PERC Double
draft-jennings-perc-double

Cullen Jennings <fluffy@cisco.com>
April 4, 2016

Problem

* Some things we don’t want the
middle to see (like the media
oD content)

* Some things we want the MDD to
E2F be able to change

* Any fields the MDD changes need
n to be preserved somehow so the
receiver can authenticate the
packet E2E

The Double Solution

E2E

Double uses normal SRTP twice — once
end to end (E2E) and once between
clients and MDD (HBH).

For any RTP header field that the MDD
changes, the MDD includes the original
value in an RTP header extension so
the receiver can authenticate the
original value

Uses all our existing SRTP security

From SRTP point of view, just looks like
new transform that is defined in terms
of two other SRTP transforms

Handling things the MDD changes

* The MDD can change the Payload Type, RTP Sequence
Number, or both
— Much debate went into figuring out that is all we need
(along with extensions).

 Draft defines three new RTP Header Extensions (via OHB)
corresponding to above that MDD inserts to carry the changed
information

e X bit derived from if there was header extensions before the
OHB (Note mistake in draft of x bit)

Pro’s [Con’s

Very simple to specify and implement because it’s basically just
calling something we already specified and implemented

Has nearly identical security properties to what we already

spent years debating and approving

— draft-mcgrew-srtp-aes-gcm-00 published Oct 2008 took 8
years to RFC

Leaves defining things that are useful for normal “single”
encryption to the responsible WG but can use them

Modular and fits into existing SRTP extension mechanisms

Double Packet Processing

Endpoint
A

r l 1

1
RTP Header RTP Header RTP Header
\ OHB Header e sy
\\‘\‘Qv
NN
RN

BN
‘\:\\\\\\\§

Endpoint

A

1

RTP Header

RTP Header

RTP Header RTP Header

RTP
Packet

N\

~

EKT Field (7) Decrypt
. using E2E
(1) Create an (2) Encrypt (3) Encrypt (4) Decrypt Key
RTP packet with E2E key with HBH key with HBH key (6) Decrypt
a.dd EKT for A (5) Add OHB using HBH
Field and encrypt Key and
with HBH key replace OHB

for B

Issue: Transform Algorithms

+ DOUBLE_AEAD AES 128 GCM_AEAD AES 128 GCM
+ DOUBLE_AEAD_AES 256 GCM_AEAD_AES 256 GCM
+ DOUBLE_AEAD_AES 128 GCM_NULL NULL
+ DOUBLE_AEAD_AES 256 GCM_NULL NULL

* Open Issue: Do We need the NULL crypto version of HBH ?

