Network Service Header (NSH)
draft-ietf-sfc-nsh-04

IETF95, Buenos Aires, March 2016

Paul Quinn, Editor
Uri Elzur, Editor
NSH Contributors

- Surendra Kumar, Cisco Systems
- Michael Smith, Cisco Systems
- Jim Guichard, Cisco Systems
- Rex Fernando, Cisco Systems
- Navindra Yadav, Cisco Systems
- Wim Henderickx, Alcatel-Lucent
- Andrew Dolganow, Alcatel-Lucent
- Praveen Muley, Alcatel-Lucent
- Tom Nadeau, Brocade
- Puneet Agarwal, Innovium
- Rajeev Manur, Broadcom
- Abhishek Chauhan, Citrix
- Joel Halpern, Ericsson
- Sumandra Majee, F5
- David Melman, Marvel
- Pankaj Garg, Microsoft
- Brad McConnell, Rackspace
- Chris Wright, Red Hat Inc.
- Kevin Glavin, Riverbed
- Hong (Cathy) Zhang, Huawei US R&D
- Louis Fourie, Huawei US R&D
- Ron Parker, Affirmed Networks
- Myo Zarny, Goldman Sachs
- Dave Dolson, Sandvine
Changes in Versions 3 and 4

• No protocol changes
• Clarifying text, based on mailing list discussion:
 – NSH node SHOULD support MD Type=2. An MD Type=1 node, uses Length field to be able to process a packet where MD Type=2 is used
 – When access to “original” packet is needed, length field MUST be used to determine the “end” of the NSH headers
 – Added Fragmentation considerations – IETF compliant
 • Options: Jumbo, Path MTU or re-assembly
• Note: enhanced Security considerations in nsh-sec
Implementation Update: Open Source

- Vibrant open source community
 - Brocade, Cisco, Ericsson, Intel, Redhat, individuals, etc.
- Data Plane in Linux kernel
 - NSH (along with VXLAN-GPE) support for Lightweight Tunneling
- Data Plane in OVS
 - Classifier and SFF controlled via OVSDB and Openflow protocols
 - Decoupled transport and NSH encap/decap
- Data Plane in FD.io (in progress)
 - NSH encap/decap in VPP
 - NSH-aware SF
 - Control plane agent Honeycomb
 - Classifier, SFF and Proxy to be supported in new NSH SFC (https://wiki.fd.io/view/Project_Proposals/NSH_SFC) sub-project
Implementation Update: Open Source [2]

• Control Plane in OpenDaylight
 • Vibrant project, with new features every release
 • Integration with ODL Group Based Policy (as a classifier controller) and OVSDB NetVirt (as a classifier controller)
 • Standalone classifier control for Telco use case
 • Pipeline Coexistence: allowing GBP, NetVirt, and SFC to all Coexist on the same OpenFlow switch
 • Refactor of Openflow renderer and YANG models for better stability

• Integration with OPNFV
 • Service Function Abstract Data Types, allowing for better integration with OPNFV
 • ODL Beryllium (inc. SFC) + Tacker (VNFM) in Brahmaputra release
Implementation Update

• Many already announced/shipping implementations
 – Brocade
 – Cisco
 – Citrix
 – Ericsson
 – F5
 – Intel
 – Marvell
 – Qosmos
 – Riverbed
 – Sandvine

• Several more vendors will announce support over the next few weeks/months
Implementation Update [2]

- Multi-vendor implementation and initial deployments underway
 - Multi party Demo at MWC 2015 and Cisco Live 2015
 - Cisco, Intel, F5 and Citrix
 - OpenDaylight + OvS + SFs
 - NTT sponsored Interop event (http://www.ntt.co.jp/news2015/1502e/150212a.html)
 - NTT: Providing SFF, SFC Proxy, and Controller
 - ALAXALA: Providing Classifier, SFF, and SFC Proxy
 - Hitachi: Providing Classifier, SFF, and SFC Proxy
 - Cisco: Providing Classifier, SFF, and SFC Proxy
 - NEC: Providing Classifier, SFF, and SFC Proxy
 - Alcatel-Lucent Japan: Providing Classifier
 - Intel Developer Forum 2015
 - Intel + ODL + OVS demo
Next Steps

• Last Call in-progress