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 Networks still accommodate TCP extensions

— 86 % of the paths are usable for well-designed TCP extensions
despite middleboxes



Protocol Stacks in End Systems:
The Theory

* OSes implement stacks
— High performance

— Isolation between applications
— Socket APIs

* New OS5 versions adopt new protocols/extensions



Extending Protocol Stacks:
The Reality

¢ O5es' release cycle is slow

* Support in the newest OS version does not imply
deployment
— Stakeholders are reluctant to upgrade their OS

— Often new features, even If available, must be explicitly enabled



How Long does Deployment Take!?
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— Windows: SACK is default since Windows 2000.WS and TS implemented in
Windows 2000 but enabled as default since Windows Vista (2009)

— Linux: SACK/TS on by default since 1999, WS since 2004



* Jo ease upgrade, we need to move protocol
stacks up into user-space



* Jo ease upgrade, we need to move protocol
stacks up into user-space

* Problem: no practical way to do this, we
heed:
— Isolation between applications

— Support for legacy applications and the OS's stack
— High performance
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Multistack Performance Summary

* 4 Gbps for 64 byte packets with a single CPU core
* |0 Gbps for 64 byte packets with two CPU cores
* |0 Gbps for 256 byte packets with a single CPU core




Performance with User-Level Stacks

* Asimple HT TP server on top of our work-in-progress
user-space TCP (UTCP)

* The same app running on top of OS's TCP

nginx-TSO = OSTCP-TSO = Client establishes a
st T osTCP m UTCP m TCP connection, and
sends HT TP GET
20 Server replies with
Syl HTTP OK (I- 32KB)
Single TCP connection
2T is used for a single
0 — HT TP transaction
1 8 16

Fetch size (KB)
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Conclusion

* Multi-stack: OS support for user-space stacks to
rekindle widespread, timely deployment of new
protocols/extensions

Try it out!

Rekindling Network Protocol Innovation with User-Level Stacks. SIGCOMM CCR
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