
IETF 95 – Buenos Aires
April 2016

YANG Data Model for

LDP and mLDP
(draft-raza-mpls-ldp-mldp-yang-03)

Kamran Raza (Cisco)

Rajiv Asati (Cisco)

Reshad Rahman (Cisco)

Santosh Esale (Juniper)

Xufeng Liu (Ericsson)

Jeff Tantsura (Ericsson)

Xia Chen (Huawei)

Loa Andresson (Huawei)

Himanshu Shah (Ciena)

Matthew Bocci (Alcatel-Lucent)

… and several other contributors as acknowledged in the draft

Changes in Rev -03

 Addressed comments from MPLS WG chair (Ross
Callon)

 Added high-level LDP YANG tree illustration

 Defined and clarified the use of terms LDP
Neighbor/Adjacency, Session, Peer
 Makes changes in the document to adhere to above defs.

 Added Derived/Operational state for LDP

 Re-organized and Cleaned up the doc for clarity

 Limited number of authors to 6 on the main page

Ross Callon’s Comments

 Boiler plate rfc2119

 Update “Security Consideration” section

 Clarify IANA section

 Normative references

 Number of authors

 IDNITs

High-level LDP YANG
tree

 Better illustration in
-03:

LDP
Neighbor/Adjacency,

Session and Peer
 Our model uses the terms LDP neighbor/adjacency,

session, and peer more strictly than RFC 5036 does.

 In this model, these terms are meant as follows:
 Neighbor/Adjacency: An LDP enabled LSR that is

discovered through LDP (basic/extended) discovery
mechanisms.

 Session: An LDP neighbor with whom a TCP
connection has been established

 Peer: An LDP session which has successfully
progressed beyond its initialization phase and is ready
for binding exchange.

 When used in our model, the above terms refer strictly to
the semantics and definitions defined for them.

Derived State: LDP
 LDP operational/derived state is

defined for 4 areas:

1. Neighbor Adjacencies

2. Peer

3. Bindings:
1. Address

2. FEC-label

4. Capabilities

Note that “applied” state is not
presented here as it has been covered
as part of intended (configuration)
state.

Note: See additional slides section for complete “derived state” yang tree

Cross-WG Item Closure
 LSR-Id

 dotted-quad vs uint32 vs ip-address !!
 Consistency with other routing protocol router-id

TO-DO List/Items
 Complete Operational/state model for mLDP

 Ensure Alignment with mpls-base

 Ensure Alignment with netmod WG direction
 Ensure Alignment with routing module changes :

network-instance vs routing-instance.

Next Steps
 Request WG adoption

 Close/Keep up with the TODO list (ongoing)
 Will continue even after the WG adoption

Backup Slide

LDP: Config Hierarchy
 module: ietf-mpls-ldp

 +-- routing

 +-- routing-instance [name]

 +-- mpls

 +-- mpls-ldp

 +-- global

 | +-- ...

 | +-- ...

 | +-- address-family* [afi]

 | +-- . . .

 | +-- . . .

 | +-- discovery

 | +-- . . .

 +-- peers

 +-- ...

 +-- …

Derived State: LDP Nbr/Adj
(1)

Firstly, High level organization of the Nbr/Adj state:

+--rw mpls-ldp!

 +--rw discovery

 +--rw interfaces

 | +--rw interface* [interface]

 | +--rw address-family* [af]

 | +--ro state

 | +--ro ipv4 (or ipv6)

 | +--ro hello-adjacencies* [adjacent-address]

 | +--ro adjacent-address

 |

 |

 +--rw targeted

 +--rw address-family* [afi]

 +--rw afi address-family

 +--ro state

 +--ro ipv4 (or ipv6)

 +--ro hello-adjacencies* [local-address adjacent-address]

 +--ro local-address

 +--ro adjacent-address

Derived State: LDP Nbr/Adj
(2)

Following are nbr/adj state attributes:

+--ro hello-adjacencies* [adjacent-address]

+--ro adjacent-address inet:ipv4-address

 +--ro flag* identityref

 +--ro hello-holdtime

 +--ro adjacent? Uint16

+--ro negotiated? Uint16

+--ro remaining? Uint16

+--ro next-hello? Uint16

+--ro statistics

 +--ro discontinuity-time yang:date-and-time

 +--ro hello-received? yang:counter64

 +--ro hello-dropped? yang:counter64

 +--ro peer? Leafref

Derived State: LDP Peer (1)
Firstly, High level organization of the peer state:

+--rw mpls-ldp!

 +--rw peers

 +--rw peer* [lsr-id]

 +--rw lsr-id

 +--ro state

 +--

 +--

 +--ro capability

 | +--. . . .

 +--ro address-family

 | +--ro ipv4 (or ipv6)

 | +--ro hello-adjacencies* [local-address adjacent-address]

 | +--

 +--ro received-peer-state

 | +--

 | +--ro capability

 |

 +--ro statistics

 +--

 +--

Derived State: LDP Peer (2)
Following are peer state attributes:
+--rw peers

 +--rw peer* [lsr-id]

 +--rw lsr-id yang:dotted-quad

 +--ro state

 +--ro label-advertisement-mode

 | +--ro local? label-adv-mode

 | +--ro peer? label-adv-mode

 | +--ro negotiated? label-adv-mode

 +--ro next-keep-alive? uint16

 +--ro peer-ldp-id? yang:dotted-quad

 +--ro received-peer-state

 | +--ro graceful-restart

 | | +--ro enable? boolean

 | | +--ro reconnect-time? uint16

 | | +--ro recovery-time? uint16

 | +--ro capability

 | +--ro end-of-lib

 | +--ro typed-wildcard-fec

 | +--ro upstream-label-assignment

Derived State: LDP Peer (3)
 >> CONT’D

 +--ro session-holdtime

 | +--ro peer? uint16

 | +--ro negotiated? uint16

 | +--ro remaining? uint16

 +--ro session-state? enumeration

 +--ro tcp-connection

 | +--ro local-address? inet:ip-address

 | +--ro local-port? uint16

 | +--ro remote-address? inet:ip-address

 | +--ro remote-port? uint16

 +--ro up-time? String

Derived State: LDP Peer (4)
 >> CONT’D

 +--ro statistics

 +--ro discontinuity-time yang:date-and-time

 +--ro sent (and received)

 | +--ro total-octets? yang:counter64

 | +--ro total-messages? yang:counter64

 | +--ro address? yang:counter64

 | +--ro address-withdraw? yang:counter64

 | +--ro initialization? yang:counter64

 | +--ro keepalive? yang:counter64

 | +--ro label-abort-request? yang:counter64

 | +--ro label-mapping? yang:counter64

 | +--ro label-release? yang:counter64

 | +--ro label-request? yang:counter64

 | +--ro label-withdraw? yang:counter64

 | +--ro notification? yang:counter64

 +--ro total-addresses? uint32

 +--ro total-labels? uint32

 +--ro total-fec-label-bindings? uint32

Derived State: LDP Bindings
(1)

Firstly, High level organization of the binding state:

 +--rw mpls-ldp!

 +--rw global

 +--rw address-family* [afi]

 +--rw afi address-family

 +--ro state

 +--ro ipv4 (or ipv6)

 +--ro bindings

 +--ro address* [address]

 | +--ro address

 | +--ro direction? advertised-received

 | +--ro peer? leafref

 +--ro fec-label* [fec]

 +--ro fec inet:ipv4-prefix

 +--ro peer* [direction peer]

 +--ro direction advertised-received

 +--ro peer leafref

 +--ro label? uint32

 +--ro used-in-forwarding? Boolean

Derived State: LDP Bindings
(2)

Example of address binding derived state:

Address bindings:

 Addr 1.1.1.1:

 advertised

 Addr 1.1.1.2:

 advertised

 Addr 2.2.2.2:

 received, peer 192.168.0.2

 Addr 2.2.2.22:

 received, peer 192.168.0.2

 Addr 3.3.3.3:

 received, peer 192.168.0.3

 Addr 3.3.3.33:

 received, peer 192.168.0.3

Derived State: LDP Bindings
(3)

Example of FEC-label binding derived state:

FEC-Label bindings:

 FEC 200.1.1.1/32:

 advertised: local-label 16000

 peer 192.168.0.2:0

 peer 192.168.0.3:0

 peer 192.168.0.4:0

 received:

 peer 192.168.0.2:0, label 16002, used-in-forwarding=Yes

 peer 192.168.0.3:0, label 17002, used-in-forwarding=No

 FEC 200.1.1.2/32:

 FEC 201.1.0.0/16:

Derived State: LDP
Capabilities

 LDP capabilities state comprise two types of information:

 Global information (such as timer etc)

 Per-peer information.

+--rw mpls-ldp!

 +--rw global

 | +--ro state

 | +--ro capability

 | +--ro

 | +--ro

 +--rw peers

 +--rw peer* [lsr-id]

 +--rw lsr-id yang:dotted-quad

 +--ro state

 +--ro received-peer-state

 +--ro capability

 +--ro

 +--ro

	IETF 95 – Buenos Aires April 2016
	Changes in Rev -03
	Ross Callon’s Comments
	High-level LDP YANG tree
	LDP Neighbor/Adjacency, Session and Peer
	Derived State: LDP
	Cross-WG Item Closure
	TO-DO List/Items
	Next Steps
	Backup Slide
	LDP: Config Hierarchy
	Derived State: LDP Nbr/Adj (1)
	Derived State: LDP Nbr/Adj (2)
	Derived State: LDP Peer (1)
	Derived State: LDP Peer (2)
	Derived State: LDP Peer (3)
	Derived State: LDP Peer (4)
	Derived State: LDP Bindings (1)
	Derived State: LDP Bindings (2)
	Derived State: LDP Bindings (3)
	Derived State: LDP Capabilities

