SPOOFI - WIFI SPOOFING MADE EASY

MANUAL ENROLMENT VS AUTOMATIC LIES

RADEXT - IETF 95
PEAP - THE FORD PINTO OF EAP METHODS

WHY IS IT INSECURE?

- MSCHAPv2 is broken, must be wrapped in TLS
- TLS protects data only if peer is not evil
- Ensuring peer is not evil requires a trust relationship
- Trust relationship during bootstrap requires PKI savvy users
- Users are not PKI savvy.
IT’S NOT JUST PEAP

- Any insecure inner method cannot be made secure by using TLS

- Such as:
 - EAP-TTLS-PAP
 - EAP-TTLS-MSCHAPv2
 - EAP-TTLS-GTC
 - PEAP-GTC

- For OSX, IOS, and Windows > 8, it’s possible for the server to request TTLS-EAP-GTC or TTLS-PAP and to get the cleartext password

- Oops
Failure of the Duck Test

- The only method of identifying wireless network is SSID
 - which isn't really authentication
- The only method of authenticating the EAP server is via the presented certificate
 - fingerprint, CN and signing CA, etc.
- Everyone knows to click through these!
 - just get me online, don’t bother me with certificate warnings
- We can’t trust the users to do the right thing. Administrator intervention is needed.
iOS / OS X

- IOS/OSX supplicants prompt for User-Name/Password before negotiating the EAP method
- No option to select personal certificate
- No option to manually configure supplicant profiles
- Only CN of certificate shown in UI (can expand to see full details)
- Trivial to click past certificate verification dialogues, but user at least needs to be able to change trust preferences
- When TTLS is requested, supplicant will send EAP-Identity and trigger EAP negotiation, allowing negotiation of inner EAP-GTC
- Unless network/supplicant settings were defined by a profile, the users cached credentials will be re-used on networks with the same name, but presenting a different cert
Windows 10 suppliants prompt for User-Name/Password before negotiating the EAP method.

- Allows manual configuration of supplicant, but exceedingly well hidden.
- No way to see certificate CN or issuer, the only available detail is the fingerprint.
- When TTLS is requested, supplicant will perform EAP-TTLS-PAP by default. EAP won’t be negotiated unless explicitly configured.
LEVERAGING INSECURITIES

- You can actually generate a pretty convincing fake certificate on the fly by using public information provided on the corporate website (or corporate wifi)
- Supplicant sends EAP Identity of anonymous@example.com
- RADIUS server connects to https://example.com
- Clones fields from HTTPS certificate into a new RADIUS certificate
- Presents the new certificate to the user
 - All the fields are correct
 - New certificate is signed by Verisig
- User sees a “valid” certificate and clicks through
WHAT THIS MEANS

- Anyone capable of configuring an AP and a RADIUS server can steal User-Name and Password from pretty much all modern devices
 - … but only for manual enrolment in new SSIDs
 - This code exists, and works, today in FreeRADIUS
- SSID names can be spoofed, in order to get users to “sign up” again
 - EDUR0AM
 - UTF-8 SSIDs and IDN homograph attack
- The only work-around is to disable all manual intervention
 - And to rely on administrative configuration for WiFi security
DON’T ALLOW USERS TO DO ANYTHING

HOW TO FIX IT

- Enterprises, WiFi Roaming groups
 - Use only administrative configurations for EAP. Disallow manual configuration.
 - Use EAP-TLS instead of password-based methods
 - Consider deploying eduroam CAT, 802.1x-config.org, or similar.
 - Adopt HotSpot 2.0 R2. Register interest in OSU (Online Signup Server) certs provided by central authority (GÉANT/Jisc).

- OS/supplicant vendors
 - Remove users from configuration changes and PKI validity checks
 - Verify certificate consistency when re-using cached credentials for AD-Hoc 802.1X profiles.

- IETF/standards bodies