
RFC6962 vs RFC6962-bis: 
What’s changed?

Eran Messeri, Google



The Merkle tree structure and its use have remained the same. In particular:

● Nodes and leaves are hashed the same way.
● Inclusion, consistency proofs are conceptually the same.
● Concept of precertificates (the implementation has changed).
● SCT distribution mechanisms.

Unchanged



Removed
● The concept of Precertificate Signing Certificate is gone, as precertificates are 

no longer X.509 certificates.
● Precertificate Poison Extension is no longer needed.
● One layer of abstraction from the MerkleTreeLeaf data structure. Entries are 

now simplified for certs / precerts.
● SCTs for X.509 certs are no longer over the entire cert as-is.



Changed (overview)
● Precertificates are CMS objects containing the TBSCertificate designated for 

the final certificate.
○ The certificate’s serial number is still included.

● Dealing with private DNS labels:
○ Labels can be redacted from domain names in precerts.
○ Name-constrained intermediate CA certs can be logged instead of the leaf cert.

● OIDs are now used as Log IDs instead of a public key hash, taking up less 
bytes (but requiring more administrative work).



Log entries in RFC6962-bis
New data structure defined: TransItem
struct {
    VersionedTransType versioned_type;
    select (versioned_type) {
        case x509_entry_v2: TimestampedCertificateEntryDataV2;
        case precert_entry_v2: TimestampedCertificateEntryDataV2;
        case x509_sct_v2: SignedCertificateTimestampDataV2;
        case precert_sct_v2: SignedCertificateTimestampDataV2;
        case tree_head_v2: TreeHeadDataV2;
        case signed_tree_head_v2: SignedTreeHeadDataV2;
        case consistency_proof_v2: ConsistencyProofDataV2;
        case inclusion_proof_v2: InclusionProofDataV2;

case x509_sct_with_proof_v2: SCTWithProofDataV2;
case precert_sct_with_proof_v2: SCTWithProofDataV2;

    } data;
} TransItem;



Log Entries (cont’d)
Each leaf is the leaf hash of a TransItem structure of types:

● x509_entry_v2
● precert_entry_v2

Both structures encapsulates a TimestampedCertificateEntryDataV2 (only 
those two TransItem types are allowed in the log).



Log Entries: leaf data
opaque TBSCertificate<1..2^24-1>;

struct {
    uint64 timestamp;
    opaque issuer_key_hash[HASH_SIZE];
    TBSCertificate tbs_certificate;
    SctExtension sct_extensions<0..2^16-1>;
} TimestampedCertificateEntryDataV2;

The issuer_key_hash binds the issuer to the tbs_certificate.



Log entries: original submission
opaque ASN.1Cert<1..2^24-1>;
struct {
    ASN.1Cert leaf_certificate;
    ASN.1Cert certificate_chain<0..2^24-1>;
} X509ChainEntry;
opaque CMSPrecert<1..2^24-1>;
struct {
    CMSPrecert pre_certificate;
    ASN.1Cert precertificate_chain<1..2^24-1>;
} PrecertChainEntryV2;

The X509ChainEntry/PrecertChainEntryV2 are returned by the log together 
with the leaf data in reply to a get-entries call.



Data structure-related changes
TransItem can be used everywhere RFC6962 SCTs can be used (TLS 
extension, embedded in certificates, etc).

● Allows embedding/attaching inclusion proofs alongside certificates (and 
SCTs).

● Can be used to provide clients with new STHs, etc.

(Where SCTList was used, a TransItemList is now used)



Signed Certificate Timestamps
struct {
    LogID log_id;
    uint64 timestamp;
    SctExtension sct_extensions<0..2^16-1>;
    digitally-signed struct {
        TransItem timestamped_entry;
    } signature;
} SignedCertificateTimestampDataV2;
Note:
● The timestamped_entry is a TransItem of type x509_entry_v2 or 

precert_entry_v2 only.
● Extensions (SctExtension) are typed.
● The LogID is a part of the SCT.



● TransItems are returned from the log TLS encoded, not in JSON.
● Error codes (fixed strings) and error messages (human readable) are defined 

for all methods.
● HTTP codes 500, 503 are explicitly defined as transient errors.
● Dealing with skew on distributed log implementations:

○ a front-end receiving a request for an inclusion or consistency proof it is not aware of can now 
reply with a proof chaining to the STH it is aware of, including the STH itself.

Client API changes



Method-specific client API changes
Return value changes for add-chain, add-pre-chain, get-sth, get-
sth-consistency, get-proof-by-hash:

● SCTs, STHs are returned in their binary representation, base64-encoded.
● Instead of JSON which then had to be serialized to the right form.
● Same goes for inclusion, consistency proofs.



Client API changes (cont’d)
add-pre-chain: Different precertificate encoding (using CMS).

get-entries: extra_data renamed to log_entry, SCT also returned.

get-sth-consistency: Optionally returns an STH if the second tree size 
provided is unknown (and a consistency proof to that STH).

get-proof-by-hash, get-entries: Optionally returns a base64-encoded 
STH if the tree size specified is unknown.

get-all-by-hash: New method for providing STH + consistency + inclusion 
proofs if the tree size specified is unknown.



Client API changes (cont’d)
Renamed:

● get-roots was renamed to get-anchors

Removed:

● get-entry-and-proof



Backwards compatibility
● Logs can either conform to RFC6962 (“v1”) or RFC6962-bis (“v2”), not both.
● v1 and v2 SCTs are delivered using different X.509, TLS and OCSP 

extensions.
○ They can mostly co-exist.
○ TLS clients can support both simultaneously.

● Except for embedded SCTs: v2 clients are requried to remove v1 SCTs from 
the TBSCertificate portion of the certificate before validating v2 SCTs over it.


