Rekindling Network Protocol
Innovation with User-Level Stacks

Felipe Huici (NEC Europe)
Michio Honda (NetApp),

Joao Taveira Araujo (UCL),

Luigl Rizzo (Pisa University),

Costin Raiciu (Universitea Buchalest)

https://grithub.com/cnplab/multistack

Motivation

* Extending layer 4 functionality could address a lot of
problems

— Increased performance
« MPTCP WindowScale, FastOpen, TLE PRR

— Ubiqurtous encryption
e TcpCrypt

Motivation

* Extending layer 4 functionality could address a lot of
problems

— Increased performance
« MPTCP WindowScale, FastOpen, TLE PRR

— Ubiqurtous encryption
e TcpCrypt
Is it really possible to deploy layer 4
extensions?

Motivation

* Extending layer 4 functionality could address a lot of
problems

— Increased performance
« MPTCP WindowScale, FastOpen, TLE PRR

— Ubiqurtous encryption
e TcpCrypt
Is it really possible to deploy layer 4
extensions?

 Networks still accommodate TCP extensions

— 86 % of the paths are usable for well-designed TCP extensions
despite middleboxes

Protocol Stacks in End Systems:
The Theory

* OSes implement stacks
— High performance

— Isolation between applications
— Socket APIs

* New OS5 versions adopt new protocols/extensions

Extending Protocol Stacks:
The Reality

¢ O5es' release cycle is slow

* Support in the newest OS version does not imply
deployment
— Stakeholders are reluctant to upgrade their OS

— Often new features, even If available, must be explicitly enabled

How Long does Deployment Take!?

1.00 -
Option
0.75 SACK
Timestamp

— Windowscale

Direction

Ratio of flows
o
S

- = |Inbound
— Outbound

0.25 -

* Traffic trace from single

1 1 1 1 1 1 . . .
2007 2008 2009 2010 2011 2012 transitlinkinJapan (MAWI)
Date

0.00

— Windows: SACK is default since Windows 2000.WS and TS implemented in
Windows 2000 but enabled as default since Windows Vista (2009)

— Linux: SACK/TS on by default since 1999, WS since 2004

* Jo ease upgrade, we need to move protocol
stacks up into user-space

* Jo ease upgrade, we need to move protocol
stacks up into user-space

* Problem: no practical way to do this, we
heed:
— Isolation between applications

— Support for legacy applications and the OS's stack
— High performance

MultiStack: Operating System Support
for User-space Stacks

(TCP port 22)

(TCP port80) (UDP port 53) [|egacy apps | User
App1 | ...| AppN |[Fr===czzz==-----~-
' | Socket APl | Kernel
Stack 1 Stack N | |
| 1
___]jhletma_p_é'_"_]j__ 1 [O’ stack
-t : Virtual ports
1 & D <D

Multiplex / Demultiplex packets (3-tuple)

NIC @ MultiStack

MultiStack: Operating System Support
for User-space Stacks

(TCP port 22)

(TCP port80) (UDP port 53) [|egacy apps | User
App1 | ...| AppN |[Fr===czzz==-----~-
' | Socket APl | Kernel
Stack 1 Stack N | |
| 1
___]jhletma_p_é\'fl_ﬁ__ 1 [O’ stack
-t : Virtual ports
1 & D <D

Multiplex / Demultiplex packets (3-tuple)

NIC @ MultiStack

MultiStack: operating system support
for user-space stacks

(TCP port 22)

(TCP port 80) (UDP port 53)
App 1 App N |
Stack 1 Stack N | |
|
___thetmp_e?'_ﬁ__J
= =
Ne LS

legacy apps | User

Socket API Kernel
OS's stack
0 Virtual ports

Multiplex / Demultiplex packets (3-tuple)

MultiStack

Support for multiple stacks (including OS’s stack)
Namespace isolation based on traditional 3-tuple
Very high performance
Runs on FreeBSD and Linux (and it's open source!)

MultiStack: operating system support
for user-space stacks

legacy apps | User

Socket API Kernel

OS's stack

T

D

Virtual ports

Multiplex / Demultiplex packets (3-tuple)

App 1 App N
Stack 1 Stack N
___]:[Net_"_'aaé'_"_]:[__
s &2

NIC &2

MultiStack

Support for multiple stacks (including OS's stack)
Namespace isolation based on traditional 3-tuple
Very high performance
Runs on FreeBSD and Linux (and it's open source!)

MultiStack: operating system support

for user-space stacks
(TCP port 22)

(TCP port 80) (UDP port 53)
App 1 App N
Stack 1 Stack N

legacy apps | User

Socket API Kernel

OS's stack

T

D

Virtual ports

Multiplex / Demultiplex packets (3-tuple)

NIC

D

MultiStack

Support for multiple stacks (including OS's stack)
Namespace isolation based on traditional 3-tuple
Very high performance
Runs on FreeBSD and Linux (and it's open source!)

MultiStack: operating system support

for user-space stacks
(TCP port 22)

(TCP port 80) (UDP port 53)
App 1 App N [T
Stack 1 Stack N i
4

legacy apps | User

Socket API Kernel

OS's stack

T

D

Virtual ports

Multiplex / Demultiplex packets (3-tuple)

NIC

D

MultiStack

Support for multiple stacks (including OS's stack)
Namespace isolation based on traditional 3-tuple
Very high performance
Runs on FreeBSD and Linux (and it's open sourcel)

Multistack Base Performance (Tx)

pktgen

stack

!

@\ core n
% 0...

3-tuple filter

NIC @

Multistack Base Performance (Tx)

pktgen

stack

@core 0...n

3-tuple filter

NIC @

* App creates every packet from
scratch, and sends it to the
kernel

e Multistack validates the source
3-tuple of every packet, and

copies the packet to the NIC's
TX buffer

Multistack Base Performance (Tx)

pktgen

stack

@core 0...n

3-tuple filter

NIC @

App creates every packet from
scratch, and sends it to the
kernel

Multistack validates the source
3-tuple of every packet, and

copies the packet to the NIC's
TX buffer

Throughput (Gbps)

ek

SN B OO0 O

64 128 256 512
Packet size (bytes)

18

Multistack Base Performance (Rx)

pktrx

stack

il

@\ core n
% 0...

3-tuple mux

NIC @

Multistack Base Performance (Rx)

pktrx

stack

il

@\ core n
% 0...

3-tuple mux

NIC @

Multistack receives a packet

It identifies destination 3-tuple
of the packet

't delivers the packet to the
corresponding app/stack

Multistack Base Performance (Rx)

pktrx
stack
@\ﬁ 2.10 -
LR S S —
CIE
e@i‘core 0...n - ° i
E 4 2COI’es I
eNn
3-tuple mux 5 4 cores
= Line rate -~
ﬁ 0]

NIC @

Multistack receives a packet

64 128 256 512
Packet size (bytes)

It identifies destination 3-tuple
of the packet

't delivers the packet to the

corresponding app/stack

Many Apps/Stacks (Tx)

pktgen pktgen pktgen
stack stack stack
[X N J
3-tuple filter

NIC @

Many Apps/Stacks (Tx)

pktgen pktgen pktgen

stack stack stack

D12

3-tuple filter

NIC @

* App creates every packet from
scratch, and sends it to the
kernel

e Multistack validates the source
3-tuple of every packet, and

copies the packet to the NIC's
TX buffer

Many Apps/Stacks (Tx)

pktgen pktgen pktgen
stack stack stack
o000
3-tuple filter

NIC @

App creates every packet from
scratch, and sends it to the
kernel

Multistack validates the source
3-tuple of every packet, and

copies the packet to the NIC's
TX buffer

Throughput (Gbps)

ek

SN B~ ON 0O

8 ports

16 ports H—
64 ports HE—
Line rate

64 128 256
Packet size (bytes)

512

24

Many Apps/Stacks (Rx)

pktrx pktrx pktrx
stack stack stack
000
3-tuple mux

NIC @

Many Apps/Stacks (Rx)

pktrx pktrx pktrx

stack stack stack

D12

3-tuple mux

NIC @

Multistack receives a packet

It identifies destination 3-tuple
of the packet

't delivers the packet to the
corresponding app/stack

Many Apps/Stacks (Rx)

pktrx pktrx pktrx
stack stack stack
10—
S 8 TR
S {9 § ports -
&gl 16 ports m—
3-tuple mux 3 ol 64 ports E—
g 0 Line rate -~
el &P = 64 128 256 512

, , Packet size (bytes)
Multistack receives a packet

It identifies destination 3-tuple
of the packet

't delivers the packet to the

corresponding app/stack

Many Apps/Stacks (Rx)

pktrx pktrx pktrx
stack stack stack
o000
3-tuple mux

NIC @

Multistack receives a packet

It identifies destination 3-tuple
of the packet

't delivers the packet to the
corresponding app/stack

Throughput (Gbps)

ek

S o B~ ON 0O

8 ports
16 ports m——
64 ports EE—
Line _r:aie ---------------

64 128 256 512
Packet size (bytes)

A bit lower performance on many
ports Is due to the reduced
number of packets taken in a
single systemcall

28

Multistack Performance Summary

* 4 Gbps for 64 byte packets with a single CPU core
* |0 Gbps for 64 byte packets with two CPU cores
* |0 Gbps for 256 byte packets with a single CPU core

Performance with User-Level Stacks

* Asimple HT TP server on top of our work-in-progress
user-space TCP (UTCP)

* The same app running on top of OS's TCP

nginx-TSO = OSTCP-TSO = Client establishes a
st T osTCP m UTCP m TCP connection, and
sends HT TP GET
20 Server replies with
Syl HTTP OK (I- 32KB)
Single TCP connection
2T is used for a single
0 — HT TP transaction
1 8 16

Fetch size (KB)

30

Conclusion

* Multi-stack: OS support for user-space stacks to
rekindle widespread, timely deployment of new
protocols/extensions

Try it out!

Rekindling Network Protocol Innovation with User-Level Stacks. SIGCOMM CCR
31

