RMCAT Feedback Requirements

Based on slides from
Xiaoqing Zhu,
Stefan Holmer,
Ingemar Johansson, and
David Hayes

Feedback Requirements of NADA

- Information needed in NADA feedback:
 - Recommended rate adaptation mode (rmode)
 - Aggregated congestion signal (x_curr)
 - Recently measured receiving rate (r_recv)
- Recommended form of representation

Field	# of Bits	Unit	Range of Value			
rmode	1	N/A	{0, 1}			
x_curr	15	100us	0 – 32,767			
r_recv*	16	100bps	0 – 65,535			

^{*} Error in current draft: draft-ietf-rmcat-nada-02

NADA Recommended Feedback Interval

- Design tradeoff between protocol overhead and responsiveness in rate adaptation
- Range of feedback intervals:
 - Minimum at 20ms: ~ 8% overhead for feedback message size 200 bytes and flow rate @ 1Mbps
 - Maximum value depends on path propagation delay and steady-state flow rate; can typically stretch to 400ms
- Recommended feedback interval: 100ms

GCC – What we need

Start-up phase:

- Send time, arrival time and size of each packet to estimate bandwidth.
- Congestion controller knowledge about the sender's intent is useful (e.g., if packets are sent in a pattern on purpose, etc.).
 This is easier to achieve at the sender.

Congestion control phase:

- Ability to determine packet groups based on both send time and arrival time of packets.
- Send time, arrival time and size of each group to compute intergroup delay variations.
- Packet loss.
- One instance operates on all BUNDLEd streams.
 - Need to identify and compare packets from these streams.

GCC – Suggested feedback

- Per-packet feedback from receiver to sender:
 - Packet identifier (e.g., new sequence number or {ssrc, rtp seq num} tuple).
 - Packet send time.
 - Packet arrival time.
 - Packet size.
- More frequent is better.
 - Current choice is to send feedback every 50 ms.
 - Increasing to 100 ms would be possible, the cost would be delayed actuation, possibly leading to increased queuing.
 - Cost of high feedback frequency results in fewer ACKs per RTCP, leading to (assuming):
 - Reduced ability to compress the feedback.
 - More packet overhead per ACK (limited by RFC 5506).

SCReAM feedback format

- Required for SCReAM functionality:
 - Arrival timestamp : Arrival timestamp of highest received RTP sequence number
 - 32 bits, timestamp clock equal to RTP media timestamp clock
 - List of received RTP packets :
- Optional , can enhance QoE:
 - ECN counter : ECN-CE counter value
 - Source quench bit, used to force sender to reduce sending rate

SCReAM feedback format required, RFC3611 realization

- Required feedback can be implemented with RFC3611
 - Loss RLE report block
 - Packet Receipt Times block
- Feedback packet size : 44byte
 - assuming 4 RLE chunks
- Room for improvement
 - Fields are duplicated
 - Unnecessary headers

SCReAM feedback format

required, loss RLE report block, RFC3611

- Loss RLE report block spans from begin_seq to end_seg
- 4 chunks should be sufficient

0									1										2										3		
0 1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	
+-+	-+-	-+-	+-	+-	+-	+-	+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+
			=2												1					b.			16	eng	gtl	h.					
+-+	-+-	-+-	+	+-	+-	+-	+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+
											5	SSE	RC	of	Eε	sou	ırc	зe													-
·			+																												
			т	-	-	-	-	-	-			т-						т-											т-	-т-	•
				b	eg	in	<u></u> s	sec	1													eı	nd_	_86	ΡĒ						-
· +-+	_+-	-+-	+	- -	+-	+-	.		- + -	- + -	. 4 -	. + -	- + -	- + -	· -	. 4 -	- + -	. 4 -	- 4 -	-+-	- 4 -				- 4 -			- + -	. 4 -	. 4 -	. <u>.</u>
	•	•	•						•	•	•	•	•	•	:	•	•	•	•	•	•					•	•	•	•	•	÷
				C.	hu	nk	: 1	-														CI	nur	ıĸ	2						1
+-+	-+-	-+-	+	+	+-	+-	+-	+-	-+-	-+-	-+-	. + -	-+-	-+-	-+-	-+-	-+-	. + -	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	. + -	-+-	+
:															• • •	•															:
+-+	-+-	-+-	+-	+-	+-	+-	+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+
1				α'	h	ınk		٠	1						1							al	hui	- l-	n						1
I				C.	ıιu	LIK	. 1		_						1							CI	ııuı	ııĸ	11						ı
+-+	-+-	-+-	+-	+-	+-	+-	+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	-+-	+-	-+-	+

SCReAM feedback format

required, Packet receipt times block, RFC3611

- end_seq = (begin_seq+1) % 65536
- Receipt time stamp clock according to RFC3611 = Media RTP timestamp

SCReAM feedback format compressed

 A compressed feedback packet with the same amount of information requires 32 bytes (assuming 4 RLE chunks)

0 1	2 3							
$0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 0\ 1\ 2\ 3\ 4\ 5$	6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1							
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	.+-+-+-+-+-+-+-+-+-+-+-+-+							
V=2 P reserved PT=XR=207	length							
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	.+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-							
	SSRC							
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-							
BT=X rsvd. T=0	block length							
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-							
SSRC of	source							
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	+-							
begin_seq end_seq								
·								
chunk 1	chunk 2							
	-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+							
:								
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	.+-+-+-+-+-+-+-+-+-							
chunk n-1	chunk n							
Receipt time of packet begin_seq								
1 Receipt time of packet i	·+-+-+-+-+-+-+-+-+-+-+-+-+-+-							
	·							

SCReAM – False Loss detection

- Loss RLE block may not cover all received packets since last received feedback
 - Too low feedback rate
 - Feedback is lost
- Can lead to false loss detection
 - Should be a rare case but cannot be ignored
- Solution: Regular compound RTCP packets are expected to be transmitted at regular intervals (500ms), interval given by RFC4585 trr-int
 - cumulative number of packets lost : Can be used to undo a false loss detection

SCReAM – ECN and source quench Optional

- ECN feedback can be implemented with RFC6679 XR report block
 - Adds 24 bytes to RTCP feedback packet
- Source quench: No known existing RTCP feedback
 - RTP packets can be signaled as lost in Loss RLE report block, will give a behavior similar to the desired source quench behavior
 - Possible unwanted side effects
 - Sender can base RTP retransmission on Loss RLE report block
 - Future ConEx functionality becomes more problematic but "cumulative number of packets lost" in RFC3550 can be used for disambiguation.

SCReAM – Considerations for a future format

- Detailed packet receipt times
 - Not required by SCReAM today but if GCC algorithm for initial rate estimation works well it can be of interest to include that in SCReAM as well
- RFC3611 + RFC6679 gives unnecessary extra overhead due to duplication of fields
 - A future RMCAT feedback can be more compact
 - A good start : http://tools.ietf.org/id/draft-
 holmer-rmcat-transport-wide-cc-extensions-01.txt

SCReAM Signaling

- RFC4585 regular mode is sufficient
 - Early mode may be used for application layer signaling (ReTx, FIR..)
- Reduced size RTCP highly recommended
 - Regular Compound RTCP transmission given by trr-int
- Signaling rate dependent on bitrate
 - From 100-200ms at low bitrates to 10-20ms at high bitrates
 - Based on empirical data from experiments and simulation
- Expressed as a simple equation

fb_int = $1.0/\min(50,\max(10,rate_media/20000))$

SCReAM Conclusions

- SCReAM feedback can be realized with RFC3611 for basic functionality
 - RFC6679 for ECN
- A future feedback format can however be useful
- Signaling interval ranges from 100-200ms at low media rates to 10-20ms at high bitrates
- Reduced size RTCP (RFC5506) is highly recommended.
 - Full compound RTCP transmission controlled by trrint.
- RFC4585 regular mode is OK

SBD Feedback Requirements

- The mechanism needs to:
 - a) Compute summary statistics based on accurate and precise per packet relative One Way Delay (OWD) measurements.
 - b) Determine shared bottlenecks based on summary statistics.
- Three scenarios:
 - 1. Summary statistic calculations and SBD performed on senders.
 - Summary statistic calculations performed on receivers, SBD on senders.
 - Calculations and SBD performed on both senders and receivers (beyond current scope—allows cooperative detection of bottlenecks).

1. Calculations and SBD on Sender

Feedback requirements:

- Precise accurate OWD measurements for every packet.
 - does not require synchronised clocks, summary statistics remove the clock offset.
- Packet(s) containing a collection of every OWD packet measurement since the last feedback transmission. This feedback should be sent at least every T (currently 350 ms) to match the current decision frequency of the SBD algorithm. A higher frequency is fine. A lower frequency is possible if the decision frequency is correspondingly reduced.

2. Calculations on the receiver, SBD on the sender

- SBD initialisation identifying summary statistics to be collected.
- Regular transmission of the summary statistics from receivers to senders every T (currently 350 ms).

3. Calculations and SBD on both the sender and receiver

NB. This is beyond the current scope, and here only to prevent inadvertent disqualification of such a future mechanism by decisions made at this juncture.

- SBD initialisation identifying summary statistics to be collected.
- Regular transmission of the summary statistics between receivers and senders every T (currently 350 ms).
- Regular transmission of relevant bottleneck determinations between senders and receivers every T.

Feedback Requirements – Summary

Algorithm	Feedback						
NADA	Recommended rate adaptation mode (rmode)						
NADA	Aggregated congestion signal (x_curr)						
NADA	Recently measured receiving rate (r_recv)						
GCC	Packet identifier → Packet loss						
GCC	Packet send time						
GCC	Packet arrival time Bandwidth estimate						
GCC	Packet size						
SCReAM	Arrival timestamp of highest received RTP sequence number						
SCReAM	List of received RTP packets → Packet loss						
SCReAM	ECN counter (optional)						
SCReAM	Source quench bit (optional)						
SBD (S1)	OWD measurements for every packet → Or packet send and arriva	al time					
SBD (S2, S3)	Summary statistics, initialisation of summary statistics to be collected						
SBD (S3)	Bottleneck determinations	20					

Feedback Interval – Summary

Tradeoff between overhead and responsiveness

Algorithm	Indicated Range	Recommended / used
NADA	20 ms – 400 ms	100 ms
GCC	50 ms – 100 ms	50 ms
SCReAM	100-200 ms (low bitrates) 10-20 ms (high bitrates)	
SBD		350 ms