Authenticated Denial of Existence in DNSSEC

1. Take all names in the zone.
2. Compute hashes of the names.
3. Sort the hashes.
4. Build NSEC records from subsequent pairs.

<table>
<thead>
<tr>
<th>Name</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>example.com</td>
<td>e1654f27</td>
</tr>
<tr>
<td>www.example.com</td>
<td>a029e8a9</td>
</tr>
<tr>
<td>mail.example.com</td>
<td>3c294eff</td>
</tr>
</tbody>
</table>

NSEC Records:
- NSEC: e1654f27 → 3c294eff
- NSEC: a029e8a9 → e1654f27
- NSEC: 3c294eff → a029e8a9
Preventing zone content enumeration

- **NSEC** (RFC 4034, March 2005)
 - No domain name hashing
 - Zone content enumeration is trivial

- **NSEC3** (RFC 5155, March 2008)
 - Uses SHA-1 for domain name hashing
 - Zone content enumeration is still possible

- **NSEC5** (*draft-vcelak-nsec5*)
 - Uses public-key hashing scheme
 - Zone content enumeration is impossible
NSEC5 public-key hashing scheme

- RSA based scheme (draft -00)
 - RSA FDH (Full Domain Hash)
 - NSEC5 proof is 256 bytes for 2048-bit key
- EC based scheme (draft -02)
 - Custom VRF (Verifiable Random Function) [1]
 - Uses secp256r1 or Ed25519
 - NSEC5 proof is 81 bytes

RSA is RSASHA256 for DNSKEY, RSAFDH-SHA256-SHA256 for NSEC5
EC is ECDSAP256 for DNSKEY, EC-P256-SHA256 for NSEC5
NSEC5 Resources

● Current draft:
 https://tools.ietf.org/html/draft-vcelak-nsec5-02

● Working copy of the draft:
 https://gitlab.labs.nic.cz/knot/nsec5-rfc

● NSEC5 project page:
 https://www.cs.bu.edu/~goldbe/papers/nsec5.html

● Sample NSEC5 crypto implementation:
 https://gitlab.labs.nic.cz/knot/nsec5-crypto