and Performance in Overlay Encapsulation
• Need OAM Common Header format if possible
• Re-use Existing functionality if possible
 • Optional “O” bit inference for underlay
 – Fragmentation
 – Provide architecture reference
 – Difficult to define protocol procedures
Question For WG

- Do we want consistent definitions/semantics across the different encapsulations?
 - Encoding can differ to fit the different encapsulation headers

- Need for OAM payload type for out-of-band OAM? Or just OAM bit?
- Does C-bit in GUE mean the same as O-bit in other encapsulations?
- Can intermediate (underlay) nodes look at OAM packets and participate? (Geneve doesn’t allow this)
- Underlay error reports? (All encapsulations are silent on this)
- Able to set OAM bit on normal payload for in-band OAM? (GUE makes it exclusive)
- Are packets with OAM bit set always dropped by destination NVE?
- No impact on ECMP/LAG hashing due to OAM bit (Explicit in Geneve)
- Define a common M-bit?
 - Don’t want different definition of marking bits in different encapsulations.
- Need the same definitions of the above for all the encapsulations?
Next Steps

• Working more closely with RTG area Overlay OAM team
• Look more at BFD
• Document for OAM Functionality, Encapsulation, Procedure for Geneve, GUE, and GPE functionality.
Backup Slides
Packet Encapsulation Flow – inter subnet

- Leaf has both L2/L3 routes
- Packet Destined to VM2 on L1, goes through L3 translation to find right overlay VNI for multi-tenancy
- Overlay tunnel generated towards NVE10, packet gets encapsulated with Outer IP, udp header, overlay header, and customer data.
Packet Encapsulation Flow – Simple Tunnel

- Tor is L2 NVE Interface with no SVI
- Spine is Underlay Switch with L3 ECMP
- Super Spine has NVE Interface and also SVI for routing
- Scenario 2 - Intra-subnet Routing between VM across POD (No physical connectivity through spine as it's across POD)

Look up VM2 and as it's intra-subnet, Vtep Tunnel to NVE10

L3 Underlay Forwarding

Packet Decapsulate as it matches DST IP = NVE10

Outer MAC address
Outer IP Header (NVE10)
Overlay Header
Inner MAC (VM2_MAC)
Customer Data

Inner customer data is lookup and bridged towards VM2 interface
Packet Encapsulation – (Tunnel Stitching Scenario)

- The L3 connect will traverse an L3-gateway for NVO encapsulation to perform the routing. The DC-Super Spine (WAN gateway) also acts as NVO L3 gateway with the same POD. Effectively 4-MEPs in this Path
- ToR Switches: NVO L2-gateway
- Super-Spine: NVO L3-gateway
- DCI-gateway: NVO tunnel End Points Within DC.
OAM Common Header in draft-jain-nvo3-overlay-oam

```
+-----------------+--------------+-----------------+-----------------+-------+
| Vers. | Msg Typ | Reply mode | Return Code | Return Subcode |
+-----------------+--------------+-----------------+-----------------+-------+
| Originator Handle |
+-----------------+--------------+-----------------+-----------------+-------+
| Sequence Number |
+-----------------+--------------+-----------------+-----------------+-------+
| TimeStamp Sent (seconds) |
+-----------------+--------------+-----------------+-----------------+-------+
| TimeStamp Sent (microseconds) |
+-----------------+--------------+-----------------+-----------------+-------+
| TimeStamp Received (seconds) |
+-----------------+--------------+-----------------+-----------------+-------+
| TimeStamp Received (microseconds) |
+-----------------+--------------+-----------------+-----------------+-------+
| TLVs ... |
+-----------------+--------------+-----------------+-----------------+-------+

Generic Overlay OAM Packet
```
Other OAM Common Header for reference

- **Trill (RFC 7455)**

- **MPLS (LSP ping RFC 4379)** – use UDP
Other OAM Common Header for reference

- draft pang (out of band solution)